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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 6417

A climate change vulnerability index in agriculture is 
presented at the municipal level in Mexico. Because 
the index is built with a multidimensional approach 
to vulnerability (exposure, sensitivity and adaptive 
capacity), it represents a tool for policy makers, 
academics and government alike to inform decisions 
about climate change resilience and regional variations 
within the country. The index entails baseline (2005) and 
prediction (2045) levels based on historic climate data 
and future-climate modeling. The results of the analysis 
suggest a wide variation in municipal vulnerability 
across the country at baseline and prediction points. 
The vulnerability index shows that highly vulnerable 
municipalities demonstrate higher climate extremes, 

This paper is a product of the Social Development Department, Sustainable Development Network. It is part of a larger 
effort by the World Bank to provide open access to its research and make a contribution to development policy discussions 
around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors 
may be contacted at cborjavega@worldbank.org and adelafuente@worldbank.org. 

which increases uncertainty for harvest periods, 
and for agricultural yields and outputs. The index 
shows at baseline that coastal areas host some of the 
most vulnerable municipalities to climate change in 
Mexico. However, it also shows that the Northwest 
and Central regions will likely experience the largest 
shifts in vulnerability between 2005 and 2045. Finally, 
vulnerability is found to vary according to specific 
variables: municipalities with higher vulnerability have 
more adverse socio-demographic conditions. With the 
vast municipal data available in Mexico, further sub-
index estimations can lead to answers for specific policy 
and research questions. 
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Introduction 
 
Mexico is among the most exposed countries to natural hazards in the world (World Bank, 
2005; de la Fuente, 2009)1. Only last year Mexico experienced one of its worst droughts in 
seven decades2, and suffered historical losses in 2010 due to hurricane Alex in northeastern 
Mexico, and then serious floods in various southern states.  
 
Moreover, recent evidence and predictions indicate that climate change is accelerating and 
will lead to wide-ranging shifts in climate variability (or indicators) (UNISDR, 2009; IPCC, 
2012), with consequent increases in extreme weather events, and associated likely impacts 
on economic activities closely linked to climate.  
 
Agriculture is one of the sectors that climate change is expected to hit hardest. Extreme 
weather affects agricultural productivity, and can raise the price of staple grains important 
to poor households. Mexican agriculture is particularly vulnerable to climate change. The 
participation of agriculture in the economy has shrunk over the past decades3, but about 3 
million smallholders grow maize, mainly for subsistence. Unfortunately, they do so under 
very precarious conditions and have restricted ability to adapt given their low income. Rain 
fed maize production is a critical livelihood strategy for the poor in Mexico. It therefore 
makes sense to start assessing the potential vulnerability of agriculture to climate change. 
 
This paper develops a multidimensional municipal index that assesses the vulnerability (as 
defined by the Intergovernmental Panel on Climate Change, IPCC) of the agricultural sector 
in Mexico to climatic contingencies and climate change. The aim is to better understand how 
and why vulnerability to climate change and climate variability varies by municipality in 
Mexico. Akin to the marginality index4 developed in Mexico in the mid-1990s, such an index 
could facilitate the (re)design of new interventions for reducing the risk to  the most 
vulnerable populations, especially small subsistence farmers who have limited ability to 
adapt to adverse economic and climatic events. The index can also be used to improve the 
targeting of sectoral plans and the current federal system of disaster compensation and 

                                                        
1  “Government Expenditures in Pre and Post Disaster Risk Management” Background Note for World Bank-U.N. 
Assessment Natural Hazards, Unnatural Disasters: Effective Prevention through the Economic Lens. November 2009. 
2 According to the Mexican Government, 21 Mexican states were affected by one of the most intense droughts in the 
last 70 years. The states mostly affected by this drought are Chihuahua, Coahuila, Durango, San Luis Potosi, Zacatecas 
and Aguascalientes, which constitute the northern-western and central agricultural areas. The percent of harvest lost in 
beans for 2010-2011 was around 60 percent and estimated losses amount 100 USD million. (SAGARPA, 2012; ) 
3 In 2010, agriculture accounted for only 3.6% of GDP, down from 7% in 1980, and 25% in 1970; Baez and Mason, 
2008; INEGI, 2010. 
4 The marginality index is a policy-oriented indicator, created by the National Population Council in Mexico 
(CONAPO) that measures the lack of basic public infrastructure, as well as education and material living conditions at 
the state and municipal levels. It has been based traditionally on census data, and uses the following indicators for its 
construction: the share of illiterate people over 15 years; the share of people over 15 years without completed primary 
education; the share of the employed labor force earning less than twice the minimum wage (approx. US$7 per day); 
the share of people living in households in localities with less than 5,000 inhabitants; the share of people without 
running water, electricity, sewage facilities, and solid floor materials and the share of households with some degree of 
overcrowding. Principal component statistical analysis is performed to construct the index which is a normalized Z-
score ranging between -3 and 3 standard deviations that correspond to very low and very high marginality, respectively 
(CONAPO, 2006).  
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state agricultural subsidies to the most vulnerable groups and sectors. Finally, the proposed 
methodology and use of comparable municipal information could allow analysts to monitor 
the progress of new adaptation policies for climate change within the agricultural sector.  
 
Despite important advances in the understanding of vulnerability, quantitative estimates of 
spatial and temporal vulnerability at the sub-national level are rare, and methodologies for 
doing this are very much in their infancy.5 Vulnerability indices have been computed at the 
national level (in Europe, World Bank, 2009) and at the regional/provincial/district level 
(districts in India, O’Brien et al. 2004; regional in Brazil, Fontes, 2009), but never 
nationwide at the municipal level of resolution. 
 
Recently climate change vulnerability indices have been constructed for Eastern European 
and Central Asian (ECA) countries, including Tajikistan (Fay and Patel, 2008; Heltberg and 
Bonch-Osmolovskiy, 2010). The Tajikistan indices combined indicators that capture each 
country‘s exposure, sensitivity and adaptive capacity to climate change. The Climate Change 
Vulnerability Index (CCVI) in ECA assesses current vulnerability to climate change, at the 
regional (Rayons; local municipal subdivision) or provincial (Oblast; Gorno-Badakshan 
Autonomous Provinces) levels and is useful to integrate and prioritize regional policies. 
However, due to the lack of data indices cannot be constructed at the more disaggregated 
municipal level. Much of the data and indicators necessary to compute a municipal level 
CCVI must be collected on a regular and consistent basis.  
 
Mexico represents a good case to build a CCVI given its high exposure to natural hazards 
(and climate change) along with a vast amount of data and indicators at state and municipal 
levels. In addition, Mexico routinely and consistently collects quantitative historical data on 
climate and temperature, and socioeconomic indicators at municipal and state levels. A 
geographically disaggregated picture of vulnerability can help with the preparation of 
adaptation strategies and allocation of financial and technical assistance to municipalities. 
This would happen in the same manner to poverty maps, in which Mexico has a rich 
experience, that support the design and financing of anti-poverty policies and programs. 
Moreover, Mexico has established sound climate change adaptation policies that are 
necessary to cope with future climate-related threats. These efforts can be complemented 
by constructing an analytical tool that is useful for policy makers and local governments to 
prioritize resources and actions necessary to minimize climate change risks in the future. 
 

                                                        
5 The literature suggests two existing approaches to assess vulnerability: As an “endpoint’, in terms of the 
amount of damage in a system caused by a particular climate event; and as a “starting point”, looking at the 
existing state of a system before facing a particular phenomenon (Kelly and Adger, 2000). In the “endpoint” 
approach, vulnerability is a residual of climate change impacts after adaptation; therefore, it is the net impact of 
climate change (Ribot, 1995; Clark et al, 2000; Luers, 2003).  Most index vulnerability assessments have applied 
the “endpoint” approach looking at historic climatic variability, without making future projections of climate 
change. Studies based on the “starting point” approach would evaluate the different factors that can cause a 
society to become vulnerable. This research will assess the social and economic processes that underlie climate 
vulnerability from a “starting point” approach. We agree that the ‘adaptation deficit’—excessive vulnerability to 
current climate variability—is a good proxy of future vulnerability to climate change (e.g., World Bank 2009b). 
This has led to our main focus on understanding vulnerability to current climate variability. 
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The study employs geo-physical data on climate at baseline (2005)6 and its projections due 
to climate change (2045), using nine climate models (See Annex). It also relies on household 
surveys and censuses of municipalities and rural producers (see Annex for a full list of these 
data sources). A set of indicators thought to be important for assessing agricultural 
vulnerability were chosen in close consultation with counterparts from the Ministry of 
Agriculture (SAGARPA) in the Mexican government. All data were merged into a single 
dataset to conduct the statistical aggregation of the index, after ruling out those variables 
that showed high endogeneity. Once the final list of variables was selected, these indicators 
were combined through Principal Components Analysis to compute a vulnerability index at 
baseline. Then the index was recomputed based on projected climate scenarios. Alternative 
indicators on climate variability7 and socio-economic factors for PCA construction were 
used to verify the stability of the index (see Annex). 
 
The estimates presented here disaggregate vulnerability at the municipal level. The index 
allows comparisons across space and time. Our main findings suggest that the effects of 
climate change in Mexico will be uneven across municipalities, regardless of the model 
employed. Predictions point to higher vulnerability increases in central and northern 
Mexico; and states with the highest vulnerability at baseline are in coastal areas (Pacific 
coast, Yucatan peninsula and Gulf of Mexico). All models also showed that states with high 
poverty rates have consistently higher vulnerability at baseline and over the long-term.  
 
Overall, the index shows the highest increases in vulnerability for states such as Zacatecas, 
Yucatan, Guanajuato, Chiapas, and Chihuahua.  Other states, such as Oaxaca, Puebla and 
Tlaxcala, also show important increases in the index between 2005 and 2045. These states 
are located in Coastal and Central-Northern regions, with relatively lower levels of human 
development.  
 
The states that experienced the greatest decreases in vulnerability between baseline and 
prediction periods are Tabasco, Sonora, Campeche, Sinaloa and Nayarit. Tabasco and 
Campeche are located in high vulnerability areas subject to floods and hurricanes that affect 
all types of farmers. However, Tabasco and Campeche have reported relatively lower 
agricultural losses in the presence of recent climate-related extreme events, due to their 
participation in Catastrophic Agricultural Insurance (ECLAC, 2008). On the other hand, 
Sonora, Sinaloa and Nayarit are pacific northern states with relatively high human 

                                                        
6 Climate and temperature data included in the analysis cover the period from 1960 to 2005.  
7 A main model was estimated using Growing Degree Days (GDD-Temp) and the coefficient of variation of rain 
(CVR) as climate variability measures for the 1960-2005 and 2005-2045 periods. An alternative model included 
more specific climate variability measures such as the total number of frost days (<10 Cº), the number of days 
with rain above 10mm, the maximum number of consecutive dry days, and the percentage of rain above the high 
95 percentile. These indicators were selected because they are well accepted and defined by the literature for 
Mexico (Peralta et al. 2009; Biasutti et al. 2011) 
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development and agricultural indicators. These states also diversify their crops 
substantially and keep a high coverage of irrigation in the agricultural sector8.  
 
 
 

I. Conceptual Framework 
 
The framework for this paper is an adaptation of the IPCC’s vulnerability framework, which 
distinguishes between exposure, sensitivity, and adaptive capacity. The vulnerability of 
people can be reduced by decreasing the exposure and sensitivity of people, assets and 
livelihoods to climate risks, and by increasing the adaptive capacity of individuals, 
households, communities, and governments.  Key terms are defined in the Glossary. Figure 
1 offers a framework for understanding how exposure, an exogenous driver of vulnerability, 
interacts with endogenous drivers – sensitivity and adaptive capacity – to create 
vulnerability and its opposite, resilience. The level of a community’s vulnerability 
determines the frequency and severity of climate change impacts.  By contrast, a resilient 
community will not be significantly impacted by climate change. 
 
Throughout this paper we use terms such as risk, vulnerability, exposure and hazard in very 
specific ways.  There is an ongoing debate on the definitions of these terms, which are used 
to mean different things by different disciplines. Sorting out the differences in semantics is 
important for identifying causal relationships between climate change-related risks and 
human vulnerability, and for designing interventions to help people manage risk and 
vulnerability. This paper tries to present a coherent approach, focused on how risks 
associated with climate change may contribute to the vulnerability of individuals and 
households. In this framework, it is the interaction of exposure and sensitivity to risk, with 
adaptive actions that determine vulnerability9. The IPCC definition characterizes 
vulnerability (to climate change) as a function of a system’s exposure and sensitivity to 
climatic stimuli and its capacity to adapt to their (adverse) effects (IPCC 2007), which 
corresponds to outcome (or end-point) vulnerability, but it does not provide a clear 
definition of these attributes or the relationship between them10.  
 

                                                        
8 According to the Food and Agriculture Organization’s Aquastat, Sonora and Sinaloa concentrate 
over 25 percent of the total irrigated land in Mexico, for both irrigation districts and irrigation units. 
See http://www.fao.org/nr/water/aquastat/countries_regions/mexico/indexesp.stm 
9 Vulnerability: the extent to which a natural or social system is susceptible to sustaining damage 
from climate change (IPCC 2001). For practical purposes, this means that a person is vulnerable to 
climate change risks if he/she has a high probability of becoming poor, sick, or of food insecurity due 
to climate change related events. 
10 According to Fussel (2009) it is crucial to guide the development of any vulnerability index, or set 
of indicators. Given the diversity of decision contexts that can be informed by climate change 
vulnerability assessments and of normative preferences, the design of vulnerability indices is as 
much a political as a scientific task. Normative differences may strongly influence the combination of 
diverse information sources into an aggregated vulnerability index. Normative challenges include the 
aggregation of future and current climate risks.  

http://www.fao.org/nr/water/aquastat/countries_regions/mexico/indexesp.stm
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As one will notice, in Figure 1 we have further adapted the IPCC vulnerability framework.  
In practice, it is difficult distinguish what counts as sensitivity and what is adaptive capacity, 
since they both deal with similar issues.  For example, poverty is a good indicator of a 
community’s sensitivity; since poor communities are often more sensitive to impacts from 
climate change, however, the lack of income and access to resources are important 
characteristics of adaptive capacity.  The same can be said for other issues. For example, 
forest cover prevents soil erosion and run-off, thereby increasing adaptive capacity, 
simultaneously, the loss of forest cover makes it so erosion and soil run-off are more likely a 
result of climate exposure, which means that the communities become more sensitive.   
 
So to separate issues such as poverty or forest cover into separate categories is problematic.  
For this reason, we have separated exogenous drivers of vulnerability (exposure) - which 
are not immediately impacted by human activity (excluding the role humans play in carbon 
emissions) – from endogenous drivers of vulnerability such as sensitivity and adaptive 
capacity. Sensitivity and adaptive capacity are basically two sides to the same coin in that 
the former refers to characteristics that increase vulnerability and the latter refers to traits 
that reduce it. 
 
Figure 1 - Conceptual Framework: Drivers of vulnerability and impacts from climate change 

 
 
 
 
 

Sensitivity

Natural resource based 
livelihoods
Coastal livelihoods
Land or housing at risk from 
extreme weather
Poverty

Adaptive Capacity

Risk insurance
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livelihoods
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Impacts on individual, household and community 
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II. Data Sources 

The units of analysis for this study are 2,200 of the 2,454 municipalities in Mexico. The 
conceptual framework proposed requires variables that capture exposure, sensitivity and 
adaptive capacity to estimate vulnerability. The analysis uses four types of information: (i) 
historic and projected changes in precipitation and temperature, weather and climatic 
shock data, and use of specific variability indicators (frost and drought days, rain level 
variation and extremes); (ii) agricultural production, socio-economic conditions, 
infrastructure, and geographic data; (iii) poverty rates and other population-related 
variables; human, social and financial capitals; historical subsidies and transfers to 
municipalities; and (iv) climate scenario projections based on scientific climate models (see 
Annex).  
 
Agricultural and socio-economic data come from the Agroalimentary and Fisheries 
Information Service (Servicio de Información y Estadística Agroalimentaria y Pesquera—
SIAP) of the Ministry of Agriculture (SAGARPA). Weather data comes from meteorological 
stations and the National Weather Service (Servicio Meteorológico Nacional—SMN, and the 
National Water Commission (CONAGUA)); and all climate models (including the projections 
of temperature and rainfall) are credited to the Coupled Model Intercomparison Project 
Phase 3 (CMIP3) of the World Climate Research Programme (WCRP) referenced in the 
Intergovernmental Panel on Climate Change’s (IPCC) Third and Fourth Assessment Report. 
Poverty rates were obtained through small area estimation techniques using data from the 
Income and Expenditure Household Survey (ENIGH) and the Count of Population and 
Housing 2005. Population data come from the National Population Council (CONAPO). 
Finally, important indicators were collected from the Summary Statistics of the 2007 
Agricultural Census (INEGI). All data are available at the municipal (county) level. (See 
Annex Figure I and Table 1 for summary statistics and a detailed explanation of their 
construction.) 
 
The selection of variables for each component was made in consultation with officers at the 
Ministry of Agriculture in Mexico, and by reviewing relevant literature. A large fraction of 
the population in municipalities relies also on rain fed Maize production as the main 
economic activity. Climate-related indicators show large variability across municipalities. 
For instance the standard deviation of annual rainfall (mm) is almost the same as the 
average annual rainfall. The maximum rain levels reported in municipalities is almost ten 
times the average rainfall. Socio-demographic characteristics also vary considerably. There 
are municipalities with practically no access to services, while others have almost universal 
coverage. In a similar fashion, infant mortality and poverty rates show large standard 
deviations with respect to their means. Finally, some agricultural variables are measured in 
agricultural production units11, and not necessarily relative to households or populations.  

                                                        
11 Concept defined by the Ministry of Agriculture (SAGARPA) and by the 2007 Agricultural Census, where a 
production unit refers to formal production arrangement of more than one individual to exploit individual or 
communal land. Therefore, there can be multiple production units headed by households or one production unit 
(farming companies) in leased collective land.  

http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
http://www.wcrp-climate.org/
http://www.ipcc.ch/
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III. Methodology - PCA Method to Build Multi-Dimensional Indices 

Principal Components Analysis (PCA) was used to build a composite index for climate-
related vulnerability. Because of the complexity of interactions between social, economic, 
climatic, disaster and agricultural dimensions, using the PCA method to aggregate variables 
into a single index is an efficient way to construct risk categories.  
 
The primary problem when constructing a PCA index is the choice of component indicators. 
Most indices use only a few variables, but the principal components methodology allows the 
use of a large number of continuous variables12. As stated earlier, the variables were 
selected to capture the exposure, sensitivity and adaptive capacity of households and 
communities to climate-related shocks or events. Choosing appropriate component 
indicators minimizes errors and differences in measurement across municipalities. At the 
same time, the variables must fit consistently into the same general categories mentioned.  
 
PCA creates uncorrelated indices or components, where each component is a linear 
weighted combination of the initial variables.  
 
𝑃𝐶1 = 𝑎11𝑋1 + 𝑎12𝑋2 + ⋯+ 𝑎1𝑛𝑋𝑛 
: 
: 
𝑃𝐶𝑚 = 𝑎𝑚1𝑋1 + 𝑎𝑚2𝑋2 + ⋯+ 𝑎𝑚𝑛𝑋𝑛 
 
 
where amn represents the weight for the mth principal component in the nth variable. The 
weights for each principal component are given in the correlation matrix, or if the original 
data were standardized, a covariance matrix (multi-dimension correlations). In the case 
where multiple variables interrelate, covariance matrices are used as weights. The 
components are ordered so that the first component (PC1) explains the largest possible 
amount of variation in the original data, subject to the constraint that the sum of the 
squared weights (a211+ a212+…+ a21n) is equal to one.  
 
The second component (PC2) is uncorrelated with the first component, and explains 
additional but less variation than the first component, subject to the same constraint. 
Subsequent components are uncorrelated with previous components; therefore, each 
component captures an additional small variation with respect to other variables within the 
data, while explaining smaller and smaller proportions of the variation of the original 

                                                        
12 Data in categorical form are not suitable for PCA, as the categories are converted into a quantitative scale 
which does not have any meaning. To avoid this, qualitative categorical variables should be re-coded into binary 
variables. Another data issue is that of missing values. Cortinovis et al. (1993) excluded households with at least 
one missing value from their analysis to develop socio-economic groups. Gwatkin et al. (2000) replaced missing 
values with the mean value for that variable. Given that some indicators might have few observations by 
Municipalities in certain surveys, it is convenient to replace the mean value of each geographical unit.  
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variables. The higher the degree of correlation among the original variables in the data, the 
fewer components required. 
 
Once the specific variables have been detailed, two interrelated issues must be addressed 
concerning the construction of a PCA index. The underlying variables need to be converted 
to compatible scales so they can be combined to produce a single index. All variables were 
transformed into a normal standard distribution with a mean of 0 and standard deviation 
equal to unity. The second issue is the choice of weights for each of variable. The issue is not 
just to give the appropriate weight to each of the component statistics, but also to take into 
account any correlation between the component statistics. Ultimately, the weights 
calculated at baseline (2005) for the CCVI are structurally the same weights used for the 
predicted scenarios in 2045. 
 
The variance (λ) for each principal component is given by the eigenvalue of the 
corresponding eigenvector. As the sum of the eigenvalues equals the number of variables in 
the initial data set, the proportion of the total variation in the original data set accounted by 
each principal component is given by λi/n. The second component (PC2) is completely 
uncorrelated with the first component, and explains additional but less variation than the 
first component, subject to the same constraint. Subsequent components are uncorrelated 
with previous components; therefore, each component captures an additional dimension in 
the data.  
 
McKenzie (2004) highlights that a major challenge for PCA-based indices is to ensure the 
range of variables included have enough non-missing values to avoid problems of 
‘clumping’ and ‘truncation’. In the case of our index, we used a wide variety of variables 
collected as administrative records, or from CENSUS data (population and agricultural). In 
this sense, non-missing data in each municipality are relatively small so clumping and 
truncation are not affected by estimation errors. In addition, according to McKenzie (2004) 
the problems of clumping or truncating indices can affect the variability of the index, so the 
first principal component needs to be constructed for each municipality relative to its 
standard deviation, instead of using the standard deviation of the all municipalities.  
 
Construction of Weights 
 
Weights Based on Component Variance Explained at Baseline 
 
Discriminating variables through PCA can be helpful in selecting the weights to construct 
the index based on the amount of variance explained for each component.  The proportion 
of variance explained by each relevant variable is a strategy also used to weight them. The 
principal factors or components that explain the outcomes in the data always explain in a 
larger proportion the variance compared to the rest of the components. The position of each 
observation with the proportion of variance explained according to each component is 
calculated as a linear combination of the original variables. A simple regression using the 
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principal component variables and the outcome variable would reproduce almost the exact 
same weights as the proportion of variance explained by each component, so:  
 

𝑌𝑘𝑟 = 𝑎𝑘1𝑋𝑘1 + 𝑎𝑘2𝑋2 + ⋯+ 𝑎𝑘𝑝𝑋𝑘𝑝 
 

In interpreting the principal components, it is often useful to know the correlations of the 
original variables with the principal components. The correlation of variable Xi and 
principal component Yj is 
 

𝑟𝑖𝑗 = �
𝑎𝑖𝑗 
2 𝑉𝑎𝑟(𝑌𝑗

𝑆𝑖𝑖
�  

 
But weighting based on the percent of variance explained by each factor also involves a 
certain amount “rule of thumb”. One common criterion is to use principal components at the 
point at which the next principal component offers a large increase in the total variance 
explained and weights can be used at baseline and prediction points. A second criteria is to 
include all those PCs up to a predetermined total percent variance explained (structural 
weights), such as 90%. A third standard is to ignore components whose variance explained 
is less than 1 when a correlation matrix is used or less than the average variance explained 
when a covariance matrix is used13.  
 
Estimation Procedure  
 
We ran several specifications to estimate the CCVI. The models incorporated variables with 
the highest explanatory power. In addition, variables were added in the models to test the 
stability and sensitivity of the index. This proved to be helpful in reducing the amount of 
variables used to construct the index without losing conceptual rigor14. In addition, testing 
multiple variables for estimating the index helped to identify and remove endogenous 
variables and substitute them with variables that better fit the model.  
 
All variables were standardized into a normal distribution, and outliers were removed to 
build the index. Outliers were identified based on the method by Davies and Gather (1993). 
The distribution of outliers was tested by constructing cutoff points for the index. The cutoff 
points were then used to test each variable for each municipality. When a variable failed to 
pass the Bonferroni’s correction, which sets the alpha-value for the entire set of n 
comparisons equal to alpha, by taking the alpha-value for each comparison equal to 
alpha/n, it was not included in the model: when the value is half a percent point within an 
extreme cutoff point then the value was considered an outlier. Around 10 to 25 
municipalities were withdrawn from the index estimation as outliers representing 0.1 

                                                        
13 The distributions of each variable should be checked for normality and transforms used where necessary to 
correct high degrees of skewness in particular. Outliers should be removed from the data set as they can 
dominate the results of a principal components analysis. 
14 Annex show results for other PCA models run as robustness and index sensitivity tests.  
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percent of the total number of municipalities. There were three specifications used to 
estimate the index. The higher the consistency of index distribution and the ranking (of 
municipalities), based on relative risk, the better the model fit.  In addition, models were 
built with and without outliers to verify the influence that outliers had on the index 
distribution.  
 
Endogeneity tests were carried to eliminate variables. In some cases endogenous variables 
were substituted with proxy ones. Once endogenous variables were identified and removed, 
the estimation procedure was improved by incorporating other indicators collected at the 
municipal level that strengthened the conceptual model and proxy for relevant 
characteristics. For instance, Table 2 shows the endogeneity tests in four variables, all of 
them endogenous.  In the case of total population, the variable showed considerable 
endogeneity because many indicators are estimated as proportions or percentages of 
population. Population growth substituted total population. The index was then re-
estimated without endogenous variables.  

 
Table 2 Endogeneity Tests for Some Index Variables 

 
Source: Own estimations based on CCVI dataset 
 
Sensitivity tests and different PCA specifications15 were estimated to verify the changes in 
index distribution and rankings. Abrupt changes in rankings are indicative of an unstable 
index which may display an inadequate vulnerability risk distribution. Figure 2 shows the 
minimum and maximum values of the index at the state level using nine different prediction 
models with climatic scenarios.  Consistent changes in risk are predicted across states for 
minimum and maximum index levels. That is, except for a few states, all models predict 
changes in the same direction.  
 
The index ranges from -0.78 (Very Low Vulnerability) to 1.91 (Very High Vulnerability) with 
a S.D. of 0.652 and an Average of 0.525. The criterion for building the 5 vulnerability cohorts 
was based on equal counts. Out of the 2,456 municipalities in Mexico, the PCA model kept 
2,257 municipalities with valid data for the main estimation specification16.  

                                                        
15 The full specification model included the following core variables: drought risk; number of reported 
environmental risks, yield Loss due to weather; temperature and precipitation; percentage of farmers receiving 
remittances; percentage of farmers that belong to organizations; percentage of agricultural production units 
without irrigation systems; percentage of population in agricultural activities; hectares for agricultural, forestry, 
and cattle activity; poverty rate; Farmers lacking credit; Federal disaster assistance per capita. Upon these 
variables different specifications were modeled to build the index by adding and replacing variables. The more 
variables included, the more restrictive the model.  
16 The specifications for robustness checks and sensitivity kept 2,240 and 2,100 municipalities, 
respectively.  

Variable Observations Sum of Residual
Durbin–Wu–Hausm
an Endogeneity Test 

(F-test)
P-value

Endogen
ous

Proportion of Indigenous Population 2396 1.8E-08 95.49 0.000 Yes
Cattle and non-farming activities 2447 -5.0E-10 38.82 0.000 Yes
Non-access to Health Services 1046 -2.8E-08 80.24 0.000 Yes
Total Population 2449 -2.0E-04 95.49 0.000 Yes
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The difference between the minimum and maximum values of the index in all seven models 
is on average 0.299. Not a single state showed differences higher than 1. Only two states 
(Colima and Zacatecas) show changes in the vulnerability index from negative to positive, or 
vice versa. However, the differences in the index levels between baseline and prediction 
points are statistically significant for the states of Baja California, Campeche, Chiapas, 
Nayarit and Sonora17.  It is worth considering such shifts and heterogeneity prevailing at 
the municipal level to better identify vulnerability risk profiles over different periods of 
time. The preliminary results and rankings (state level) based on risk vulnerability are 
shown in the next section. 
 

 
Figure 2. Minimum and Maximum Values of ICCV  

 
Source: Own estimations 
 
 

IV. Index Results and Profiles 

This section presents estimates of the municipalities that are the most vulnerable to climate 
change and climatic disasters. This study only estimates a composite index, not its parts. 
 
 
 
 
 
 

                                                        
17 Based on mean differences t-test values for unequal standard deviations at 90% level. 
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Where Are the Most Vulnerable Municipalities? 
 
Overall, the study results suggest a wide variation in municipal vulnerability across the 
country. The most vulnerable municipalities are located along the coastlines and in many 
Southern areas, in line with findings from similar work in Mexico (IMTA, 2009; Martinez-
Austria, 2007). The Northern and Central parts of the country are comparatively less 
susceptible to climate change and variability, but with some pockets of high vulnerability.  
 
Coastal areas host some of the most vulnerable municipalities to climate change in Mexico.  
This is likely due to the relatively high exposure of these municipalities to hurricanes and 
the increased risk of flooding that comes in these areas.  The drier northern and central 
regions of Mexico also face high exposure given recurrent droughts and a lack of protective 
vegetation.   
 
The southern states of Mexico appear to be the most vulnerable to climatic events in the 
entire country.  Many municipalities in the southern states of Guerrero, Oaxaca and Chiapas 
display the highest levels of vulnerability.  With large and highly impoverished indigenous 
populations, it comes as no surprise that their relative capacity to manage climate risk is 
lower than other areas.  By contrast, the tourist areas on the Yucatan Peninsula have a high 
capacity to adapt to climate change.  The tourist industry has led to higher incomes, lower 
poverty rates, and thus less sensitivity and higher adaptive capacity. Again the north 
displays higher resilience than elsewhere, and this could be due to its better socio-economic 
development and higher access to remittances. But there are also pockets of high 
vulnerability in northern states. States like Chihuahua contain high vulnerability pockets 
due to prolonged droughts that are increasingly prevalent among the poorest Tarahumara 
territories.  Recent droughts have affected mainly the north and central parts of the country 
–the states of Durango, Chihuahua, Coahuila, San Luis Potosí and Zacatecas– where the 
economy relies strongly on agricultural activity18.  
 
The estimation of the CCVI permits mapping using baseline and prediction points. Maps 1 
and 2 show the spatial distribution of the CCVI in 2005 and 2045, respectively. Coastal 
regions show high vulnerability persistence particularly in the pacific south and Yucatan 
peninsula over the next 20 years. Other high-poverty incidence municipalities in the north-
west show increasing vulnerability, in part due to predicted increases in temperatures.  
 
                                                        
18 The federal government through the CONAGUA (National Commission of Water) is also taking 
action to provide relief to Mexicans suffering from drought. As of January 2012, CONAGUA reported 
to have spent nearly 60 million pesos (5.4 USD million) to support the Tarahumara men and women. 
Part of the government’s relief efforts is to provide temporary employment to the Tarahumara whose 
farming suffered significantly from the drought. Employment may include cleaning of the existing 
water bodies, channel and ditches dredging and building of dams. CONAGUA is also inspecting 
Mexico’s water systems to ensure water provision even during times of drought.  It is recognized that 
much of Mexico’s water systems are inefficient due to leakages, and that infrastructure 
improvements must be made to prevent droughts from having such serious impacts on Mexico’s 
people in the future. 
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Map 1. CCVI by Municipality (2005) 

 
 

Note: Darker colors imply higher vulnerability  
Source: Own Estimations 

 
Map 2. CCVI by Municipality (2045 Prediction) 

 
 

Note: Darker colors imply higher vulnerability  
Source: Own Estimations 
 
 

Very High Vulnerability High Vulnerability Moderate Vulnerability Low Vulnerability Very Low Vulnerability No Data 

Very High Vulnerability High Vulnerability Moderate Vulnerability Low Vulnerability Very Low Vulnerability No Data 
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Beyond the climate change vulnerability levels in agriculture, it is relevant to identify the 
areas or regions where vulnerability shows the highest relative changes between 2005 
and 2045. Map 3 shows that most of the municipalities with the biggest changes are 
concentrated in Central Mexico (Bajio). This finding is in line with previous environmental 
and climate change studies conducted in Mexico (Martinez, 2010; IMTA, 2009; Martinez and 
Fernandez, 2004; Martinez-Austria, 2007). A number of studies predict a 10 percent 
reduction in water availability for agriculture between 2030 and 2050 for northwest and 
central Mexico (Bajio). This will especially impact states such as Sonora, Guanajuato, San 
Luis, that will experience critical water shortages in the predicted scenarios (Martinez, 
2010). In addition, Martinez and Fernandez (2004) report that the regions with highest risk 
of vulnerability for the next 40 years correspond to the Bajio central region (including 
states such as Guanajuato and San Luis Potosi). Other states located in the Bajio region 
(Hidalgo and Queretaro) could experience a large shift in their vulnerability risk in the 
absence of investments for climate change adaptation. The reasons given to explain this 
shift into high vulnerability vary from water availability and temperature changes, to soil 
degradation and poor implementation of adaptation policies.  
 
Martinez-Austria (2007) indicates that drought vulnerability risks will be a particular 
concern for national and regional policies in the northwestern region of the country due to 
the predicted change between 3 to 4 degrees (Cº) by 2040. The predicted shifts in territorial 
vulnerability associated with droughts in the Bajio and Northwestern regions are also 
confirmed in a recent study by the Mexican Institute for Water Technology (IMTA, 2009). 
According to this study, climate predictions for 2025 suggest risks of water shortages in 
northern and central regions in Mexico, where irrigated surface land will accelerate water 
scarcity over the years.  
  

Map 3. Vulnerability Index Changes 2005-2045 

 
 

Note: Darker colors imply higher change in index between baseline and prediction points 
Source: Own Estimations 

Very High Change High Change Moderate Change Low Change Very Low Change No Data 
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Who Are the Most Vulnerable? 
 
The purpose of this paper is to identify which social groups in rural Mexico are the most 
vulnerable to climate change. First, we show how vulnerability profiles change across 
municipalities from baseline to prediction points. The purpose is to assess the probability 
and number of municipalities falling into different categories of vulnerability at baseline 
and prediction points19. Second, the municipal vulnerability profiles relate index estimates 
at baseline and prediction points to three different sets of variables: 1) climate indicators, 2) 
farmer categories, and 3) socio economic characteristics.  
 
Changes in Vulnerability Risk Profiles  
 
The risk profile of municipalities is shown in table 3a.  Overall, almost three of every four 
municipalities (around 1,810 out of 2,454) do not show substantial changes between 
baseline and prediction points. Additionally, 344 municipalities increase their vulnerability 
risk, compared to 300 showing reductions in vulnerability reductions. Both sets of winners 
and losers are profiled below. Although shifts in vulnerability risk may not appear 
substantial, the fact that over a third (34.6%) of municipalities maintain high vulnerability, 
particularly in coastal (Pacific and Gulf) areas is relevant. The conditional probability of 
high vulnerability municipalities at the prediction point, having shown a high vulnerability 
risk at baseline, is 41%. This percentage is similar for the conditional probability of 
municipalities being in low vulnerability risk at baseline and prediction points (39%). Some 
authors stress that economic impacts in agriculture from climate fluctuations are 
substantial if high risks prevail over time (Deschenes and Greenstone, 2007; Lobell and 
Asner, 2003).    
 
Table 3 Conditional Probabilities of Vulnerability Risks Changes Baseline and 
Prediction Points 

 
Source: Own estimations 

                                                        
19 Categories are: Very High Vulnerability, High Vulnerability, Moderate Vulnerability, Low 
Vulnerability, Very Low Vulnerability.  

High 
Vulnerability 

at Baseline

Moderate 
Vulnerability at 

Baseline

Low 
Vulnerability at 

Baseline

Probability 0.406 0.099 0.012
Number of 
Municipalities

850 141 23

Probability 0.056 0.238 0.127
Number of 
Municipalities

89 218 180

Probability
0.068 0.051 0.391

Number of 
Municipalities

140 71 742

Note: Numbers in Italics indicates no Change in Index Category between Baseline and Prediction

Categories of Vulnerability Risk

High Vulnerability at 
Prediction

Moderate Vulnerability 
at Prediction

Low Vulnerability at 
Prediction



17 
 

States such as Zacatecas, Yucatan, Chiapas, Guanajuato, Chihuahua, Oaxaca and Puebla 
exhibit the highest increases in vulnerability over time. Other states such as Campeche, 
Tabasco, Sonora, Sinaloa and Nayarit showed reductions in their vulnerability risk profiles 
between baseline and prediction points. In general, the index predictions show that high 
vulnerability will prevail in southern coastal areas (gulf and pacific) with a tendency to 
increase vulnerability in the central-norhtern basin (Bajio) states.  
 
States shown in Table 3a have the highest increases and decreases in vulnerability index 
changes between baseline and prediction points. However, there are municipalities that 
rank highest in terms of index increases and decreases that may or may not belong to the 
states presented in Table 3a. For instance, Oaxaca has 124 municipalities with an increase 
higher than 0.25 in the index between baseline and prediction points (such increases are 
higher than the mean increase of 0.069 in the index), but the rest of the 570 municipalities 
in Oaxaca have relatively lower increases than the average.  

 
Table 3a Highest Increases and Decreases in Vulnerability (2005-2045) by State 

 
Highest Increase 

 
Index 

  
State Change BL Prediction Vulnerability 

at Baseline 
Vulnerability 
at Prediction 

Zacatecas 0.3749 -0.3273 0.0476 Very Low Low 
Yucatan 0.2667 0.5469 0.8136 Moderate High 
Guanajuato 0.1897 -0.2409 -0.0513 Very Low Low 
Chiapas 0.1725 1.3906 1.5631 Very High Very High 
Chihuahua 0.1544 0.1014 0.2558 Low Moderate 

 
Highest Decrease 

 
Index 

  
State Change BL Prediction Vulnerability 

at Baseline 
Vulnerability 
at Prediction 

Tabasco -0.4630 1.1752 0.7122 Very High High 
Sonora -0.4075 -0.0196 -0.4272 Low Very Low 
Campeche -0.4038 0.7842 0.3804 High Moderate 
Sinaloa -0.3407 -0.0064 -0.3471 Low Very Low 
Nayarit -0.3246 0.6354 0.3108 High Moderate 

Source: Own estimations 
 
Tables 4a and 4b present municipal vulnerability profiles in relation to key climate, social, 
and agricultural indicators. Risk categories of the index are divided in five cohorts (Very 
Low, Low, Moderate, High and Very High) of vulnerability. With municipalities arranged by 
categories of vulnerability at baseline, it is possible to construct socio-demographic and 
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agriculture municipal level profiles. Such profiles bring additional information about the 
patterns of risk in the advent of climate change In terms of climate variables, municipalities 
with elevated vulnerability levels show higher climate extremes as measured by frost days 
and consecutive dry days, in both baseline and prediction points. In addition, municipalities 
under most vulnerable categories show an increase in the Coefficient of Variation of Rain 
and the Growing Degree Days (GDD) between baseline and prediction points. The shifts in 
this last indicator are important for assessing the suitability of a region for producing a 
particular crop, and to better estimate harvest dates.  
 
Municipalities with high levels of vulnerability also have the highest ratio of increase of 
rain’s coefficient of variation. The larger is the rain variability, the higher is the uncertainty 
for harvest periods for agricultural yields and outputs. In Mexico irrigated agriculture 
contributes about 50% of the total value of agricultural production and accounts for about 
70% of agriculture exports (CONAGUA, 2008).  However, the rest of agriculture depends to 
a larger extent on temporal or seasonal harvesting. The risks confronted by municipalities 
in terms of rain and temperature changes could shape the changes in cropping patterns 
(planting multiple crops with different vulnerabilities to weather events), irrigation systems 
(to decrease the farmers dependence on precipitation), farm incomes, and financial 
instruments available to famers to strengthen resilience.  
 
Table 4c presents the distribution of vulnerability risk by type of agricultural producer. This 
table shows that larger producers are more resilient and less likely to be present in highly 
vulnerable municipalities. On the other hand, small and subsistence producers are more 
likely to live in highly vulnerable municipalities, and municipalities that will experience a 
high increase in vulnerability during 2005 - 2045. Low-capital intensity producers with 
large land sizes face the largest shifts in vulnerability between baseline and prediction 
points. These types of larger land-size producers often have higher rates of participation in 
subsidized agricultural programs. On the other hand, small land-size producers with 
intensive or non-intensive capital requirements, located at a higher proportion within 
highly rural municipalities, are more likely to be in highly vulnerable municipalities. 
 
Table 4a also shows consistently that higher vulnerability risk is associated with less 
favorable socio-economic conditions. Municipalities situated within the “low vulnerability” 
categories show substantially lower average proportions of a) indigenous populations, b) 
households with elderly members, and c) households with dirt floors; compared to 
municipalities situated within “high vulnerability” categories. The dispersion of these socio-
economic indicators also increases as vulnerability risks become higher.  
 
The profiles are also shown for agricultural and income support variables (Table 4b). In this 
regard, the percentage of agricultural workers having liquid savings reduces considerably 
from 12.4 (for municipalities under the “very low vulnerability” category) to 1.8 percent 
(for municipalities under the “very high vulnerability” category).  Moreover, the number of 
agricultural workers having outstanding credit debt for their economic activity increases as 
vulnerability risk increases. The average support of agricultural programs devoted to 
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farmers does not vary substantially, but municipalities with lower vulnerability profiles 
tend to receive marginally higher transfers from these programs. The profiles for these 
variables indicate how farmers use financial instruments and other financial mechanisms to 
cope with vulnerability, which brings up front information useful to improving the targeting 
and redistributing options of current support programs and financial products.  
 
Finally, the risk profiles are presented according to pairwise correlations between the index 
(at baseline and prediction points) and the socio-demographic variables in Table 4c. The 
results show, first, that municipalities with higher vulnerability risks have higher 
indigenous populations at baseline and prediction points—as shown by a positive and 
significant correlation. Although the correlations are not as high, there is a positive 
association between higher vulnerability and adverse housing conditions. Such correlations 
become higher as vulnerability becomes higher. The highest correlations within socio-
demographic characteristics are found when households have a higher rate of elder 
dwellers. These living arrangements may enhance household risks to climate change 
through exposure, sensitivity and adaptive capacity factors.  Mexico reflects high levels of 
family care-giving for the elderly and a high degree of continuity of parent-child co-
residence over the life-course (Kanaiaupuni, 2000) fed by economic conditions and 
demographic patterns. Mexico will face a substantial increase in elderly populations over 
the next 20 years, so there may be higher vulnerability risks under these care-giving 
arrangements20.  
 
And limited access to support programs or savings (for smallholder populations), is 
associated with higher the levels of vulnerability.  Remittances show a negative correlation 
with the vulnerability index at both baseline and prediction points. High vulnerability is 
associated with lower levels of remittances influx by municipality. Access to different forms 
of capital “insures” families from several forms of uncertainty. The complex migration 
patterns found in municipalities across Mexico are usually undertaken to insure families via 
remittances, which is often a result of stress-induced movements (conflict) or through 
resource constraints (climate change) (Schreider and Knerr, 2000; Fiki and Lee, 2004). 
 
With the advent of climate variability and uncertainty, many small landholders will face 
risks of being forced to abandon agriculture, due to financial losses and the burden of debt. 
Improved financial instruments used to ease debt arising from agricultural credits, and 
financial support to improve farming activities, could in turn improve the adaptive capacity 
of exposed and climate sensitive farmers.   

  
 
 
 
 

                                                        
20 Another interpretation is that a large elderly population contributes to low adaptive capacity/high 
sensitivity because they are not economically active, and thus more likely to be in poverty. 
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Table 4a Profiles of Vulnerability Risk  
(Baseline Socio-economic/Climate Variables) 

 
** Vulnerability cutoff points based on baseline index 

Source: Own estimations 
 

 
 
 

Risk Category **/ Statistics CCVI Index
Index 

Prediction 
(2045)

Percent of 
Indigenous 
Population

Percent of 
Households 

with Dirt Floors

Percent of Elderly 
(65+) Population

Rain Coefficient 
of Variation

GDD

All
Mean 0.349 0.557 24.463 10.263 7.896 0.281 9.385
Range 2.483 2.708 100.000 95.314 30.041 0.797 451.937
Standard Deviation 0.582 0.652 35.627 18.640 3.834 0.072 26.405
Percentile 5 -0.538 -0.448 0.204 0.000 3.632 0.190 1.884
Percentile 95 1.361 1.687 98.815 56.978 15.624 0.408 13.997
N 2433 2356 2455 2454 2454 2451 2451

Very Low Vulnerability
Mean -0.315 -0.282 4.103 0.879 7.378 0.266 6.456
Range 0.717 1.406 90.772 41.043 28.882 0.461 433.954
Standard Deviation 0.168 0.254 11.528 3.048 3.338 0.067 20.380
Percentile 5 -0.610 -0.746 0.151 0.000 3.679 0.234 1.722
Percentile 95 -0.093 0.105 19.883 5.420 13.449 0.442 11.039
N 450 451 451 451 451 451 451

Low Vulnerability
Mean 0.108 0.171 11.299 2.841 9.399 0.275 9.580
Range 0.348 1.225 99.448 56.501 29.251 0.480 451.724
Standard Deviation 0.104 0.203 21.790 7.465 4.852 0.068 34.682
Percentile 5 -0.055 -0.183 0.163 0.000 3.807 0.217 1.139
Percentile 95 0.260 0.501 70.433 17.177 19.069 0.422 13.758
N 474 474 474 474 474 474 474

Moderate Vulnerability
Mean 0.420 0.492 25.169 8.603 8.801 0.293 11.08
Range 0.350 1.146 100.000 95.314 28.472 0.363 443.75
Standard Deviation 0.101 0.217 34.580 16.530 3.883 0.048 36.18
Percentile 5 0.296 0.094 0.217 0.000 4.094 0.201 1.00
Percentile 95 0.610 0.819 97.478 52.536 16.702 0.350 14.19
N 430 429 430 430 430 430 430

High Vulnerability
Mean 0.745 0.887 35.049 14.384 7.706 0.305 10.20
Range 1.098 0.541 100.000 84.475 24.051 0.266 435.50
Standard Deviation 0.211 0.157 39.813 20.431 3.190 0.044 20.49
Percentile 5 0.384 0.648 0.293 0.025 4.142 0.194 2.51
Percentile 95 1.085 1.130 99.500 61.246 14.038 0.337 14.40
N 448 450 450 450 450 450 450

Very High Vulnerability
Mean 0.788 1.521 40.396 20.449 6.690 0.369 19.59
Range 2.483 0.746 100.000 91.217 26.562 0.785 443.82
Standard Deviation 0.745 0.193 41.562 24.060 3.137 0.092 17.47
Percentile 5 -0.707 1.204 0.284 0.000 3.014 0.174 3.48
Percentile 95 1.455 1.809 99.666 67.686 12.500 0.446 14.03
N 631 552 650 649 649 646 646
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Table 4b Profiles of Vulnerability Risk 
(Baseline Agricultural and income support variables) 

 
Source: Own estimations

Risk Category **/ Statistics

% of 
Agriculture 

workers with 
Savings

% of Agriculture 
workers with 

credit

Average 
Agriculture  

support in Pesos 
2009 *

% of Agriculture 
workers 

receiving 
remmitances

All
Mean 5.08 34.12 381.64 3.09
Range 40.79 100.00 999.80 37.58
Standard Deviation 2.78 28.39 311.50 4.49
Percentile 5 0 0 0.5219 0
Percentile 95 6.95 87.79 932.24 12.18
N 2447 2447 1212 2447

Very Low Vulnerability
Mean 12.37 30.41 454.43 3.89
Range 40.79 98.82 999.80 25.18
Standard Deviation 3.02 22.61 303.86 4.53
Percentile 5 0.00 0.00 2.78 0.00
Percentile 95 6.73 79.57 951.92 13.04
N 451 451 229 451

Low Vulnerability
Mean 8.40 31.54 440.53 3.43
Range 26.14 100.00 999.20 24.27
Standard Deviation 2.98 28.59 296.09 4.36
Percentile 5 0.00 0.00 15.17 0.00
Percentile 95 8.43 85.10 918.82 11.97
N 474 474 216 474

Moderate Vulnerability
Mean 6.20 37.45 377.80 3.85
Range 33.01 100.00 997.13 37.13
Standard Deviation 3.28 28.87 287.97 5.38
Percentile 5 0.00 0.00 16.01 0.00
Percentile 95 7.62 88.15 941.41 14.55
N 430 430 184 430

High Vulnerability
Mean 2.72 41.86 341.82 3.03
Range 12.48 98.99 991.09 37.58
Standard Deviation 1.96 29.56 318.44 4.55
Percentile 5 0.00 0.00 4.07 0.00
Percentile 95 5.84 89.09 922.48 12.36
N 450 450 181 450

Very High Vulnerability
Mean 1.81 45.75 340.55 1.80
Range 22.39 100.00 997.49 34.43
Standard Deviation 2.50 30.40 322.52 3.45
Percentile 5 0.00 0.00 0.00 0.00
Percentile 95 6.35 89.14 927.52 7.26
N 642 642 402 642

** Vulnerability cutoff points based on baseline index

* Averages computed for those municipalities that received support; some municipalities don't receive 
support in that year, but they are still beneficiaries.
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Conclusion  
 
Mexico is in constant threat of experiencing natural disasters, and is among the most 
exposed to climatic hazards in the world. Recent evidence and predictions indicate that 
climate changes are accelerating and will lead to wide-ranging shifts in climate variables.  
Agriculture is one of the sectors where climate change is expected to hit hardest. Little 
quantitative evidence has been produced to aggregate multidimensional aspects of 
livelihoods, socio-demographic and economic characteristics, and climate change historic 
and predicted scenarios. With rich data available for most (2,200 of 2,450) municipalities in 
Mexico, a statistical technique (Principal Components Analysis) was applied to estimate a 
Vulnerability Risk Index in Agriculture for baseline (2005) and prediction points (2045).   
The aim of this analytical tool is to better understand how and why vulnerability to climate 
change and climate variability varies by municipality in Mexico. The index can be used to 
better target federal and state level adaptation programs to local conditions, and to inform 
the design of municipality adaptation strategies. The conceptual framework used for the 
vulnerability analysis and the index construction is based on an adaptation of the IPCC’s 
vulnerability framework, which distinguishes between exposure, sensitivity, and adaptive 
capacity.   
 
The results of the analysis suggest a wide variation in municipal vulnerability across the 
country at baseline and prediction points. Currently, Coastal areas host some of the 
municipalities most vulnerable to climate change in Mexico.  This is likely due to the 
relatively high exposure of these municipalities to hurricanes and the ensuing flood risk.  
However, Northwest and Central regions will likely experience the largest shifts in 
vulnerability between 2005 and 2045, in the advent of temperature increases and water 
scarcity for agricultural activities. Recent environmental and climate change studies 
conducted in Mexico [Martinez, 2010; IMTA, 2009; Martinez and Fernandez, 2004; 
Martinez-Austria, 2007] support these claims and trends.  
 
The analysis presented here provides municipal estimates of agriculture vulnerability 
associated with temperature and rainfall changes, but it is also necessary to assess the 
distributional impact of climate change across urban and rural areas and population groups. 
The profiles of municipalities show that the shifts in vulnerability across municipalities, 
between 2005 and 2045, are quite heterogeneous because of differences in socio-economic, 
climate and agricultural variables. Highly vulnerable municipalities demonstrate higher 
climate extremes, which increase the uncertainty for harvest periods, and for agricultural 
yields and outputs.  Also, municipalities with higher vulnerability have more adverse socio-
demographic conditions. The profile also shows a positive correspondence between the 
percentage of people lacking support programs or savings and vulnerability. Finally, 
smallholders display higher vulnerability to climate change at baseline (2005) and 
prediction (2045) points.  
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  Figure I Core Variables Used in MAIN Model (Sources and Definitions) for the Climate Change Vulnerability Index in Agriculture 
Core Variables  UNIT DEFINITION SOURCE 
                                                                                                                                                                                                               EXPOSURE 

Total Agricultural Surface 
Area  

ha Total agricultural area within municipality (all crops included, 
subsistence and non-subsistence agriculture.  

Agroalimentary and Fisheries Information Service (Servicio de Información y Estadística 
Agroalimentaria y Pesquera—SIAP) of the Ministry of Agriculture (SAGARPA). (www.siap.gob.mx) 

Average temperatura (past 
1960-2005; and predicted 
2005-2065 

°C Average temperature between May-August for the period 1950-2000. Digital Climatic Atlas for Mexico produced by the Informatics Unit for Atmospheric and 
Environmental Sciences (UNIATMOS in Spanish), at the Center for Atmospheric Science at UNAM. 
(www.uniatmos.atmosfera.unam.mx)  

Average precipitation  (past 
1960-2005; and predicted 
2005-2065)   

mm Average precipitation between May-August for the period 1950-2000. Digital Climatic Atlas for Mexico produced by the Informatics Unit for Atmospheric and 
Environmental Sciences (UNIATMOS in Spanish), at the Center for Atmospheric Science at UNAM. 
(www.uniatmos.atmosfera.unam.mx) 

Past and Future temperature 
variability indicators   

°C Includes variables with average, min and max temperature for the 
period (1961-2005) and variables with predictions averages using 
temperature models (Echam, Hadgem (2030) and 9 models) [ projected 
temperature (°C) between May-August under scenario A2 for 2030 and 
2045-2065 for 9 models, respectively]. Includes indicators that 
measure variability for historic and predicted periods (GDD, Frost days, 
Consecutive Drought days) 

Digital Climatic Atlas for Mexico produced by the Informatics Unit for Atmospheric and 
Environmental Sciences (UNIATMOS in Spanish), at the Center for Atmospheric Science at UNAM. 
(www.uniatmos.atmosfera.unam.mx). Measurements from National Water Commission(CNA) and 
the Institute for Water Technology (1961-2005) (IMTA).  Estimations based on World Bank’s 
Environment Unit Predictions. 

Past and Future 
precipitation variability 
indicators  

mm Includes variables with average, min and max precipitation for the 
period (1961-2005) and variables with predictions averages using 
precipitation models (Echam, Hadgem (2030) and 9 models) [ projected 
precipitation (mm) between May-August under scenario for 2030 and 
2045-2065 for 9 models, respectively]. Includes indicators that 
measure variability for historic and predicted periods (Variation 
Coefficient Rain, Number of days with precipitation>10mm, percentage 
of days with rain above 95 percentile of rain) 

Interpolated through models Hadgem1 y MPIEcham5, A2 for 2030.  Digital Climatic Atlas for Mexico 
produced by the Informatics Unit for Atmospheric and Environmental Sciences (UNIATMOS in 
Spanish), at the Center for Atmospheric Science at UNAM. (www.uniatmos.atmosfera.unam.mx). 
Measurements from National Water Commission(CNA) and the Institute for Water Technology 
(1961-2005) (IMTA). 9 models Estimations based on World Bank’s Environment Unit Predictions.  

SENSITIVITY 
Food poverty  % Households in municipality where its member’s income falls below the 

lowest income necessary to afford a minimum basket of food. 
National Council for Evaluation of Social Development Policy in Mexico (CONEVAL, 2008) 

Percentage of Maize 
production under irrigated 
areas  

% Production units that are under irrigated systems and do not depend on 
seasonal precipitation for crop production 

Agroalimentary and Fisheries Information Service (Servicio de Información y Estadística 
Agroalimentaria y Pesquera—SIAP) of the Ministry of Agriculture (SAGARPA). (www.siap.gob.mx) 

% of Population in 
Agricultural Activities  

%  National Agricultural and Farmin Census (2007) INEGI. 

                                                                                                                         ADAPTIVE CAPACITY 
Farmers that belong to 
organizations  

% Production units that belong to any producers association, especially to 
access credit. 

National Agricultural Census, 2007 INEGI. 

Farmers receiving 
remittances   

% Production units that self-reported receiving remittances. Censo Agrícola, Ganadero y Forestal 2007 de INEGI. 

    
Distance from Municipality 
Center to Road  

km Distance from Municipal Government location (or in its case 
geographical centroid for highly rural municipalities) to the main road 
(dirt or paved) 

Agroalimentary and Fisheries Information Service (Servicio de Información y Estadística 
Agroalimentaria y Pesquera—SIAP) of the Ministry of Agriculture (SAGARPA). (www.siap.gob.mx) 

Federal disaster assistance 
per capita 

$ Sum of monetary transfers per cápita (population in the primary sector 
in municipality) from various federal programs (PROCAMPO, PET y 
PACC) between 2002 y 2009.  

Temporary Employmet Program (Programa de Empleo Temporal – PET)  
Weather-Indexed Insurance (Programa de Atención a Contingencias Climatológicas –PACC). 

http://www.siap.gob.mx/
http://www.uniatmos.atmosfera.unam.mx/
http://www.uniatmos.atmosfera.unam.mx/
http://www.uniatmos.atmosfera.unam.mx/
http://www.uniatmos.atmosfera.unam.mx/
http://www.siap.gob.mx/
http://www.siap.gob.mx/
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  Figure II Variables Used for Robustness Checks(Sources and Definitions) for the Climate Change Vulnerability Index in Agriculture 
Complementary Variables  UNIT DEFINITION SOURCE 
                                                                                                                                                                                                               EXPOSURE 

Total number of reported 
environmental risks  

# Sum of environmental problems (illegal logging, fires, pests, loss of 
biodiversity, water pollution), self-reported by municipality. 

Encuesta Nacional de Gobiernos Municipales (SEDESOL, 2004-2005) 

Reforestation Rate  % Contains the rate of all reforested area from fires, drought and 
decertification per municipality 

Agricultural Census (INEGI) data (2007) and National Institute of Ecology (2008) 

SENSITIVITY 
Migration Rate  % Average net migration flow per municipality Census (1960-2005) INEGI 
Average corn yield  tons/

ha 
Average rain fed maize yields during the spring-summer cycle, 2005. Agroalimentary and Fisheries Information Service (Servicio de Información y Estadística 

Agroalimentaria y Pesquera—SIAP) of the Ministry of Agriculture (SAGARPA). (www.siap.gob.mx) 
                                                                                                                         ADAPTIVE CAPACITY 
Total population growth by 
municipality  

% Municipal population growth rate between 1960 and 2005. Count of Population and Housing 2005 (INEGI) and National Population Council (CONAPO) 

Population Density  Inhab
/km2 

Degree of aglommeration/urbanization of municipality Census data 2005 (INEGI) 

Farmers reporting climate-
related losses 

% Refers to the proportion of agricultural production units that declare 
losses due to weather contingencies within each municipality 

Censo Agrícola, Ganadero y Forestal 2007 de INEGI. 

Population lacking access to 
health care 

% Percentage of population per municipality that has access to health care 
services (public or private). 

Census data 2005 (INEGI) 

Population 65 and older 
living within household  

% The percentage of households with at least one elderly dweller. Average 
aggregated by municipality 

Census data 2005 (INEGI) 

Indigenous Population per 
Municipality 

% Percentage of indigenous population relative to all population within 
Municipality. Definition of Indigenous is self-reported and corroborated 
with language spoken at home 

Census data 2005 (INEGI) 

http://www.siap.gob.mx/
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Statistical Annex: Table 1 CCVI Dataset Summary Statistics 

 
             Source: CCVI dataset 

Topic Indicator Mean Std. dev. Min Max

Mean accumulated rain (Tons) 1,042.51 633.79 61.57 4,552.01
Average Yearly Rain (mm) 2.88 2.09 0 37.13
Average Maximum Rain Yearly (mm) 27.66 3.98 4 43.50
Maximum Consecutive days of Dryness 
(agricultural year) 71.12 48.50 0 365.00
Heat Wave Duration Index (DAYS) 13.84 27.38 0 365.00
Total number of Frost days in Agr. Year 0.73 5.87 0 180.00
Average number of days per year with rain 
greater than 10 mm (international standard) 33.16 29.98 0 365.00
Average aquifer extension 3,084.90 3,288.55 60.41 12,616.61
Proportion of Overexploited aquifers 0.20 0.40 0 1.00
Average extraction aquifer (lt/seg) 63.52 149.87 0 930.92

Percent non-literate population (15 and older) 16.31 11.03 0.81 70.96
Percent population without sewage 9.95 12.29 0 82.87
Percent population without electricity 5.28 7.87 0 70.30
Percent households with overcrowding 50.26 13.97 10.67 90.67
Percent Population that live with dirt floors 24.24 22.25 0.12 95.60
Marginalization Index (CONEVAL) -0.05 1.02 -2.37 3.36
Infant mortality rate (per 1000) 22.65 8.22 3.02 78.83
Poverty Rate 32.06 19.07 0.11 84.01

Proportion of Rural Households 0.49 0.50 0 1
Average size of households 4.08 2.10 1 25
Average Number of children per household 1.77 3.51 0 10
Average Number of elderly per household 0.38 0.66 0 5
Average years of education (all HH) 7.95 4.56 1 21
Proportion of agricultural dependent HH 0.20 0.40 0 1

Average agr. prod. Units per mun. 1,714 2,058 3 17,949
Average surface with agricultural prod. Per mun 
(ha) 13,407 23,085 0 258,679
Average surface non-arable Per mun (ha) 33,575 119,026 0 2,132,465
Average surface pastures Per mun (ha) 13,985 65,293 0 1,188,921
Average surface forest Per mun (ha) 1,690 6,522 0 106,353
Average surface non-vegetation Per mun (ha) 1,081 8,383 0 197,879
Average number of males economically 
dependent from agriculture per mun 1,963 2,704 0 33,579
Average number of women economically 
dependent from agriculture per mun 2,900 3,816 0 43,335

Average prod units per mun with piped water 1,283 1,538 0 14,729
Average prod units per mun with sewage 498 715 0 6,829
Average prod units per mun with energy 1,544 1,874 3 17,321
Average prod units per mun with gas 998 1,318 0 16,075
Average prod units per mun with irrigation 
system 333 630 3 9,770

Sociodemographic

Climate-Related Variables

Other Variables

Agricultural
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          Source: CCVI dataset 

 
 
 
 
 

Variable Mean St.dev. Min Max

Drought Risk 0.190 0.297 0 1
Total number of reported 
environmental risks 

2.332 1.529 0 5

Yield Loss due to weather (kg/ha)
Percentage of population 
receiving remittances 

3.089 4.485 0 37.57

Percentage of Farmers that belong 
to organizations

97.273 4.694 41.4384 100

Percentage of Agricultural 
Production Units without 
irrigation systems

88.735 15.254 14.557 100

Percentage of population in 
agricultural activities

12.773 7.839 0 55.32

Percentage of Population with 
access to credit for agr. Activities 34.121 28.388 0 100

Average  temp (Hadgem, 2030) 23.662 4.481 12.025 32.325
Average precip. (Hadgem, 2030) 150.380 80.648 2 609

Average  temp Echam 2030) 2.232 0.522 -0.5 3.2
Average precip. Echam 2030) -32.230 14.404 -120 30

Proportion of pop that migrated 
between 2000 and 2005

0.134 0.032 0.024911 0.519

Average surface of reforested 
area

108.211 394.238 0 8646

Average population growth -0.041 0.433 -0.6928298 4.403
Average pop density (hab./sq km) 258.302 1122.609 0.1248199 17893.44
Average Total Indigenous 
population

4015.608 10154.610 0 200002

Maize Risk
High 29.720 2.392 0 1
Low 36.380 1.542 0 1
Medium 33.900 3.544 0 1

Hurricane Risk
High 25.270 5.347 0 1
Low 52.740 1.375 0 1
Medium 21.990 7.137 0 1

Flooding Risk
High 30.100 10.463 0 1
Low 43.37 4.462 0 1
Medium 26.54 6.111 0 1

Type agriculture (%)
Very Intensive Agriculture (High 
Production)

0.16

 Intensive Agriculture (High 
Production)

5.01

Medium Intensity Agriculture 
(High Production)

1.1

Low intensity Agriculture (High 
Production)

4.89

Transitional extensive Agriculture 28.59

Subsistence agriculture intensive 29.2
Subsistance agriculture non-
intensive

23.67

Other type 7.38
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Steps for Index Construction 
 
The algorithm used to construct indices of vulnerability in this paper follows similar 
applications as in Cutter, Boruff, and Shirley (2003), and Schmidtlein et al (2007). First it 
relies on the inclusion of data standardization for the input variables and the final index 
scores.  The computations were carried out using the following steps: 
1. Standardize all input variables to mean 0 and standard deviation 1 
2. Perform the PCA with the standardized input variables with the following 
main/core variables (all variables aggregated at the municipal level):  
Total Agricultural Surface Area (ha), Average temperatura (past 1960-2005; and predicted 
2005-2045, Average precipitation  (past 1960-2005; and predicted 2005-2045) , Past and 
Future temperature variability scenarios (9 climate models, see Annex Background Paper), 
Past and Future precipitation variability indicators    (9 climate models, see Annex 
Background Paper), Food poverty, Percentage of Maize production under irrigated areas, % 
of Population in Agricultural Activities, % Farmers that belong to organizations, % Farmers 
receiving remittances, Distance from Municipality Center to Road (km), Federal disaster 
assistance per capita ($). 
3. Rotate (varimax) the initial solution and build weights matrix. [Weights are kept at 
baseline to allow structural relationship for predictions].  
4. Order and select in matrix main components resulting from how they may influence 
vulnerability in three dimensions and assign eigen values to the components accordingly. 
[An output of the loadings of each variable on each factor was used to determine if high 
levels of a given factor tend to increase or decrease vulnerability. 
5. Because PCA is sensitive to the values of the input variables, the data 
standardization step is necessary so that all variables have the same magnitude. With the 
standardized data set the PCA can be performed in the second step. It returns a set of 
orthogonal components which are all linear combinations of the original variables. By 
construction the first component is the linear combination that explains the greatest 
variation among the original variables, the second component the greatest remaining 
variation, and so on. 
6. Based on the results of the performed PCA, select a parsimonious subset of 
components that explain the underlying data set as closely as possible. [the index was not 
bounded with upper and lower limits to allow full vulnerability assessment] 
7. Perform sensitivity using Varimax rotation and the interpreted components were 
summed with equal weights to verify that index does not fluctuate substantially.  
8. Perform same steps for predictions using Climate Change unit prediction data (with 
structural weights from baseline) 
9. Sensitivity of this approach to creating vulnerability indices was carried out in two 
main phases. 

a. Change variables included in PCA with other proxy variables that can 
provide similar results in terms of levels and distribution of index. 
b. The correlation between the county level indices was calculated to 
determine how closely the index constructed with the subset of variables 
matched the index with the full set of social variables. 
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Scenarios and Climate Models Used 
 
GCMs (Global Climate Models) are widely applied for weather forecasting, understanding 
the climate, and projecting climate change. Models are designed for decade to century time 
scale climate predictions, containing a number of prognostic equations that are stepped 
forward in time (typically winds, temperature, moisture, and surface pressure) together 
with a number of diagnostic equations that are evaluated from the simultaneous values of 
the variables. Predictions are also based on resolutions from globe sections. In the case of 
Mexico, where INEGI builds higher resolution grids, compared to other countries, HadGEM1 
and ECHAM models use an grids with higher resolution in the tropics to help resolve 
processes transformation between spectral and grid-point space (higher local accuracy). 
The most widely accepted models in Mexico for climatic prediction are ECHAM and 
HADGEM (2030) (UNAM, 2010), which were used to estimate the CCVI, and subsequently 
compare results to the 9 climatic model predictions for robustness and calibration 
purposes. The Index reported in this document contains the 9 prediction models (2045-
2065) because calibration and robustness checks showed only slight differences in the 
distribution of the index across municipalities. Yet, the 9 prediction models offered more 
detailed climatic prediction scenarios. For that reason, we report only the index built under 
the 9 prediction models.    
 
For the emissions scenarios change in 2045 used the A2 scenario because is at the higher 
end of the SRES, and it better captures changes in adaptation and climate change. The 
tradeoff of using other type of scenario lies on the ability to capture a smaller climate 
change shifts of the lower end scenarios which is computationally intensive and provides 
little value added to the Index. A low emissions scenario potentially gives less information 
from an impacts and adaptation point of view. In addition, the current actual trajectory of 
emissions (1990 to present) corresponds to a relatively high emissions scenario21.  
 

                                                        
21 This scenario considers the following emission levels that alter climate (temperature and precipitation). 
Cumulative CO2 emissions by the middle and end of the 21st century are projected to be about 600 and 1850 
GtC respectively, and expected CO2 concentrations (in parts per million, ppm) for the middle and end of the 21st 
century in this scenario are about 575 and 870 ppm, respectively. The current concentration of CO2 is about 380 
ppm. Methane and nitrous oxide increases grow rapidly in the 21st century. Sulfur dioxide increases to a 
maximum value just before 2050 (105 MtS/yr) and then decreases in the second half of the century (60 MtS/yr 
by 2100). 
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Source: http://www.narccap.ucar.edu/about/emissions.html 

 
 
For the climatic predictions, there were several models used22: 
 
Nine Models used for Index construction 
 
CGCM3.1 (2045-2065):  CGCM3.1 is run at two different resolutions, with two levels of 
accuracy of predictions. The T47 version (used in our estimates) has a surface grid whose 
spatial resolution is roughly 3.75 degrees lat/lon and 31 levels in the vertical. This has a 
good fit into Mexico’s littoral areas, but limited accuracy in central regions. The ocean grid 
shares the same land mask as the atmosphere, but has four ocean grid cells underlying 
every atmospheric grid cell. The ocean resolution in this case is roughly 1.85 degrees, with 
29 levels in the vertical. The T63 version has a surface grid whose spatial resolution is 
roughly 2.8 degrees lat/lon and 31 levels in the vertical. As before the ocean grid shares the 
same land mask as the atmosphere, but in this case there are 6 ocean grids underlying every 
atmospheric grid cell. The ocean resolution is therefore approximately 1.4 degrees in 
longitude and 0.94 degrees in latitude. This provides slightly better resolution of zonal 
currents in the southern Tropics, more nearly isotropic resolution at mid latitudes, and 
somewhat reduced problems with converging meridians in the Arctic. 
 
CNRM-CM3 (2045-2065): This model provides similar resolutions from the above 
mentioned models but presents bias to the cold side in most of the tropics.  This model has 
proven to overestimate the stream flows in summer, with the opposite occurring during the 
winter in the Americas (Saurral and Barros, 2009). Although for the American continent the 
model shows some deficiencies in the representation of the water cycle across the region, 
validations of temperature and precipitation fields are relatively accurate for the northern 
hemisphere of the Americas.  

                                                        
22 Scenarios used with these models: 20c3m  SRESa2 SRESb1 (IPSL does not have data for the far future under   
SRESB1 experiment). 
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CSIRO-Mk3.5 (2045-2065): Created by the Centre for Australian Weather and Climate 
Research, this model uses a dynamical framework of the atmospheric model is based upon 
the spectral model with the equations cast in the flux form that conserves predicted 
variables. The application of this model is vastly used over long-term climate change 
simulations. The most significant improvements result from the use of a more physically 
realistic set of parameters to represent the transport of heat and freshwater by oceanic 
eddies. It also features considerably more realistic circulation and stratification in the 
Southern Ocean, affecting precision in temperature and precipitation estimates over the fall 
and winter.  
 
GFDL-CM2.0 & GFDL-CM2.1 (2 models) (2045-2065): This is a coupled atmosphere-ocean 
general circulation model (AOGCM) developed at the NOAA Geophysical Fluid Dynamics 
Laboratory in the United States. It is one of the leading climate models used in the Fourth 
Assessment Report of the IPCC.  The atmospheric component of the CM2.X models is a 24-
level atmosphere run at a resolution of 2 degrees in the east-west and 2.5 degrees in the 
north-south direction. This resolution is sufficient to resolve the large mid-latitude cyclones 
responsible for weather variability. It is too coarse, however, to resolve processes such as 
hurricanes or intense thunderstorm outbreaks. The inclusion of this model as part of the 9 
model-prediction estimations is useful to incorporate intense outbreaks.  
 
IPSL-CM4 (2045-2065):  One of the goals of the IPSL modeling is to study how these 
different couplings can modulate climate and climate variability, and to determine how 
feedbacks in the Earth system control the response of climate to a perturbation such as the 
anthropogenic emissions of greenhouse gases. This is a relatively simple modeling that 
comprises four atmospheric prognostic variables: a) northward and eastward wind 
components, b) temperature, c) water availability, d) surface pressure. The data used in this 
model requires the time period between 1961 and 1990, for precipitation and temperature, 
which is data that is contained in our dataset for each municipality in Mexico on a weekly 
basis.  
 
ECHO-G: Is a hybrid coupled model, using ECHAM4 atmosphere and HOPE ocean models. 
The model contains a control simulation, allowing 1000-year simulation with constant 
external forcing. The model is capable of simulating unconventional climatology, which is 
consistent with other similar models with flux-adjusted modulation on climate and 
gradients, although the flux adjustment does not guarantee a more accurate simulation 
(Latif et al., 2001; AchutaRao and Sperber, 2002; Davey et al., 2002).  
 
ECHAM5/MPI-OM: This is the latest version of the ECHAM model. ECHAM5 may host 
submodels going beyond the meteorological processes of a GCM. The model can be used in 
special modes. This model perform best globally, with some biases in certain artic regions, 
which makes it one of the strongest models to be used in tropical and sub-tropical areas 
(Connolley, W. and Bracegirdle, T., 2007) 
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MRI-CGCM2.3.2: Meteorological Research Institute (MRI) Coupled Global Climate Model 
(CGCM; version 2.3.2a), produce realistic rainfall patterns at low latitudes. This model can 
be applied globally and regionally with the feature of permitting the partitioning of the total 
variance of precipitation among intra-seasonal, seasonal, and longer time scales. This is 
reproduced by the model, except over the western Pacific where the models fail to capture 
the large intra-seasonal variations. 

 
Models used for Robustness Checks 
 
ECHAM4 (2030): This was created by modifying global forecast models default 
configuration of the model resolves the atmosphere (primarily used to study the lower 
atmosphere), targeting arid, semi-arid, sub-tropical and tropical areas. Given this climate 
distribution, Mexico’s climates fit this model.  This model has been used extensively to study 
the climate of the troposphere in Mexico, allowing to include also the middle atmosphere. 
 
HADGEM (2030): Is the most recent atmospheric model (precipitation and temperature) 
atmospheric component has 38 levels extending to ~40km height, with a horizontal 
resolution of 1.25 degrees of latitude by 1.875 degrees of longitude, which produces a global 
grid of 192 x 145 grid cells. These grid cells are similar in size to those reported by the 
geographical unit of INEGI and the Autonomous National University in Mexico (UNAM). One 
of the main differences between this climate configuration and previous versions is the use 
of the New Dynamics core which is a non-hydrostatic (assumption of precipitation 
changes), fully compressible (ability to be disaggregated spatially), with a semi-implicit 
semi-Lagrangian time integration scheme (longer prediction periods).  

 
CCVI Eigen Values for Baseline and Prediction (2005/2045) 
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State Level CCVI (2005-2045)  
 

 
Source: Own estimations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

State Index S.d. Mun Index S.d. Mun Index Vulnerability
Aguascalientes -0.5009 0.1243 11 -0.4061 0.1395 11 0.0948 (+)
Baja California -0.2540 0.1428 3 -0.3823 0.1353 5 -0.1282 (-)
Baja California Sur -0.8512 0.1929 3 -0.7969 0.1958 5 0.0543 (+)
Campeche 0.7842 0.2973 11 0.3804 0.3055 11 -0.4038 (-)
Chiapas 1.3906 0.3856 112 1.5631 0.2786 117 0.1725 (+)
Chihuahua 0.1014 0.4552 37 0.2558 0.4139 67 0.1544 (+)
Coahuila -0.3650 0.1360 25 -0.6504 0.1700 38 -0.2854 (-)
Colima 0.1803 0.3522 9 -0.0288 0.2696 10 -0.2091 (-)
Distrito Federal 0.4160 0.2679 7 0.2436 0.1443 10 -0.1724 (-)
Durango -0.1372 0.4382 37 -0.1825 0.4744 39 -0.0453 (-)
Guanajuato -0.2409 0.2064 46 -0.0513 0.2085 46 0.1897 (+)
Guerrero 0.9046 0.3753 76 0.8003 0.3178 76 -0.1043 (-)
Hidalgo 0.1700 0.7793 84 0.2691 0.5747 84 0.0991 (+)
Jalisco 0.2546 0.3200 121 0.2048 0.2689 124 -0.0497 (-)
Michoacán 0.4081 0.3588 112 0.4033 0.3149 113 -0.0048 (=)
Morelos 0.4146 0.2216 31 0.3182 0.2237 33 -0.0964 (-)
México 0.2441 0.4412 121 0.2501 0.3701 122 0.0060 (=)
Nayarit 0.6354 0.2261 20 0.3108 0.2511 20 -0.3246 (-)
Nuevo León -0.1046 0.1926 32 -0.3072 0.2121 49 -0.2026 (-)
Oaxaca 0.7378 0.5899 557 0.8766 0.4383 570 0.1388 (+)
Puebla 0.4391 0.6530 214 0.5706 0.4504 217 0.1315 (+)
Querétaro -0.2415 0.3416 18 -0.1551 0.3522 18 0.0864 (+)
Quintana Roo 0.5705 0.3686 8 0.6398 0.3477 8 0.0694 (+)
San Luis Potosí 0.2549 0.7717 57 0.0932 0.5224 57 -0.1617 (-)
Sinaloa -0.0064 0.3300 15 -0.3471 0.3459 18 -0.3407 (-)
Sonora -0.0196 0.2967 10 -0.4272 0.2403 72 -0.4075 (-)
Tabasco 1.1752 0.3408 17 0.7122 0.2461 17 -0.4630 (-)
Tamaulipas 0.0156 0.3312 38 -0.2791 0.3585 43 -0.2948 (-)
Tlaxcala 0.0301 0.1664 59 0.1221 0.2110 60 0.0920 (+)
Veracruz 1.1434 0.4075 208 0.8737 0.3701 210 -0.2697 (-)
Yucatán 0.5469 0.3142 106 0.8136 0.3116 106 0.2667 (+)
Zacatecas -0.3273 0.3087 56 0.0476 0.2742 57 0.3749 (+)

Main Model Baseline (2005) Main Model Prediction  (2045) Change
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Source: Own estimations 

 
 
 
 
 
 
 
 
 
 
 
 
 

State Index 2005 S.d. 2005 Index 2045 S.d. 2045
Mean 

Difference t-
value

Significant 
Difference

Aguascalientes -0.5009 0.1243 -0.4061 0.1395 1.369 No
Baja California -0.2540 0.1428 -0.3823 0.1353 -1.744 Yes
Baja California Sur -0.8512 0.1929 -0.7969 0.1958 0.571 No
Campeche 0.7842 0.2973 0.3804 0.3055 -1.702 Yes
Chiapas 1.3906 0.3856 1.5631 0.2786 2.039 Yes
Chihuahua 0.1014 0.4552 0.2558 0.4139 0.407 No
Coahuila -0.3650 0.1360 -0.6504 0.1700 -1.206 No
Colima 0.1803 0.3522 -0.0288 0.2696 -0.774 No
Distrito Federal 0.4160 0.2679 0.2436 0.1443 0.169 No
Durango -0.1372 0.4382 -0.1825 0.4744 -0.075 No
Guanajuato -0.2409 0.2064 -0.0513 0.2085 0.963 No
Guerrero 0.9046 0.3753 0.8003 0.3178 0.111 No
Hidalgo 0.1700 0.7793 0.2691 0.5747 0.256 No
Jalisco 0.2546 0.3200 0.2048 0.2689 -0.034 No
Michoacán 0.4081 0.3588 0.4033 0.3149 0.146 No
Morelos 0.4146 0.2216 0.3182 0.2237 -0.477 No
México 0.2441 0.4412 0.2501 0.3701 0.124 No
Nayarit 0.6354 0.2261 0.3108 0.2511 -1.747 Yes
Nuevo León -0.1046 0.1926 -0.3072 0.2121 -0.944 No
Oaxaca 0.7378 0.5899 0.8766 0.4383 0.752 No
Puebla 0.4391 0.6530 0.5706 0.4504 0.600 No
Querétaro -0.2415 0.3416 -0.1551 0.3522 0.300 No
Quintana Roo 0.5705 0.3686 0.6398 0.3477 0.390 No
San Luis Potosí 0.2549 0.7717 0.0932 0.5224 -0.157 No
Sinaloa -0.0064 0.3300 -0.3471 0.3459 -1.107 No
Sonora -0.0196 0.2967 -0.4272 0.2403 -1.761 Yes
Tabasco 1.1752 0.3408 0.7122 0.2461 -0.628 No
Tamaulipas 0.0156 0.3312 -0.2791 0.3585 -0.866 No
Tlaxcala 0.0301 0.1664 0.1221 0.2110 0.412 No
Veracruz 1.1434 0.4075 0.8737 0.3701 -0.449 No
Yucatán 0.5469 0.3142 0.8136 0.3116 0.887 No
Zacatecas -0.3273 0.3087 0.0476 0.2742 1.278 No

Main Model  



39 
 

Table 3b Characteristics of States with Highest Vulnerability Shifts 

 
States with highest vulnerability Decrease: Tabasco, Sonora, Campeche, Sinaloa, Nayarit. 
States with highest vulnerability Increase: Zacatecas, Yucatan, Guanajuato, Chiapas, Chihuahua 
Source: Own estimations 

 
 
 
 
 

Highest Vulnerability Decrease

Indicator CCVI Index
Index 

Prediction 
(2045)

Percent of 
Indigenous 
Population

Percent of 
Households with 

Dirt Floors

Percent of 
Elderly (65+) 

Population

Rain 
Coefficient 
of Variation

GDD
% of Agriculture 

workers with 
Savings

% of 
Agriculture 

workers with 
credit

Average 
Agriculture  

support in Pesos 
2009 *

% of Agriculture 
workers receiving 

remmitances

mean 0.562 -0.105 7.02 1.94 7.96 0.35 10.63 3.97 37.34 230.85 1.86
range 2.331 2.032 88.62 52.39 14.95 0.71 12.94 22.39 88.57 987.53 16.90
sd 0.544 0.507 15.48 5.57 3.37 0.10 2.71 4.36 19.40 290.23 3.06
p5 -0.452 -0.799 0.00 0.00 3.81 0.22 6.24 0.00 12.40 0.00 0.00
p95 1.482 0.831 40.30 11.40 14.92 0.54 14.30 14.10 75.90 839.86 8.77
N 138 138 138 138 138 138 138 138 138 97 138

Highest Vulnerability Increase

Indicator CCVI Index
Index 

Prediction 
(2045)

Percent of 
Indigenous 
Population

Percent of 
Households with 

Dirt Floors

Percent of 
Elderly (65+) 

Population

Rain 
Coefficient 
of Variation

GDD
% of Agriculture 

workers with 
Savings

% of 
Agriculture 

workers with 
credit

Average 
Agriculture  

support in Pesos 
2009 *

% of Agriculture 
workers receiving 

remmitances

mean 0.277 0.488 16.41 7.91 6.78 0.27 10.46 1.82 27.75 439.16 3.65
range 2.367 2.657 99.82 69.73 20.97 0.33 444.91 10.19 100.00 999.80 25.18
sd 0.724 0.887 29.47 15.26 3.47 0.06 36.13 1.56 22.83 330.08 4.40
p5 -0.701 -0.615 0.18 0.00 2.60 0.17 2.68 0.00 0.00 0.00 0.00
p95 1.327 1.756 94.01 45.46 13.45 0.36 14.58 4.82 69.80 948.68 11.96
N 289 251 289 289 289 289 289 289 289 102 289
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Table 4c Correlations Selected Variables and Vulnerability Risk Category 

 
Source: Own estimations

Baseline Prediction Baseline Prediction Baseline Prediction Baseline Prediction
Very High Vulnerabil ity 
Risk 1.83 3.06 88.37 88.26 9.59 15.72 0.32 0.46

High Vulnerabil ity Risk 0.92 1.25 83.03 82.49 10.20 14.06 0.29 0.37
Moderate Vulnerabil ity 
Risk 0.45 0.53 81.09 85.21 11.08 13.68 0.26 0.36

Low Vulnerabil ity Risk 0.13 0.15 68.21 72.84 9.58 12.41 0.27 0.34
Very Low Vulnerabil ity 
Risk 0.38 0.01 53.89 40.29 6.46 4.33 0.27 0.29

Baseline Prediction Baseline Prediction Baseline Prediction Baseline Prediction Baseline Prediction
Very High Vulnerabil ity 
Risk 0.39 4.77 14.15 17.85 38.15 45.97 33.4 41.54 5.23 5.11

High Vulnerabil ity Risk 2.22 1.85 17.08 24.44 36.89 39.51 31.78 35.19 4.00 5.97
Moderate Vulnerabil ity 
Risk 2.09 4.11 30.7 32.24 27.44 27.52 31.63 26.69 6.51 7.80

Low Vulnerabil ity Risk 5.06 5.13 32.7 39.63 20.94 23.63 16.43 23.63 12.03 13.96
Very Low Vulnerabil ity 
Risk 10.2 13.17 41.91 40.53 12.86 8.23 11.09 6.17 13.08 7.20

Baseline Prediction Baseline Prediction Baseline Prediction Baseline Prediction Baseline Prediction Baseline Prediction Baseline Prediction
Very High Vulnerabil ity 
Risk 0.141 0.155 0.153 0.098 0.182 0.246 -0.177 -0.153 0.090 0.139 -0.103 -0.171 -0.153 -0.270

High Vulnerabil ity Risk 0.058 0.053 0.069 0.074 0.048 0.083 -0.117 -0.106 0.099 0.103 -0.080 -0.269 -0.140 -0.183
Moderate Vulnerabil ity 
Risk 0.089 -0.034 0.089 0.067 -0.026 -0.072 -0.044 0.034 0.009 0.039 0.041 0.105 -0.022 -0.131

Low Vulnerabil ity Risk 0.055 -0.026 0.056 -0.014 -0.049 -0.022 -0.048 0.079 -0.046 -0.044 0.059 0.112 0.011 -0.017
Very Low Vulnerabil ity 
Risk 0.044 -0.068 0.057 -0.054 -0.094 -0.031 -0.011 -0.010 -0.124 -0.054 0.050 0.135 0.065 0.065

*** Pairwise Correlations between Index and Variable in question. Bold indicate significant at 10% level.

** Percent of  Municipalities under risk categories, figures don't add up to 100 horizontally because 3 categories of Capital Intensive Agriculture production units not included.

* Consecutive dry days based the number of days below 2 standard deviations from Monthly average or no rain at all  reported. GDD are calculated by taking the average of the daily maximum and minimum 
temperatures compared to a base temperature. The coefficient of variation (CV) is defined as the ratio of the standard deviation  to the mean. 

% of Agriculture 
workers receiving 

remmitances

Risk Category **
Low Capital intensity 

Agriculture 
Transitional extensive 

Agriculture
Subsistence agriculture 

Capital intensive
Subsistance agriculture non-

intensive
Other (Small Farms)

Risk Category *

Risk Category ***
% of Indigenous pop. by Mun. % of HH by Mun w/ Dirt floors 

% of HH in Mun. w/ 
dwellers above 65 yo

% of Agriculture 
workers with support 

programs 

% of Agriculture 
workers with credit

% of Agriculture workers 
with Savings

Coefficient of Variation RainConsecutive Dry DaysFrost Days (<10 C) Growing Degree Days
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Annex II 
 
Literature Review on Applications of PCA to build Multidimensional (small area) 
Indices 
 
For many years the statistical literature lacked a uniform approach to combine 
indicators that result in a composite index from multidimensional data. A number of 
indices were devised over the years, including Duncan’s index that combined labor 
and income data of individuals, or the Townsend’s index designed to explain 
variation in health in terms of material deprivation (Morris & Castairs, 1991). 
However, a major problem facing researchers when constructing indexes is 
determining an appropriate aggregation strategy to combine multidimensional 
variables into a composite index. 
 
For years, researchers built aggregated indices from multidimensional variables 
using simple Summation of Standardized Variables (SSV). This approach initially 
developed by Shevky & Bell (1955) and applied by Markides & McFarland (1982), 
used statistical standardization of variables to add them up and test variability of 
the index according to different development outcomes applied to infant mortality. 
However, many statistical experts found that such methods rely on applying weights 
to the constituent variables that make up individual as well as composite indices, 
which rely on subjective factors, thus raising questions about internal coherence 
and robustness of such methods (Gjolberg, 2009).  
 
Despite that the PCA technique is not new its application to develop composite 
weighted indices is relatively recent. The PCA technique developed by Pearson 
(1901), though it is often attributed to Hotelling (1933), is useful for transforming a 
large number of variables in a data set into a smaller and more coherent set of 
uncorrelated (orthogonal) factors, the principal components. The principal 
components account for much of the variance among the set of original variables. 
Each component is a linear weighted combination of the initial variables23.  
 
The components are ordered so that the first component accounts for the largest 
possible amount of variation in the original variables. The second component is 
completely uncorrelated with the first component, and accounts for the maximum 
variation that is not accounted for the first. The third accounts for the maximum that 
the first and the second not accounted for and so on. 
 
PCA was first used to combine socioeconomic indicators into a single index 
(Boelhouwer & Stoop, 1999). Acknowledging the inappropriateness of simple 
aggregation procedures, Lai (2003) modified the UNDP Human Development Index 
by using PCA to create a linear combination of indicators of development. Several 

                                                        
23 The weights for each principal component are given by the eigenvectors of the correlation matrix 
or the covariance matrix, if the data were standardized. The variance for each principal component is 
represented by the eigenvalue of the corresponding eigenvector. 
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researchers have used PCA, especially since late 1990s, to compute area 
socioeconomic indices (Antony & Rao, 2007; Fukuda, Nakamura, & Takano, 2007; 
Fotso & Kuate-defo, 2005; Havard, Deguen, Bodin, Louis, & Laurent, 2008; Messer, 
Vinikoor, Laraia, Kaufman, Eyster, Holzman, Culhane, Elo, Burke, & O’Campo, 2008; 
Rygel, O’Sullivan, & Yarnal, 2006; Tata & Schultz, 1988; Sekhar, Indrayan, & Gupta, 
1991; Vyas & Kumaranayake, 2006; Zagorski, 1985). 
 
Finally, the PCA is computationally easy and also avoids many of the problems 
associated with the traditional methods, such as aggregation, standardization, and 
nonlinear relationships of variables affecting socioeconomic inequalities (refer Vyas 
& Kumaranayake, 2006, for an assessment of advantages and disadvantages of PCA 
and Saltelli, Nardo, Saisana, & Tarantola, 2004, for the pros and cons of composite 
indicators, in general). Graphically the steps to conduct a PCA computation are 
based on the following diagram: 
 

PCA Algorithm Procedure 
 

 
Source: Based on Krishnan, 2010 

 
Annex III 
 
Examples of Multidimensional Indices built for Mexico using Principal Components 
Analysis 
 
Mexico has a history in building important municipal indices that capture 
multidimensional aspects of social and economic variables. In 2005 the United 
Nations Development Program (UNDP) supported the government of Mexico to 
build a Human Development Index at the municipal index. This indicator was build 
using  Principal Components Analysis (PCA) combining life expectancy, literacy 
rates, school enrollment rates, GDP per capita, inequality and ethnic composition. 
The index was used to rank municipalities in order to prioritize public spending to 
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those municipalities and regions with lowest levels of human development (IDH 
2005, UNDP). Also, the index constructed at baseline (2000) and at a follow up 
(2005) periods, assessed changes in human development at the state and municipal 
levels (Graph 1a). 
 
Graph 1a  Mexico’s Inequality in Human Development Index by State, 2000-2005 
 

 
 Source: IDH, UNDP 2005.  
 
With a precedent in building a human development index for municipalities in 
Mexico, the National Population Council (CONAPO) in Mexico, embarked in the task 
of building a more refined index that incorporated other dimensions of social well-
being beyond human development. In 2000 and 2005 CONAPO used PCA analysis to 
build a socioeconomic index that measured the level of marginalization by 
municipality based on three dimensions. The first dimension measured education-
related indicators (years of schooling, level and type of education, literacy rates), 
mostly captured in CENSUS data. The second dimension of the index measured 
household conditions and access to public services (household physical 
characteristics, access to water and sanitation, and energy) collected from two 
sources: CENSUS data and two large sample surveys (ENOE and ENIGH). The last 
dimension to measure marginality incorporated variables related to municipal 
characteristics in terms of population size, labor occupancy rates, and urbanization 
collected from CENSUS and large sample data as well. This index was build based on 
the above-mentioned indicators including only those with highest explanatory 
power over the covariance of all indicators. PCA was used then to aggregate all three 
dimensions to build the index that categorized municipalities in five levels of 
marginality: very low, low, average, high and very high. The index helped to rank 
states in order to prospectively plan the allocation of resources from the 
programmatic plans elaborated by the Ministry of Finance, where high priority of 
funding was given to states and municipalities with high and very high 
marginalization (Graph 2a). 
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Graph 2a Marginality Index by State (Mexico 2005) 

 
 
These examples illustrate previous efforts to build indices used for important policy 
decisions. Other indices have been built to assess multiple dimensions of well-being. 
In 2010, the National Evaluation Council (CONEVAL) built a composite index using 
PCA analysis that measured the Social Gaps prevailing across municipalities (Graph 
3a). 
 
Graph 3a. Social Gap Index by Municipality Mexico 2010.  
 

 
Source: CONEVAL, 2011 
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The main purpose of the social gap index is to prioritize specific policies and 
programs that target multiple social development interventions. This index ranks 
municipalities based on human development, access to social services and 
household conditions. The index is helping to reshape social policies and priorities 
at the municipal level and it is used to assess social inequality as well. With this tool 
state and national governments have evidence to allocate federalize funds into 
municipalities that show highest social gaps.   
 
Recently, other indices have been built to assess specific inequalities in the 
distribution of risk against climate change. The Mexican Institute of Water 
Technology (IMTA) built a Municipal Index for Water Scarcity Risk from Climate 
Change. This index is completely submerged in the climate change agenda and has 
the advantage of incorporating multiple dimensions to assess Water Scarcity risks. 
These dimensions include health, education, household conditions, employment, 
population and family structure, gender, adaptive capacity and risk perception. 
Although this index is still under review, it conceptually measures an important 
challenge that municipalities will face in the future: the risk of water resources 
reduction and their allocation. These examples illustrate the importance of using 
rich data and statistical tools to assess various aspects of economic, social and 
sustainability issues at the local level.  

 
 
 
 
 
 
 
 
 
 
 
 
 


