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A Literature Review on the Use of Expert Opinion in Probabilistic Risk Analysis 
 
 

Introduction 
 

Risk assessment is part of the decision-making process in many fields of discipline, such 
as engineering, public health, environment, program management, regulatory policy, and finance.  
There has been considerable debate over the philosophical and methodological treatment of risk 
in the past few decades; and yet the discussion continues today on many basic issues ranging 
from the definition and classification of risk, to approaches to its assessment and management, to 
societal risk acceptance (Klinke and Renn 2002; Hatfield and Hipel 2002; Jenni and Fischhoff 
1997; The U.S. Presidential/Congressional Commission on Risk Assessment and Risk 
Management 1997; Skjong and Eknes 2002).   

 
Bedford and Cooke (1996) characterize risk with two particular elements:  hazard (a 

source of danger) and uncertainty (quantified by probability).  Probabilistic risk analysis (PRA) 
specifically deals with events represented by low probabilities of occurring with a high level of 
consequence.  Expert opinion is one of the key research areas in PRA.  The use of expert 
judgment is critical, and often inevitable, when there are no empirical data or information 
available on the variables of interest.  In reliability analysis, for example, expert opinion has been 
extensively examined by Singpurwalla and others (Campodonico and Singpurwalla 1995; van 
Noortwijk et al. 1992; Singpurwalla 1988; Singpurwalla and Song 1988; Lindley and 
Singpurwalla 1986).  

        
Because of the complex, subjective nature of expert opinion, there has been no formally 

established methodology for treating expert judgment.  In recent years, there has been increasing 
effort in establishing a more systematic approach to eliciting expert opinion (Winkler et al. 1992; 
von Winterfeld 1989).  Cooke and Goossens (2000) provide formal protocols, comprehensive 
procedures and guidelines on the elicitation process and handling of such data in uncertainty 
analysis.  

 
This paper presents a review of the literature on the use of expert opinion, specifically, 

the approaches to aggregating different experts’ probability assessments.  There are numerous 
studies on how to reconcile multiple experts’ assessments, many of which are extensively 
reviewed by Cooke (1991), Bedford and Cooke (1996), and Clemen and Winkler (1999).  Genest 
and Zidek (1986) also provide a useful annotated bibliography of more than 90 studies on this 
subject.  Drawing results from these reviews, the present paper attempts to provide a short 
summary of key aggregation methods and discussions.  The paper also makes reference to new 
approaches proposed in recent articles on the subject.   
 
 

Methods for Eliciting and Aggregating Expert Opinion 
 
 Clemen and Winkler (1999) classify the elicitation and aggregation processes of expert 
assessments in two groups: mathematical and behavioral approaches.  In mathematical 
approaches, experts’ individual assessments on an uncertain quantity are expressed as subjective 
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probabilities.  They are combined through various mathematical methods by the decision-maker 
after their elicitation.  Behavioral approaches aim at producing some type of group consensus 
among experts, who are typically encouraged to interact with one another and share their  
assessments.   
 

One of the most well-known behavioral approaches is the Delphi technique, which was 
developed in the 1950s.  In this method, experts are asked to anonymously judge the assessments 
made by other experts in a panel.  Each of the experts is then given a chance to reassess his/her 
initial judgment based on the others’ review.  Typically, the process is repeated several rounds 
until a smaller spread of experts’ opinions is achieved.  The Delphi method later incorporated a 
self-rating mechanism, allowing experts to rate their expertise (Cooke 1991; Parenté and Parenté 
1987; Sackman 1975).  The Nominal Group method is another well-known behavioral method, 
in which experts are allowed to discuss their estimates directly with one another in a controlled 
environment (Delbecq et al. 1975).  This method is considered more favorably than other group 
methods, particularly the Delphi method (Gustafson et al. 1973).      
 

While a group consensus method may help identify experts’ errors and 
misunderstandings during the process, there are no formal rules to apply to reconcile differences 
when the consensus is difficult to achieve among different experts.  Conformity induced by the 
group interaction is a  major concern with such an approach.  Mosleh et al. (1988) note that the 
group interactive process can suffer from, for example, the tendency for less confident experts to 
limit their participation, the influence of dominant personalities, and a tendency to reach speedy 
conclusions.  Genest and Zidek (1986) warn of potential “strategic manipulation, bluffing, 
intimidating tactics and threats” if unrestricted dialogue is permitted.  Cooke (1991) points out 
that the group interaction tends to produce more extreme probability estimates, potentially 
making the participants overconfident.  Issues on group polarization are discussed by Plous 
(1993), Sniezek (1992), and Phillips (1987). There is a wide range of literature on the method for 
estimating a group consensus (Zahedi 1986; Goicoechea et al. 1982; Eliashberg and Winkler 
1981).      
  

It is generally agreed that mathematical approaches yield more accurate results than do 
behavioral approaches in aggregating expert opinions  (Clemen and Winkler 1999; Mosleh, Bier 
and Apostolakis 1988).  In the next section, three well-established mathematical modeling 
approaches to aggregating expert opinion are discussed:  non-Bayesian axiomatic models, 
Bayesian models, and psychological scaling models (paired comparisons).  The general 
framework of the present review is based on Cooke (1991), with reference to additional reviews 
and discussions from other relevant literature.   
 
 

Modeling Approach 1:  Non-Bayesian Axiomatic Models        
 
An axiomatic-based approach to combining expert opinion is discussed in many of the 

earlier studies (Genest and Zidek 1986).  In this approach, axioms or certain properties and 
regularity conditions for combining probability distributions are established, based on which the 
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form of combination rules is derived1.  The approach requires that the relationship between 
experts’ opinions and the aggregated opinion must satisfy a certain set of axioms.  Most 
axiomatic models proceed to identify some form of ‘weights’ as parameters to be estimated2.   
 
General mathematical principles 
 

Bedford and Cooke (1996) provide a fundamental mathematical concept behind the 
process of combining probability distributions.  General principles are reproduced here.  Using 
their notations, suppose we have experts 1, …, e and let P be a set of probability measures over 
some fixed but unspecified probability space (P1, … , Pe ∈ P).  Then a combination rule that 
depends only on P1, … , Pe is a function G: Pe  → P, i.e. G(P1, … , Pe ) = p.  A set of axioms or 
constraints on G determines the form of G.  Assuming that the probability space contains a finite 
number of events a1 , … an, let pij  be the expert i’s probability for event aj.  Then a vector of 
probabilities given by expert i is Pi = ( pi1, … ,  pin ) where  pij ≥ 0 and Σj  pij = 1 for j = 1, …, n 
and i = 1, …, e.  Let wi be a set of non-negative weights, wi ≥ 0 and Σi  wi = 1.  Then for any real 
number r ∈ R, the elementary r-norm weighted mean probability of aj is Mr (j) = (Σi  wi  pij

r )1/r ,  
i = 1,… e,  and the r-norm probability of aj  is Pr(j) = Mr (j) / Σk  Mr  (k),  k = 1, …, n.  (Note: for 
r=1, Pr is the weighted arithmetic mean of Pi;  for r = 0,  Pr is the weighted geometric mean, and 
for r = -1, Pr is the weighted harmonic mean of Pi .)  The interpretation of Mr is the following 
(Bedford and Cooke 1996, Chapter 10): 

 
i)  Mr (j) → Πi   pij

wi  as r → 0  (i = 1, …, e) 
ii) Mr (j) → maxi=1,…, e (pij) as r → ∞   
iii) Mr (j) → mini=1,…, e (pij) as r → -∞   
iv) If r < s then Mr (j) ≤ Ms (j) with equality if and only if pij = pkj  for 1 ≤ i ,  k ≤ e 
v) Define Mr (j+k) = (Σi  wi  (pij+ pik)r )1/r,  i = 1,…, e, and assume that pij/pik is not 
constant in i.  Then the following (in)equalities hold: 

  r > 1   ⇒  Mr (j+k) < Mr (j) + Mr (k) 
  r = 1   ⇒  Mr (j+k) = Mr (j) + Mr (k) 

r < 1   ⇒  Mr (j+k) > Mr (j) + Mr (k) 
 

 The value for r should be chosen so that the combination function G(P1, … , Pe ) satisfies 
the following three properties.  

i) Strong set-wise function property:  For every subset A ⊆ {a1 , … an}, the decision 
maker’s probability depends only on the experts’ judgments of A, so if Qi = (Pi(A), 
1- Pi(A)), then G(P1, … , Pe )(A) = G(Q1, … , Qe )(A). 

ii) Marginalization property: The probabilities are unaffected by refinements of the 
partition of alternatives a1 , … an. 

iii) Independence preservation: For all A, B ⊆ {a1 , … an} such that Pi(A∩B)= Pi(A)* 
Pi(B), i =1, …, e,  G(P1, … , Pe )(A∩B) = G(P1, … , Pe )(A)* G(P1, … , Pe )(B). 

  

                                                 
1 For example, Morris (1983, 1986) provides an axiomatic approach to expert aggregation, which created a series of 
reactions and debate by Lindley (1986), French (1986), Schervish (1986), and Winkler (1986).   
2 A departure from the traditional axiom approach is given by Myung et al. (1996), who use the principle of 
maximum entropy in their aggregation method. 
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A notion of opinion pools 
 
Decisions on many political and public policy issues rely on the opinions of experts.  An 

opinion pool is a method of combining a number of different opinions about some unknown 
quantity θ to generate a single pooled opinion about θ.  The two most widely used opinion pool 
methods are linear opinion pools and logarithmic opinion pools.  Suppose we have n experts, and 
let pi(θ) represent expert i’s probability distribution for unknown quantity θ, i =1, …, n, and wi 
be expert i’s weight.  Then the combined probability distribution p(θ) is a weighted linear 
combination of the experts’ probabilities (weighted arithmetic mean model) in a linear opinion 
pool, whereas p(θ) in a logarithmic opinion pool is expressed as multiplicative averaging 
(weighted geometric mean model):   

 
Linear opinion pool    p(θ) = ∑i wi * pi(θ)   
Logarithmic opinion pool  p(θ) = k Πi pi(θ)wi       (k is a normalizing constant)   

 
The problem of opinion pools generally reduces down to determining the optimal weights 

wi for experts.  Various methods for finding the optimal models are explored, for example, in 
DeGroot and Mortera (1991), Bordley (1982), and DeGroot (1974).  Apparently, the simplest 
choice of weights is assigning all experts an equal weight,  wi = 1 / n .  A simple arithmetic 
averaging of experts’ assessments is used in many studies, including a U.S. Nuclear Regulatory 
Commission study on the frequency of accidents at nuclear reactors (NRC 1989).  Cook (1991) 
discusses that while there are some efforts in compensating such a simplistic method by 
improving the elicitation procedure itself, such as those witnessed for the NRC document 
(Honano et al. 1990; Wheeler et al. 1989), this type of method is less than optimal as it lacks any 
attempt to evaluate the quality of experts’ estimates.  
       
Cooke’s classical performance-based weight model 
 
 The method proposed by Cooke (1991) is a performance-based weighted averaging 
model using properties of scoring rules, known as the classical model3.  He emphasizes that the 
fundamental goal of science is to build rational consensus and, therefore, the process of 
collecting expert assessments must be subjected to the following five basic principles (the first 
and second principles are later combined as a scrutability/accountability principle (Cooke and 
Goossens 2000)):  
 

1. Reproducibility:  All results must be reproducible, with calculation models and data 
being clearly specified and made available.  
2. Accountability:  The source of data (name and institution) must be identified, and data 
must correspond to the exact source from which the data are elicited.    
3. Empirical Control:  Experts’ assessments must be, in principle, physically observable. 
4. Neutrality:  The elicitation process must ensure that the actual beliefs of experts be 
collected (e.g. no punishment or rewords through a self-rating system).   

 5. Fairness:  All experts must be regarded equally before the aggregation process.   
 

                                                 
3 The term classical comes from the calibration measure’s close association with classical hypothesis testing. 
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 The classical model is designed to satisfy all these principles of rational consensus.  In 
case of continuous variables, the model requires experts to provide a set of fixed quantiles qr, r = 
1, …, R, for some unknown variables (seed variables) X1 , …, XN.  The decision-maker then 
determines the intrinsic range (lower and upper bound, [ql , qh]) of each variable for each expert.  
The weights for the experts are established by two measures of performance: calibration and 
information scores.  Calibration of expert e, C(e), is  the statistical likelihood that an expert’s 
quantile assessment corresponds to a set of experimental results. 
 

Let p = p1, …, pn be the hypothesized probability distribution of a variable over a set of 
alternatives {1, …, n}, and s = s1, …, sn be the empirical distribution from N independent 
samples (i.e. N is the number of seed variables) from the distribution p.  The discrepancy 
between p and s can be measured by the relative information of s with respect to p, I(s, p)  =  Σi si 

ln(si/pi), i=1, …, n, where we note that P(2N I(s, p)≤ x) → χ2
n-1(x)  as N →∞.  Then C(e), which 

is the probability of obtaining a relative information score worse than what has been observed, is 
obtained as C(e) = 1 - χ2

n-1(2NI(s, p)). 
 
  The information score, or informativeness, measures the degree to which an expert’s 
distribution is concentrated, relative to some background measure (usually of uniform or log-
uniform distribution over an intrinsic range for each variable).  The relative information for 
expert e on a given variable is obtained as I(e) =  Σi pi ln(pi/ri), i=1, …, n, where ri is the 
background measure for interval i.  The overall information score of each expert is the average of 
the information scores over all variables. 
 

The weights for the experts (which satisfy the asymptotically strictly proper scoring 
rules) are then determined as:   we = we’ / W ,  where  we’ = C(e) x I (e) x 1α(C(e)), and W = Σ we’    
(note:  for the level of significance α, 1α(C(e)) = 1 if C(e) ≥ α,  and = 0 if C(e) < α, α∈(0, 1)).  
Given we and each expert’s cumulative distribution function Fe, the combined expert distribution 
is Σe we Fe.     
 
 

Modeling Approach 2:  Bayesian Models 
 
 Perhaps the most robust technique in combining expert opinion is the Bayesian method4.   
In this method, the decision maker uses experts’ probability assessments as data to update his 
own prior belief about the distribution of an unknown quantity of interest, according to Bayes’ 
Theorem.  The early framework of the Bayesian aggregation method was provided by Winkler 
(1968) and Morris (1974, 1977).  Winker (1968) discusses his natural conjugate theory, in which 
prior and posterior distributions belong to the same parametric family of distribution.   
  

Let P(x) be the decision-maker’s prior probability distribution for some unknown 
quantity x, and P(D|x) be the likelihood of some observational data D given x.  Then the 
decision-maker’s posterior distribution is P(x|D) = [P(D|x)*P(x)] / P(D) via Bayesian update.  

                                                 
4 Winkler (1986) notes, for example, that all contributors to Morris’ (1983, 1986) axiomatic approach, i.e. Lindley, 
French, and Schervish, would in principle agree that the modeling approach with Bayesian principles is the most 
appropriate way to combine experts’ assessments. 
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Suppose the decision-maker uses the beta distribution to model the prior uncertainty about x and 
then updates that beta prior on the basis of an observation, i.e. information from each successive 
expert, then the posterior distribution of x also will be a  beta distribution.  Knowledge of D and 
parameters of the prior distribution will immediately lead the decision-maker to his posterior 
distribution.   
  

Morris’ work (1974, 1977) fully establishes the foundations for the Bayesian paradigm in 
the analysis of expert judgment.  He presents a straightforward aggregation method for the single 
expert case and the multi-expert case.  In general, suppose the decision-maker wishes to make an 
inference about an unknown quantity X, and experts 1, …, e provide their estimates of X, x1, … xe.  
Let p(x) be the decision-maker’s prior probability density for X, and p(x1, … xe | x) be his beliefs 
about the experts’ assessments as estimates of X, i.e. the likelihood function.  The primary goal 
of the decision-maker is to find his posterior density, p(x | x1, … xe): 

 
p(x | x1, … xe) ∝ p(x) * p(x1, … xe | x) 

 
Morris assumed that the experts are independent, and their density functions are 

represented by a normal distribution with the mean and variance.  When independence among 
the experts is assumed, the likelihood term is simply the product of p(xi | x), i=1, …, e:   
 

p(x1, … xe | x) = Π p(xi | x).   
 

Building on Morris’ method, Mosleh and Apostolakis (1986) suggest two practical 
models for determining the above product. 
 
Additive error and multiplicative error models 
 

Mosleh and Apostolakis (1986) express each of the experts’ assessments using the true 
value of unknown quantity and an error term.  

 
1. Additive error model. The expert i’s assessment, xi , is expressed as the sum of the 

true value of X, x, and an error ξi :   xi  = x + ξi     where  ξi  ∼ N (µi , δi
2

 ) and independent 
(µi and δi

2 are the mean and variance determined by the decision-maker to reflect his belief about 
the expert’s bias and accuracy).  The likelihood p(xi | x) of obtaining xi  when the true value is  x 
is the value of the normal density with mean x + µi, and variance δi

2.  Suppose the decision- 
maker acts as the e+1st expert and his prior distribution p(x) ∼ N (xe+1 , δe+1

2
 ).  Then the 

decision-maker’s posterior p(x | x1, … xe) is normal with mean and variance given as follows: 
        e+1                                                                     e+1 

E( x | x1, … xe)= Σ  wi( xi-µi)   where wi = δi 
-2 /  Σ δj

-2  and  µe+1 = 0 
      i=1                                                                     j=1     

       e+1 

Var( x | x1, … xe)= 1 /  Σ δi
-2 

      i=1 

 
2. Multiplicative error model.   The expert i’s assessment, xi , is expressed as the product 

of the true value x and an error ξi :      xi  = x * ξi   where  ln ξi  ∼ N (µi , δi
2

 ) and independent.  
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Thus, ln(xi ) = ln(x) + ln(ξi )   ∼ N ((ln(x) + µi , δi
2

 ) i.e.  xi  is lognormally distributed.  Given the 
decision-maker’s prior distribution p(x) ∼ Lognormal (xe+1 , δe+1

2
 ),  

 
   e+1                                                                                    e+1 
E( ln(x) | x1, … xe)=   Σ  wi ( ln( xi)-µi )   and        Var( x | x1, … xe)= 1 /  Σ δi

-2 
   i=1                   i=1 

 
Note:  X ∼ Lognormal (µ , δ2

 ) ⇒  E(X) = e{exp(µ+σ2/2)}  and  
Var(X) = e{exp(2µ+2σ2)}- e{exp(2µ+σ2)} 

    = [e{exp(µ+σ2/2)}]2 *[e{exp(σ2)}-1] 
 

Thus the decision-maker’s posterior expectation and variance are given as: 
        e+1                                              e+1                           

E( x | x1, … xe)= e{exp( Σ wi ( ln( xi)-µi )+( 1 /Σ δi
-2)/2)} 

       i=1       i=1 
        e+1                                                  e+1                        

   = Π (xi/eµi)wi * e {exp(1/2Σ δi
-2)} 

        i=1           i=1
                     

            e+1                                                   e+1                                            e+1                        
Var( x | x1, … xe)= [ Π (xi/eµi)wi * e {exp(1/2Σ δi

-2)}]2 * [e{exp(1/Σσ2)}-1] 
                        i=1   i=1                i=1 

 
Issues on stochastic dependence 

 
Winkler (1981) stresses the importance of taking into account the possibility of stochastic 

dependence in modeling expert opinion.  Dependence among experts’ assessments arises when, 
for example, the experts selected by the decision-maker have worked in the same field or shared 
similar training and techniques.  Dependent opinions are not only redundant, but they can cause a 
significant impact on the decision-maker’s assessment.  The sensitivity of the decision-maker’s 
posterior density distribution in the presence of  high correlations among experts is discussed by 
Winkler and Clemen (1992) and Clemen and Winkler (1985).  Chhibber and Apostolakis (1993) 
also provide a sensitivity analysis on the use of dependent information sources.   

 
Because of its practicality, an independent normal distribution is assumed for experts’ 

assessments in many studies that followed Morris’ (1974, 1977) Bayesian approach (French 
1980, 1981; Winkler 1981; Lindley 1983, 1985).  Identifying a joint likelihood distribution for 
experts’ probability assessments is considered as one of the difficulties in using a Bayesian 
method.  Some of the recent studies indicate numerous attempts to tackle the issue.  Clemen and 
Winkler (1993) provide a procedure for constructing the joint likelihood function as a product of 
marginal and conditional likelihood functions.  Lipscomb et al. (1998) propose a hierarchical 
approach to incorporate dependencies among experts, in which experts’ variation is assumed to 
follow a normal distribution and a sample of experts can be drawn from the second-order 
distribution.  Saaty and Vargas (1998) use the analytic hierarchy process to address dependence 
symptoms.   
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The use of copulas is another approach to specifying a likelihood function that seems to 
have gained some attention in the recent literature (Jouini and Clemen 1996; Yi and Bier 1998;  
Clemen and Reilly 1999; and Clemen et al. 2000).  A copula is a function that is used to join a 
set of particular marginal distributions, thereby generating a multivariate distribution that carries 
those marginals.  The approach discussed by Jouini and Clemen (1996), for example, shows the 
following:  Let fi(θ) be the continuous density for unknown θ  provided by expert i, Fi(θ) be the 
corresponding cumulative distribution function, and C be the copula density function.  Then 
under some conditions, the decision-maker’s posterior distribution is shown as 
 

P(θ | fi, …, fn) ∝ C [1- F1(θ), …, 1- Fn (θ)] Πi  fi(θ)           i=1, …, n. 
 
 Mendel and Sheridan (1989) use the Bayesian method to recalibrate and combine 
experts’ assessments.  Their model does not require experts to follow any particular distribution, 
and thus offers more flexibility and an ease of implementation.  In this model, each expert 
provides R quantiles for a variable of interest, which defines R+1 cells that could be hit by the 
true value.  Given n experts, an (R+1)n array is formed, which is considered as a random variable.  
The decision-maker uses the theory of exchangeability to update his probability distribution for 
this random variable, before receiving the experts’ advice on the current variable.  Information 
from past assessments and outcomes provides the likelihood of hit in each cell.   
  
 

Modeling Approach 3:  Psychological Scaling Models (Paired Comparisons)  
 
 The psychological scaling models assume that every expert has some internal value 
associated with a variable of interest and he/she can only provide his or her qualitative input (no 
numerical estimates).  The decision-maker asks experts to state their preference or views on pair-
wise comparisons.  This approach originated from the study of estimating intensities of physical 
stimuli, which later developed into the study of estimating relative intensities of psychological 
stimuli among experts5.  Using simulation, experts’ assessments lead to a consensus with 
confidence bounds.  Their inputs are measured for their consistency and concordance (Cooke 
1991).   
 
 Suppose there are n experts, and each expert is asked to express his/her preference for 
one of two events.  Let A(1), …, A(t) be events to be compared, V(1), …, V(t) be the true 
probabilities of events.  Let V(i, e) denote the internal value of expert e for event i.  If expert e 
prefers event A(i) to event A(j), (i.e. A(i) > A(j) ), then A(i) is judged more probable than A(j) by 
e, and V(i, e) >V(j, e).   Three models are presented below.6 
 
Thurstone model (1927)   

 
Assumptions: Normal distribution of internal values over the population of experts   

V(i, e) ∼ N(µi, δi)    
                                                 
5 An important contribution to the study is the assessment of human error probabilities.  See Kirwan (1994), 
Humphreys (1988), USNRC (1983), and Swain and Guttmann (1983). 
 
6In addition to the three models shown here, see Pulkkinen (1994) for his various paired comparison methods.  
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µi = V(i) 
δi = δ    (δi  does not depend on i ) 

  V(i, e) - V(j, e) ∼ N(µij , δij)   where µij = µi - µj  and δij  = (δi
2 + δj

2 - 2ρij*δi
 δj)1/2  

   = (δ2 + δ2)1/2    
  
 Then the probability that expert e prefers A(i) to A(j) is:  

P((V(i, e)-V(j, e))>0)  = P{ (V(i, e) - V(j, e)- µij)/δij  >  - µij/δij  }  
= P(X > - µij/δij) = Φ (µij/δij) 

 Note: By setting xij = Φ-1(the percentage of experts who prefer A(i) to A(j) ) ≈  µij / δij , and δij = 
1 ⇒ µi - µj  ≈ xij.  Using the least-squares method, the estimate of µi  is obtained as:  

 
µi

’ = 1/t * Σj xij   j  = 1, …, t.  
 
Bradley-Terry model (1952, 1953)   
 
 Assumptions:  Each event A(i) is associated with a true scale value V(i), and the 
probability that event A(i) is preferred to event A(j), r(ij), is given by: 
  

  r(ij)  = V(i) / [ V(i) + V(j) ]  
 
Experts’ judgments are treated as independent coin-toss trials with the probability of head = r(ij).  
The proportion of experts preferring A(i) over A(j) is used as an estimate of r(ij).   
 

Using the maximum likelihood method (David 1963), V(i), i = 1, …, t,  is given as: 
   

V(i) = a(i) / Σj n[V(i) + V(j)]-1    (for j ≠ i)  
 
where a(i) is the number of times event A(i) is preferred to other events by experts.  The value of  
V(i) is obtained by iteration, which converges to a unique solution. 
 
Negative exponential lifetime (NEL) model  
 

This model is used specifically for estimating constant failure rates.  For each pair of 
independently-operating components, the decision-maker asks experts which one of the two 
components will fail first.  Component A(i) is assumed to have an exponential life distribution 
with failure rate r(i), and all components are assumed as good as new at time t =0.  Thus, the 
probability that A(i) fails before time T is: 

 
  P(A(i) < T) = ∫t r(i) e-r(i)t dt     ( t  = 0 to T)   
 

And the probability that A(i) fails before A(j) is  P(A(i) < A(j)) = r(i) / [ r(i)+r(j) ] .  The solution 
is obtained in a similar manner as in the Bradley-Terry Model. 
 
 The paired comparison models are appealing in that experts are not required to be 
familiar with numerical assessments and the overall elicitation process is relatively simple.  They 
have, however, disadvantages such as requiring a large number of experts and forcing stringent 
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assumptions about experts’ underlying assessment mechanisms.  Cooke (1991) notes that the 
paired comparison approach has a difficulty in satisfying the principle of empirical control.  The 
goodness-of-fit tests used in the paired comparison models examine the fitness of experts’ 
assessments against modeling assumptions, but not against the empirical values.  The confidence 
intervals obtained through the models reflect uncertainty due to the choice of experts, and do not 
reflect uncertainty due to modeling assumptions.   
 
 

Conclusions 
 

The three modeling approaches presented in the paper have all been used in some real-
life situations.  Each approach clearly has advantages and disadvantages, for example, as seen in 
the case of the Bayesian modeling approach that has mathematical sophistication but suffers 
from limitation in its practical application.  A general agreement appears to be that there is no 
single all-purpose aggregation method for expert opinion.   

 
In their critical review of several case studies involving the use of expert opinion, Mosleh 

et al. (1988) note that while there is evidence that expert opinion can be highly beneficial in 
probabilistic risk analysis, little attention has been paid to structuring the elicitation process.  
Although empirical evidence indicates that mathematical methods of aggregation generally yield 
better results than behavioral methods, the latter methods are often perceived appealing, 
particularly when experts have knowledge in different areas and the synthesis of their expertise is 
needed.  Based on a case study that successfully assessed seismic hazard rates using expert 
opinion, Mosleh et al. (1988) show the use of a multiple-team approach with mathematical 
aggregation as one of the most promising methods in dealing with such a problem. 

 
As decision-makers in general tend to use the most convenient aggregation methods of 

their choice (and not necessarily the most appropriate), Cooke and others call for formalizing the 
elicitation process and using expert opinion by ensuring the basic principles of rational 
consensus (i.e. satisfying reproducibility, accountability, empirical control, neutrality, and 
fairness in resulting assessments), which seems truly timely and appropriate.  

 
In order to support the practical application of expert analysis, two relevant software 

programs have been developed by the Department of Mathematics at Delft University of 
Technology.  EXCALIBUR (from Expert CALIBRation) is a Windows program for expert 
judgment analysis.  It allows the user to input experts’ quantile assessments and parameters, and 
combine their assessments based on equal weights, user weights, and expert performance-based 
weights (Cook 2001, 1991).  UNICORN  is a software package for uncertainty analysis.  It is 
designed for dependence modeling with high dimensional distributions, including graphic 
features, such as cobwebs (Cooke 1995).  Both programs are designed to facilitate the formal 
procedure of expert analysis, which is based on the principles of rational consensus.  

 
 



 12

References on Expert Opinion (*Cited in the paper) 
 
Bedford T. and Cooke, R.T. (2001), “Probabilistic Risk Analysis: Foundations and Methods,” 
Cambridge University Press.* 
 
Bier, V.M. and Yi, W. (1995), “A Bayesian Method for Analyzing Dependencies in Precursor 
Data,” International Journal of Forecasting, Volume 11, Issue 1, pp.25-41.*  
 
Bordley, R.F. (1982), “A Multiplicative Formula for Aggregating Probability Assessments,” 
Management Science, Volume 28, Issue 10, pp.1137-1148.* 
 
Campodonico, S. and Singpurwalla, N.D. (1995), “Inference and Predictions from Poisson Point 
Processes Incorporating Expert Knowledge,” Journal of the American Statistical Association, 
Volume 90, Issue 429, pp.220-226.* 
 
Chande, P.K. and Tokekar, S. V. (1998), “Expert-Based Maintenance: A Study of Its 
Effectiveness,” IEEE Transactions on Reliability, Volume 46, No. 1, pp.53-58. 
 
Chhibber, S. and Apostolakis, G. (1993), “Some Approximations Useful to the Use of Dependent 
Information Sources,” Reliability Engineering and System Safety, Volume 42, Issue 1, pp.67-
86.* 
 
Clemen, R.T. (1986), “Calibration and the Aggregation of Probabilities,” Management Science, 
Volume 32, Issue 3, pp.312-314. 
 
Clemen, R.T., Fischer, G.W., and Winkler, R.L. (2000), “Assessing Dependence: Some 
Experimental Results,” Management Science, Volume 46, Issue 8, pp.1100-1115.* 
 
Clemen, R.T. and Winkler, R.L. (1999), “Combining Probability Distributions from Experts in 
Risk Analysis,” Risk Analysis, Volume 19, Issue 2, pp.187-203.* 
 
Clemen, R.T. and Reily, T. (1999), “Correlations and Copulas for Decision and Risk Analysis,” 
Management Science, Volume 45, Issue 2, pp. 208-224.* 
 
Clemen, R.T. and Winker, R.L. (1993), “Aggregating Point Estimates: A Flexible Modeling 
Approach,” Management Science, Issue 39, No. 4, pp. 501-515.* 
 
Clemen, R.T. and Winker, R.L. (1985), “Limits for the Precision and Values of Information from 
Dependent Sources,” Operations Research, Volume 33, pp. 427-442.*  
 
Cooke, R.M. and Slijkhuis, K.A. (2003), “Expert Judgment in the Uncertain Analysis of Dike 
Ring Failure Frequency,” Appearing in Case Studies in Reliability and Maintenance, pp.331-350. 
 
Cooke, R.M. (2001), “EXCALIBUR – Windows version of EXCALIBR: Software for 
performance based combination of expert judgments,” Department of Mathematics, Delft 
University of Technology.* 



 13

Cooke, R.M. and Goossens, L.H.J. (2000), “A Procedures Guide for Structured Expert 
Judgment,” EUR 18820, European Commission Report.* 
 
Cooke, R.M. and Goossens, L.H.J. (2000), “Procedures Guide for Structured Expert Judgment in 
Accident Consequence Modeling,” Radiation Protection and Dosimetry, Vol. 90, No. 3, pp.303-
309.* 
 
Cooke, R.M., and Goossens, L.H.J.  (2000), “Expert Judgment Elicitation in Risk Assessment,” 
Delft University of Technology (“Abstract NATO workshop, Lisbon, 1-4 October 2000)* 
 
Cooke, R.M. (1995), “UNICORN: Methods and Code for Uncertainty Analysis,” AEA 
Technologies.* 
 
Cooke, R. M. (1991), “Experts in Uncertainty: Opinion and Subjective Probability in Science,”  
Oxford University Press, Oxford.* 
 
David, H.A. (1963), “The Method of Paired Comparisons,” Charles Griffin, London 
 
DeGroot, M.H. (1974), “Reaching a Consensus,” Journal of the American Statistical Association, 
Volume 69, pp. 118-121.* 
 
DeGroot, M.H. and Mortera, J. (1991), “Optimal Linear Opinion Pools,” Management Science, 
Volume 37, Issue 5, pp 546-558.* 
 
Delbecq, A., Van de Ven, A., and Gusstafson, D. (1975), “Group Techniques for Program 
Planning,” Glenview, III, Scott-Foresman.* 
 
Eliashberg, J. and Winkler R.L. (1981), “Risk Sharing and Group Decision Making,” 
Management Science, Volume 27, Issue 11, pp.1221-1235.* 
 
French, S. (1986), “Calibration and the Expert Problem,” Management Science, Volume 32, 
Issue 3, pp 315-321.* 
 
French, S. (1981), “Consensus of Opinion,” European Journal of Operations Research, 7, pp. 
332-340.* 
 
French, S. (1980), “Updating of Belief in the Light of Someone Else’s Opinion,” Journal of the 
Royal Statistical Society:  Series A, Volume 143, pp. 43-48* 
 
Genest, C. and Zidek, J.V. (1986), “Combining Probability Distributions: A Critique and an 
Annotated Bibliography, Statistical Science, Volume 1, Issue 1, pp. 114-135.* 
 
Goicoechea, A., Hansen, D.R. and Duckstein, L. (1982), “Multiobjective Decision Analysis with 
Engineering and Business Applications,” Wiley.*  
 



 14

Goossens, L.H.J., Harper, F.T., Kraan, B.C.P. and Metivier, H. (2000), “Expert Judgment for a 
Probabilistic Accident Consequence Uncertainty Analysis,” Radiation Protection and Dosimetry, 
Vol. 90, No. 3, pp.295-303. 
 
Goossens, L.H.J., Cooke, R.M. and Kraan, B.C.P. (1998), “Evaluation of Weighting Schemes for 
Expert Judgment Studies,” Probabilistic Safety Assessment and Management (Proceedings of 
PSAMA 4), pp.2389-2396. 
  
Gustafson, D., Shulka, R., Delbecq, A., and Walster, A. (1973), “A Comparative Study of 
Differences in Subjective Likelihood Estimates Made by Individuals, Interacting Groups, Delphi 
Groups, and Nominal Groups,” Organizational Behaviour and Human Performance, Volume 9, 
pp. 280-291.* 
 
Hatfield, A.J. and Hipel, K.W. (2002), “Risk and Systems Theory,” Risk Analysis, Volume 22, 
No. 6, pp.1043-1057.* 
 
Honano, E.J., Hora, S.C., Keeney, R.L., and von Winterfeldt, D. (1990), “Elicitation and Use of 
Expert Judgment in Performance Assessment for High-level Radioactive Waste Repositories,” 
NUREG/CR-5411.* 
 
Humphreys, R. (1988), “Human Reliability Assessors Guide,” Safety and Reliability Directorate, 
United Kingdom Atomic Energy Authority* 
 
Jenni, K. and Fischhoff, B. (1997), “Attributes for Risk Evaluation,” 1997 Annual Meeting of 
Society for Risk Analysis.* 
 
Jouini M. N., and Clemen, R. T.  (1996), “Copula Models for Aggregating Expert Opinions,” 
Operations Research, Volume 44, Issue 3, pp. 444-457.* 
 
Kirwan, B. (1994), “A Guide to Practical Human Reliability Assessment,” Taylor and Francis, 
London.* 
 
Kline, A. and Renn, O. (2002), “A New Approach to Risk Evaluation and Management: Risk-
Based, Precaution-Based, and Discourse-Based Strategies,” Risk Analysis, Volume 22, No. 6, 
pp.1071-1094.* 
 
Kraan, B.C.P. and Cooke, R.M. ( 2000), “Processing Expert Judgment in Accident Consequence 
Modeling,” Appearing in Radiation Protection Dosimetry (Expert Judgment and Accident 
Consequence Uncertainty Analysis; special issue), Vol. 90, No. 3, pp.311-315. 
 
Lindley, D.V., and Singpurwalla, N.D. (1986), “Reliability (and Fault Tree) Analysis Using 
Expert Opinions,” Journal of the American Statistical Association, Volume 81, Issue 393, pp. 
87-90.* 
 
Lindley, D.V. (1987), “Using Expert Advice on a Skew Judgmental Distribution,” Operations 
Research, Volume 35, Issue 5, pp 716-721. 



 15

Lindley, D.V. (1986), “Another Look at an Axiomatic Approach to Expert Resolution,” 
Management Science, Volume 32, Issue 3, pp 303-306.* 
 
Lindley, D.V. (1985), “Reconciliation of Discrete Probability Distributions,” Bayesian Statistics 
2, pp.375-387.* 
 
Lindley, D.V. (1983), “Reconciliation of Probability Distributions,” Operations Research, 
Volume 31, Issue 5, pp.866-660.* 
 
Lipscomb, J., Parmigiani, G., and Hasselblad, V. (1998), “Combining Expert Judgment by 
Hierarchical Modeling: An Application to Physician Staffing,” Management Science, Volume 44, 
Issue 2, pp 149-161.* 
 
Mendel, M. and Sheridan, T. (1989), “Filtering Information from Human Experts,” IEEE 
Transaction Systems, Man and Cybernetics, Volume 36, pp. 6-16. * 
 
Morris, P.A. (1986), “Observations on Expert Aggregation,” Management Science, Volume 32, 
Issue 3, pp 321-328.* 
 
Morris, P.A. (1983), “An Axiomatic Approach to Expert Resolution,” Management Science, 
Volume 29, Issue 1, pp 24-32.* 
 
Morris, P.A. (1977), “Combining Expert Judgments: A Bayesian Approach,” Management 
Science, Volume 23, Issue 7, pp 679-693.* 
 
Morris, P.A. (1974), “Decision Analysis Expert Use,” Management Science, Volume 20, Issue 9, 
Theory Series, pp 1233-1241.* 
 
Mosleh, A., Bier, V.M., and Apostolakis, G. (1988), “A Critique of Current Practice for the Use 
of Expert Opinions in Probabilistic Risk Assessment,” Reliability Engineering and System Safety, 
Volume 20, pp. 63-85.* 
 
Mosleh, A., Bier, V.M., and Apostolakis, G. (1987), “Methods for the Elicitation and Use of 
Expert Opinion in Risk Assessment,” NUREG/CR-4962, PLG-0533,  US Nuclear Regulatory 
Commission  (micro fiche)  
 
Mosleh, A. and Apostolakis, G. (1986), “The Assessment of Probability Distributions from 
Expert Opinions with an Application to Seismic Fragility Curves,” Risk Analysis, Volume 6, No. 
4, pp 447-461.* 
 
Myung, I.J., Ramamoorti, S., and Bailey, A.D.Jr. (1996), “Maximum Entropy Aggregation of 
Expert Predictions,” Management Science, Volume 42, Issue 10, pp 1420-1436.* 
 
Parenté, F.J. and Anderson-Parenté, J.K. (1987),  “Delphi Inquiry Systems,” Judgmental 
Forecasting.* 
 



 16

Phillips, L.D. (1987), “On the Adequacy of Judgmental Forecasts,” Judgmental Forecasting, pp. 
11-30.* 
 
Plous, S. (1993), “The Psychology of Judgment and Decision Making.”  New York, McGraw-
Hill.* 
 
Pulkkinen, U. (1994), “Gaussian Paired Comparison Models,” Reliability Engineering and 
System Safety, Volume 44, Issue 2, pp. 207-217.* 
 
Pulkkinen, U. (1994), “Bayesian Analysis of Consistent Paired Comparisons,” Reliability 
Engineering and System Safety, Volume 43, Issue 1, pp. 1-16.* 
 
Pulkkinen, U. (1993), “Methods for Combination of Expert Judgments,” Reliability Engineering 
and System Safety, Volume 40, Issue 2, pp. 111-118. 
 
Saaty, T.L. and Vargas, L.G. (1998), “Diagnosis with Dependent Symptoms: Bayes Theorem 
and the Analytic Hierarchy Process,” Operations Research, Volume 46, Issue 4, pp 491-502.* 
 
Sackman, H. (1975), “Delphi Critique: Expert Opinion, Forecasting and Group Processes,” 
Lexington, MA, Lexington Books.* 
 
Schervish, M.J. (1986), “Comments on Some Axioms for Combining Expert Judgments,” 
Management Science, Volume 32, Issue 3, pp 306-312.* 
 
Singpurwalla, N.D. (1988). “An Interactive PC-Based Procedure for Reliability Assessment 
Incorporating Expert Opinion and Survival Data,” Journal of the American Statistical 
Association, Volume 83, Issue 401, pp. 43-51* 
 
Singpurwalla, N.D., and Song, M.S. (1988), “Reliability Analysis using Weibull Lifetime Data 
and Expert Opinion,” IEEE Transactions on Reliability, Volume 37, No. 3, pp.340-347.* 
 
Skjong, R. and Eknes, M.L. (2002), “Societal Risk and Societal Benefits,” Risk Decision and 
Policy, Volume 7, pp. 57-67.* 
 
Sniezek, J. (1992), “Groups under uncertainty: An Examination of Confidence in Group 
Decision Making,” Organizational Behavior and Human Decision Processes, 52, pp.124-155.* 
 
Swain, A.D., and Guttmann, H.E., (1983), “Handbook of Human Reliability Analysis with 
Emphasis on Nuclear Power Plant Applications,” NUREG/CR-1278.* 
 
The U.S. Presidential/Congressional Commission on Risk Assessment and Risk Management 
(1997), “Risk Assessment and Risk Management in Regulatory Decision-Making,” Final Report, 
Volume 2.* 
 
Thurstone, L. (1927), “A Law of Comparative Judgment,” Psychological Review, Volume 34, 
pp.273-286.* 



 17

 
U.S. Environmental Protection Agency (2003), “Framework for Cummulative Risk 
Assessment,” Risk Assessment Forum, EPA (EPA/630/P-02/001F, April 2002). 
 
U.S. Nuclear Regulatory Commission (1989), “Severe Accident Risks: An Assessment for Five 
US Nuclear Power Plants,” U.S. NRC,  NUREG/CR-1150* 
 
U.S. Nuclear Regulatory Commission (1983), “PRA Procedure Guide,” U.S. NRC,  
NUREG/CR-2300* 
 
Van Noortwijk, J.M., Dekker, R., Cooke, R. and Mazzuchi, T.A. (1992), “Expert Judgment in 
Maintenance Optimization,” IEEE Transactions on Reliability, Volume 41, No. 3, pp.427-432.* 
 
Von Winterfeld, D. (1989), “Eliciting and Communicating Expert Judgments: Methodology and 
Application to Nuclear Safety,” Joint Research Centre, Commission of the European 
Communities.* 
 
West, M. (1988), “Modeling Expert Opinion,” Bayesian Statistics 3, Oxford University Press, 
pp.493-508. 
 
Winkler, R.L. (1986), “Expert Resolution,” Management Science, Volume 32, Issue 3, pp.298-
303.* 
 
Winkler, R.L. (1981), “Combining Probability Distributions from Dependent Information 
Sources,” Management Science, Volume 27, Issue 4, pp.479-488.* 
 
Winkler, R.L. (1968), “The Consensus of Subjective Probability Distributions,” Management 
Science, Volume 15, Issue 2, pp. B61-B75.* 
 
Winkler, R.L. and Clemen, R.T. (1992), “Sensitivity of Weights in Combining Forecasts,” 
Operations Research, Volume 40, pp.609-614.* 
 
Winker, R.L., Hora, S.C., Baca, R.G. (1992), “The Quality of Experts’ Probabilities Obtained 
Through Formal Elicitation Techniques,” Center for Nuclear Waste Regulatory Analyses 
CNWRA, CNWRA T. Rep.* 
 
Wheeler, T.A., Hora, S.C., Cramond, W.R., and Unwin, S.D. (1989), “Analysis of Core Damage 
Frequency from Internal Events: Expert Judgment Elicitation,” NUREG/CR-4550, Volume 2, 
Sandia National Laboratories. * 
 
Yi, W. and Bier, V.M. (1998), “An Application of Copulas to Accident Precursor Analysis,” 
Management Science, Volume 44, Issue 12, Part 2 of 2, S257-S270.* 
 
Zahedi, F. (1986), “Group Consensus Function Estimation when Preferences are Uncertain,” 
Operations Research, Volume 34, Issue 6, pp. 883-894.* 
 


