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EXECUTIVE SUMMARY 
 

Indonesia is one of the main agriculture producers globally and largely relies on domestic staples for its 

growing population. Droughts related to the El Nino Southern Oscillation (ENSO) frequently reduce rice 

production which triggers, in the most severe cases emergency imports of rice. Projections of climate 

change models for Indonesia point towards increasing temperatures and more extreme distributions of 

precipitation with more frequent dry and wet periods. Climate change impacts are expected to lead to 

more volatility in rice production. High government subsidies for input supplies and fertilizer as well as 

trade tariffs under the current agriculture policy have led to inefficiencies in the rice production system 

besides stagnating yields.  

The Government of Indonesia (GoI) has been focusing on modernizing rice production through improved 

irrigation infrastructure and early warning systems to better cope with developing droughts and support 

schemes for rice farmers. In case of severe droughts (e.g., 1983, 1997, 2015), the GoI approved additional 

budget to alleviate impacts of drought for rice farmers through ad-hoc disaster payments and rice imports 

through its procurement agency BULOG to assure food security. However, a reallocation of budget takes 

considerable time and administrative efforts and can cause severe financial constraints to farmers if funds 

are received late. Governments in other countries have been benefiting from ex-ante insurance risk 

transfer products and capital market instruments in case of extreme climate events to obtain immediate 

indemnity, stabilise ad-hoc disaster budgets and lengthy avoid budget reallocation processes. While 

governments use risk transfer solutions mostly for infrastructure, parametric insurance covers have 

become increasingly available for agriculture assets including crops, livestock and forestry. 

This study investigates the development of a parametric insurance product as an ex ante risk management 

instrument that relies on regional drought indices and provides province-level payouts to the GoI in case 

of severe droughts. As a case study, the province of Central Java has been chosen given its importance in 

rice production and a recent request of the Central Java Government to transfer drought risk. This study 

uses over 50 years of historical gridded precipitation and temperature data to develop Standard 

Precipitation Indices (SPI) and Standard Precipitation Evapotranspiration Indices (SPEI) to quantify 

drought extents at a resolution of 50 x 50 km. A correlation analysis is undertaken between drought 

intensity (SPI and SPEI) over different time intervals (12 months, 6 months and 4 months) and annual as 

well as seasonal rice production including one wet rice season and two dry rice seasons. This study 

reveals that a 4 months SPI (January-April) and wet season rice production show the highest 

correspondence, based on which a parametric insurance product has been designed for payouts of 

droughts at province level (SPI of -5 up to SPI of -20). To validate assumptions of the possible maximum 

drought intensity, which is necessary to define the payout function of the parametric insurance product, 

SPI values are used from the last 56 years (1961-2015) of rainfall observations and projections from 

climate change models for the next 25 years (2016-2040). Following common market practise, the 

structure of the parametric insurance product is priced following the Historical Burn Rate method is used. 

As a first of its kind, the developed drought indices are validated with outputs of a climate change model 

for Central Java province. 

This study has been developed in the context of a wider initiative of the World Bank and IFC on disaster 

risk financing for the GoI and complements a recently approved IFC Indonesia Agriculture Insurance 

Project (601736) to develop insurance products at the micro level for farmers and at the meso-level for 

agribusinesses and lending institutions. Preliminary results of this study have been shown and discussed 

with the Ministry of Agriculture of Central Java, the National Weather Service of Indonesia (BMKG), the 

Office of the Insurance Regulator, the Ministry of Finance and leading Indonesian insurers in the form of 
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workshops undertaken in Indonesia (Semarang and Jakarta) in July 2017. The feedback on the concept of 

the presented parametric insurance solution has been very positive. Further, representatives of the 

Government of the Central Java province revealed that they have been trying to transfer drought risk for 

rice production to the insurance market, but no solution could be offered. Additionally, the concept of the 

parametric insurance product has been discussed with two leading reinsurance companies and a large 

reinsurance brokerand found strong interest to support this project with reinsurance capacity. 

Based on the continued interest from Indonesian stakeholders, a cost-benefit analysis of the parametric 

insurance product compared to other ex-ante and ex-post risk financing approaches will be undertaken. 

Further, the availability of longer seasonal rice production data will improve the validation of the 

developed indices. 
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CHAPTER 1. Government Disaster Risk Management 
 

Governments have different options to cope with the financial impact of natural disasters, depending on 

the severity of the disaster, geographical scope and population directly and indirectly affected. Disaster 

risk financing instruments for governments can generally be classified as i) ex-post including tax 

increases/cess, reallocating funds from other budget items, access to domestic and international credit and 

borrowing from multilateral finance institutions and ii) ex-ante including the building of financial 

reserves, contingent debt agreements and risk transfer to the reinsurance industry or capital markets, 

typically through parametric (index) products (see BOX and Figure 1-1).  

 

Figure 1-1. Schematic overview government disaster risk management option. Source: Development Solutions for Disaster Risk 

Finance, GFDRR, World Bank Group. 

In the face of the rising frequency and intensity of losses in low- and middle-income countries, the old 

model of post-disaster financing and reliance on the donor community is increasingly inefficient. Ex-ante 

financial schemes that are based on optimal risk-layering and an efficient disaster risk management 

framework can provide efficient solutions around immediate liquidity and reconstruction for developing 

countries. Optimal risk layering contains probabilistic analyses where frequent-low-consequence events 

and rare catastrophe-type of events are assessed in terms of loss potential to develop disaster risk 

management strategies for each layer, which is particularly important in the wake of climate change1. 

International financial institutions and the donor community have been promoting proactive disaster risk 

management systems including catastrophe risk financing models to reduce external assistance based on 

i) assessing a government’s contingent liability to natural disasters, ii) enabling risk transfer to 

competitive (re)insurance markets and iii) financing sovereign risk. 

                                                           
1 Linnerooth-Bayer, J. and Hochrainer-Stigler, S., 2015: Financial instruments for disaster risk management and climate change 

adaptation. Climatic Change, 133(1), 85-100. 
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Depending on the scale and intensity of a natural disaster, a government has budgetary outflows for relief 

operations, recovery operations and reconstruction and therefore needs liquidity over several months if 

not years (Figure 1-2). 

 

 

Figure 1-2. Estimated timing of budgetary outflows for a government caused by a catastrophic event. Source: Ghesquiere and 

Mahul (2007). 

BOX: Overview of the Main Disaster Risk Financing Instruments for Governments 

Government have a variety of disaster risk financing options to deal with natural disasters in terms of 

humanitarian aid and reconstruction. While for some low-loss events that occur frequently (low-layer-

risk), risk-reduction measures are appropriate, very low probability but high consequence risks (high 

layer risk), typically need disaster financing strategies which include both, both ex-post (after the 

disaster) and ex-ante (before the disaster) instruments. Generally, ex-ante instruments are considered as 

pro-active risk management strategies that provide funding much faster than ex-post approaches to cope 

with the disaster after occurrence. 

Ex-Post Disaster Financing Instruments (see Table 1.1 for details) 

• Budget Reallocation: allocation of funds to cope with the disaster from other priority development 

projects take considerable time and often needs parliamentary approval 

• Debt/ Credit: rising debt and obtaining a credit from domestic and international sources after the 

occurrence of disaster. While appropriate to finance reconstruction efforts, debts and credits do not 

provide the required liquidity to finance immediate post-disaster needs and depending on the damage 

extent. Post-disaster borrowing costs can be significantly higher compared to pre-disaster time and 

depends on a country’s level of indebtedness and ability to service the debt. 

• Donor Assistance: international donor countries and multilateral financing institutions support 

certain countries in the aftermaths of a disaster. However, donor funding largely depends on the 

level of visibility of a disaster in the international media and can take time until funds are available. 

• Tax increases: provides funds from the public over time to support reconstruction efforts, however 

can discourage new private investments that are central to redeveloping the economy. 

Ex-Ante Disaster Financing Instruments (see Table 1.1 for details) 

• Reserve Fund: development of a reserve fund achieved through borrowing or accumulating tax 

revenues to finance immediate post disaster needs.  

• Contingent Debt2: arrange for a contingent credit line to obtain immediate capital after disaster 

occurrence at terms (interest rate, loan maturity) defined on a pre-loss basis. For disbursement, 

contingent debt contracts can contain hard triggers (debt is only disbursed according to physical 

                                                           
2 Clarke, D. and Mahul, O., 2011: Disaster risk financing and contingent debt – A dynamic analysis. World Bank Policy 

Research Working Paper 5693, Washington DC, USA, 31p. 

 

Quick Liquidity vs. Long Term Financing 
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criteria of the intensity of the disaster) or soft triggers (debt is disbursed in case an emergency 

declarant has been issued by the government).  

• Conventional Risk Transfer: based on large scale insurance markets with high financial strength that 

provide coverage for natural disasters for majority of infrastructure or agricultural assets, catastrophe 

risk can be transferred on an indemnity basis to reinsurance markets. In developed countries, 

compulsory insurance against natural disasters has shown to be effective, despite some political 

resistance. In developing countries, insurance markets tend to be underdeveloped and inefficient 

without or only limited coverage for natural perils, which leaves governments only with the option 

to transfer risks on an index (parametric) basis to reinsurance and capital markets. The formation of 

risk pools typically facilitates access to reinsurance as an individual country (e.g., Turkish 

Catastrophe Insurance Pool) or even as a group of countries (e.g., Caribbean Catastrophe Risk 

Insurance Facility for infrastructure or African Risk Capacity for agriculture). 

• Parametric Transfer: in the absence of large insurance programs that cover natural disasters, 

catastrophe risk can be transferred on an index-basis (parametric) to reinsurance and capital markets 

(insurance-lined securities such as catastrophe bonds) in paying an annual premium to obtain funds 

in case a disaster occurs of pre-defined intensity. Parametric risk transfer products (unlike some 

Contingent Credit agreements) are based on hard triggers (funds are only paid if the disaster has 

reached a certain intensity) and are often based on outputs of catastrophe models for the particular 

disaster event. As based on indices and model results, these products inherently contain basis risk 

and might not cover all types of natural disasters. The economic theory through the Arrow-Lind 

Public Investment Theorem3 is usually used as the rationale for countries to apply a risk neutral 

policy in the evaluation of public investment. However, the assumption of risk neutrality has been 

challenged when countries are exposed to natural disasters using an alternative model which 

captures the correlation among individual losses (caused by natural disasters) and the liquidity 

constraint the government faces4. 

The Intergovernmental Panel on Climate Change (IPCC) states that insurance and other financial 

instruments can play an important role to manage natural disaster risks in the framework of climate 

change adaptation5. 

In developed countries, losses from natural disasters are typically funded through private risk financing 

agreements and an efficient public revenue system that relies on taxes. For developing countries, that 

typically contain low tax ratios and ongoing financial pressures, post disaster funding comes mainly from 

international donors through multilaterally sourced infrastructure loans and relief aid. In developing 

countries, the catastrophe insurance and risk transfer markets are clearly underdeveloped, which is 

demonstrated by the fact that while over 40% of the direct losses from natural disasters are insured in 

developed countries (usually through compulsory insurance), less than 10% of these losses are covered 

by insurance programs in middle-income countries and less than 5% in low-income countries6. Post-

disaster development lending from multilateral financial agencies are important for middle-income 

countries, while support from bilateral donors is typically more dominant in low-income countries.  

Table 1-1 : Disaster Risk Financing and Insurance Options 

                                                           
3 Arrow, K. and Lind, R.C., 1970: Uncertainty and the evaluation of public decisions. American Economic Review, 60(3), 364-

378. 
4 Ghesquiere, F. and Mahul, O., 2007: Sovereign natural disaster insurance for developing countries: A paradigm shift in 

catastrophe risk financing. World Bank Policy Research Working Paper 4345, Washington DC, USA, 26p. 
5 IPCC, 2012: Summary for policymakers. In Fields CB (ed) Managing the risks of extreme events and disasters to advance 

climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. 

Cambridge University Press, Cambridge, UK, 1-19. 
6 Cummins, J.D. and Mahul, O., 2009: Catastrophe risk financing in developing countries: principles for public intervention. 

World Bank Publication, Washington DC, USA, 299p. 
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Reserve 

Funds 
• Funds immediately available for disbursement  

• Funds still available even if no disaster occurs  

• Can lower costs relative to insurance given lower 

payments (covering annual expected loss without any 

risk buffer or profit load) and lower opportunity costs 

as funds set aside to meet future disaster costs earn 

returns  

• Reduces dependency on debt financing (e.g. for 

countries concerned about credit ratings)  

• Can provide a structure for inter-agency coordination 

and facilitate the earmarking of budget funds on a 

recurring basis  

• For markets lacking insurance and disaster risk 

financing, or where access to such markets is limited 

for certain economic agents (e.g., households, small 

businesses), may be the only available ex ante 

financial tool for these agents  

• Opportunity cost of maintaining a liquid 

reserve  

• Time delay for the build-up of an appropriate 

levels of funds to cover disaster risks at 

initial set-up and following any depletion of 

funds; less protection compared with 

insurance during the build-up of funds  

• May prove more challenging as the level of 

severity, and expected interval between 

disaster events, increase; it may be difficult 

to build up sufficient reserves and, between 

events, there may be a temptation to use the 

funds for other purposes  

Contingent 

credit 

facilities  

• Funds immediately available for disbursement  

• May be more efficient as the scale of disaster risk 

increases, as it may be more difficult to build up the 

necessary amount of internal funds to meet the 

increased expected costs of disasters and since such 

funds might, in the meantime, be more productively 

invested elsewhere  

• Opportunity costs linked to the holding fee 

and the return to investors if risk financing is 

triggered post-disaster  

• Counterparty credit risk  

• Access to specialized facilities limited to 

governments  

Insurance  • Immediate, effective transfer of disaster risk; no 

accumulation of funds needed as in the case of 

reserves  

• Provides useful protection against catastrophic 

disaster events that might otherwise have a material 

impact on wealth and greatly impede recovery, at a 

cost that should reflect diversification benefits gained 

from risk pooling  

 

• Payment may not be immediately available 

and counterparty credit risk  

• Opportunity costs of ongoing insurance 

premiums  

• In contrast to reserves, funds deployed to 

manage risk cannot accumulate if a disaster 

does not occur  

• Pricing subject to fluctuations in pricing in 

global insurance markets  

• May become relatively expensive and 

possible unviable as the absolute size and 

level of uncertainty surrounding the 

occurrence of a risk event increase  

Catastrophe

-linked 

securities 

(including 

CAT bonds)  

• Effective transfer of disaster risk; no accumulation of 

funds needed as in the case of reserves  

• In comparison with reinsurance, can provide greater 

security and rapidity of payment as they are fully 

backed by collateral and are based on clear, easily 

verifiable triggers, particularly if a parametric trigger 

is used  

• Are less sensitive to potential disruptions in global 

insurance markets and can provide multi-year 

coverage  

 

• Opportunity costs of ongoing interest 

payments (similar to insurance)  

• May present relatively large fixed costs if 

bespoke securities are issued  

• For parametric products, may present basis 

risk (triggered benefits may not match actual 

losses)  

• Potential regulatory barriers for recognition 

of catastrophe-linked securities as a risk 

management tool  

• Investor knowledge and education may be 

limited, limiting demand  

• May negatively impact non- or lightly-

regulated investors, given limited knowledge 

of long-tailed risks. Transparency of the risk 

distribution is important in capital market 

solutions.  

• Reinsurance solutions may prove more 

flexible, competitive  

Source: Disaster Risk Assessment and Risk Financing – A G20/OECD Methodological Framework (2012) 

The optimal strategy to finance post-disaster liquidity for a government which has restrictions with 

budget reallocation and reserve funds, is likely to include risk retention through reserving to cover small 

losses and contingent credit as well as risk transfer through reinsurance and/or capital markets. While 

frequently used by governments or a group of governments to transfer risk to the (re)insurance industry 

and capital markets7, such solutions in the form of insurance or financial instruments (derivatives) are 

                                                           
7 For an overview of risk transfer products for governments, see …. 
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becoming increasingly available for agriculture assets. The following discusses three examples how 

government use ex-ante risk transfer for agriculture risks in the form of catastrophe risk insurance.  

Crop and Livestock Disaster Insurance in Mexico (CADENA) 

The Government of Mexico is addressing weather related catastrophes through the CADENA8 program. 

CADENA was launched in 2003 under the Ministry of Agriculture, Livestock, and Fisheries 

(SAGARPA), the Mexican Government (both Federal and State level) and has been providing insurance 

protection against catastrophic risks to its smallholder farmers via both parametric and indemnity-based 

insurance, involving public and private insurance/reinsurance companies to underwrite the risks. Since its 

inception, CADENA has grown to cover most of Mexico’s states with over 70% of the 14 million 

hectares of agricultural land cultivated annually by smallholders. In 2012, CADANA covered a total sum 

insured of US$ 675 million with the Federal government budget for this program at US$ 232 million9. 

CADENA covers both crops and livestock through i) insurance for catastrophic events (Seguro 

Catastrófico) and ii) ex-post direct financial support (Apoyos Directos) to agricultural producers affected 

by natural calamities. Seguro Catastrófico is a macro-level agricultural insurance product purchased by 

the Federal and/or State governments and provides payouts to the Federal and/or the State government 

(the policyholders) in the occurrence of a covered event. The Federal and/or State government in turn 

provides assistance to farmers in the form of a pre-agreed lump sum per farm. CADENA buys 

catastrophe risk protection from the international reinsurance market. 

Seguro Catastrófico includes four products of which two are based on parametric triggers in i) a macro-

level Parametric Crop Weather Index Insurance (Seguro Agrícola de Índices Climáticos, or SAIC) which 

uses weather stations to insure crops against key perils such as rainfall deficit (drought) or excess rain 

(floods) and low temperature (freeze) for maize, beans, sorghum and barley, and ii) a macro-level 

Livestock-Pasture Normalized Difference Vegetation Index (NDVI) insurance to cover shortfalls in 

grassland production (Seguro Pecuario de Índices de Vegetación, or SPIV) to protect livestock producers 

to feed their livestock resulting from the shortage of pasture lands due to hydro-meteorological shocks. 

Evidence shows that CADENA has been successful as a tool to reach the most vulnerable farmers in the 

country. An independent evaluation of the program conducted in 2009 confirmed that more than 90% of 

surveyed beneficiaries were primarily involved in agricultural crop livestock and fishing activities, and 

that nearly 70% of crop beneficiaries managed less than 5 hectares of land. Further, 99% of the surveyed 

beneficiaries reported they had returned to their agricultural activities after a climatic event thanks to the 

indemnities received from CADENA. However, surveyed beneficiaries (as high as 72% of crop 

producers) noted that the payouts were inadequate to cover the costs of their investments in their 

agricultural enterprises, although 97% of respondents advised that all affected farmers in their locality 

had received assistance from the program 10. 

Drought Insurance in Africa (African Risk Capacity) 

The African Risk Capacity (ARC) is a region-wide initiative by African countries to address weather 

related risks ex-ante by creating a risk pool. As a specialized agency of the African Union, ARC helps 

member states improve capacities to better plan, prepare and respond to extreme weather events and 

natural disasters with a focus on drought disasters. Initially capitalized by a combination of premiums by 

member states and donor funds, payouts for droughts quantified through a Water Requirement 

Satisfaction Index (WRSI). The ARC risk pool exists since 2012 and cover 9 countries for drought risks 

                                                           
8 CADENA stands for Componente para la Atención a Desastres Naturales en el Sector Agropecuario y Pesquero 
9 World Bank, 2013: CADENA Catastrophe Insurance: A Social Safety Net for Small-scale Farmers in Mexico. Report 88100, 

Washington DC, 4p. 
10 The World Bank, Latin America and the Caribbean Region, Agriculture and Rural Development, CADENA Catastrophe 
Insurance: A Social Safety Net for Small-scale Farmers in Mexico, October 2013; 
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with a total of three payouts been made in the Sahel region when the drought parameter was triggered 

(USD 27 million, out of USD 197 million coverage)11. 

Analyses by ARC suggests that a widespread catastrophic drought in sub-Saharan Africa today could cost 

above USD 3 billion in emergency assistance, which would put an unprecedented financial strain on 

African countries and donor countries' aid budgets. As it was, the response system to natural disasters 

was not as timely or equitable as it should or could be, with much of the cost borne by farmers. 

International assistance through the appeals system is typically secured on a largely ad-hoc basis after 

disaster strikes, and governments are forced to reallocate funds in national budgets from essential 

development activities to crisis response. Only then can relief be mobilized toward the people who need it 

most, and often too late. Based on the premise that managing risks in an ex ante fashion is more 

economical and efficient and additionally saves more lives and livelihoods, the aim of ARC is to catalyse 

a better risk management system for Africa and provide capacity building support required to implement 

such a system. As an insurance risk pool, ARC's objective is to capitalize on the natural diversification of 

weather risk across Africa, allowing countries to manage their risk as a group in a financially efficient 

manner to respond to probable but uncertain risks.  

Members of the ARC risk pool receive a payout when the rainfall deviation is sufficiently severe such 

that the estimated response costs cross a certain pre-defined threshold/trigger point. When that threshold 

is crossed, qualifying risk pool members receive a payout within 2 - 4 weeks of the end of the rainfall 

season, thereby allowing them to begin early intervention programs before vulnerable populations take 

negative coping actions.  The ARC currently offers a maximum coverage of USD 30 million per country 

per season for drought events that occur with a frequency of 1 in 5 years or less. ARC buys reinsurance 

protection from the international market to cover catastrophe risks for its risk pools.  

ENSO Catastrophe Insurance in Peru 

In 2015, the Government of Peru established the Agricultural Catastrophe Insurance Facility (Seguro 

Catastrófico Agropecuario or SAC) with the aim to deal with agriculture-related emergency situations 

caused by extreme weather events such as El Niño. Peru’s farmers have been particularly vulnerable to 

the flooding/excess rainfall impacts of El Niño.  SAC protects 550,000 hectares of crop land in 8 regions 

with a total sum insured of USD 156 million. It will also cover crop losses due to other weather or 

climate threats such as severe frost, as well as rainfall. SAC operates under a multi-year (3-years) 

insurance agreement12. The Peruvian government’s actions of purchasing catastrophe insurance coverage 

for an impending El Niño event shows the severity with which the country can be impacted by rainfall 

during an El Niño year. It is also a good example of the importance of insurance and risk transfer to 

provide risk capital after severe weather events needed to help the local economy recover.  

The international experience with ex-ante risk transfer solutions of governments for agriculture assets has 

clearly shown the financial benefits compared to the common post disaster coping approaches. The basis 

of successful macro-level risk transfer products for agriculture are transparent underlying indices, high 

correlations between the indices and agriculture production and payout functions that have been 

developed in collaboration with government stakeholders.  

  

                                                           
11 Daniel Runde, Forbes Opinion, African Risk Capacity: Insurance For African Development, 22 December 2015; Some 

numbers taken from ARC CEO panel discussant Simon Young during the Paris 2015 Global Index Insurance Conference, 14 – 

15 September 2015  
12 Artemis, Peru buys catastrophe insurance to protect farmers from El Niño losses, September 24, 2015 
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CHAPTER 2. Overview of Agriculture in Indonesia 
 

Indonesia has the world’s 4th largest population and is the 10st largest agricultural producer. At a global 

scale, Indonesia is the largest palm oil producer, the 2nd largest producer of natural rubber and cacao and 

the 3rd largest rice producer and consumer after China and India. Agriculture remains a key sector in the 

national economic development through the contribution of food, industrial raw materials and feed 

ingredients, the creation of Gross Domestic Product (GDP), foreign exchange earnings, labour absorption 

and income of rural households. In recent years, agriculture contributed on average 13.5% to Indonesia’s 

GDP and employed 34% of the labour force13. The share of export value of agriculture in recent years is 

around 20% and is dominated by palm oil and rubber, which contribute 60% of the total agro-food 

exports. Key agriculture products include palm oil, rubber, timber, cocoa, coffee, tea, tobacco, rice, 

sugarcane, corn, cassava, tropical fruits, spices, poultry and fisheries. 

Crop areas are located in i) lowlands (<200 m) and typically include rice, maize cassava, fruit and 

perennial crops, ii) highlands (>800m) where vegetables and cool-climate crops are grown n iii) meso-

level production (200-800 m) dominated by vegetable production. In 2009, around 17% of the crop land 

is irrigated with half of the irrigation equipment considered to be in good condition. 

 

Figure 2-1. Development of area harvested, production and yield for rice (paddy), maize, soybeans and sugarcane for 1990-

2014. Source: FAOSTAT/World Bank 2017 (Annex to report on A Modern Food Policy for All Indonesians: Evidence and 

Strategic Directions. 

Agricultural land includes 23.6 million ha of arable land (44%), 19 million permanent crops (35%) and 

11 million permanent pastures (21%), with areas of permanent crops (especially palm oil) rapidly 

expanding14. Agricultural production volume has increased by 97% from 1990 to 2009 with an average 

annual increase of 3.4% over the same time period but with significant fluctuations riven by adverse 

weather conditions (e.g., the 1997-98 El Nino) and economic turmoil (e.g., Asian crisis) which impacted 

crop production and to an even higher extent the livestock sector. Agriculture statistics of the period 

1990-2014 show that i) rice (paddy) production increased as a result of land expansion and increasing 

yields (0.8% per year) but at a lower pace than for peer countries, ii) maize production which is mainly 

                                                           
13 OECD, 2017: Indonesia, in Agricultural Policy Monitoring and Evaluation 2017, OECD Publishing, Paris, 10 p. 
14 FAOSTAT, 2012 
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used for feed, increased significantly as a result of higher yields, iii) soybean production declined as a 

result of reduced area and iv) sugarcane production stagnated despite increasing area harvested but as a 

result of decreasing yields (Figure 2-1). In Indonesia, food crop production is dominated by small scale 

farms with an average area under production of 0.3-1.4 hectares with little mechanisation. Perennial crops 

(e.g., palmoil, rubber) are mainly produced by large private- and government-owned farms on average 

land sizes of 2,600 hectares and nearly occupy 20% of agricultural land. Driven by international demand, 

output levels of palm oil in 2010 have increased nine-fold since 1990. The livestock sector is dominated 

by poultry, followed by ruminants (mainly beef cattle, goats and sheep) and remains small and 

fragmented but with the emergence of larger and more industrialised production sites. Due to the 

expansion of agriculture, natural resources and the environment are under strong pressure with soil 

erosion and deforestation as some of the immediate consequences. 

BOX: The Importance of Rice 

Rice is the main food crop and consists of 19% of the total value of agricultural production (2009) and is 

grown on over 30% of the total crop area but has been declining over time. Indonesia is largely self-

sufficient in rice but occasionally imports rice, particularly when domestic production is impacted by 

adverse weather conditions. For rice, Indonesia reached self-sufficiency status in the mid-1980s and in 

2008-2009 but usually imports on average 3 million tons of rice to maintain a rice stockpile of 1.5-2 

million tons. To lower per capita rice consumption, the government introduced the one day without rice 

per week campaign while promoting consumption of other staple foods. At current rice consumption 

rates, population growth projections and an overall decline of per capita rice consumption, it is estimated 

that Indonesia will require 38% more rice in 25 years, which must be contributed through an increase in 

rice yields from the current 4.6 t/ha levels to over 6 t/ha15. Rice has a key role in the agricultural policy 

where subsidies are provided for input supplies, fertilizer and infrastructure and certain trade tariffs are 

supposed to protect the farmers. 

Around 90% of Indonesia’s rice production comes from smallholders that operate on farm size of less 

than 1 hectare, with the majority of farmers cultivating landholdings of 0.1–0.5 hectares. Rice is grown 

by around 77% of all farmers in the country under predominantly subsistence conditions. The production 

of rice is concentrated on the islands of Java and Sumatra with Java alone contributing nearly 60% of the 

total annual production. Rice is cultivated in i) irrigated and well fertilized lowlands production systems 

and ii) upland systems that are typically rainfed. In most regions, two to three rice crops are produced per 

year. About 84% of the total rice area was irrigated in 2012 with a predominance of river-based 

irrigation. 

Indonesia’s rice sector is highly exposed to droughts and flash floods related to the El Niño Southern 

Oscillation (ENSO). In El Niño years the lack of rainfall and the occurrence of droughts cause delayed 

plantings and less area planted, leading to a severe production shortfall, which in turn contribute to higher 

inflation, increases in poverty, and unless El Niño risks are appropriately mitigated, can have adverse 

effects on political stability. In La Nina years, excessive rainfall causes flash floods and riverine flooding 

and impact rice production, predominantly through lower yields. Annual land conversion rates of over 

100,000 hectares from rice production areas to non-agricultural usage, reduces the available land for rice 

production. As a result, growth in rice areas slowed from 2% per year (1960-1998) to below than a 0.1% 

increase per year (1999-2010).  

The continued growth of population leads to a split of already small farm units among family members 

under traditional inheritance practices and limits the affordability of higher quality input supplies and the 

intensification of mechanization and needed investment into higher yielding rice cultivars. With small 

production units, access to credit (or crop loan) is limited but is necessary to increase access to higher 

                                                           
15 http://ricepedia.org/index.php/indonesia 
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quality input supplies. Often outdated irrigation equipment is perceived as additional challenges for the 

rice sector to increase production. In the most recent 2015/16 El Nino, drought affected 570,000 ha of the 

2015 secondary rice season and damaged 210,000 ha representing 4% and 2% respectively, of the total 

area planted to rice in 2015.  

In 2003, the number of farms reached 24.9 million with over 50% located in Java where 57% of all farms 

have sizes of 0.5 ha and less. Landless farmers reached 12% in Java and 7% on other parts of Indonesia 

(2007). The trend towards decreasing farm sizes continued and is accompanied by a more unequal land 

distribution in general16.  

Domestic investment in the agricultural sector remains low, while international investors are constrained 

by restrictions in foreign ownership, complicated land rights and inadequate infrastructure (e.g., transport 

system, irrigation equipment). Bank financing for small scale agriculture operations is low due to the high 

risk of production failure from unpredictable weather conditions and the demand for higher value 

collaterals. In 2010, only USD 10.4 billion (5.5% of the total annual loans) were provided for the 

agricultural sector and only 4.9% of farmers received loans from non-governmental sources. On the other 

hand, large scale agricultural companies and conglomerates that operate large plantations (e.g., timber, 

palm oil, rubber) find easy access to funding through banks, foreign investors and capital markets. 

Fragmented supply chains, labour shortage at harvest time, poor harvesting equipment and post-harvest 

storage facilities and poorly maintained rice mills have led to a 5% loss of paddy and a 5% loss of milled 

rice in 2011, which would translate into a loss of 3.8 million tons and would have been larger than the 

2.7million tons of rice imported in 201117. 

While poverty has significant decreased, still 13% of the population continues to live below the poverty 

line, with half of the population vulnerable to falling into absolute poverty in the event of a natural 

disaster or deteriorating economic conditions18. Although the average expenditure from food per house 

hold has declined from 63% (1990) to an estimated 51% (2009) it remains at high level compared to 

other countries.  

Population growth in Indonesia is expected to increase from 242 million (2011) to 264 million (2021) 

with GDP projected to increase 6-7% annually, resulting in a continued strong demand for agricultural 

products. In the growing urban areas, dietary diversification occurs rapidly and leads to falling per capita 

rice consumption but increased consumption of animal products, fruits, vegetables and processed foods. 

As a result, Indonesia is accelerating imports for grain and oilseeds (wheat and soybeans) that cannot be 

efficiently produced domestically. Production of palm oil is likely to continue to increase both driven by 

increased yields and area planted. Rice will remain the key staple food with domestic supply projected to 

satisfy demand that will increase from 41.5 million tons (2009-2011) to 54 million tons (2012), which is 

equivalent of 10% of the global rice consumption relative to Indonesia’s share of global rice production 

of 3.4%. Indonesia is projected to remain a net importer of oilseeds, wheat, sugar and beef as well as 

dairy products. Indonesia-wide, 92% of households including rice farmers, are net buyers of rice and over 

87% of poor households buy more rice than they are selling. 

Climate change and potential increases in a more extreme distribution of rainfall regimes, i.e., longer dry 

periods and more flash floods will adversely impact production over time. Under climate change, 

Indonesia is predicted to experience temperature increases of approximately 0.8°C by 2030 with a high 

likelihood for the rainy season to end earlier and the length of the rainy season becoming shorter19. In 

                                                           
16 Rusastra, I.W. et al., 2007: Land and Household Economy: Analysis of Agricultural Census 1983-2003. ICASEPS, Bogor. 
17 World Bank, 2017: A Modern Food Policy for All Indonesians: Evidence and Strategic Directions. Annex. 
18 OECD, 2012: OECD Review of Agricultural Policies: Indonesia 2012, OECD Publishing, Paris, 239p. 
19 IFPRI, 2011: The Impact of Global Climate Change on the Indonesian Economy. IFPRI Discussion Paper 01148, 40p. 
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2015, Indonesia ranked 96th out of 181 countries in the ND-GAIN index20 with a downward trend. In 

terms of food sector vulnerability of all countries, Indonesia is at the 118th rank and 121st in adaptive 

capacity, which means that Indonesia is medium-vulnerable and relatively unready to combat effects of 

climate change21. Climate variability and change are likely to exacerbate many of the disaster risks that 

Indonesia faces today. During the past four decades, floods, droughts, storms, landslides, and large-scale 

forest fires have posed the greatest threats to livelihoods, economic growth and environmental 

sustainability. Climate change is project to negatively impact the Indonesian economy, especially for the 

agriculture sector (producers and consumers) with decreasing output of rice adversely affecting food 

security though increased prices for rice. By 2100, climate change impacts in Indonesia are expected to 

cost 2.5-7% of GDP22. Large-scale forest fires are of a particular concern as shown in 2015 by large scale 

fires that burned over 2.6 million hectares of land (an area of 4.5 times the size of Bali) with costs 

estimated to at least USD 16.1 billion, equivalent to 1.9% of the 2015 GDP or twice the cost spent for 

reconstruction after the devastating 2004 Aceh tsunami23.  

Agricultural Policy 

On the back of the 1997-98 Asian crisis, the agriculture sector under the main responsibility of the 

Ministry of Agriculture (MoA), saw a number of reforms including the Indonesian agricultural policy that 

include four main aspects in achieving i) self-sufficiency in certain commodities (including rice, sugar, 

soybeans, maize and beef) to assure food security at affordable prices for the population, ii) 

diversification of production from carbohydrates (rice and hear) towards more animal-based products, 

fruits and vegetables, iii) competitiveness of agricultural production and value-added processing and iv) 

increased welfare of farmers through higher incomes while reducing rural poverty24. Additionally, import 

tariffs on agro-food products were lowered and import monopolies, licensing requirements and export 

restriction on agricultural products been largely removed, except for rice, sugar and beef.  

In recent years, food self-sufficiency was the main driver of policy measures and the government has 

heavily subsided agricultural outputs and inputs, which are often provided through state-owned monopoly 

producers. Due to administrative complexities, the lack of land titles and the absence of bank accounts for 

farmers have prevented the use of less distorting forms of government support. Current policy 

instruments include: i) minimum purchase prices for rice and sugar and BULOG (see Box) acquiring rice 

through distribution to poor households (RASKIN program) and rice stock at guaranteed prices set by the 

government, ii) fertilizer subsidies for small farmers (<2 ha), iii) seed subsidies for rice, maize and 

soybean and seeds in response to natural disasters , iv) credit at low interest from commercial banks and 

federated farmers’ groups, v) income support for farmers affected by natural disasters vi) insurance with 

premium subsidies for rice and cattle (pilot programs) and vii) free extension services25. Additionally, the 

following services are provided as part of the agricultural policy: i) free irrigation water but costs to be 

charged to farmers for operating and maintaining water channel systems through water users’ 

associations, ii) research and development, iii) development of local markets and post-harvest storage 

facilities. Further, a number of trade policy instruments are used to support the farmers26. The agricultural 

policy is further enhanced through the 2012 Food Law which defines core objectives in terms of i) 

ensuring physical and economic access for the entire population to food which is diverse, safe and 

                                                           
20 The ND-GAIN Country Index (http://index.gain.org/about/matrix) of the University of Notre Dame summarizes a country's 

vulnerability to climate change and other global challenges in combination with its readiness to improve resilience. 
21 http://index.gain.org/about/matrix 
22 World Bank, 2014: Indonesia Risk Profile, Washington, DC. 
23 World Bank, 2015: Indonesia Economic Quarterly December. World Bank publication, Washington,  
24 MoA, 2010: Indonesian Agricultural Strategic Plan 2010-14. Ministry of Agriculture (MoA) of Indonesia. 
25 OECD, 2012: OECD Review of Agricultural Policies: Indonesia 2012, 239p. Box 0.2 
26 For a complete overview of policies, see ReSakss, 2014: The Roles of Input Policies in Transforming Agriculture in 

Indonesia. Working Paper 03, 42p. 



14 
 

nutritious, ii) improving the welfare of farmers, iii) minimizing reliance on imports for core staple foods 

and iv) achieving overall control of the country’s own food circumstances27.  

The level of government support, measured as the producer support estimate as a share of farmers’ gross 

receipts, has average at 9% annually (2006-2010) but has been highly variable ranging from -10% (2008) 

to +21% (2010), reflects the government’s efforts to stabilise domestic prices and manage the interests of 

farmers and consumers in the context of price volatility in international markets28. Government support 

for agriculture was equivalent to 4.6% of GDP (2015) and was proportionally the highest among OECD 

countries and peer middle-income countries. However, food self-sufficiency does not necessarily address 

food security as while import protection benefits domestic producers, rising food costs are born by 

consumers, which limits the competitiveness of the agricultural sector. Further, import restrictions that 

are meant to protect, farmers and translate to higher prices has not been observed as farmers have limited 

market power relative to processors and distributors and lack of access to reliable irrigation and advisory 

services. Fertilizer subsidies have not reversed the national trend in declining rates of growth in rice 

yields and while fertilizer prices have decreased globally, the fertiliser subsidy amount in Indonesia has 

been maintained at unchanged levels 29.  

BOX: Role of BULOG 

Founded in the 1960’s, BULOG is tasked to maintains grain stocks by selling stocks when rice prices are 

too high and buying from farmers when prices drop below specific levels. Further, BULOG procures rice 

from the domestic market and oversees the distribution of subsidized rice for poor people 

(RASKIN/RASTRA programs) while retaining and managing the national rice reserve stock. BULOG 

buys around 7% of rice production and sells this at a subsidized rate. Food security concerns are most 

severe in years of domestic shortfall of rice and resulting price increases as poor households spend on 

average half of the expenditure on food items. The Presidential Instruction (Inpres) no 5/2015 states that 

rice is to be imported only if domestic production is not sufficient to meet domestic demand and the 

government's reserve, and/or to maintain the stability of domestic rice prices. In 2016, the realization of 

RASKIN/RASTRA distribution until the end of 2016 has reached 2,782,326 tons of rice. Meanwhile, for 

managing the national rice reserve stock (CBP) in 2016, BULOG has distributed 329,420 tons for disaster 

relief and 31,1764 tons for rice price control.30 

 

 

                                                           
27 ibid. 
28 ibid. 
29 World Bank, 2016: Indonesia Economic Quarterly: Pressures easing. 11p. 
30 http://www.bulog.co.id/pers/37/6018/13/1/2017/Peran-Bulog-Dalam-Usaha-Pengendalian-Harga-Pangan.html 
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CHAPTER 3. Impacts of Weather Extremes on Rice Production 
 

Rice production in Indonesia is strongly influenced by annual and inter-annual variations of rainfall 

driven by the El Niño Southern Oscillation (ENSO) and the Austral-Asia Monsoon. In four El Niño years 

between 1973 and 1992, the average annual rainfall reached only around 67% of the 20-year average in 

two major rice growing areas in Java, causing a yield decline of approximately 50%31. Year-to-year 

changes in sea surface temperature in the Nino 3.4 area in the Pacific were found to explain 69% of the 

variance in year-to-year changes in September–December rainfall in Java, based on data from 1971-

199832. ENSO alone counts for nearly two thirds of the total variation in rice outputs over the last 30 

years33. During El Nino phases, rice production is impacted by i) delayed rainfall causing rice to be 

planted later in the monsoon season and ii) delayed planting of the main season wet rice which does not 

compensate for larger planting areas in the following season, leaving Indonesia with reduced planted 

areas and shortfalls. 

Farmers in irrigated rice production systems (lowland) plant rice in two or three planting seasons per 

year, whereas those in non-irrigated systems (upland) plant one or two crops per year. The first planting 

season, (Wet Season rice), usually occurs between November to February. For the 90-120-day growth 

cycle of wet season rice, cumulative rainfall of 200 mm is required to prepare the ground for planting 

with an additional 100 mm of rainfall needed during the growing phase34. The wet season rice is in many 

regions the main rice production. Often, the second crop (dry season 1 rice) is planted after the wet 

season between March and May, and a third crop (dry season 2 rice) is cultivated between June and 

August, particularly in fields in which there is high availability of water throughout the year. The dry 

season 2 rice is often planted based on speculations on available water and weather conditions.  

El Nino events are known to delay the onset of the monsoon and wet season rice planting by up to two 

months. Statistical analyses show correlations between the delay in onset and total rainfall for September 

to December (Wet Season Rice) of -0.94 in West/Central Java and -0.95 in East Java/Bali35. It is 

estimated that a 30-day delay in the onset of rainy season will diminish wet season rice production in 

West/Central Java and East Java/Bali by about 6.5 and 11.0 %, respectively36. Further, 66% of the inter-

annual variance in rice plantings and 40% of the inter-annual variance in rice production during the wet 

season in Java can be explained by annual fluctuations of sea surface temperatures in the Nino 3.4 region 

as measured 4-8 months in advance37. 

In Java, the strong 1997-1998 El Niño event caused a reduction in rice area of 700,000 hectares and a 

production loss of 3.2 million tons of rice, which is equivalent to one-fourth of the total rice traded 

                                                           
31 Amien, I., Rejekiningrum, P., Pramudia, A. and Susanti, E., 1996: Effects of interannual climate variability and climate 

change on rice yields in Java, Indonesia. Water, Air, and Soil Pollution, 92, 29-39. 
32 Naylor, R., Falcon, W., Wada, N. and Rochberg, D., 2002: Using El Nino-Southern Oscillation climate data to improve food 

policy planning in Indoensia. Bulletin of Indonesian Economic Studies, 38(1), 75–91. 
33 Naylor, R. L., Falcon W.P., Rochberg, D. and Wada, N., 2001: Using El Niño/Southern Oscillation Climate Data to Predict 

Rice Production in Indonesia. Climatic Change 50, 255–65. 
34 International Rice Research Institute (IRRI), 2007: Water Management.  
35 Naylor, L.N., Battisti, D.S., Vimont, D.J., Falcon, W.P. and Marshall, B.B., 2007: Assessing risks of climate variability and 

climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences of the United States of America, 

104(19), 7752-57 
36 ibid 
37 Naylor, L.N., Falcon, W., Wada, N. and Rochberg, D., 2002: Using El Nino Southern Oscillation climate data to improve food 

policy planning in Indonesia. Bulletin of Indonesian Economic Studies, 39(1), 75-91. 
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annually in international markets between 1971 and 199838. A considerable amount of rice is lost in 

drought years with regional differences (Figure 3-1). About 1 million ha out of 5.14 ha of agriculture land 

in Java and Sumatera is sensitive to drought and within the last decade, drought affected areas increases 

from 0.3-1.4% to 3.1-7.8%39. 

 

Figure 3-1. Average rice production lost from drought (1990-2013). Source: World Bank 2017 (Annex to report on A Modern 

Food Policy for All Indonesians: Evidence and Strategic Directions. 

Earlier studies on natural disasters have focused on earthquakes, tsunamis and floods impacting major 

cities40. The scale and amount of contingent liability due to extreme weather events like the 1997-98 or 

2015-16 El Niño is less understood. So far studies on the impact of El Niño events have focused 

primarily on household-level impacts on food security and poverty. What is less documented is the 

significant increases in contingent liability, which includes importing food grains and livestock (beef), 

increased allocation to social safety programs like RASKIN (the subsidized rice program for low-income 

families) and PADAT KARYA (employment creation through labour-intensive public works projects), 

and farm support (additional input subsidy for replanting purposes), among others. 

Drought detection and monitoring in Indonesia has been investigated through i) meteorological indices 

such as the Standard Precipitation Index (SPI) and the Palmer Drought Severity Index (PDSI), ii) 

satellite-derived vegetation health indices such as Normalized Difference Vegetation Index (NDVI), 

Enhanced Vegetation Index (EVI), Vegetation Condition Index (VCI)41 and iii) various combinations of i) 

and ii).  

BOX: Monitoring Drought Risk by BMKG 

                                                           
38 Naylor, R. L., W. P. Falcon, D. Rochberg, and N. Wada, 2001: Using El Niño/Southern Oscillation Climate Data to Predict 

Rice Production in Indonesia. Climatic Change 50, 255–265. 
39 Sembiring, H., Karim Makarim, A., Abdulrachman, S. and Widiarta. N., 2011: Current status of agricultural water 

management in Indonesia. Indonesian Center for Food Crop Research and Development, Bogor, 16p. 
40 An analytical report on “Indonesia: Advancing a National Disaster Risk Financing Strategy – Options for Consideration”, 

Non-Lending Technical Assistance to the Government of Indonesia in implementing Disaster Risk Financing in Insurance 

(DRFI),  
41 Shofiyati, R., Takeuchi, W., Sofan, P., Darmawan, S., Awaluddin and Supriatna, W., 2014: Indonesian drought monitoring 

from space. A report of SAFE activity: Assessment of drought impact on rice production in Indonesia by satellite remote sensing 

and dissemination with web-GIS. 7th IGRSM International Remote Sensing & GIS Conference and Exhibition. IOP Conf. 

Series: Earth and Environmental Science, 20. 

Average Rice Production loss due to drought from 1990 – 2013 
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The Indonesia Agency for Meteorology, Climatology and Geophysics (BMKG) developed El Nino 

drought probability maps and tables for all Indonesian provinces, based on global gridded climate data 

from the Global Precipitation Climatology Centre (GPCC, National Meteorological Service of Germany) 

and the Climatic Research Unit (CRU, University of East Anglia, UK) which have been analysed for 

performance with BKMG station data42. Operationally, BMKG uses SPI (Figure 3-2) and a Vegetation 

Health Index (Figure 3-3). BMKG further issues meteorological drought information based on the 

Standardized Precipitation Index (SPI) method for different time periods. BMKG operates a climate early 

warning system consisting of drought monitoring and prediction, which are dry season onset, consecutive 

dry days (CDD, updated every 10 days), and one-month SPI analysis which is received by Ministry of 

Agriculture, Directorate of Water Resources, Local authorities, and the National Board for Disaster 

Management43. Outputs of the drought monitoring system (particularly rainfall, temperature and SPI) are 

used for a Fire Danger Rating Index (FDRS) that is used to monitor fire weather conditions for forest 

areas. The Directorate General of Water Resources issues early warnings on water level heights in dams 

and reservoirs, which is mainly used for flood planning but also to cope with drought situations.  

 

Figure 3-2. Example of a Chart of a Standard Precipitation Index (SPI) produced by BMKG for the time January-March 2014 

showing standardized rainfall intensity compared to the long-term climatological in different colors over Indonesia. Source: 

BMKG. 

                                                           
42 Supari, Muharsyah, R. and Sopaheluwakan, A., 2016: Mapping drought risk in Indonesia related to El-Nino hazard. AIP 

Conference Proceedings. 1730(1),  
43 http://cews.bmkg.go.id/depan.bmkg 
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Figure 3-3. Example of a Chart of a Vegetation Health Index (VHI) produced by BMKG for August 2015 showing drought stress 

in the rice production areas of Indonesia in different shades. Source: BMKG. 

Over time, Indonesia has been experiencing strong, moderate and week droughts that are related to El 

Nino events and a comparison with year-to-year changes in rice production in Sumatera, Java and 

Kalimantan show large fluctuations in rice production (Figure 3-4). A major part of the volatility in rice 

production can be explained by drought occurrence that are related to El Nino years. However, it is 

recognised that Indonesia’s official rice production statistics are considered suspect with the methodology 

used is flawed and when the estimated outcomes have become increasingly politicized, human error and 

bias becomes systematic44. 

 

                                                           
44 Steven Jaffee, Lead Agricultural Economist at the World Bank, personal communication 
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Figure 3-4. Strong (solid box), moderate (dashed box) and weak (dotted box) El Nino events and changes in annual rice 

production relative to the previous year for Sumatera, Java and Kalimantan which are the main producing islands of Indonesia, 

1991-2012. Data source: Ministry of Agriculture Indonesia. 

The Government of Indonesia (GoI) has taken some actions in coping with drought impacts on 

agriculture including the provision of drought tolerant seeds, water pumps and advisory for farmers and 

extension workers on best suited planting times in function of drought forecasts. Besides, several 

initiatives target of building embung ahead of droughts, which are small reservoirs. Further, a forecasting 

and early warning systems for El Nino-related weather anomalies have been developed for Indonesia and 

rely on both relatively simple predictive models that are based on changes in sea surface temperatures in 

El Nino regions in the Pacific45 and outputs of Global Climate Models.  

The use of climate projections from global circulation models has revealed a general warming of 

temperature and increased volatility in rainfall and a marked increase of in the probability of a 30-day 

delay in monsoon onset in 2050 with an increase in precipition later in the crop cycle (April-June) by 

about 10% and a decrease in rainfall of up to 75% in the dry season (July-September)46. Experiments 

have shown that rice yields are sensitive to the rising of minimum temperatures in the dry season; and 

that yields could decrease 10% for every 1°C increase in minimum temperature47, posing serious future 

food security concerns. Projections for Indonesia’s rice production reveal possible yield decreases from 

4% per year to a total of 16.5% between 2000 and 2080. Climate change affects rice production in 

various ways including i) each 1°C change in temperature causes lower rice quality and yield losses of 

1.3 million metric tons or 10-25% of total production, ii) a 60 cm sea level rise strongly reduces rice 

yields, e.g. by 300,000 tons in two west Java districts, and iii) a 30 day delay in wet season onset 

decreases rice yields by 6.5-11%, prolongs the ‘hunger season’ and may ultimately prevent farmers from 

planting two consequent rice crops48. 

Table 3-1: Total disaster events in Indonesia 2010-2017 

Disaster Event Year Grand 

Total 
2010 2011 2012 2013 2014 2015 2016 2017 

FLOODS 1,008 575 588 716 588 535 849 482 5,341 

TORNADOS  395 444 560 501 621 583 687 370 4,161 

FIRES 235 492 468 20 
 

3 
  

1,218 

LANDSLIDES 398 329 290 296 599 513 626 364 3,415 

DROUGHTS 40 221 264 66 7 7 
  

605 

FOREST AND LAND 

FIRES 

4 22 51 21 100 44 178 2 422 

TIDAL 

WAVES/ABRASION 

12 17 29 36 20 7 23 5 149 

EARTHQUAKES 11 9 13 6 14 26 10 9 98 

VOLCANIC 

ERUPTIONS 

3 4 7 8 4 12 7 
 

45 

Grand Total 2,106 2,113 2,270 1,670 1,953 1,730 2,380 1,232 15,454 

                                                           
45 D’Arrigoa, R. and Wilson, R., 2008: El Nino and Indian Ocean influences on Indonesian drought: implications for forecasting 

rainfall and crop productivity. Int. J. Climatol. 28, 611–616 
46 Naylor, L.N., Battisti, D.S., Vimont, D.J., Falcon, W.P. and Marshall, B.B., 2007: Assessing risks of climate variability and 

climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences of the United States of America, 

104(19), 7752-7757 
47 Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, et al. 2004. Rice Yields Decline with 

Higher Night Temperature from Global Warming. Proceedings of the National Academy of Sciences of the United States of 

America, 101(27), 9971–9975. 
48 MER, 2015: Climate Change Profile Indonesia. Netherlands Commission for Environmental Assessment, 21p. 
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Source: dibi.bnpb.go.id (processed), 2017 

 

Based on the information from the Indonesia Disaster Information Data (DIBI) of the Indonesian 

National Board for Disaster Management (BNPB), between 2010 to May 2017 there were 15,454 disaster 

events on record (Table 3-1). Hydro-meteorological disasters (floods, tornados, landslides, droughts, and 

forest fires) are the most frequent disaster events, accounting for 90% of the all disaster events. Floods 

are the most frequent disaster, accounting for 35% of all events (Figure 3-4 and Figure 3-5). 

 
Figure 3-1. Total disaster events in Indonesia 2010-2017. Source: dibi.bnpb.go.id (processed) 

 

 
Figure 3-2. Hydro-meteorological Disaster Events, 2010-2017. Source: dibi.bnpb.go.id (processed) 

Based on the damage and loss assessment conducted by BNPB, total damage and loss from large disaster 

events due to climate change and El Nino impacts between 2010 and 2016 reached more than Rp 14.5 

Trillion (in excess of USD 1 billion), not including the losses due to forest and land fires in 2015, which 

is predicted to have been in excess of Rp 220 Trillion (in excess of USD 16 billion). 
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Table 3-2: Damage and Loss due to Massive Floods, 2010-2017 

No. Disaster Event Time of Event Damage & Loss (Rp billion) 

1 Flash Floods in Wasior, West Papua  Sept 2010 280.6 

2 Floods in Jabodetabek areas Jan 2013 8,340.0 

3 Flash Floods in North Sulawesi  Jan 2014 1,569.9 

4 Flash Floods in Garut Sept 2016 690.7 

5 Floods and Landslides in Sumedang Sept 2016 134.1 

6 Floods in Bandung City  Oct 2016 16.8 

7 Flash Floods in Bima Dec 2016 3,493.3 
 

Total 

 

14,525.4 

Source: Ministry of National Development Planning (Bappenas) and Indonesian National Board for Disaster 

Management (BNPB), updated in 2017 

Between 2010 to 2016, the Government of Indonesia on average allocated Rp 4 Trillion (USD 300 

million) annually towards reserve funds for disaster management, to be allocated for emergency disaster 

management as well as post-disaster rehabilitation and reconstruction (Table 3-3). Every year the funds 

are distributed to regions depending on the disaster impact, and the disbursement of the reserve funds is 

affected by the intensity of disaster events each year, and is accounted for in accordance with applicable 

regulations. Climate change related disaster events, including El Nino, accounted for more than 40% of 

all disbursements from the reserve funds during the period (2010 to 2016). 

 

Table 3-3: Data on Budget Realization of Disaster Management Reserve Funds 2010-2016 

Year Budget Allocation  

(Rp million) 

Realized Disbursement  

(Rp million) 

For Disasters due to Climate Change 

(Rp million)* 

2010 5,312,000.00 5,259,995.00 2,103,998.00 

2011 4,300,000.00 4,278,529.00 1,711,411.60 

2012 4,000,000.00 1,000,000.00 400,000.00 

2013 2,300,000.00 1,697,733.00 679,093.20 

2014 3,000,000.00 3,000,000.00 1,200,000.00 

2015 4,000,000.00 3,444,045.00 1,377,618.00 

2016 4,000,000.00 3,000,000.00 1,200,000.00 

Source: BNPB Financial Note, Year 2017 

*) Estimated realized disbursement of disaster management reserve funds for disasters such as floods, droughts as well as forest 

and land fires which amounted to 40% of the total realized disbursement of reserve funds 

In addition, per the tracking of investments towards management and dealing with climate change/el nino 

impacts, between 2010 to 2017, the GoI allocated budget of Rp 442.6 Trillion (~USD32.8 billion) of 

which Rp 357.46 Trillion (~USD26.5 billion) was disbursed. The largest allocation is budgeted for 

subsidies of rice, fertilizers and seeds which amounted to Rp 295.8 Trillion. A significant increase in 

allocation of funds occurred in 2015 and 2016, Rp 79.1 Trillion in 2015 (or 68% more compared to Rp 

47.2 Trillion in 2014), the increase coinciding with the El Nino in 2015 and La Nina in 2016. What is not 

known is whether such allocation is intended for disaster management of floods or droughts, or forest and 

land fires. 
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Figure 3-3. Budget Allocation and Realization for management of climate change/El Nino impacts, 2010-2017 
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CHAPTER 4. Drought Indices for Agriculture 
 

Droughts occur in both high and low rainfall areas and relate to the reduction of rainfall received over a 

certain area and over an extended period of time. The onset and termination of a drought is driven by 

factors including high temperature, low relative humidity and the intensity and duration of rainfall 

including the daily distribution. Since droughts have different impacts on the environment and society, 

droughts are generally categorised into i) meteorological drought, is a lack of precipitation over a region 

for a period of time relative to average values, ii) agricultural drought, is a period with declining soil 

moisture and resulting crop failure without any reference to surface water, iii) hydrological drought, is a 

period with inadequate surface and subsurface water resources for established water uses for a particular 

water resource system, and iv) social-economic drought relates to failure of water resource systems to 

meet demands for an economic good water49. Droughts occur in a particular order starting with 

precipitation deficiency (meteorological drought) which impacts soil moisture contents (agricultural 

drought) and low recharge from the soil to stream and lakes causes low streamflow (hydrological 

drought) which in severe cases can lead to failures of water resource systems (social-economic drought).  

In order to forecast, monitor and plan operations, drought indices have been developed reflecting one of 

several types of impacts, time spans and geographies. Drought indices are quantitative measures that 

describe drought levels by assimilating data from one or several indicators (variables) and over 150 

different drought indices have been developed50. While some drought indices are used in research and/or 

for specific applications, some are used as standards to monitor droughts in an operational context. 

Drought indices can be categorised into i) meteorological indices, ii) agricultural indices, iii) 

hydrological indices, iv) remote sensing-based indices and v) combined indices (also called hybrid or 

aggregated indices) which can include indices of categories i-iv). 

Agriculture risk transfer products use drought indices, particularly SPI, SPEI, WRSI, CMI and NDVI, to 

quantify drought risk and to define indemnity triggers (see Table 4-1 for an overview of common drought 

indices).  

Table 4-1: Common drought indices per type with M = Meteorological Index, A=Agricultural Index, RS = Remote 

Sensing Index; note that Hydrological Indexes are not listed in this table, Inputs with P = Precipitation, T = 

Temperature, SM = Soil Moisture, ET = Evapotranspiration, SF = Stream Flow, NIR = Near Infrared and SWIR = 

Short Wave Infrared. 

  Inputs  

Index Type P T SM ET SF NIR SWIR Notes 

Percentage of Normal 

Precipitation (PNC) 

M ●       No-standardised index 

describing rainfall deviation 

compared to normal but does 

not allow comparisons of 

droughts over seasons and 

regions; needs at least 30 

years of data 

Deciles of 

Precipitation (DP) 

M ●       No-standardised index 

dividing rainfall 

distributions in 10% ranges 

(deciles)  

Standard Precipitation 

Index (SPI) 

M ●       Standardised index 

transforming rainfall into a 

                                                           
49 Mishra, A.K. and Singh, V.P., 2010: A review of drought concepts. Journal of Hydrology, 391, 202-216. 
50 For a description and discussion of 74 drought indices, see Zargar, A., Sadiq, R., Naser, B. and Khan, F.I., 2011: A review of 

drought indices. Environ. Rev., 19, 333-349 
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normal distribution and 

expression deficit/excess 

rainfall in standard 

deviations compared to long-

term normal. Recommend as 

the main meteorological 

drought index by the World 

Meteorology Organisation 

(WMO) 

Standard Precipitation 

Evapotranspiration 

Index (SPEI) 

M ● ●      Improved SPI index using 

temperature, water balance 

and evapotranspiration; in 

the absence of temporal 

temperature trends, produces 

similar results to SPI. 

Palmer Drought 

Severity Index (PDSI) 

M ● ● ●   ● ● Index based on soil moisture 

deficiencies (local available 

water content) through a 

water balance model; may 

not identify droughts as 

early as the other indices and 

not well suited for 

mountainous land or areas of 

frequent climatic extremes. 

Crop Moisture Index 

(CMI) 

A ● ●      Index developed on PDSI to 

monitor weekly crop 

development, analyses 

rainfall and temperature in 

water balance model. 

Soil Moisture Deficit 

Index (SDMI) 

A ● ● ● ●    Uses a crop model and 

hydrological model at high 

resolutions and different soil 

layer and depth; modelled 

data from a hydrologic 

model with the Soil Water 

Assessment Tool (SWAT) 

are initially used to calculate 

soil water in the root zone; 

high complexity. 

Water Requirement 

Satisfaction Index 

(WRSI) and Geo-

spatial WRSI 

A ● ● ● ●    Crop specific drought index 

that uses water balance 

model and requires 

additionally soil type and 

irrigation extent 

Normalised Difference 

Vegetation Index 

(NDVI) 

RS      ● ● Based on visible and near-

infrared images, common 

vegetation health index 

using near infrared and 

visible red spectral 

reflectance  

Vegetation Condition 

Index (VCI) 

RS      ● ● Based on thermal images, 

identifies drought situations 

and determine the onset, 

duration and severity of 

droughts on vegetation; 

similar to NDVI  

US Drought Monitor 

(SDM) 

M/A/RS ● ● ● ● ● ● ● Composite drought index 

integrating SPI, PDSI and 
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hydrological and vegetation 

indicators; uses percentile 

ranking in which indices and 

indicators from various 

periods are compared; used 

mainly in the USA but 

increasingly considered in 

other countries 

Source: adapted from Zargar, A., Sadiq, R., Naser, B. and Khan, F.I., 2011: A review of drought indices. Environ. 

Rev., 19, 333-349. 

The choice of a particular drought index to develop risk transfer solutions such as parametric insurance 

solutions largely depends on the underlying risk, data availability as well as the structure and desired 

payout function. For risk transfer, a drought index needs to be transparent and to be easily reproduced by 

risk takers such as reinsurers and capital market participants. One of the most common drought indices to 

monitor and quantify droughts over different time spans is the Standard Precipitation Index (SPI), which 

is recommended by the World Meteorological Organisation (WMO) as the most suitable meteorological 

drought index used for drought monitoring and climate risk management51. 

BOX: Standard Precipitation Index (SPI) 

The Standard Precipitation Index (SPI) is one of the simplest precipitation-related index that reveals 

drought and excessive rainfall periods from a purely meteorological point of view. SPI is a probability 

index that considers only precipitation and is one of the most used indices to determine meteorological 

droughts. In a first step, the long-term precipitation records are fitted to a Gamma probability distribution 

function, which, in a second step is transformed into a normal distribution so that the median SPI is zero 

and with half of the observations being positive (negative) revealing drier (wetter) conditions compared 

to the median (for details, see APPENDIX 1). 

The scale of the SPI ranges with a more severe event shown higher values on the index.  

Table 4-2 : SPI value classification 

SPI Value Classification 

>2 Extremely wet 

1.5 to 1.99 Very Wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

<-2 Extremely dry 

The SPI can be calculated for a variety of time spans and can be used to quantify meteorological 

droughts. Typically, SPIs are calculated for 1 months, 2 months, 3 months, yearly and multi-year. 

Although the SPI quantifies a meteorological drought, the fact that soil moisture conditions (which are 

important for crop growth) respond to precipitation anomalies in a short time, the SPI index can be a 

valuable proxy for soil moisture content. As SPI is a standardised index, it allows the determination of the 

rarity of a current drought, the calculation of the probability of the precipitation necessary to end it and 

the comparison of historical and current droughts between different regions.  

                                                           
51 WMO, 2009: Experts agree on a universal drought index to cope with climate risks. Press Release of the World 

Meteorological Organisation (WMO) No.-872, 2p. 
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CHAPTER 5. Development of Drought Indices for Central Java 
 

Central Java is part of the Java island (Figure 5-1) and is a major rice producer and as other Indonesian 

provinces is exposed to severe droughts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1. Map of Indonesia with the location of the Central Java province (insert) and Mapo of the Central Java 

province. Source: Wikimedia 

The government of Central Java has signalled strong interest to a solution to manage rice production 

shortfalls due to severe droughts. To develop a parametric insurance product, drought indices need to be 

computed and while there are a large number of possible drought indices available (meteorological and 

agricultural drought indices), this project uses the Standard Precipitation Index (SPI) and the Standard 

Precipitation Evapotranspiration Index (SPEI). Both, SPI and SPEI are widely used to quantify 

meteorological drought risk and the SPI is operationally computed for Indonesia by the National Weather 

Service (BMKG) to monitor droughts. While SPI only relies on precipitation data, SPEI requires 

additionally temperature recordings, based on which evapotranspiration is computed. In order to relate 

the drought indices to actual losses and financial impacts, agriculture production statistics and other loss 

proxies (e.g., area affected by a natural peril, government ad-hoc disaster spending, economical losses) 

are needed.  

Weather and Rice Production Data 

With the increasing availability of high-quality open-source weather data (mostly on gridded format), 

several datasets are available for Indonesia at different time scales and resolutions (Table 5-1). 

Additionally, a gridded rainfall and temperature data set recently compiled by the National Weather 

Service (BMKG) seems to become available soon. Some datasets have shown higher accuracies in 

tropical and sub-tropical environments. To develop a parametric insurance product, it is essential that 

weather data are available near real time so that potential losses can be estimated during the period of 

insurance (i.e., a rice growing season) and computed at the end of the period of insurance to determine 
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the pay-outs. For this project, the following key criteria were applied to select a weather/climate data set: 

i) long history of weather recordings including rainfall and temperature data, ii) spatial resolution of 50 

km or better and iii) known possible biases towards weather station data. 

Table 5-1: Overview of open-source gridded weather/climate data 

Name Resolution (o) Period Parameter Intervall Area Provider Country 

CRU 0.5 1901-

present 

P, T Monthly Global land University of East Anglia, 

UK 

UK 

CHIRPS 0.25 (0.05) 1981-

present 

P Daily 50°S-50°N University of California, 

Santa Barbara 

USA 

UDEL 0.5 1901-

2014 

P, T Monthly Global land Centre for Climate 

Research, Department of 

Geography, University of 

Delaware. Newark 

USA 

CPC 0.5 1948-

present 

P, T Daily Global National Oceanic and 

Atmospheric 

Administration 

USA 

GPCC 0.5 1901-

2013 

P Monthly Global Deutscher Wetterdienst Germany 

APHRODITE 0.5 (0.25) 1951-

2007 

P, T Daily Asia above 

15S land 

Japan Meteorological 

Research Institute 

Japan 

UW 0.5 1950-

2008 

P, T Daily global land University of Washington USA 

GPCP 1.0 1996-

2015 

P Daily Global NASA Goddard Space 

Flight Centre 

USA 

TRMM 0.25 1998-

2015 

P 3 hourly 50S to 50N NASA Goddard Space 

Flight Centre 

USA 

GSMaP 0.1 2001-

present 

P Hourly Asia above 

15S land 

Japan Meteorological 

Research Institute 

Japan 

For this project, the time series of the Climatic Research Unit52 (CRU) of the University of East Anglia, 

(UK) are used for rainfall and temperature (CRU series 3.2453). CRU data are one of the most widely 

used datasets in the climate research community and are frequently cited for a variety of applications 

such as validation of historical records, climate model simulations and climate change studies54. These 

datasets comprise of monthly grids of observed precipitation and temperature for the period 1901-2015 at 

0.5° of horizontal spatial resolution, which is approximately 50 km. CRU uses weather station data from 

different sources including the Global Historical Climatology Network (GHCN) which is an integrated 

database of climate summaries from land surface stations across the globe55 and CLIMAT56. CRU uses 

the Angular Distance Weighted (ADW) technique to interpolate precipitation grid cell from the eight 

nearest weather stations57. CRU data have been validated over Southeast Asia and recently the data were 

used for validation of the regional climate model WRF over Southeast Asia58 and compared to station 

based gauge products in Vietnam59 and attribution of climate change60. The CRU dataset is one of the 

                                                           
52 https://crudata.uea.ac.uk/cru/data/hrg/ 
53 Harris, I., Jones, P.D., Osborn, T.J. and Lister, D.H., 2013: Updated high-resolution grids of monthly climatic observations – 

the CRU TS3.10 Datset. Int. J. Climatol., 34, 623–642. 
54 a list of publications that use CRU data is provided under http://www.cru.uea.ac.uk/publications 
55 See https://www.ncdc.noaa.gov. 
56 Jones, P.D. and Moberg, A., 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and 

an update to 2001. Journal of Climate, 16(2), 206-223. 
57 Willmott, C. J., and Robeson, S. M., 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. 

International Journal of Climatology, 15(2), 221-229. 
58 Ratna,S.B., Ratnam, J.V., Behera, S. and Yamagata, T., 2017: Validation of the WRF regional climate model over the 

subregions of Southeast Asia: Climatology and interannual variability, Climate Research, 71, 263-280. 
59 Nguyen-Xuan, T., Ngo-Duc, T., Kamimera, H., Trinh-Tuan, L., Matsumoto, J., Inoue, T., and Phan-Van, T, 2016: The 

Vietnam Gridded Precipitation (VnGP) Dataset: Construction and Validation. SOLA, 12, 291-296. 
60 Thirumalai, K., DiNezio, P. N., Okumura, Y., and Deser, C., 2017: Extreme temperatures in Southeast Asia caused by El Niño 

and worsened by global warming. Nature Communications, 8, 15531. 
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most extensively used data by the climate modelling community and has been used by the National 

Weather Service of Indonesia (BMKG).  

Historical annual rice yield, planted area and production data from 1986 to 2015 in Central Java was 

collected from the website of Indonesia Ministry of Agriculture61. Historical seasonal rice yield, planted 

area and production was available for Central Java from the Central Java Government for 2006 to 2015. 

In terms of seasonal rice cultivation and harvest, each year was divided into three season that includes 

one wet season and two dry seasons, referred to as: wet season (January – April), dry season 1 (May – 

August) and dry season 2 (September – December). 

Additionally, irrigation extents and soil types were available from Aquastat62 and World Soil Information 

(ISRIC)63 in gridded format and were used in this study to better understand irrigation- and soil-related 

differences in annual rice yields.  

In Central Java, rainfall is unevenly distributed over the three rice growing seasons with the wet season 

obtaining on average 53% of the annual rainfall, the dry season 1 with 13% and dry season 2 with 34%, 

based on rainfall data from 1986-2015 (see Figure 5.2). Wet season rainfall amounts correlate higher with 

dry season 2 rainfall (0.33) than with dry season 1 rainfall (0.24) while it correlates well with annual 

rainfall (0.62). In Central Java, wet season rice production is the most important as it consists of 47% of 

the annual rice production, while dry season 1 produces on average 38% and dry season 2 on average 

15% of the annual rice production, based on production statistics of 2006-2015 (see Figure 5.1). While 

rice production has been increasing since 2006 (see Figure 5.2), severe drops in production are noticed in 

2014 and 2007, which are well known drought years in Central Java and in Indonesia overall. Further, the 

wet season and dry season 1 rice production shows more vulnerability to drought, while dry season 2 

production is less influenced by drought occurrence (2007 and 2014).  

Rice is cultivated in both lowland and upland elevations throughout Indonesia, with the upland crop 

typically being rain-fed and receiving only low levels of fertilizer applications. Irrigated lowland rice is 

both well-watered and heavily fertilized, accounting for approximately 80% of total national rice area and 

93% of total production.  

Water requirement are a function of rice variety and duration ranging from 6,250 m3/ha of the Mekongga 

variety (120 day growth cycle) to 4,950 m3/ha of the Inpari 13 variety (99 day growth cycle) and 

including water used for crop and land preparation, the requirement increases to 7,909-8,519 m3/ha and 

6,609-7,219 m3/ha respectively 64. As a result of irrigation, lowland rice yields on average are about 60% 

higher than rain-fed upland crop yields. Lowland rice cultivation is heavily concentrated on Java, but is 

also prevalent on Sumatra and Sulawesi, which contribute about 89% of total national rice production65. 

                                                           
61 http://aplikasi.pertanian.go.id/bdsp/index-e.asp 
62 http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm 
63 http://www.isric.org/ 
64 Sembiring, H., Karim Makarim, A., Abdulrachman, S. and Widiarta. N., 2011: Current status of agricultural water 

management in Indonesia. Indonesian Center for Food Crop Research and Development, Bogor, 16p. 
65 https://www.pecad.fas.usda.gov/highlights/2016/03/Indonesia/Index.htm 
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Figure 5-2. Left: Seasonal rainfall in Central Java for the rice cycles of the Wet Season, Dry Season 1 and Dry Season 2 for 

1986-2014. Right: Seasonal rice production for the Wet Season, Dry Season 1 and Dry Season 2 for 2006-2015. Data source: 

CRU for rainfall and Central Java Government for rice production. Data source: CRU rainfall and Ministry of Agriculture 

Indonesia. 

Due to the dominance in production, the efforts of this study focus on wet season rice and the annual rice 

production. 

Methodology 

In order to investigate drought impact on rice production, a correlation analysis is undertaken between the 

drought indices (SPI and SPEI in this study) and wet season as well as annual rice production. The 

correlation coefficient reveals the extent to which volatility in rice production is driven by rainfall deficit, 

which is reflected in the drought indices. As the main impact of drought in Java is a delay of the usual 

rainfall regime in the wet season (November – March) which leads to severe production reductions, rice 

production appears to be a better proxy than rice yield, as yield only reflects the quantity harvested per 

surface unit while production includes the quantity harvested over the area planted.  

For Central Province, the following steps were taken to correlate drought indices to rice production using 

a Pearson Correlation:  

1. SPI and SPEI values are calculated per month and per grid cell (0.5°, which is approximately 50 km) 

using the CRU gridded rainfall and temperature data sets 

2. SPI and SPEI values are aggregated per grid cell, district and province according to the rice season 

as i) January to April (4 months) for wet season rice (2006-2015) and ii) January-December (12 

months) for annual rice (1960-2015). For brevity, SPI and SPEI with timescales 6 month are referred 

to as SPI6 and SPEI6, respectively. 

3. Seasonal rice production is calculated per district (2006-2015) and annual rice production is 

computed per district (1986-2015) from the data collected from the Ministry of Agriculture and the 

Government of Central Java. 

Comparison of SPIs of Different Durations 

The comparison of the SPI and SPEI (see Figure 5.3) shows a high correspondence with a correlation 

coefficient between SPI6 and SPEI6 of 0.97 and generate very similar results. Therefore, it was decided 

to only use SPI as it is i) easier to compute and evaluate by third parties, and ii) used by the National 

Weather Service of Indonesia (BMKG) for drought monitoring with familiarity of stakeholders in 

Indonesia. Both SPI and SPEI reveal severe rainfall deficit in the years of 1997, 2002, 2007 and 2014 

which were all considered as drought years in Central Java and Indonesia.  
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Severe drought events happened in Indonesia during dry season period when moderate to strong El Nino 

occurred such as in the case of 1997. The monthly rainfall distribution of Indonesia for June, July, and 

August 1997 showed very few rainfall and dry conditions over South Sumatra, Java and Central 

Kalimantan. In the last 10 years droughts, have occurred in Indonesia, for instance the 2002 drought 

resulted in dryness in rice field area, up to 350,000-acre farm land suffered for crop loss, and it repeatedly 

happened in 2007. The 2007 drought event caused over 20,000 acres of paddy field experience crop 

failure66. 

 

Figure 5-3. SPI6 and SPEI6 for Central Java Province for 1961-2014. Negative values reveal dry conditions (deficit rainfall) 

while positive values show wet conditions (excess rainfall). Data source: CRU rainfall  

Apart from seasonal drought indices from 2006 to 2015 with SPI of 6-month timescale, long-term 

analyses from 1961 to 2015 with SPI of 4-, 6- and 12-month timescales were carried out (See Figure 5.4). 

The correlation between SPI4 and precipitation (0.868) is very close to that of SPI6 and precipitation 

(0.870), and both of them are much higher than the correlation between SPI12 and precipitation (0.46). 

The three indices show overall consistency, particularly for severe droughts (SPI below -5), while SPI12 

appears to show more severe droughts. As observed in other studies67, as the time period is lengthened to 

12, 24 and 48 months, the SPI responds more slowly to precipitation changes, therefore, the period with 

SPI negative (positive) becomes fewer in number but longer in duration. Thus, it shows more severe 

droughts. 

                                                           
66 www.ais.unwater.org/.../597/mod_page/content/79/Indonesia.pdf 
67 McKee, T.B., Doesken, N.J. and Kleist, J. 1993: The relationship of drought frequency and duration to time scales. In: Proc. 

8th Conf. on Appl. Clim. Am. Meteorol. Soc. Boston, Massachusetts, 179–184. 
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Figure 5-4. SPI4, SPI6, SPI12 and precipitation for Central Java Province for 1961-2014. Negative values of the Drought Index 

(SPI, left axis) reveal dry conditions (deficit rainfall) while positive values show wet conditions (excess rainfall). Data source: 

CRU rainfall. 

Comparison of SPIs with Rice Production 

The comparison between cumulative 12-month SPI6 indices and annual rice production generates a 

correlation coefficient of 0.16 (Figure 5-5), which is driven by the strong seasonal influence of the 

rainfall distribution and rice planting patterns, i.e., the wet season alone receives on average 53% of the 

annual rainfall and in cases of delays (as often triggered by El Nino events), smaller planting occurs in 

the wet season and higher planting in the following dry seasons. The cumulative 4-month SPI (SPI4) and 

seasonal rice production correlates to 0.72 (Figure 5-6), which can be explained by the fact that the wet 

rice season is the dominant production contributing on average 47% of annual rice in Central Java and the 

SPI4 captures the main rainfall during the wet season. The years of 2007 and 2014 reveal rainfall deficit 

(drought) and resulted in a lower rice production.  

Due to the higher correlation, this study focuses on a risk transfer product for the wet season. While it 

would be desirable to obtain more data on seasonal rice production than 2006-2015 to evaluate 

correlations for longer time series, such data were not available in the framework of this study. 
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Figure 5-5: Drought index SPI6 and annual rice production for Central Java Province, 1986-2015. Data source: CRU rainfall 

and Ministry of Agriculture for annual rice production.  

 

 

Figure 5-6: Drought index SPI4 and wet season rice production, Central Java Province, 2006-2015. Data source: CRU rainfall 

and Ministry of Agriculture for annual rice production. 
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At the district level, consistent patterns are observed with correlation coefficients between annual rice 

production and SPI12 ranging from 0 to 0.2, and for SPI4 and wet season rice between 0.36 to 0.78. 

These results suggest focussing the development of a parametric insurance solution on SPI4 and wet 

season rice.  
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CHAPTER 6.  Development of a Risk Transfer Solution and 

Validation 
 

Based on the drought indices and the decision to use the time span of the drought indices that best 

explains volatility in rice production, a parametric insurance product can be developed. A parametric 

insurance contract that is based on weather indices (such as SPI for example) is fully defined through the 

sum insured, the trigger (also called strike), the limit and the modality of the pay-out function.  

Key Terms of Parametric Insurance Products 

The sum insured is typically determined from the underlying assets exposed to adverse weather 

conditions such as a drought and can be agriculture production, government disaster budget of ad-hoc 

reliefs or emergency import provisions. 

Triggers, limits, and the modality of the pay-out function are integral parts of the Indemnity Function, 

where the parametric insurance contract protects against insufficient and/or excessive realisations of the 

underlying weather variable (e.g., rainfall deficit quantified through SPI).  

The Indemnity 𝐼 received through the indemnity function for insufficient realisations (deficit) of the 

underlying index that is based on a weather parameter is defined as68 

𝐼 = 𝑓(𝑖|𝑥, 𝑇𝑟, 𝐸𝑥) = 𝑥 × 𝑓(𝑥) = {

0, 𝑖𝑓 𝑖 > 𝑇𝑟
𝑇𝑟 − 𝑖

𝑇𝑟 − 𝐸𝑥
, 𝑖𝑓 𝐸𝑥 < 𝑖 ≤ 𝑇𝑟

1, 𝑖𝑓 𝑖 ≤ 𝑇𝑟

 

The indemnity 𝐼 is a monetary value for a surface unit (e.g., 1 USD/hectare or 10 million USD per 

province), the variable 𝑖 is the realised value of the underlying weather parameter, 𝑥 is the sum insured, 

𝑇𝑟 is the Trigger and 𝐸𝑥 is the Exit below which level pay-outs seize. The Limit 𝐿 is defined as  𝐿 =

𝑇𝑟 − 𝐸𝑥. The payout function, i.e., how fast the maximum indemnity is reached after the indemnity has 

been triggered, is mostly defined as linear but can be binary in that any realised value below the Trigger 

pays out the full indemnity or step-wise in that pay-outs increase with increasing realisations of the index. 

Exits are used with the aim to reduce exposure and obtain affordable premium rates. 

Triggers are often chosen based on i) previous catastrophic events that are relevant from the observed 

weather parameter (e.g., SPI), ii) realisations of a weather parameter at a certain quantile (e.g., 75%) from 

historical observations or modelled through probability density functions of the weather variable or iii) a 

given standard deviation (e.g., 50%) above/below the mean weather variable from historical observations. 

Based on the Sum Insured and the index nomination, a Tick Size (also called Notional) is determined, 

which consists of the monetary pay-out for each realisation of the weather index composed of underlying 

weather variable(s).  

With all relevant parameters set, the Pure Risk Premium can be calculated from the underlying weather 

parameters and the structure and pay-out function of the index. The Pure Risk Premium is calculated in 

using i) a probability density function (e.g., e.g., Weibull or Gamma) of the historical weather 

observations called Expected Loss Calculation (ELC), or ii) historical weather observations from which a 

Historical Burn Rate (HBR) is calculated. The HBR method is more commonly used and considered the 

benchmark approach for index pricing when 10-30 years of weather data are available. HBR has the 

advantage over ELC of not requiring the development of a probability density function but has the 

disadvantage that rare occurrences in realisation of the weather parameter (catastrophes) have not been 

                                                           
68 Definition with modifications from Vedenov, D.V. and Barnett, B.J. 2004: Efficiency of weather derivatives as primary crop 

insurance instruments. Journal of Agricultural and Resource Economics, 29, 387–403. 
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experienced within the timeframe of the observation. One way to address the potential lack of 

catastrophic events in the HBR method, is to introduce a Catastrophe Loading. The Commercial 

Premium Rate is obtained in loading the Pure Premium Rate for administrative costs, capital 

requirements of the insurer and (in some cases) data uncertainties. 

Key Terms for a Parametric Insurance Product for Rice in Central Java 

Based on the results of correlation analyses between SPIs of different time spans (12months, 4 months) 

and rice production (seasonal and annual), a parametric insurance product is developed in this study for 

wet season rice and 4-months cumulative SPIs (January-April). Once longer seasonal rice statistics are 

available, further indices can be developed for other than wet season rice production and annual rice 

production. 

For this study, the sum insured is defined based on an assumed value of the underlying wet season 

production. The production of wet season rice of the last available year in the data series (2015) is 

5,201,626 tons which compared to an average of 4,533,571 tons for the period 2006-2015. Farmers 

produce paddy which gets converted into rice through various processes including de-husking. The 

milling out-turn in Indonesia is very low (below 60%) and explains most of the gap between farm-gate 

prices (USD 300) and wholesale prices (USD 700). As the exposure of the Central Java Government in 

cases of severe droughts is through its disaster relief program to rice farmers, the insured value of a ton of 

rice is set in this study at USD 100, which reflects a third of the average farm gate price. The sum insured 

is therefore obtained by multiplying the wet season production with the rice value at farm gate and results 

for this study in USD 520,162,600, which signifies the value at risk. 

The trigger, i.e., the level of drought extent (i.e., SPI value) below which the parametric insurance 

product starts paying out, is to be determined from the past data. For this study, SPI values (aggregated 

for the province of Central Java) are analysed over the period 1960-2015. With the absence of data on the 

Central Java Government’s actual expenditure in historical droughts, perceived exposure and disaster 

declaration reports, the assumption was taken that moderate and severe droughts with an SPI value higher 

than -5 would cause financial constraints. Over the last 56 years (1960-2015), a total of 18 wet rice 

seasons showed droughts with SPI values higher than -5, i.e., around one drought event in 3 years.  

The exit, below which indemnity is not payable under the parametric insurance product reflects the 

probably maximum drought intensity (i.e., negativity of SPI values). While theoretically it is possible that 

no rainfall is received in the wet rice season and results into a very low or close to zero production (the 

maximum probable drought intensity), a more realistic probable maximum drought intensity needs to be 

estimated to make the parametric insurance product efficient. The most severe drought in Central Java 

(i.e. the lowest SPI value) occurred in 1994 (SPI of --9.95), followed by 1976 (-9.89) and 1982 (-9.25). In 

comparison, the well-known severe Indonesia-wide droughts of 1997 and the most recent event of 2014 

produced in Central Java SPI values of -8.15 (1997) and -5.63 (2014) respectively. From the historical 

data, an exit of an SPI value of -10 would be justified, however, the past climate drought intensity might 

not reflect the future climate. While statistical simulation can be used to generate more intensive droughts 

than historically experienced over the last 56 years, the use of outputs from physical models such as 

General Climate Circulation Models (GCMs) is preferable. 

Climate projections from General Circulation Models (see CHAPTER 7 and BOX) offer the opportunity 

to obtain physically simulated rainfall distributions under the future climate and allow to validate 

parametric insurance products that are based on historical data. A further application of climate projected 

rainfall intensity and distribution (reflected in SPI values) is to obtain a better understanding of extreme 

drought events that might have been experienced in the historical time series. For the purpose of this 

study, climate projections undertaken by the Tropical Marine Science Institute (TMSI) of the National 
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University of Singapore (NUS69) were used to compute SPIs for the time span of 2016-2040 (see 

CHAPTER 7). It appears that a drought with an SPI value of -13.32 (Figure 6-1) can be expected in the 

next 25 years (2016-2040). From this point of view, setting the Exit at -20 seems more realistic in order 

for the parametric insurance product to provide adequate protection to the Government of Central Java. 

As a function of the Trigger (SPI value -5) and the Exit (SPI value -20), indemnity would occur under the 

parametric insurance product for a total of 15 SPI values. 

 

 

Figure 6-1: Projected Annual SPI-6 and SPI-12 for Central Java Province, 2016-2040. Source: TMSI/NUS. 

Once the Trigger and Exit have been defined in function of drought intensity (SPI values), a probable 

maximum production shortfall must be determined in order to define the Tick Size. In the short time span 

of 2006-2015 for which season rice production was available for this study, the drought of 2007 produced 

a production shortfall of 857,000 tons compared to the year before and similarly, 880,000 tons in 2014 

compared to 2013. While 10 years of wet season rice production is short to reveal a production trend, 

particularly in the presence of large reductions in production due to two drought years, there seems to be 

an increasing trend in production over time. This means that past droughts (e.g., like the 1960s as 

identified from the SPI time series), will have a larger impact on production (i.e., reductions well above 

880,000 tons seen in 2014) than what was experienced in the past. Based on this this perspective, namely 

increase in production over time, a worst-case but realistic production shortfall of 1 million tons of wet 

season rice is assumed for this study. 

The Tick Value is obtained by dividing the probable maximum production shortfall with the probable 

maximum drought severity. For the present study, a Tick Value of USD 6,666,667 is obtained with the 

assumption of a production shortfall of 1 million tons and the indemnity of 15 SPI values. The Limit is 

determined as USD 100 million as a maximum indemnity of 15 SPI values and a Tick Value of USD 

6,666,667 for each SPI value. 

                                                           
69 http://www.tmsi.nus.edu.sg 
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To obtain the Pure Risk Premium, the Historical Burn Rate (HBR) methodology is followed where the 

computed indemnity of the parametric insurance product for each historical year (1960-2015) and 

expressed as a ratio of the limit for each historical year (i.e., 56 years of USD 100 million limit), which in 

turn is expressed in function of the Total Sum Insured. The resulting Pure Risk Premium Rate comes to 

1.23% of the Total Sum Insured.  

 

Figure 6-2 Payouts of the parametric insurance product (left axis, columns) and SPI6 (right axis, line) for Central Java 

Province, 1960-2015. Data source: CRU rainfall.  

Over the last 56 years (Figure 6-2), the parametric insurance product pays the highest indemnity in 1994 

(USD 33 million), followed by 1976 (USD 32 million), 1982 (28 million), 1990 and 1991 (each USD 22 

million). The 1997 drought would pay-out USD 21 million in Central Java and was not as intense as 

drought in other parts of Indonesia. The parametric insurance products would have paid a total of USD 

287 million since 1960. 

The insurance terms are summarized as follows: 

• Territory: Central Java Province, Indonesia 

• Period: 1 January to 30 April (reflecting wet season rice production) 

• Sum Insured: 

• Index: 4 months SPI value (2 digits) aggregated from 0.5° grid cells over Central Java 

• Data Provider Rainfall: to de decided (probably CHIRPS70) 

• Fall-back Data Provider: to be decided  

                                                           
70 Note that while CRU provides the longest time series of rainfall, updates are only undertaken at irregular intervals. CHRIPS 

provides high-resolution precipitation data since 1981 with continuous monthly updates. For implementation of this project, 

CHRIPS data will be investigated and the drought indices be recalculated.  
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• Trigger: SPI value ≥-5 

• Exit: SPI value-≤ 20 

• Pay-out Function: linear 

• Tick Value: USD 6,666,667 per SPI value 

• Limit: USD 100 million 

• Pure Risk Premium Rate: 1.23% 
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CHAPTER 7. Validation of the SPI index with Climate Projections  
 

Climate models, also known General Circulation Models (GCM) are used by the scientific community to 

assess changes in the global climate based on different climate scenarios and forcing mechanisms. 

Outputs of GCMs are hardly used in the insurance industry, which risk pricing and modelling essentially 

relies of past data and statistical simulations. The use of physically generated weather events (e.g., 

rainfall patterns from GCMs) and resulting drought indices (e.g., SPI) has the advantages that models are 

trained on the past climate and reproduce past climate events through mathematical equations of the 

climate system in a global context. However, the use of a GCM including the downscaling to particular 

regions requires high computing power and expertise in several disciplines. GCMs are therefore operated 

at National Weather and Climate Services and leading universities, with the Intergovernmental Panel on 

Climate Change (IPCC71) overseeing the overall efforts and results. 

In this study, and probably as one of the first time in the agriculture risk transfer industries, outputs of 

GCMs are used to derive drought indices (SPI) under future climate. For this study, the climate-projected 

SPIs are used to i) estimate a probable maximum drought intensity over Central Java (see CHAPTER 6) 

and to validate the drought index (SPI) that was developed with past climate data (1960-2015) for the 

benefit of the parametric insurance product (CHAPTER 7). 

BOX: Climate Models 

Climate models, also called General Circulation Models (GCM), are based on mathematical 

representations of the climate-system represented by physical, biological and chemical principles on 

numerical grids. Complex equations characterize how energy and matter interact in the ocean, 

atmosphere and land over thousands of three-dimensional grid cells that represent the globe at some 20 

different atmospheric layers. Processes are first modelled in each grid cell and passed on to neighbouring 

cells to compute the exchange of matter and energy over different time dimensions. A climate model 

includes several coupled sub- models to i) represent the oceans, atmosphere, land and continental ice as 

well as the fluxes between each other, and ii) model seas ice mechanisms and evapotranspiration over 

land. The numerical grid of climate models of the highest resolution (100km) is still too large to present 

small-scale processes such as turbulence in the atmospheric and oceanic boundary layers, impact of 

topography and thunderstorm development. Therefore, climate models need to be parameterised based 

on empirical evidence and/or theoretical assumptions to account for the large-scale influence of those 

processes that are not explicitly included in the climate models. 

Most climate models are developed for climate projections where changes in climates are simulated in 

response to emissions of greenhouse gases and aerosols. Climate models then perform experiments out of 

which scenarios are constructed of how the climate will evolve. Initially, standard (climate change) 

scenarios were developed based on complex relationships between socioeconomic forces driving 

greenhouse gas and aerosol emissions and levels to which emissions would increase during the 21st 

century. Climate prediction uncertainties depend on uncertainties in chemical, physical and social 

models. 

The size of the grid cells (ranging from 100 km to 500 km), the number of time steps (ranging from hours 

to days) and available computing power used to operate the climate model essentially determine the 

resolution of the model output. Typical time frames of climate model outputs include daily or monthly 

parameters such as temperature (minimum, maximum, average), rainfall and a large suite of other climate 

                                                           
71 https://www.ipcc.ch 
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variables. The models are usually validated using available observations or using gridded products, 

mostly for temperature and for rainfall. 

Though Global Climate Models (GCMs) provide global climate information on key climate variables 

including precipitation, the mismatch in the spatial resolutions between GCMs and the downstream end-

user needs (regional/local) necessitates downscaling. Two most common methods of downscaling are the 

dynamical and statistical. Dynamical downscaling uses a limited area model to simulate physical 

processes at the sub-regional level while statistical downscaling, involves statistically determined 

relationships between the observed local response and the observed large-scale climate state are used to 

calculate projected future local responses to the projected large-scale climate states.  

As the understanding of interactions between ocean, atmosphere and land increases and more computing 

power becomes available, climate models are getting more sophisticated at increased spatial and temporal 

resolutions. Downscaled climate data is increasingly used as an input to models that then simulate 

specific impacts of climate variability and change such as e.g., water runoff or crop yields.  

For this study, rainfall data from regional climate model simulations of the Weather Research and 

Forecasting (WRF72) are used. Developed at the National Center for Atmospheric Research (NCAR), 

USA, the WRF model is suitable for a broad spectrum of applications across scales ranging from meters 

to thousands of kilometers. The model incorporates advanced numeric and data-assimilation techniques, 

multiple nesting capabilities and numerous state-of-the-art physics options. WRF is a widely used 

regional climate model by the climate research community around the globe73. The WRF regional climate 

model has been used by TMSI/NUS for climate studies and projections commissioned by the 

Government of Singapore for Singapore and SE Asia since 200774.  

 

For this study, the climate simulations were performed at a 20-km spatial resolution of the WRF model 

being driven by global reanalyses ERA-Interim (for initial model performance assessments) and by 3 

global climate models: MPI ESM-MR (ECHAM6), CSIRO-ACCESS1.3 and MRI-MIROC5. The 

baseline historical climates were studied over the period 1986-2005 and the future climate was based on 

the Representative Concentration Pathways (RCP) scenario 8.575, for the period 2016-2040. These RCP 

scenarios are the new set of emission/projection scenarios under the International Panel on Climate 

Change (IPCC) recommended for use in the global model simulations of the Coupled Model 

Intercomparison Project (CMIP) Phase 5, that have been reported in the Fifth Assessment Report (AR5). 

These scenarios have been developed on the basis of possible net radiative forcing by the end of the 

century under the influence of anthropogenic climate change76. 

 

The WRF model simulated precipitation at 6 hourly intervals (accumulated to monthly scales) was used 

to derive the SPI in the same way as it has been done for the past climate (1960-2015) for all 50 km grids 

over Central Java, as described in CHAPTER 6. The SPI indices (SPI6) from the climate projections 

were then compared against observed data (CRU) and for future assessments. For simplicity, the WRF 

simulations driven by the reanalyses are referred to as ERA-Interim (WRF/ERAI), GCMs MPI-

ECHAM6, ACCESS1.3 and MIROC5 as WRF/ERAI, WRF/ECHAM6, WRF/ACCESS and 

                                                           
72 https://www.mmm.ucar.edu/weather-research-and-forecasting-model 
73 http://www.wrf-model.org 
74 Raghavan, V.S., Vu, M. T. and Liong, S.Y., 2016: Regional Climate Simulations over Vietnam using the WRF model. 

Theoretical and Applied Climatology, 126, 161-182. 
75 https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf 
76 http://sedac.ipcc-data.org/ddc/ar5_scenario_process/RCPs.html 
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WRF/MIROC, respectively. For climate projections of drought study, the SPI is computed with 

referenced to the baseline climate 1986-2005.  

 

The monthly precipitation of baseline climate (‘x’ months accumulated) was fitted with a gamma 

distribution (see Cumulative Density Function in Figure 7-1 left) then transformed to normal distribution 

with mean of 0, variance of 1 (Figure 7-1 right) to find the corresponding SPI values. The fitted model 

was carried out for baseline climate in order to estimate the baseline SPI. For climate projection, the 

accumulated projected monthly precipitation is applied to the same Cumulative Density Function and is 

then applied to an inversed transformation in order to obtain the projected SPI values in normal 

distribution.  

 

 

 

 

 

 

 

 

 

 

 

Figure 

Figure 7-1: Computation of future SPIs with reference to the baseline SPI. Source: TMSI/NUS. 

The current climate projections and SPIs from the projected rainfall intensity and distribution are 

available for 2016-2040. For a further project that goes beyond the scope of this study, climate-projected 

SPIs can be developed for the period 2041-2100, which will add additional robustness to the analyses 

already performed under this study. 

Climate-Projected SPIs over Central Java 

The comparison of historical droughts (negative SPI values, based on CRU data from 1986-2005) and 

outputs of the GCM (WRF/ERAI) for the past climate (negative SPI values, 1986-2005), shows that the 

GCM is able to capture certain severe droughts during strong El Nino events during 1987, 1994-1995, 

1997 (Figure 7-2). However, there are some discrepancy over these two data sets as seen in the early 

1990s where WRF/ERAI showing wet patterns as compared to CRU (drought). In 1991, there was a 

strong El Nino event, and CRU is able to signify the El Nino with drought condition, whilst WRF/ERAI 

only shows very minor decreasing in its SPI value. This might be due to the underestimation of 

precipitation data set from WRF/ERAI compared to CRU for the 1990s, leading to discrepancy in 

detecting the drought event.   
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Figure 7-2: SPI index (SPI6) for baseline climate using CRU and WRF/ERAI data over Central Java. Source: TMSI/NUS 

The drought characteristics using past climate data (CRU) and from GCMS (including WRF/ERAI) 

shows for Central Java that WRF/ERAI is comparable to CRU for SPI value for the baseline climate that 

(Table 7-1). Further, CRU and WRF/ERAI agree well with the same number of drought and similar 

values for drought deficit and frequency. However, WRF/ERAI underestimate the number of droughts. 

The drought deficit is simulated well by WRF/ACCESS and the model ensemble is also able to capture 

this. In terms of drought frequency, the model ensemble shows the best match, followed by 

WRF/MIROC and WRF/ACCESS. 

Table 7-1: Drought Characteristics for observation of CRU (past climate, 1986-2005) and WRF GCMs for SPIs over Central 

Java 

 Base Climate 

(1986-2005) 

Global Circulation Models (GCM) 

SPI CRU WRF/ERAI WRF/ECHAM6 WRF/ACCESS WRF/MIROC ENSEMBLE 

Number of 

Droughts 

7 7 6 5 4 6 

Duration 13   9  21  

11   5  15  

14 

17  14  13  14    

7    7   8 

12  22   8  13   8  37 17  11  17  21  17 11  45  10  18 10  35  13  13   

5  14 

Deficit -86.43 -78.37 -77.01 -80.69 -72.56 -80.6 

Frequency 0.39 0.36 0.44 0.36 0.37 0.39 

 

The projected SPI values (SPI6) for Central Java for the time 2016-2040, indicate the drought 

characteristics for the projected period with reference to the baseline climate (1986-2005). Results reveal 

that, WRF/ECHAM6 is the “driest” model with the highest number of droughts, deficits and frequency 

(Table 7-2). On the other hand, the WRF/ACCESS is the “wettest” model with the least drought 

characteristics. 

Table 7-2: Drought characteristics for projected climate 2016-2040, RCP8.5 for Central Java using 4 versions 

of the WRF GCM. 

Climate (2016-2040) Global Circulation Models (GCM) 
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SPI WRF/ECHAM6 WRF/ACCESS WRF/MIROC ENSEMBLE 

Number of Droughts 7 4 5 4 

Duration 8   3  22   7  36  

12  10 

7  6  6  5 15  10  10  10  11 14  11  11   7 

Deficit -85.89 -20.08 -49.49 -40.35 

Frequency 0.33 0.08 0.19 0.14 

 

Validation of the Parametric Insurance Product for Rice in Central Java 

The climate projected drought intensity (negative SPI values) and temporal distribution (2016-2040) 

reveals that i) climate-projected negative SPIs show a larger variability (next 25 years) compared to last 

56 years, ii) the highest climate-projected SPI is -13.3 (202877) compared to -9.95 (1994), iii) climate- 

projected SPIs show the likelihood of a four year period (2027-2030) of consecutive drought occurrence 

at different intensities (SPI values of -7.9, -13.3, -10.5 and -2.17) which has occurred in the past (1961-

1964) but at lower intensities (SPI values -7.7, -0.6, -7.3 and -0.9) and iv) climate-projected positive SPIs 

(excessive rainfall/flood) are comparable to the last 56 years (Figure 7-3). From the climate projections, it 

results that drought intensity is likely to increase in Central Java, while the intensity of flash 

floods/excessive rainfall is likely to remain at current levels.  

 

Figure 7-3: SPI6 based on the past climate (1960-2015) and the future climate (2016-2040). Data source: CRU for baseline 

rainfall and WRF/ECHAM RCP8.5 for projection rainfall by TMSI/NUS. 

Climate projected SPIs reveal the unique opportunity to add an additional 25 years of possible drought 

events (2016-2040) to validate the SPI index of the parametric insurance product. As drought intensity 

(negative SPI values) increases under the climate projections, the highest payout reaches now USD 55.5 

million (2028), which is equivalent to about half of the maximum payout (USD 100 million). Further, the 

Pure Risk Premium Rate increases from 1.23% (CHAPTER 6) to 1.26% with the climate projected SPIs. 

Over the last 81 years, which includes 56 years of historical data and 25 years of climate projected data 

(Figure 7-4), the total payout of the parametric insurance product reaches USD 424 million compared to 

USD 287 million (historical years of 1960-2015 only). 

                                                           
77 Note that while a severe drought is projected to occur in the future, this does not mean that it will happen in the year 2028. 
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Figure 7-4: Payouts of the parametric insurance product (left axis, columns) and SPI6 (right axis, line) with the limit shown in 

yellow (i.e., SPI values between -5 and -20) for i) 1960-2015 based on CRU rainfall data and ii) 2016-2040 based on climate 

projections with the WRF/ERAI GCM. Data source: CRU for baseline rainfall and WRF/ECHAM RCP8.5 for projection rainfall 

by TMSI/NUS  
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CHAPTER 8 Regulatory/Policy Framework in Indonesia  
 

One of the main beneficiaries of a parametric insurance solutions for drought impact on rice production 

in Central Java is the Central Java Government, which has obligations towards farmers such as ad-hoc 

disaster payments. As drought disasters are of systemic nature, it is highly likely that the entire province 

of Central Java can be impacted by the same drought and most (if not all) farmers suffer shortfalls in wet 

season rice production. This can cause unexpected budget needs for the Central Java Government. As 

pervious cases where governments bought parametric insurance has demonstrated, the necessary 

regulatory and policy framework needs to be in implemented. 

For Indonesia, it seems possible for a provincial government to enter an insurance agreement and 

purchase an insurance contract to protect state assets and implement program and activities under the 

regulations as follows:  

• Government Regulation No 45/2013 (article 111) allows for the Minister of Finance to enter a risk 

management contract with an insurance service provider and/or risk management agent 

• Government Regulation No. 27/2014 (article 45) states that the asset manager (i.e., the line ministry) 

can purchase insurance policies to protect state assets 

• The Ministry of Home Affairs Regional Financial Management Guidelines No. 13/2006 (article 52) 

allows for local governments (LGs) to pay insurance premiums, as insurance is classified as a 

permissible expenditure for the use of goods and services in implementing their program and 

activities.   

In terms of ability and sustainability to pay for insurance, budget cannot be guaranteed beyond one fiscal 

year due to Parliament restrictions as the appropriate budget is only approved once in a fiscal year. To 

deal with this annual expenditure and appropriation constraint, the Ministry of Finance has permitted line 

ministries to enter multi-year contracts (MYC) for some priority programs that can be implemented in 

medium-term. In case agriculture and/or weather index insurance is classified as priority, it can fall under 

the MYC. 

Following detailed assessment of various regulations related to the LGs disaster management financing 

and insurance, the World Bank made the following recommendations: 

• Requiring LGs to regularly budget for and acquire adequate insurance coverage for their own assets 

and fiscal liabilities that may be triggered by natural disasters 

• Introducing a rigorous and verifiable process for determining economic losses caused by natural 

disasters at the local level (e.g. independent professional loss assessment service providers should be 

considered) 

• Introducing clearly defined rules (based on international best practices) for insurance purchasing by 

LGs and government agencies 

• Allowing LGs to use potential insurance indemnity payouts toward co-financing central government 

disaster reconstruction grants 

The National Agency for Disaster Management (BNPB), during a high-level bilateral meeting with 

World Bank officials in 2015, had informed that the above mentioned structural problems in the system 

could be rectified through an amendment of the Disaster Management Law (Law 24/2007) currently 

under review..  
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CHAPTER 9 Conclusion and Outlook  

This study has revealed that droughts, which are quantified through a drought index (Standard 

Precipitation Index) can reliably be used as the basis for a parametric insurance product for rice 

production shortfalls with a payout at the resolution of an Indonesian province.  

The parametric insurance product can be improved if the following data becomes additionally available: 

i) Indonesian weather station data in Central Java province to validate the CRU gridded climate data used 

to develop the drought indices (1961-2015), ii) wet season rice production and yield for a longer period 

than what was available for this study (2006-2015), iii) confirmation of rice prices in terms of exposure to 

the Government of Central Java under severe drought conditions, iv) ad-hoc disaster budgets and actual 

payouts of the Government of Central Java to support rice farmers in case of severe droughts, v) other 

loss proxies such as area impacted by drought and other natural disasters and v) higher resolution and 

more updated irrigation mask that show irrigation levels per rice season on a regular grid.  

While it seems that the Government of Central Java can buy catastrophe risk protection for agriculture 

assets per regulation, this needs to be confirmed with the Ministry of Home Affairs and also Ministry of 

Finance, GoI. As ex-ante risk transfer is still new to Indonesia, the concept itself as well as the benefits 

compared to post-disaster risk funding needs to be more emphasized in discussions and through 

workshops. In a next step and following continued interest in Indonesia the following will be undertaken 

i) finalising the parametric insurance structure based on the availability of additional data and discussion 

with the key stakeholders and ii) cost-benefit analysis of risk transfer relative to risk funding (contingent 

credit and loans) in case of drought disasters on rice production in Central Java. 

Given the flexibility of parametric insurance products in general and the methodology develop for this 

study, the payout function of the parametric insurance product can be adjusted using parameters such as i) 

sliding-scale payout in function of drought intensity (negative SPI values) with higher payouts for highly 

negative SPIs (most severe droughts) than for moderate droughts and ii) introduction of multiyear 

features (e.g., a three year period of insurance) with a profit commission in years without payout. Based 

on the concept developed in this study, drought indices can be developed for other Indonesian province 

and validated in case the relevant data are available. The parametric insurance product can be structured 

in a way that payout occurs over several or all provinces. Similarly, the product could be structured to 

payout at the resolution of a district. 

Ex-ante risk transfer is a proven concept to protect government budgets in case of large-scale disasters 

and is increasingly used by governments to transfer risks from agriculture assets (mainly crop, livestock 

and forestry exposure).  
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APPENDIX 1  Standard Precipitation Index (SPI) 

The Standard Precipitation Index (SPI) was first introduced by McKee et al. in 199378. Briefly, he SPI is 

calculated using the following steps79: i) identify a probability density function that best fit the long-term 

time series of rainfall observations, ii) construct a set of moving windows of the rainfall observation 

series depending on the time scale of interest. Here, one constructed moving windows of total 

precipitation corresponding to 3, 6 and 12 months to derive SPI 3, SPI 6 and SPI 12 respectively, iii) 

apply the selected probability density function to the time series (from step 2) to construct the cumulative 

probability distribution and iv) apply the inverse normal (Gaussian) function (with mean zero and 

variance one) to the cumulative probability distribution function to construct the SPI time series. Based 

on the Kolmogorov-Smirnov (K-S) and chi-square test statistics, it was found that the monthly rainfall 

series followed a gamma distribution80.  

The first step in calculating the SPI index involves fitting of a Gamma distribution function to the rainfall 

observations 𝑥: 

𝑔(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽 

whereas 𝛼 > 0 is a shape parameter, 𝛽 > 0 is a scale parameter and Γ(𝛼) is the gamma distribution 

function. The parameters of the gamma probability density function can be estimated from the rainfall 

data using maximum likelihood methods for each location and time span. 

𝛼̃ =
1

4𝐴
(1 + √1 +

4𝐴

3
)  𝑎𝑛𝑑 𝛽̃ =

𝑥̅

𝛼̃
 

Whereas 𝐴 = ln(𝑥̅) −
∑ ln (𝑥)

𝑛
 and where 𝑛 is the number of rainfall observations where rainfall occurred. 

The parameters 𝛼̃ and 𝛽̃ are then used in the cumulative probability function for a given time scale (e.g., a 

month). The cumulative probability with a time span of 𝑡 = 𝑥/𝛽̃ for the gamma distribution function 

becomes: 

𝐺(𝑥) =
1

Γ(𝛼)̃
∫ 𝑡𝛼̃−1

𝑥

0

𝑒−𝑡𝑑𝑡 

As the gamma function 𝐺(𝑥) is undefined for 𝑥 = 0 and rainfall may well be zero, the cumulative 

probability density function becomes: 

𝐻(𝑥) = 𝑞 + (1 − 𝑞)𝐺(𝑥) 

Whereas 𝑞 is the probability of zero rainfall. 

In a second step,  𝐻(𝑥) is transformed into a normal variable Z by means of the following approximation 

with Z or the SPI having a positive if 0.5 < 𝐻(𝑥) ≤ 1 and a negative value for 0 < 𝐻(𝑥) ≤ 0.5 with the 

negative value shown here as: 

                                                           
78 McKee, T.B., Doesken, N.J. and Kleist, J., 1993: The relationship of drought frequency and duration to time scales. In: Proc. 

8th Conf. on Appl. Clim. Am. Meteorol. Soc. Boston, Massachusetts, 179–184. 
79 Guttman, N.B., 1999: Accepting the Standardized Precipitation Index: a calculation algorithm. J. Amer. Water. Res. Ass., 

35(2), 311-322. 
80 The concept of SPI computation is comprehensively summarised in Mishra, A.K. and Desai, V.R., 2005: Drought forecasting 

using stochastic models. J. Stochastic Environ. Res. Risk. Assess., 19, 326–339. 
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𝑍 = 𝑆𝑃𝐼 = − (𝑡 −
𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2

1 + 𝑑1𝑡 + 𝑑2𝑡2 + 𝑑3𝑡3) 

Whereas 𝑡 = √ln (
1

(𝐻(𝑥))2) for 0.5 < 𝐻(𝑥) ≤ 1 and with the following parameters: 

𝑐0 = 2.515517 𝑑1 = 1.432788 

𝑐1 = 0.802853 𝑑2 = 0.189269 

𝑐3 = 0.010328 𝑑3 = 0.001308 

The World Meteorology Organisation (WMO) provides a comprehensive guide on SPI81 and several 

National Weather Services provide SPI maps online and software to compute SPIs82.  

  

                                                           
81 World Meteorology Organisation (WMO), 2012: Standardized Precipitation Index - User Guide. WMO-No. 1090, Geneva, 

Switzerland, 24p. 
82 E.g., see http://drought.unl.edu/MonitoringTools/DownloadableSPIProgram.aspx (accessed in May 2017) 
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APPENDIX 2  Standard Precipitation Evapotranspiration Index 

(SPEI) 

The Standardised Precipitation Evapotranspiration Index (SPEI) is a relatively new drought index that 

uses the rainfall that forms the basis of SPI but additionally uses temperature to determine the difference 

between precipitation and potential evapotranspiration (PET) to represent a basic climatic water balance. 

Like SPI, SPEI has an intensity scale with both positive and negative values that identify wet and dry 

events and can be computed for various time periods. The calculation of PET is in itself complex in that 

several parameters such as surface temperature air humidity, soil incoming radiation, water vapour 

pressure and heat fluxes are necessary. The most common method to directly derive PET from weather 

station data involves simple methods that require only temperature data (e.g., Thornthwaite equation) to 

complex methods that require values for solar radiation, temperature, wind speed and relative humidity 

(e.g., the Penman–Monteith method). Using the Thornthwaite equation, SPEI is calculated through the 

following key steps83: 

𝑃𝐸𝑇 = 16𝐾 (
10𝑇

𝐼
)

𝑚

 

With 𝑇 as the monthly mean temperature in °C, 𝐼 as the heat index calculated as the sum of 12 monthly 

index values 𝑖 calculated through 𝑖 = (𝑇/5)1.514 and 𝑚as a coefficient that depends on 𝐼 computed as 

𝑚 = 6.75 × 10−7𝐼3 − 7.71 × 10−5 𝐼2 + 1.79 × 10−2𝐼 + 0.492. 𝐾as a correction coefficient calculated 

as a function of the latitude and month as 𝐾 = (𝑁/12) × (𝑁𝐷𝑀/30) and 𝑁𝐷𝑀as the number of days of 

the month and 𝑁 representing the maximum number of sunshine hours which can be calculated in 

function of the hourly angle of sun rising as a function of latitude.  

The difference between 𝑃𝐸𝑇 and precipitation 𝑃 for a month 𝑖, which presents a simple measure of the 

water surplus or excess, is calculated as  

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖 

The standardisation of SPI is based on a two-parameter Gamma distribution, a log-logistic distribution 

function is used for SPEI defined as  

𝐹(𝑥) = [1 + (
𝛼

𝑥 − 𝛾
)

𝛽

]

−1

 

With 𝛼, 𝛽 and 𝛾 representing scale, shape and origin parameters which can be obtained through the L-

moments procedure84.  

Table A2-1. SPEI value classification 

SPEI Value Classification 

> -0.5 No drought 

-1.0 to -0.5 Light drought 

-1.5 to -1.0 Moderate drought 

-2.0 to -1.0 Severe drought 

<-2.0 Extreme drought 

 

                                                           
83 Vicente-Serrano, S.M., Begueria, S. and Lopez-Moreno, J.I., 2010: A multiscalar drought index sensitive to global warming: 

The standardized precipitation evapotranspiration index. J. Clim. 23 (7), 1696–1718. 
84 Ahmad, M.I, Sinclair, C.D. and Werritty, A., 1988: Log-logistic flood frequency analysis. J. Hydrol., 98, 205–224. 


