
E2755 v2

G

٠

۲

Table of Contents

Content	Page	
Table of contents		i
List of Tables		ii
List of Figures		iii
Acknowledgments		iv
Acronyms		vi
Executive Summary		1
Background		5
Ethiopian Drainage basins		5
Ethiopian Freshwater fishes		5
Lake Tana		7
Lake Tana fishes and fisheries		8
Migration in fishes		9
The effects of dam building on fishes		10
The initiation and execution of this study		13
Objectives of the study		14
Study sites, Materials and Methods		14
Study sites		14
Materials and Methods		19
Results and Discussions		22
Fish species diversity from Ribb River and its tributaries		22
Fish species abundance in the Ribb River and its tributaries		25
Length-weight relationship of the dominant Labeobarbus spp.		28
Role of Labeobarbus spp in the food web of Lake Tana		30
Gonad Maturity status and migration behavior of Labeobarbus sp	p.	31
Spawning Segregations		36
Spatial segregation		36
Temporal segregation		38
Suitable spawning habitats in the Ribb River and its tributaries		38
Farmer's use of fish from Ribb River and its tributaries		43
The contribution of Ribb fishes to Lake Tana fish ecology and pro	oduction	
Species composition of Labeobarbus spp. from Lake Tana		46

Ribb River Fishery Studies: Final Report	January 2008
Fish catch trends from Lake Tana	48
Fish production and marketing from Lake Tana	50
The nature and number of Lake Tana fishers, their bases and org	anizations 51
Fishery Policy and Management	54
Major Findings, Conclusions and Recommended Mitigation Measur	res 56
Major Findings and Conclusions	56
Recommended Mitigation Measures	59
References	62
Appendices	67
Appendix I: Names of contacted individuals and Institutions	67
Appendix II: Questionnaire for the socio-economic studies	68
Appendix III: Pictures showing activities	69
Appendix IV: Raw data collected	78

.

••

٠.

ð,

.

.

۲

List of Tables

Table	Content Page	
Table 1. A	Average value of oxygen, temperature, pH and depth at the sampling sites.	18
Table 2. (Gonad maturity stages and descriptions for cyprinids	21
Table 3.	The species of fish identified from the different sampling sites of Ribb River	24
Table 4.	Occurrence and total number of species of fish from the different sampling	24
S	ites of Ribb River.	
Table 5.	Total abundance of species from all the sampling sites of Ribb River	26
Table 6.	Number of species and their percentage composition from the different	
S	ampling sites of Ribb River	27
Table 7.	Spatial distribution of gonad stages of the Labeobarbus spp. of Lake Tana	34
S	pawning in Ribb River	
Table 8.	Tributaries of Ribb River and the distance from their origin to the main Channe	1 40
Table 9. S	Species number and percentage composition pooled from all monthly	47
s	amples per site from January 2000 to December 2004 (BAFLRC, 2007)	
Table 10.	Species composition of the Labeobarbus species in Lake Tana	48
Table 11.	Fish catch data in tons for Motorized and Reed Boat fishery in Lake Tana	49
Table 12.	Fish prices at Bahir Dar	51
Table 13.	Dependents on the fishery sector that are directly involved in fishing and post	54
1	harvest processing	

.

•

æ

-

List of Figures

Figure	Content	Page	
Fig. 1.	Ribb River water shed and the sampling sites		15
Fig. 2.	Length-weight relationship of Labeobarbus species of Lake Tana		
	spawning in Ribb River		29
Fig. 3.	Simplified food web of Lake Tana		31
Fig. 4.	Maturity stages in the most common Labeobarbus spp.		33
Fig. 5.	Temporal variation of gonad stages of Labeobarbus of Lake Tana		
	in Ribb River		35
Fig. 6.	Spatial segregation of Labeobarbus species of Lake Tana spawning	g	
	in Ribb River.		36
Fig. 7.	The planned dam site on Ribb River and the reservoir area		42

Acknowledgments:

We thank the Ministry of Water Resources (World Bank Financed Ethiopian-Nile Irrigation & Drainage Project Coordination Office) for the great cooperation we received during our entire working period. We are thankful to the Bahirdar Fisheries and Other Living Aquatic Resources Research Center, the Amhara Regional Agricultural Research Institute, Ministry of Water Resources (Amhara Region), South Gondar Zone Administration, Libo Kemkem Woreda Agriculture Office, Ebenat Woreda Agriculture Office and several other institutions for providing us most needed information and logistics.

Fishery experts (Belay Abdissa, Goraw Goshu and Mesfin Tsegaw) and a number of fishermen (Gebresellassie Meseret, Getnet Temesgen, Ayenew Gediff, Tiruneh Belay, Asrate Wondie, Endalamaw Asres) were involved in the sampling effort and we are indebted to all of them. We are thankful to the able drivers, Asnake Aynekulu, Habte Muche and Amare that helped us in very difficult conditions. We are also thankful to several farmers and local residents that have assisted the work in providing information and animals and transporting our equipments. We also thank Geremew Mellese, Abebe Ameha and Fitsum Abebe for their contributions in preparing the Ribb watershed map, organizing data, formatting and other editorial assistance. ,

٨

.

-

Acronyms:

ACU:	Labeobarbus acutrostris
BA:	Barya River (tributary of Ribb River)
BAFLRC:	Bahir Dar Fish and other Living Resources Research Center
BRE:	Labeobarbus brevicephalus
CH:	Chibirna River (tributary of Ribb River)
CPUE:	Catch Per Unit Effort
CRA:	Labeobarbus crassibarbis
DEG:	Labeobarbus degeni
ETB:	Ethiopian Birr
FL:	Fork Length
FPME:	Fish Production and Marketing Enterprise
GAR:	Garra sp.
GON:	Labeobarbus gorgorensis
HA:	Hamus River (tributary of Ribb River)
INT:	Labeobarbus intermedius
KI	Kirarign River (tributary of Ribb River)
KE:	Keha River (tributary of Ribb River)
LON:	Labeobarbus longissimus
LTFRDP:	Lake Tana Fisheries Resource Development Program
MAC:	Labeobarbus macrolepidotus
MC1:	Main Ribb River at the Bahir Dar-Gondar Bridge near Woreta town
MC2:	Main Ribb River at the old Broken Bridge (on the old road from Zeha
	to Debretabor)
MC3:	Main Ribb River at the dam site
MC4:	Main Ribb River above the junction with Hamus River
MC5:	Main Ribb River above the junction with Melo River
ME:	Melo River (tributary of Ribb River)
MEG:	Labeobarbus megastoma
NED:	Labeobarbus nedgia
PLA:	Labeobarbus platydorsus
RM:	River mouth
SH:	Shini River (tributary of Ribb River)
SUR:	Labeobarbus surkis
TIL:	Oreochromis niloticus

vi

•

•

TRU:	Labeobarbus truttiformis
TSA:	Labeobarbus tsanensis
TW:	Total Weight
VAR:	Varicorhinus beso

EXECUTIVE SUMMARY

A dam is planned to be constructed on the Ribb River some 50 km north east of Lake Tana. This study was designed to investigate the dam's effect on fishes of *Labeobarbus* spp. that migrate from Lake Tana to Ribb River and its tributaries for spawning. 13 sampling sites were identified at the river mouth, on the main Ribb River and its tributaries below and above the dam site. Fishes were collected from each sampling site in three separate field trips during the main rainy season (end of July to beginning of November). A total of 2457 fish specimens (1287 females, 1143 males and 27 unidentified specimens) were collected using gill nets of different mesh sizes (6, 8, 10, and 12 cm stretched mesh size), hooks and lines, fykes, cast nets, traps and scoop nets and fishes were also purchased from the local fishers for biological investigation.

Eighteen species belonging to five genera and three families were represented in the catch. *L. intermedius, L. brevicephalus, L. megastoma, L. truttiformis* and *L. tsanensis* were the most abundant species migrating to Ribb River and its tributaries. These *Labeobarbus* species were found to aggregate at the Ribb River mouth before the onset of migration and they are found to migrate to all the tributaries and up to the most distant site sampled (Main channel above the junction with Melo River located some 15 km above the dam).

Most of the Labeobarbus specimens collected during the study period were having gonads that were mature and running; from the total of 2075 Labeobarbus specimens, 887 specimens were mature, 835 specimens were running and 53 were spent. There is no evidence for specificity of habitat at which each species of Labeobarbus spawn and hence spatial segregation is out-ruled. However, there is evidence that they segregate temporally except in the case of L. intermedius. Among the dominant species, L. megastoma was the first to aggregate at the river mouth and run to upstream followed by L. truttiformis and L. tsanensis. The last to aggregate and migrate upstream is L. brevicephalus.

All the tributaries and the upstream Ribb main channel can be considered as suitable breeding habitats for *Labeobarbus* spp. The total estimated length of spawning habitat along the main Ribb River and its tributaries is 351.5 km. The area below the dam contributes 57.3 % while the spawning habitat above the dam contributes 42.7 % of

the total. Moreover it has to be noted that higher relative abundance of *Labeobarbus* spp. was observed from sampling sites below the dam than above the dam.

It has been estimated that 48 % of the fish production from Lake Tana that landed at the Southern Gulf (about 1000 tons) is contributed by the fish caught from the Ribb River mouth and its surroundings. This is about 480 tons contributed by mainly Nile tilapia, cat fish and Labeobarbus spp. The contribution of Labeobarbus spp. is 20 % of the total catch, which is about 100 tons per year. It is reasonable to estimate, thus, that about 60 tons (57.3%) could be from fishes that spawn below the dam and 40 tons (42.7%) fish production could come from fishes that spawn above the dam. Therefore, the inability for the fishes to migrate past the dam site could bring about an estimated loss of about 40 tons of fish production per year from Lake Tana. Moreover, if proper management measures are not taken on the main river and the tributaries below the dam site, and the water level of the main river and its tributaries fall below the level required for the migration of the species as well as inundating the wetlands, it could result in an estimated loss of about 480 tons of fish per year from Lake Tana. This is because any negative measures on the wetlands and the main Ribb River could affect the migratory species as well as the production of Nile tilapia and catfish that have their main breeding grounds on the wetlands. In monetary terms 480 tons is about Birr 1440000/year (producer's rate) or Birr 5280000/year (retailer's rate).

The above estimate is based on the amount of catch that landed at the southern gulf which is one-tenth of the estimated potential of Lake Tana (estimated potential is about 10000 tons). Therefore, the potential monetary loss that could be accrued to Lake Tana fish production due to damages on the Ribb River and its tributaries could roughly be estimated to Birr 50280000 per year.

The number of fish that are migrating to and from Ribb River and its tributaries could be estimated from the actual production of Lake Tana that is contributed by *Labeobarbus* spp. from Ribb River mouth and sourrounding areas which is about 100 tons (100,000 kg) per year. It can reasonably be suggested, thus, that about 200000 adult individuals (an individual adult weighing, on the average, about 500 grams) of *Labeobarbus* species migrate to and from Ribb River. Of this, about 115000 individuals may spawn below the dam while about 75000 individuals spawn above the dam.

The river mouth and shallow areas around Ribb River are ideal breeding and feeding grounds for Nile Tilapia (*Oreochromis niloticus*) and African cat fish (*Clarias gariepinus*) and hence are important habitats that play great roles in the functioning of Lake Tana ecosystem.

Ribb River fishery is insignificant contributing less than 1% to the total fish catch in the Lake Tana basin; a total of about 360 quintals (or 36 tons) of fish is estimated to be harvested from the river annually. Therefore, there are no communities whose livelihoods entirely depend on the fishery of the river.

The contribution of *Labeobarbus* species to Lake Tana fishery was about 40 % in the 1990s and declined to 17 % in 2000s. This implies that this species flock is under pressure from different sources of threat that include fishing at the river mouth during breeding season (recruitment overfishing), spawning habitat destruction, silt load and similar other factors.

With the formation of the reservoir a new fishery is expected to emerge. The reservoir is estimated to be about 1918 ha. On average, the fish production from such type of tropical reservoir is estimated to be about 100 kg/ha/yr. Therefore, 1918 quintal of fish could be produced annually from this reservoir.

Generally, the dam will have an impact on the migratory *Labeobarbus* species that spawn past the dam in upstream Ribb River and its tributaries and that will, in turn, have some impact on the fishery of Lake Tana. It could also have effect on the quantity of water that will be available for the migratory fishes as well as for inundating the wetlands. However, the impact will be insignificant and tolerable if the following major mitigation measures are taken:

- The time of the dam closure/ blocking should not coincide with the period of migration of the fishes (the main rainy season).
- ➤ A sufficient volume of flow is required to inundate flood plains, recharge wetlands and provide sufficient depth of water for larger species. Further

hydrological studies may be needed to determine the amount of water required to inundate flood plains and recharge wetlands. However, about 20 cm height of water is the minimum requirement to keep larger species migrating to and from Ribb River.

- It is important to protect the watershed of the main river channel and the tributaries from further deforestation and environmental degradation so that the diversity and productivity of the fish will be maintained. It is recommended that the riparian zone of the main Ribb River and the tributaries is afforested.
- Water use for irrigation from the small tributaries should be minimized especially during the breeding season. Other habitat destruction activities should be avoided.
- In order to improve the livelihood of the people around the dam area, fish must be stocked into the reservoir and the fish species that will be stocked should be species from Lake Tana propagated at a hatchery. Introduction of any new fish species into the reservoir will affect the fish diversity of the Lake Tana sub-basin.
- > The fish stock from Lake Tana is sharply declining even before the construction of the dam. It is, therefore, important to rehabilitate the stock using artificial propagation.
- Farmers fishing from Ribb River use destructive fishing methods (poisoning and blocking), and this need to be strongly banned.
 - Fishing should be closed during the spawning months (July to October).
 - Fishers must use gillnets of 10 cm and above stretched mesh size.
 - Licensing of fishers must be immediately materialized.
 - Enforcement of management measures, effective training and extension work should incorporate active participation of the fisher community including the upstream and downstream communities.

Finally, it is hoped that the dam will serve the intended purpose of irrigating farm lands and ultimately mitigating the poverty level and misery of the surrounding farmers without severely compromising the natural ecosystem, which is related to the wellbeing of several generations to come.

BACKGROUND

Ethiopian Drainage Basins

Much of Africa is arid, and Ethiopia could perhaps be called the "water tower of eastern Africa". The country is endowed with some 7000 km² of standing water and some 7000 km length of flowing water. Based on similarities of the fauna (especially the fish fauna) and following the model of freshwater ecoregions of Africa (Thieme *et al.*, 2006) the freshwater systems of Ethiopia can be conveniently placed under 5 freshwater ecoregions. These are:

- The Ethiopian Highlands (includes streams, rivers and lakes in the highlands of Ethiopia, but excluding Lake Tana).
- Lake Tana (because of its unique fish fauna).
- Northern Rift (rift valley lakes excluding Lakes Abaya and Chamo because of the Nilo-Sudanic affinities of their fish fauna)
- Lake Turkana (includes the Omo River and its tributaries as well as Lakes Abaya and Chamo)
- Shebele Juba catchments (includes tributaries of Wabi Shebele, Genale, Dawa, and Fafan).
- Red Sea coastal (the Awash system and the saline lakes of northern Ethiopia that includes Lakes Abbe, Afambo, Afdera, and Asale)

These freshwater ecoregions can further be divided into drainage basins. The drainage pattern in Ethiopia is the result of the uplifting during the Tertiary period, which created the Rift Valley and consequently the two separate highlands (Mohr, 1966; Westphal, 1975). Since water bodies found in one drainage basin are somehow interconnected, similarity in their biota is evident. According to Mesfin Woldemariam in Shibru Tedla (1973), the Ethiopian freshwater system can be classified into seven drainage basins. These are the Abay, Awash, Baro Akobo, Omo-Gibe, Rift Lakes, Tekeze and Wabi Shebele-Genale basins.

Ethiopian Freshwater Fishes

The freshwater fish fauna of Ethiopia is of particular interest since it contains a mixture of Nilo-Sudanic, East African, and endemic forms (Roberts, 1975; Abebe Getahun and Stiassny, 1998). The Nilo-Sudanic forms are represented by a large number of species found in the Baro-Akobo, Omo-Gibe, and Abay drainage basins

(e.g. members of the genera Alestes, Bagrus, Citharinus, Hydrocynus, Hyperopisus, Labeo, Mormyrus etc.). The southern Rift valley (Lakes Abaya and Chamo), and the Shebele-Genale basins also have elements of these forms. It is believed that these lakes and river basins had former connections with the upper White Nile (through Lake Rudolf in the former case) as recently as 7500 years ago (Roberts, 1975). These Nilo-Sudanic forms are related to West African fishes and this too is believed to be due to past connections of the Nile to Central and West African river systems (Boulenger, 1905: Nichols and Griscom, 1917; Nichols, 1928).

The highland east African forms are found in the northern Rift Valley lakes (e.g. Lakes Awassa, Ziwai, Langano), the highland lakes (e.g. Tana and Hayq), and associated river systems, and the Awash drainage basin. These include members of the genera *Barbus, Labeobarbus, Clarias, Garra, Oreochromis*, and *Varicorhinus*. They are related to fishes of eastern, northern and southern Africa. Some elements are shared with waters of western Africa. For example, *G. dembeensis* is a widely distributed cyprinid species found in 6 countries (Ethiopia, Kenya, Egypt, Tanzania, Cameroun and Nigeria). Nilotic fishes are almost entirely absent from the Awash and northern rift valley lakes.

Although extensive review work is currently in progress, it appears that a preliminary listing of about 152 valid indigenous species represents what is so far known from Ethiopian freshwaters. There are additionally 10 exotic species. Of the 152 indigenous species, about 39 species and two sub-species are endemic to Ethiopia. Moreover, the inadequacies of the present study underline the contention that further extensive collections and identifications will raise both the total number and the number of endemic species of the country.

The highest species diversity is recorded from Baro basin, followed by Abay, Rift Lakes, Wabi Shebele and Omo-Gibe basins. It appears that this high diversity is partly attributable to the presence of highly diverse and rich habitats, but probably also to relatively high level of exploration and collections done in these relatively accessible water bodies. However, endemicity seems to be highest in Abay and Awash basins. This is due to the endemic "species flock" of Lake Tana and the presence of some endemic fishes adapted to localized habitats in small streams in the highlands of north and central Ethiopia. Lake Tana has 28 species and one sub species of which 20 species and one sub species are Ethiopian endemics. 18 species are endemic to Lake Tana.

The drainage basins that are rich in species like the Baro and Omo-Gibe contribute an insignificant proportion of the country's endemic fauna. Only one endemic species (*Nemacheilus abyssinicus*) has so far been recorded from these drainages and this species has also been recorded from Lake Tana. Low levels of endemism are probably due to the Baro and Omo-Gibe drainage basins having connections (present and past) with the Nile and west and central African river systems and as a result all the fish fauna represent widespread Nilo-Sudanic forms.

The major commercially important fish species of the country include Oreochromis niloticus, Labeobarbus spp., Lates niloticus, Clarias gariepinus, Bagrus docmak, and Cyprinus carpio (introduced).

Lake Tana

Lake Tana is the largest lake in Ethiopia, with a surface area of 3200 Km^2 and a watershed of 16500 Km² located at 1830 m above sea level. It forms the headwaters of the Blue Nile, which carries more than 80% of the total volume of the Nile River at Khartoum, Sudan. The lake has been isolated from the lower Blue Nile basin by a 40 m. high water fall, 30 km downstream from the Blue Nile outflow. Lake Tana emerged as one of the global top 250 lake regions most important for biological diversity (Barker, 2004).

Lake Tana is an oligo-mesotrophic shallow lake with an average depth of 8 m and maximum depth of 14 m (Wassie Anteneh, 2005). The lake is turbid, well mixed and has no thermocline (Eshete Dejen *et al*, 2004). Fogera (on the east) and Dembea (on the north) plains border major parts of Lake Tana, and they are considered to be the buffering zones of the lake (Nagelkerke, 1997). The lake is believed to have originated two million years ago by volcanic blocking of the Blue Nile River (Mohr, 1962). It assumed its present shape through blocking of a 50 km long quaternary basalt flow, which filled the exit channel of the Blue Nile River (Chorowicz *et al.*, 1998). However, there are strong evidences that Lake Tana had dried up between 16000 and 50000 years ago (Lamp *et al.*, 2004).

Lake Tana Fishes and Fisheries

In Lake Tana, the families Cichlidae and Clariidae are represented by only one species each, *Oreochromis niloticus* and *Clarias gariepinus*, respectively. *Nemacheilus abyssinicus* is an endemic species belonging to the family Balitoridae and inhabit the littoral areas of Lake Tana. The largest fish family in the lake is Cyprinidae, represented by four genera, *Barbus, Garra, Varicorhinus* and *Labeobarbus*. The genus *Barbus* includes the "small" barbs and is represented by three species, namely, *B. humilis*, *B. pleurograma* and *B. tanapelagius* (de Graff *et al*, 2000). *Varicorhinus* is represented by a single species, *V. beso*. The genus *Garra* is represented by four species, *G. dembecha, G. dembeensis, G. regressus* and *G. tana* (Stiassny and Abebe Getahun, 2007).

The most significant genus of the family Cyprinidae in Lake Tana is *Labeobarbus*. The *Labeobarbus* species of Lake Tana have previously been classified under the genus *Barbus*. However, large, hexaploid African *Barbus* are renamed as *Labeobarbus* (Skelton, 2001, Berrebi and Tsigenpoulos, 2003, Snoeks, 2004). The new genus name better reflects their phylogenetic distance from other members of the overly lumped genus *Barbus*. *Labeobarbus* spp. differ not only in their resource partitioning (feeding) but also in their reproductive strategies (de Graff *et al.*, 2005). There are 15 species of *Labeobarbus* forming a unique species flock in Lake Tana, the only cyprind species flock in the world, after the ones in Lake Lanao vanished because of overexploitation.

Until the end of the 1980s, fishing on Lake Tana was subsistence reed boat fishery. In 1986 motorized boats and nylon gill nets were introduced as part of the Lake Tana Fisheries Resource Development Program, which was initiated by the Ethiopian Ministry of Agriculture, the Ethiopian Orthodox Church, and two Dutch NGOs (ISE-URK and ICCO-Zeist) (Wassie Anteneh, 2005). Accordingly, the total annual catches increased from 39 MT in 1987 to 360 MT in 1997 (Tesfaye Wudneh, 1998). However, Catch per Unit Effort of the *Labeobarbus* species from the commercial gill net fishery drastically dropped down from 63 kg/trip in 1991 to 28 kg/trip in 2001 (de Graff *et al.*, 2004). The same author has reported from the southern gulf of Lake Tana about 75% decline (in biomass) and 80% (in number) of the *Labeobarbus* spp. (*L. acutrostris, L. macrophthalmus, L. platydorsus, L. brevicephalus, L. tsanensis, L. intermedius*). The most plausible explanation for the decline of the stock is not

natural environmental destruction but recruitment over fishing by the commercial gill net fishery (de Graff *et al.*, 2004) and poisoning of the spawning stock in rivers using the crushed seeds of birbira (*Milletia ferruginea*) (Nagelkerke and Sibbing, 1996; Abebe Ameha, 2004).

The commercial gill net fishery on *Labeobarbus* spp. is highly seasonal and mainly targets the spawning aggregations, as more than 50% of the annual catch is obtained in the river mouths during August and September.

Migration in Fishes

According to Rodriguez-Ruiz and Grando-Lorencio (1992) in Wassie Anteneh, 2005, migration of fish refers to a displacement between two or more habitats, commonly between feeding and reproduction habitats, with a regular periodicity (sometimes annually) and involving a large fraction of a population. Control of the timing of migration to rivers depends on interaction between the internal physiological state of the fish and the external triggering factors in the environment (Northcote *et al.*, 1970). The external triggering factors include mostly moon phase, photoperiod, river flow, water temperature, turbidity, and water volume.

Adults of anadromous species migrate up rivers to spawn and the young descend to the lakes to feed and grow. Results of limited number of studies indicate that migratory behavior of individual fish indicate that migratory movements are not random, but are oriented, with varying precision, in the general direction of home (Leggett, 1977). Several species of fish are known to be capable of obtaining directional information from the sun, polarized light, and geomagnetic fields. Some limited inertial guidance may also be involved.

An impressive body of literature supports the hypothesis that fish migrations involve a continuous optimization of physiological and neurological states in response to a multiplicity of environmental stimuli. Recognition of the home area apparently involves both olfactory and local topographic cues. Each river, and apparently each tributary, has a characteristic odor. Homing may result in reproductive isolation. This isolation is essential to the development of complex behavioral, energetic, and reproductive adaptations to the reproductive habitat occupied.

Gonad maturation is endogenously regulated but environmentally synchronized, in the temperate region, most probably by the rate of photoperiod change (Thorpe, 1988). However, most tropical freshwater fishes spawn seasonally during the rainy period (Lowe-McConnell, 1975; Payne, 1986). Most large cyprinids of Africa spawn by making a single annual breeding migration to upstream areas of rivers (Lowe McConnell, 1975; Tomasson *et al.*, 1984).

The Effects of Dam Building on Fishes

Dams block the migratory movements of spawning fishes in streams. The blockage of fish movements upstream can have a very significant and negative impact on fish biodiversity. According to McAllister *et al.*(unspecified date) many stocks of Salmonidae and Clupeidae have been lost as a consequence. In the Columbia River, U.S.A., more than 200 stocks of anadromous, Pacific salmonids became extinct as a result of such actions.

While dramatic declines in migratory species such as lampreys, sturgeons, salmons and clupeids were well known in European rivers, other fishes, the so called resident or non-migratory fishes which perform in-stream movements require attention. These include different species of minnows, sculpins, and graylings. Even small sized species such as the white bream, *Abramis bjoerkna*, were found to migrate up to 60 km from the place they were tagged.

Reservoirs formed as a result of damming trap suspended particles, reducing turbidity downstream. Many species are adapted to natural turbidity; for example, turbid water catfishes have small eyes, refined senses of smell and touch in their sensitive barbells. The turbid water helps conceal the fish and other biota from visual predators like birds. When normally turbid water becomes clear below dams, the indigenous species may find themselves at a disadvantage. Other animal species may move in, filter feeders and aquatic vegetation may flourish. Sediment burrowing species may find their habitat has diminished. Flood plain ecosystems and deltas may no longer be replenished by the annual transport of sediment. Silt and increased turbidity, above natural levels, can interfere with primary production.

Water quality, flow and seasonality of flow are not normally disrupted in the upstream area above the reservoir so impacts are generally less than for the reservoir and

downstream areas. Nevertheless, the dam and the reservoir affect migratory movements of species into and out of this upstream area. The genetic exchanges with downstream segments is reduced or prevented.

In the construction of reservoirs, the clearing of vegetation, movement of earth and rock, the presence of humans and machinery, bringing in construction materials, use of explosives, noise and reducing or cutting off river flow and increasing turbidity, will affect biodiversity. Removal of forests or other vegetation over a wide area, excavation, earth and rock movement and reductions in river flow are the most significant.

During reservoir filling the river and any associated wetland areas become inundated. Riffles, runs and pools of the river are lost beneath the rising waters, leading to the extirpation (or extinction) of habitat sensitive riverine species with tightly defined niche requirements. Fishes in rivers are generally well adapted to flowing water. The transformation of a river to a reservoir, therefore, poses a problem for the resident; mainly riverine species that are not adapted to the new conditions.

Reservoir fisheries are one of the frequently claimed benefits of impoundments. The changes in catches following impoundments are variable. However, the catches in new reservoirs frequently go through a "boom and bust" cycle, with catches initially increasing following filling of the reservoir and then declining. Therefore, impact assessments of dams should be based on the long term catches.

In the downstream segment, most of the impacts of a dam are negative. In a preliminary assessment of 66 case studies of the impact of dam construction on fishes, based on qualitative information, 73% of the impacts were negative and only 27% were positive. About 55% of the impacts were below the dam and linked to fish migrations and to flood plain access (McAllister, *et al.* unspecified date).

Upstream impacts are generally less than those in the reservoir or downstream. The exception to this generalization is the migratory species that move up and downstream and use such movements to maintain genetic diversity.

It is clear that the World Charter for Nature was adopted by the UN General Assembly in 1982. It provides the guiding principles that should govern human

responsibility for biodiversity. It states that "activities which might have an impact on nature shall be controlled, and the best available technologies that minimize significant risks to nature or adverse effects shall be used; in particular.

- Activities which are likely to cause irreversible damage to nature should be avoided;
- Activities which are likely to pose a significant risk to nature shall be preceded by an exhaustive examination; their proponents shall demonstrate that expected benefits outweigh potential damage to nature, and where potential adverse effects are not fully understood, the activities should not proceed;
- Activities which may disturb nature shall be preceded by assessment of their consequences, and environmental impact studies of development projects shall be constructed in advance, and if they are to be undertaken, such activities shall be planned and carried out so as to minimize potential adverse impacts".

Similar statements are found in Convention on Biological Diversity. The Convention on the Conservation of Migratory Species of Wild Animals (CMS), also states, among its fundamental principles, that: 'the parties acknowledge the need to take actions to avoid any migratory species becoming endangered" which is particularly relevant to our report.

The World Bank's operational Policy on natural habitats requires that comprehensive analysis should demonstrate that overall benefits from a project outweigh the environmental costs before significant conversion of natural habitats is allowed, unless there are no feasible alternatives for the project.

Although approximately 300 new freshwater species are discovered each year, amphibians, fish and wetland birds are at high risk of becoming extinct in many regions of the world. More than 20% of all freshwater fish species are now considered threatened or endangered, mostly due to damming (Truffer, *et al.*, 2003).

The Initiation and Execution of this Study

This study was initiated and sponsored by the Ministry of Water Resources to find out whether or not the envisioned dam building on the main Ribb River, Lake Tana tributary, will affect the migratory fishes of the *Labeobarbus* species and the extent of its effect on the ecosystem and the people depending on the fishes for their livelihood. Accordingly, a team was organized that consists of the lead aquatic ecologist and two other aquatic ecologists together with fishery experts and fishermen. The first field study and sampling took place from 31 July to 13 August 2007. In this first trip, sampling sites were properly identified and fish samples, although few, were collected from the main Ribb River and its tributaries.

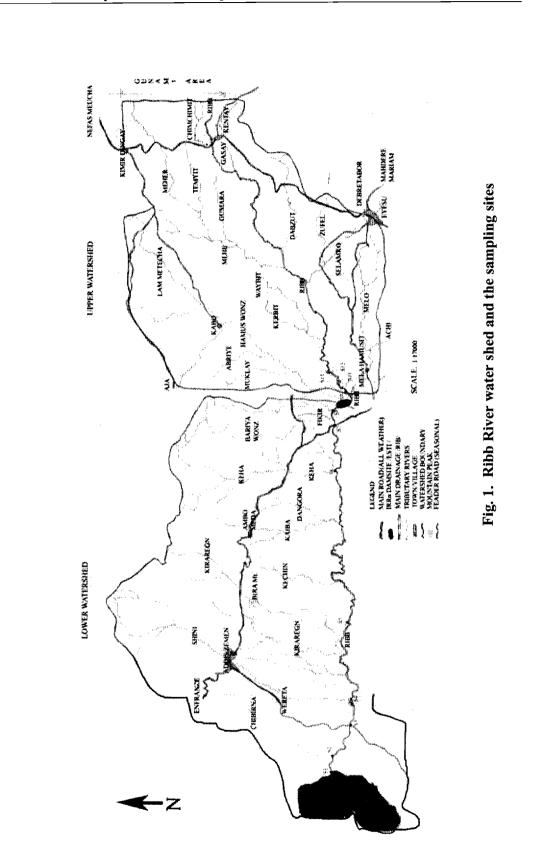
As a continuation of this effort the second field trip to the main river and its tributaries took place in two periods from 27 August to 3 September 2007 and from 17 to 30 September 2007. The Second field trip was divided into two periods because of the heavy rains that continued until mid- September that made it very difficult to work on the main Ribb River. In the first part (27 August to 3 September) of the trip only the tributaries were sampled while in the second part both the main channel (Ribb) and its tributaries were explored.

The third and final field trip took place between 20 October and 5 November 2007. During this time the water level of the tributaries was so low that it was not possible to sample from the tributaries, and hence sampling was mainly limited to the main river channel and the river mouth. It has to be noted that the study was conducted in a very difficult logistic and physical conditions and demanded mobilization of human and material resources within a short period of time.

This final report is a compilation and analysis of data collected in those three field trips from Ribb River and its tributaries. The report has an "Introduction" that consists of general and brief background information on Ethiopian drainage basins, Ethiopian freshwater fishes, Lake Tana and its fish and fisheries, migration and dam building. The "Materials and Methods" section describes the sampling sites as well as the materials and methods used in the sampling process. The "Results and Discussions" section presents the major findings and elaborates the implications of these findings. The "Conclusions and Recommendations" outline the selected outcomes of the report and indicate possible mitigation measures that need to be taken before, during and after the construction of the dam. References and appendices (consisting of individuals and institutions contacted, questionnaire prepared for socioeconomic data collection, raw data and some selected pictures) are also part of the report.

13

Objectives of the Study


The specific objectives of the study are to find out:

- > whether or not there are migratory fish species from Lake Tana to Ribb River.
- the diversity and abundance of fish species that migrate to Ribb River from Lake Tana.
- whether or not dam building on Ribb River will affect the migratory behavior of fishes of Lake Tana.
- the extent of damage and habitat loss, otherwise important for the spawning fishes, that would follow as a result of the dam construction,
- > the extent of economic damage that may ensue on Lake Tana fisheries,
- mitigation measures that should be taken in order to minimize the negative effects.

STUDY SITES, MATERIALS AND METHODS

Study Sites

Ribb River is approximately 90 km long and originates from Gunna Mountains range in South Gondar Administrative Zone at an altitude of 2400 m. 13 sampling sites were identified on the main Ribb River and its tributaries (Fig. 1). The sampling sites are distributed evenly along much of the length of the Main River below and above the dam site. A brief description of each site is given below and their physical conditions are listed in Table 1.

~

Description of the Study Sites:

- River mouth (RM): N 12°02'27.6" and E 37°35'49.3"; Elevation 1800 m. This is a site located at the junction of Ribb River with Lake Tana. This is a site where migratory fishes are expected to aggregate before the onset of migration to the main river and its tributaries. This site is accessible only by boat from the Bahir Dar Gulf.
- 2. Chibirna River (tributary of Ribb River) (CH): N 12°04'30.8" and E 37°44'4.7"; Elevation 1836 m. This is a temporary tributary of Ribb River located between Addis Zemen and Yifag on the western side of the road between Bahir Dar and Gondar. There is over flooding during the rainy season and it is one of the major contributors to the flood over Fogera plains.
- 3. Main Ribb River at the Bahir Dar-Gondar Bridge near Woreta town (MC1): N 11°59'38'' and E 37°42'38.6''; Elevation 1799 m. This is located at a plain farm area with some eucalyptus trees around the banks. The surrounding is highly exposed to flooding and erosion and the water at this site is usually turbid.
- 4. Shini River (tributary of Ribb River) (SH): N 12⁰05'42.7" and E 037⁰45'36.5"; Elevation 1869 m. The above two tributaries, Shini and Chibirna, originate from different widely separated localities and they join at the Fogera plains of the Libo Kem Kem side and highly contribute to the surrounding flood and finally join the lower part of Ribb River in the rainy season. At the beginning of the study, we didn't consider Shini River as a separate sampling site, since we thought that the two rivers join on the Fogera plains, and may not show distinctions. However, we later found out that Shini River, by its own, is a very good breeding habitat as its bed is filled with gravels all along its upper length. So, we collected additional samples from the river and included it in the list of sampling sites.
- 5. Kirarign River (tributary of Ribb River) (KI): N 12°02'04.8" and E 37047'32.2"; Elevation 1801 m. It measures to 2-5 m wide, with pool up to 1.50 m depth and the river mouth (the place where the tributary joins the main Ribb channel) is muddy. Further upstream the river bed is composed of cobble and gravel. The vegetation is quite scarce and there are farm lands all around.
- 6. Keha River (tributary of Ribb River) (KE): N 12°02'07.4'' and E 037°56'45.4''; Elevation 1836 m. It is about 3-5 m wide, with pools up to 2 m

deep. The river mouth is muddy whereas further upstream the river bed is composed of gravels.

7. Main Ribb River at the old Broken Bridge (on the old road from Zeha to Debretabor) (MC2): N 12°02'54.2" and E 37°59'05.2".

This channel, during the rainy season, is very wide measuring to about 30 meters with depths ranging from 1.2 to 5 meters. It is an area denuded of its natural vegetation and all the riparian area is tilled for growing crops. Hence, the river is too turbid during the rainy seasons due to the introduction of silt from the surrounding land through erosion.

- 8. **Barya River (tributary of Ribb River) (BA):** N 12°02'54.4" and E 37°59'49.0". This is a small tributary river of the main Ribb and flows, although in small quantity, through out the year. There is farm land on all its sides and the riparian vegetation has disappeared except at some gorgy areas where tilling the land is difficult and some herbs are eminent.
- 9. Main Ribb River at the dam site (MC3): N 12°02'01.4" and E 38°00'22.0".

During the rainy season Ribb at the dam site is rapid. The bed is covered by coble and pebbles. There are two hills (Aydagn on the northern Ebenat side and Tigab Amba on the southern Farta side) in the middle of which Ribb flows. The land around this site is used as a farm land for crop production. There is little riparian vegetation left.

- 10. Hamus River (tributary of Ribb River) (HA): N12°00'26.1" and E 38°01'16.6". Hamus River is a perennial tributary which joins Ribb River from the northern Ebenat Woreda side. Hamus River is the largest tributary of Ribb River. During the sampling months, it is about 6-8 m wide and 1.5-2 meters deep. The velocity of the water at the mouth is higher. In August, it was as turbid as the main Ribb channel, but in September and October the water was very clear. The river bed has pebbles and gravels at its mouth. Hamus River at its upper part passes through mountainous and highly dissected land and at its mouth it is clear with no vegetation cover.
- 11. Main Ribb River above the junction with Hamus River (MC4): N12°00'35'' and E 38°02'34''. Ribb River at this site forms some pockets of pools at some intervals of the stretch. The bottom profile of the river is covered by boulders and pebbles. The velocity of the river is higher except at the pockets. The land in the area is farmed for crop production. There is no

riparian vegetation except some eucalyptus trees. The water is turbid like that of the lower sites of the Ribb River.

12. Melo River (tributary of Ribb River) (ME): N 12°02'32" and E 38°02'45.5".

Melo River is a small temporary tributary stream which joins Ribb River on the southern Farta Woreda side. It is about 3 m wide and 0.5 m deep during the sampling period. It was less turbid as compared to the main Ribb River. The bottom at its mouth is gravel bedded. Like that of Hamus River it is not shaded with riparian vegetation or macrophytes. The water of Melo River is slow flowing.

13. Main Ribb River above the junction with Melo River (MC5): N12°02'15.3" and E 38°02'24.4". Ribb River at this site flows relatively slowly as the land is plain and it forms deeper pools. The water was clear as compared to the lower sites. The bottom is covered by pebbles. There is no vegetation cover. Reptiles such as the Nile crocodile were common at this site.

Site number	Site name	Oxygen (mgl ⁻¹)	Temp. (°C)	pH	Depth (m)
1	Ribb River Mouth	6.4	22.1	7.89	3.5
2	Chibirna River	6.7	23.1	NA	0.5
3	Ribb main channel (Bahir Dar- Gondar bridge)	5.6	22.1	7.91	2
4	Keha River	NA	22.7	8.24	0.3
5	Kirarign	NA	18.3	7.61	0.75
6	Shini	NA	23.1	8.09	0.72
7	Ribb main channel (Ziha Debretabor old bridge)	6.5	21.2	7.79	1.25
8	Barya River Mouth	6.6	22.6	7.86	0.5
9	Dam site	6.8	23.8	7.5	1.25
	Hamus River	6.9	22.3	7.76	0.75
11	Mello River	7.12	22.9	7.78	0.74
12	Ribb main channel (Bet. Hamus and Mello Rivers)	6.2	21.5	7.80	1.24
13	Ribb main channel (upper Mello River)	6.3	22.3	7.83	1.23

Table 1. Average value of oxygen, temperature, pH and depth at the sampling sites.

MATERIALS AND METHODS

The samplings were extensively and systematically done throughout the rainy season (end of July to beginning of November), collecting 2457 specimens of *Labeobarbus* spp. and other groups of fish from 13 sampling sites.

- Site selection was accomplished by inspection of the main river for appropriate fishing sites and determining whether or not the tributaries flow throughout the year. The information was secured through interview of experts of the Ministry of Agriculture and the local fishermen and farmers.
- In all of the sites day time and overnight gill net settings were made using polyfilament gill nets with 6, 8, 10 and 12 cm stretched mesh size and with a panel length of 25 and 50 meters and depth of 3 meters each. Fykes, cast nets, scoop nets and hooks and lines were also employed. Fish were also purchased in some upstream sampling sites from local fishermen who used locally made scoop net and cast net to capture fish.
- Fish collected in the river mouths were transported fresh to the laboratory of Bahir Dar Fish and Other Aquatic Life Research Center whereas catches from upstream sites were processed at the site.
- All of the fishes caught were identified to species level with immediate inspection (for obviously known species) and with the help of identification key (Nagelkerke *et al.*, 1994).
- Measurements of Fork length (to the nearest 0.1 cm), Total weight (to the nearest 0.1 gram), and Gonad weight (to the nearest 0.01 gram) were taken using measuring board and sensitive balances.
- Each fish was dissected; the gonads were examined visually and sexed. The gonad maturity stage of each *Labeobarbus* specimen was determined according to Pet *et al.* (1996), modified from De Silva *et al.* (1985) in Nagelkerke, 1997 (Table 2).
- Length-weight relationship of five most abundant Labeobarbus species of Lake Tana spawning in Ribb River was computed using least square regression analysis of TW = aFL^b (Bagenal and Tesch, 1978), where, TW = total weight (g), FL = fork length, a is the intercept, and b is the slope of the regression line.

- Physico-chemical parameters were measured using GPS, Oxygen meter, pH meter, and Conductivity meter. Depth was measured with Sechi Disc and measuring rope. The type of bottom substratum and the status of the surrounding vegetation were inspected and recorded.
- Farmers residing around the dam site and elsewhere around the sampling sites were interviewed based on questions designed for this purpose (see appendix 2 for the type of questions).
- The Amhara Regional Bureau of the Ministry of Agriculture and Rural development and the Fish and Other Living Aquatic Resources Research Center at Bahir Dar were contacted and consulted for availability and acquisition of long term fisheries data (both commercial and experimental).
- Libraries at the Science Faculty, Addis Ababa University and the Amhara Regional Agricultural Research Institute were searched for relevant literature.

,

.

Table 2. Gonad maturity stages and descriptions for cyprinids (Source: Nagelkerke, 1997)

Gonad	Male	Female
stages		
Ι	Immature, impossible to distinguish	Immature, impossible to distinguish
	females from males. Gonads are a	females from males. Gonads are a
	pair of transparent strings running	pair of transparent strings running
	along the body cavity.	along the body cavity.
II	Unambiguously male, very small	Unambiguously female, very small
	testes, white-reddish, not lobed, tube-	ovaries, tube shaped and reddish, eggs
	shaped strings	not visible.
III	Larger testes, white-reddish, some	Ovary somewhat larger and starting
	what lobed starting to flatten sideways	to flatten sideways, eggs visible, but
		very small
IV	Large testes, white-reddish, lobed,	Larger ovary, flattened sideways and
	flattened sideways	almost covering body cavity wall, eggs
		yellowish
V	Large, white testes, some sperm runs	Larger and full ovary, completely
	out when testis is cut	covering body cavity wall, yellowish
		eggs run out when ovary is cut
VI	Large white testes, running, large	Running, yellow eggs can be extruded
	amount of sperm runs out when testis	by putting pressure on the abdomen
	is cut	
VII	Spent, empty testes, reddish and	Spent, wrinkled ovary, reddish,
	wrinkled	containing a few yellow eggs

RESULTS AND DISCUSSION

Fish Species Diversity from Ribb River and its Tributaries

Eighteen species belonging to five genera and three families were identified from the thirteen sampling sites (Table 3). Of the total of 15 species of *Labeobarbus* occurring in Lake Tana, 13 species (86.7 %) have been identified from the river mouth, main Ribb River and its tributaries. The highest species diversity (16 species) has been recorded from the river mouth where only *Labeobarbus degeni* and *Garra* sp. were absent. The next two sites that showed higher diversity were the Ribb channel at the Bridge on the main road from Bahir Dar to Gondar and Chibirna River. It is interesting to note that these sites are the closest to the River mouth. It is reasonable, thus, to see higher diversity at sites which are close to the origin of "dispersal", although the diversity may be dependent on the intensity of sampling, the type of gears used in sampling and the period of sampling.

Clarias gariepinus, O. niloticus, V. beso, B. degni, and Garra species were caught together with the migratory Labeobarbus species. Clarias gariepinus and O. niloticus were common at the Ribb River mouth and in the main channel but rare or absent in the upper small tributaries of this river. Both are commonly found in most African lakes, rivers and reservoirs as they are ecologically most resilient fishes. Both species spawn in the floodplains and littoral parts of the lake (Zenebe Tadesse, 1997; Tesfaye Wudneh, 1998) but never migrate to upstream rivers unlike Labeobarbus species. Peak spawning for C. gariepinus occurs at the beginning of July while although O. niloticus spawns throughout the year, peak spawning occurs in March and July. Therefore, the specimens of these two species collected in the Ribb upstream are most probably dwelling in the river since the season and breeding ground of these species is different from our sampling time and sites. This is again substantiated by the presence of a large number of immature fish in the samples.

The remaining three cyprinids: V. beso, L. degni and Garra sp. were also collected during the sampling period (Table 3). Varichorhinus beso, which contributes 1% of the commercial catch in Lake Tana, was almost as abundant as some Labeobarbus species such as L. tsanensis collected in this study. Only two specimens of V. beso were caught at the Ribb River mouth. Most of the specimens of this species were collected from the main channel and the small tributaries of Ribb River. Out of the 101 specimens 41 were immature. This species spawns throughout the year (Wassie Anteneh, unpublished data). No published data is available about the reproductive biology of this species, however, from gonad maturity status analysis and rare occurrence of this species at the river mouth; it is possible to conclude that V. beso lives (feeds and reproduces) in Ribb River basin.

The unverified species *L. degeni* was collected from Barya River and at the dam site. No report or published data is available on the occurrence of this species in the Lake Tana basin. Similarly unidentified (at the species level) specimens from the genus *Garra* were collected in the upper tributary streams of Ribb River. This genus is common in the Lake Tana basin (Wassie Anteneh, 2005; Akewak Geremew, 2007).

Generally, the diversity of *Labeobarbus* spp. observed in Ribb River and tributaries is high. The construction of the dam is feard to create bottlenecks in some population of the *Laboebarbus* spp. (those that are already in small numbers) and threaten them to extinction.

٠

.

۳

-

Family	Genus	Species
Cyprinidae	Labeobarbus	acutirostris
Cyprinidae	Labeobarbus	brevicephalus
Cyprinidae	Labeobarbus	crassibarbis
Cyprinidae	Labeobarbus	degeni
Cyprinidae	Labeobarbus	gorgorensis
Cyprinidae	Labeobarbus	intermedius
Cyprinidae	Labeobarbus	longissimus
Cyprinidae	Labeobarbus	macropthalmus
Cyprinidae	Labeobarbus	megastoma
Cyprinidae	Labeobarbus	nedgia
Cyprinidae	Labeobarbus	platydorsus
Cyprinidae	Labeobarbus	surkis
Cyprinidae	Labeobarbus	truttiformis
Cyprinidae	Labeobarbus	tsanensis
Cyprinidae	Garra	dembeensis
Cyprinidae	Varicorhinus	besso
Claridae	Clarias	gariepinus
Cichlidae	Oreochromis	niloticus

 Table 3. Species of fish identified from the different sampling sites of Ribb River.

Table 4. Occurrence and total number of species of fish from the different sampling

Site/ Species	RM	MC1	СН	SH	κI	KE	MC2	BA	MC3	HA	MC4	ME	MC5
L. acutirostris						_							
brevicephalus	$\overline{}$	_ •									$\overline{}$		
crassibarbis	$\overline{}$							<u> </u>					_ <u>`</u>
degeni									$\overline{}$				_
gorgorensis	$\overline{}$												
intermedius				$\overline{}$		$\overline{}$						$\overline{}$	
longissimus													
macropthalmus	$\overline{}$												
megastoma		$\overline{}$								_√			
nedgia			_ √	\checkmark								_√	
platydorsus		$\overline{}$											
surkis													
truttiformis			√										_
tsanensis													
G. dembeensis			√		_						-	_√	
V. besso				\checkmark			<u> </u>		_√				
C. gariepinus			_√										<u> </u>
O. niloticus			_√	\checkmark									\checkmark
Total	16	11	10	7	7	8	9	8	6	8	4		6

sites of Ribb River.

Fish Species Abundance in the Ribb River and its Tributaries

The most abundant species from all sampling sites was *Labeobarbus intermedius* constituting more than 30 % of the total number of specimens collected. This is not surprising as this is a "waste basket", as all specimens that cannot easily be identified to any distinct species are included in this species "complex". This species is also believed to be the original (ancestral) group that is well adapted to riverine conditions. *L. brevicephalus, L. megastoma* and *L. truttiformis* are other *Labeobarbus* spp. that were found in relative abundance of 25.07 %, 9.28 % and 6.35 %, respectively.

Specimens of *L. nedgia* were relatively more abundant (about 25 specimens/trip) in the upstream areas and *L. nedgia* with immature gonads were also caught in the upstream sampling sites. Moreover, this species did not aggregate at the Ribb River mouth and the most probable explanation is that *L. nedgia* may be feeding and spawning in Ribb River basin and does not enter into the lake. This riverine dwelling behavior of this species was also reported from Megech River basin (Wassie Anteneh, 2005).

In previous studies (Nagelkerke and Sibbing, 1996; Dgebuaze et al., 1999; Palstra et al., 2004; de Graaf et al., 2005), and this one, seven species (L. crassibarbis, L. dainellii, L. gorgorensis, L. gorguari, L. longissimus, L. nedgia, and L. surkis) did not form aggregation in Gelgel Abbay, Gelda, Gumara, and Ribb River mouths. Moreover, the rare occurrence of L. platydorsus, L. acutirostris and L. macrophtalmus, in Ribb River in this study may be explained by the limited number of samplings conducted. Experimental data taken from the different fishing sites of Lake Tana (Table 10) indicate a similar pattern of abundance in the lake.

In general, two hypotheses can be forwarded for all the rare and missing *Labeobarbus* species:

- 1. They may spawn in a smaller perennial river Arno-Garno (Fig. 1), or
- 2. These fish species may spawn in the lake (lacustrine spawners).

From the other genera, O. niloticus, C. gariepinus and V. beso were found in 5.98 %, 5.62 % and 4.19 %, respectively.

25

Species	Number of specimens	% Composition
L. acutirostris	9	0.37
L. brevicephalus	616	25.07
L. crassibarbis	2	0.08
L. degeni	5	0.20
L. gorgorensis	78	3.17
L. intermedius	775	31.54
L. longissimus	1	0.04
L. macropthalmus	1	0.04
L. megastoma	228	9.28
L. nedgia	59	2.40
L. platydorsus	57	2.32
L. surkis	10	0.42
L. truttiformis	156	6.35
L. tsanensis	62	2.52
G. dembeensis	10	0.41
V. besso	103	4.19
C. gariepinus	138	5.62
O. niloticus	147	5.98
Total	2457	100

Table 5. Total abundance of species from all the sampling sites of Ribb River

The highest number of specimens (50.14% of the total) was collected from the River Mouth site. This is a site where all migrating species aggregate before the onset of migration. The main channel at the Bridge between Bahir Dar and Gondar town stands second in abundance of species, whereas the tributary rivers, Chibirna, Barya, Keha and Kirarign Rivers stood third, fourth, fifth and sixth, respectively. The abundance of specimens, apparently, positively correlates with the diversity of species except the case at MC2 (the main channel at the old Ziha-Debretabor Bridge) where the diversity was relatively higher, but the abundance was relatively lower. In principle, however, the diversity of species may not necessarily positively correlate with the abundance of specimens. The abundance of specimens is apparently observed at sites below the dam site and it is also evident that the extent of spawning habitat (total length of Ribb and tributary rivers) is greater below the dam than above the dam. Therefore, these habitas need proper management and monitoring.

Site/ Species	RM		MC1 CH		H	S	H	KI		KE		MC2		
Species	N	%	N	%	N	%	N	%	Ν	%	N	%	Ν	%
acutirostris	6	.24	3	.12										-
brevicephal	133	5.4			95	3.9	57	2.3	102	4.2	104	4.23	24	.98
crassibarbis	2	.08												
degeni														
gorgorensis	27	1.1	36	1.5	3	.12					1	.04	2	.08
intermedius	405	16.5	168	6.8	16	.65	4	.16	3	.12	8	.33	22	.90
longissimus	1	.04												
macropthal	1	.04												
megastoma	144	5.9	10	.41	2	.08			5	.20	16	.65	1	.04
nedgia	3	.12	1	.04	1	.12	2	.08	1	.04	6	.24	7	.28
platydorsus	55	2.24	2	.08										
surkis	9	.37	1	.04										
truttiformis	127	5.2	6	.24	9	.37			7	.28			2	.08
tsanensis	52	2.1	2	.08							3	.12	2	.08
dembeensis					5	.20	1	.04						
besso	2	.08			20	.81	7	.28			2	.08	3	.12
gariepinus	41	1.7	48	2.0	3	.12	3	.12	5	.20	7	.28	5	.20
niloticus	124	5.1	4	.16	8	.33	8	.33	1	.04				
Total	1132	50.14	281	11.4	162	6.6	82	334	124	5.05	147	5.98	68	2.7

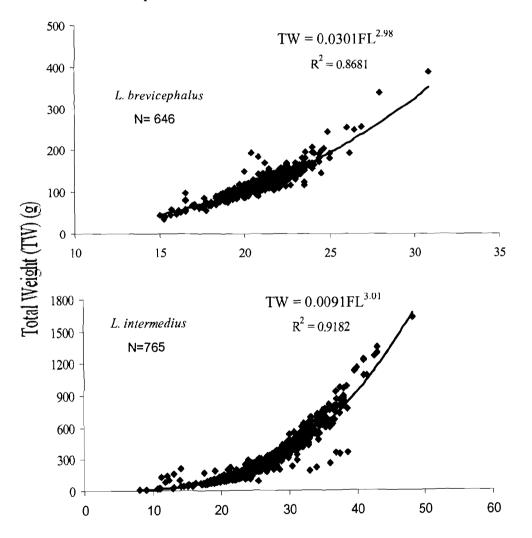

Table 6. Number of species and their percentage composition from the different sampling sites of Ribb River

 Table 6-contd. Number of species and their percentage composition from the different sampling sites of Ribb River.

Site/ Species	BA		MC3		HA		MC4		ME		MC5		Overall Total	
	N	%	N	%	N	%	N	%	N	%	Ν	%	N	%
acutirostris													9	.37
brevicephal	34	1.38	10	.41	24	.98	13	.53	9	.37	11	.45	616	25.1
crassibarbis													2	.08
degeni			5	.20						•			5	.20
gorgorensis	5	.20			4	.16							78	3.18
intermedius	61	2.48	32	1.3	27	1.1	11	.45	3	.12	15	.61	775	31.54
longissimus													1	.04
macropthal													1	.04
megastoma	35	1.43			15	.61							228	9.28
nedgia	9	.37	14	.57	11	.45			1	.04	3	.12	59	2.40
platydorsus													57	2.32
surkis													10	.41
truttiformis					5	.20							156	6.34
tsanensis	3	.12					•••						62	2.52
dembeensis					3	.12			1	.04			10	.41
besso	7		40	1.63	15	.61	4	.16			3	.12	103	4.19
gariepinus	4		18				1	.04			3	.12	138	5.61
niloticus											2	.08	147	5.97
Total	158	6.43	119	4.84	104	4. 23	29	1.18	14	.57	37	151	2457	100

Length-weight Relationship of the Dominant Labeobarbus spp.

Total weight was curvilinearly related with fork length in the five most dominant *Labeobarbus* species of Lake Tana spawning in Ribb River. The regression coefficients were near the cube value (b=3). The results obtained in this study fit with the "theoretical" cube law; which means growth in these fish species is isometric (weight increases at a rate of about a cube of increase in length) (Fig. 2). A similar result was obtained for these species by Wassie Anteneh (2005) in the samples taken from Dirma and Megech tributary rivers of Lake Tana and Naglekerke *et al.* (1994) in the lacustrine samples of Lake Tana.

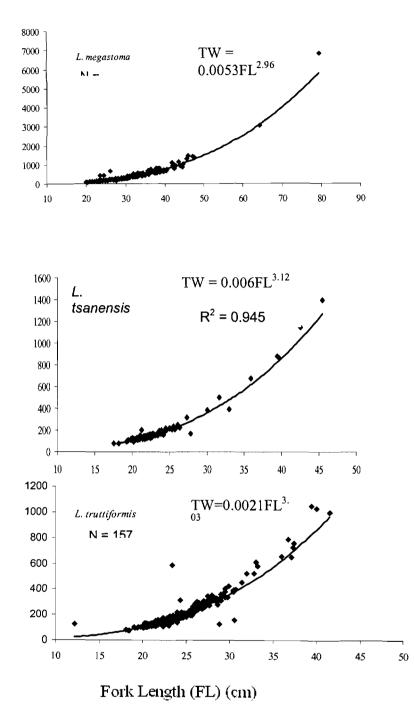


Fig. 2. Length-weight relationship of *Labeobarbus* species of Lake Tana spawning in Ribb River.

Role of Labeobarbus spp in the food web of Lake Tana

We will specifically deal with the role and position of the *Labeobarbus* spp. in the food web of Lake Tana because they are the ones that migrate and have direct relation with the proposed dam.

Eight species of the fifteen endemic Labeobarbus spp. (more than 65 % of all labeobarbs) are piscivorous: two are obligate piscivorous (L. acutirostris, L. truttiformis) and six facultative piscivorous (L. dainellii, L. gorguari, L. longissimus, L. macrophtalmus, L. megastoma, L. platydorsus) (Sibbing & Nagelkerke, 2001). Experiments showed that these piscivores are very clumsy predators, most probably because they have a narrow pharyngeal slit and lack teeth on their oral jaws (de Graaf 2003). Most probably these species can only survive because specialised and more efficient non-cyprinid piscivores are lacking. The piscivorous niche of these co-occurring species is segregated by habitat, diet composition and prey size (de Graaf et al., 2004). The main prey items eaten were B. humilis (40 % of the gut contents), B. tanapelagius (32 %) and Garra species (21%). Therefore, the two small barbs form the main link between the zooplankton and the piscivorous fish in the food web of the Lake.

Besides piscivores, there are five other trophic groups of labeobarbs. One species feeds on macrorophytes (*L. surkis*), one upon macrophytes and molluscs (*L. gorgorensis*), one species on macrophytes and adults insects (*L. osseensis*), one species predominantly on zooplankton (*L. brevicephalus*) and four species are benthivorous feeding mainly on chironomid larvae and on macrofauna associated with macrophytes (*L. crassibarbus*, *L. intermedius*, *L. nedgia*, L. *tsanensis*). If there is any decline or reduction in the stock of large barbs, then the energy and the functioning of the lake-floodplain-river ecosystem will be disrupted. It is obvious that unless strict mitigation measures are taken the proposed dam will reduce the stock of labeobarbs in Lake Tana and hence disrupt the food web therein.

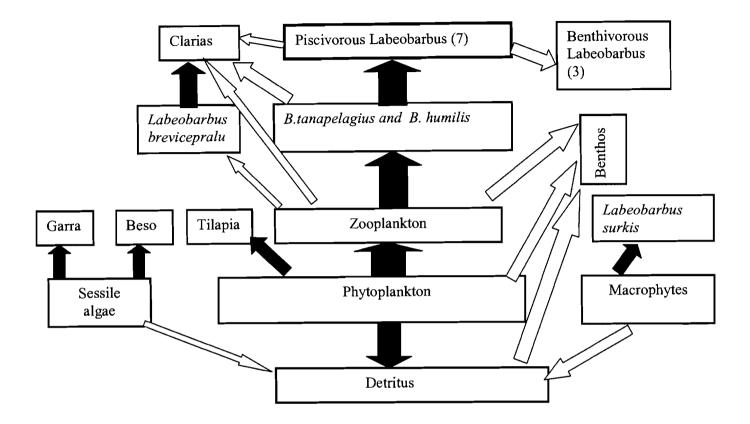


Fig. 3. Simplified food web of Lake Tana

Gonad Maturity Status and Migration Behavior of Labeobarbus spp.

Gonad maturity stages were classified using keys as given in Table 2. From the total of 2075 *Labeobarbus* specimens, only 297 were immature (gonad stages I, II and III), whereas 887 specimens were mature (gonad stages IV, V). Eight hundred thirty five specimens of *Labeobarbus* species were running (gonad stage VI) and 53 were spent (gonad stage VII). Immature gonads (I, II, III) were relatively more numerous in case of *L. intermedius* as compared to other *Labeobarbus* species (Fig. 3). The data also showed that about 85 % of the *Labeobarbus* species were either reproductively mature or running. Fish with gonad stage V were only caught at the Ribb River mouth in all the species of *Labeobarbus* (Table 7). As indicated in Table 7, the majority of *Labeobarbus* specimens collected in the upstream sampling sites were running i.e.,

they shed their eggs and sperm when their abdomens were slightly pressed. No running specimens were caught at the river mouth. All of the 53 spent *Labeobarbus* fish were caught in the upper main channel and small tributary rivers of Ribb River. Spent gonads were common in the samples collected at the end of October (Fig. 4).

Gonad development precedes spawning migration in most fish species and it is under endocrine control from the pituitary gland and this gland requires a triggering environmental factor (Payne, 1986). In the temperate zone, variation in day length is a major triggering environmental factor for gonad maturation, but in the tropics, most probably the variation is insufficient to be considered as a major factor (Wootton, 1990). However, like spawning period, the timing of gonad maturation must generally coincide with the time of reasonable food supply, which means the fish must lay down so much fat over the feeding phase for its survival and gonad development (Payne, 1986; Wootton, 1990). Migration to the breeding area, for tropical freshwater fishes, seems mainly triggered by rainfall patterns and water level variations (Lowe-McConnell, 1975).

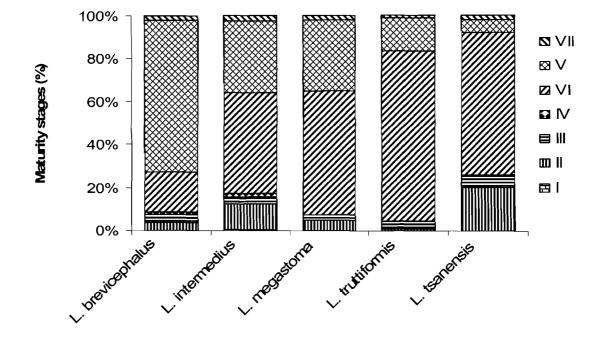


Fig. 4. Maturity stages in the most common Labeobarbus spp.

The absence of running (gonad stage VI) *Labeobarbus* fish at Ribb river mouth (Table 7) shows that the river mouth is not a terminal spawning place, rather the fish species aggregate there to start migration to upstream areas. More than 96% of the specimens in the genus *Labeobarbus* in each particular species in the upstream area, except *L. intermedius*, were either running or spent; the remaining were immature.

	Gonad I	Gonad Maturity stages										
Samplin g site	I	II	III	IV	V	VI	VII					
RM	0	10 1	2 2	0	86 7	0	0					
MC1	3	24	4	1	0	13 2	1					
СН	0	5	9	0	0	10 8	4					
SH	0	14	3		0	46	0					
KI	0	0	0	2		11 5	2					
KE	0	8	6	2	0	11 9	1					
MC2	0	9	6	4	0	27	7					
BA	0	2	6	7	0	12 6	5					
MC3	0	0	1	0	0	34	1 2					
HA	0	10	0	5	0	76	0					
MC4	0	2	2	0	0	19	3					
ME	0	0	1	0	0	12	0					
MC5	0	1	5	0	0	21	4					
Total	3	176	118	21	867	835	53					

Table 7. Spatial distribution of gonad stages of the Labeobarbus spp. of Lake Tanaspawning in Ribb River.

Most large cyprinids of Africa spawn by making a single annual breeding migration to upstream areas of rivers (Lowe-McConnell, 1975; Tomasson *et al.*, 1984). This is the best indication that they are not fully adapted to the lake environment. From the previous studies conducted at four tributary river mouths (Gelgel Abbay, Gelda, Gumara, and Ribb), this ancestral (riverine) reproductive strategy is found to be a characteristic for at least seven (L. acutirostris, L. brevicephalus, L. macrophthalmus, L. megastoma, L. platydorsus, L. truttiformis, and L. tsanensis) of the 15 Labeobarbus species of Lake Tana. The remaining 'missing' Labeobarbus spp. might possibly migrate and spawn in other inflowing rivers (Dirma, Megech, and Arno-Garno), or maybe even within the lake itself (lacustrine spawning) (Nagelkerke and Sibbing, 1996; Palstra et al., 2004; de Graaf et al., 2005).

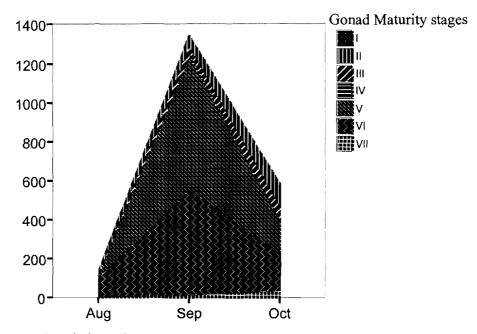


Fig. 5. Temporal variation of gonad stages of *Labeobarbus* of Lake Tana in Ribb River.

The migration pattern of Lake Tana's riverine spawners *Labeobarbus* species is partitioned into three major phases:

- (1) migrating from the foraging area of the lake to affluent river mouths;
- (2) migrating upstream in the rivers' main channels; and
- (3) entering a tributary for spawning after sunset.

Heavy rainfall usually starts in May and peaks in July and August in the Lake Tana area (Tesfaye Wudneh, 1998; Eshete Dejen, 2003). During this time the tributary rivers increase in volume and cause massive soil erosion. As a result of the inflow of sediment and dissolved organic compounds, turbidity, increased water level, or a combination of both is hypothesized to serve as environmental cues to trigger

spawning migration of *Labeobarbus* species to river mouths and upstream areas (Sibbing *et al.*, 1998).

Spawning Segregations

Spatial segregation

The relative contribution of each *Labeobarbus* within the sampling sites is shown in Table 6. Two species of *Labeobarbus* (*L. intermedius*, and *L. brevicephalus*) were the most abundant at the river mouth, in the main channel and tributary streams. However, from all the upstream sampling sites of Ribb River, *L. brevicephalus* was mostly common in the tributaries, particularly in Keha, whereas *L. intermedius* was most abundant in the Ribb main channel, especially at the Bahir Dar- Gondar Bridge site (Fig. 5). *L. megastoma* was common in the tributaries such as Barya, Keha and Hamus Rivers but *L. tsanensis* and *L. truttiformis* were rare in the upper tributaries of Ribb although they were commonly caught at the river mouth.

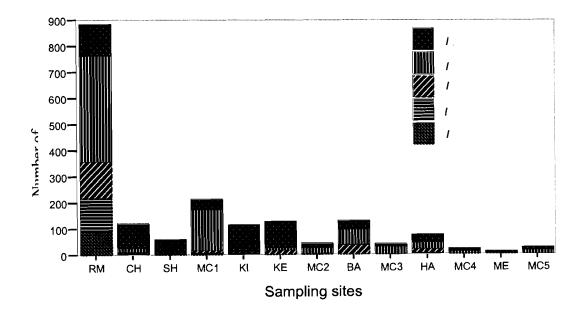


Fig. 6. Spatial segregation of *Labeobarbus* species of Lake Tana spawning in Ribb River.

Ribb River Fishery Studies: Final Report

In spite of the fact that tropical cyprinids in general lack parental care and other adaptations like viviparity or aestivation (Harikumar et al., 1994), they have certain requirements in choosing their spawning places. Fast flowing, clear, highly oxygenated water, and gravel-bed streams or rivers are preferred places for Labeobarbus (Rodriguez-Ruiz and Granado-Lurencio, 1992). These conditions are important for the growth of the larvae (Tómasson et al., 1984). Deposition of eggs in the gravel or pebble beds protects the juvenile from being washed away by riffle, and clear water will not prevent diffusion of oxygen. Previous studies (Alekseyev et al., 1996; Nagelkerke and Sibbing, 1996; Dgebuadze et al., 1999; Palstra et al., 2004) on spawning migrations of Lake Tana's Labeobarbus were focused on Gumara River as it was considered as ideal breeding ground. On the other hand, Ribb River was not found to be a good breeding ground since neither of the above conditions was assumed to be available. According to some authors no Labeobarbus species migrate to the upstream reaches of this river (Palstra et al., 2004) even though some species aggregate at the river mouth (de Graaf et al., 2005). It was also stated that the breeding ground of these aggregating species at the Ribb River mouth was unclear (Wassie Anteneh, 2005). However, this confusion (whether there are Labeobarbus migrating to Ribb River or not) has now become clear after this study which designed broad spatial coverage including several tributaries of Ribb River. At least five species of *Labeobarbus* (Table 6) migrate to the upper stretches of Ribb River for spawning as deduced from their gonad maturity status (being the majority were with ripe gonads (Fig. 3). Ribb River provides ideal breeding grounds for the Labeobarbus of Lake Tana, even better than Gumara River, since it has many tributary streams with clear water and dissolved oxygen and gravel bedded bottom profile. Therefore, the Labeobarbus species of Lake Tana after making brief pre-spawning aggregation at the Ribb River mouth finally mature and spawn in the tributaries or possibly at gravel reaches of the main channel. The extent of migrations is now believed to be the upper most reaches of the main river and its tributaries, although our sampling was restricted to Mello River and its environs (some 15 km above the dam site). Therefore, it is quite evident that the construction of the dam obstructs the migration of the spawning Labeobarbus spp.

37

Temporal segregation

The pattern or sequence of aggregation of *Labeobarbus* species in the Ribb River differ, except *L. intermedius*, over the spawning months (August to October). *L. megastoma* was the first to aggregate at the river mouth starting in the first week of August and reaching peak in the beginning of September. *L. truttiformis* and *L. tsanensis* followed *L. megastoma*, in which they started to aggregate in the last week of August; however aggregation reached its peak in the beginning of September. *L. brevicephalus* started to aggregate in September and its peak was in the middle of October. *L. intermedius* didn't show significant variation (x^2 , P<0.05) in its temporal segregation pattern during September and October. A similar temporal segregation pattern was observed in Dirma, Megech (Wassie Anteneh, 2005) and Gumara (Palstra *et al.*, 2004) Rivers, which are tributaries of Lake Tana.

Suitable Spawning Habitats in the Ribb River and its Tributaries

Most African Barbs occur in rivers and generally *Labeobarbus* spp., including lake dwelling species, are considered to be riverine spawners, that migrate upstream to spawn in shallow gravel beds, in fast flowing, oxygenated and clear small rivers. Detailed information on gonad development, peak breeding period, spawning area and size at maturity of each of the 15 species was, until recently, scarce, fragmented and sometimes unreliable due to limited sampling. Although previous researchers, based on small sample and inappropriate fishing gears and methods, have reached to a wrong conclusion that Ribb River is not an ideal place to *Labeobarbus* spp. spawning, Ribb River is well oxygenated at its upstream portion and has more than 10 tributaries which are suitable grounds for spawning.

Highly oxygenated water and gravel beds are general requirements for *Labeobarbus* spawning due to their critical importance in the development of eggs and larvae. Deposition of eggs in gravel beds prevents them from being washed away and clear water cover them with a film of sediment obstructing the diffusion of oxygen. Final maturation and spawning of *Labeobarbus* spp. occur in the tributaries and for some large species possibly at gravel areas in the far upper reaches of Ribb's main channel. This is deduced from the distribution of running females.

Moreover, some pools across the main river channel serve as habitats for feeding and reproduction of river resident *Labeobarbus intermedius* and *Labeobarbus nedgia*. This has become evident since mature fish of the above species were caught from the pools on the main river channel during the last sampling period (last week of October).

Ribb River is evidently an ideal spawning area for *Labeobarbus* spp. than any other tributary river of Lake Tana, including Gumara River, which has been thoroughly studied for *Labeobarbus* migration. This is mainly due to the high number of tributaries inflowing into the Ribb River.

Ribb River originates from Gunna Mountain around Kimir Dengay area of South Gonder Zone. It has a distance of 90 km and crosses Farta, Ebenat, Libokemkem and Fogera Woredas of South Gondar. Ribb River is located on the east side of Lake Tana, has a drainage area of about 1790 km² and, with its tributaries, forms a watershed on the western slope of the high mountainous area east of the town of Debre Tabor. It has rapids and gravel bed in the upstream area and it becomes slow flowing with silt load at the down stream in Fogera Woreda (around main bridge from Bahir Dar to Gondar).

Several tributaries feed the main channel and the major ones are listed in Table 8.

All the tributaries and upstream main channel can be considered as suitable breeding habitats for *Labeobarbus* spp. Those sites below the dam could be used by the fish population migrating from Lake Tana.

The possible extent of the spawning habitats is estimated from the length of the main river and the tributaries. The lengths of the 8 tributary rivers below the dam (excluding some small rivers that dry off during the dry season) is about 151.5 km. The length of the main Ribb River below the dam is about 50 km and the total suitable habitat for spawning below the dam site that need to be managed is about 201.5 km.

The spawning habitat above the dam site includes the length of the main Ribb River above the dam (about 40 km) and the tributaries (Nine rivers excluding those

39

temporary small streams) above the dam site which totals to about 105 km. The total length of suitable habitat for spawning above the dam is, thus, about 150 km.

Table 8. Tributaries of Ribb River and the distance from their orig	in to the main
channel (sampled sites are shown in bold).	

Name of the tributary	Distance in kms	Position in reference to dam
1. Hamus Wanz	11	Above
2. Melo	16.5	Above
3. Selamko	8	Above
4. Wayibla	9	Above
5. Karbit	7.5	Above
6. Kzefin Selamiko	6.5	Above
7. Meher	24.5	Above
8. Kentay	10	Above
9. Dabzut	12	Above
10. Barya	21	Below
11. Chibirna	15	Below
12. Kirarign	32	Below
13. Shini	27	Below
14. Keha	20	Below
15. Zeha minch	10.5	Below
16. Kechin Wenz	11.5	Below
17. Dangora	14.5	Below

Therefore, the total estimated length of spawning habitat along the main Ribb River and its tributaries is 351.5 km. The area below the dam contributes 57.3 % of the total while the spawning habitat above the dam contributes 42.7 % of the total.

It has been estimated that 48 % of the fish production from Lake Tana that landed at the Southern Gulf (about 1000 tons) is contributed by the fish caught from the Ribb River mouth and its surroundings. This is about 480 tons contributed by mainly Nile tilapia, cat fish and Labeobarbus spp. The contribution of Labeobarbus spp. is 20 % of the total catch, which is about 100 tons per year. It is reasonable to estimate, thus, that about 60 tons (57.3%) could be from fishes that spawn below the dam and 40 tons (42.7%) fish production could come from fishes that spawn above the dam. Therefore, the inability for the fishes to migrate past the dam site could bring about an estimated loss of about 40 tons of fish production per year from Lake Tana. However, if proper management measures are not taken on the main river and the tributaries below the dam site, and the water level of the main river and its tributaries fall below the level required for the migration of the species as well as inundating the wetlands, it could result in an estimated loss of about 480 tons of fish per year from Lake Tana. This is because any negative measures on the wetlands and the main Ribb River could affect the migratory species as well as Nile tilapia and catfish that have their main breeding ground on the wetlands. In monetary terms 480 tons is about Birr 1440000/year (producer's rate) or Birr 5280000/year (retailer's rate).

The above estimate is based on the amount of catch that landed at the southern gulf which is one-tenth of the estimated potential of Lake Tana (estimated potential is about 10000 tons). Therefore, the potential monetary loss could roughly be estimated to Birr 50280000.

The number of fish that are migrating to and from Ribb River and its tributaries could be estimated from the actual production of Lake Tana that is contributed by *Labeobarbus* spp. from Ribb River mouth and sourrounding areas which is about 100 tons (100,000 kg) per year. It can reasonably be suggested, thus, that about 200000 adult individuals (an individual adult weighing, on the average, about 500 grams) of *Labeobarbus* species migrate to and from Ribb River. Of this, about 115000 individuals may spawn below the dam while about 75000 individuals spawn above the dam. On the other hand the dam will create an artificial lake. This new reservoir will be an ideal new habitat that will increase fish production per unit area. Those migrating fish residing in the reservoir after damming will have spawning habitats on the main river channel and tributaries located above the dam such as Hamus and Melo Rivers.

The proposed irrigation area is located in the plain in the middle Ribb valley on both sides of the Addis Zemen-Wereta road. Water released from the Ribb Dam will be diverted to the irrigation sites by a weir built close to the irrigation sites. The total irrigable command area identified is 19,925 ha, and the total net irrigable area on both banks of the river is estimated to be 14,460 ha (BoWR, 2007).

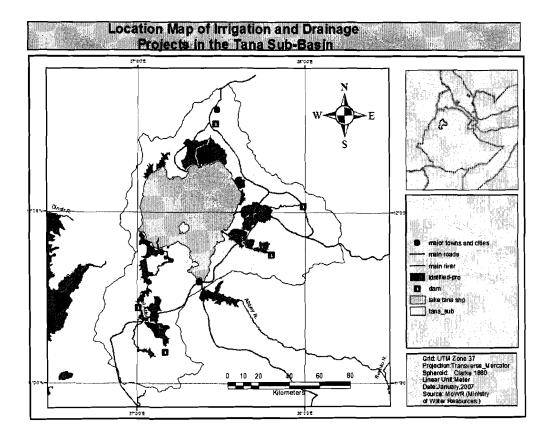


Fig. 7. The planned dam site on Ribb River and the reservoir area (Source: BoWR, 2007).

Farmer's use of fish from Ribb River and its tributaries

The interviews with the farmers around up stream Ribb River and its tributaries indicated that spawning migration of fishes of the *Labeobarbus* spp. occur from July to end of September. Almost all respondents consume fish. They usually start fishing activities in the river and its tributaries at the end of the 16 days fasting period yearly (from August 26 on wards). They start during this time because in most cases the water level starts to lower. They fish for their own consumption and as a gift for relatives. All of the respondents are aware that the fish is coming up-stream from Lake Tana during the rainy season.

Farmers who are living in the flood plain around Ribb River have no such tradition of collecting fish from the river. They have rather a culture of hunting big catfish (they call it "Sorz") using spear in the flood plain at night during the rainy season. They dry it and use it, as they do for meat of other animals, as "Quanta". Recently, dried fish market in Sudan is attracting a lot of people to the business.

Ribb River seasonal fishery is mainly for household consumption and as a gift for friends and relatives. The fish catch data from Ribb River is not available. However, estimates can be made from the observations we had and interviews made with the farmers. Accordingly, fishing activity takes place at about 12 sites along the stretch of the river. It takes place for about two months (from 26 August to 26 October). On average they do fishing 5 times at each site for the two months. They estimated their daily catch up to 25 fish/night/site (about 50 kg/night/site). In total about 360 quintals of fish could be harvested from the river annually. Although, apparently, the catch from Ribb River has very insignificant contribution to the livelihood of the farmers there, it has to be noted, however, that almost 100% of the fish caught are ripe (breeding) adults. This will have, ultimately, negative consequences on the population of the fish species in Lake Tana.

There is no as such any technical assistance (extension service) for the local community with regard to utilization and management of the fish resource. There is no any modern fishing gear in the area. They use traditional fishing gear and methods. They have locally made scoop nets; they block the river when the water level is relatively low and leave narrow outlet to catch the fish with their scoop net. They also use seeds of the poisoning plant called "birbira" (Milletia ferruginea); and

this fishing activity is performed from September on wards when the water level is getting lower. Fishing is mainly performed by men and adult children. Women are responsible for cooking.

There are no full time fishers in the area. It is a part time activity and seasonal. Local communities reported that fish catch is declining from time to time. Most of the respondents are willing to cooperate in any measures that would lead to sustainable utilization of the fish resources. They are also eager to get modern fishing gear like gillnets.

Farmers identify some of the fish species with their local names: "Sofia" (*L. intermedius*), "Dubia" (*V. beso*), "Quashena" (*L. megastoma*), "Bora" (any other large size *Labeobarbus*), "Ambaza" (*Clarias gariepinus*, catfish- they don't consume it and also according to them it is not a fish), "Koroso" (*Oreochromis niloticus*, Nile tilapia). They very well understand that there is diversity of fish in Ribb River. Almost all of the respondents said that more than 98% of their catch is composed of *Labeobarbus* spp.

The river and its tributaries provide several services, serving as source of fish, water for human and animals, traditional subsistence irrigation, sand extraction and spiritual (holy water) services. Valuation of the contribution of Ribb River for its services and products is beyond the scope of this study.

The Contribution of Ribb Fishes to Lake Tana Fish Ecology and Production

Previous researchers assumed that Ribb River is not as such important spawning ground for barbs. Their main reasons for this wrong conclusion were that it is very turbid, with low oxygen content and lack tributaries. However, our empirical evidence unwaveringly confirm that there are about seventeen tributaries of Ribb River and at least eight *Labeobarbus* species migrate into these tributaries and the main Ribb River from Lake Tana during the rainy season for spawning purposes. There could also be some permanent resident species in the river (*Labeobarbus intermedius* and *Labeobarbus nedgia*), although this is not supported by continuous sampling and published information. At this time, fishers employ traditional fishing techniques (at the river mouth, upstream and tributaries) to catch these fish mainly for household consumption.

Data collected at the gulf of Bahir Dar from two sources (Tesfaye Wudneh, September 1991-August 1993; and de Graaf from September 1999-August 2001) were used to compare catch trends and relative contribution of each area. The West coast, the East cost and Ribb River mouth areas have complete recorded data and they could represent the gulf fishery activity (300 km² of the lake).

The pattern in spatial difference in Catch Per Unit of Effort (CPUE) for the *Labeobarbus* spp. was the same in two periods where the West coast was lower than the East coast and both of them were lower than Ribb River area. The West coast was 16% lower during the first period and 18% during the second. African catfish CPUE was lower (51 kg/trip or 24%), at the East coast during the first period and, 25.27 kg/ trip (25%) at the West coast, during the second period. The CPUE value of Ribb River was reduced from 98.7 to 49.5 kg/trip but its contribution increased from 46% in the first to 48% in the second period.

The CPUE was reduced in all areas during the second period for *Labeobarbus* spp. and African catfish. But the mean CPUE (kg/trip), increased at the West and East coasts in the second period for Nile tilapia. The CPUE, irrespective of the periods, was seen high in Ribb River when compared with the other two areas for all the three species.

In individual species the catch differed in place and time between the two periods. During the first period the catch was very high for *Labeobarbus* spp. than the other species in the East coast and Ribb River areas. Its contribution was 36% in the Ribb River alone. The quantity of *Labeobarbus* spp. caught during the second period was reduced by three folds (from 60 to 15 kg) around the East coast and its contribution lowered to 22 % at the river mouth area. African catfish (*Clarias gariepinus*) catch also lowered during the second period when compared to the first in all areas. In general, the contribution of *Labeobarbus* spp. and African catfish in all areas was higher (35% for each) during the first period, but in the second period it dropped to 17 and 26% for *Labeobarbus* spp. and catfish, respectively.

The effect of fishing area on the catch rate was similar for the three commercial species where high CPUE was observed in the Ribb River area in both periods. This is

due to the suitability of this site to fish species for breeding and protection as well as productivity of the area as the inflow water carries nutrients. Fishing around the rivers during the breeding season of *Labeobarbus* spp. results in an increase in the CPUE. The *Labeobarbus* spp. aggregate at the river mouth during their spawning period. Some species like African catfish show ecological flexibility, have broad diet spectrum and occupy habitats ranging from the offshore to the littoral areas in the lake, to floodplains and to rivers upstream.

In conclusion, Ribb River contributes 48% of the catch in the southern gulf that makes it very important river for the fisheries of Lake Tana. Its ideal breeding and feeding ground makes it an important ecosystem that plays great role in the functioning of Lake Tana ecosystem.

Species Composition of *Labeobarbus* spp. from Lake Tana (based on experimental fishing data)

Twenty of the 27 fish species of Lake Tana are endemics to the Lake Tana catchments. This speciation was possible because the incipient lake offered new habitats for adaptive radiation and maintained its isolation, since 5 million years before present, from the lower Blue Nile basin by 40 m high falls at Tissisat. The 15 endemic *Labeobarbus* spp. belong to a unique species flock of endemic cyprinids. Since the lake dried up between 18,700 and 16,700 years before present, the evolution of these *Labeobarbus* probably took only 15,000 years or less. Surprisingly eight of these are piscivores and most of them are periodically migrating into inflowing rivers for spawning.

Bahir Dar Fisheries and other Aquatic Life Research Center conducted monthly fishing experiment using gillnet of 6, 8, 10 and 12 cm stretched mesh size of 100 m long from January 2000-December 2004 (Table 9). There is temporal and spatial variation in abundance of the different fish species in Lake Tana. Their habitats are mainly classified as River mouth, Inshore and Offshore habitats.

	River Mouth				Inshore habitat			Deep water habitat				
	Abbay	Ι	Dirma		Geri	ma	Ge	damat	S	ekela		Zegie
Species	No	%	No	%	No	%	No	%	No	%	No	%
L. acutirostris	229	4.5	108	3.3	35	2.4	29	2.8	26	0.9	66	6.3
L. brevicephalus	383	7.4	360	11	203	13.5	57	5.4	309	10.8	302	28.8
L. crassibarbis	75	1.5	51	1.6	8	0.5	16	1.5	23	0.8	45	4.3
L. dainellii	0	0.0	5	0.2	8	0.5	24	2.3	9	0.3	1	0.1
L. gorgorensis	46	0.9	26	0.8	13	0.9	11	1.1	48	1.7	9	0.9
L. gorguari	0	0.0	4	0.1	0	0	13	1.2	2	0.1	0	0
L. intermedius	2338	45.4	374	11.4	259	17.2	177	16.9	116	4.1	286	27.2
L. longissimus	29	0.6	2	0.1	13	0.9	9	0.9	7	0.2	4	0.4
L. macrophtalmus	78	1.5	18	0.6	6	0.4	14	1.3	40	1.4	21	2.0
L. megastoma	203	3.9	135	4.1	45	3	29	2.8	25	0.9	14	1.3
L. nedga	76	1.5	3	0.1	10	0.7	20	1.9	0	0	16	1.5
L. platydorsis	165	3.2	46	1.4	9	0.6	8	0.8	107	3.8	72	6.9
L. surkis	19	0.4	114	3.5	33	2.2	60	5.7	6	0.2	0	0
L. tsanensis	131	2.5	1127	34.4	23	1.5	175	16.7	1039	36.4	148	[4.]
L. trutiformis	19	0.4	72	2.2	23	1.5	175	16.7	4	0.2	7	0.7
O. niloticus	731	14.2	451	13.8	594	39.5	101	9.6	10	-	7	0.7
C. gariepinus	559	10.9	380	11.6	157	10.5	98	9.4	49	1.7	52	5
V. beso	68	1.3	34		63	4.2	32	3.1	4	0.2	0	0

Table 9. Species number and percentage composition pooled from all monthlysamples per site from January 2000 to December 2004 (BAFLRC, 2007).

At the river mouth, *Labeobarbus intermedius* and *Labeobarbus tsanensis* were the predominant species. In the inshore habitats *Oreochromis niloticus* is the most abundant followed by *Labeobarbus intermedius* and *Labeobarbus tsanensis*. In the offshore habitat *Labeobarbus tsanensis* and *Labeobarbus brevicephalus* are the dominant species.

Species	<u>Contribution</u>
L. acutirostris	4.5
L. brevicephalus	18.2
L. crassibarbis	2.2
L. dainellii	0.8
L. gorgorensis	1.5
L. gorguari	0.3
L. intermedius	28.6
L. longissimus	0.8
L. macrophtalmus	1.6
L. megastoma	4.0
L. nedgia	1.3
L. platydorsus	3.6
L. surkis	2.9
L. tsanensis	24.7
L. truttiformis	4.9

 Table 10. Species composition of the Labeobarbus species in Lake Tana.

 Species
 Contribution (%)

Six species dominated in the experimental data of the Labeobarbus spp. These are: L. intermedius, L. tsanensis, L. brevicephalus, L. truttiformis, L. acutirostris and L. platydorsus.

The data collected from the Commercial Fisheries recognize only four species groups. The four main species groups recognized by the commercial fishery are a species flock of endemic, large *Labeobarbus* spp., African catfish (*Clarias gariepinus*), Nile tilapia (*Oreochromis niloticus*) and Beso (*Varichronious beso*).

Fish Catch Trends from Lake Tana

In addition to the artisanal, predominantly subsistence fishery conducted from reed boats, a motorized commercial gillnet fishery was introduced in 1986. The three main species groups targeted by this fishery are a species flock of endemic, large *Labeobarbus* spp., African catfish (*Clarias gariepinus*) and Nile tilapia (*Oreochromis niloticus*). The commercial gillnet fishery of Lake Tana developed rapidly in that the total catch increased from 39 tones in 1987 to 360 tones in 1997. After 1996, there is no data on the commercial gillnet fishery. The Bureau of Agriculture and Rural Development is the responsible body to collect this information. Reed boat fishery data was also collected by the Lake Fisheries Development project from 1987 to 1996. The annual catch fluctuated and reached its peak in 1994.

Year	Reed boat	Motorized boat	Total	Percentage contribution
	catch (ton)	catch (ton)		of reed boat fishery
1987	522	348	870	60
1988	865	280	1145	80
1989	1,109	360	1469	80
1990	945	307	1252	80
1991	645	250	895	70
1992	602	202	804	70
1993	773	252	1025	80
1994	1,157	357	1514	80
1995	663	231	894	70
1996	756	237	993	80

Table 11. Fish catch data in tons for Motorized and Reed Boat fishery in Lake Tana (LFDP, 1997)

The majority of the catch comes from the traditional reed boat fishery. The introduction of commercial gillnet fishery didn't bring significant effect on the traditional fishery because it focuses mainly on fish collection from fishers rather than fishing. Moreover, the number of boats and fishers operating did not increase significantly from year to year. The following total fish catch from Lake Tana was estimated by the Regional Bureau of Agriculture and Rural Development.

Year	Annual Catch (tons)
2003	1,068
2004	1,231
2005	1,281
2006	3,004

In the 1990's species composition of the commercial catch was *Labeobarbus* spp. (40%), African catfish (*Clarias gariepinus*) (25%) and Nile tilapia (*Oreochromis niloticus*) (35%). In 2007, the species composition has shifted into 64%, 21% and 15% of Nile Tilapia, Catfish and *Labeobarbus* species, respectively. The data indicates sharp decline of the endemic *Labeobarbus* species which needs serious attention for the sustainable development of Lake Tana fishery.

49

Fish Production and Marketing from Lake Tana

Lake Tana is the largest lake which accounts 50% of the total inland water of the country. The lake at this moment is not fully exploited. Using different fish production potential prediction models, the annual maximum sustainable yield is about 7,000-15,000 tons. This prediction is based on the assumption that the reproduction of fish is not affected by anthropogenic factors. This estimate should, therefore, be updated based on current fish catch and effort data.

If we assume that the safe annual maximum sustainable yield is about 10,000 tons and we produced 3,000 tons in 2006, we are exploiting only 30% of the lake potential. Based on the actual exploitation of the lake a fish processing factory by Ashraf Industrial Business Group is being finalized at the southern gulf of Lake Tana to process 3,000 tons of fish per year.

The Fish Production and Marketing Enterprise (FPME) is the only market outlet available for Lake Tana fishery. This reduces the opportunities for fishers to negotiate a reasonable price for their fish. The others are distributing fish only to local consumers to satisfy the local demand using the basic market channel (landing point to consumer). This provides reasonable price to consumers and reasonable return to intermediaries due to almost null cost of transportation and other additional costs to reach consumers.

However, it is not the same situation at all corners of the lake. In the northern part of the lake, for example, there is limited access to market as the landing sites and towns are far apart. Here, transportation of quality fresh fish to the nearby market is a critical and limiting factor. Thus, the price of fish is lower for the whole sellers and for the fishers alike. The southern part is different in that the fishers have good access to the potential traders and market because of its vicinity to the town of Bahir Dar and the existence of FPME, cooperatives and other traders around.

The main supplier of fish from Lake Tana to Addis Ababa is the FPME. About 30% of the fish handled by FPME nationally is sourced from Lake Tana. This represents about 300-400 tons/annum (weight of whole wet fish). Recently, traders from around Lake Tana started exporting dried fish to Sudan. Most traders in dried fish marketing are illegal. Only 3,858 quintals of dried fish was exported legally to Sudan. Marketing of dried fish is attracting a number of fishers in the Lake Tana area.

The price of fish remained very low until 2004 and was being sold 0.8 Birr/kg which was 10% of the price of beef in the area. Then it increased dramatically and currently, it is fetching higher price, at least 50% of the beef price.

Table 12. Fish prices at Bahir Dar: ETB/	Kg (FPME, 2007)
--	-----------------

Туре	Tilapia		Catfish		Labeobarbus		
	Producer	Retailer	Producer	Retailer	Producer	Retailer	
Wet whole fish	5	21	3	17	3	11	
Dried fish			2	12.5	2	6.5	

Due to high cost in the commercial fishery, the marginal gain does not permit the motorized fishery to expand even though the resource potential is high. It is, therefore, important to stress that the Lake Tana fishery finds itself in a unique and rather problematic situation. On the one hand, the fish stock present allow quite some intensification of the fishing pressure, while on the other hand, socio-economic and market conditions are too poor to invest on the resources. Hence, the government's objective to expand the motorized fishery can only be met by alleviating the latter constraint. In this respect promotion of fish consumption among the large public and bringing about higher per caput consumption rates are crucial. An increase of fishing effort should be coupled with or preceded by the appropriate fishery legislation and management regulation, to ensure biological sustainability of the fish stock and the environment.

The Nature and Number of Lake Tana Fishers, their Bases and Organizations

Fishing in Lake Tana started around 18th century by the "Negada-Woyito" community and then the other poor members of the community gradually adapted the activity. In 1986 the Lake Tana Fisheries Resource Development Program (LTFRDP) was initiated by the Interchurch Foundation for Ethiopia---ISE-URK (a Dutch Non Governmental Organization) in collaboration with the Ethiopian Orthodox Church and the Ministry of Agriculture. The program targeted assisting the poor fishers around the Bahir Dar Gulf area and nearby islands by introducing modern fishing gear and motorized boats.

The LTFRDP created new opportunities for the fishers, extending their fishing area from the shore to deeper, offshore waters and more importantly to distant river mouths. Moreover, with the increase in catch, fish processing, marketing and net making activities emerged as job opportunities to the surrounding communities.

Currently, there are four major types of fisheries characterized by specific combination of gears and fishing crafts. These are:

- The motorized gillnet (mesh sizes 10-12 cm) fishery based in Bahir Dar and now expanding in 10 bordering Woredas;
- 2) The traditional reed-rafts-gillnet (mesh size 6 to 10 cm) around the lake;
- 3) The traditional reed-rafts-gillnet (mesh size 10 to 12 cm);
- 4) The chase and trap fishery (mesh size 6 to 9 cm) based in the southern part of the lake. Whereas gears such as longline, castnet and traps are occasionally used but contributed very insignificant amount to the total fish catch.

Traditional reed boat fishery is still important for remote areas of the lake. Reed boat carries normally only one fisher. Catch is collected early morning. The catch from this fishery is used for selling at small markets in the village and for household consumption and they target mainly *Oreochromis niloticus* (Nile tilapia).

Traditional reed boats use local gillnets, hooks, line traps and sometime spears for catfish. The reed boats are 3-4 m long and 60-80 cm wide and have a life span of 2 years. They are made by the fishers themselves using locally available materials like papyrus. The boat can carry 5 nets of each 50 m long. The total number of reed boats is estimated to be about 400 (about 400 fishers). Reed boat fishers are not organized under an association or cooperative.

The recently introduced motorized fisheries mainly target bigger markets. This fishery is performed using engine boats with 100 m long gillnet of 10 to 14 cm stretched mesh size. The program of motorization was accompanied by the organization of the fishers in association and with subsequent technical training in net making, processing and engine maintenance. Steel boats are mainly used in the motorized boat. For the whole lake, there are about 25 motorized fishing boats, most of which land their catch in Bahir Dar (either directly or via collector boat).

Fishers are organized in associations for credit and technical provision. The "Tana Haik 1" fishing co-operative is the first that was established before 15 years in the Southern Gulf of the lake. "Georgis" and "Zege" "Fish for All" associations are recently organized associations and are currently functional. Other associations are now emerging across 10 surrounding Woredas. Each Woreda will have a minimum of 1 association with 80-120 members. In general it is estimated that 1,300 fishers will be organized in association with modern fishing methods.

Many cooperatives remain-some of them little more than producer groups not currently engaged in any cooperative enterprise, some still heavily-supported by government or by projects, but others (such as "Tana Haik 1" fishing cooperative) appear to be well-managed as producer cooperative enterprise. The latter has sought to incorporate smaller producers groups operating at Kebele-level, in a bid to improve efficiency and realize economies of scale.

The "Tana Haik 1" fishing co-operative has net making facility mainly run by women. Women members of the cooperative are engaged in net making and fish processing, whereas, men fishers are involved on fishing and engine/boat maintenance. This cooperative rents out motorized boats to its members on a full cost recovery basis.

In general, the lake fishery has employed more than 3,000 persons who are directly dependent on the major activities of fishing, marketing, and processing for their livelihood. It is also contributing in giving employment opportunity to women and other landless people like ex-soldiers other than the fishers (see Table 13).

53

Activities	Households	Dependents	Total
Fishing	596	2384	2980
Fish trading (self-employed)	26	-	26
Fish processing employed in FPME and the cooperatives	52	208	260
Others (in other activities, net, gear, fishmeal, etc)	33	132	165
Total	707	2750	3431

Table 13. Dependents on the fishery sector that are directly involved in fishing and post harvest processing (Source: Sewmehon Demisse, 2003).

Fishery Policy and Management

Recognizing the danger posed on most water bodies of the country, a National Fisheries Proclamation was ratified by the Federal Parliament in 2003. The document provides broad guidelines related to resource conservation, food safety and aquaculture. This document puts considerable emphasis on regulation, permits and specifies the role of the fishery inspector

It is obvious, too, that the Lake Tana fishery can benefit the fishing communities and the regional economy if it is utilized sustainably. It is, therefore, crucial to design management plans with clear objectives to utilize the fish resource in a sustainable way.

Accordingly, the Amhara Region was the first region to develop its Regional Fisheries Proclamation in 2003. It covers similar issues as that of the national policy, but has an additional objective relating to the creation of employment opportunities in fishing communities. It also states that information, including research findings, should be made available to the fishing communities. As with the National Proclamation it relies heavily on regulatory measures (command and control) and the report of the fishery inspector.

After the Regional Fisheries Proclamation, implementation guidelines should be developed. It has been delayed for quite 3 years and in 2007 the Regional Parliament approved the Regional Fisheries Guideline. At a national level, guidelines have now been developed and submitted to the council of Ministers. It is surprising that it is still not endorsed at a Federal level where it affected the timely development of the Amhara Region Guideline. The Bureau of Agriculture and Rural Development is

.

mandated to the control and implementation of the fishery resource. The next step for it is to develop management plan for each water body. There are many methods available for the management of fisheries, including the use of closed seasons, closed areas, limitation of catches or fishing effort, property rights, taxation, catch quotas and mesh size regulation. Usually a management regime is some mixture of these and the concerned body will use those tools to utilize the water bodies of the region in a sustainable manner.

MAJOR FINDINGS, CONCLUSIONS AND RECOMMENDED MITIGATION MEASURES

1. Major Findings and Conclusions

- Labeobrabus species of Lake Tana migrate to Ribb River for spawning purposes during the main rainy season (July-October).
- Eighteen species belonging to five genera and three families were identified from the thirteen sampling sites at the Ribb River mouth, main channel and tributary rivers. Thirteen of these species belong to the genus *Labeobarbus* that are known for their spawning migratory behavior.
- The highest number of specimens (50.14% of the total) was collected from the River Mouth site. This is a site where all migrating species aggregate before the onset of migration. The main channel at the Bridge between Bahirdar and Gondar town stands second in abundance of species, whereas the tributary rivers, Chibrna, Barya, Keha and Kirarign Rivers stood third, fourth, fifth and sixth, respectively.
- Five Labeobarbus species (L. brevicephalus, L. intermedius, L. megastoma, L. truttiformis, and L. tsanensis) make up about 75% of the total catch from Ribb River and its tributaries.
- Length-weight relationship in the five dominant Labeobarbus spp. migrating to Ribb River fit into the "theoretical" cube law; which means growth in these fish species is isometric (weight increases at a rate of about a cube of increase in length).
- Most of the Labeobarbus specimens collected during the study period were having gonads that were mature and running (ready to spawn). From the total of 2075 Labeobarbus specimens, 887 specimens were mature (gonad stages IV and V), 835 specimens were running (gonad stage VI) and 53 were spent (gonad stage VII).
- Based on the present and former studies (De Graaf, 2003; Palstra et al., 2004;
 Wassie, 2005), conducted on the ecology and reproductive behavior of the

Lake Tana *Labeobarbus*, the migration pattern of most species can be partitioned into three stages:

- 1. Migration from the foraging area in the lake to Ribb River mouth,
- 2. Swimming upstream in the Ribb's main channel, and
- 3. entering to small tributaries of Ribb River.
- Mass spawning migration of the Labeobarbus species spawning in Ribb River occurs just after the peak of the rainy season, when average flow velocity in Ribb River had already decreased. This is most probably to escape the fast water current. These Labeobarbus species ascend about 50-60 km (probably more) to spawn in Ribb River and its tributaries although the spatial catch density of each species declines from the river mouth to Main Ribb channel and to upper tributary rivers.
- Micro-spatial segregation was not evident in this study i.e., those Labeobarbus species which spawn, for instance, in Chibirna River are also found to spawn in Barya or Hamus Rivers.
- The five most abundant and even the rarely caught Labeobarbus species of Lake Tana migrating to Ribb River segregated temporally except L. intermedius.

L. megastoma was the first to aggregate at the river mouth and run to upstream followed by L. truttiformis and L. tsanensis. The last to aggregate and migrate upstream is L. brevicephalus.

All the tributaries and the upstream Ribb main channel can be considered as suitable breeding habitats for *Labeobarbus* spp. The total estimated length of spawning habitat along the main Ribb River and its tributaries is 351.5 km. The area below the dam contributes 57.3 % while the spawning habitat above the dam contributes 42.7 % of the total. Moreover it has to be noted that higher relative abundance of *Labeobarbus* spp. was observed from sampling sites below the dam than above the dam. It has been estimated that 48 % (700)

tons/year) of the fish production from Lake Tana is contributed by the fish caught from the Ribb River mouth and its surroundings. However, *Labeobarbus* spp. contribute some 20 % of the total catch, which is about 140 tons per year.

- The river mouth and shallow areas around Ribb River are ideal breeding and feeding grounds and are important habitats that play great roles in the functioning of Lake Tana ecosystem. Nile tilapia and African catfish use this flooded area for breeding and feeding. Therefore, its habitat modification will have adverse effect on the fish production mainly in the lake and to a smaller extent on the main river channel.
- There is no an all time fisheries activity on the river. Its contribution for the total fish catch in the area is less than 1 %. There are no communities whose livelihood is dependent on the riverine fisheries. There are no fishing communities located upstream and downstream of the dam. Therefore, there will not be significant loss of livelihood from the riverine fishery because of the dam construction.
- Based on estimates made during the sampling period, fishing activity takes place at about 12 sites along the stretch of the river. It takes place for about two months (from 26 August to 26 October). On average fishing is done 5 times at each site for the two months. The daily catch has been estimated to be about 25 fish/night/site (about 50 kg/night/site). Therefore, a total of about 360 quintals (or 36 tons) of fish could be harvested from the river annually.
- On the other hand new fisheries will emerge from the formation of the reservoir. The reservoir will have productive fisheries, although constructing reservoirs modifies the biogeochemical cycles, such as interrupting the flow of organic carbon, changing nutrient balance, and altering oxygen and thermal conditions. The reservoir is estimated to be about 1918 ha. On average, the fish production from such type of tropical reservoir is estimated to be about 100 kg/ha/yr. Therefore, annually 1918 quintal of fish could be produced from this reservoir.
- Lake Tana fishery is highly dependent on the Eastern coast (Ribb River mouth and its surroundings). About 48% of the fish (about 700 tons) that landed on the southern gulf of Bahir Dar comes from the Ribb River mouth areas. Ribb River mouth and the adjacent area flooded by the river have great contribution

for the Lake Tana fishery. Therefore, this area needs to be protected from any habitat modification.

- The catch of *Labeobarbus* spp. from Lake Tana has dramatically declined (by 75% in 10 years time). The contribution of *Labeobarbus* species to Lake Tana fishery was about 40 % in the 1990s and declined to 17 % in 2000s. This implies that this species flock is under pressure from different sources of threat. Fishing at the river mouth during breeding season, spawning habitat destruction, silt load and similar other factors are believed to be causing this decline.
- In the 1990's species composition of the commercial catch from Lake Tana was large Labeobarbus spp. (40%), African catfish (Clarias gariepinus) (25%) and Nile tilapia (Oreochromis niloticus) (35%). In 2007, the species composition has shifted into 64%, 21% and 15% for Nile Tilapia, Catfish and Labeobarbus species, respectively. There is a sharp decline of the endemic Labeobarbus species that needs serious attention for the sustainable development of Lake Tana fishery.
- Lake Tana fishery has employed more than 3,000 individuals who are directly or indirectly dependent, for their livelihood, on the major activities of fishing, marketing, and processing. It is also contributing its share by way of providing employment opportunity to women and other landless people such as exsoldiers.
- Generally, the dam will have a negative impact on the migratory Labeobarbus species that spawn past the dam in upstream Ribb River and its tributaries and that will, in turn, have impact on the fishery of Lake Tana. However, there are mitigation measures that minimize the negative effects of the dam and allow its construction and operation without very much compromising the functioning of the ecosystem.

2. Recommended Mitigation Measures

Sustainable management of natural water resources should include environmentally sound dam construction and operation with respect to both upstream and downstream management. Because of slowly evolving alterations in riverine ecosystems following the construction of a dam, and the

59

interference with other anthropogenic activities, some of the effects of damming may be overlooked.

- Construction of the dam at upstream Ribb River channel will prevent the migration of *Labeobarbus* spp during the rainy season into tributaries located above the dam. However, there are many tributaries (at least 5) below the dam that can serve as spawning grounds for those fish that migrate from the lake. For those species that will be trapped at the reservoir, there is a possibility that they could migrate upstream into the tributaries which are located above the reservoir.
- The migrating fishes have specific requirement (oxygenated gravel bed with less sediment) to spawn at the tributaries. It is, therefore, important to protect the watershed of the main river channel and the tributaries from deforestation and environmental degradation so that the diversity and productivity of the fish will be maintained. Water use for irrigation from these small tributaries should be minimized especially during the breeding season. Other habitat destruction activities should be avoided.
- The time of the blocking of the dam should not coincide with the period of migration of the fishes (the main rainy season).
- The river mouth and the surrounding eastern coast of Lake Tana are important habitats for reproduction and feeding of the commercially important fish species (the Catfish Clarias gariepinus and the Nile tilapia Orechromis niloticus). If seasonal flood plains are lost as a result of the dam, there will be substantial losses to the fisheries of floodplain river-lake ecosystem. It is, therefore, advisable to maintain the existing annual flooding of the Ribb River area.
- The flow of Ribb River should not be discontinued or the volume should not be below the level that would enable fish movement throughout the year. The natural seasonal pattern of flow is vital in life history stages such as migrations, spawning and feeding. Adult and young fish move up and down throughout the year along the river channel. Zero discharge from dams should be avoided; a sufficient volume of flow is required to inundate flood plains, recharge wetlands and to provide sufficient depth for larger species. If there is an extended zero flow periods caused by diversion of water following construction of the dam, the riverbed below the dam will be severely braided and the channel can become blocked by sand bars. A sufficient volume of flow

is required to inundate flood plains, recharge wetlands and provide sufficient depth of water for larger species. Further hydrological studies may be needed to determine the amount of water required to inundate flood plains and recharge wetlands. However, about 20 cm height of water is the minimum requirement to keep larger species migrating to and from Ribb River.

- The fish stock from Lake Tana is sharply declining even before the construction of the dam. It is, therefore, important to rehabilitate the stock using artificial propagation. At Bahir Dar Fisheries Research Center small hatchery is becoming operational. It is advisable to strengthen this hatchery so that fish can be stocked in the lake and the reservoir.
- In order to improve the livelihood of the people around the dam area, fish must be stocked into the reservoir. The fish species that will be stocked should be species from Lake Tana propagated at a hatchery. Introduction of any new fish species into the reservoir will affect the fish diversity of the Lake Tana sub-basin. This new fisheries will ease the pressure on the riverine fishery and prevent illegal and destructive fishing activities.
- The decline of fish catch from the rivers and the lake appears to be due to fishing during breeding season, using destructive fishing gear and open access nature of the resource. For example, fishers around Ribb River have no gillnet to catch fish. As a result they are forced to use destructive fishing methods (poison and blocking). Fishing at the river mouth and the river should be closed from July to October. Fishers must use gillnets of 10 cm and above stretched mesh size. Licensing of fishers must be immediately materialized. Enforcement of management measures, effective training and extension work should incorporate active participation of the fisher community including the upstream and downstream communities.
- Thorough studies, similar to the one conducted on Ribb River, on the migratory behavior of the fishes of Lake Tana need to be conducted on all other rivers (other than Ribb River) of the Lake Tana basin, as the spatial and temporal migratory behavior of some of the *Labeobarbus* species is not completely clear. Utilizing the water resources, in whatever ways, of Lake Tana and the surrounding unstudied rivers need to be in harmony with the findings of those studies.

REFERENCES

- Abebe Ameha 2004. The effects of birbira, *Milletia ferruginea* (Hochst) Baker on some *Barbus* spp. (Cyprinidae, Teleostei) in Gumara River (Lake Tana), Ethiopia. MSc thesis, Addis Ababa University.
- Abebe Getahun 2000. Systematic studies of the African species of the genus Garra (Pisces: Cyprinidae). PhD thesis, City University of New York, New York, U.S.A. 478 pages.
- Abebe Getahun and Stiassny, M.L.J. 1998. The freshwater biodiversity crisis: the case of the Ethiopian fish fauna. *SINET: Ethiop. J. Sci.*, 21(2): 207-230.
- Akewak Geremew. 2007. Taxonomic position and Biology of *Garra* species (Pisces: Cyprinidae) from Lake Tana and surrounding rivers. Unpublished MSc thesis, Department of Biology, Addis Ababa University, Ethiopia.
- Alekseyev SS., Dgebuadze, YY. Mina, MV. And Mironovsky, AN. 1996. Small "large barbs" spawning in tributaries of Lake Tana: What are they? Fol. Zool., 45 (suppl.1): 85-96.
- **BAFLRC. 2007**. Bahir Dar Fisheries and other Aquatic Life Research Center. Unpublished report. Bahir Dar, Ethiopia
- Bagenal, TB and Tesch, FW. 1978. Age and growth. In: Methods for assessment of fish production in freshwaters, Bagenal TB 9ed.), IBP Hand book No.3, Oxford, Blackwell, pp. 101-136.
- Barker, D. R. 2004. Address by the President of LakeNet, Lake Tana symposium, Bahirdar University, Bahirdar, Ethiopia.
- Bernacsek, G., 1984. Guideline for dam design and operation to optimize fish production in impounded river basins. CIFA Technical Paper No. 11, FAO, Rome, 98 pp.
- Berrebi, P. and Tsigenopoulos CS. 2003. Phylogenetic organization of the genus Barbus sensu stricto. In: The freshwater fishes of Europe, Cyprinidae 2, Banarescu PM, Boguytskaya NG (eds), Part II, AULA-Verlag, Wielsheim, Germany, pp. 11-22.
- Boulenger, G.A. 1905. The distribution of African freshwater fishes. *Nature*, 72 (1869): 413-421.
- BoWR. 2007. Bureau of Water Resources, Amhara Region. Unpublished.
- Chorowicz, J., Collet, B., Bonavia, FF., Mohr, P., Parrot, JF. And Korme, T. 1998. The Tana basin, Ethiopia: intra-plateau uplift, rifting and subsidence. *Technophysics*, 295: 351-367.

 de Graff, M. 2003. Lake Tana's piscivorous Barbus (Cyprinidae, Ethiopia): Ecology, Evolution, Exploitation. Doctoral thesis, Experimental Zoology Group, Wageningen University, Wageningen, the Netherlands.

- de Graff, M., Marcel, AM, Machiels, M., Tesfaye Wudneh and Sibbing, FA.
 2004. Declining stocks of Lake Tana's endemic *Barbus* species flock (Pisces: Cyprinidae): natural variation or human impact? *Biol. Cons.* 116: 277-287.
- de Graff, M. Nentwich, D, Osse JWM and Sibbing, FA. 2005. Lacustrine spawning: is this a new reproductive strategy among "large" African Cyprinid fishes? J. Fish Biol. 66: 1214-1236.
- Dgebuadze YY., Mina, MV, Alekseyev SS. and Golubtsov, AS. 1999. Observations on reproduction of the Lake Tana barbs. J. Fish Biol. 54: 417-423.
- Eshete Dejen 2003. Ecology and potential for fishery of the small barbs (Cyprinidae: teleostei) of Lake Tana, Ethiopia. PhD thesis, Wageningen Agricultural University, the Netherlands.
- Eshete Dejen, Osse JWM, Sibbing FA. (2003) Ecological position of 'small barbs' and their potential for fisheries: An option to reduce fishing pressure on 'large barbs' of Lake Tana (Ethiopia)? Aquat Ecos Health & Manag 6(3): 337-342
- Eshete Dejen, Vijverberg, J., Nagelkerke, LAJ and Sibbing, FA. 2004. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in large tropical lake (Lake Tana, Ethiopia). *Hydrobiologia*, 513: 39-49.
- **FPME. 2007.** Fish Production and Marketing Enterprise, Bahir Dar Branch. Unpublished.
- Jackson, D. The influence of Dams on River Fisheries. www.dams.org
- Harikumar S, Padmanabhan KG, John PA, Kortmulder K. (1994) Dry-season spawning in cyprinids fish of South India. *Envi Biol Fishes* 39: 129-136.
- Lamp, H., Mohammed Umer, Bates R., Davies, S., eshete Dejen, Coombes, P., Marshall, M. Zelalem Kubesse, and Kebede Seifu. 2004. Discovering the history of the Tana basin, a joint project of the Universities of Wales, Addis ababa and St. Andrews (Scotland), and ARARI, Bahirdar. Http://www.aber.ac.uk/quaterneray/tana/
- Leggett, W.C. 1977. The Ecology of Fish migrations. Ann. Rev. Ecol. Syst. 8: 285-308.

- LFDP (1997). Fisheries statistical bulletin number five. Working paper no. 26, MOA, Addis Ababa, 54 pp.
- Lowe-McConnell, R. 1975. Fish communities in tropical freshwaters: their distribution, ecology, and evolution, London, Longman, pp. 337.
- McAllister, D., Craig, J.; Davidson, N. ; Murray, D. and Seddon, M. on behalf of IUCN-(Year unspecified): The World Conservation Union. Biodiversity impacts of large dams. Contributing papers to the World Commission on Dams.
- Mohr, PA. 1962. The geology of Ethiopia. University College of Addis Ababa press, Addis Ababa, Ethiopia.
- Nagelkerke, LAJ. 1997. The barbs of Lake Tana, Ethiopia: morphological diversity and its implications for taxonomy, trophic resource partitioning and fisheries. PhD thesis, Agricultural University of Wageningen, the Netherlands.
- Nagekerke LAJ, Sibbing FA, van den Boogaart JGM, Lammens EHRR, Osse JWM. (1994) The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? Envir Biol Fishes 39: 1-22.
- Nagelkerke, LAJ and Sibbing, FA. 1996. Reproductive segregation among the large barbs (barbus intermedius complex) of Lake Tana, Ethiopia. An example of intralacustrine speciation? J. Fish Biol 49: 1244-1266.
- Nichols, J.T. 1928. Fishes from the White Nile collected by the Taylor Expedition of 1927. A discussion of the freshwater fish faunae of Africa. Amer. Mus. Novit., 319: 1-7.
- Nichols, J.T. and Griscom, L. 1917. Freshwater fishes of the Congo basin obtained by the American Museum Congo Expedition, 1909-1915. Bull. Amer. Mus. Nat. Hist., 37:739-752.
- Northcote TG, Williscroft SN, and Tsuyuki, H. 1970. Meristic and lactate dehydrogenase genotype differences in a stream populations of rainbow trout below and above a waterfall. J. *Fish Res Board Canada*, 27: 1987-1995.
- Palstra, A., de Graff, M. Sibbing, FA. 2004. Riverine spawning and reproductive segregation in lacustrine cyprinid species flock, facilitated by homing? *Anim Biol.*, 54 (4): 393-415.
- Payne, A. I. 1986. Ecology of tropical lakes and rivers. John wiley & Sons, Chichester, pp. 301.

- Roberts, T.R. 1975. Geographical distribution of African freshwater fishes. Zool. J. Linn. Soc., 57: 249-319.
- Rodriguez-Ruiz, A. and Grando-Lorenzio, C. 1992. Spawning period and migration of three species of cyprinids in a stream with Mediterranean regime (SW Spain). J. Fish Biol. 41: 545-556.
- Sewmehon Demissie 2003. Socio-economic study on Lake Tana fishery: its role in the livelihood of the fishing community and local people in the region. MSc thesis, The Norwegian Fisheries Collage of Science, University of Tromso, Norway, 81 pp.
- Shibru Tedla. 1973. Freshwater fishes of Ethiopia. Department of Biology, Addis Ababa University, Addis Ababa, 101 pages.
- Sibbing, FA., Nagelkerke, LAJ., Stet RJM and Osse JWM. 1998. Speciation of endemic Lake Tana barbs (Cyprinidae, Ethiopia) driven by trophic resource partitioning: a molecular and ecomorphological approach. Aquat Ecol., 32: 217-227.
- Skelton, PH. 2001. A complete guide to the freshwater fishes of southern Africa, 2nd edition, Southern Book Publishers, South Africa, pp. 388.
- Skelton, PH., Tweddle, D., Jackson, P. 1991. Cyprinids of Africa. In: Cyprinid fishes, systematics, biology and exploitation, Winfield IJ, Nelson JS (eds), Chapman & Hall, London, pp. 211-233.
- Snoeks, J. 2004. The non-cichlid fishes of the Lake Malawi system In: the cichlid diversity of the Lake Malawi: identification, distribution, and taxonomy, Snoeks, J. (Ed), Cichlid Press, El Paso, Texas, pp. 20-26.
- Stiassny, M.L.J and Abebe Getahun. 2007. An overview of labeonin relationships and the phylogenetic placement of the Afro-Asian genus Garra Hamilton, 1922 (Teleostei: Cyprinidae), with the description of five new species of Garra from Ethiopia, and a key to all African species. Zoological Journal of Linnaean Society, 150, 41-83.
- Tesfaye Wudneh 1998. Biology and management of fish stocks in Bahir Dar Gulf, Lake Tana, Ethiopia. PhD thesis, Wageningen Agricultural University, the Netherlands.
- Thieme et al., 2006. Freshwater ecoregions of Africa and Madagscar: A conservation assessment, Island Press, 1718 Connecticut Avenue, NW, Suite 300, Washington DC 20009.
- Thorpe, JE. 1988. Salmon migration. Sci. Progr. Oxford, 72: 345-370.

- Tomasson, T. Cambray, JA and Jackson, PBN (1984). Reproductive Biology of four large riverine fishes (Cyprinidae) in a man-made lake, Orange River, South Africa. *Hydrobiologia*, 112:179-195.
- Truffer, B. Bratrich, C.; Markard, J.; Peter, A. and Wehril, B. 2003. Green Hydropower: The contribution of aquatic science research to the promotion of sustainable electricity. Aquat. Sci.65: 99-110.
- Wassie Anteneh 2005. The spawning migration of *Labeobarbus* (Cyprinidae: Teleostei) of Lake Tana to Dirma and Megech Rivers, Ethiopia.
 Unpublished MSc thesis, Department of Biology, Addis Ababa University.
- Westphal, E. 1975. Agriculture systems in Ethiopia. Joint publication of the college of Agriculture, Haile Selassie I University, Ethiopia and the Agricultural University, Wageningen, the Netherlands, Center for Agricultural Publishing and Documentation
- Wootton RJ. (1990) Ecology of Teleost fishes. Fish and Fisheries Series 1, Chapman and Hall, London, pp. 404.
- Yalew, A., 2006. Developments in catch and effort in the Lake Tana Fisheries, Ethiopia. MSc thesis, Faculty of Bioscience Engineering, Ghent University, Belgium, 65 pp.

APPENDICES

Appendix I: Names of contacted institutions and individuals

Ministry of Water Resources (Head Office) Amhara Agricultural Research Institute Bahirdar Fisheries and other Living Aquatic Resources Research Center Ministry of Water Resources (Amhara Region) Environmental Protection and Land Use Administration Authority Faculty of Agriculture and Biology Department, Bahir Dar University Ethiopian Fish Marketing Enterprise Zege "Fish-For- All" Fishers Association Lake Tana NO 1 Fisher Cooperatives Giorgis Fish Traders Association Lake Tana Transport Enterprise South Gondar Zone Administration Libo Kemkem Woreda Agriculture Office Ebenat Woreda Agriculture Office Several farmers residing along Ribb River

Appendix II: Questionnaire for the socio-economic studies

Name_____Age____Occupation_____

Woreda_____ Kebele_____

- 1. Do you catch fishes?
- 2. How often? Occasionally? Often?
- 3. Which months are good for fishing?
- 4. For what purposes are you fishing? Household consumption? Commercial? Both?
- 5. If commercial how much do you get per month? Per year?
- 6. Which fish species do you catch?
- 7. Who, in the family, is responsible for fishing?
- 8. Which species are important for the market?
- 9. Which specific localities are important for fishing?
- 10. What gears do you use for fishing?
- 11. Is there an increase or decrease of the catches in the last years?
- 12. For what other purposes do you use the river?
- 13. Do you think the damming will affect your fishing activities? How?

Appendix III: Sampling sites and sampling activities in Pictures

Ribb main channel at the bridge between Bahir Dar and Gondar

Ribb River main channel at the old bridge between Zeha and Debretabor Kirarign River on the road (From Addis Zemen to Ebenat towns)

Main Ribb River at the dam site

Barya River joining the main Ribb channel

Hamus River at the junction with the main Ribb River

Scoop net fishing at Keha River

Reed boat fishing in Lake Tana

Fencing to collect fish in the main Ribb River

Labeobarbus spp. collected from Hamus River

Taking weight of fish at the dam site

Looking at maturity of gonads at the dam site

Interviewing a farmer at Hamus River

Interviewing a farmer at Barya River while the latter is on the job

Stuck on the way to the main Ribb River near Zeha town

Crossing Ribb main channel near the old Zeha-Debretabor bridge

Trip to Barya River, tributary of Ribb River

Trip to Hamus River, tributary of Ribb River

•

.

•

.

Appendix IV: Raw data

Site	Mesh size	Species	Genus	<u>L</u>	w	Sex	Mat. Stage
Barya River	6CM	BRE	Labeobarbus	233		M	VI
Barya River	6CM	CLA	Clarias	336		F	
Barya River	6CM	INT	Labeobarbus	227		M	VI
Barya River	6CM	INT	Labeobarbus	322		<u>M</u>	11
Barya River	6CM		Labeobarbus	335		_ F _	
Barya River	6CM	INT	Labeobarbus	228		M	VI
Barya River	6CM		Labeobarbus	313		F	VI
Barya River	6CM		Labeobarbus	342	644	M	
Barya River	6CM		Labeobarbus	222	195	M	VI
Barya River	6CM	INT	Labeobarbus	226	286	м	VI
Barya River	6CM	INT	Labeobarbus	223	192	М	VI
Barya River	6CM	INT	Labeobarbus	275	384	Μ_	VI
Barya River	6CM	INT	Labeobarbus	220	153		VI
Barya River	6CM	INT	Labeobarbus	220	128	M	VI
Barya River	6CM	INT	Labeobarbus	221	158	м	VI
Barya River	6CM	INT	Labeobarbus	222	168	м	VI
Barya River	6CM	INT	Labeobarbus	221	134	M	
Barya River	6CM	INT	Labeobarbus	223	132	M	VI
Barya River	6CM	INT	Labeobarbus	225	181	м	VI
Barya River	6CM	INT	Labeobarbus	220	123		 VI
Barya River	6CM	INT	Labeobarbus	221	151		
Barya River	6CM	INT	Labeobarbus	221	142	М	
Barya River	6CM		Labeobarbus	328	660	M	
Barya River	6CM	INT	Labeobarbus	323	422	M	VI
Barya River	6CM	 INT	Labeobarbus	325	825	M	 VI
Barya River	6CM	 INT	Labeobarbus	322	597	м	VI
Barya River	6CM	 INT	Labeobarbus	353	583	M	VI
Barya River	6CM	INT	Labeobarbus	345	495	M	VI
Barya River	6CM	INT	Labeobarbus	242	370	M	VI
Barya River	6CM	INT	Labeobarbus	272	262	M	VI
Barya River	6CM	INT		292	419	M	VI
Barya River	6CM	INT	Labeobarbus	313	558	M	VI
Barya River	6CM	INT	Labeobarbus	263	327	M	
Barya River	6CM	INT	Labeobarbus	284	333	F	111
Barya River	6CM	INT	Labeobarbus	272	437	M	
Barya River	6CM			340	672	F	 VI
Barya River	6CM		Labeobarbus	336	796	 F	VI
Barya River	6CM		Labeobarbus	333	709	F	
Barya River	<u>6CM</u>	INT	Labeobarbus	284	336	M	VI
	6CM	MEG	Labeobarbus	315			VI
Barya River Barya River	<u>6CM</u>	MEG	Labeobarbus	334			VI
Barya River	<u>6CM</u>	MEG	Labeobarbus	<u> </u>		M	VI
Barya River	<u>6CM</u>	MEG	Labeobarbus	369		 F	VI
Barya River	<u>6CM</u>	MEG	Labeobarbus	330		<u>м</u>	VI
Barya River	6CM	MEG	Labeobarbus	285		M	VI
Barya River	6CM	MEG	Labeobarbus	363		M	VI
Barya River	6CM	MEG	Labeobarbus	365			VI
Barya River	<u>6CM</u>	MEG	Labeobarbus	387		F	VI
Barya River	6CM	MEG	Labeobarbus	400		F	VI
Barya River	6CM	MEG	Labeobarbus	372		F	VI

.

e

~

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Barya River	6CM	MEG	Labeobarbus	440		F	VI
Barya River	6CM	MEG	Labeobarbus	384		F	VI
Barya River	6CM	MEG	Labeobarbus	348			VI
Barya River	6CM	MEG _	Labeobarbus	445		F	VI
Barya River	6CM	MEG	Labeobarbus	405	_	F	VII
Barya River	6CM	MEG	Labeobarbus	403		F	VI
Barya River	6CM	MEG	Labeobarbus	446	782		VI
Barya River	6CM	NED	Labeobarbus	321		F	<u></u>
Barya River	6CM	NED	Labeobarbus	383		F	VII
Barya River	6CM	NED	Labeobarbus	312		F	VI
Barya River	10CM	NED	Labeobarbus	317	552	F _	VI
Barya River	12CM	NED	Labeobarbus	390	895	F	VI
Barya River	12CM	NED	Labeobarbus	355	709	F	VI
Barya River	6CM	TSA	Labeobarbus	227	194	м	VI
Barya River	6CM	TSA	Labeobarbus	237	239	М	VI
Chibirna River	Cast net	BRE	Labeobarbus	240		м	VI
Chibima River	Cast net	GON	Labeobarbus	360		M	VI
Chibirna River	8cm	TRU	Labeobarbus	430		 F	
Chibirna River	Cast net	TRU	Labeobarbus	400		F	
Chibirna River	Cast net	TRU	Labeobarbus	420		<u>.</u> м	<u>vi</u>
Chibirna River	Cast net	TRU	Labeobarbus	345		 F	VI
Hamus River	Cast net	BRE	Labeobarbus	<u> </u>		 M	VI
Hamus River	<u>Cast Net</u> 6CM		Labeobarbus	269		M	VI
Hamus River	<u>6CM</u>	INT	Labeobarbus	255			<u>vi</u>
	<u>6CM</u>		Labeobarbus			 M	<u>vi</u>
Hamus River				<u>239</u>			
Hamus River	6CM		Labeobarbus	220		<u>M</u>	<u>VI</u>
Hamus River	8CM		Labeobarbus	315			<u></u>
Hamus River	Cast net		Labeobarbus	138		<u>M</u>	
Hamus River	Cast net		Labeobarbus	277		<u>M</u>	
Hamus River	Cast net		Labeobarbus	270		M	<u>VI</u>
Hamus River	<u>8CM</u>	MEG	Labeobarbus	340		M	VI
Hamus River	10CM	MEG	Labeobarbus	321		<u>F</u>	VI
Hamus River	10CM	MEG	Labeobarbus	339		<u>M</u>	VI
Hamus River	10CM	MEG	Labeobarbus	<u>45</u> 0		M	VI
Hamus River	10CM	MEG	Labeobarbus	400		F	
Hamus River	8CM	MEG	Labeobarbus	382			VI
Hamus River	Cast net	MEG	Labeobarbus	322		М	<u>VI</u>
Hamus River	Cast net	MEG	Labeobarbus	333		M	VI
Hamus River	Cast net	MEG	Labeobarbus	352		M	VI
Hamus River	Cast net	MEG	Labeobarbus	325		M	VI
Hamus River	Cast net	MEG	Labeobarbus	348		_ <u>M</u>	VI
Hamus River	8CM	NED	Labeobarbus	237		<u>M</u>	VI
Keha River	8cm	CLA	Clarias	451		М	!!!
Keha River	<u>10cm</u>	CLA	_Clarias	345	330	<u>M</u>	1
Keha River	<u>8cm</u>	<u>CLA</u>	<u>Clarias</u>	374		F	IV
Keha River	8cm	GON	Labeobarbus	377		F	VI
Keha River	8cm		Labeobarbus	281		M	VI
Keha River	8cm	INT	Labeobarbus	286	360	M	VI
Keha River	<u>8cm</u>	MEG	Labeobarbus	356		M	VI
Keha River	<u>8cm</u>	MEG	Labeobarbus	381		<u>M</u>	VI
Keha River	8cm	MEG	Labeobarbus	348		M	<u></u>
Keha River	8cm	_MEG	Labeobarbus	385		<u>M</u>	<u></u>
Keha River	8cm	MEG	Labeobarbus	392		F	VI

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Keha River	8cm	MEG	Labeobarbus	392		F	VI
Keha River	8cm	MEG	Labeobarbus	380		<u> </u>	VI
Keha River	8cm	MEG	Labeobarbus	351	505	M	
Keha River	8cm	MEG	Labeobarbus	358	535	<u>M</u>	VI
Keha River	_8cm	MEG	Labeobarbus	317	395	M	VI
Keha River	10cm	TSA	Labeobarbus	379	865	F	<u> </u>
Kirangn River	<u>8cm</u>	BRE	Labeobarbus	259		F	<u></u> VI
Main channel Broken Bridge	12CM		Labeobarbus	350		_ F_	VI
Main channel Broken Bridge	8CM	TRU	Labeobarbus	340		<u>M</u>	VI
Main channel Broken Bridge	6CM	TSA	Labeobarbus	222		<u>M</u>	
Main Channel Bahir Dar-Gondar Bridge	6cm	ÇLA	Clarias	372		F	
Main Channel Bahir Dar-Gondar Bridge	6 <u>c</u> m	CLA	Clarias	331		<u>M</u>	
Main Channel Bahir Dar-Gondar Bridge	_6cm	CLA	Clarias	376		F	
Main channel Broken Bridge	6cm		Labeobarbus	234		M	<u></u>
Main channel Broken Bridge	<u>6cm</u>	MEG	Labeobarbus	318		F	VI
Shini River	8cm	CLA	Clarias	418		М	III
Main channel Broken Bridge	6CM	BES	Varicorhinus	250	215	F	111_
Main channel Broken Bridge	6CM	BES	Varicorhinus	116	65	M	IV
Main channel Broken Bridge	6CM	BES	Varicorhinus	265	315	F	
Main channel Broken Bridge	6CM	BES	Varicorhinus	240	214	F_	IV
Main channel Broken Bridge	6CM	BRE	Labeobarbus	205	139	M	111
Main channel Broken Bridge	6CM	BRE	Labeobarbus	206	111	 F	VI
Main channel Broken Bridge	6CM	BRE	Labeobarbus	225	124		VII
Main channel Broken Bridge	6CM	BRE	Labeobarbus	223	109	М	VI
Main channel Broken Bridge	6CM	BRE	Labeobarbus	228	1321	F	
Main channel Broken Bridge	6CM	CLA	Clarias	410	449	м	
Main channel Broken Bridge	6CM	CLA	Clarias	350	322	F	
Main channel Broken Bridge	6CM	CLA	Clarias	380	332	м	
Main channel Broken Bridge	6CM	 INT	Labeobarbus	224	139	F	VII
Main channel Broken Bridge	6CM	INT	Labeobarbus	230	150	F	VII
Main channel Broken Bridge	6CM		Labeobarbus	241	178	M	VI
Main channel Broken Bridge	6CM		Labeobarbus	225	142	F	VII
Main channel Broken Bridge	 6CM		Labeobarbus	210	136	F	VI
	6CM		Labeobarbus	220	136	M	VI
Main channel Broken Bridge	6CM	 INT	Labeobarbus	225	151	 F	<u>.</u>
Main channel Broken Bridge	6CM	INT	Labeobarbus	215	140	 F	
Main channel Broken Bridge			Labeobarbus	270	269	 F	
Main channel Broken Bridge	<u>6CM</u>		Labeobarbus	365	836	, M	<u></u> II
Main channel Broken Bridge	6CM			290	323	M	
Main channel Broken Bridge	6CM		Labeobarbus	278	325		
Main channel Broken Bridge	6CM		Labeobarbus			M	<u>vi</u>
Main channel Broken Bridge	6CM		Labeobarbus	210	<u>127</u> 530	M	
Main channel Broken Bridge	6CM		Labeobarbus	<u>330</u> 270	365	M	<u>vi</u> ())
Main channel Broken Bridge	6CM	NED	Labeobarbus	410	<u>505</u> 1010	F	
Main channel Broken Bridge	6CM	NED	Labeobarbus		1120	- ' F	VII
Main channel Broken Bridge	<u>6CM</u>	NED	Labeobarbus	<u>420</u> 203	120	 M	<u>v</u>
Main Channel Dam Site	<u>6cm</u>	DEG	Barbus	203	123	 M	 III
Main Channel Dam Site		DEG	Barbus Barbus	202	174	 M	
Main Channel Dam Site	6CM	DEG	Barbus		108	<u>M</u> F	IV
Main Channel Dam Site	6CM	DEG	<u>Barbus</u>	195	-		
Main Channel Dam Site	6CM	DEG	Barbus	219		<u>M</u> _ F	 IV
Main Channel Dam Site	8CM	BES	Varicorhinus	230		<u>F</u>	<u></u>
Main Channel Dam Site	8CM	BES	Varicorhinus	235	190	H 1	v

.

.

-

-

Site	Mesh size	Species	Genus		w	Sex	Mat. Stage
Main Channel Dam Site	8CM	BES	Varicorhinus	275	234	М	IV
Main Channel Dam Site	8CM	BES	Varicorhinus	265	240	F	
Main Channel Dam Site	8CM	BES	Varicorhinus	265	229	F	
Main Channel Dam Site	8CM	BES	Varicorhinus	270	278	F	_ <u>v</u>
Main Channel Dam Site	8CM	BES	Varicorhinus	210	107	F	V
Main Channel Dam Site	8CM	BES	Varicorhinus	270	297	F	v
Main Channel Dam Site	8CM	BES	Varicorhinus	250	216	м	11
Main Channel Dam Site	8CM	BES	Varicorhinus	250	256	F	V
Main Channel Dam Site	8CM	BES	Varicorhinus	320	491	м	
Main Channel Dam Site	8CM	BES	Varicorhinus	245	200	M	IV
Main Channel Dam Site	8CM	BES	Varicorhinus	249	169	F	v
Main Channel Dam Site	8CM	BES	Varicorhinus	270	255	 F	ĪV
Main Channel Dam Site	8CM	BES	Varicorhinus	325	453	M	 IV
Main Channel Dam Site	8CM	BES	Varicorhinus	265	205	F	
	8CM	BES	Varicorhinus	280	<u></u> 315	 M	IV
Main Channel Dam Site	8CM	BES	Varicorhinus	220		F	
Main Channel Dam Site	8CM	BES	Varicorhinus	240	448	' F	
	<u>8CM</u>	BES	Varicorhinus	305	388	 F	<u></u>
Main Channel Dam Site		_		338	526	M	<u>_</u>
Main Channel Dam Site	8CM	BES	Varicorhinus Varicorhinus	278	278	 F	<u>!v</u>
Main Channel Dam Site	8CM	BES			_		 IV
Main Channel Dam Site	8CM	BES	Varicorhinus	230	172	<u>M</u>	<u>iv</u> v
Main Channel Dam Site	8CM	BES	Varicorhinus	290	351_	F	
Main Channel Dam Site	8CM	BES	Varicorhinus	220	127	F	<u> </u>
Main Channel Dam Site	8CM	BES	Varicorhinus	250	203	<u>M</u>	<u>IV</u>
Main Channel Dam Site	8CM	BES	Varicorhinus	280	290	<u>M</u>	<u>IV</u>
Main Channel Dam Site	8CM	BES	Varicorhinus	254	236	F	<u></u>
Main Channel Dam Site	<u>8CM</u>	BES	Varicorhinus	215	128	F	V
Main Channel Dam Site	6CM	BES	Varicorhinus	249	216	F	V
Main Channel Dam Site	6CM	BES	Varicorhinus	235	193	F	V
Main Channel Dam Site	6CM	BES	Varicorhinus	189	100	F	
Main Channel Dam Site	6CM	BES	Varicorhinus	<u>179</u>	81	М	
Main Channel Dam Site	6CM	BES	Varicorhinus	165	<u>71</u>	M	
Main Channel Dam Site	<u>6CM</u>	BES	Varicorhinus	170	88	M	
Main Channel Dam Site	6CM	BES	Varicorhinus	195	_115	F))
Main Channel Dam Site	<u>6CM</u>	BES	Varicorhinus	219	156	F	<u>IV</u>
Main Channel Dam Site	<u>6CM</u>	BES	Varicorhinus	232	182	M	IV
Main Channel Dam Site	6CM	BES	Varicorhinus	155	53_	M	IV
Main Channel Dam Site	6cm	BRE	Labeobarbus	211	<u>111</u>	F	<u></u> VI
Main Channel Dam Site	6cm	BRE	Labeobarbus	219	139	F	VII
Main Channel Dam Site	<u>6cm</u>	BRE	Labeobarbus	225	154	М	<u>VI</u>
Main Channel Dam Site	8CM	BRE	Labeobarbus	223	164	F	VI
Main Channel Dam Site	6CM	BRE	Labeobarbus	210	214	F	VII
Main Channel Dam Site	6CM	BRE	Labeobarbus	220	131	м	
Main Channel Dam Site	6CM	BRE	Labeobarbus	250	184	F	VII
Main Channel Dam Site	6CM	BRE	Labeobarbus	207	<u>111_</u>	F	VI
Main Channel Dam Site	6CM	BRE	Labeobarbus	219	120	F	VII
Main Channel Dam Site	6CM	BRE	Labeobarbus	223	135	F	VI
Main Channel Dam Site	6cm	CLA	Clarias	390	418	F	11
Main Channel Dam Site	12cm	CLA	Clarias	593	1005	F	
Main Channel Dam Site	12cm	CLA	Clarias	640	1760	м	111
Main Channel Dam Site	12cm	CLA	Clarias	720	2455	м	111
Main Channel Dam Site	8CM	CLA	Clarias	445	531	F	
Main Channel Dam Site	8CM	CLA	Clarias	460	670	 F	

•

Site	Mesh size	Species	Genus	L	<u>w</u>	Sex	Mat. <u>Stag</u>
Main Channel Dam Site	8CM	CLA	Clarias	385	332	м	
Main Channel Dam Site	8CM	CLA	Clarias	510	841	F	- 11
Main Channel Dam Site	8CM	CLA	Clarias	350	311	F	
Main Channel Dam Site	8CM	CLA	Clarias	410	408	М	11
Main Channel Dam Site	8CM	CLA	Clarias	<u>46</u> 0	584	F	10
Main Channel Dam Site	8CM	CLA	Clarias	459	524	F	III
Main Channel Dam Site	8CM	CLA	Clarias	470	666	F	ĮII
Main Channel Dam Site	6CM	CLA	Clarias	349	320	F	
Main Channel Dam Site	8CM	CLA	Clarias	408	550	М	
Main Channel Dam Site	12CM	CLA	Clarias	651	1540	м	
Main Channel Dam Site	12CM	CLA	Clarias	664	1845	M	v
Main Channel Dam Site	6CM	CLA	Clarias	560	 540		
Main Channel Dam Site	6cm	INT	Labeobarbus	210	156	 F	VI
Main Channel Dam Site		INT	Labeobarbus	225	171	F	111
Main Channel Dam Site		INT	Labeobarbus	240	176	 F	VII
Main Channel Dam Site	6cm	 INT	Labeobarbus	260	280	 F	VI
Main Channel Dam Site	6cm	INT	Labeobarbus	300	480	F	
Main Channel Dam Site	6cm		Labeobarbus	230	171	F	<u>+</u>
Main Channel Dam Site	6cm		Labeobarbus	220	175	 M	 VI
Main Channel Dam Site	8CM		Labeobarbus	260	219		<u>vi</u>
Main Channel Dam Site	6CM	 INT	Labeobarbus	220	136	 F	
Main Channel Dam Site	6CM	 INT	Labeobarbus	260	219	<u>,</u> М	
Main Channel Dam Site	6CM	 INT	Labeobarbus	230	152		<u></u>
Main Channel Dam Site	<u>6CM</u>	 INT	Labeobarbus	230	152	<u></u> F	
	<u>6CM</u>			305	376	<u>_</u> M	Vi
Main Channel Dam Site	<u>6CM</u>		Labeobarbus			 M	VI
Main Channel Dam Site			Labeobarbus	289	<u>301</u> 409		<u></u> III
Main Channel Dam Site	6CM	INT INT	Labeobarbus	<u> </u>		<u>M</u> F	
Main Channel Dam Site	6CM		_Labeobarbus		332		
Main Channel Dam Site	6CM		Labeobarbus	295	368	<u>M</u>	VI
Main Channel Dam Site	6CM		Labeobarbus	260	294	F	<u>VI</u>
Main Channel Dam Site	6CM		Labeobarbus	183	98	<u></u>	
Main Channel Dam Site	6CM	<u>INT</u>	Labeobarbus	200	115	<u>M</u>	VI
Main Channel Dam Site	6CM		Labeobarbus	210	130		
Main Channel Dam Site	6CM		Labeobarbus	219	152	F	<u>V1</u>
Main Channel Dam Site	6CM	<u>INT</u>	Labeobarbus	263	274	<u>M</u>	VI
Main Channel Dam Site	6CM	<u>INT</u>	Labeobarbus	<u>195</u>	105	<u>M</u>	VI
Main Channel Dam Site	6CM	INT	Labeobarbus	208	115	M	VI
Main Channel Dam Site	6CM	<u>_INT</u>	<u>Labeobarbus</u>	202	122	<u>M</u>	VI
Main Channel Dam Site	6CM		Labeobarbus	228	145	<u>M</u>	VI
Main Channel Dam Site	6CM	<u>INT</u>	Labeobarbus	176	86	<u>M</u>]]]
Main Channel Dam Site	6CM	<u>INT</u>	Labeobarbus	220	151	<u>M</u>	
Main Channel Dam Site	6CM	<u>INT</u>	Labeobarbus	240	191	<u> </u>	
Main Channel Dam Site	8CM		Labeobarbus	296	386	F	
Main Channel Dam Site	8CM	INT	Labeobarbus	340	601	<u>M</u>	<u> </u>
Main Channel Dam Site	6cm	NED	Labeobarbus	228	184	<u>M</u>	
Main Channel Dam Site	<u>6cm</u>	NED	Labeobarbus	295	474	F	<u> III</u>
Main Channel Dam Site	12cm	NED	Labeobarbus	435	1310	F	
Main Channel Dam Site	<u>12cm</u>	NED	Labeobarbus	405	<u>1160</u>	F	<u></u> VI
Main Channel Dam Site	12cm	NED	Labeobarbus	405	1160	<u> </u>	
Main Channel Dam Site	12cm	NED	Labeobarbus	390	1005	F	VI
Main Channel Dam Site	12cm	NED	Labeobarbus	390	1115	<u> </u>	V
Main Channel Dam Site	12cm	NED	Labeobarbus	395	1045	F	V
Main Channel Dam Site	6CM	NED	Labeobarbus	391	1000	F	VI

.

.

-

-

Site	Mesh size	Species	Genus		w	Sex	Mat. Stage
Main Channel Dam Site	6CM	NED	Labeobarbus	222	154	М	<u></u>
Main Channel Dam Site	6CM	NED	Labeobarbus	223	175	М	
Main Channel Dam Site	6CM	NED	Labeobarbus	204	112	M	VI
Main Channel Dam Site	6CM	NED	Labeobarbus	257	258	M	<u></u>
Main Channel Dam Site	6CM	NED	Labeobarbus	229	183	М	VI
Main Channel Hamus - Mello Rivers	8CM	BES	Varicorhinus	230		F	v
Main Channel Hamus - Mello Rivers	8CM	BES	Varicorhinus	217		F	١V
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	211		м	VI_
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	214	_	F	VII
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	221		F	VI
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	218		м	VI
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	210			VII
Main Channel Hamus - Mello Rivers	8CM	BRE			_	M	VI
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	205		м	VI
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	231		м	VI
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	209		M	VI
	8CM	BRE	Labeobarbus	188		 F	
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	212		<u>.</u> М	VI
Main Channel Hamus - Mello Rivers		BRE	Labeobarbus	210		 F	VI
Main Channel Hamus - Mello Rivers	8CM	BRE	Labeobarbus	197		F	VI
Main Channel Hamus - Mello Rivers			Clarias	390		' F	<u>*</u>
Main Channel Hamus - Mello Rivers	8CM	_CLA INT	Labeobarbus	229		F	
Main Channel Hamus - Mello Rivers	8CM			270		 F	<u>v</u>
Main Channel Hamus - Mello Rivers	8CM		Labeobarbus	-		<u>r</u>	
Main Channel Hamus - Mello Rivers	8CM		Labeobarbus	201			U U
Main Channel Hamus - Mello Rivers	8CM		Labeobarbus	211		<u>M</u>	<u></u>
Main Channel Hamus - Mello Rivers	8CM		Labeobarbus	218		F	
Main Channel Hamus - Mello Rivers	8CM		Labeobarbus	201		<u>M</u>	<u></u>
Main Channel Hamus - Mello Rivers	8CM		Labeobarbus	193		<u>M</u>	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	10	ACU	Labeobarbus	375	606	F	
Main Channel Bahir Dar-Gondar Bridge	10	ACU	Labeobarbus	139	<u>1160</u>	<u> </u>	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	8	_ACU	Labeobarbus	284	267	M	
Main Channel Bahir Dar-Gondar Bridge	3(monofilament	BRE	Labeobarbus	178	54	M	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	213	117	F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	219	105	<u> </u>	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	215	119	_ <u>F</u>	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	206	90	M	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	204	88	<u>M</u>	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	220	115	F	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	214	134	F	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	BRE	Labeobarbus	207	112	F	
Main Channel Bahir Dar-Gondar Bridge	8	BRE	Labeobarbus	167	47	M	<u></u>
Main Channel Bahir Dar-Gondar Bridge	8	BRE	Labeobarbus	<u>15</u> 2	39	<u>M</u>	<u></u>
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	219	116	<u>F</u>	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	210	98	F	
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	219	128	F	V
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	208	115	F	
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	215	126	F	11
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	209	115	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	200	94	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	202	112	М	III
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	210	111	М	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	192	94	F	<u></u> <u>VI</u>
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	204	112	F	111

~

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Main Channel Bahir Dar-Gondar Bridge	_6	BRE	Labeobarbus	205	19	F	П
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	206	<u>1</u> 12	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	210	105	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	206	<u>11</u> 1	F	H
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	210	101	F	
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	211	_127	F	111
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	200	102	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	203	101	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	224	138	F	
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	276	124	F	
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	221	104		
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	211	130		
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	215	128		VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	205	108	 F	
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	204	113	M	VII
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	206	114	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	BRE	Labeobarbus	226	138	 F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	379	310	 F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	330	428	<u>.</u> М	<u></u>
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	354	282	 F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	443	<u></u> 541	' F	<u>"</u> "
Main Channel Bahir Dar-Gondar Bridge	8		Clarias	377	296		 III
Main Channel Bahir Dar-Gondar Bridge	8		Clarias	405	333	M	
	8						·
Main Channel Bahir Dar-Gondar Bridge			<u>Clarias</u>	421	415	<u>M</u>	
Main Channel Bahir Dar-Gondar Bridge	<u>10</u> 10		Clarias	570	1020	<u>M</u>	
Main Channel Bahir Dar-Gondar Bridge			<u>Clarias</u>	585	1165		
Main Channel Bahir Dar-Gondar Bridge	6		Clarias	316	165		
Main Channel Bahir Dar-Gondar Bridge	6		Clarias	318	196	<u>M</u>	
Main Channel Bahir Dar-Gondar Bridge	8		Clarias	347	237	F	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Clarias	<u>384</u>	311	<u>M</u>	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Clarias	257	122	<u>M</u>	<u>11</u>
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Clarias	362	295	F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	CLA	Clarias	358	249	F	
Main Channel Bahir Dar-Gondar Bridge	castnet	_CLA	Clarias	338	310		
Main Channel Bahir Dar-Gondar Bridge		CLA	Clarias	212	116	F	IV_
Main Channel Bahir Dar-Gondar Bridge	_10	CLA	<u>Clarias</u>	635	1490	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	<u>Clarias</u>	139	361	<u>M</u>	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	<u>Clarias</u>	402	371	<u> </u>	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	361	301	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	465	586	М	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	411	436	F	11
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	505	796	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	425	492		
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	451	478	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	408	361	F	11
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	374	332	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	364	292	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	395	335	М	- 111
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	358	294	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	347	273	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	322	322	F	
Main Channel Babis Das Condas Bridge	8	CLA	Clarias	382	374	F	ll II
Main Channel Bahir Dar-Gondar Bridge						F	н

•

-

-

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stag
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	383	331	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	373	331	M	111
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	363	288	F	
Main Channel Bahir Dar-Gondar Bridge	8	CLA	Clarias	233	163_	F	iv
Main Channel Bahir Dar-Gondar Bridge	6	CLA	Clarias	293	168	F	П
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	221	153	F	VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	232	175	м	VI
Main Channel Bahir Dar-Gondar Bridge	6	 INT	Labeobarbus	202	113	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	 INT	Labeobarbus	335	163	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	 Labeobarbus	240	163	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	212	117	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	235	138	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	223	114	F	
	6	INT	Labeobarbus	220	130	F	VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	222	128	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	243	191	 M	V
Main Channel Bahir Dar-Gondar Bridge		INT	Labeobarbus	263	245	 F	
Main Channel Bahir Dar-Gondar Bridge	<u> </u>		Labeobarbus	211	120	 M	V
Main Channel Bahir Dar-Gondar Bridge		 INT	Labeobarbus	239	199	F	<u>,</u>
Main Channel Bahir Dar-Gondar Bridge	<u> 6 </u>		Labeobarbus	208	<u>199</u> 118	F	
Main Channel Bahir Dar-Gondar Bridge	6			200	163	 F	V
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus		142	<u>r</u> F	v
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	224		 F	<u>v</u> II
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	215	120		
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	218	122		<u>v</u>
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	210	117	F	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	221	140	F	V
Main Channel Bahir Dar-Gondar Bridge			Labeobarbus	205	112	F	V
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	231	<u>166</u>	F	V
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	209	117	F	<u>v</u>
Main Channel Bahir Dar-Gondar Bridge	6	<u>INT</u>	Labeobarbus	225	173	F	V
Main Channel Bahir Dar-Gondar Bridge	_6	INT	Labeobarbus	240	292	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	214	134	F	[]
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	193	101	М	<u>v</u>
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	214	146	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	201	118	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	_202	114	F	1
Main Channel Bahir Dar-Gondar Bridge	6	<u>INT</u>	Labeobarbus	207	116	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	223	136	F	V
Main Channel Bahir Dar-Gondar Bridge		INT	Labeobarbus	207	119	F	V
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	236	185	F	V
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	216	127	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	211	131_	F	1
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	228	158	F	1
Main Channel Bahir Dar-Gondar Bridge	6	<u>INT</u>	Labeobarbus	207	123	F	1
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	212	124	F	n
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	169	67	M	V
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	211	138	F	_ v
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	121	145	F	V
Main Channel Bahir Dar-Gondar Bridge	6	INT_	Labeobarbus	209	125	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	209	123	F	v
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	204	113	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	202	114	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	239	165	М	v

Site	Mesh size	Species	Genus	<u> </u>	w	Sex	Mat. Stage
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus_	235	<u> 173 </u>	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	<u>INT</u>	Labeobarbus	232	158	<u>F</u>	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT_	Labeobarbus	207	115	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	215	130	F	<u> 11</u>
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	192	96	F	11
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	226	165	F	11
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	210	123	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	200	<u>10</u> 6	F	- 11
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	227	147	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	214	122	F	1
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	228	147	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	201	105	F	- 111
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	227	127	 F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	218	116	F	18
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	220	126	F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	203	98	M	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	201	221		VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	206	105	F	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Labeobarbus	240	157	 F	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Labeobarbus	220	137	F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	223	127	 F	VI
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	INT	Labeobarbus	207	118	 F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Labeobarbus	230	165	 F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Labeobarbus	206	98	 F	<u>v</u> i
	5(monofilament)	INT	Labeobarbus	222	136	<u>'</u>	<u></u>
Main Channel Bahir Dar-Gondar Bridge		INT	Labeobarbus	220	141	' F	VII
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)		Labeobarbus	206	108	 F	<u></u>
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	_			832	<u>'</u> F	 111
Main Channel Bahir Dar-Gondar Bridge			Labeobarbus	<u>376</u>		 F	
Main Channel Bahir Dar-Gondar Bridge	10		Labeobarbus		463		
Main Channel Bahir Dar-Gondar Bridge	10		Labeobarbus	229	145	F	<u>\ </u> \
Main Channel Bahir Dar-Gondar Bridge	10		Labeobarbus	193	87		<u></u>
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	272	228	<u>_M</u>	(
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	246	183	_ F	VII
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	306	398	M	VII
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	262	224	F	
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	<u>197</u>	103	F	111
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	297	365	F	<u></u> VI
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	340	196	F	
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	319	441	<u> </u>	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	8	<u>INT</u>	Labeobarbus	307	428	F	
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	284	301	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	299	<u>348</u>	F	111
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	280	300	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	243	204	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	254	225	F	<u></u>
Main Channel Bahir Dar-Gondar Bridge	8	<u>INT</u>	Labeobarbus	268	266	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	231	165_	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	256	243	<u>F</u>	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	259	214	F	Vi
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	240	173	F	<u></u>
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	266	243	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	258	214	F	V
man onumer burn bur oondar bridge							

-

-

•

Site	Mesh size	Species	Genus		w	Sex	Mat. Stage
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	286	327	F	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	257	212	F	
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	266	260	М	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	255	192		VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	246	212	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	<u>22</u> 4	162	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	232	193	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	254	216	М	
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	247	200	F	<u></u>
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	245	172	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	235	196	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	246	197	F	VI
Main Channel Bahir Dar-Gondar Bridge	8		Labeobarbus	202	112	F	ш
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	230	156	F	VI
Main Channel Bahir Dar-Gondar Bridge	8	INT	Labeobarbus	200	101	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	233	153	F	VI
Main Channel Bahir Dar-Gondar Bridge		INT	Labeobarbus	232	184	M	111
Main Channel Bahir Dar-Gondar Bridge		INT	Labeobarbus	226	146	F	VI
Main Channel Bahir Dar-Gondar Bridge		INT	Labeobarbus	230	150	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	228	134	F	
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	242	192	F	VI
Main Channel Bahir Dar-Gondar Bridge		INT	Labeobarbus	224	134	 F	VII
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	217		F	<u>•</u> III
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	231	<u>140</u>	F	 VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	213	127	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	232	143	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	240	156	<u>'</u>	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	220	134	_ ' F	 VI
	6		Labeobarbus	220	<u>134</u>	 F	
Main Channel Bahir Dar-Gondar Bridge	6					 F	
Main Channel Bahir Dar-Gondar Bridge	0		Labeobarbus	237	159		
Main Channel Bahir Dar-Gondar Bridge			Labeobarbus	233		<u> </u>	<u> </u>
Main Channel Bahir Dar-Gondar Bridge	<u> 6 </u>		Labeobarbus	230	149	F	<u></u>
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	214	122		<u>VI</u>
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	235	138	F	VI
Main Channel Bahir Dar-Gondar Bridge			Labeobarbus	220	141	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	204	105	F	<u></u>
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	217	124	F	<u></u> VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	223	128	<u> </u>	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	208	<u>117</u>	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	216	143	F	
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	223	128	F	<u></u> <u>VI</u>
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	238	<u>1</u> 63	M	VII
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	216	<u>131</u>	<u> </u>	VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	245	197	<u> </u>	VII
Main Channel Bahir Dar-Gondar Bridge	_6	INT	Labeobarbus	258	230	F	VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	230	151	F	<u></u>
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	217	121	F	VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	220	108	F	<u></u> VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	220	131	F	VI
Main Channel Bahir Dar-Gondar Bridge	6		Labeobarbus	223	153	M	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	206	96	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	IN <u>T</u>	Labeobarbus	230	240	_ F_	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	220	141	F	Ш

.

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	210	122	F	VI
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	16	117	F	111
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	225	140	F	1
Main Channel Bahir Dar-Gondar Bridge	6	INT	Labeobarbus	210	121	F	Ш
Main Channel Bahir Dar-Gondar Bridge	8	MEG	Labeobarbus	373	564	F	
Main Channel Bahir Dar-Gondar Bridge	8	MEG	Labeobarbus	324	342	M	
Main Channel Bahir Dar-Gondar Bridge	10	MEG	Labeobarbus	424	831	М	VII
Main Channel Bahir Dar-Gondar Bridge	8	MEG	Labeobarbus	350	448	м	VI
Main Channel Bahir Dar-Gondar Bridge	8	MEG	Labeobarbus	341	389	м	
Main Channel Bahir Dar-Gondar Bridge	8	MEG	Labeobarbus	309	341	M	111
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	NED	Labeobarbus	180	70	M	Vi
Main Channel Bahir Dar-Gondar Bridge	10	PLA	Labeobarbus	198	200	F	VII
Main Channel Bahir Dar-Gondar Bridge	12	PLA	Labeobarbus	440	1220	м	
Main Channel Bahir Dar-Gondar Bridge	6	SUR	Labeobarbus	226	162	 F	
Main Channel Bahir Dar-Gondar Bridge	12	TIL	Oreochromis	342	679	M	IV
Main Channel Bahir Dar-Gondar Bridge	10	TIL	Oreochromis	262	285	M	
Main Channel Bahir Dar-Gondar Bridge	10		Oreochromis	324	561	 F	IV
Main Channel Bahir Dar-Gondar Bridge	10		Oreochromis	390	405		
Main Channel Bahir Dar-Gondar Bridge	12		Labeobarbus	440	1055	 F	
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	TRU	Labeobarbus	224	144	 F	- <u></u> 111
Main Channel Bahir Dar-Gondar Bridge	5(monofilament)	TRU	Labeobarbus	245	193		<u>IN</u>
	5(monofilament)	TRU	Labeobarbus	225	127	 F	
Main Channel Bahir Dar-Gondar Bridge		-	Labeobarbus	264		 F	
Main Channel Bahir Dar-Gondar Bridge		TRU				 F	
Main Channel Bahir Dar-Gondar Bridge	6	TRU	Labeobarbus	220	135	_	<u>Vi</u>
Main Channel Bahir Dar-Gondar Bridge	8	TSA DEO	Labeobarbus_	304	402	F F	 V
Main Channel Upper Mello	8CM	BES	Varicorhinus	230_		 F	
Main Channel Upper Mello	10CM	BES	Varicorhinus	239		<u>г</u> . М	
Main Channel Upper Mello	10CM	BRE	Labeobarbus	211			<u>vi</u>
Main Channel Upper Mello	10CM	BRE	Labeobarbus	200		<u>M</u>	_
Main Channel Upper Mello	8CM		<u>Clarias</u>	390		F	<u> </u>
Main Channel Upper Mello	10CM	_CLA	Clarias	370		<u>M</u>	<u> </u>
Main Channel Upper Mello	6		Labeobarbus	348	598	<u>M</u>	<u> </u>
Main Channel Upper Mello	6		Labeobarbus	335	548	<u>M</u>	<u></u>
Main Channel Upper Mello	6		Labeobarbus	440	1475	F	
Main Channel Upper Mello	6	INT	Labeobarbus	195	79_		VII
Main Channel Upper Mello	6		Labeobarbus	533_	902	F	
Main Channel Upper Mello	6		Labeobarbus	<u>5</u> 69	1180	M	
Main Channel Upper Mello	6		Labeobarbus	526	948	F	
Main Channel Upper Mello	6		Labeobarbus	532	1010	M	
Main Channel Upper Mello	8CM		Labeobarbus	229		<u>M</u>	VI
Main Channel Upper Mello	8CM	INT	Labeobarbus	270		<u>F</u>	
Main Channel Upper Mello	6	NED	Labeobarbus	278	319	M	VI
Main Channel Upper Mello	6	NED	Labeobarbus	350	698	<u>M</u>	<u>VI</u>
Main Channel Upper Mello	10CM	TIL	Oreochromis	231		F	
Main Channel Upper Mello	10CM		Oreochromis	225		<u>M</u>	<u> </u>
Main Channel Ribb RM	8cm	ACU	Labeobarbus	285	279	F	V
Main Channel Ribb RM	6cm	BES	Varicorhinus	244	233	M	
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	207	117_	<u> </u>	<u>V</u>
Main Channel Ribb RM	<u>6cm</u>	BRE_	Labeobarbus	210	122	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	F	<u> </u>
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	202	109	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	F	V

¥

-

Site	Mesh_size	Species	Genus	<u> L </u>	w	Sex	Mat. Stag
Main Channel Ribb RM	6cm	BRE	Labeobarbus	209	120	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	215	130	<u> </u>	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	210	122	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	<u>190</u>	93	F	V
Main Channel Ribb RM		BRE	Labeobarbus	195_	99	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	210	122	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	210	122	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	230	156	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	212	125	_ F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	220	138	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	215	130	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	210	122	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	219	136	 F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	217	133	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	227	150	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	220	138	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	M	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	 F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	220	138	F	v
	8cm	BRE	Labeobarbus	240	175	F	
<u>Main Channel Ribb RM</u> Main Channel Ribb RM	8cm	BRE	Labeobarbus	230	156	 F	<u> </u>
	8cm	BRE	Labeobarbus	202	109	<u>'</u> F	 V
Main Channel Ribb RM	<u>50m</u>	BRE	Labeobarbus	195	99	 F	v
Main Channel Ribb RM		BRE		217	<u> </u>	 F	<u>v</u> 11
Main Channel Ribb RM	<u> </u>		Labeobarbus			 F	 V
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	215			v
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	205	114	F	
Main Channel Ribb RM	6cm	BRE	Labeobarbus	203	111	F	V
Main Channel Ribb RM	<u> </u>	BRE	Labeobarbus	210	122	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	210	122	F	V
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	235	165	<u> </u>	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	195	99	<u> </u>	V
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	215	130	<u> </u>	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	190	93	F	V
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	212	125	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	210	122	<u>M</u>	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	F	V
Main Channel Ribb RM	6cm	BRE	_Labeobarbus	230	156	_ F	<u>v</u>
Main Channel Ribb RM	6cm	BRE	Labeobarbus	220	138	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	230	156	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	218	135	F	
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	223	143	F	V
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	212	125	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	<u>21</u> 2	125	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	222	141	м	
Main Channel Ribb RM	<u>6cm</u>	BRE	Labeobarbus	195	99	F	v
Main Channel Ribb RM	<u>6</u> cm	BRE	Labeobarbus	200	107	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	202	109	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	200	107	F	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	231	158	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	190	93	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	223	143	F	v
Main Channel Ribb RM	6cm	BRE	Labeobarbus	196	101	F	

••

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Main Channel Ribb RM	8cm	BRE	Labeobarbus	238	171	F	v
Main Channel Ribb RM	8cm	BRE	Labeobarbus	208	119	<u> </u>	_ V
Main Channel Ribb RM	12cm	CLA	<u>Clarias</u>	505	809	_ <u>M</u>	<u> </u>
Main Channel Ribb RM	12cm	CLA	Clarias	<u>550</u>	1031	<u>F</u> _	H
Main Channel Ribb RM	12cm	CLA	Clarias	570	1140	F	
Main Channel Ribb RM	<u>12cm</u>	CLA	Clarias	530	928	м	Ш
Main Channel Ribb RM	<u>10</u> cm	CLA	Clarias	660	1728	<u>F</u>	!!
Main Channel Ribb RM	10cm		Clarias	630	1515	M	!!
Main Channel Ribb RM	14cm	CLA	Clarias	680	1881	<u>M</u>	Ш
Main Channel Ribb RM	14cm	CLA	_Clarias	642	1598	М	- 11
Main Channel Ribb RM	<u>8c</u> m	CLA	Clarias	567	1124	F	11
Main Channel Ribb RM	10cm	CLA	Clarias	526	908	М	
Main Channel Ribb RM	6cm	CLA	Clarias	301	396	F	١V
Main Channel Ribb RM	8cm	CLA	Clarias	300	392	F_	
Main Channel Ribb RM	8cm	CLA	Clarias	292	359	F	11
Main Channel Ribb RM	8cm	CLA	Clarias	270	279	F	
Main Channel Ribb RM	8cm	GON	Labeobarbus	260	254	 F	- 11
Main Channel Ribb RM	8cm	GON	Labeobarbus	255	239	F	v
Main Channel Ribb RM	8cm	GON	Labeobarbus	252	231		
Main Channel Ribb RM	8cm	GON	Labeobarbus	262	260	F	V
Main Channel Ribb RM	8cm	GON	Labeobarbus	257	245	F	V
Main Channel Ribb RM	8cm	GON	Labeobarbus	260	254	F	v
Main Channel Ribb RM	8cm	GON	Labeobarbus	259	251	 F	
Main Channel Ribb RM	8cm	GON	Labeobarbus	252	231	 F	
Main Channel Ribb RM	8cm	GON	Labeobarbus	264	266	F	
	 12cm	GON	Labeobarbus	337	<u>200</u> 561	 F	
Main Channel Ribb RM			Labeobarbus	242	204	<u>'</u> F	<u>''</u>
Main Channel Ribb RM	6cm			<u>242</u> _ 265	269	' F	
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	205	<u>209</u> _ 123	 F	<u> </u>
Main Channel Ribb RM	<u> </u>		_Labeobarbus			 F	
Main Channel Ribb RM	8cm	GON	Labeobarbus	<u>280</u>	319	 F	
Main Channel Ribb RM	<u>8cm</u>	GON	Labeobarbus	420	1100	<u>_</u> F	<u>11</u>
Main Channel Ribb RM	8cm	GON	Labeobarbus	285	336	 F	 N
Main Channel Ribb RM	8cm	GON	Labeobarbus	247	217	 F	
Main Channel Ribb RM	8cm	GON	Labeobarbus	252	231		<u> </u>
Main Channel Ribb RM	8cm	GON	Labeobarbus	253_	234	<u> </u>	<u>n</u>
Main Channel Ribb RM	8cm	GON	Labeobarbus	267	275_		<u> </u>
Main Channel Ribb RM	12cm	GON	Labeobarbus	542	2399	F	
Main Channel Ribb RM	10cm	GON	Labeobarbus	450	1358	F	<u> </u>
Main Channel Ribb RM	<u>10cm</u>	GON	Labeobarbus	355	658	<u>M</u>	
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	190	96	F	V
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	195	104		V
Main Channel Ribb RM	6cm	INT	Labeobarbus	230	173	F	
Main Channel Ribb RM	6cm		Labeobarbus	<u> </u>	104		<u> </u>
Main Channel Ribb RM	<u>6cm</u>	<u> </u>	Labeobarbus	220	151	F	V
Main Channel Ribb RM	6cm		Labeobarbus	240	197	F	V
Main Channel Ribb RM	6cm		Labeobarbus	217	145	<u>M</u>	<u></u> V
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	198	109	F	
Main Channel Ribb RM	6cm	<u>INT</u>	Labeobarbus	200	113	F	
Main Channel Ribb RM	6cm		Labeobarbus	225	162	<u>F</u>	<u> </u>
Main Channel Ribb RM	6cm	INT	Labeobarbus	240	197	F_	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	205	122	M	<u> </u>
Main Channel Ribb RM	6cm	INT	<u>Labeobarbus</u>	225	162	F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	227	166	F	V

~

.

-

•

	Mesh size	Species	Genus	L	w	Sex	Mat. Stag
Main Channel Ribb RM	6cm	INT	Labeobarbus	250	223	F_	II
Main Channel Ribb RM	8cm	INT	Labeobarbus	278_	309	F	
Main Channel Ribb RM	8cm	INT	Labeobarbus	255	237	F	<u>v</u>
Main Channel Ribb RM	8cm	INT	Labeobarbus	284	329	F	
Main Channel Ribb RM	8cm	INT	Labeobarbus	249	220	F_	V
Main Channel Ribb RM	8cm		Labeobarbus	260	251	F	П
Main Channel Ribb RM	8cm	INT	Labeobarbus	232	178	F	v
Main Channel Ribb RM	8cm		Labeobarbus	242	202	F	v
Main Channel Ribb RM	8cm	INT	Labeobarbus	266	270	F	I
Main Channel Ribb RM	8cm		Labeobarbus	252	229	F	i)
Main Channel Ribb RM	8cm	INT	Labeobarbus	260		F	Ш
Main Channel Ribb RM	8cm	INT	Labeobarbus	272	289	F	v
Main Channel Ribb RM	8cm	INT	Labeobarbus	260	251	F	v
Main Channel Ribb RM		INT	Labeobarbus	258	246	F	
Main Channel Ribb RM	8cm		Labeobarbus	277	305	F	11
	8cm		Labeobarbus	280	315		v
Main Channel Ribb RM	<u>8cm</u>		Labeobarbus	251	226	 F	v
Main Channel Ribb RM			Labeobarbus	255	237	M	
Main Channel Ribb RM	<u> </u>		Labeobarbus	257	<u>_207</u> 243	F	 II
Main Channel Ribb RM	30mm 10cm	INT	Labeobarbus	325	<u>497</u>	<u>'</u> F	v
Main Channel Ribb RM			Labeobarbus	330	521	' F	v
Main Channel Ribb RM	<u>10cm</u>			280	315	F	
Main Channel Ribb RM	10cm		Labeobarbus	222			• v
Main Channel Ribb RM	6cm		Labeobarbus		155	<u>M</u> F	v
Main Channel Ribb RM	6cm		Labeobarbus	225	162		v
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	210	131	F	
Main Channel Ribb RM	<u> </u>		Labeobarbus	235	185	F	V
Main Channel Ribb RM	6cm		Labeobarbus	244	207		V
Main Channel Ribb RM	6cm		Labeobarbus	210	131	<u>F</u>	V
Main Channel Ribb RM	6cm		Labeobarbus	224	160	F	V
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	210	131	M	
Main Channel Ribb RM	6cm	INT	Labeobarbus	205	122	F	V
Main Channel Ribb RM	6cm		Labeobarbus	205	122	F	V
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	230	<u> 173 </u>	F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	219	149	F	V
Main Channel Ribb RM	6cm		Labeobarbus	217	145	F	v
Main Channel Ribb RM	6cm	<u>INT</u>	Labeobarbus	208	127	F	V
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus	208	127	<u>M</u>	
Main Channel Ribb RM	6cm	INT	Labeobarbus	250	223	F	
Main Channel Ribb RM	<u>6cm</u>	<u>INT</u>	Labeobarbus	220	151	F	v
Main Channel Ribb RM	6cm	INT	Labeobarbus	_200	113	M	
Main Channel Ribb RM	6cm		Labeobarbus	230	173	F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	216	143	F	V
Main Channel Ribb RM	6cm		Labeobarbus	210	<u>131</u>	_ F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	<u>217</u>	<u>145</u>	<u> </u>	V
Main Channel Ribb RM	6cm		Labeobarbus	205	122	F	V
Main Channel Ribb RM	6cm		Labeobarbus	235_	185	F	V
Main Channel Ribb RM	6cm		Labeobarbus	215	141	М	v
Main Channel Ribb RM	6cm		Labeobarbus	210	<u>131</u>	M	
Main Channel Ribb RM	6cm	INT	Labeobarbus	_ 203	118	F	v
Main Channel Ribb RM	6cm	INT	Labeobarbus	185	89	F	H
Main Channel Ribb RM	6cm	INT	Labeobarbus	212	135	F_	11
Main Channel Ribb RM	6cm	INT	Labeobarbus	210	131	F	
Main Channel Ribb RM	6cm	INT	Labeobarbus	220		F	v

Site	Mesh size	Species	Genus	<u>L</u>	_w	Sex	Mat. Stage
Main Channel Ribb RM	6cm	INT	Labeobarbus	215	<u> 141 </u>	M	
Main Channel Ribb RM	6cm	INT	Labeobarbus	217	145	F	V
Main Channel Ribb RM	6cm		Labeobarbus	244	207	F	V
Main Channel Ribb RM	6cm		Labeobarbus	210	131		<u>v</u>
Main Channel Ribb RM	<u>6cm</u>	INT	Labeobarbus	250	223	<u> </u>	V
Main Channel Ribb RM	<u>6cm</u>	INT	Labeobarbus	230	173	F	V
Main Channel Ribb RM	<u>6cm</u>	INT	Labeobarbus	242	202	F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	230	173	F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	265	267	М	11
Main Channel Ribb RM	6cm	INT	Labeobarbus	202	116	F	V
Main Channel Ribb RM		INT	Labeobarbus	225	162	F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	205	122		v
Main Channel Ribb RM	6cm	INT	Labeobarbus	207	125	M	
Main Channel Ribb RM	6cm	 INT	Labeobarbus	200	113	F	v
Main Channel Ribb RM	6cm	INT	Labeobarbus	193	101	F	v
Main Channel Ribb RM	6cm	INT	Labeobarbus	238	192	F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	219	149	 M	H
Main Channel Ribb RM	6cm	 INT	Labeobarbus	230	173	 F	V
Main Channel Ribb RM	6cm	INT	Labeobarbus	212	135	F	
Main Channel Ribb RM	6cm		Labeobarbus	229	171	M	
Main Channel Ribb RM	8cm		Labeobarbus	295	370	 F	 V
Main Channel Ribb RM	8cm	 INT	Labeobarbus	265	267		 v
Main Channel Ribb RM	8cm	 INT	Labeobarbus	250	223	 M	 v
Main Channel Ribb RM	<u>8cm</u>		Labeobarbus	297	378	 F	
	8cm	 INT	Labeobarbus	257	<u></u> 243	<u>'</u>	<u></u>
Main Channel Ribb RM	8cm	 INT	Labeobarbus	269	<u>279</u>	 M	- <u> </u>
Main Channel Ribb RM		INT	Labeobarbus	300	<u>279</u> 389		<u>`</u>
Main Channel Ribb RM	8cm		Labeobarbus	275	298	<u>'</u>	<u>''</u>
Main Channel Ribb RM	8cm			264	263	 F	
Main Channel Ribb RM	8cm		_Labeobarbus			 M	<u>_</u>
Main Channel Ribb RM	8cm		Labeobarbus	275	298	M	
Main Channel Ribb RM	8cm		Labeobarbus	260	251	<u>M</u>	<u>"</u>
Main Channel Ribb RM	<u> </u>		Labeobarbus	290	351	 F	
Main Channel Ribb RM	8cm		Labeobarbus	262	<u>257</u> 267	 F	
Main Channel Ribb RM	8cm		Labeobarbus	265			
Main Channel Ribb RM	<u>8cm</u>		Labeobarbus	255_	237	<u>M</u>	
Main Channel Ribb RM	<u>8cm</u>	<u>INT</u>	Labeobarbus	283	326		<u> </u>
Main Channel Ribb RM	<u>8cm</u>	INT	Labeobarbus	260	251	<u>M</u>	<u>II</u>
Main Channel Ribb RM	8cm		Labeobarbus	289	347	F	<u> </u>
Main Channel Ribb RM	8cm	<u> </u>	Labeobarbus	235	185_	<u>M</u>	<u> </u>
Main Channel Ribb RM	<u>8cm</u>	INT	Labeobarbus		389	F	
Main Channel Ribb RM	8cm		Labeobarbus	250	223_		<u>v</u>
Main Channel Ribb RM	8cm		Labeobarbus	242	202	F	
Main Channel Ribb RM	8cm	<u>INT</u>	Labeobarbus	253	231	F	<u> </u>
Main Channel Ribb RM	<u>8cm</u>		Labeobarbus	255		F	<u>V</u>
Main Channel Ribb RM	8cm	INT	Labeobarbus	253	231	<u>M</u>	V
Main Channel Ribb RM	<u>8cm</u>	INT	Labeobarbus	260	251_		<u>v</u>
Main Channel Ribb RM	8cm	<u>INT</u>	Labeobarbus	274	295	F	11
Main Channel Ribb RM	8cm		Labeobarbus	240		F	<u> </u>
Main Channel Ribb RM	8cm		Labeobarbus	242		<u>M</u>	
Main Channel Ribb RM	8cm	INT	Labeobarbus	290		F	
Main Channel Ribb RM	12cm	INT	Labeobarbus	202		F	<u> </u>
Main Channel Ribb RM	<u>10cm</u>	INT	Labeobarbus	356	657	F	
Main Channel Ribb RM		MAC	Labeobarbus	390	777	F	II

•

-

*

Main Channel Ribb RM Main Channel Ribb RM	10cm 8cm 8cm 10cm 10cm	MEG MEG MEG	Labeobarbus Labeobarbus	<u>386</u> 344	663_	F	11
Main Channel Ribb RM Main Channel Ribb RM	8cm 10cm 10cm	MEG	Labeobarbus	344			
Main Channel Ribb RM Main Channel Ribb RM Main Channel Ribb RM Main Channel Ribb RM Main Channel Ribb RM	10cm 10cm				472	<u>M</u> _	111
Main Channel Ribb RM Main Channel Ribb RM Main Channel Ribb RM	10cm	- HEC	Labeobarbus	360	540	F	
Main Channel Ribb RM Main Channel Ribb RM Main Channel Ribb RM		MEG	Labeobarbus	380	634	F	
Main Channel Ribb RM	_	MEG	Labeobarbus	440	976	F_	11
Main Channel Ribb RM	6cm	NED	Labeobarbus	288	<u>335</u>	F	v
Main Channel Ribb RM	8cm	PLA	Labeobarbus	300	390	F	
	8cm	PLA	Labeobarbus	260	248	F	II
Main Channel Ribb RM	8cm	PLA	Labeobarbus	315	454	F	11
Main Channel Ribb RM	12cm	PLA	Labeobarbus	401	971	F	_11
Main Channel Ribb RM	8cm	TIL	Oreochromis	362	895	М	
Main Channel Ribb RM	8cm	 TIL	Oreochromis	305	534	М	11
Main Channel Ribb RM	10cm	 TIL	Oreochromis	270	370	м	
Main Channel Ribb RM	10cm	TIL	Oreochromis	240	259	F	
Main Channel Ribb RM		TIL	Oreochromis	255	311	F	
Main Channel Ribb RM	8cm		Oreochromis	185	118	F	
Main Channel Ribb RM	12cm	TIL	Oreochromis	350	808	 F	V
Main Channel Ribb RM	12cm	TIL	Oreochromis	358	865	M	
Main Channel Ribb RM	12cm		Oreochromis	350	808		 V
Main Channel Ribb RM	<u>12cm</u>		Oreochromis	320	617	F	!
Main Channel Ribb RM	12cm		Oreochromis	317	600	 	
Main Channel Ribb RM	10cm	 TIL	Oreochromis	318	605	 F	<u>''</u> !!
Main Channel Ribb RM	6cm	 TRU	Labeobarbus	215	137	' F	v
	6cm	TRU	Labeobarbus	215	137	 F	<u>`</u>
Main Channel Ribb RM Main Channel Ribb RM	6cm		Labeobarbus	210	127	' F	<u>v</u>
	<u>6</u> cm	TRU	Labeobarbus	200	108	 F	<u>*</u>
Main Channel Ribb RM		TRU	Labeobarbus	200	108	 F	v
Main Channel Ribb RM	6cm	TRU		210	108	<u>_</u> F	v
Main Channel Ribb RM	<u>6cm</u>		Labeobarbus			 F	v
Main Channel Ribb RM	6cm	TRU	Labeobarbus	230	170		
Main Channel Ribb RM	6cm	TRU	Labeobarbus	229	167	F	<u> </u>
Main Channel Ribb RM	6cm	TRU	Labeobarbus	205	117		V
Main Channel Ribb RM	6cm		Labeobarbus	234	179	F	V
Main Channel Ribb RM	6cm	TRU	Labeobarbus	215	137	<u> </u>	V
Main Channel Ribb RM	6cm	TRU	Labeobarbus	232	175	F	V
Main Channel Ribb RM	<u>6cm</u>	TRU	Labeobarbus	227	163	F	<u></u> V
Main Channel Ribb RM	6cm	TRU	Labeobarbus	235	182	F	V
Main Channel Ribb RM	6cm		Labeobarbus	225	158	F	<u></u> V
Main Channel Ribb RM	6cm	TRU	Labeobarbus	195	100	<u></u> M	<u>v</u>
Main Channel Ribb RM	<u>8cm</u>	TRU	Labeobarbus	245	208	F	V
Main Channel Ribb RM	<u>6cm</u>	TSA	Labeobarbus	225_	<u> 170 </u>	F	<u>v</u>
Main Channel Ribb RM	<u>6c</u> m	<u></u>	Labeobarbus	260	272	F	V
Main Channel Ribb RM	6cm	TSA	Labeobarbus	210	136	F	V
Main Channel Ribb RM	<u> 8cm </u>	<u>T</u> SA	Labeobarbus	280	345	F	11
Main Channel Ribb RM	8cm	TSA	Labeobarbus	275	326	F	11
Main Channel Ribb RM	<u>8cm</u>	TSA	Labeobarbus	255	255	<u>F</u>	11
Main Channel Ribb RM	<u>8cm</u>	TSA	Labeobarbus	310	480	F	[]
Main Channel Ribb RM	<u>8cm</u>	TSA	Labeobarbus	262	278	F	V
Main Channel Ribb RM	<u>8cm</u>	TSA	Labeobarbus	278	337	<u>F</u>	V
Main Channel Ribb RM	<u>8cm</u>	TSA	Labeobarbus	280	345	F	
Main Channel Ribb RM	8cm	TSA	Labeobarbus	257	262	<u>M</u>	
Main Channel Ribb RM	8cm	TSA	Labeobarbus	261	275	<u>F</u>	11
Main Channel Ribb RM Main Channel Ribb RM	8cm	TSA	Labeobarbus	<u> 2</u> 51	242	F	V

•

Site	Mesh size	Species	Genus	L	<u>w_</u>	Sex	Mat Stag
Main Channel Ribb RM	6cm	TSA	Labeobarbus	314	501	F	V
Main Channel Ribb RM	6cm	TSA	Labeobarbus	262	278	 F	
Main Channel Ribb RM	8cm	TSA	Labeobarbus	245	224	м	
Main Channel Ribb RM	8cm	TSA	Labeobarbus	318	522	F_	
Main Channel Ribb RM	8cm	TSA	Labeobarbus	285	366	F	
Main Channel Ribb RM	8cm	TSA	Labeobarbus	280	345	M	11
Main Channel Ribb RM	8cm	TSA	Labeobarbus	240	209	F	
Main Channel Ribb RM	8cm	TSA	Labeobarbus	288	378	F	I
Main Channel Ribb RM	10cm	TSA	Labeobarbus	375	891	F_	V
Main channel Bahir Dar-Gondar Bridge	6CM	BRE	Labeobarbus	210	125	F	VI
Main Channel Bahir Dar-Gondar Bridge	12CM	CLA	Clarias	718	2270	M	
Main Channel Bahir Dar-Gondar Bridge	8CM		Clarias	457	550	F	V
Main Channel Bahir Dar-Gondar Bridge	8CM	CLA	Clarias	480	710	м	_
Main Channel Bahir Dar-Gondar Bridge	6CM	CLA	Clarias	391	295	M	I
Main channel Bahir Dar-Gondar Bridge	10CM	MEG	Labeobarbus	419	710	м	VI
Main channel Bahir Dar-Gondar Bridge	10CM	MEG	Labeobarbus	380	555	F	VI
Main channel Bahir Dar-Gondar Bridge	10CM	MEG	Labeobarbus	417	765	F	VII
Main channel Bahir Dar-Gondar Bridge	8CM	MEG	Labeobarbus	369	465	м	VI
Main channel Bahir Dar-Gondar Bridge	10CM	TSA	Labeobarbus	352	525	 F	
Barya River	6CM	BES	Varicorhinus	220	151	 F	111
Barya River	Cast net	BES	Varicorhinus	92		M	11
Barya River	Cast net	BES	Varicorhinus	96			
Barya River	Cast net	BES	Varicorhinus	103			
Barya River	Cast net	BES	Varicorhinus	168	45	м	IV
Barya River	Cast net	BES	Varicorhinus	111	25		
Barya River	6cm	BES	Varicorhinus	234	280	F	
Barya River	cast net	BRE	Labeobarbus	179	100	 M	VI
Barya River	Cast net	BRE	Labeobarbus	197	95		
Barya River	cast net	BRE	Labeobarbus	209	100	 F	
Barya River	Cast net	BRE	Labeobarbus	207	120	 M	
Barya River	cast net	BRE	Labeobarbus	178	80	 M	<u>vi</u>
Barya River	Cast net	BRE	Labeobarbus	<u>1,6</u>	85	 M	
	cast net	BRE	Labeobarbus	187	105		
Barya River	Cast net	BRE	Labeobarbus	191	85	M	VI
Barya River		BRE	Labeobarbus	176	75	 M	VI
Barya River	<u>cast net</u>	BRE		193	80		 VI
Barya River	Cast net		Labeobarbus		<u>80</u> 50		V
Barya River	<u>cast net</u>	BRE	Labeobarbus	155		 	
Barya River	Cast net	BRE	Labeobarbus	120	<u>10</u>		
Barya River	cast net	BRE	Labeobarbus	119	30	_ <u>M</u>	
Barya River	Cast net	BRE	Labeobarbus	104		<u>M</u> _	1
Barya River	cast net	BRE	Labeobarbus	203	105	F	<u> V</u> V
Barya River	Cast net	BRE	Labeobarbus		100	<u>M</u>	 VI
Barya River	cast net	BRE	Labeobarbus	208	100_	<u>M</u> F	 VI
Barya River	Cast net	BRE	Labeobarbus	221	145		V
Barya River	<u>cast net</u>	BRE	Labeobarbus	224	<u>125</u>	<u>M</u> _	 VI
Barya River	Cast net	BRE	Labeobarbus	239	155	F	 VI
Barya River	cast net	BRE	Labeobarbus	216	120	F	V
Barya River	Cast net	BRE	Labeobarbus		120	F	
Barya River	Cast_net	BRE	Labeobarbus	180	70	<u>M</u>	V
Barya River	Cast net	BRE	Labeobarbus	<u>243</u>	155	<u>M</u>	V
Barya River	Cast net	BRE	Labeobarbus	240	165	<u>M</u>	V
Barya River	Cast net	BRE	Labeobarbus	213	115	F	VI

•

.

٠

- .

Site	Mesh size	Specie <u>s</u>	Genus	L	<u>w</u>	Sex	Mat. Stage
Barya River	Cast net	BRE	Labeobarbus	194	70	М	VI
Barya River	Cast net	BRE	Labeobarbus	187	75	М	VI
Barya River	Cast net	BRE	Labeobarbus	216	105	F	VI
Barya River	6cm	BRE	Labeobarbus	216	95	F	VI
Barya River	6cm	BRE	Labeobarbus	208	95	F	VI
Barya River	6cm	BRE_	Labeobarb <u>us</u>	229	140		VI
Barya River	6CM	CLA	Clarias	432		М	
Barya River	12CM	CLA	Clarias	588	<u>1160</u>	M	IV
Barya River	<u>10Cm</u>	CLA	Clarias	561	980	М	IV
Barya River	Cast net	DEG	Barbus	246	200	M	IV
Barya River	Cast net	GON	Labeobarbus	337	<u> 5</u> 10	F	VI
Barya River	cast net	GON	Labeobarbus	394	935	F	VI
Barya River	cast net	GON	Labeobarbus	271	290	F	VI
Barya River	Cast net	GON	Labeobarbus	296	355	M	VI
Barya River	Cast net	GON	Labeobarbus	408	890	F	VI
Barya River	6CM	INT	Labeobarbus	251		F	VI
Barya River	6CM	INT	Labeobarbus	222		М	VI
Barya River	cast net	INT	Labeobarbus	96			
Barya River	cast net	INT	Labeobarbus	104			
Barya River	Cast net	INT	Labeobarbus	244	190		
Barya River	Cast net	INT	Labeobarbus	260	235	F	VI
Barya River	Cast net	INT	Labeobarbus	252	200	M	VI
Barya River	Cast net	INT	Labeobarbus	269	245	 M	VI
Barya River	Cast net		Labeobarbus	284	280	 M	<u>vi</u>
Barya River	Cast net	INT	Labeobarbus	249	150	 F	
Barya River	Cast net		Labeobarbus	253	220	 F	VI
Barya River	Cast net		Labeobarbus	286	180	 F	
Barya River	Cast net		Labeobarbus	119	100		
Barya River	Cast net		Labeobarbus	265	245		VI
Barya River	Cast net		Labeobarbus	205			
Barya River	Cast net	 INT			175	<u>_</u>	VI
Barya River	Cast net	INT	Labeobarbus	107	120		
Barya River			Labeobarbus	108			
Barya River	Cast net Cast net		Labeobarbus	290	300	<u>M</u>	<u>VI</u>
			Labeobarbus	334	560	F	<u></u>
Barya River	Cast net		Labeobarbus	266	240	M	
Barya River	Cast net		Labeobarbus	322	457	F	VI
Barya River	Cast net	INT	Labeobarbus	235	90	M	VI
Barya River	Cast net		Labeobarbus	110			
Barya River	10CM	MEG	Labeobarbus	390		F	VI
Barya River	10CM	MEG	Labeobarbus	372		F	VI
Barya River	10CM	MEG	Labeobarbus	400		F	VII
Barya River	10CM	MEG	Labeobarbus	381		M	VI
Barya River	10CM	MEG	Labeobarbus	353		F	VI
Barya River	<u>10CM</u>	MEG	Labeobarbus	425		F	<u></u>
Barya River	<u>10CM</u>	MEG	Labeobarbus	363		<u>M</u>	VI
Barya River	<u>10CM</u>	MEG	Labeobarbus	401		M	VI
Barya River	<u>10CM</u>	MEG	Labeobarbus	379		<u>F</u>	VI
Barya River	<u>10CM</u>	MEG	Labeobarbus	380		F	VI
Barya River	10CM	MEG	Labeobarbus	392		<u> </u>	VI
Barya River	<u>10CM</u>	MEG	Labeobarbus	340		<u> </u>	VI
Barya River	<u>10CM</u>	MEG	Labeobarbus	380		F	VI
Barya River	6CM	MEG	Labeobarbus	254		<u>M</u>	
Barya River	Cast net	MEG	Labeobarbus	305	240	М	VI

••

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Barya River	10Cm	MEG	Labeobarbus	400	670	F	<u>VI</u>
Barya River	10CM	NED	Labeobarbus	281		F	111
Barya River	Cast net	NED	Labeobarbus	134	30		
Barya River	Cast net	NED	Labeobarbus	_285	300	M	VI
Barya River	12CM	TSA	Labeobarbus	348	730	<u> </u>	V
Main channel Broken Bridge	Cast net	BES	Varicorhinus	292	345	F	
Main channel Broken Bridge	Cast_net	BRE	Labeobarbus	112	20		
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	112	25		
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	104	20		
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	102	<u> 15 </u>		
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	170	65	M	((
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	169	60	<u>M</u>	VI
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	215	115	F	VI
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	185	90	<u>M</u>	VI
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	182	95	М	VI
Main channel Broken Bridge	6cm	BRE	Labeobarbus	240	145	F	VI
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	253	200	F	VI
Main channel Broken Bridge	Cast net	BRE	Labeobarbus	200	85	F	VI
Main channel Broken Bridge	6cm	CLA	Clarias	399	285		
Main channel Broken Bridge	6cm	CLA	Clarias	403	375	F	- (
Main channel Broken Bridge	12CM	GON	Labeobarbus	403	1085	F	VI
Main channel Broken Bridge	12CM	GON	Labeobarbus	422	975	F	VI
Main channel Broken Bridge	Cast net	INT	Labeobarbus	271	260	M	VI
Main channel Broken Bridge	Cast net	INT	Labeobarbus	295	290	M	
Main channel Broken Bridge	Cast net	INT	Labeobarbus	157	<u></u>	 F	
Main channel Broken Bridge	Cast net	INT	Labeobarbus	111		 M	 !I
Main channel Broken Bridge	8cm	INT	Labeobarbus	260	240	 F	 II
Main channel Broken Bridge	8cm	INT	Labeobarbus	256	240	 F	<u>_''</u>
Main channel Broken Bridge	Cast net	INT	Labeobarbus	385	720	 M	VI
Main channel Broken Bridge	003(110)	NED	Labeobarbus	563	2880	 F	VI
Main channel Broken Bridge	Cast net	NED	Labeobarbus	279	265	 	
Main channel Broken Bridge	Cast net	NED	Labeobarbus	204	_ <u>203</u> 120	 	
¥		TRU		<u>204</u> 199	80	 F	 III
Main channel Broken Bridge	<u>Cast net</u>		Labeobarbus			 F	
Main channel Broken Bridge	Cast net	TSA	Labeobarbus	276	255		<u></u>
Chibirna River	Cast net	BES	Varicorhinus	145		<u>M</u> _	
Chibirna River	Cast net	BES	Varicorhinus	227			<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	134		<u>M</u>	
Chibirna River	Cast net	BES	Varicorhinus	132		<u>M</u>	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	115		<u>M</u>	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	152		<u> </u>	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	110		<u>M</u>	
Chibirna River	Cast net	BES	Varicorhinus	114		<u> </u>	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	140		<u>M</u>	
Chibirna River	Cast net	BES	Varicorhinus	195		<u> </u>	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	224		F	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	150		<u>M</u>	<u>IV</u>
Chibirna River	Cast net	BES	Varicorhinus	120		<u>M</u>	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	157		<u>M</u>	<u> 1V</u>
Chibirna River	Cast net	BES	Varicorhinus	125		<u>M</u>	IV
Chibirna River	Cast net	BES	Varicorhinus	115		<u>M</u>	<u> </u>
Chibirna River	Cast net	BES	Varicorhinus	140		<u> </u>	
Chibirna River	Cast net	BES	Varicorhinus	184		<u>M</u>	IV
Chibirna River	Cast net	BES	Varicorhinus	278		F	١V

~

-

э

*

Site	Mesh size	Species	Genus	L	W Sex	Mat. Stage
Chibima River	Cast net	BRE	Labeobarbus	190	F	VI
Chibima River	Cast net	BRE	Labeobarbus	170_	М	VI_
Chibirna River	Cast net	BRE	Labeobarbus	194	M	<u></u>
Chibima River	Cast net	BRE	Labeobarbus	219	F	VI
Chibima River	Cast net	BRE	Labeobarbus	206	F	VI
Chibirna <u>River</u>	Cast net	BRE	Labeobarbus	196	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	166	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	167	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	163	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	185	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	186	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	192	F	VI
Chibirna River	Cast net	BRE	Labeobarbus	204	F	VI
Chibirna River	Cast net	BRE	Labeobarbus	161	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	184	M	
Chibirna River	Cast net	BRE	Labeobarbus	166	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	197		VI
Chibirna River	Cast net	BRE	Labeobarbus	170		VI
Chibirna River	Cast net	BRE	Labeobarbus	178	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	180	M	VI
Chibima River	Cast net	BRE	Labeobarbus	162	M	
Chibirna River	Cast net	BRE	Labeobarbus	214	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	152	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	190	<u>M</u>	 VI
Chibirna River	Cast net	BRE	Labeobarbus	162	<u>M</u>	<u>vi</u>
Chibirna River	Cast net	BRE	Labeobarbus	<u>186</u>	M	
Chibima River	Cast net	BRE	Labeobarbus	165	M	
Chibirna River	Cast net	BRE	Labeobarbus	186	M	VI
Chibirna River	Cast net	BRE	Labeobarbus	243	 F	V
Chibirna River	Cast net	BRE	Labeobarbus	243	F	VI
Chibirna River	Cast net	BRE	Labeobarbus	220	F	
Chibirna River	Cast net	BRE	Labeobarbus	197	F	<u>vi</u>
Chibima River	Cast net	BRE BRE	Labeobarbus	204		
Chibirna River		BRE			<u>F</u>	
Chibirna River	Cast net		Labeobarbus	243	<u>F</u>	<u> </u>
Chibima River	Cast net	BRE	Labeobarbus	200	F	
Chibirna River	Cast net	BRE	Labeobarbus	197	<u>M</u>	<u>VI</u>
Chibirna River	Cast net	BRE	Labeobarbus	208	F	VI
Chibirna River	Cast net	BRE	Labeobarbus	170	<u>M</u>	VI
Chibima River	Cast net	BRE	Labeobarbus	190	<u>M</u>	
	Cast net	BRE	Labeobarbus	220	<u>F</u>	VI
Chibirna River	Cast net	BRE	Labeobarbus	177	M	
Chibirna River	Cast net	BRE	Labeobarbus	176	M	VI
Chibima River	Cast net	BRE	Labeobarbus		<u>M</u>	<u>VI</u>
Chibirna River	Cast net	BRE	Labeobarbus	206	<u>M</u>	VI
Chibirna River	Cast net	BRE	Labeobarbus	290	<u>M</u>	VI
Chibirna River	Cast net	BRE	Labeobarbus	175	<u>M</u>	<u></u>
Chibirna River	Cast net	BRE	Labeobarbus	<u> </u>	<u>M</u>	Vì
Chibirna River	Cast net	BRE	Labeobarbus	<u> 195 </u>	<u>M</u>	<u>VI</u>
Chibirna River	Cast net	BRE	Labeobarbus	162	<u>M</u>	VI
Chibirna River Chibirna River	Cast net	BRE	Labeobarbus	<u> </u>	<u>M</u>	VI
Chibima River	Cast net Cast net	BRE BRE	Labeobarbus	<u>191</u>	M	<u></u>
			Labeobarbus	176	M	VI

÷

Site	Mesh size	Species	Genus	٤	w	Sex	Mat. Stage
Chibirna River	Cast net	BRE	Labeobarbus	190		м	
Chibirna River	Cast net	BRE	Labeobarbus	152		M	
Chibirna River	Cast net	BRE	Labeobarbus	182			VI
Chibirna River	Cast net	BRE	Labeobarbus	165			VI
Chibirna River	Cast net	BRE	Labeobarbus	163		M	
Chibirna River	Cast net	BRE	Labeobarbus	132		M	VI
Chibirna River	Cast net	BRE_	Labeobarbus	163		М	
Chibirna River	Cast net	BRE	Labeobarbus	155		M	
Chibima River	Cast net	BRE	Labeobarbus	185		м	VI
Chibirna River	Cast net	BRE	Labeobarbus	217		 F	m
Chibirna River	Cast net	BRE	Labeobarbus	180		M	VI
Chibirna River	Cast net	BRE	Labeobarbus	137		м	VI
Chibirna River	Cast net	BRE	Labeobarbus	157		M	 VI
Chibirna River	Cast net	BRE	Labeobarbus	172		м	
Chibirna River	Cast net	BRE	Labeobarbus	201	·	F	
Chibirna River	Cast net	BRE	Labeobarbus	211		 F	
Chibirna River	Cast net	BRE	Labeobarbus	<u>211</u> 197		 F	<u></u>
Chibirna River	Cast net	BRE	Labeobarbus	<u>107</u> 197		 м	 VI
Chibirna River	Cast net	BRE	Labeobarbus	189		 F	
Chibirna River	Cast net	BRE	Labeobarbus	<u>109</u> _ 195		 M	
Chibirna River	Cast net	BRE	Labeobarbus	163		_	
Chibirna River	Cast net	BRE	Labeobarbus	199		<u>M</u> F	<u>vi</u>
Chibirna River	Cast net	BRE					
Chibirna River			Labeobarbus	201			<u></u>
	Cast net	BRE	Labeobarbus	212		F	VI
Chibirna River	Cast net	BRE	Labeobarbus	204		F	<u>VI</u>
Chibima River	Cast net	BRE	Labeobarbus	225			<u>VI</u>
Chibima River	Cast net	BRE	Labeobarbus	216			VI
Chibirna River	Cast net	BRE	Labeobarbus	<u>170</u>		<u>M</u>	VI
Chibirna River	Cast net	BRE	Labeobarbus	191		<u>M</u>	VI
Chibirna River	Cast net	BRE	Labeobarbus	159		М	
Chibirna River	Cast net	BRE	Labeobarbus	148		M	VI
Chibirna River	Cast net	BRE	Labeobarbus	203		M	VI
Chibirna River	Cast net	BRE	Labeobarbus	175		<u> </u>	VI
Chibirna River	Cast net	BRE	Labeobarbus	164		M	
Chibirna River	Cast net	BRE	Labeobarbus	173		М	VI
Chibirna River	Cast net	BRE	Labeobarbus	169	· · · ·	М	VI
Chibirna River	Cast net	BRE	Labeobarbus	179		<u>M</u>	VI
Chibirna River	Cast net	CLA	Clarias	381		<u>M</u>	1
Chibirna River	Cast net	CLA	Clarias	394		M	
Chibirna River	Cast net	GAR	Garra	119		F	<u>_IV</u>
Chibirna River	Cast net	GAR	Garra	114		М	
Chibirna River	Cast net	GAR	Garra	120		<u>F</u>	IV
Chibirna River	Cast net	GAR	Garra	100		_ <u>M</u>	II
Chibirna River	Cast net	GAR	Garra	124		F	IV
Chibirna River	Cast net	GON	Labeobarbus	314	505	F_	VI
Chibirna River	10cm	GON	Labeobarbus	330	505	F	
Chibirna River	Cast net	INT	Labeobarbus	185		Μ	VI
Chibirna River	Cast net		Labeobarbus	200		<u>M</u>	VI
Chibirna River	Cast net		Labeobarbus	130		М	111
Chibima River	Cast net		Labeobarbus	146		М	
Chibirna River	Cast net	INT	Labeobarbus	115		M	II
Chibirna River	Cast net		Labeobarbus	272		F_	VI
Chibirna River	Cast net	INT	Labeobarbus	166		м	VI

.

.

-

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Chibirna River	Cast net		Labeobarbus	171		<u>M</u>	II
Chibirna River	Cast net	INT	Labeobarbus	200		F	H
Chibirna River	Cast net	INT	Labeobarbus	136		Μ	11
Chibirna River	Cast net	INT	Labeo <u>barbus</u>	164		F	
Chibirna River	Cast net	MEG	Labeobarbus	378	600	F	VI
Chibima River	Cast net	TIL	Oreochromis	193		M	
Chibirna River	Cast net	TIL	Oreochromis	235			III
Chibirna River	Cast net	TIL	Oreochromis	173	_	M	IV
Chibirna River	Cast net	TIL	Oreochromis	260		F	Ш
Chibirna River	Cast net	TIL	Oreochromis	174		F	111
Chibima River	Cast net	TIL	Oreochromis	196		М	111
Chibirna River	Cast net	TIL	Oreochromis	256		F	ш
Chibirna River	Cast net	TIL	Oreochromis	253		м	IV
Chibirna River	Cast net	TRU	Labeobarbus	358	655	м	VI
Chibirna River	Cast net	TRU	Labeobarbus	311	440	м	VI
Chibirna River	6cm	TRU	Labeobarbus	241	190	M	VI
Chibirna River	6CM	BES	Varicorhinus	200	132		
Chibirna River	6CM	BRE	Labeobarbus	190			VI
Chibirna River	6CM	BRE	Labeobarbus	121		F	VII
Chibima River	6CM	BRE	Labeobarbus	193		M	VI
Chibirna River	6CM	BRE	Labeobarbus	185		M	
Chibirna River	10CM	CLA	Clarias	420		 M	<u>.</u>
Chibirna River	6CM	INT	Labeobarbus	135		 F	
Chibirna River	6CM		Labeobarbus	275		<u>,</u> М	VI
Chibirna River	Cast net	 INT	Labeobarbus	435		 F	
Chibirna River	Cast net		Labeobarbus	346		<u>'</u> M	
Chibirna River	Cast net		Labeobarbus	321		 F	
Chibirna River	00000000	MEG	Labeobarbus	470		 F	VI
Chibima River	Cast net	NED	Labeobarbus	331		 F	<u>vi</u>
Chibirna River	6CM	TRU	Labeobarbus	230		 F	
Chibirna River	Cast net						
Hamus River	Cast net		Labeobarbus	325		<u></u>	<u></u>
Hamus River		BES	_Varicorhinus	134	25	F	
	Cast net	BES	Varicorhinus	147	35	F	
Hamus River	Cast net	BES	Varicorhinus	135	25	<u>M</u>	
Hamus River	Cast net	BES	Varicorhinus	117	20	<u>M</u>	<u> </u>
Hamus River	Cast net	BES	Varicorhinus	91	10		
Hamus River	Cast net	BES	Varicorhinus	95	10		
Hamus River	Cast net	BES	Varicorhinus	125	30	<u>M</u>	
Hamus River	Cast net	BES	Varicorhinus	140	35	<u>M</u>	[]]
Hamus River	Cast net	BES	Varicorhinus	125	35	M	IV
Hamus River	Cast net	BES	Varicorhinus	140	35	<u>M</u>	11
Hamus River	Cast net	BES	Varicorhinus	142	40	<u>M</u>	<u>IV</u>
Hamus River	Cast net	BES	Varicorhinus	95	19187	<u>M</u>	11
Hamus River	Cast net	BES	Varicorhinus	146	50	_ <u>M</u>	
Hamus River	Cast_net	BRE	Labeobarbus	210	120	M	VI
Hamus River	Cast net	BRE	Labeobarbus	105	10		
Hamus River	Cast net	BRE	Labeobarbus	114	10		
Hamus River	Cast net	BRE	Labeobarbus	149	50	M	VI
Hamus River	Cast net	BRE	Labeobarbus	245	175	<u>M</u>	VI
Hamus River	<u> </u>	BRE	Labeobarbus	193	70	<u>M</u>	VI
Hamus River	Cast_net	BRE	Labeobarbus	<u>16</u> 5	55	_M	VI
Hamus River	Cast net	BRE	Labeobarbus	307	90		VI
Hamus River	Cast net	BRE	Labeobarbus	155	50	м	VI

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Hamus River	Cast net	BRE	Labeobarbus	186	70		VI
Hamus River	Cast net	BRE	Labeobarbus	175	60	 F	
Hamus River	Cast net	BRE	Labeobarbus	162	45	M	VI
Hamus River	Cast net	BRE	Labeobarbus	155	40	 M	
Hamus River	Cast net	BRE	Labeobarbus	211	100	 M	
Hamus River	Cast net	BRE	Labeobarbus	235	170	 M	
Hamus River	Cast net	BRE	Labeobarbus	196	70	 M	
Hamus River	Cast net	BRE	Labeobarbus	168	45	M	
Hamus River	Cast net	BRE	Labeobarbus	<u>194</u>	70		VI
Hamus River	Cast net	BRE	Labeobarbus	202	90	F	
Hamus Ríver	Cast net	BRE	Labeobarbus	183			
Hamus River	Cast net	BRE	Labeobarbus		55	<u>M</u>	<u></u>
Hamus River	Cast net	BRE		<u>170</u>	60	<u>M</u>	<u></u> VI
Hamus River	Cast net	BRE	Labeobarbus	210	110		VI
Hamus River	Cast net	BRE	Labeobarbus	221	140	<u>M</u>	VI
Hamus River			Labeobarbus	226	115	F	VI
Hamus River	Cast net	BRE	Labeobarbus	161	110	<u>M</u>	VI
Hamus River	Cast net	BRE	Labeobarbus	208	50	<u>M</u>	VI
Hamus River	Cast net	BRE	Labeobarbus	165	60	<u>M</u>	
	Cast net	BRE	Labeobarbus	100	8460	M	11
Hamus River	Cast net	GAR	Garra	131_	20	<u>M</u>	١V
Hamus River	Cast net	GON	Labeobarbus	327	480	F	VI
Hamus River	Cast net	GON	Labeobarbus	325	520	F	VI
Hamus River	Cast net	GON	Labeobarbus	320	400	<u>M</u>	VI
Hamus River	Cast net	GON	Labeobarbus	375	730	<u> </u>	VI_
Hamus River	Cast net		Labeobarbus	319	360	F	VI
Hamus River	Cast net	<u>int</u>	Labeobarbus	257	220	F	<u></u>
Hamus River	Cast net		Labeobarbus	255	175		<u></u> VI
Hamus River	Cast net	INT	Labeobarbus	173	40	<u>M</u>	
Hamus River	Cast net		Labeobarbus	180	65	Μ	VI
Hamus River	Cast net	INT	Labeobarbus	120	25		
Hamus River	Cast net	INT	Labeobarbus	155	45	F	<u> </u>
Hamus River	Cast net		Labeobarbus	120	15		
Hamus River	Cast net	INT	Labeobarbus	95	10		
Hamus River	Cast net	INT	Labeobarbus	265	255	М	VI
Hamus River	Cast net	INT	Labeobarbus	295	330	M	VI
Hamus River	Cast net	INT	Labeobarbus	254	210	М	Vł
Hamus River	Cast net	INT	Labeobarbus	235	135		VI
Hamus River	Cast net	INT	Labeobarbus	321	435	M	VI
Hamus River	Cast net	INT	Labeobarbus	280	310	F	
Hamus River	Cast net	INT	Labeobarbus	276	245	M	VI
Hamus River	Cast net	INT	Labeobarbus	246	180	м	VI
Hamus River	Cast net	INT	Labeobarbus	280	315	M	Vi
Hamus River	Cast net	INT	Labeobarbus	309	445	M	
Hamus River	Cast net	MEG	Labeobarbus	355	495	 M	
Hamus River	Cast net	MEG	Labeobarbus	293	255	 M	VI
Hamus River	Cast net	MEG	Labeobarbus	314	245	M	VI
Hamus River	Cast net	MEG	Labeobarbus	549	405	M	 VI
Hamus River	Cast net	NED	Labeobarbus	314	<u>400</u> 670	 F	 VI
Hamus River	Cast net	NED	Labeobarbus	213	105	 F	
Hamus River	Cast net	NED	Labeobarbus	175	65	 M	<u> </u>
Hamus River	Cast net	NED	Labeobarbus	177	70	 M	<u> </u>
Hamus River	Cast net	NED	Labeobarbus	203	90	F	11

•

-

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Hamus River	Cast net	NED	Labeobarbus	213	120	М	VI
Hamus River	Cast net	NED	Labeobarbus	225	270	М	VI
Hamus River	Cast net	TRU	Labeobarbus	<u>34</u> 0	460	M	VI
Hamus River	Cast net	TRU	Labeobarbus	294	330	М	VI
Hamus River	Cast net	TRU	Labeobarbus	250	155	M	
Hamus River	Cast net	TRU	Labeobarbus	214	90_	<u>M</u> _	VI
Hamus River	Cast net	TRU	Labeobarbus	232	135	M	VI
Hamus River	Cast net	TSA	Labeobarbus	270	270	<u>M</u>	VI
Hamus River	Cast net	NED	Labeobarbus	253	195	F	Ш
Keha River	Cast net	BES	Varicorhinus	150	55	М	П
Keha River	Cast net	BES	Varicorhinus	126		м	١V
Keha River	Cast net	BRE	Labeobarbus	196	115	 M	111
Keha River	Cast net	BRE	Labeobarbus	220	120	F	VI
Keha River	Cast net	BRE	Labeobarbus	198	85	F	
Keha River	Cast net	BRE	Labeobarbus	190	70	м	VI
Keha River	Cast net	BRE	Labeobarbus	188	50	м	VI
Keha River	Cast net	BRE	Labeobarbus	178	55	M	VI
Keha River	Cast net	BRE	Labeobarbus	169	50	M	VI
Keha River	Cast net	BRE	Labeobarbus	190	60	M	VI
Keha River	Cast net	BRE	Labeobarbus	182	<u>60</u>	 M	VI
	Cast net	BRE	Labeobarbus	175	65	м	VI
Keha River	Cast net	BRE	Labeobarbus	166	50	M	VI
Keha River	Cast net	BRE	Labeobarbus	165	55	M	
Keha River		BRE		168	30		
Keha River	Cast net		Labeobarbus			<u>M</u>	<u>VI</u>
Keha River	Cast net	BRE	Labeobarbus	<u>174</u>	60	<u>M</u>	
Keha River	Cast net	BRE	Labeobarbus	95		<u>M</u>	
Keha River	Cast net	BRE	Labeobarbus	102		<u>M_</u>	<u> </u>
Keha River	Cast net	BRE	Labeobarbus	103		<u>X</u>	<u> </u>
Keha River	Cast net	BRE	Labeobarbus	134	20	<u>M</u>	<u></u>
Keha River	Cast net	BRE	Labeobarbus	107	15	<u>M</u>	<u> </u>
Keha River	Cast net	BRE	Labeobarbus	187	60	<u>M</u>	<u></u>
Keha River	Cast net	BRE	Labeobarbus	235	135	F	
Keha River	Cast net	BRE	Labeobarbus	297	75	<u>M</u>	
Keha River	Cast net	BRE	Labeobarbus	189	65	M	<u></u>
Keha River	Cast net	BRE	Labeobarbus	220	100	F	VI
Keha River	Cast net	BRE	Labeobarbus	185	60	M	<u>V</u>
Keha River	Cast net	BRE	Labeobarbus	213		M	VI
Keha River	<u>Cast net</u>	BRE	Labeobarbus	234		F	<u>vi</u>
Keha River	Cast net	BRE	Labeobarbus	204		F	
Keha River	Cast net	BRE	Labeobarbus	198		M	VI
Keha River	Cast net	BRE	Labeobarbus	194		M	VI
Keha River	Cast net	BRE	Labeobarbus	237		M	VI
Keha River	Cast net	BRE	Labeobarbus	209		M	VI
Keha River	Cast net	BRE	Labeobarbus	17 <u>5</u>		M	VI
Keha River	Cast net	BRE	Labeobarbus	199		M	VI
Keha River	Cast net	BRE	Labeobarbus	213			VI
Keha River	Cast net	BRE	Labeobarbus	206		M	VI
Keha River	Cast net	BRE	Labeobarbus	205		F	VI
Keha River	Cast net	BRE	Labeobarbus	174		<u>M</u>	VI
Keha River	Cast net	BRE	Labeobarbus	180		<u>M</u>	
Keha River	Cast net	BRE	Labeobarbus	198		M	VI
Keha River	Cast net	BRE	Labeobarbus	189		М	VI
Keha River	Cast net	BRE	Labeobarbus	199		М	VI

Site	Mesh size	Species	Genus	LW	Sex	Mat. Stage
Keha River	Cast net	BRE	Labeobarbus	198	M	
Keha River	Cast net	BRE	Labeobarbus	202	M	
Keha River	Cast net	BRE	Labeobarbus	194	M	VI
Keha River	Cast_net	BRE	Labeobarbus	193		VI
Keha River	Cast net	BRE	Labeobarbus	217	м	VI
Keha <u>Rive</u> r	Cast net	BRE	Labeobarbus	195	M	
Keha River	Cast net	BRE	Labeobarbus	164	М	
Keha River	Cast net	BRE	Labeobarbus	204	F	VI
Keha River	Cast net	BRE	Labeobarbus	185	М	VI
Keha River	Cast net	BRE	Labeobarbus	232	 F	VI
Keha River	Cast net	BRE	Labeobarbus	209	M	VI
Keha River	Cast net	BRE	Labeobarbus	214	 M	<u>.</u>
Keha River	Cast net	BRE	Labeobarbus	157	M	<u>_</u>
Keha River	Cast net	BRE	Labeobarbus	185	M	<u></u>
Keha River	Cast net	BRE	Labeobarbus	200	M	<u>vi</u>
Keha River	Cast net	BRE	Labeobarbus	182	M	
Keha River	Cast net	BRE	Labeobarbus	196	 M	
Keha River	Cast net		Labeobarbus	<u>190</u> 162	<u>M</u>	
Keha River		BRE				
	Cast net	BRE	Labeobarbus	201	<u>M</u>	<u>VI</u>
Keha River	Cast net	BRE	Labeobarbus		<u>M</u>	<u></u>
Keha River	Cast net	BRE	_Labeobarbus	214	<u>M</u>	<u></u>
Keha River	Cast net	BRE	Labeobarbus	187	<u>M</u>	<u></u>
Keha River	Cast net	BRE	Labeobarbus	157	<u>M</u>	
Keha River	Cast net	BRE	Labeobarbus	218	<u>M</u>	<u></u>
Keha River	Cast net	BRE	Labeobarbus		<u>F</u>	<u>VI</u>
Keha River	<u>Cast net</u>	BRE	Labeobarbus	185	<u>M</u>	<u></u>
Keha River	Cast net	BRE	Labeobarbus	185	F	
Keha River	Cast net	BRE	Labeobarbus	197	F	
Keha River	Cast net	BRE	Labeobarbus	218	F	<u></u>
Keha River	Cast net	BRE	Labeobarbus	117	<u> </u>	(
Keha River	Cast net	BRE	Labeobarbus	129	M	VI
Keha River	Cast net	BRE	Labeobarbus	210	F	<u></u>
Keha River	Cast net	BRE	Labeobarbus	214	F	VI
Keha River	Cast net	BRE	Labeobarbus	163	M	VI
Keha River	Cast net	BRE	Labeobarbus	93		
Keha River	Cast net	BRE	Labeobarbus	192	<u>M_</u>	VI
Keha River	Cast net	BRE	Labeobarbus	185	М	<u>VI</u>
Keha River	Cast net	BRE	Labeobarbus	273	M	<u></u>
Keha River	Cast net	BRE	Labeobarbus	186	M	VI
Keha River	Cast net	BRE	Labeobarbus	179	M	VI
Keha River	Cast net	BRE	Labeobarbus	203	M	VI
Keha River	Cast net	BRE	Labeobarbus	189	M	<u>VI</u>
Keha River	Cast net	BRE	Labeobarbus	182	M	<u></u> VI
Keha River	Cast net	BRE	Labeobarbus	202	M	VI
Keha River	Cast net	BRE	Labeobarbus	186	M	VI
Keha River	Cast net	BRE	Labeobarbus	132	M	VI
Keha River	Cast net	BRE	Labeobarbus	162	M	VI
Keha River	Cast net	BRE	Labeobarbus	206	M	<u></u>
Keha River	Cast net	BRE	Labeobarbus	157	M	VI
Keha River	Cast net	BRE	Labeobarbus	207	м	VI
Keha River	Cast net	BRE	Labeobarbus	190	М	VI
Keha River	Cast net	BRE	Labeobarbus	203	F	VI
Keha River	Cast net	BRE	Labeobarbus	107		

-

.

÷

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
 Keha River	Cast net	BRE	Labeobarbus	159		<u>M</u>	VI
Keha River	Cast net	BRE	Labeobarbus	173_		<u>M</u>	VI_
Keha River	Cast net	BRE	Labeobarbus	193_		М	<u></u>
Keha River	Cast net	BRE	Labeobarbus	163		м	VI
Keha River	Cast net	BRE	Labeobarbus	187		м	VI
Keha River	Cast net	BRE	Labeobarbus	220		F	VI
Keha River	Cast net	BRE	Labeobarbus	169		м	VI
Keha River	Cast net	BRE	Labeobarbus	221		M	VI
Keha River	Cast net	BRE	Labeobarbus	180		м	VI
Keha River	Cast net	CLA	Clarias	283	165	м	
Keha River	Cast net		Clarias	442	455	M	IV
	Cast net	CLA	Clarias	452	550	M	IV
Keha River	10Cm	CLA	Clarias	537	935	F	V
Keha River	<u>10Cm</u>		Labeobarbus	306	535	F	
Keha River			Labeobarbus	315	575	F	<u></u>
Keha River	<u>10Cm</u>		Labeobarbus	329	<u>635</u>	 F	
Keha River	10Cm Cast net	INT	Labeobarbus	244	200	' F	
Keha River			Labeobarbus	244	200	 F	
Keha River	Cast net			120	200	M	
Keha River	Cast net		Labeobarbus			X	X
Keha River	Cast net		Labeobarbus	142			^
Keha River	Scoop net	MEG	Labeobarbus	449	1120		
Keha River	Cast net	MEG	Labeobarbus	424	830	<u>F</u>	<u>VI</u>
Keha River	Cast net	MEG	Labeobarbus	370	540_	F	<u>VI</u>
Keha River	Cast net	MEG	Labeobarbus	330	385	<u>M</u> _	<u></u>
Keha River	10Cm	MEG	Labeobarbus	380	625	F	<u></u>
Keha River	10Cm	NED	Labeobarbus	264			<u> </u>
Keha River	10Cm	NED	Labeobarbus	330	690	<u>F</u>	VI
Keha River	8cm	NED	Labeobarbus	281	335	F	
Keha River	8cm	NED	Labeobarbus	271	340	F	VI
Keha River	Cast net	NED	Labeobarbus	304	395	М	
Keha River	Cast net	NED	Labeobarbus	130		M	VI
Keha River	Cast net	TSA	Labeobarbus	215	100	F	
Keha River	Cast net	TSA	Labeobarbus	234		F	<u></u> VI
Kirarign River	6cm	BRE	Labeobarbus	224	135	F	<u></u>
Kirangn River	<u>6cm</u>	BRE	Labeobarbus	216	120_	F	VI
Kirarign River	Cast net	BRE	Labeobarbus	156		М	Vł
Kirarign River	Cast net	BRE	Labeobarbus	168		Μ_	VI
Kirarign River	Cast net	BRE	Labeobarbus	148		<u>M</u> _	VI
Kirarign River	Cast net	BRE	Labeobarbus	182		M	VI
Kirangn River	Cast_net	BRE	Labeobarbus	184		М	<u>V</u> I
Kirarign River	Cast net	BRE	Labeobarbus	182		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	233		F	VI
Kirarign River	Cast net	BRE	Labeobarbus	166		M	<u></u> VI
Kirarign River	Cast net	BRE	Labeobarbus	174		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	175		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	190		м	VI
Kirarign River	Cast net	BRE	Labeobarbus	164		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	163		M	
Kirarign River	Cast net	BRE	Labeobarbus	192		M	VI
Kira <u>rign Ri</u> ver	Cast net	BRE	Labeobarbus	185		м	VI
Kirarign River	Cast net	BRE	Labeobarbus	167		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	167		м	VI
Kirarign River	Cast net	BRE	Labeobarbus	170		M	

•

C981 Net BLE Lebeopsiture 121 M	atign River atign River					W	١٨
Cast net BRE Labeobañus 113 M VI Cast net BRE Labeobañus 118 M VI Cast net BRE Labeobañus 113 M VI Cast net BRE		190 1860	707	0			
Cast net BRE Labeobañus 183 M VI Cast net BRE Labeobañus 184 Labeobañus 184 VI VI Cast net BRE Labeobañus 183 M VI VI </td <td>sound apier</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	sound apier						
Cast net BRE Labeobañus 183 M VI Cast net BRE Labeobañus 188 M VI Cast net BRE Labeobañus 183 M VI Cast net BRE Labeobañus 184 VI VI Cast net BR	arign River					W	ΙΛ
Cast net BRE Labeobañus 183 M VI Cast net BRE Labeobañus 186 M VI Cast net BRE Labeobañus 186 M VI Cast net BRE Labeobañus 187 M VI Cast net BRE	arign River						
Cast net BRE Labeobañus 133 M VI Cast net BRE Labeobañus 131 M VI Cast net BRE Labeobañus 131 M VI Cast net BRE Labeobañus 131 M VI Cast net BRE Labeobañus 132 M VI Cast net BRE Labeobañus 133 M VI Cast net BRE	arign River						
Cest uet BKE Laboopsupus 183 M AI Cest uet BKE Laboopsupus 716 M VI Cest uet BKE Laboopsupus 183 M VI Cest uet BKE Laboopsupus 174 M VI Cest uet BKE Laboopsupus 173 M VI Cest uet BKE Laboopsupus 174 VI VI Cest uet BKE Laboopsupus 173 VI VI VI Cest uet BKE Laboopsupus 174 VI	arign River						
Cest net BKE Labeobarbus 133 M N Cest net BKE Labeobarbus 111 M N Cest net BKE Labeobarbus 133 M N Cast net BKE Labeobarbus 133 M N N Cast net BKE Labeobarbus 133 M N N N Cast net BKE Labeobarbus 133 N N N N N Cast net BKE Labeobarbus <td>nign River</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	nign River						
Cest uet BKE Labopsupus 183 M A Cest uet BKE Labopsupus 183 M A Cest uet BKE Labopsupus 184 M A Cest uet BKE Labopsupus 183 M A Cest uet BKE Labopsupus 184 M A Cest uet BKE Labopsupus 184 M A Cest uet BKE Labopsupus 183 M A Cest uet BKE Labopsupus 184 M A Cest uet BKE Labopsupus 174 M A Cest uet BKE Labopsupus 174 M A Cest uet BKE Labopsupus 184 A A Cest uet BKE Labopsupus 174 A A Cest uet BKE Labopsupus 184 A A Cest uet BKE	arign River						
Cest net BKE Labeobarbus 183 M VI Cest net BKE Labeobarbus 181 M VI Cest net BKE Labeobarbus 171 M VI Cest net BKE Labeobarbus 181 M VI Cest net BKE Labeobarbus 181 M VI Cest net BKE Labeobarbus 183 M VI Cest net BKE Labeobarbus 173 M VI Cest net BKE Labeobarbus 174 M VI Cest net BKE Labeobarbus 173 M VI Cest net BKE Labeobarbus 174 M VI VI Cest net BKE Labeobarbus 174 M VI VI	arign River						
Cest net BKE Laboopsubus 183 M N Cest net	arign River						
Ceal uei BKE Labobanus 183 M M M Ceal uei BKE Labobanus 111 M M M M Ceal uei BKE Labobanus 131 M <td< td=""><td>ngin River</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ngin River						
Cest net BKE Labeobañus 183 M VI Cest net BKE Labeobañus 184 Labeobañus 184 Labeobañus 183 M VI Cest net BKE Labeobañus 183 M VI VI VI Cast net BKE Labeobañus 183 M VI	arign River						_
Cest uei BKE Labeobañus 183 M N Cest uei BKE Labeobañus 216 M N Cest uei BKE Labeobañus 133 M N Cest uei BKE Labeobañus 183 M N Cest uei BKE Labeobañus 183 M N Cest uei BKE Labeobañus 183 M N Cest uei BKE Labeobañus 184 N N N Cest uei BKE Labeobañus 185 M N <td>arign River arign River</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	arign River arign River						
Cest net BKE Labeobañus 183 M VI Cast net BKE Labeobañus 183 M VI Cast net BKE Labeobañus 183 M VI Cast net BKE Labeobañus 197 M VI Cast net BKE Labeobañus 183 M VI Cast net BKE Labeobañus 183 M VI Cast net BKE Labeobañus 184 Labeobañus 184 VI VI Cast net BKE Labeobañus 188 Labeobañus 188 VI VI Cast net BKE Labeobañus 183 VI VI VI VI Cast net BKE Labeobañus 183 VI VI <t< td=""><td>arign River</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	arign River						
Cast net BRE Labeobarbus 133 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 197 M VI Cast net BRE Labeobarbus 197 M VI Cast net BRE Labeobarbus 188 M VI Cast net BRE Labeobarbus 188 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 174 M VI Cast net BRE Labeobarbus 182 M VI Cast net BRE Labeobarbus 174 M VI Cast net							
Cast net BKE Labeopsipus 133 M <td>arign River arign River</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	arign River arign River						
C981 Uei BKE C 990 payne 133 M AI C981 Uei BKE C 990 payne 121 M AI C981 Uei BKE C 990 payne 133 M AI C981 Uei BKE C 990 payne 181 M AI C981 Uei BKE C 990 payne 181 M AI C981 Uei BKE C 990 payne 188 M AI C981 Uei BKE C 990 payne 188 M AI C981 Uei BKE C 990 payne 190 M AI C981 Uei BKE C 990 payne 190 M AI C981 Uei BKE C 990 payne 190 M AI C981 Uei BKE C 990 payne 190 M AI C981 Uei BKE C 990 payne 190 M AI C981 Uei BKE C 990 payne 190 M AI C981 Uei BKE C 990 payne 190 M AI C981 Uei							
Cast net BKE Labeopsipus 183 M N Cast net BKE Labeopsibus 131 M N Cast net BKE Labeopsibus 131 M N Cast net BKE Labeopsibus 131 M N Cast net BKE Labeopsibus 183 M N Cast net BKE Labeopsibus 173 M N Cast net BKE Labeopsibus 173 M N Cast net BKE Labeopsibus 174 M N Cast net BKE Labeopsibus 173 M N Cast net BKE Labeopsibus 174 M N Cast net	arign River						
Cast net BRE Labeobairbus 183 M VI Cast net BRE Labeobairbus 174 M VI <td< td=""><td>arign River</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	arign River						
Cast net BRE Labeobanus 183 M VI Cast net BRE Labeobanus 181 M VI Cast net BRE Labeobanus 183 M VI Cast net BRE Labeobanus 174 M VI Cast net BRE Labeobanus 174 M VI Cast net BRE	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 184 VI VI Cast ne	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 184 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 174 M VI Cast net BRE Labeobarbus 183 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 174 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 174 M VI Cast net BRE Labeobarbus 174 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 174 M VI Cast net							
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 174 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 174 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 174 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 174 M VI Cast net	arigo River				~		
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 174 M VI Cast net	arign River						
Cast net BKE Labeobarbus 183 M VI Cast net BKE Labeobarbus 171 M VI Cast net BKE Labeobarbus 171 M VI Cast net BKE Labeobarbus 183 M VI Cast net BKE Labeobarbus 183 M VI Cast net BKE Labeobarbus 181 M VI Cast net BKE Labeobarbus 181 M VI Cast net BKE Labeobarbus 183 M VI Cast net BKE Labeobarbus 183 M VI Cast net BKE Labeobarbus 183 M VI Cast net BKE Labeobarbus 173 M VI Cast net BKE Labeobarbus 173 M VI Cast net BKE Labeobarbus 173 M VI Cast net BKE Labeobarbus 174 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 174 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 174 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 173 M VI Cast net	arign River	_					
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 173 M VI Cast net	angn River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 173 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 173 M VI Cast net	angn River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net	arign River						
Cast net BRE Labeobarbus 183 M VI	'arign River						_
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 186 M VI Cast net BRE Labeobarbus 183 M VI	rarign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 184 VI VI Cast net <td>ratign River</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ratign River						
Cast net BRE Labeobarbus 205 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI	rarign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 181 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI	rarign River						
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 197 M VI Cast net BRE Labeobarbus 197 M VI Cast net BRE Labeobarbus 197 M VI Cast net BRE Labeobarbus 187 M VI	ratign River						
Cast net BRE Labeobarbus 183 M VI	rarign River						
Cast net BRE Labeobarbus 197 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 171 M VI Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 197 M VI	ratign River				181	M	IΛ
Cast net BRE Labeobarbus 183 M VI Cast net BRE Labeobarbus 216 M VI Cast net BRE Labeobarbus 216 M VI	เจเญก River			snqueqoaqey	261	W	IV
Cast net BRE Labeobarbus 171 W VI Cast net BRE Labeobarbus 216 M VI Cast net BRE Labeobarbus 183 M VI	rangn River					W	IA
Cast net BRE Labeobarbus 216 M VI Cast net BRE Labeobarbus 2183 M VI	ratign Rivet		ਤਖ਼ਬ	snqueqoəqey	121	Ŵ	IA
	rarign River		ਤਸ਼ਬ	snqıeqoəqe7	516	- W	١٨
	rarign River	Cast net	ਤਸ਼ਬ	<u>rabeobarbus</u>	183	M	IA
	rarign River	Cast net	BRE	snqıeqoəqe7	061	Ν	I۸

-

.

Site	Mesh size	Species	Genus	<u> </u>	w	Sex	Mat. Stage
Kirarign River	Cast net	BRE	Labeobarbus	_204		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	198		F	VI
Kirarign River	Cast net	BRE	Labeobarbus	240			VI
Kirarign River	Cast net	BRE	Labeobarbus	182		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	198		F	VI
Kirarign River	Cast net	BRE	Labeobarbus	175		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	168		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	213		F	VI
Kirarign River	Cast net	BRE	Labeobarbus	173_		м	VI
Kirarign River	Cast net	BRE	Labeobarbus	170		м	VI
Kirarign River	Cast net	BRE	Labeobarbus	187		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	227		F	VI
Kirarign River	Cast net	BRE	Labeobarbus	179		м	VI
Kirarign River	Cast net	BRE	Labeobarbus	166		м	- VI
Kirarign River	Cast net	BRE	Labeobarbus	253	_	F	VI
Kirarign River	Cast net	BRE	Labeobarbus	214		F	VI
Kirarign River	Cast net	BRE	Labeobarbus	205		м	VI
Kirarign River	Cast net	BRE	Labeobarbus	245		М	VI
Kirarign River	Cast net	BRE	Labeobarbus	166		M	<u></u>
Kirarign River	Cast net	BRE	Labeobarbus	150		M	
	Cast net	BRE	Labeobarbus	187		M	VI
Kirarign River	Cast net	BRE	Labeobarbus	204		M	VI
Kirarign River		BRE	Labeobarbus	173		M	
Kirarign River	Cast net					M	<u>vr</u>
Kirarign River	Cast net	BRE	Labeobarbus	178		F	<u>vi</u>
Kirarign River	Cast net	BRE BRE	Labeobarbus	227			
Kirarign River	Cast net		Labeobarbus	<u> </u>			
Kirarign River	Cast net	BRE	Labeobarbus	221		F	VI
Kirarign River	Cast net	BRE	Labeobarbus	186		M	<u>VI</u>
Kirarign River	<u>10cm</u>		<u>Clarias</u>	515	970	F	
Kirarign River	Cast net	CLA	<u>Clarias</u>	588	1190	<u>M</u>	V
Kirarign River	8CM	CLA	Clarias	414		<u>F</u>	
Kirarign River	8CM	CLA	Clarias	487		M	
Kirarign River	<u>10CM</u>	CLA	Clarias	<u>5</u> 10		F	
Kirarign River	6cm	INT	Labeobarbus	310	415	F	VI
Kirarign River	10cm	INT	Labeobarbus	309	460	<u>M</u>	
Kirarign River	Cast net		Labeobarbus	104			-
Kirarign River	6cm	MEG	Labeobarbus	366	620	F_	VI
Kirarign River	10cm	MEG	Labeobarbus	348	<u>540</u>	F	<u></u> VI
Kirarign River	10cm	MEG	Labeobarbus	410	935	F	VI
Kirarign River	10cm	MEG	Labeobarbus	415	825	F	Vi
Kirarign River	<u>10cm</u>	MEG	Labeobarbus	417	990	F	VI
Kirarign River	10cm	NED	Labeobarbus	397	930	F	VII
Kirarign River	Cast net	TIL	Oreochromis	97			
Kirangn <u>Rive</u> r	<u>10</u> cm	TRU	Labeobarbus	423	<u>1</u> 010	F	
Kirarign River	<u>10cm</u>		Labeobarbus	365	690	F	<u> </u>
Kirarign River	10cm		Labeobarbus	348	540	<u> </u>	<u></u>
Kirarign River	6cm	TRU	Labeobarbus	264	245	M	VI
Kirarign River	<u>6cm</u>	TRU	Labeobarbus	232	140	F	VI
Kirarign River	<u>8</u> cm	TRU	Labeobarbus	357	710	<u>M</u>	VI
Kirarign River	<u>10cm</u>	TRU	Labeobarbus	393	905	F	I
Kirarign River	10cm	TRU	Labeobarbus	336	590	F	
Mello River	Gillnet	BRE	Labeobarbus	214		F	
Mello River	Gillnet	BRE	 Labeobarbus	213		м	

Site	Mesh size	Species	Genus	L	<u>w</u>	Sex	Mat. Stage
Mello River	Gillnet	BRE	Labeobarbus	213		M	
Mello River	Gillnet	BRE	Labeobarbus	207		F	VI
Mello River	Gillnet	BRE	Labeobarbus	216		F	VI
Mello River	Gillnet	BRE	Labeobarbus	_201		м	VI
Mello River	Gillnet	BRE	Labeobarbus	189		F	VI
Mello River	Gillnet	BRE	Labeobarbus	193		F	VI
Mello River	Gillnet	BRE	Labeobarbus	202		F	<u></u>
Mello River	Gillnet	GAR	Garra	187		_ <u>M</u>	_ IV
Mello River	Gillnet	INT	Labeobarbus	243		м	VI
Mello River	Gillnet	INT	Labeobarbus	263		F	VI
Mello River	Gillnet	INT	Labeobarbus	211		_м	
Mello River	Gillnet	NED	Labeobarbus	244		м	VI
Main Channel Hamus - Mello Rivers	Gillnet	INT	Labeobarbus	215		F	VI
Main Channel Hamus - Mello Rivers	Gillnet	INT	Labeobarbus	207		F	
Main Channel Hamus - Mello Rivers	Gillnet	INT	Labeobarbus	218		м	VI
Main Channel Hamus - Mello Rivers	Gillnet	INT	Labeobarbus	209		M	VI
Main Channel Hamus - Mello Rivers	Gillnet	MAC	Labeobarbus	257		 F	
Main Channel Hamus - Mello Rivers	Gillnet	NED	Labeobarbus	226		M	VI
Main Channel Upper Mello	Gillnet	BES	Varicorhinus	235		F	IV
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	209		F	VI
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	198			VI
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	205		 F	
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	204			VI
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	<u>_204</u> 213		' F	VI
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	184		' M	VI
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	241			VI
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	<u>241</u> 193		' F	
Main Channel Upper Mello	Gillnet	BRE	Labeobarbus	216		 F	
	Gillnet	BRE	Labeobarbus	195		' F	
Main Channel Upper Mello	Gillnet			210		<u>'</u>	<u>vi</u>
Main Channel Upper Mello		BRE	Labeobarbus Clarias			 F	
Main Channel Upper Mello	Gillnet			415			
Main Channel Upper Mello	Gillnet		Labeobarbus	223		F	<u>vi</u>
Main Channel Upper Mello	Gillnet		Labeobarbus	207		F	
Main Channel Upper Mello	Gillnet	<u>_INT</u>	Labeobarbus	236			<u> </u>
Main Channel Upper Mello	Gillnet		Labeobarbus	216		F	<u>VI</u>
Main Channel Upper Mello	Gillnet		Labeobarbus	211			<u></u>
Main Channel Upper Mello	Gillnet	NED	Labeobarbus			F	
Main Channel Ribb RM	10cm	ACU_	Labeobarbus	291	329	F	
Main Channel Ribb RM	10cm	ACU	Labeobarbus	380	598_		<u> </u>
Main Channel Ribb RM	<u>6CM</u>	ACU	Labeobarbus	252	176	<u>M</u>	<u></u>
Main Channel Ribb RM	10CM	ACU	Labeobarbus	331		F	<u> </u>
Main Channel Ribb RM	12CM	BES	Varicorhinus	255	227		<u> </u>
Main Channel Ribb RM	14cm	BRE	Labeobarbus	205		F	<u>V</u>
Main Channel Ribb RM	10cm	BRE	Labeobarbus	410		<u>M</u>	
Main Channel Ribb RM	<u>10cm</u>	BRE	Labeobarbus	151		<u>M</u>	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	194		F	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	193			<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus			F	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	299		F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	209			<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	195		F	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	198		F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	225		F	_

*

.

Site	Mesh size	Species	Genus	<u> </u>	Sex	Mat. Stage
Main Channel Ribb RM	6CM	BRE	Labeobarbus	196	F	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	205	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	210	F	V_
Main Channel Ribb RM	6CM	BRE	Labeobarbus	209	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	194	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	195	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	205	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	195	F	V
Main Channel Ribb RM		BRE	Labeobarbus	193	м	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	205	F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	225	F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	214	F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	215	F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	220		
Main Channel Ribb RM		BRE	Labeobarbus	 195	 F	
Main Channel Ribb RM	6CM	BRE	Labeobarbus	190	M	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	204	 F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	200	 F	
Main Channel Ribb RM	6CM	BRE	Labeobarbus	231	 F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	195	F	
Main Channel Ribb RM	6CM	BRE	Labeobarbus	199	 F	
Main Channel Ribb RM	6CM	BRE	Labeobarbus	198	' F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	203	' F	v
Main Channel Ribb RM	6CM	BRE	Labeobarbus	200	 F	
Main Channel Ribb RM	6CM	BRE	Labeobarbus	220	 F	
Main Channel Ribb RM	14CM	BRE	Labeobarbus	195	′ M	v
Main Channel Ribb RM	10CM	BRE	Labeobarbus	175		v v
Main Channel Ribb RM	10CM	BRE	Labeobarbus	190	<u>M</u>	 V
Main Channel Ribb RM	10CM	BRE	Labeobarbus		M	,
Main Channel Ribb RM	6CM			187	<u>M</u>	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	225	F	<u> </u>
		BRE	Labeobarbus	185	<u>M</u>	<u></u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	165	<u>M</u>	
Main Channel Ribb RM	6CM	BRE	Labeobarbus	173	<u>M</u>	<u> </u>
Main Channel Ribb RM	<u> </u>	BRE	Labeobarbus	230	F	<u>V</u> _
Main Channel Ribb RM	6CM	BRE	Labeobarbus	209	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	198	F	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	195	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	205	M	<u> </u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	195	F	<u></u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	200	<u>M</u>	<u> </u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	198	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	215	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	200	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	215	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	200	F	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	215	<u>M</u>	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	205	<u> </u>	V
Main Channel Ribb RM	6CM	BRE	Labeobarbus	200	F	<u>v</u>
Main Channel Ribb RM	6CM	BRE	Labeobarbus	198	<u>F</u>	V
Main Channel Ribb RM	14CM		Clarias	525	<u>M</u>	_ <u>_IV</u>
Main Channel Ribb RM	10CM	CLA	Clarias	595	M	IV
Main Channel Ribb RM	<u>12CM</u>	CLA	Clarias	600	м	н

.†

Site	Mesh size	Species	Genus	<u> </u>	Sex	Mat. Stage
Main Channel Ribb RM	6CM	_CLA	Clarias	450	M	
Main Channel Ribb RM	10cm	CLA	Clarias	360	M	IV
Main Channel Ribb RM	10cm	CLA	Clarias	480	M	
Main Channel Ribb RM	14CM	GON	Labeobarbus	489	F	
Main Channel Ribb RM	14CM	GON	Labeobarbus	448	F	v
Main Channel Ribb RM	12CM	GON	Labeobarbus	450	M	V
Main Channel Ribb RM	12CM	GON	Labeobarbus	415	F	v
Main Channel Ribb RM	14cm	INT	Labeobarbus	203	F	v
Main Channel Ribb RM	14cm	INT	Labeobarbus	413	F	V
Main Channel Ribb RM	14cm	INT	Labeobarbus	315	M	V
Main Channel Ribb RM	14cm	INT	Labeobarbus	345	F	
Main Channel Ribb RM	14cm	INT	Labeobarbus	245	 F	
Main Channel Ribb RM	14cm	INT	Labeobarbus	370	F	V
Main Channel Ribb RM	14cm	 INT	Labeobarbus	360	F	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	295	F	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	310		
Main Channel Ribb RM	10cm		Labeobarbus	320	 F	<u>v</u>
Main Channel Ribb RM	10cm	INT	Labeobarbus	320	<u>_</u> F	v
Main Channel Ribb RM	10cm	JNT	Labeobarbus	320	' F	
Main Channel Ribb RM	10cm	 INT	Labeobarbus	315	, F	
Main Channel Ribb RM	10cm		Labeobarbus	330	' F	
Main Channel Ribb RM	10cm		Labeobarbus	<u>350</u> 350	' F	v
Main Channel Ribb RM		INT			 F	
	<u>10cm</u>		Labeobarbus	<u>340</u>	 F	
Main Channel Ribb RM	10cm		Labeobarbus			<u>v</u>
Main Channel Ribb RM	<u>10cm</u>		Labeobarbus	360	F	
Main Channel Ribb RM	<u>10cm</u>		Labeobarbus	360	<u></u> _	<u>V</u>
Main Channel Ribb RM	10cm		Labeobarbus	345	F	
Main Channel Ribb RM	10cm	<u>INT</u>	Labeobarbus	310	F	V
Main Channel Ribb RM	<u>10cm</u>		Labeobarbus	315	F	V
Main Channel Ribb RM	10cm		Labeobarbus			
Main Channel Ribb RM	<u>10cm</u>		Labeobarbus	175	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	290	M	V
Main Channel Ribb RM	10cm		Labeobarbus	300	F	V
Main Channel Ribb RM	10cm	<u>INT</u>	Labeobarbus		F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	240	<u></u> M	
Main Channel Ribb RM	<u>10cm</u>	INT	Labeobarbus	280	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	270	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	260	F	V
Main Channel Ribb RM	10cm		Labeobarbus	250	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	280	M	V
Main Channel Ribb RM	10cm		Labeobarbus	305	F	V
Main Channel Ribb RM	10cm		Labeobarbus	275	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	289	F	V
Main Channel Ribb RM	10cm	INT_	Labeobarbus	255	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	290	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	270	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	299	F	V
Main Channel Ribb RM	10cm		Labeobarbus	280	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	320	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	265	<u>M</u>	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	263	F	1
Main Channel Ribb RM	10cm	INT	Labeobarbus	289	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	310	F	v

~

-

.

Site	Mesh size	Species	Genus	L	W Sex	Mat. Stag
Main Channel Ribb RM	10cm	INT	Labeobarbus	_285	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	295	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	300	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	250	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	278	F	V
Main Channel Ribb RM		INT	Labeobarbus	270	F	v
Main Channel Ribb RM	 10cm	=	Labeobarbus	250	F	V_
Main Channel Ribb RM	10cm	INT	Labeobarbus	265	 F	v
Main Channel Ribb RM		INT	Labeobarbus	330	 M	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	330	F	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	275	F	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	280	F	
Main Channel Ribb RM	10cm	INT	Labeobarbus	270	M	v
	10cm	 INT	Labeobarbus	255	M	v
Main Channel Ribb RM		INT	Labeobarbus	263	F	v
Main Channel Ribb RM	<u> 10cm </u>	INT	Labeobarbus	285	, F	v
Main Channel Ribb RM	10cm			250	F	v
Main Channel Ribb RM	10cm		Labeobarbus		F	v
Main Channel Ribb RM	10cm		Labeobarbus	255	_	
Main Channel Ribb RM	10cm	INT	Labeobarbus	255	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	220	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	260	M	<u>v</u>
Main Channel Ribb RM	10cm	INT	Labeobarbus	313	F	<u>v</u>
Main Channel Ribb RM	10cm	<u> </u>	Labeobarbus	281	F	V
Main Channel Ribb RM	10cm		Labeobarbus	300	M	V
Main Channel Ribb RM	10cm		Labeobarbus	<u>2</u> 98	M	V
Main Channel Ribb RM	10cm		Labeobarbus	271	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	302	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	251	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	260	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	285	F	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	269	M	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	275	м	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	280	м	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	260	M	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	255	F	
Main Channel Ribb RM	 10cm	INT	Labeobarbus	295	м	v
Main Channel Ribb RM		INT	Labeobarbus	270	F	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	241	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	240	M	
Main Channel Ribb RM	10cm	INT	Labeobarbus	230	M	
Main Channel Ribb RM	10cm	INT	Labeobarbus	280	F	
Main Channel Ribb RM	10cm		Labeobarbus	280	 F	
Main Channel Ribb RM	10cm	INT	Labeobarbus	280	 F	v
Main Channel Ribb RM	10cm		Labeobarbus	250	' F	v
Main Channel Ribb RM	10cm		Labeobarbus	<u>250</u> 240	F M	
Main Channel Ribb RM	10cm		Labeobarbus	230	M	
Main Channel Ribb RM	10cm	 INT	Labeobarbus		F	v
Main Channel Ribb RM				<u>215</u> 245		
Main Channel Ribb RM	<u>10cm</u>		Labeobarbus	245	<u>M</u>	
	<u>10cm</u>		Labeobarbus	275	<u>M</u>	
Main Channel Ribb RM Main Channel Ribb RM	10cm 10cm		Labeobarbus	277	<u>M</u>	_
WEIGHT AND	TUCHI	INT	Labeobarbus	290	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	291	F	v

د

Site	Mesh size	Species	Genus	LW	Sex	Mat. Stage
Main Channel Ribb RM	10cm	_INT	Labeobarbus	302	F	V
Main Channel Ribb RM	10cm		Labeobarbus	310	F	v
Main Channel Ribb RM	10cm	INT	Labeobarbus	395	F	V
Main Channel Ribb RM	<u>10cm</u>	INT	Labeobarbus	340	F	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	320	F	V
Main Channel Ribb RM	10cm		Labeobarbus	421	M	V
Main Channel Ribb RM	10cm	INT	Labeobarbus	330	M	V
Main Channel Ribb RM	10cm	<u>INT</u>	Labeobarbus	301	F	V
Main Channel Ribb RM	10cm	 INT	Labeobarbus	305	F	V
Main Channel Ribb RM		INT	Labeobarbus	295	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	210	м	
Main Channel Ribb RM	6CM	INT	Labeobarbus	220	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	203	F	
Main Channel Ribb RM	6CM	INT	Labeobarbus	203	F	v
Main Channel Ribb RM	6CM		Labeobarbus	195	 F	
Main Channel Ribb RM	6CM	INT	Labeobarbus	192	 M	
Main Channel Ribb RM	6CM	 INT	Labeobarbus	110		
Main Channel Ribb RM	6CM	INT	Labeobarbus	205	' M	
Main Channel Ribb RM	6CM		Labeobarbus	200	M	
Main Channel Ribb RM	6CM		Labeobarbus	211	F	
Main Channel Ribb RM	6CM			207	FM	v
	<u>6CM</u>		Labeobarbus		 F	
Main Channel Ribb RM			Labeobarbus	200		
Main Channel Ribb RM	6CM		Labeobarbus	200	<u>M</u>	
Main Channel Ribb RM	6CM		Labeobarbus	210	F	
Main Channel Ribb RM	6CM		Labeobarbus	205	F	
Main Channel Ribb RM	6CM		Labeobarbus	221	<u>F</u>	<u></u>
Main Channel Ribb RM	6CM		Labeobarbus	210	M	
Main Channel Ribb RM	6CM		Labeobarbus	2 <u>15</u>	F	V
Main Channel Ribb RM	6CM	<u>INT</u>	Labeobarbus	217	F	
Main Channel Ribb RM	6CM		Labeobarbus	230	F	
Main Channel Ribb RM	6CM		Labeobarbus	225	F	V
Main Channel Ribb RM	6CM		Labeobarbus	215	F	V
Main Channel Ribb RM	6CM		Labeobarbus	204	M	V
Main Channel Ribb RM	6CM		Labeobarbus	230	F	V
Main Channel Ribb RM	<u>6CM</u>		Labeobarbus	<u>21</u> 0	F	<u></u>
Main Channel Ribb RM	6CM		Labeobarbus	220	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	230	F	<u>v</u>
Main Channel Ribb RM	6CM	<u>INT</u>	Labeobarbus	210	<u>F</u>	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	270	F	V
Main Channel Ribb RM	6CM		Labeobarbus	200	<u>M</u>	V
Main Channel Ribb RM	6CM		Labeobarbus	225	<u>F</u>	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	275	F	<u></u>
Main Channel Ribb RM	6CM		Labeobarbus	215	F	<u> </u>
Main Channel Ribb RM	6CM	INT	Labeobarbus	217	F_	<u>v</u>
Main Channel Ribb RM	6CM	<u>INT</u>	Labeobarbus	210	<u>F</u>	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	220	F	V
Main Channel Ribb RM	6CM		Labeobarbus	205	M	<u>v</u>
Main Channel Ribb RM	6CM	INT	Labeobarbus	200	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	209	F	<u>v</u>
Main Channel Ribb RM	6CM		Labeobarbus	202	M	<u>v</u>
Main Channel Ribb RM	6CM	INT	Labeobarbus	200	F_	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	230	M	<u>v</u>
Main Channel Ribb RM	6CM	INT	Labeobarbus	200	М	v

.

-

,

Site	Mesh size	Species	Genus	L	W Sex	Mat. Stag
Main Channel Ribb RM	6CM	INT	Labeobarbus	235	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	215	F	V
Main Channel Ribb RM	6CM		Labeobarbus	220	F	v
Main Channel Ribb RM	6CM	 INT	Labeobarbus	225	M	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	220	M	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	230	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	210	F	v
Main Channel Ribb RM	6CM		Labeobarbus	210	F	v
Main Channel Ribb RM	6CM		Labeobarbus	230	F	
Main Channel Ribb RM	6CM		Labeobarbus	210	F	v
Main Channel Ribb RM	6CM		Labeobarbus	230	F	v
	6CM		Labeobarbus	200	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	225	 F	v
Main Channel Ribb RM	<u>6CM</u>	INT	Labeobarbus	200	F	v
Main Channel Ribb RM	<u>6CM</u>	INT	Labeobarbus	210	 F	v
Main Channel Ribb RM				239	' F	v
Main Channel Ribb RM	14CM	<u>INT</u> INT	Labeobarbus Labeobarbus	370	F	<u>v</u>
Main Channel Ribb RM	14CM				F	v
Main Channel Ribb RM	14CM		Labeobarbus	352	F	v
Main Channel Ribb RM	14CM		Labeobarbus	395		v
Main Channel Ribb RM	14CM		Labeobarbus	330	M	
Main Channel Ribb RM	10CM		Labeobarbus	365	F	<u>v</u>
Main Channel Ribb RM	10CM		Labeobarbus	305	<u>F</u>	<u>v</u>
Main Channel Ribb RM	10CM		Labeobarbus	325	F	V
Main Channel Ribb RM	<u>10CM</u>	INT	Labeobarbus	323	F	V
Main Channel Ribb RM	10CM		Labeobarbus	325	F	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	365	<u>M</u>	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	360	F	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	400	F	V
Main Channel Ribb RM	12CM		Labeobarbus	330	F	<u>v</u>
Main Channel Ribb RM	12CM	INT	Labeobarbus	325	F	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	338	F_	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	340	<u>F</u>	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	340	F	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	338	F	V
Main Channel Ribb RM	12 <u>CM</u>	INT	Labeobarbus	367	F	<u>v</u>
Main Channel Ribb RM	12CM	INT	Labeobarbus	305	M	V
Main Channel Ribb RM	12 <u>CM</u>		Labeobarbus	350	<u>F</u>	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	340	F	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	225	<u>F</u>	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	278	<u>M_</u>	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	330	F	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	315	F	_ v
Main Channel Ribb RM	12CM	INT	Labeobarbus	355	M	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	240	M	v
Main Channel Ribb RM	12CM		Labeobarbus	270	F	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	245	F	v
Main Channel Ribb RM	12CM		Labeobarbus	260	F	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	285	F	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	250	M	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	268	M	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	320	F	v
Main Channel Ribb RM	12CM	INT	Labeobarbus	270	 M	<u>`</u> v
Main Channel Ribb RM	12CM	INT	Labeobarbus	320	F	

•

.

Site	Mesh size	Species	Genus	L W	Sex	Mat. Stage
Main Channel Ribb RM	12CM		Labeobarbus	301	<u>M</u>	_ V
Main Channel Ribb RM	12CM	<u>INT</u>	Labeobarbus	318	<u>F</u>	<u> </u>
Main Channel Ribb RM	12CM		Labeobarbus	255	F	V
Main Channel Ribb RM	12CM		Labeobarbus	270	F	<u>V</u>
Main Channel Ribb RM	12CM		Labeobarbus	278	F	V
Main Channel Ribb RM	12CM		Labeobarbus	285	F	<u> </u>
Main Channel Ribb RM	12CM	INT	Labeobarbus	225	<u>F</u>	V
Main Channel Ribb RM	12CM		Labeobarbus	250	F	V
Main Channel Ribb RM	12CM		Labeobarbus	255	<u>F_</u> _	<u>v</u>
Main Channel Ribb RM	12CM	INT	Labeobarbus	278	M	V
Main Channel Ribb RM	12CM	<u>INT</u>	Labeobarbus	318	F	<u>v</u>
Main Channel Ribb RM	12CM		Labeobarbus	281	F	V
Main Channel Ribb RM	12CM	<u>INT</u>	Labeobarbus	275	F	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	330	<u>M</u>	V
Main Channel Ribb RM	<u>12CM</u>		Labeobarbus	280	F	<u> </u>
Main Channel Ribb RM	12CM		Labeobarbus	263	<u>F</u>	V
Main Channel Ribb RM	12CM	INT	Labeobarbus	261	M	V
Main Channel Ribb RM	8CM		Labeobarbus	298	F	V
Main Channel Ribb RM	8CM		Labeobarbus	250	<u>M</u>	<u>v</u>
Main Channel Ribb RM	8CM		Labeobarbus	273	F	V
Main Channel Ribb RM	8CM	INT	Labeobarbus	256	M	V
Main Channel Ribb RM	8CM		Labeobarbus	280	F	<u>v</u>
Main Channel Ribb RM	8CM	<u>INT</u>	Labeobarbus	275	<u>F</u>	
Main Channel Ribb RM	8CM	INT_	Labeobarbus	280	F	<u>v</u>
Main Channel Ribb RM	8CM	INT	Labeobarbus	240	М	<u>v</u>
Main Channel Ribb RM	8CM	INT	Labeobarbus	283	F	v
Main Channel Ribb RM	8CM	INT	Labeobarbus	255	M	V
Main Channel Ribb RM	8CM		Labeobarbus	280	F	V
Main Channel Ribb RM	8CM	INT	Labeobarbus	290	_ F_	V
Main Channel Ribb RM	8CM	 INT	Labeobarbus	351	F	_ 111
Main Channel Ribb RM	6CM	INT	Labeobarbus	215	F	v
Main Channel Ribb RM	6CM		Labeobarbus	225	F	v
Main Channel Ribb RM	6CM		Labeobarbus	215	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	255	M	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	235	M	v
Main Channel Ribb RM	6CM	 INT	Labeobarbus	205	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	205	M	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	240	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	195	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	230	M	V
Main Channel Ribb RM	6CM		Labeobarbus	225	F	V
Main Channel Ribb RM	6CM		Labeobarbus	215	M	V
Main Channel Ribb RM	<u>6CM</u>		Labeobarbus	285	F	v
Main Channel Ribb RM	6CM		Labeobarbus	215	M	V
Main Channel Ribb RM	<u>6CM</u>		Labeobarbus	240	M	
Main Channel Ribb RM	6CM	 INT	Labeobarbus	208	M	V
Main Channel Ribb RM	6CM		Labeobarbus	215	F	V
Main Channel Ribb RM	<u>6CM</u>		Labeobarbus	215	F	v
	<u>6CM</u>		Labeobarbus	225	F	V
Main Channel Ribb RM	<u>6CM</u>		Labeobarbus	225	F	V
	<u>6CM</u>	 INT	Labeobarbus	210	M	v
Main Channel Ribb RM	<u>6CM</u>	 INT	Labeobarbus	220	M	v
Main Channel Ribb RM	<u>6CM</u>	 INT	Labeobarbus	218	M	v

.

~

~

Site	Mesh size	Species	Genus	L W	Sex	Mat. Stage
Main Channel Ribb RM	6CM	INT	Labeobarbus	210	F	V
Main Channel Ribb RM	6CM		Labeobarbus	222	<u>F</u>	V
Main Channel Ribb RM	6CM		Labeobarbus	234	M	V
Main Channel Ribb RM	6CM		Labeobarbus	218	F	V
Main Channel Ribb RM	6CM		Labeobarbus	220	F	V
Main Channel Ribb RM	6CM	INT_	Labeobarbus	238	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	218	F	_ V
Main Channel Ribb RM	6CM	INT	Labeobarbus	195	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	250	M	<u> </u>
Main Channel Ribb RM	6CM	INT	Labeobarbus	205	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	225	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	205	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	206	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	241	M	v
Main Channel Ribb RM	6CM	ÍNT	Labeobarbus	205	M	
Main Channel Ribb RM	6CM		Labeobarbus	218	F	v
Main Channel Ribb RM	6CM	INT	Labeobarbus	200	F	V
Main Channel Ribb RM	6CM	INT	Labeobarbus	210	M	v
Main Channel Ribb RM	6CM		Labeobarbus	215		v
Main Channel Ribb RM	12CM	LON	Labeobarbus	485	'	v
Main Channel Ribb RM	10cm	MAC	Labeobarbus	380	, F	v
Main Channel Ribb RM	10cm	MAC	Labeobarbus	380	F	
Main Channel Ribb RM	10cm	MAC	Labeobarbus	430	 F	
Main Channel Ribb RM	<u>10cm</u>	MAC		390	<u>_</u> F	
Main Channel Ribb RM	14cm	MEG	Labeobarbus	390		v
		MEG	Labeobarbus	300	<u>M</u>	
Main Channel Ribb RM	<u>14cm</u>		Labeobarbus		F	
Main Channel Ribb RM	<u>14cm</u>	MEG	Labeobarbus	456	<u>M</u>	<u>V</u>
Main Channel Ribb RM	10cm	MEG	Labeobarbus	325	M	<u>v</u>
Main Channel Ribb RM	10cm	MEG	Labeobarbus	335	<u>F</u>	V
Main Channel Ribb RM	<u>10cm</u>	MEG	Labeobarbus	340	<u>M</u>	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	360	<u>M</u>	V
Main Channel Ribb RM	<u>10cm</u>	MEG	Labeobarbus	375	F	V
Main Channel Ribb RM	<u>10cm</u>	MEG	Labeobarbus	365	<u>F_</u>	V
Main Channel Ribb RM	<u> </u>	MEG	Labeobarbus	333	M	<u> </u>
Main Channel Ribb RM	<u>10cm</u>	MEG	Labeobarbus	335	M	V
Main Channel Ribb RM	<u>10cm</u>	MEG	Labeobarbus	310	<u>F</u>	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	220	<u>M_</u>	V
Main Channel Ribb RM	<u> 10cm </u>	MEG	Labeobarbus	360	M	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	360	F	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	335	M	<u> </u>
Main Channel Ribb RM	10cm	MEG	Labeobarbus	285	M	<u>v</u>
Main Channel Ribb RM	10cm	MEG	Labeobarbus	310	M	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	281	M	<u>v</u>
Main Channel Ribb RM	10cm	MEG	Labeobarbus	355	M	<u>v</u>
Main Channel Ribb RM	10cm	MEG	Labeobarbus	310	M	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	340	M	
Main Channel Ribb RM	10cm	MEG	Labeobarbus	290	M	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	340	M	V
Main Channel Ribb RM	10cm	MEG	Labeobarbus	320	<u>M</u>	V
Main_Channel Ribb RM	6CM	MEG	Labeobarbus	365	M	V
Main Channel Ribb RM	6CM	MEG	Labeobarbus	375	F	V
Main Channel Ribb RM	6CM	MEG	Labeobarbus	304	M	v
Main Channel Ribb RM	6CM	MEG	Labeobarbus	365	F	V

•

Site	Mesh size	Species	Genus	L W	Sex	Mat. Stage
Main Channel Ribb RM	14CM	MEG	Labeobarbus	259	M	
Main Channel Ribb RM	14CM	MEG	Labeobarbus	338	M	- v
Main Channel Ribb RM	14CM	MEG	Labeobarbus	375	F	v
Main Channel Ribb RM	14 <u>CM</u>	MEG	Labeobarbus	410	F	
Main Channel Ribb RM	14CM	MEG	Labeobarbus	309	M	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	341	F	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	298	M	V
Main Channel Ribb RM	10CM	MEG	Labeobarbus	397	F	
Main Channel Ribb RM	<u>10CM</u>	_ MEG	Labeobarbus	329	F	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	370	F	V
Main Channel Ribb RM	<u>10CM</u>	MEG	Labeobarbus	343	F	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	381	F	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	355	M	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	470	F	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	365		
Main Channel Ribb RM	10CM	MEG	Labeobarbus	324	M	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	350	M	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	315	 M	V
Main Channel Ribb RM	10CM	MEG	Labeobarbus	328	M	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	319	F	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	340	M	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	339	M	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	339		
Main Channel Ribb RM	10CM	MEG	Labeobarbus	<u></u>	' F	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	298	 F	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	374	' F	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	368		
Main Channel Ribb RM	10CM	MEG	Labeobarbus	332	 M	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	340	F	
	10CM	MEG	Labeobarbus	335	 	
Main Channel Ribb RM Main Channel Ribb RM		MEG MEG	Labeobarbus	349	 M	
	<u>10CM</u>				<u>IVI</u> F	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	339		
Main Channel Ribb RM	10CM	MEG	Labeobarbus	330	<u>M</u>	v
Main Channel Ribb RM	10CM	MEG	Labeobarbus	320	<u>M</u>	
Main Channel Ribb RM	10CM	MEG	Labeobarbus	345	F	<u>v</u> _
Main Channel Ribb RM	12CM	MEG	Labeobarbus		<u>F</u>	<u>v</u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	380	F	
Main Channel Ribb RM	12CM	MEG	Labeobarbus	340	<u>M</u>	<u>v</u> _
Main Channel Ribb RM	12CM	MEG	Labeobarbus	355	<u>M</u>	<u>v</u> _
Main Channel Ribb RM	12CM	MEG	Labeobarbus	391	<u>F</u>	<u></u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	355	<u>M</u>	
Main Channel Ribb RM	12CM	MEG	Labeobarbus	376	<u>M</u>	<u></u>
Main Channel Ribb RM	<u>12CM</u>	MEG	Labeobarbus		M	<u></u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	290	F	V
Main Channel Ribb RM	<u>12CM</u>	MEG	Labeobarbus	425	F	<u> </u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	470	F	<u></u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	<u> </u>	<u>M</u>	<u>V</u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	465	F	<u>v</u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	435	<u>F</u>	<u>V</u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	385	F	<u>v</u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	435	F	<u>v</u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	390	<u>F</u>	_ <u> </u>

-

~

-

Site	Mesh size	Species	Genus	L_W	Sex	Mat. Stage
Main Channel Ribb RM	12CM	MEG	Labeobarbus	400	F	V
Main Channel Ribb RM	12CM	MEG	Labeobarbus	335	М	V
Main Channel Ribb RM	12CM	MEG	Labeobarbus	290	M	<u>v</u>
Main Channel Ribb RM	12CM	MEG	Labeobarbus	340	M	V
Main Channel Ribb RM	12CM	MEG	Labeobarbus	395	M	V
Main Channel Ribb RM	12CM	MEG	Labeobarbus	315	F	V
Main Channel Ribb RM	12CM	MEG	Labeobarbus	325	M	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	340	Μ_	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	335	M	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	320	М	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	280	M	
Main Channel Ribb RM	12CM	MEG	Labeobarbus	345	M	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	400	F	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	280	м	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	310	м	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	341	M	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	335	M	v
Main Channel Ribb RM		MEG	Labeobarbus	320	F	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	390	M	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	355	M	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	345	M	v
Main Channel Ribb RM	12CM	MEG	Labeobarbus	334	F	v
	8CM	MEG	Labeobarbus	318	 F	v
Main Channel Ribb RM	8CM			335	F	v
Main Channel Ribb RM		MEG	Labeobarbus			
Main Channel Ribb RM	8CM	MEG	Labeobarbus	350	<u>M</u>	-
Main Channel Ribb RM	8CM	MEG	Labeobarbus	320	<u> </u>	
Main Channel Ribb RM	8CM	MEG	Labeobarbus	360	<u>M</u>	
Main Channel Ribb RM	8CM	MEG	Labeobarbus	325	F	
Main Channel Ribb RM	8CM	MEG	Labeobarbus	390	<u> </u>	<u>v</u>
Main Channel Ribb RM	8CM	MEG	Labeobarbus	310	<u>M</u>	<u>v</u>
Main Channel Ribb RM	8CM	MEG	Labeobarbus	330	M	V
Main Channel Ribb RM	6CM	MEG	Labeobarbus	310	M	V
Main Channel Ribb RM	6CM	MEG	Labeobarbus	400	F_	<u>v</u>
Main Channel Ribb RM	6CM	MEG	Labeobarbus	340	<u>M</u>	<u>v</u>
Main Channel Ribb RM	<u> </u>	MEG	Labeobarbus	256	M	V
Main Channel Ribb RM	6CM	MEG	Labeobarbus	330	<u>F</u>	V
Main Channel Ribb RM	6CM	MEG	Labeobarbus	318	M	V
Main Channel Ribb RM	6CM	MEG	Labeobarbus	365	<u>F</u>	
Main Channel Ribb RM	10CM	NED	Labeobarbus	305	F	111
Main Channel Ribb RM	14cm	PLA	Labeobarbus	534	F	V
Main Channel Ribb RM	<u>10cm</u>	PLA	Labeobarbus	310	M	V
Main Channel Ribb RM	10cm	PLA	Labeobarbus	325	<u>M</u>	V
Main Channel Ribb RM	10cm	PLA	Labeobarbus	300	F	V
Main Channel Ribb RM	10cm	PLA	Labeobarbus	280	<u> </u>	V
Main Channel Ribb RM	10cm	PLA	Labeobarbus	295	M	V
Main Channel Ribb RM	10cm	_ PLA _	Labeobarbus	275	_ F	V
Main Channel Ribb RM	10cm	PLA	Labeobarbus	301	F	V
Main Channel Ribb RM	10cm	PLA	Labeobarbus	470	F	v
Main Channel Ribb RM	6CM	PLA	Labeobarbus	352	F	V
Main Channel Ribb RM	6CM	PLA	Labeobarbus	300	м	v
Main Channel Ribb RM	14CM	PLA	Labeobarbus	382	М	v
Main Channel Ribb RM	14CM	PLA	Labeobarbus	400	M	v
Main Channel Ribb RM		PLA	Labeobarbus	391	F	v

ъ

•

Site	Mesh size	Species	Genus	L	W Sex	Mat. Stage
Main Channel Ribb RM	12CM	PLA	Labeobarbus	285	F	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	400	F	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	376	F	V
Main Channel Ribb RM	12CM	PLA	Labeobarbus	375	M	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	371	F	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	350	M	v
Main Channel Ribb RM	12CM	PLA	Labeobarbus	395	F	v
Main Channel Ribb RM	12CM	PLA	Labeobarbus	435	M	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	400	F	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	405	M	v
Main Channel Ribb RM	12CM	PLA	Labeobarbus	278	M	V
Main Channel Ribb RM		 PLA	Labeobarbus	330	M	V
Main Channel Ribb RM	12CM	PLA	Labeobarbus	365	F	v
Main Channel Ribb RM	12CM	PLA	Labeobarbus	360	F	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	370	F	 V
Main Channel Ribb RM	12CM	PLA	Labeobarbus	305	 F	- <u>·</u>
Main Channel Ribb RM	12CM	<u>+ E/(</u> PLA	Labeobarbus	<u>365</u>	' F	v
Main Channel Ribb RM	12CM	PLA	Labeobarbus	345	M	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	290	M	
Main Channel Ribb RM	<u>12CM</u>	PLA		350		
			Labeobarbus	·	M F	
Main Channel Ribb RM	<u>12CM</u>		Labeobarbus	<u>310</u>		
Main Channel Ribb RM	<u>12CM</u>		Labeobarbus	285	<u>M</u>	
Main Channel Ribb RM	12CM	PLA	Labeobarbus	<u>345</u>	F	
Main Channel Ribb RM	12CM		Labeobarbus	255	<u>F</u>	V
Main Channel Ribb RM	12CM	PLA	Labeobarbus		<u>M</u>	V
Main Channel Ribb RM	12CM		Labeobarbus	465	F	V
Main Channel Ribb RM	8CM	PLA	Labeobarbus	270	F	V
Main Channel Ribb RM	8CM	PLA	Labeobarbus	268	<u>M</u>	V
Main Channel Ribb RM	8CM	PLA	Labeobarbus	359	<u>M</u>	V
Main Channel Ribb RM	8 <u>CM</u>	PLA	Labeobarbus	295	<u>F</u>	<u></u>
Main Channel Ribb RM	8CM	PLA	Labeobarbus	240	<u>F</u>	V
Main Channel Ribb RM	8CM	PLA	Labeobarbus	265	<u>M</u>	V
Main Channel Ribb RM	6CM	SUR	Labeobarbus	<u> </u>	M	V
Main Channel Ribb RM	6CM	SUR	Labeobarbus	190	F	V
Main Channel Ribb RM	6CM	SUR	Labeobarbus	240	F	V
Main Channel Ribb RM	<u>6CM</u>	SUR	Labeobarbus	233	M_	V
Main Channel Ribb RM	6CM	<u>SUR</u>	Labeobarbus	235	F	<u>v</u>
Main Channel Ribb RM	6CM	SUR	Labeobarbus	282	F	V
Main Channel Ribb RM	6CM	SUR	Labeobarbus	261	F	<u>v</u>
Main Channel Ribb RM	6CM	SUR	Labeobarbus	238	<u>F</u>	V
Main Channel Ribb RM	6CM	<u>SUR</u>	Labeobarbus	231	F	<u>v</u>
Main Channel Ribb RM	14cm	TIL	Oreochromis	295	M	IV
Main Channel Ribb RM	10cm	<u></u>	Oreochromis	375	M_	<u>IV</u>
Main Channel Ribb RM	14CM	TIL	Oreochromis	356	F	1V
Main Channel Ribb RM	14CM	<u></u>	Oreochromis	366	M	<u>IV</u>
Main Channel Ribb RM	14CM	TIĻ	Oreochromis	360	M	IV
Main Channel Ribb RM	10CM	<u>Til</u>	Oreochromis	285	F	<u>IV</u>
Main Channel Ribb RM	6CM	TIL,	Oreochromis	210	<u>M</u>	
Main Channel Ribb RM	14cm	TRU	Labeobarbus	370	F	<u>v</u>
Main Channel Ribb RM	14cm	TRU	Labeobarbus	405	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	390	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	370	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	360	F	v

Ribb River Fishery Studies: Final Report

.

,P

r.

Site	Me <u>sh</u> size	Species	Genus	<u> </u>	V <u>Sex</u>	Mat. Stage
Main Channel Ribb RM	10cm	TRU	Labeobarbus	375	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	320	M	<u>v</u>
Main Channel Ribb RM	10cm	TRU	Labeobarbus	340	M	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	350	M	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	340	F	
Main Channel Ribb RM		TRU	Labeobarbus	282	M	<u>v</u>
Main Channel Ribb RM	10cm	TRU	Labeobarbus	290	M	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	263	м	v
Main Channel Ribb RM	10cm		Labeobarbus	225	м	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	355	F	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	295	F	v
Main Channel Ribb RM	10cm	 TRU	Labeobarbus	315	F	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	352	F	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	317	м	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	330	F	
Main Channel Ribb RM	10cm	TRU	Labeobarbus	340	M	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	330		v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	290	<u>M</u>	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	273		v
	10cm	TRU	Labeobarbus	323		v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	325	M	v
Main Channel Ribb RM		TRU	Labeobarbus	<u>395</u>	M	
Main Channel Ribb RM	10cm			350	F	v
Main Channel Ribb RM	10cm	TRU	Labeobarbus	330	<u>г</u> F	
Main Channel Ribb RM	10cm	TRU	Labeobarbus		<u></u> М	v
Main Channel Ribb RM	10cm		Labeobarbus	332		
Main Channel Ribb RM	10cm		Labeobarbus	340	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	370	<u>F</u>	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	365	F	<u>v</u>
Main Channel Ribb RM	10cm	TRU	Labeobarbus	350	<u>M</u>	<u></u>
Main Channel Ribb RM	10cm	TRU	Labeobarbus	335	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	346	F	V
Main Channel Ribb RM	<u>10cm</u>	TRU	Labeobarbus	321	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	365	F	V
Main Channel Ribb RM	10cm	TRU	Labeobarbus	315	M	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	290	F	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	393	<u>F</u>	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	327	<u>M</u>	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	355	M	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	241	<u>M</u>	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	270	M	V
Main Channel Ribb RM	<u>6CM</u>	TRU	Labeobarbus	235	F	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	230	F	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	215	F	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	<u>2</u> 34	F	v
Main Channel Ribb RM	6CM	TRU	Labeobarbus	326	F_	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	224	F _	v
Main Channel Ribb RM	14CM	TRU	Labeobarbus	399	F	V
Main Channel Ribb RM	14CM	TRU	Labeobarbus	361	F	v
Main Channel Ribb RM	14CM	TRU	Labeobarbus	375	F	V
Main Channel Ribb RM	14CM	TRU	Labeobarbus	334	F	V
Main Channel Ribb RM	14CM	TRU	Labeobarbus	378	F	v
Main Channel Ribb RM	10CM	TRU	Labeobarbus	365	F	V
Main Channel Ribb RM	10CM	TRU	Labeobarbus	308	M	

,

د

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Main Channel Ribb RM	10CM	TRU	Labeobarbus	325		 F	<u>v</u>
Main Channel Ribb RM	10CM	TRU	Labeobarbus	332		 F	 V
Main Channel Ribb RM	10CM	TRU	Labeobarbus	488		M	
Main Channel Ribb RM	10CM		Labeobarbus	344		 F	v
Main Channel Ribb RM	10CM	TRU	Labeobarbus	320		— : M	
Main Channel Ribb RM	10CM	 TRU	Labeobarbus	315		 M	
Main Channel Ribb RM	10CM	TRU	Labeobarbus	310		 M	 V
Main Channel Ribb RM	10CM	TRU	Labeobarbus	311		 F	- <u>·</u>
Main Channel Ribb RM	10CM	TRU	Labeobarbus	328		F	
Main Channel Ribb RM	10CM	TRU	Labeobarbus	315		 M	
Main Channel Ribb RM	12CM	TRU	Labeobarbus	480		F	
Main Channel Ribb RM	12CM	TRU	Labeobarbus	375		 F	
Main Channel Ribb RM	12CM	TRU	Labeobarbus	385		 F	<u>v</u>
Main Channel Ribb RM	12CM	TRU	Labeobarbus	420		 F	
Main Channel Ribb RM	12CM		Labeobarbus	405		 F	
Main Channel Ribb RM	12CM	TRU	Labeobarbus	375		<u>'</u> F	
Main Channel Ribb RM	12CM	TRU	Labeobarbus			 F	
Main Channel Ribb RM	12CM	TRU		365			
Main Channel Ribb RM	12CM		Labeobarbus	375			<u> </u>
Main Channel Ribb RM			Labeobarbus	374		F	
Main Channel Ribb RM	12CM	TRU	Labeobarbus	339	_	F	V
	12CM	TRU	Labeobarbus	368		F	<u>V</u>
Main Channel Ribb RM	12CM		Labeobarbus	357			V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	345			V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	384		М	V
Main Channel Ribb RM	<u>12CM</u>	TRU	Labeobarbus	375		M	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	<u>34</u> 5			
Main Channel Ribb RM	12CM	TRU	Labeobarbus	480		F	<u>v</u>
Main Channel Ribb RM	<u>12C</u> M	TRU	Labeobarbus	345		<u>M</u>	
Main Channel Ribb RM	12CM	TRU	Labeobarbus	378		M	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	375		F	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	376		F	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	295		_M	V
Main Channel Ribb RM	12CM	<u>TR</u> U	Labeobarbus	305		M	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	335		F	V
Main Channel Ribb RM	12 <u>C</u> M	TRU	Labeobarbus	325		<u>M</u>	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	275		F	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	335		М	V
Main Channel Ribb RM	12CM	TRU	Labeobarbus	315		F	v
Main Channel Ribb RM	12CM	TRU	Labeobarbus	275		М	v
Main Channel Ribb RM	12CM	TRU	Labeobarbus	295		_M	v
Main Channel Ribb RM	12CM	TRU	Labeobarbus	310		М	v
Main Channel Ribb RM _	12CM	TRU	Labeobarbus	330		M	v
Main Channel Ribb RM	12CM	TRU	Labeobarbus	339		F	v
Main Channel Ribb RM	8CM	TRU	Labeobarbus	320		F	V
Main Channel Ribb RM	8CM	TRU	Labeobarbus	278		F	v
Main Channel Ribb RM	8CM	TRU	Labeobarbus	338		М	V
Main Channel Ribb RM	8CM	TRU	Labeobarbus	390		F	v
Main Channel Ribb RM	6CM	TRU	Labeobarbus	276		F	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	258		F	V
Main Channel Ribb RM	6CM	TRU	Labeobarbus	370		F	v
Main Channel Ribb RM	6CM	TRU	Labeobarbus	290		M	
Main Channel Ribb RM	6CM	TRU	Labeobarbus	322		F	V
Main Channel Ribb RM	10cm	TSA	Labeobarbus	345		м	

...

٣

Site	Mesh size	Species	Genus	L_ W	Sex	Mat. Stage
Main Channel Ribb RM	10cm	TSA	Labeobarbus	281	M	<u> </u>
Main Channel Ribb RM	10cm	TSA	Labeobarbus	285	F	
Main Channel Ribb RM	10cm	TSA	Labeobarbus	275	M	V
Main Channel Ribb RM	<u>10cm</u>	TS <u>A</u>	Labeobarbus	3 <u>15</u>	F	V
Main Channel Ribb RM	10cm	TSA	Labeobarbus	325	F	V
Main Channel Ribb RM	10cm	TSA	Labeobarbus	270	M	V
Main Channel Ribb RM	10cm	TSA	Labeobarbus	321	F	V
Main Channel Ribb RM	10cm	TSA	Labeobarbus	270	M	V
Main Channel Ribb RM	10cm	TSA	Labeobarbus	205	F	V
Main Channel Ribb RM	14CM	TSA	Labeobarbus	310	F	V
Main Channel Ribb RM	14CM	TSA	Labeobarbus	287	M	V
Main Channel Ribb RM	_14CM	TSA	Labeobarbus	375	М	V
Main Channel Ribb RM	10CM	TSA	Labeobarbus	340	F	<u>v</u>
Main Channel Ribb RM	10CM	TSA	Labeobarbus	323	M	V
Main Channel Ribb RM	10CM	TSA	Labeobarbus	295	F	V
Main Channel Ribb RM	10CM	TSA	Labeobarbus	340	M	<u> </u>
Main Channel Ribb RM	10CM	TSA	<u>Labeoba</u> rbus	305	F	V
Main Channel Ribb RM	10CM	TSA	Labeobarbus	329	F	V
Main Channel Ribb RM	10CM	TSA	Labeobarbus	<u>31</u> 3	M	V
Main Channel Ribb RM	10CM	TSA	Labeobarbus	341	F	v
Main Channel Ribb RM	10CM	TSA	Labeobarbus	337	_ F	V
Main Channel Ribb RM	10CM	TSA	Labeobarbus	335	F	v
Main Channel Ribb RM	 10CM	TSA	Labeobarbus	337	F	V
Main Channel Ribb RM		TSA	Labeobarbus	333	F	
Main Channel Ribb RM	10CM	TSA	Labeobarbus	280	 F	v
Main Channel Ribb RM	10CM	TSA	Labeobarbus	309	F	v
Main Channel Ribb RM	10CM	TSA	Labeobarbus	309	м	v
Main Channel Ribb RM		TSA	Labeobarbus	322	F	
Main Channel Ribb RM	10CM	TSA	Labeobarbus	325	F	v
Main Channel Ribb RM	10CM	TSA	Labeobarbus	332	F	v
Main Channel Ribb RM	10CM	TSA	Labeobarbus	320	F	v
Main Channel Ribb RM	12CM	TSA	Labeobarbus	345	F	
Main Channel Ribb RM	12CM	TSA	Labeobarbus	278	F	
Main Channel Ribb RM	12CM	TSA	Labeobarbus	255	 M	
Main Channel Ribb RM	12CM		Labeobarbus	280	M	v
Main Channel Ribb RM	12CM	TSA	Labeobarbus	300	F	
Main Channel Ribb RM	12CM	<u>TSA</u>	Labeobarbus	355	' F	<u>v</u>
Main Channel Ribb RM	12CM	<u></u>	Labeobarbus	315	<u>_</u>	v
Main Channel Ribb RM	12CM	TSA	Labeobarbus	278	F	v
Main Channel Ribb RM	12CM	TSA	Labeobarbus		<u>r</u> F	
Main Channel Ribb RM	12CM	<u></u> TSA	Labeobarbus	375	F	
Main Channel Ribb RM	<u>12CM</u>	<u></u>		340		<u> </u>
	<u>12CM</u>		Labeobarbus Labeobarbus	<u>305</u>	<u>F</u>	<u>v</u>
Main Channel Ribb RM		TSA		270	<u>M</u>	V
Main Channel Ribb RM	12CM	TSA	Labeobarbus	302	F	<u>v</u>
Main Channel Ribb RM	<u>12CM</u> 12CM	TSA	Labeobarbus	300	F	<u>v</u>
Main Channel Ribb RM Main Channel Ribb RM	8CM	TSA TSA	Labeobarbus	270	F	<u> </u>
			Labeobarbus	<u>271</u>	<u>M</u>	<u> </u>
Main Channel Ribb RM	8CM 8CM	TSA	Labeobarbus	280	F	<u> </u>
Main Channel Ribb RM		TSA	Labeobarbus	300	F	V
Main Channel Ribb RM	8CM	<u>TSA</u>	Labeobarbus	323	F	<u>v</u>
Main Channel Ribb RM	8CM	TSA	_Labeobarbus	295	<u>F</u>	<u>v</u>
Main Channel Ribb RM Main Channel Ribb RM	8CM 8CM	TSA	Labeobarbus	285	F	V

•

٦

Site	Mesh size	Species	Genus	L W	Sex	Mat. Stage
Main Channel Ribb RM	8CM	TSA	Labeobarbus	268	F	V
Main Channel Ribb RM	8CM	TSA	Labeobarbus	250	M	V
Main Channel Ribb RM	6CM	TSA	Labeobarbus	240	м	v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	300	F	v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	278	F	_ v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	210	M	V
Main Channel Ribb RM	6CM	TSA	Labeobarbus	210	м	v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	220	M	v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	230	M	V
Main Channel Ribb RM	6CM	TSA	Labeobarbus	228		v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	282	F	v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	298	F	v
Main Channel Ribb RM	6CM	TSA	Labeobarbus	268	F	
Shini River	Cast net	BES	Varicorhinus	96		1V
Shini River	Cast net	BES	Varicorhinus	117		
Shini River	Cast net	BES	Varicorhinus	129	 	<u>"</u>
Shini River	Cast net	BES	Varicorhinus	119	 M	
Shini River	Cast net	BES	Varicorhinus	<u>115</u> 115	M	- <u>"</u> -
Shini River	Cast net	BES	Varicorhinus	96	<u>M</u>	 H
Shini River	Cast net	BES	Varicorhinus	<u>90</u> 90	M	 1V
Shini River			Labeobarbus			
Shini River	Cast net	BRE		167	<u>M</u>	<u></u>
	Cast net	BRE	Labeobarbus	173	<u>M</u>	VI
Shini River	Cast net	BRE	Labeobarbus	168	<u>M</u>	
Shini River	Cast net	BRE	Labeobarbus	160	<u>M</u>	
Shini River	Cast net	BRE	Labeobarbus	218	F	
Shini River	Cast net	BRE	Labeobarbus	205	<u>F</u>	<u></u> 111
Shini River	Cast net	BRE	Labeobarbus	197	F	
Shini River	Cast net	BRE	Labeobarbus	185	F	VI
Shini River	Cast net	BRE	Labeobarbus	262	<u>F</u>	
Shini River	Cast net	BRE	Labeobarbus	175	<u> </u>	
Shini River	Cast net	BRE	Labeobarbus	208	M	
Shini River	Cast net	BRE	Labeobarbus	166	M	VI
Shini River	Cast net	BRE	Labeobarbus	141	M	<u></u>
Shini River	Cast net	BRE	Labeobarbus	157	_ <u>M</u>	<u>V1</u>
Shini River	Cast net	BRE	Labeobarbus	140	M	VI
Shini River	Cast net	BRE	Labeobarbus	200	M	VI
Shini River	Cast net	BRE	Labeobarbus	175	M	VI
Shini River	Cast net	BRE	Labeobarbus	164	M	VI
Shini River	Cast net	BRE	Labeobarbus	167	M	VI
Shini River	Cast net	BRE	Labeobarbus	160	M	VI
Shini River	Cast net	BRE	Labeobarbus	158	_ <u>M</u>	<u></u>
Shini River	Cast net	BRE	Labeobarbus	174	<u> </u>	VI
Shini River	Cast net	BRE	Labeobarbus	180	M	VI
Shini River	Cast net	BRE	Labeobarbus	173	М	VI
Shini River	Cast net	BRE	Labeobarbus	170	<u>_M</u>	<u>VI</u>
Shini River	Cast net	BRE	Labeobarbus	180	<u>M</u>	VI
Shini River	Cast net	BRE	Labeobarbus	173	м	VI
Shini River	Cast net	BRE	Labeobarbus	180	М	VI
Shini River	Cast net	BRE	Labeobarbus	157	M	VI
Shini River	Cast net	BRE	Labeobarbus	160	M	VI
Shini River	Cast net	BRE	Labeobarbus	145	M	VI
Shini River	Cast net	BRE	Labeobarbus	162	м	VI
Shini River	Cast net	BRE	Labeobarbus	143	M	VI

.

-

Site	Mesh size	Species	Genus	<u> L </u>	<u>N</u>	Sex	Mat. Stage
Shini River	Cast net	BRE	Labeobarbus	163		M	<u>V1</u>
Shini River	Cast net	BRE	Labeobarbus	164		M	VI
Shini River	Cast net	BRE	Labeobarbus	109		M	VL
Shini River	Cast net	BRE	Labeobarbus	114		М	VI
Shini River	Cast net	BRE	Labeobarbus	119		М	VI
Shini River	Cast net	BRE	Labeobarbus	119		_M	VI_
Shini River	Cast net	BRE	Labeobarbus	115		М	<u></u>
Shini River	Cast net	BRE	Labeobarbus	97		м	VI
Shini River	Cast net	BRE	Labeobarbus	95		м	VI
Shini River	Cast net	BRE	Labeobarbus	95		м	VI
Shini River	Cast net	BRE	Labeobarbus	105		м	VI
Shini River	Cast net	BRE	Labeobarbus	114		М	VI
Shini River	Cast net	BRE	Labeobarbus	164		м	VI
Shini River	Cast net	BRE	Labeobarbus	186		м	VI
Shini River	Cast net	BRE	Labeobarbus	155		м	
Shini River	Cast net	BRE	Labeobarbus	120		M	
Shini River	Cast net	BRE	Labeobarbus	141		M	
Shini River	Cast net	BRE	Labeobarbus	122			
Shini River	Cast net	BRE	Labeobarbus	150		 M	<u></u>
Shini River	Cast net	BRE	Labeobarbus	123		 M	!! _!!
Shini River	Cast net	BRE	Labeobarbus	124		 M	<u></u>
Shini River	Cast net	BRE	Labeobarbus	130		M	'' Vi
Shini River	Cast net	BRE	Labeobarbus	169		 M	VI
Shini River	Cast net	BRE	Labeobarbus	<u>109</u> 171		<u>IVI</u>	
Shini River	Cast net	CLA	Clarias	364		 M	IV
Shini River	Cast net		Clarias				<u></u>
Shini River		GAR	 Garra	<u> </u>		_ <u>M_</u> F	
Shini River	Cast net Cast net	INT					<u>III</u>
Shini River			Labeobarbus			F	<u> </u>
	Cast net		Labeobarbus	121		<u>M</u>	
Shini River	Cast net		Labeobarbus			<u>M</u>	
Shini River	Cast net		Labeobarbus	118		<u>M</u>	!!
Shini River	Cast net	NED	Labeobarbus	137		<u>M</u>	!
Shini River	Cast net	NED	Labeobarbus	230			
Shini River	Cast net	TIL	Oreochromis	139		<u>M</u>	!
Shini River	Cast net	TIL	Oreochromis	107		<u> </u>	_ <u>_X</u>
Shini River	Cast net	<u></u>	Oreochromis	125		M	
Shini River	Cast net		Oreochromis	176		_ <u>F_</u>	11
Shini River	Cast net	<u></u>	Oreochromis	185		M	
Shini River	Cast net		Oreochromis	144		M	11
Shini River	Cast net		Oreochromis	135		<u>M</u>	
Shini River	Cast net		Oreochromis	143		_ M	
Main_Channel Ribb RM	6cm	CLA	Clarias	415	430	_ F	<u> </u>
Main Channel Ribb RM	6cm	CLA	Clarias	423	405	M	
Main Channel Ribb RM	6cm	CLA	Clarias	395	365	F	<u> </u>
Main Channel Ribb RM	<u>6cm</u>	CLA	Clarias	397	360	F	
Main Channel Ribb RM	6cm	CLA	Clarias	325	195	_ <u>F</u>	
Main Channel Ribb RM	6cm	CLA	Clarias	380	390	<u>M</u>	<u> </u>
Main Channel Ribb RM	6cm	CLA	Clarias	400	390	F	
Main Channel Ribb RM	6cm	CLA	Clarias	390	355	M	11
Main Channel Ribb RM	6cm	MEG	Labeobarbus	390	355	M	11
Main Channel Ribb RM	6cm	MEG	Labeobarbus	310	390	F	V
	6cm	MEG					V

4

3

.

Site	Mesh size	Species	Genus	<u>L</u>	w	Sex	Mat. Stage
Main Channel Ribb RM	6cm	MEG	Labeobarbus	335	445	м	V
Main Channel Ribb RM	6cm	MEG	Labeobarbus	325	410	F	
Main Channel Ribb RM	<u>6cm</u>	MEG	Labeobarbus	330	425	M_	V
Main Channel Ribb RM	6cm	MEG	Labeobarbus	335	<u>39</u> 5	м	V
Main Channel Ribb RM	6cm	MEG	Labeobarbus	360	475	F	V.
Main Channel Ribb RM	6cm	MEG	Labeobarbus	<u> 2</u> 65	250	м	11
Main Channel Ribb RM	6cm	MEG	Labeobarbus	289	325	M	<u> </u>
Main Channel Ribb RM	6cm	CRA	Labeobarbus	265	260	F	111
Main Channel Ribb RM	6cm	CLA	_Clarias	283	340	F	
Main Channel Ribb RM	6cm	CLA	Clarias	290	415	M	
Main Channel Ribb RM	6cm	CLA	Clarias	260	250	М	
Main Channel Ribb RM	6cm	CLA	Clarias	277	300	М	١V
Main Channel Ribb RM	6cm	CLA	Clarias	340	560	М	
Main Channel Ribb RM	6cm	CLA	Clarias	261	245	M	
Main Channel Ribb RM	6cm	TSA	Labeobarbus	259	240	F	v
Main Channel Ribb RM	6cm	TSA	Labeobarbus	253	255	F	11
Main Channel Ribb RM	6cm	INT	Labeobarbus	273	290	м	
Main Channel Ribb RM	6cm	INT	Labeobarbus	265	250	F	v
Main Channel Ribb RM	6cm	INT	Labeobarbus	255	230	– F	
Main Channel Ribb RM	6cm	 INT	Labeobarbus	285	315	F	v
Main Channel Ribb RM	6cm	INT	Labeobarbus	300	350	F	v
Main Channel Ribb RM	6cm	INT	Labeobarbus	250	215	M	
Main Channel Ribb RM	6cm	INT	Labeobarbus	265	225		v
Main Channel Ribb RM	6cm	ACU	Labeobarbus	265	240	M	
Main Channel Ribb RM	6cm	INT	Labeobarbus	240	190	M	
Main Channel Ribb RM	6cm	BRE	Labeobarbus	233	195	M	V
Main Channel Ribb RM	6cm	BRE	Labeobarbus	210	110	M	
Main Channel Ribb RM	6cm	NED	Labeobarbus	305	405	M	
Main Channel Ribb RM	6cm		Clarias	325	400	 F	
Main Channel Ribb RM	6cm		Clarias	435	485	F	<u> </u>
Main Channel Ribb RM	6cm		Clarias	389	<u>400</u> 325	 M	<u> </u>
Main Channel Ribb RM	6cm		<u>Clarias</u>	371	280	M	<u> </u>
Main Channel Ribb RM	<u>6cm</u>		<u>Clarias</u>	345	260	 F	
			Oreochromis	412	360	<u>'</u>	<u> </u>
Main Channel Ribb RM	6cm		Oreochromis	219	<u>205</u>	' F	<u> </u>
Main Channel Ribb RM	6cm	TIL TIL		215		F	 IV
Main Channel Ribb RM	6cm		Oreochromis Oreochromis	214	<u>310</u> 160	M	<u> </u>
Main Channel Ribb RM	<u>6cm</u>	TIL				F	 III
Main Channel Ribb RM	6cm	TIL	Oreochromis	211	<u>165</u>	 F	
Main Channel Ribb RM	6cm		Oreochromis	237	210	F	
Main Channel Ribb RM	<u> </u>		<u>Oreochromis</u>	355	<u>745</u>	 F	
Main Channel Ribb RM	<u>6cm</u>	TIL	<u>Oreochromis</u>	<u>363</u> 344	<u>840</u> 690	 F	 IV
Main Channel Ribb RM	6cm		<u>Oreochromis</u>	240	235	 F	
Main Channel Ribb RM	<u>6cm</u>	<u></u>	Oreochromis Oreochromis	240	335	F	 IV
Main Channel Ribb RM	6cm			258	250	' F	
Main Channel Ribb RM	<u> </u>		Oreochromis	<u>238</u> 267	310	F	
Main Channel Ribb RM	6cm	MEG	Labeobarbus	337	570	 M	v
Main Channel Ribb RM	8CM	MEG	<u>Labeobarbus</u> Clarias		695	 M	<u>v</u>
Main Channel Ribb RM	<u>8CM</u>	CLA	<u>Clarias</u>	<u>369</u> 245	<u>695</u> 155	<u>™_</u> M	 IV
Main Channel Ribb RM	8CM	TIL	<u>Oreochromis</u>				 IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	<u> </u>	800	<u>M</u>	
Main Channel Ribb RM	8CM		Oreochromis	347_	<u>760</u> 940	<u>M</u> F	<u>IV</u>
Main Channel Ribb RM	8CM	TIL	Oreochromis	369			

•

-

Site	Mesh size	Species	Genus	<u> L </u>	w	Sex	Mat. Stage
Main Channel Ribb RM	8CM	_TIL	Oreochromis	330	575	F	IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	298	380	<u> </u>	IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	340	695	F	1V
Main Channel Ribb RM	8CM	TIL	Oreochromis	255	295		
Main Channel Ribb RM	8CM	TIL	Oreochromis	338	650	F	<u>IV</u>
Main Channel Ribb RM	8CM		Oreochromis	326	600	F	IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	367	810	<u>M</u> _	II
Main Channel Ribb RM	8CM	TIL	Oreochromis	310	515	F	<u>_IV</u>
Main Channel Ribb RM	8CM	TIL	Oreochromis	314	525	F	IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	293	405	F	IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	295	455	F	IV_
Main Channel Ribb RM	8CM	TIL	Oreochromis	297	465	F	<u>IV</u>
Main Channel Ribb RM	8CM		Oreochromis	347	620	F	11
Main Channel Ribb RM	8CM	TIL	Oreochromis	346	740	F	IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	278	395	F	IV
Main Channel Ribb RM	8CM	MEG	Labeobarbus	265	315	М	П
Main Channel Ribb RM	8CM	CRA	Labeobarbus	380	630	F	v
Main Channel Ribb RM	8CM	CLA	Clarias	274	295	М	II
Main Channel Ribb RM	8CM	TIL	Oreochromis	610	1435	F	
Main Channel Ribb RM	8CM	TIL	Oreochromis	360	930	F	iV
Main Channel Ribb RM	8CM	TIL	Oreochromis	352	820	F	
Main Channel Ribb RM	8CM	TIL	Oreochromis	349	745	F	IV
Main Channel Ribb RM	8CM	 TIL	Oreochromis	339	695	 F	 IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	363	755	 F	IV
Main Channel Ribb RM	8CM	 TIL	Oreochromis	299	480	F	IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	332	650		<u>·</u>
Main Channel Ribb RM	8CM	TIL	Oreochromis	347	690	 F	 II
Main Channel Ribb RM	8CM	 TIL	Oreochromis	380	940	M	
Main Channel Ribb RM	8CM	TIL	Oreochromis	337	665	 F	 IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	365	845		
Main Channel Ribb RM	8CM	TIL	Oreochromis	329	620	F	<u></u>
Main Channel Ribb RM	8CM	TIL	Oreochromis	345	720	 F	<u>"</u> IV
Main Channel Ribb RM	8CM	TIL	Oreochromis	344	755	 F	<u></u>
Main Channel Ribb RM	8CM	TIL	Oreochromis	370	<u>910</u>	 F	<u></u>
Main Channel Ribb RM	8CM	TIL	Oreochromis	354	800	F	
Main Channel Ribb RM	8CM	TIL	Oreochromis	350			<u> </u>
Main Channel Ribb RM	8CM		Oreochromis	366	<u>730</u>	 	<u>IV</u>
Main Channel Ribb RM	8CM	 TIL	Oreochromis				<u>IV</u>
Main Channel Ribb RM	8CM	TIL	Oreochromis	325	<u> </u>	<u>F</u> _	<u> </u>
Main Channel Ribb RM	8CM		Oreochromis	344	710		<u> </u>
Main Channel Ribb RM	8CM			350	685	 	/V
Main Channel Ribb RM	8CM		<u>Oreochromis</u>	360	851	F	IV
Main Channel Ribb RM	8CM	<u> </u>	<u>Oreochromis</u>	334	690	<u>M</u>	IV
Main Channel Ribb RM	8CM	 TIL	<u>Oreochromis</u>	308	500		IV_
Main Channel Ribb RM	8CM	TIL	<u>Oreochromis</u>	<u>317</u>	535	<u>M</u>	IV
Main Channel Ribb RM	8CM	<u> </u>	<u>Oreochromis</u>	300	<u>485</u>	<u>M</u>	<u> </u>
lain Channel Ribb RM	8CM		Oreochromis	315	535	F	<u>IV</u>
Main Channel Ribb RM	8CM		Oreochromis	349_	560		<u>IV</u>
Main Channel Ribb RM		TIL	Oreochromis	285	435		<u> </u>
Aain Channel Ribb RM	<u>14CM</u>		Oreochromis	359	805	<u>F</u>	<u>IV</u>
Main Channel Ribb RM	14CM		Oreochromis	373	965	<u>M</u>	<u>IV</u>
lain Channel Ribb RM	<u>14CM</u> 14CM	TIL TIL	Oreochromis	400	1035	M	_ <u>IV</u> _
			Oreochromis	370	914	М	IV

7

.

,

Site	Mesh size	Species	Genus	L	w	Sex	Mat. Stage
Main Channel Ribb RM		TIL	Oreochromis	378	950	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	_ 333	730	F	IV
Main Channel Ribb RM	<u>14CM</u>	<u>TIL</u>	Oreochromis	360	770		IV
Main Channel Ribb RM	<u>14CM</u>	TIL	Oreochromis	365	780	_ <u>F</u>	IV
Main Channel Ribb RM	<u>14CM</u>	TIL	Oreochromis	377	915	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	368	805	F	1V
Main Channel Ribb RM	14CM	TSA	Labeobarbus	290	325	M	V
Main Channel Ribb RM	14CM	TIL	Oreochromis	363	835	M	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	284	453	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	330	675	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	305	500	F	ĪV
Main Channel Ribb RM	14CM	TIL	Oreochromis	357	855	<u> </u>	IV
Main Channel Ribb RM	<u>14CM</u>	TIL	Oreochromis	370	935	F	11
Main Channel Ribb RM	14CM	TIL	Oreochromis	276	375	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	285	41 <u>5</u>	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	270	<u>35</u> 0	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	273	350	м	١٧
Main Channel Ribb RM	14CM	TIL	Oreochromis	281_	360	F	IV
Main Channel Ribb RM	14CM		Oreochromis	285	375	F	IV
Main Channel Ribb RM	14CM	TIL	Oreochromis	307	510	F	IV
Main Channel Ribb RM	14CM	INT	Labeobarbus	230	175	F	- 11

.

. •

t ١ ÷. .