

Urban Air Quality Management Strategy in Asia Greater Mumbai Report

Edited by Jitendra J. Shah Tanvi Nagpal

RECENT WORLD BANK TECHNICAL PAPERS

- No. 313 Kapur, Airport Infrastructure: The Emerging Role of the Private Sector
- No. 314 Valdés and Schaeffer in collaboration with Ramos, Surveillance of Agricultural Price and Trade Policies: A Handbook for Ecuador
- No. 316 Schware and Kimberley, Information Technology and National Trade Facilitation: Making the Most of Global Trade
- No. 317 Schware and Kimberley, Information Technology and National Trade Facilitation: Guide to Best Practice
- No. 318 Taylor, Boukambou, Dahniya, Ouayogode, Ayling, Abdi Noor, and Toure, *Strengthening National Agricul*tural Research Systems in the Humid and Sub-humid Zones of West and Central Africa: A Framework for Action
- No. 320 Srivastava, Lambert, and Vietmeyer, Medicinal Plants: An Expanding Role in Development
- No. 321 Srivastava, Smith, and Forno, Biodiversity and Agriculture: Implications for Conservation and Development
- No. 322 Peters, The Ecology and Management of Non-Timber Forest Resources
- No. 323 Pannier, editor, Corporate Governance of Public Enterprises in Transitional Economies
- No. 324 Cabraal, Cosgrove-Davies, and Schaeffer, Best Practices for Photovoltaic Household Electrification Programs
- No. 325 Bacon, Besant-Jones, and Heidarian, Estimating Construction Costs and Schedules: Experience with Power Generation Projects in Developing Countries
- No. 326 Colletta, Balachander, and Liang, The Condition of Young Children in Sub-Saharan Africa: The Convergence of Health, Nutrition, and Early Education
- No. 327 Valdés and Schaeffer in collaboration with Martín, Surveillance of Agricultural Price and Trade Policies: A Handbook for Paraguay
- No. 328 De Geyndt, Social Development and Absolute Poverty in Asia and Latin America
- No. 329 Mohan, editor, Bibliography of Publications: Technical Department, Africa Region, July 1987 to April 1996
- No. 330 Echeverría, Trigo, and Byerlee, Institutional Change and Effective Financing of Agricultural Research in Latin America
- No. 331 Sharma, Damhaug, Gilgan-Hunt, Grey, Okaru, and Rothberg, African Water Resources: Challenges and Opportunities for Sustainable Development
- No. 332 Pohl, Djankov, and Anderson, Restructuring Large Industrial Firms in Central and Eastern Europe: An Empirical Analysis
- No. 333 Jha, Ranson, and Bobadilla, Measuring the Burden of Disease and the Cost-Effectiveness of Health Interventions: A Case Study in Guinea
- No. 334 Mosse and Sontheimer, Performance Monitoring Indicators Handbook
- No. 335 Kirmani and Le Moigne, Fostering Riparian Cooperation in International River Basins: The World Bank at Its Best in Development Diplomacy
- No. 336 Francis, with Akinwumi, Ngwu, Nkom, Odihi, Olomajeye, Okunmadewa, and Shehu, State, Community, and Local Development in Nigeria
- No. 337 Kerf and Smith, Privatizing Africa's Infrastructure: Promise and Change
- No. 338 Young, Measuring Economic Benefits for Water Investments and Policies
- No. 339 Andrews and Rashid, The Financing of Pension Systems in Central and Eastern Europe: An Overview of Major Trends and Their Determinants, 1990-1993
- No. 340 Rutkowski, Changes in the Wage Structure during Economic Transition in Central and Eastern Europe
- No. 341 Goldstein, Preker, Adeyi, and Chellaraj, Trends in Health Status, Services, and Finance: The Transition in Central and Eastern Europe, Volume I
- No. 342 Webster and Fidler, editors, Le secteur informel et les institutions de microfinancement en Afrique de l'Ouest
- No. 343 Kottelat and Whitten, Freshwater Biodiversity in Asia, with Special Reference to Fish
- No. 344 Klugman and Schieber with Heleniak and Hon, A Survey of Health Reform in Central Asia
- No. 345 Industry and Mining Division, Industry and Energy Department, A Mining Strategy for Latin America and the Caribbean
- No. 346 Psacharopoulos and Nguyen, The Role of Government and the Private Sector in Fighting Poverty
- No. 347 Stock and de Veen, Expanding Labor-based Methods for Road Works in Africa

(List continues on the inside back cover)

Urban Air Quality Management Strategy in Asia

Greater Mumbai Report

SELECTED WORLD BANK TITLES ON AIR QUALITY

- Air Pollution from Motor Vehicles: Standards and Technologies for Controlling Emissions. Asif Faiz, Christopher S. Weaver, and Michael Walsh.
- Clean Fuels for Asia: Technical Options for Moving toward Unleaded Gasoline and Low-Sulfur Diesel. Michael Walsh and Jitendra J. Shah. Technical paper no. 377.
- Energy Use, Air Pollution, and Environmental Policy in Krakow: Can Economic Incentives Really Help? Seabron Adamson, Robin Bates, Robert Laslett, and Alberto Ptotschnig. Technical paper no. 308.
- Taxing Bads by Taxing Goods: Pollution Control with Presumptive Charges. Gunnar S. Eskeland and Shantayanan Devarajan. Directions in Development Series.
- Urban Air Quality Management Strategy in Asia: Kathmandu Valley Report. Edited by Jitendra J. Shah and Tanvi Nagpal. Technical paper no. 378.
- Urban Air Quality Management Strategy in Asia: Jakarta Report. Edited by Jitendra J. Shah and Tanvi Nagpal. Technical paper no. 379.
- Urban Air Quality Management Strategy in Asia: Metro Manila Report. Edited by Jitendra J. Shah and Tanvi Nagpal. Technical paper no. 380.
- Urban Air Quality Management Strategy in Asia: Greater Mumbai Report. Edited by Jitendra J. Shah and Tanvi Nagpal. Technical paper no. 381.
- Urban Air Quality Management Strategy in Asia: Guidebook. Edited by Jitendra J. Shah, Tanvi Nagpal, and Carter J. Brandon.
- Vehicular Air Pollution: Experiences from Seven Latin American Urban Centers. Bekir Onursal and Surhid P. Gautam. Technical paper no. 373.

AUTHORS

Steinar Larssen Frederick Gram Leif Otto Hagen Norwegian Institute for Air Research Kjeller, Norway

Huib Jansen Xander Olsthoorn

from the Institute of Environmental Studies at the Free University Amsterdam, the Netherlands

> K. H. Mehta Maharashtra State Pollution Control Board Mumbai, India

Ulhas Joglekar and Rajiv V. Aundhe ADITYA Environmental Services

A. A. Mahashur KEM Hospital Mumbai, India

• . • •

Urban Air Quality Management Strategy in Asia Greater Mumbai Report

Edited by Jitendra J. Shah Tanvi Nagpal

The World Bank Washington, D.C. Copyright © 1997 The International Bank for Reconstruction and Development/THE WORLD BANK 1818 H Street, N.W. Washington, D.C. 20433, U.S.A.

All rights reserved Manufactured in the United States of America First printing December 1997

Technical Papers are published to communicate the results of the Bank's work to the development community with the least possible delay. The typescript of this paper therefore has not been prepared in accordance with the procedures appropriate to formal printed texts, and the World Bank accepts no responsibility for errors. Some sources cited in this paper may be informal documents that are not readily available.

The findings, interpretations, and conclusions expressed in this paper are entirely those of the author(s) and should not be attributed in any manner to the World Bank, to its affiliated organizations, or to members of its Board of Executive Directors or the countries they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility whatsoever for any consequence of their use. The boundaries, colors, denominations, and other information shown on any map in this volume do not imply on the part of the World Bank Group any judgment on the legal status of any territory or the endorsement or acceptance of such boundaries.

The material in this publication is copyrighted. Requests for permission to reproduce portions of it should be sent to the Office of the Publisher at the address shown in the copyright notice above. The World Bank encourages dissemination of its work and will normally give permission promptly and, when the reproduction is for noncommercial purposes, without asking a fee. Permission to copy portions for classroom use is granted through the Copyright Clearance Center, Inc., Suite 910, 222 Rosewood Drive, Danvers, Massachusetts 01923, U.S.A.

The complete backlist of publications from the World Bank is shown in the annual *Index of Publications*, which contains an alphabetical title list with full ordering information. The latest edition is available free of charge from the Distribution Unit, Office of the Publisher, The World Bank, 1818 H Street, N.W., Washington, D.C. 20433, U.S.A., or from Publications, The World Bank, 66, avenue d'Iena, 75116 Paris, France.

Cover illustration by Beni Chibber-Rao. Cover photo by Gopal Shetty, Mid-Day Publications Ltd., Mumbai.

ISSN: 0253-7494

Jitendra J. Shah is an environmental engineer in the World Bank's Asia Technical Environment Unit. Tanvi Nagpal, a political economist, is a consultant in the World Bank's Asia Technical Environment Unit.

Library of Congress Cataloging-in-Publication Data

Urban air quality management strategy in Asia. Greater Mumbai report

/ edited by Jitendra J. Shah, Tanvi Nagpal.

p. cm. — (World Bank technical paper ; no. 381) Includes bibliographical references.

ISBN 0-8213-4037-9

1. Air quality management—India—Bombay Metropolitan Area. 2. Air—Pollution—India—Bombay Metropolitan Area. I. Shah, Jitendra J., 1952– III. Nagpal, Tanvi, 1967– III. Series. TD883.7.I42B668 1997 363.739'25'09547923—dc21

97-28973 CIP

TABLE OF CONTENTS

LETTER OF SUPPORT ix FOREWORD x ABSTRACT xi ACKNOWLEDGMENTS xii ABBREVIATIONS AND ACRONYMS xiv EXECUTIVE SUMMARY 1 1. BACKGROUND INFORMATION 5 SCOPE OF THE STUDY 5 GENERAL DESCRIPTION OF GREATER BOMBAY 5 DATA SOURCES 7 THE GROWTH OF BOMBAY, 1981–1991 7 POPULATION 8 VEHICLE FLEET 8 ROAD AND TRANSPORT 10 INDUSTRIAL SOURCES 12 FUEL CONSUMPTION 12 AREA SOURCES 14
ACKNOWLEDGMENTS xii ABBREVIATIONS AND ACRONYMS xiv EXECUTIVE SUMMARY 1 1. BACKGROUND INFORMATION 5 Scope of the study 5 GENERAL DESCRIPTION OF GREATER BOMBAY 5 DATA SOURCES 7 THE GROWTH OF BOMBAY, 1981–1991 7 POPULATION 8 VEHICLE FLEET 8 ROAD AND TRANSPORT 10 INDUSTRIAL SOURCES 12 FUEL CONSUMPTION 12 AREA SOURCES 14
ABBREVIATIONS AND ACRONYMSxivEXECUTIVE SUMMARY11. BACKGROUND INFORMATION5SCOPE OF THE STUDY5GENERAL DESCRIPTION OF GREATER BOMBAY5DATA SOURCES7THE GROWTH OF BOMBAY, 1981–19917POPULATION8VEHICLE FLEET8ROAD AND TRANSPORT10INDUSTRIAL SOURCES12FUEL CONSUMPTION12AREA SOURCES14
EXECUTIVE SUMMARY
1. BACKGROUND INFORMATION
SCOPE OF THE STUDY5GENERAL DESCRIPTION OF GREATER BOMBAY5DATA SOURCES7THE GROWTH OF BOMBAY, 1981–19917POPULATION8VEHICLE FLEET8ROAD AND TRANSPORT10INDUSTRIAL SOURCES12FUEL CONSUMPTION12AREA SOURCES14
SCOPE OF THE STUDY5GENERAL DESCRIPTION OF GREATER BOMBAY5DATA SOURCES7THE GROWTH OF BOMBAY, 1981–19917POPULATION8VEHICLE FLEET8ROAD AND TRANSPORT10INDUSTRIAL SOURCES12FUEL CONSUMPTION12AREA SOURCES14
GENERAL DESCRIPTION OF GREATER BOMBAY5DATA SOURCES7THE GROWTH OF BOMBAY, 1981–19917POPULATION8VEHICLE FLEET8ROAD AND TRANSPORT10INDUSTRIAL SOURCES12FUEL CONSUMPTION12AREA SOURCES14
DATA SOURCES7THE GROWTH OF BOMBAY, 1981–19917POPULATION8VEHICLE FLEET8ROAD AND TRANSPORT10INDUSTRIAL SOURCES12FUEL CONSUMPTION12AREA SOURCES14
THE GROWTH OF BOMBAY, 1981–1991 7 POPULATION 8 VEHICLE FLEET 8 ROAD AND TRANSPORT 10 INDUSTRIAL SOURCES 12 FUEL CONSUMPTION 12 AREA SOURCES 14
POPULATION 8 VEHICLE FLEET 8 ROAD AND TRANSPORT 10 INDUSTRIAL SOURCES 12 FUEL CONSUMPTION 12 AREA SOURCES 14
ROAD AND TRANSPORT 10 INDUSTRIAL SOURCES 12 FUEL CONSUMPTION 12 AREA SOURCES 14
INDUSTRIAL SOURCES
FUEL CONSUMPTION
FUEL CONSUMPTION
2. AIR QUALITY ASSESSMENT
AIR POLLUTION CONCENTRATIONS
AIR POLLUTANT EMISSIONS IN GREATER BOMBAY
DISPERSION MODEL CALCULATIONS FOR GREATER BOMBAY
Dispersion conditions
Dispersion model calculations, city background
Pollution hot spots
POPULATION EXPOSURE TO AIR POLLUTION IN GREATER BOMBAY
SUMMARY OF THE AIR QUALITY ASSESSMENT
IMPROVING AIR QUALITY ASSESSMENT FOR GREATER BOMBAY
Shortcomings and data gaps
3. AIR POLLUTION: IMPACTS AND VALUATION
INTRODUCTION
SUMMARY OF STUDIES BY ENVIRONMENTAL POLLUTION RESEARCH CENTER, (KEM HOSPITAL,
BOMBAY)
vii

	Morbidity	49
	VALUATION OF HEALTH IMPACTS	50
	CONCLUSIONS	52
4.	ABATEMENT MEASURES: EFFECTIVENESS AND COSTS	
	INTRODUCTION	
	TRAFFIC	
	Introducing unleaded gasoline	
	Improving diesel quality	
	Introduction of low-smoke lubricating oil for two-stroke, mixed-lubrication engines	58
	Implementation of an inspection and maintenance scheme	
	Address the problem of excessively polluting vehicles	
	Fuel switching in the transportation sector	
	Adoption of clean vehicle emission standards	61
	Other options	63
	Resuspension emission	63
	Improving traffic management	63
	Construction and improvement of mass-transit systems	64
	LARGE POINT SOURCES	64
	DISTRIBUTED INDUSTRIAL/COMMERCIAL SOURCES	
	REFUSE BURNING AND DOMESTIC EMISSIONS	65
	CONCLUSIONS	
5.	ACTION PLAN	67
	ACTIONS TO IMPROVE GREATER BOMBAY AIR QUALITY, AND ITS MANAGEMENT	67
	Actions to improve air quality	67
6.	INSTITUTIONAL FRAMEWORK	
	ENVIRONMENTAL INSTITUTIONS IN BOMBAY	
	AIR POLLUTION LEGISLATION	79
	The laws and regulations for air environment	81
	Air pollution standards and regulations	83
	SUGGESTIONS FOR IMPROVING INSTITUTIONS AND POLICIES	
RI	EFERENCES	
AF	PPENDICES	
	1. AIR QUALITY STATUS, GREATER BOMBAY	
	2. AIR QUALITY GUIDELINES	
	3. AIR POLLUTION LAWS AND REGULATIONS FOR INDIA AND BOMBAY	
	4. EMISSION INVENTORY	
	5. EMISSION FACTORS, PARTICLES	
	6. POPULATION EXPOSURE CALCULATIONS	
	7. SPREADSHEET FOR CALCULATING EFFECTS OF CONTROL MEASURES ON EMISSIONS	
	8. PROJECT DESCRIPTIONS, LOCAL CONSULTANTS	223

LETTER FROM THE GOVERNMENT OF MAHARASHTRA DEPARTMENT OF ENVIRONMENT MUMBAI, INDIA

Many Asian cities are on the threshold of a major environmental crisis in the form of air pollution. The deteriorating air quality in cities is a result of rapid economic expansion, rise in population, increased industrial output and unprecedented growth of passenger vehicles. The impact of air pollution on public health and consequent rising health costs, damage to ecological and cultural properties, deterioration of built environment, etc. is well known.

In Mumbai (Bombay) the main contributor of air pollution is the transport sector, followed by power plants, industrial units and burning of garbage. Fuel quality and engine conditions significantly influence the level of air pollution. To arrest this growing problem, a concerted effort with public involvement is essential. Awareness of the issue, proactive policies, economically affordable standards and technologies and effective enforcement are key elements in any effective air quality management strategy. A long-term perspective shows that early adoption of policies for environmentally safer technologies can allow developing countries to resolve some of the most difficult problems of industrialization and growth at lower human and economic cost.

Mumbai (Bombay) joined the World Bank-aided Metropolitan Environmental Improvement Program (MEIP) in 1990. At the Inter-country workshop held in Hawaii in 1990, the cities facing air pollution problems sought MEIP intervention to assist in finding solutions. In response to this, Urban Air Quality Management Initiative (URBAIR) was conceived and launched in Mumbai (Bombay) in 1992.

URBAIR has assisted the Environment Department, Government of Maharashtra to develop a strategy and time-bound action plan for air quality management in Mumbai (Bombay). For the first time, it brought together the different stakeholders—sectoral agencies, private sector, NGOs, academics, research bodies and media to formulate a strategy. This group was met as a Technical Committee which deliberated over several months with support provided by a team of national and international experts. The outcome is the Action Plan that is presented here. The result is quite impressive and I believe that the Action Plan will catalyze continuous and sustained effort by all the concerned agencies which is absolutely essential to improve the ambient air quality of Mumbai (Bombay). The State Government through its various agencies will wholeheartedly participate and extend necessary support for the implementation of the plan. We will welcome the support of the international community in realizing the goals of the plan.

I would like to record our appreciation for the contributions made by various agencies in the development of the strategy and plan, especially to MEIP for facilitating the process.

Asoke Basak Secretary to Government of Maharashtra Environment Department Mumbai, India

FOREWORD

In view of the potential environmental consequences of continuing growth of Asian metropolitan areas, the World Bank and United Nations Development Programme launched the Metropolitan Environmental Improvement Program (MEIP) in six Asian metropolitan areas: Beijing, Mumbai (Bombay)¹, Colombo, Jakarta, Kathmandu Valley and Metro Manila. MEIP's mission is to assist Asian urban areas address their environmental problems.

Recognizing the growing severity of air pollution caused by industrial expansion and increasing numbers of vehicles, the World Bank through MEIP started the Urban Air Quality Management Strategy (URBAIR) in 1992. The first phase of URBAIR covered four cities: Bombay, Jakarta, Kathmandu, and Metro Manila. URBAIR is an international collaborative effort involving governments, academia, international organizations, NGOs, and the private sector. The main objective of URBAIR is to assist local institutions in developing action plans which would be an integral part of the air quality management system for the metropolitan regions. The approach used to achieve this objective involves the assessment of air quality and environmental damage (on health and materials), the assessment of control options, and comparison of costs of damage and costs of control options (cost-benefit or cost-effectiveness analysis). From this, an action plan was set up containing the selected abatement measures for implementation in the short, medium, or long term.

The preparation of this city-specific report for Bombay is based on data collected and specific studies carried out by local consultants, and on workshops and fact-finding missions carried out in April and August 1993, and May 1994. The Norwegian Institute for Air Research (NILU) and Institute for Environmental Studies (IES) prepared a draft of the report before the first workshop based upon general and city-specific information available from earlier studies. A second draft was prepared before the second workshop with substantial inputs from the local consultants and assessment of air quality, damage and control options, and costs carried out by NILU and IES. The report concludes with an action plan for air pollution. NILU and IES carried out cost-benefit analysis of some selected abatement measures, showing the economic viability of many of the technical control options.

It is hoped that this report will form the basis for further analysis of air quality data, and formulation of strategies for air pollution control. Local institutions may refer to it as a preliminary strategy and use it in conjunction with the URBAIR Guidebook to formulate policy decisions and investment strategies.

Maritta Koch-Weser Division Chief Asia Environment and Natural Resources Division

¹ While the consultants and the World Bank recognize the change of name to Mumbai, the city name Bombay is used in this study to more accurately reflect the data collection and the time period during which this study was conducted.

х

ABSTRACT

Severe air pollution is threatening human health and the gains of economic growth in Asia's largest cities. This report aims to assist policy makers in the design and implementation of policies, monitoring and management tools to restore air quality in Mumbai (Bombay), India's financial and commercial capital.

Annual average TSP concentration has increased about 50 percent from 1981 to 1990, to reach 270 μ g/m³. World Health Organization (WHO) and national guidelines for PM₁₀ are frequently and substantially exceeded in Mumbai; 97 percent of the population lives in areas where the WHO air quality guideline for particulate is exceeded. Studies point to the resulting health effects—more cases of colds, chronic bronchitis, asthma and general decline in lung function. Using dose-response equations developed in the United States, this report estimates that air pollution causes 2,800 cases of excess mortality, 60 million respiratory symptom days, and 19 million restricted activity days, at a total cost of Rs.18 billion per year.

Applying the essential components of an air quality management system to the problem in Mumbai, this report suggests an action plan containing abatement measures for the short, medium and long terms. Recommended actions fall under two categories—institutional and technical. A single institution with a clear mandate and sufficient resources should be made responsible for air quality management in Mumbai. In addition, capabilities for data gathering and processing should be improved throughout the city. Technically, it is crucial that clean vehicle standards be established and strictly enforced. The switch from dirty to clean fuel, including to unleaded gasoline and lowsulfur diesel, should be completed. Another option for clean vehicles is the introduction of LPG- and CNG-powered vehicles. The use of low-smoke lubrication oil for 2-stroke engines is also an important policy measure. Gross polluters should be identified and penalized. In addition, general traffic management would reduce congestion and pollution. Awareness raising through public and private organizations including educational institutions is key to bringing about policy change on matters of air pollution.

ACKNOWLEDGMENTS

We would like to acknowledge the groups and individuals who contributed to this report and the URBAIR process. Core funds were provided by the United Nations Development Program, the Australian Agency for International Development, the Royal Norwegian Ministry of Foreign Affairs, the Norwegian Consultant Trust Funds, and the Netherlands Consultant Trust Funds. Substantial inputs were provided by host governments and city administrations. The contribution of the Air Quality Monitoring Section of the Municipal Corporation of Greater Bombay (MCGB) is especially acknowledged; air quality data, as presented in Appendix 1, was made available through Mr. V.S. Mahajan, Deputy City Engineer and Mrs. J.M. Deshpande, Scientist in Charge of Air Quality Monitoring.

The city-level technical working groups and the steering committee members gave policy direction to the study team. The National Program Coordinator (NPC) of MEIP-Mumbai, G. N. Warade provided substantial contribution to the successful outcomes.

At the World Bank's Environment and Natural Resources Division, Asia Technical Department, URBAIR was managed by Jitendra Shah, Katsunori Suzuki, and Patchamuthu Illangovan, under the advice and guidance of Maritta Koch-Weser, Division Chief and David Williams, MEIP Project Manager. Colleagues from Country Departments (Robert Burns, Richard Cambridge, Harald Hansen, and Peter Nicholas) assisted with the program. Management support was provided by Sonia Kapoor, Ronald Waas, and Erika Yanick. Tanvi Nagpal and Sheldon Lippman were responsible for quality assurance, technical accuracy, and final production. Julia Lutz designed the layout.

Many international institutions (World Health Organization United States Environmental Protection Agency, United States Asia Environmental Partnership) provided valuable contribution through their participation at the workshops. Their contribution made at the workshop discussions and follow-up correspondence and discussions has been very valuable for the result of the project.

Mumbai URBAIR working groups consisted of the following individuals.

Members:		
Name	Organization	Category
Dr. K.S.V. Nambi	Bhabha Atomic Research Centre	Govt.
Dr. T.N. Mahadevan	Bhabha Atomic Research Centre	Govt.
Dr. S. Kumar	India Meteorological Department	Govt.
Mr. K.S. Sonawane	Municipal Corporation of Greater Mumbai	Govt. Undertaking
Mr. S.B. Patil	Maharashtra Pollution Control Board	Govt. Undertaking
Dr. V.N. Patkar	Mumbai Metropolitan Region Development Authority	Govt. Undertaking
Mr. B.S. Negi	Gas Authority of India Ltd.	Govt. Undertaking
Mr. S.J. Arceivala	Associated Industrial Consultants (India) Pvt. Ltd.	Consultant
Mr. A.K. Sahu	Econ Pollution Control Pvt. Ltd.	Consultant

Working Group I for Air Quality Assessment

Working Group I for Air Quality Assessment

Mr. S.V. Athavale	Apte Consulting Engineers	Consultant
Mr. R.V. Aundhe	ADITYA Environmental Services	Consultant
Mr. Mr. K. Mohan	Rashtriya Chemicals & Fertilizers Ltd.	Industry
Dr. (Ms). R.S. Patil	Indian Institute of Technology	Institution
Dr. V. Joshi	National Environmental Engineering Research Institute (NEERI)	Institution

Working Group II for Economic Valuation

Head: Dr. A.A. Mahashur, Prof. & Head-Dept. of Chest Medicine, KEM. Hospital, Municipal Corp. of Greater Mumbai Members:

Name	Organization	Category
Dr. V.N. Bapat	Bhabha Atomic Research Centre	Govt.
Ms. S.S. Bhende	Maharashtra Pollution Control Board	Govt. Undertaking
Dr. (Ms.) B.S. Sanghani	King Edward Memorial Hospital, Municipal Corporation of Greater Mumbai	Non-Govt. Undertaking
Dr. (Ms.) Nandita Sen	K	Non-Govt. Organization
Dr. V.G. Shirke	u a	Non-Govt. Organization
Dr. S.R. Kamat	ά	Non-Govt. Organization
Ms. J.P. Rezler	Coopers & Lybrand, U.K.	Consultant
Mr. M.G. Rao	Rashtriya Chemicals & Fertilizers Ltd.	Industry
Dr. S.R. Asolekar	Indian Institute of Technology	Institution
Dr. V.K. Sharma	Indira Gandhi Institute of Development Research	Institution
Mr. S. Ramaswamy	Mumbai Chamber of Commerce & Industry	Association

Working Group III for Institutional & Policy Instruments

Head: Mr. UK Mukhopadhyay, Secretary, Environment Dept. & Chairman, Tech. Committee-MEIP Members:

Name	Organization	Category	
Captain P.G. Deshmukh	Transport Department	Govt.	
Dr. P.S. Pasricha	Police Department (Traffic)	Govt.	
Mr. G.N. Warade	Environment Department	Govt.	
Mr. D.R. Rasal	Maharashtra Pollution Control Board	Govt. Undertaking	
Mr. V.K. Phatak	Mumbai Metropolitan Region Development Authority	Govt. Undertaking	
Mr. Debi Goenka	Mumbai Environmental Action Group	Non-Govt. Organization	
Mr. A.M. Ranu	Environmental Medical Association of India	Non-Govt. Organization	
Dr. Rashmi Mayur	Urban Development Institute	Non-Govt. Organization	
Dr. T.R. Saranathan	Society for Clean Environment	Non-Govt. Organization	
Mr. Bittu Saigal	Mumbai Natural History Society	Non-Govt. Organization	
Mr. B.V. Rotkar	Associated Industrial Consultants (India) Pvt. Ltd.	Consultant	
Dr. (Ms). P.P. Parikh	Indian Institute of Technology	Institution	
Dr. Prasad Modak	Indian Institute of Technology	Institution	
Dr. S.G. Advani	Indian Chemical Manufacturers Association	Association/Industry	
Dr. Dharmarajan	The Times of India	Press	

ABBREVIATIONS AND ACRONYMS

AADT	annual average daily traffic
AQG	air quality guidelines
AÕIS	Air Quality Information System
AQMS	Air Quality Management Strategy
BARC	Bhabha Atomic Research Centre
BEST	Bombay Electric Supply & Transport
	Undertaking
BIS	Bureau of Indian Standards
BMRDA	Bombay Metropolitan Region
	Development Authority
CNG	compressed natural gas
CO	carbon monoxide
CDC	Centers for Disease Control
CPCB	Central Pollution Control Board
DOE	Department of Environment
FO	fuel Oil; furnace Oil
GAIL	Gas Authority of India Ltd.
GDP	Gross Domestic Product
GEMS	Global Environmental Monitoring
	System
HSD	high speed diesel
IIP	Indian Institute of Petroleum
IIT	Indian Institute of Technology
IMD	India Meteorology Department
LDO	light diesel oil
LPG	liquid petroleum gas
LSHS	low sulfur high stock
MCGB	Municipal Council of Greater
	Bombay
MEDA	Maharashtra Energy and
	Development Authority
MEIP	Metropolitan Environmental
	Improvement Program micrograms (10 ⁻⁶ grams)
μg	micrograms (10 [°] grams)
mg	milligrams (10 ⁻⁵ grams)
MOEF	Ministry of Environment and Forests

МРСВ	Maharashtra Pollution Control Board
MTBE	Methyl Tertiary Butyl Ether
MTNL	Mahanagar Telephone Nigam Ltd
NEERI	National Engineering and
	Environmental Research Institute
NGO	nongovernment organization
NH ₃	ammonia
NOx	nitrogen oxides
NPC	National Program Coordinator
ONGC	Oil & Natural Gas Commission
PM	particulate matter
PM_{10}	particulate matter of 10 microns or
10	less
PPM	parts per million
PCRA	Petroleum Conservation Research
	Association
RAD	restricted activity days
RHA	respiratory hospital admissions
RON	research octane number
RPM	respirable particles
RTO	Regional Transport Office
SKO	kerosene
SO ₂	sulfur dioxide
SSI	small-scale industries
TSP	total suspended particles
UNDP	United Nations Development
۰ ۲	Programme
URBAI	Urban Air Quality Management
	Strategy
USEPA	United States Environmental
	Protection Agency
VSL	value of statistical life
WHO	World Health Organization
WLD	work-loss days
WTP	willingness to pay
	÷

EXECUTIVE SUMMARY

URBAIR-GREATER MUMBAI (BOMBAY). Larger and more diverse cities are a sign of Asia's increasingly dynamic economies. Yet this growth has come at a cost. Swelling urban populations and increased concentration of industry and automotive traffic in cities has resulted in severe air pollution. Emissions from automobiles and factories; domestic heating, cooking and refuse burning are threatening the well being of city dwellers, imposing not just a direct economic cost on human health but also threatening long-term productivity. Governments, businesses, and communities face the daunting yet urgent task of improving their environment and preventing further air quality deterioration.

Urban Air Quality Management Strategy or URBAIR aims to assist in the design and implementation of policies, monitoring and management tools to restore air quality in the major Asian metropolitan areas. At several workshops and working group meetings, government, industry, local researchers, non-governmental organizations, international and local experts reviewed air quality data and designed action plans. These plans take into account economic costs and benefits of air pollution abatement measures. This report focuses on the development of an air quality management system for Greater Mumbai (Bombay) and the resulting action plan.

THE DEVELOPMENT OF GREATER BOMBAY AND ITS POLLUTION PROBLEM

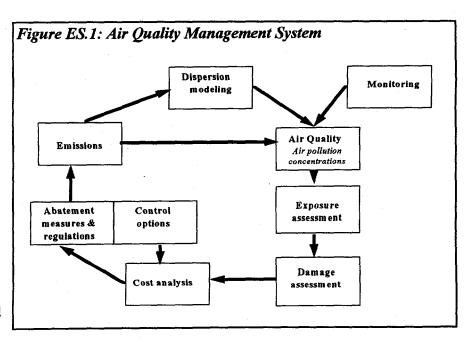
Greater Bombay's population grew by 38 percent from 1971 to 1981, and another 20 percent between 1981 and 1991 to reach 9.9 million. This growth was accompanied by an increase in the per capita gross domestic product. Expansion of industries, increased foundry production, and a 103 percent increase in vehicles has led to a severe air pollution problem in the city.

Annual average Total Suspended Particles (TSP) concentration has increased from about 180 $\mu g/m^3$ (particles per cubic meter) to approximately 270 $\mu g/m^3$ between 1981 and 1990—an increase of almost 50 percent. Nitrous Oxide (NO_x) increased by about 25 percent, while sulfur dioxide (SO₂) concentrations declined due to increased use of natural gas and low-sulfur coal. The average lead (Pb) concentrations doubled from 1980 to 1987. In general, SO₂ and NO₂ pollution is not as serious an issue as TSP and PM₁₀ concentrations. The total annual emissions of TSP and PM₁₀ are estimated at 32,000 and 16,000 tons/year. The resulting annual average ambient concentration varies from 118 to 313 $\mu g/m^3$ at various locations. World Health Organization's Air Quality Guideline (WHO AQG), as well as the National guideline for PM₁₀ are frequently and substantially exceeded in Bombay; 97 percent of the population lives in areas where WHO AQG is exceeded. TSP exposure is mainly due to resuspension from roads caused by vehicles (40%), emissions from diesel and gasoline vehicles (14%), domestic wood and refuse burning (31%) and others (15%). Drivers, roadside residents and those who live near large

1

sources are most severely affected.

Studies conducted between 1976 and 1990 conclude that growing concentrations of air pollutants have led to increased cases of chronic bronchitis, colds, and general decline in lung functions. A 1990 study observed that incidence of different respiratory symptoms and cardiac diseases, respiratory tract infections, and skin allergies was 5 to 10 percent higher in communities near factories in Chembur. Similarly, a study of two high density traffic areas in Bombay found a significant correlation between concentrations of air pollutants and frequency of colds and attacks of breathlessness. Past studies, as well as anecdotal evidence, suggest that Greater Bombay residents' health, especially in high density traffic areas or near industries, is under assault. The health impact is estimated at 2,800 cases of excess mortality, 60 million respiratory symptom days, and 19 million restricted activity days, with an estimated health damage cost of Rs18 billion, per year.


CONCEPT OF AN AIR QUALITY MANAGEMENT SYSTEM

Assessment of pollution, and its control, form two prongs of an Air Quality Management System (AQMS). These components are inputs into a cost-benefit analysis. Air quality guidelines or standards, and economic objectives and constraints also guide the cost-benefit calculation. (See Figure ES.1) An Action Plan contains the optimum set of abatement and control measures for short-, medium- and long-term enactment.

Successful AQMS requires the establishment of an integrated system for continual air quality monitoring. Such a system involves:

- An inventory of air pollution activities and emissions;
- Monitoring of air pollution and dispersion parameters;
- Calculation of air pollution concentrations by dispersion models;
- Inventory of population, building materials and planned urban development;
- Calculation of the effect of abatement/control measures; and
- Establishment/improve ment of air pollution regulations.

In order to ensure that an AQMS is having the desired impact, it is necessary to carry out surveillance or monitoring. This requires the establishment of an Air Quality Information System (AQIS) to inform authorities and the general public about air quality and

assess results of abatement measures. AQIS should also provide continuous feedback to the abatement process.

ABATEMENT MEASURES AND ACTION PLAN

Measures to reduce air pollution in Bombay focus on traffic. Traffic emissions are a clear and major source of air pollution exposure. Abatement measures which address other important pollution sources including refuse and wood burning and resuspension of road dust could not be addressed due to lack of data. While pollution control in industrial areas has not been discussed at length, it must also be promoted through enforcement and regulation.

Based on abatement measures, an Action Plan was designed through a consultative process with Bombay URBAIR working groups, the Municipal Council of Greater Bombay, Maharashtra Pollution Control Board, the Transport Commissioner, and local and foreign experts. See Table ES.1 for estimated costs and benefits of these measures. Recommended actions fall under two categories: (1) technical and other measures that will reduce exposure to and damage from pollution; and (2) improvements in the database and in the regulatory and institutional basis required to establish an operative system for air quality management in Greater Bombay.

It is proposed that the following technical and policy measures be given priority:

- Address gross polluters: Existing smoke opacity regulations for diesel vehicles must be strictly enforced. Successful action depends on routine maintenance and adjustment of engines.
- Clean vehicle emission standard: Establish state-of-the-art emission standards for gasoline cars, diesel vehicles, and motorcycles. Such standards would be better enforced with the assured availability of lead-free gasoline, at prices below that of leaded gasoline.
- Switch to unleaded gasoline: This is an early prerequisite for clean vehicle standards. The health benefits stemming from this action would be substantial.

Abatement measure	Avoided emissions tons PM ^{rolyr}	Mortality reduction	Reduced RSD million days	Annual health benefits million Rs	Annual costs million Rs
Vehicles:					
Unleaded gasoline	*	*	*	*	250-360
Low-smoke, lub oil, 2-stroke	450	65	1.5	150	30
Inspection/maintenance	800	110	2.5	250	150-300
Gross polluters	400	50	1.2	125	*
Clean vehicle standards					
- cars and vans	400	50	1.2	125	750
- motor-, tricycles	750	100	2.4	250	600
Diesel quality	250	35	0.75	80	300
CNG replace gasoline 50%	200	25	0.6	75	*
Fuel combustion					
Cleaner fuel oil (to 2% S)	150	22	0.5	50	450

Table ES.1: Action Plan of abatement measures, Greater Bombay, based on cost-benefit analysis

Time frame for starting the work necessary to introduce measure.

* Not quantified.

- Use of low-smoke lubrication oil, 2-stroke: Setting and enforcing a standard for oil quality and is important. Taxes and subsidies can be used to set the price of oil according to its quality.
- **Inspection and maintenance of vehicles**: More maintenance stations able to carry our annual or biannual inspections are needed for enforcement of clean vehicle standards. Basic legislation is already in place. The greatest potential to reduce emissions lies in diesel vehicles and initially, agencies could concentrate on these vehicles.
- Improving diesel quality: Indian refineries require modification in order to produce low sulfur (less than 0.2 percent) diesel. Economic instruments such as taxes and subsidies can be used to differentiate fuel price according to quality.
- Fuel switching, gasoline to LPG/CNG in vehicles: The tax or subsidy structure must be changed in order to make LPG/CNG the preferred fuel. The establishment of distribution and compression systems for CNG are also a key component of this action.
- Cleaner fuel oil: A reduction in the sulfur content of furnace oil, initially to less than 2 percent is a prerequisite.
- Awareness raising: Public awareness and participation are key to bringing about policy change. Widespread environmental education promotes understanding of linkages between pollution and health and encourages public involvement. Private sector participation through innovative schemes like accepting delivery only from trucks that meet government emission standards; Adopt-a-Street campaigns, and air quality monitoring displays should be encouraged. Media can also participate in awareness raising by disseminating air pollution-related data.

RECOMMENDATIONS FOR STRENGTHENING AIR QUALITY MONITORING, AND INSTITUTIONS

A single coordinating institution with a clear mandate and sufficient resources must be made responsible for air quality management. In order to improve data, it is recommended that there be continuous, long-term monitoring at 5 or more general city sites (or city background sites), 1 to 3 traffic exposed sites, 1 to 5 industrial hot spots. Also, an on-line data retrieval system directly linked to a laboratory database either via modem or fax is recommended for modern surveillance.

The analysis in this report calculates health impacts based on average dose-effect relations derived from U.S. cities because of a lack of local data. Such epidemiological data for exposure calculations should be improved. It is suggested that dispersion modeling experts be identified in Bombay and their expertise used by the agencies responsible for air quality management.

Current restrictions on the use of coal, the Industrial Location Policy (1984), and the Central Action Plan (1992) to discourage non-compliance have been the most effective regulations. Restrictions on auto-rickshaws (three wheelers) and heavy commercial vehicles have had a positive effect on the air quality. It is important to ensure that institutions dealing with air quality be strengthened through clearer mandates and enforcing powers.

Clearly, environmental risks are escalating. If pollution sources are allowed to grow unchecked the economic costs of productivity lost to health problems and congestion will escalate. While working with sparse and often unreliable data, this report sets out a preliminary plan that has the potential to improve air quality and better manage the AQMS in the future.

4

1. BACKGROUND INFORMATION

SCOPE OF THE STUDY²

This city report on air quality management for Greater Mumbai (henceforth referred to as Greater Bombay) has been produced as part of the URBAIR program. A major objective of the URBAIR program is to develop Air Quality Management Systems (AQMS) for Asian cities, and to apply such strategies in the development of Action Plans to improve urban air quality.

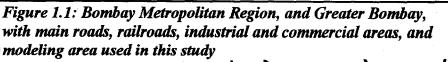
AQMS is based on a cost-benefit analysis of proposed actions, and measures for air pollution abatement. In general, costs relate to abatement measures while benefits include a potential reduction in the estimated costs of health damage resulting from air pollution. This study emphasizes the damage to the health of those who are exposed to air pollution. Population exposure is based on measured and calculated concentrations of air pollution through emission inventories and dispersion modeling.

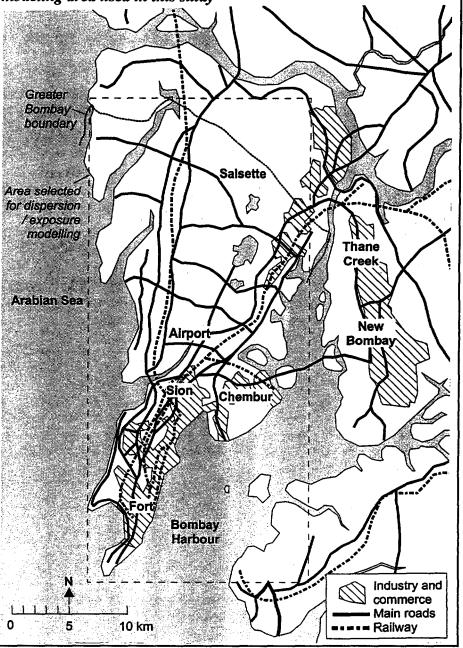
A general strategy for AQMS is described in the URBAIR Guidebook on Air Quality Management Strategy published by MEIP. In addition to this Technical Paper, others based on city-specific analysis are produced for three MEIP cities: Kathmandu Valley, Jakarta, and Metro Manila (World Bank Technical Paper nos. 378, 379, and 380). These reports outline action plans for air quality improvement (Chapter 5), including estimates of cost-and-benefit figures. The action plans are based comprehensive lists of proposed measures and actions developed by local working groups in consultation with outside experts.

The appendices of the report contains more detailed description of the air quality data, the emissions inventory and emissions factors, population exposure calculations and local laws and regulations.

GENERAL DESCRIPTION OF GREATER BOMBAY

Geography. Bombay is located on India's west coast, on a peninsula originally composed of seven islets. Drainage and concentration have caused the islets to join and form the present-day Bombay Island, with the Arabian Sea to the west, and Bombay Harbor and the outlet of Thana Creek to the east. Municipal boroughs and villages of Bombay Island and Salsett Island to the north were joined in 1957 to form Greater Bombay. The Bombay Metropolitan Region (BMR)


² Except as indicated, "dollars" refers to 1992-3 U.S. dollars.


All tables and figures, except as indicated, were created by the authors for this report.

continued to expand and now includes New Bombay to the east of Thana Creek, and Bombay Harbor and other areas further to the north and east. In the mid-1980s BMR covered an area of more than 600 square kilometers (km²). Figure 1.1 shows a map of BMR. Much of Bombay is on a flat plain, one-fourth of which is below sea level. Two north-south ridges flank the flat area, the highest point being Malabar Hill to the south-west, 55 meters above sea level.

Population. The population density of Greater Bombay averages about 16,500 persons per km² (1991), with more than three times this figure in the older central parts of Bombay. The total population was about 9.9 million in 1991.

Transportation. Bombay is India's main industrial city with many airpolluting industries located in Chembur, in

eastern Bombay. The main roads are congested most of the day, particularly the eastern and western express highways and the Thana Creek Bridge Road. Municipal and commercial activity is concentrated in the city's southern part. Commuting to and from populated areas to the north places a large burden on the road system. The capacity of the road and rail system to accommodate the increasing need for south-north commuting is much too small, leading to chronic day-time congestion. Maximum traffic flow (Annual Average Daily Traffic, AADT) at a road section is about 120,000 vehicles per day. Three suburban, surface, electric train systems provide the main public transportation, together with the municipally owned bus fleet. The former carries more than 4 million passengers per day, while the latter transports about 4.5 million people. Bombay Harbor is India's busiest, handling more than 40 percent of India's maritime trade.

The land use structure of Bombay has undergone major changes in the past decade. Massive housing developments have arisen in previously non-urban belts along the western corridor and the Bombay-Pune (eastern) rail corridor. New Bombay on the mainland, east of Thane Creek, has become a center of commercial activity. Commercial complexes have been developed in the reclamation area along Mahim Creek and Mithi River on the outskirts of the island city. A new district center— Oshiwara—has emerged in the northern suburbs. (Coopers & Lybrand and AIC, 1994)

DATA SOURCES

Previous studies. There has been no comprehensive study of the air pollution situation in Bombay, describing air quality, sources, emissions, and exposure. The Maharashtra Pollution Control Board (MPCB), the Municipal Corporation of Greater Bombay (MCGB) and the National Engineering and Environmental Research Institute (NEERI) have presented various data on air quality and emissions. The Bombay air pollution situation is briefly described by the World Health Organization and United Nations Environment Programme (WHO/UNEP, 1992) based mainly on the three Global Environmental Monitoring System (GEMS) monitoring sites in Bombay, operated by the National Environmental Engineering Research Institute (NEERI).

The MEIP study, "Environmental Management Strategy and Action Plan for Bombay Metropolitan Region," (Coopers & Lybrand and AIC, 1994) includes the air pollution sector and proposed management options, as it does for other environmental sectors. The recently reported Comprehensive Study of Bombay Metropolitan Region (Atkins, 1993) has provided essential data on the traffic activity in Greater Bombay.

URBAIR data collection. Further data on various aspects of population, pollution sources, dispersion, air quality, and health aspects were collected for URBAIR, starting in April 1993. ADITYA Environmental Services, Bombay, provided data on population, pollution sources, fuel, vehicle and traffic statistics, air quality measurements, and meteorological/dispersion conditions. Dr. A. A. Mahashur of the Environmental Pollution Research Center in Bombay contributed evidence of the health effects of air pollution on the Bombay population, and on associated health costs. (See Appendix 8 for further details.)

THE GROWTH OF BOMBAY, 1981–1991

Bombay's population grew by 38 percent from 1971 to 1981, and another 20 percent between 1981 and 1991, to reach 9.9 million. The total number of vehicles increased by about 103 percent from 1981 to 1991, leading to increased consumption of gasoline and diesel oil. Between 1985–1990, gasoline and light diesel oil consumption increased by 26 percent and 24 percent

respectively, while furnace oil use decreased significantly. The 1990 gross domestic product per capita (GDP/capita) figure for India is US\$350, and the corresponding figure for Bombay is expected to have been much higher. Over the period 1965–1990, the growth rate of GDP/ per capita was 1.9 percent, about the same as for the U.S. Over the last decade the annual increase

was 3.2 percent. Figure 1.2 gives a summary of the available data regarding population, vehicles, fuel consumption and air quality, and development over the last decade.

Air quality measurements over the last decade show a definite increase in average total suspended particles (TSP) and nitrogen oxides (NO_X) concentrations, while sulfur dioxide (SO₂) concentrations have decreased. This appears to correspond with the decrease in furnace oil

consumption, and increase in traffic emissions. TSP concentrations (annual average, and maximum 24-hours) are much higher than WHO Air Quality Guidelines

of 90 μ g/m³ at many measuring sites. At certain times WHO Air Quality Guideline for SO₂ (24-hour averages) is also exceeded.

POPULATION

Population data for 1981 and 1991 for Greater Bombay, the Island City, Western and Eastern Suburbs (1990) is summarized in Table 1.1. From 1980 to 1990 population grew by 20 percent. The average density in 1990 was about 16,500 inhabitants per km². The age distribution in Greater Bombay is given in Table 1.2 (1991). Almost a third of the

population (31.5 percent) was under 15 years of age, and 66 percent were 15-65 years old.

VEHICLE FLEET

The vehicle fleet in Bombay is categorized by cars (passenger, taxis, and light-duty vehicles); trucks and buses; motorcycles; and autorickshaws (tricycles). Of the 630 million vehicles in 1991, 48 percent were cars (including taxis), 39 percent were motorcycles, and 9 percent were trucks and buses. Table 1.3 provides the fleet data from 1981 to 1991.

Table 1.3: Registered vehicle fleet data in Bombay).

	Vehicles (Unit: 1,000)					
	Cars and taxis	Utility vehicles	Trucks/ Buses	Motor- cycles	Tricycles	Total
1981	180,334	3,677	41,931	78,474	4,465	308,881
1982	192,281	4,035	41,932	94,671	8,487	341,406
1983	204,228	4,393	41,933	110,868	12,510	373,932
1984	216,175	4,751	41,934	127,065	16,532	406,457
1985	228,122	5,109	41,935	143,262	20,555	438,983
1986	240,069	5,469	50,500	159,549	24,577	480,165
1987	253,215	5,646	51,515	177,577	24,577	512,530
1988	266,361	5,823	52,530	195,696	24,577	544,987
1989	279,507	6,000	53,545	213,814	24,577	577,443
1990	292,653	6,177	54,562	231,932	24,577	609,901
1991	299,289	6,501	56,086	242,008	24,577	628,46

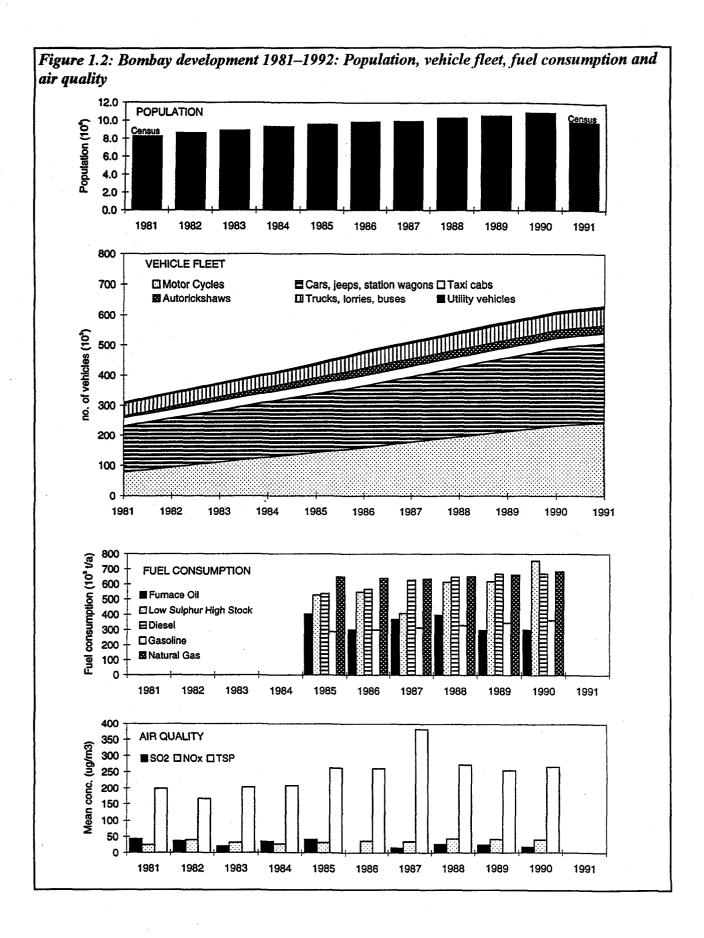

Source: BMRDA (1990).

Table 1.1: Population and growth rate 1981–1991, Bombay.

1981	1991
3,283,000	3,109,500
2,860,000	3,975,400
2,100,000	2,824,600
8,243,400	9,909,500
13,670	16,430
	3,283,000 2,860,000 2,100,000 8,243,400

Table 1.2: The age distribution of the Greater Bombay population, 1991.

population, 1771.						
Age	%	Age	%			
0-9	21.2	40-44	5.7			
10–14	10.4	45-49	4.8			
15–19	9.8	50-54	3.6			
20-24	11.7	5559	2.4			
25–29	10.7	60–64	1.9			
30–34	8.1	6569	1.1			
35–39	7.1	>70	1.5			

Background Information

Table 1.4 shows that there was substantial growth in fleet size between 1981 and 1991. The average total annual increase was 7.3 percent, largest for tricycles and motorcycles (19 percent and 12 percent per year). The number of tricycles which had been stable between 1986 and 1991, has been on the rise since 1993.

In 1991, Bombay had 63 vehicles per 1,000 inhabitants. This includes 30 cars per 1,000 persons; 5.5 trucks/buses per 1,000; and 24 motor- and tricycles per 1,000 inhabitants. The percentage of diesel-powered cars was estimated at 20 percent.

Table 1.4: Vehicle growth rate, annual average, Bombay

	1981-1991
	% growth
Passenger cars	5.2
Utility vehicles	5.9
Trucks	2.9
Motorcycles	11.8
Tricycles	19.0
Total	7.3
Source: BMRDA (1	0001

Source: BMRDA (1990).

ROAD AND TRANSPORT

The growth in traffic activity in four cordons: Mid-city (by Mahalakshmi), Island (by Sion); Midsuburban (by Malad Creek-Pavai Lake); and Outer cordon (by Dahisar-Thane, i.e. Greater Bombay limits), is recorded here. See Figure 1.3.

Data for growth in traffic and transport in Greater Bombay are taken from the Traffic Survey in Greater Bombay Report (1988) conducted by the Bombay Metropolitan Region Development Authority (BMRDA, 1990).

Traffic activity and growth during 1978-1988 is shown in Table 1.5. There has been a 5-6 percent growth in the outer cordons while the growth has been small on Island and Mid-city (1.5-5 percent per annum).

Growth across the outer cordon has mainly taken place along the western routes (Western Express Highway and Sion Panvel Roads, 192 percent and 124 percent total growth during 1978-1988, respectively). At the mid-suburban cordon, the growth has been more uniform along the four

Table 1.5: Growth in traffic activities across four cordons across Greater Bombav. 1978-1988.

Traffic Cordon	Total daily vehicle	Increase %	
	1988	1978-1988	Annual
Outer cordon	80,370	58	4.7
Mid-suburban	156,400	70	5.5
Island	195,270	15	1.4
Mid-City	229,960	20	1.8

Source: BMRDA (1990).

main corridors, about 40-75 percent during 1978-1988.

Motorized passenger traffic has increased the most, especially across outer and mid-suburban cordons. Goods traffic has actually declined in the Mid-City, possibly because some wholesale markets have moved out of the Island City.

The main increase in passenger vehicle traffic growth (more than 200 percent increase in the outer cordon during 1978–1988) has been due to

two-wheeler traffic across all cordons. Private car traffic has increased moderately (20-30 percent over the decade), while auto-rickshaw traffic has to a large extent replaced taxis in the suburbs, indicated by the very large increase in number of auto-rickshaws early in the decade. The growth rate for various vehicle categories is presented in Table 1.6.

Table 1.6: Growth rates in Greater Bombay traffic for vehicle categories

	Growth rate % per annum				
-	Passenger vehicles	Goods vehicles	Cycles and other vehicles		
Outer cordon	6.0	4.5	-2.8		
Mid-suburban	6.8	1.5	2.7		
Island	2.0	0.1	-4.4		
Mid-city	3.0	-2.6	-1.85		

Source: BMRDA (1990).

Increased volume has resulted in a substantial slowing down of traffic, especially on the main corridors. Along the Eastern corridor, the speeds are low (15-30 km/h) and have not changed substantially. However, the average speed along the main Western corridor has declined from 50 km/h in 1962 to 30-40 km/h in the late 1970s, and 20-30 km/h in 1990. Similarly, the average speed in the Eastern corridor has fallen from 30 km/h in 1962 to 20-25 km/h in 1979, and 15 km/h in 1990 (Deshpande et al. 1993).

The BMRDA study of the rates of increase in population, registered vehicles, and traffic flow revealed that the large population growth in the suburbs, both immediate and extended, has caused a considerable increase in traffic flow in these areas. In the Island City, however, both population growth and traffic flow have stagnated (compared to 1962–78), although the number of registered vehicles has increased substantially (Table 1.7).

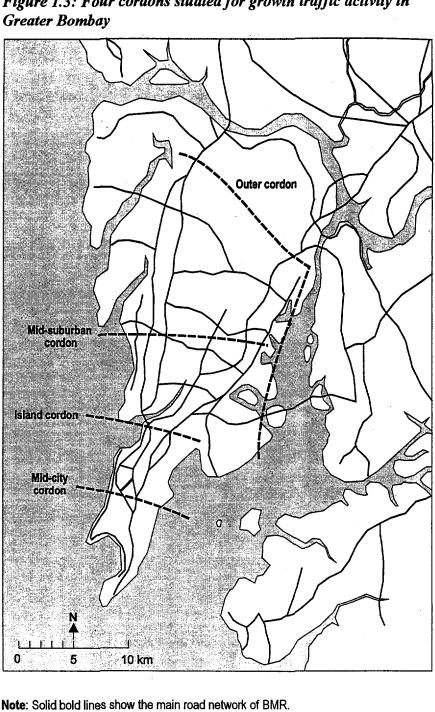


Figure 1.3: Four cordons studied for growth traffic activity in

INDUSTRIAL SOURCES

Aside from being India's financial and commercial center, Bombay is also the most industrialized Indian city. There are approximately 40,000 small and big industries in the city, of which 32 have been classified as hazardous (Table 1.8). Industries in the air polluting category include textile mills, chemical,

Table 1.7: Broad comparison of growth rates	of
population, registered vehicles and traffic flow	ν.

	Growth rates, 1978–1988 (% p.a.)				
	Population	Registered vehicles	Traffic flow		
Island City	0.12	6.1	1.8 (Mid-City cordon)		
			1.4 (Island City cordon)		
Suburbs	2.1	14.6	5.5 (Mid-suburb cordon)		
Extended suburbs	8.2		4.9 (Outer cordon)		
Greater Bombay	2.6	8.1	1.7		

Source: BMRDA (1990).

pharmaceutical engineering, and foundry units. Process emissions, and those from fuel consumption, constitute the main sources of air pollution. This study does not account for industrial fugitive emissions. Major air pollution sources include a giant fertilizer/chemical complex; two oil refineries, and a thermal power plant, all based in Chembur, a suburb on the eastern coast of the Bombay Island.

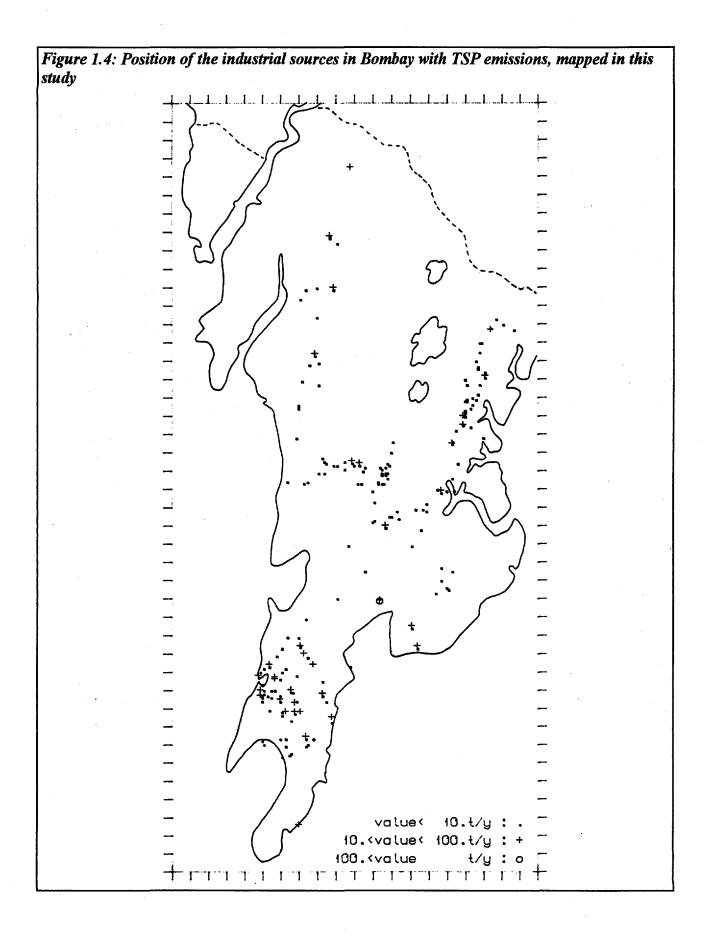

Industrial growth has been concentrated in the Tromby-Chembur and Lalbaug areas. In addition, industries have developed along Lal Bahadur Shastri Marg (Street) passing through the Central suburbs toward Thane; in the Andheri-Kurla area in Central Bombay, and along the Western Express highway leading out of Bombay. Figure 1.4 shows a map of major industrial sources in Bombay. As part of this URBAIR study, emissions data were collected for about 280 large and medium industries in Greater Bombay.

Table 1.8: Industrial classification in Greater Bombay

Type of Industries	Number of Industries
Mechanical Workshop	3,348
Plastic and Rubber	32
Printing Press	1,075
Chemical	523
Textile	531
Pesticide	9
Miscellaneous	33,790
Thermal Power Plant	1
Total	40,369

FUEL CONSUMPTION

Over the period 1985–91, gasoline, high speed diesel (HSD) and low-sulfur high stock (LSHS) consumption increased by 26 percent, 28 percent, and 43 percent respectively. Furnace oil consumption decreased by 26 percent over the same period. The 1992–93 data indicate a further increase. In the LSHS column, the TATA power plant consumption is not fully accounted for in the data for 1985–91, as it is for 1992–93. Available fuel consumption data are presented in Table 1.9.

Coal consumption data for the same period are not available. Consumption in 1985–86 was 2,124,000 metric tons per year, with a sulfur content of 0.5 percent and ash content of 12 percent.

AREA SOURCES

Much of the fuel is consumed in small installations and by small units. This also includes wood and coal combustion, which is not included in Table 1.9. Wood combustion is an especially significant source of suspended particle pollution. About 1,100 of Bombay's 1,400 bakeries use wood for energy, as do the crematoria. The slum population also consumes a considerable volume of wood.

Table 1.9: Fossil fuel consumption, Greater Bombay (million l/yr.)

	Furnace Oil	Low Sulfur High Stock	High Speed Diesel	Light diesel oil	Gasoline	LPG	Kerosene
1985-1986	403	527	438	99	287	201	447
19861987	300	549	469	99	300	202	436
19871988	367	408	508	118	314	204	430
1988-1989	397	612	529	118	330	213	438
19891990	298	616	551	115	345	213	448
1990–1991	299	755	560	108	362	214	471
1992-1993	306	1488 ¹	583	46 ²	279 ²	233 ³	48 0 ³

Note:

1 LSHS Data for 1985–91 takes account of only part of TATA Thermal Power Plant requirement and does not account for Refineries' own consumption.

2 Incomplete data from Refineries.

3 Data from Rationing Inspectorate, Dept. of Civil Supplies.

Source: (i) E.S & P Dept; MCGB (for period 1985-91).

(ii) 1992–93 Data generated under URBAIR by ADITYA.

Sources

responsible for such distributed consumption are termed "area sources," of which one, vehicular traffic, is already treated above. Fuel consumption for stationary areadistributed sources, for 1990, is shown in Table 1.10.

 Table 1.10: 1990 Fuel consumption for area-distributed sources (10³

 metric tons/year)

		and the second sec					
	FO	LSHS	HSD	LDO	LPG	SKO	Wood
Small scale industry	123	56	40	42	7		
Domestic					233 ¹	387 ²	1013
Bakeries/crematoria							160/320
Marine (port/bay)	100	56	6	3			
Note:				_			

1 Consumed by the non-slum population.

2 Consumed by the total population.

3 Consumed by the slum population.

Source: ADITYA for URBAIR.

2. AIR QUALITY ASSESSMENT

This chapter provides an estimate of the population exposure to air pollutants, and quantifies the contribution of various pollution source categories to this exposure.

This estimate of population exposure is arrived at through the following analysis:

- description of air pollution concentration measurements, and their variation in time and space;
- inventory of air pollution sources and their relative contributions;
- description of concentration distributions in the area, by means of dispersion modeling; and,
- calculation of the population exposure by combining spatial distributions of population and concentrations, and considering exposure on roads and in industrial areas.

AIR POLLUTION CONCENTRATIONS

Overview of database. Air pollution measurement programs reveal that Bombay has a substantial particle pollution problem, with frequent and widespread exceeding of TSP and PM_{10} air quality guidelines. According to the measurements, the SO₂ pollution problem seems less pronounced, although guidelines are sometimes exceeded. NO_x concentrations are presently within WHO guidelines.

Monitoring networks and results of measurements are described in greater detail in Appendix 1. Assessments are based on data from various monitoring networks. MCGB has a network of 22 measurement stations in commercial, industrial, and residential areas. Levels of TSP, SO₂, NO_x, and Ammonia (NH₃) are measured as 8-hour averages (and a few 24-hour periods) per month. Most of the sites can be characterized as area-representative (city sites), while some are influenced by nearby traffic. At the GEMS network of three sites located south of Santa Cruz airport, and operated by NEERI, levels of TSP, SO₂, and nitrogen dioxide (NO₂) are measured a few days per month. MPCB monitors air quality from a mobile van, frequenting a number of established monitoring sites inside and outside Bombay. Rashtriya Chemicals and Fertilizer (RCF), Ltd., in Chembur, monitors air quality at several sites at its plant by continuous analyzers and also monitors meteorological data at one site. The Indian Meteorological Department (IMD) operates meteorological stations at the Santa Cruz Airport and at the Colaba Observatory.

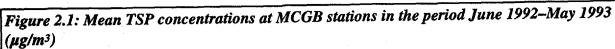
TSP air quality guidelines. The TSP Air Quality Guidelines applicable to Bombay are shown in Table 2.1 (also see Appendix 2 for details on WHO guidelines).

The annual average TSP values at all stations fall below the Indian (Bombay) air quality guidelines. The long- and short-term WHO guidelines are, however, exceeded at all stations. Although Indian (Bombay) guidelines are not exceeded, it should be noted that the Bombay

guideline for TSP is considerably less stringent than those of WHO, as is apparent from the above Table. Considering the fact that TSP readings at MCGB are all recorded at heights ranging from 4– 10 meters (on roof tops of buildings), these values are very high.

WHO (µg/m ³)	Indian (Bombay) (µg/m ³)
60-90	360*
150-230	500**
	60-90

see S.O. 384(E) under Air Colarity Standards for Industrial and Wixed Ose Areas, see S.O. 384(E) under Air Pollution Control Act, Government of India 1981. For WHO guidelines see WHO/UNEP (1992).


Note: * Annual average mean of minimum 104 (24 hourly) measurements in a year. ** Should be met 98 percent of the time in a year. Should not be exceeded on two consecutive days.

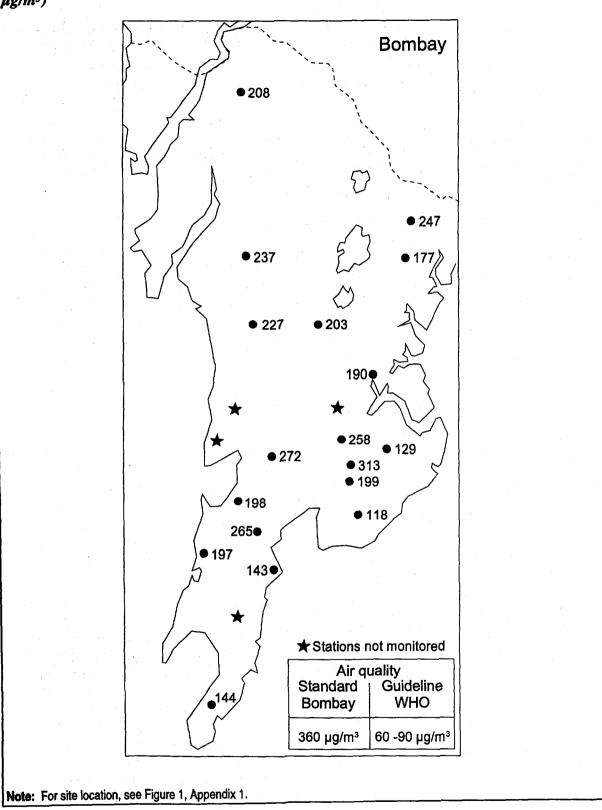
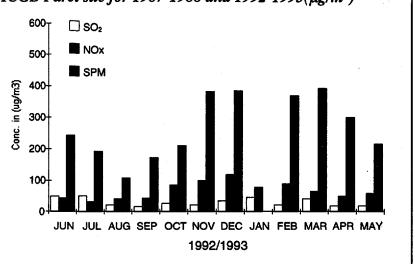

The sites with highest TSP concentrations are Maravali and Chembur Naka (both in Chembur), Sion, Parel, and Mulund. Maravali station has recorded very high 24-hour average TSP values (in the range 400–500 μ g/m³) during dry seasons, while Chembur, Sion, Parel, and Mulund stations have recorded values between 250–400 μ g/m³. These monitoring stations are located in industrial areas, and along highly trafficked roads.

Figure 2.1 shows annual average TSP concentrations at the 18 MCGB sites monitored in 1992-93. Figure 2.2 shows the monthly average at the Parel site. The annual average was 265 μ g/m³, while the maximum monthly average of two to four 24-hourly values, was about 400 μ g/m³.

The average TSP concentration in Bombay has increased considerably since 1980, from about 200 μ g/m³ to about 250 μ g/m³ in 1991. The year 1987 was exceptional with an annual average TSP concentration close to 400 μ g/m³.

Data from Parel Station (Figure 2.2) show the typical annual variation observed at all MCGB sites in Bombay. The concentration is much higher in the dry season (November–April) than during the monsoon (July–September). Dry season TSP could be higher by as much as a factor of three. This reflects one or more of the following effects: increased washout of particles during the monsoon; decreased resuspension from the ground during the monsoon; and/or increased wind speed and turbulence causing dispersion during the monsoon. Extremely high TSP concentrations, up to 3,170 μ g/m³, were measured at the Mahim Junction. Recorded maximum values exceed the WHO air quality guideline by a factor of up to 10, and the Bombay air quality guideline by a factor of 6. From the available evidence it can be concluded that TSP is a major air pollution problem in most of Bombay. It is worst near streets and industrial areas, and during the dry season. Measurements for TSP, SO₂, NO₂, and carbon monoxide (CO), taken at street junctions are presented in Table 2.2.



 PM_{10} air quality guidelines. The PM₁₀ air quality guidelines applicable to Bombay, as well as the WHO standard, are given in Table 2.3.

 PM_{10} has not recently been measured in Bombay. However, a 1982–1983, respirable particles, human exposure study (WHO, 1984) is summarized in Table 2.4

The results of this study indicate that concentrations of, and exposure to, PM_{10} in Bombay in 1982 were much higher than the WHO air quality guideline, with

Figure 2.2: Monthly average TSP concentrations at the MCGB Parel site for 1987-1988 and 1992-1993(µg/m³)

	Monitoring	SO ₂				NO ₂	•
Site	Period	# samples	AVG	MAX.	# samples	AVG	MAX
1. V.T.	2.12.91	12	89	127	12	175	296
	- 6.12.91						
2. Nana Chowk	9.12.91	12	60	104	12	124	162
	-13.12.91						
3. Maheshwari Udyan	20.01.92	12	117	162	12	156	210
	-24.01.92						
4. Mahim	24.03.92	8	43	120	8	90	107
	-26.03.92						
5. Worli Naka	22.04.92	9	38	80	9	56	83
	-25.04.92						
6. Sion Circle	27.04.92	9	90	125	9	117	167
	-30.04.92						
			TSP		CC) - PPM	
		# samples	AVG	MAX.	# samples	AVG	MAX
1. V.T.	2.12.91	12	651	1, 072	15	11.1	13.3
	- 6.12.91						
2. Nana Chowk	9.12.91	12	480	555	23	6.5	7
	-13.12.91						
3. Maheshwari Udyan	20.01.92	12	1, 309	1, 653	39	7.5	9.7
•	-24.01.92			•			
4. Mahim	24.03.92	8	1, 144	3,170	31	6.2	15.6
	-26.03.92	-					
5. Worli Naka	22.04.92	9	542	668	30	5.1	9.6
	-25.04.92						
6. Sion Circle	27.04.92	9	708	1, 094	30	5.8	9.7
	-30.04.92	-					

Table 2.2: Results of ambient air monitoring (ug/m^3) at different traffic junctions in Bombay.

maximum values as high as 6 times the guideline. Although long-term concentrations were below the Bombay air quality guideline, short-term (24-hour) concentrations frequently exceeded the present standard.

Lead. Lead measurements at the 22 MCGB sites (1980– 1987) indicate that it is a significant pollutant in Bombay. Annual average levels ranged from 0.5 μ g/m³ to 1.3 μ g/m³. These exceed the WHO guideline annual average (0.5–1 μ g/m³, longterm) and the Bombay guideline (1.0 μ g/m³, annual average and 1.5 μ g/m³, 24hour average), at all locations. From 1980 to 1987, average lead concentration in the air

Table 2.3: PM_{10} standards applicable to Bombay

	WHO (µg/m ³)	Indian (Bombay) (µg/m ³)
Long-term (annual average):	-	120*
Short-term (24 hour average):	70	150**

Areas. Refer to S.O. 384(E) under Air Pollution Control Act, 1981, Government of India. For WHO Guidelines, see WHO/UNEP (1992).

* Annual average mean of minimum 104 (24 hourly) measurements in a year.

** Should be met 98 percent of the time in a year. Should not be exceeded on two consecutive days.

Table 2.4: Respirable particle concentrations measured in Bombay, 1982 (average and maximum 24-hour concentration)

	Winter	Summer	Monsoon
Person: personal monitor	127/434	67/188	58/138
Indoor: in the person's home	118/327	65/231	62/131
Outdoor: outside the person's home	117/251	65/225	51/106
Monitoring site: measurements at the nearest fixed monitoring site	112/204	53/100	44/122

Note: Each average number represents about 100 samples.

nearly doubled. Considering the frequency of measurements, these very high "monthly" averages are likely to represent single, 24-hour values. The Eastern Suburban zone was the most exposed area with monthly average concentrations as high as $17.9 \,\mu\text{g/m}^3$. recorded at the Mulund Site in October 1984. Lead concentrations in the Central Bombay area were also high, with the highest monthly average of 8.4 $\mu\text{g/m}^3$ measured at Dadar in January 1985.

The Indian standard for maximum lead content of gasoline is 0.56 grams per liter in regular gasoline (Research Octane Number 87 or RON 87) and 0.80 grams per liter in premium gasoline (RON 93). In Bombay, most gasoline sold in the last 8–9 years has about 0.18–0.19 grams per liter. About 30 percent of the gasoline consumed has a high lead content, although it complies with the Indian standard.

 SO_2 and SO_4 . Indian (Bombay) and WHO air quality guidelines for SO₂ are given in Table 2.5. The annual average SO₂ concentration in Bombay (MCGB sites) has decreased since the 1980 average of about 45 µg/m³, to about 25 µg/m³ in 1992/93. This decrease is also apparent at the GEMS sites. Extremely high sulfate concentrations in particles were measured during the respirable particle study in 1982 (WHO,

1984) with average concentrations in the range 20–30 μ g/m³, and maximum 24-hour concentrations as high as 88 μ g/m³. Contribution from sea aerosol may at times make considerable additions to these concentrations.

Table 2.5: Bombay air quality guidelines for SO_2 and SO_4

	Indian (Bombay)	WHO
Long-term (annual) average	80 µg/m ³	50 μg/m ³
Short-term (24-hour) average	120 μg/m ³	125 µg/m ³

Source: S.O. 384(E) under Air Pollution Control Act, 1981, Government of India, and WHO/UNEP (1992).

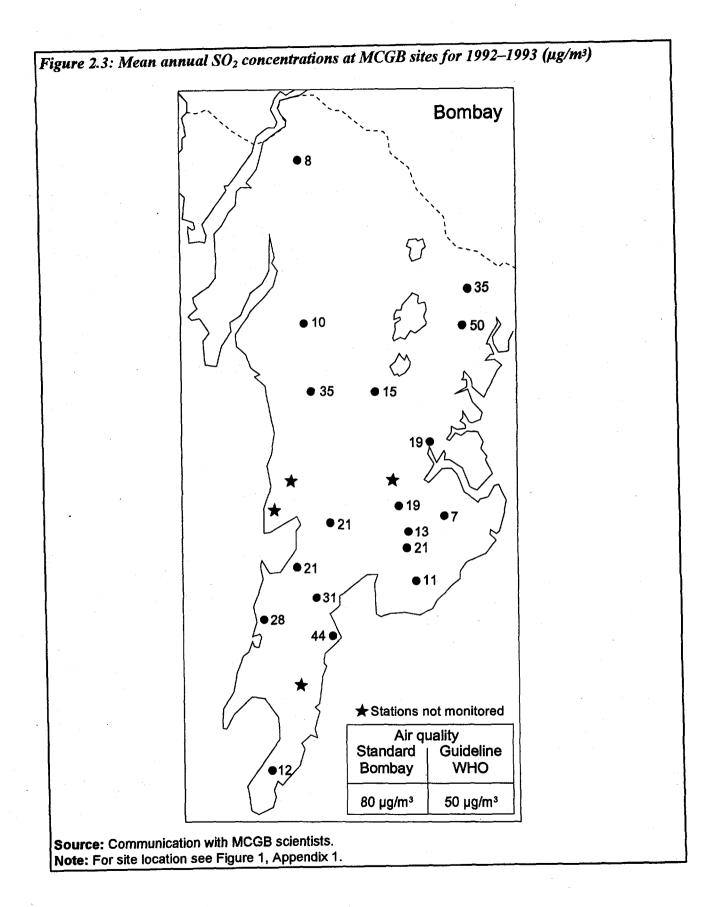
The summary of measurements in 1992/1993, shown in Figure 2.3, indicates that long-term average SO_2 concentrations are fairly low, and less than the WHO and Bombay guidelines at all sites. The maximum 24-hour values probably exceed the air quality guidelines at some sites, although only occasionally. The Pararosaniline (TCM) colorimetric method is used in these measurements.

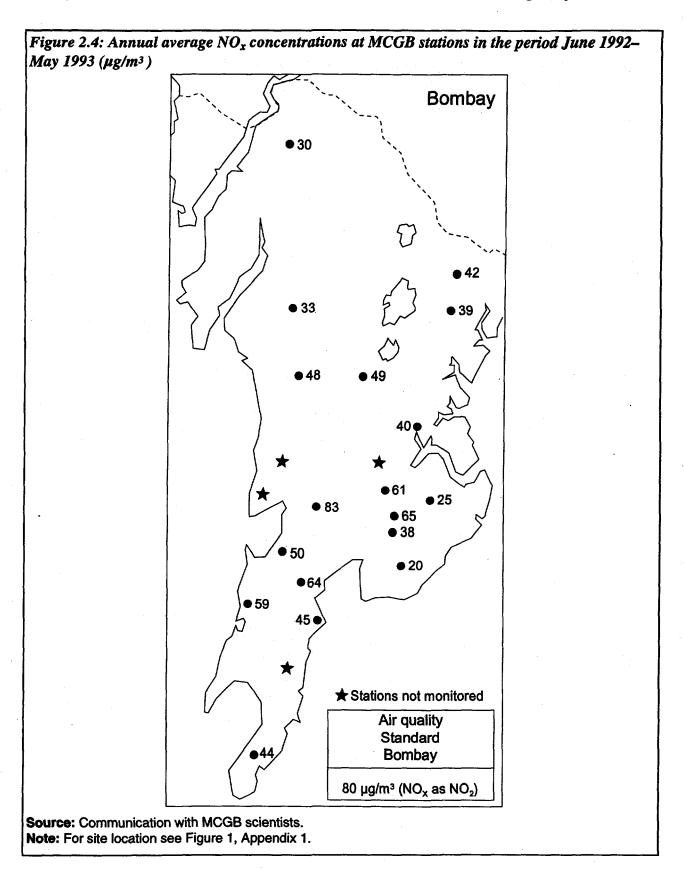
 NO_x . Bombay air quality standards and WHO Guidelines for NO_x are not directly comparable since the WHO guideline specifies NO₂, while the Bombay standard specifies NO_x as NO₂ (i.e. NO+NO₂, measured as NO₂.) Even so, the Bombay NO_x standard is stricter than the WHO NO₂ guidelines. The guidelines for NO₂ and NO_x are given in Table 2.6.

The annual average summary of NO_x measurements in 1992–93 is shown in

Table 2.6: Bombay air quality guidelines for NO_x

	Indian (Bombay) NO _x as NO ₂	WHO NO ₂
Long term (annual) average Short term (24 hour) average	80 μg/m ³ 120 μg/m ³	150 µg/m ³
Source: S.O. 384(E) under Air Government of India, and WH		ct, 1981,


Figure 2.4. The highest concentration, 83 μ g/m³ at Sion, barely exceeds the Bombay standards. The other stations are well below the standard. The highest 24-hour average concentrations most probably exceeds that standard (120 μ g/m³). The annual average NO_x concentration, averaged over all stations in Bombay, has increased from about 25 μ g/m³ in 1981 to about 40 μ g/m³ in 1990, and 46 μ g/m³ in 1993. The summary of NOx concentrations at MCGB stations in the period June 1992–May 1993 is shown in Figure 2.4.


AIR POLLUTANT EMISSIONS IN GREATER BOMBAY

Total emissions. A comprehensive emission inventory was developed for Bombay as part of the URBAIR project. The local URBAIR consultant collected the necessary input data, according to the project description (Appendix 8). The traffic emission distribution was developed on the basis of road and traffic data included in the Comprehensive Transport Plan for Bombay (Atkins, 1993).

Appendix 4 describes the development of the emission inventory. The results of the emission inventory are presented in Table 2.7. These are based on the emission factor data given in Table 2.8, and the fuel consumption data in Table 2.9. Traffic activity data are described in detail in Appendix 4. Emission factors for particles are described in Appendix 5. Appendix 7 contains the emission spreadsheet calculations.

The inventory covers the main source categories. Figure 2.5 shows the main source contributions. Emission factors recommended by WHO (1993), and United States Environmental Protection Agency (USEPA, 1986) have generally been used, as in the other URBAIR cities (Manila, Jakarta, Kathmandu). Indian emission factors are available for some of the sources, such as vehicles, and for fuel combustion as suggested by the URBAIR Bombay working group on air quality (see Appendix 5). The working groups decided to use the WHO/EPA factors in this first phase of URBAIR. Accepted Indian factors should be used in subsequent analysis processes.

Emission sources	TSP	PM ₁₀	SO2	NOX	Hours of operation
Transport sector					
Vehicle exhaust		**********		······································	
Gasoline Cars	492	492	160	6,643	12
MC/TC	737	737	250	179	12
Diesel Cars	765	765	395	1,783	12
Buses	445	445	566	2,891	12
Trucks	1,234	1,234	2,120	8,024	12
Sum vehicle exhaust	3,673	3 ,673	3,490	19, 520	12
Resuspension from roads	10,200	2,550	-	-	12
Energy/industry sector					
Power plant	~1,500	~1500	~26,000	~11,200	24
Other fuel combustion					
Industrial LSHS	140a	84	11,920a	1,690	24
FO	1,652a	1,399	24,480a	2,140	24
LDO	121	6	1,510a	120	24
Diesel	121	6	800a	115	24
LPG	0,5	0.5	-	20	24
Sum industrial	1,817	1,496	38,710	4,085	
Domestic/commercial ^c			****************	**********	
Wood	4,395	2,198	59	410	12 (day)
Kerosene (SKO)	23	23	1,628	258	10 (day)
LPG	14	14	0,7	676	10 (day)
Sum domestic	4,432	2,235	1,688	1,344	
Industrial processes ^b					
Stone crushers	6,053				12 (day)
Other				•	
Refuse burning Domestic	3,700	3,700		,	
Dumps	408	408	26	153	12 (3 PM-3 AM)
Construction					
Marine (docks) FO	540	459	8,000	750	-24
LSHS	16	8	1 120	425	24
Diesel	2	1	120	45	24
LDO	1	1	110	25	24
Sum marine	560	469	9,350	1 245	
Total	32,343	16,031	79,264	37,547	·

Table 2.7. Total annual emission in Greater Rombay 1992-1993 (tons/vr)

Uncontrolled. a)

Process emissions are less important than fuel combustion emissions in Bombay. Domestic coal/dung combustion not included, due to lack of volume data. b)

C)

· · ·	TSP	PM10/TSP	SO ₂	NOx	%S max.
Fuel combustion (kg/t)				······································	
Coal, bituminous, power plant					
- uncontrolled	5A ^a		19.5Sa	10.5	
- cyclone	1.25A	0.95	19.5S	10.5	
- ESP	0.36A		19.58	10.5	
Residual oil (OF): ind./comm.	1.25S+0.38	0.85	20S	7.0	4
Distillate oil: ind./comm.	0.28	0.5	20S	2.84	LSHS: 1
(LSHS, HSD, LDO): residential	0.36 → 1.6 ^b	0.5	20S	2.6	HSD: 1
				1. 	LDO: 1.8
LPG: ind./dom.	0.06	1.0	0.007	2.9	0.02
Kerosene: dom.	0.06	1.0	17S	2.5	0.25
Natural gas: utility	0.06	1.0	20S	11.3 · f	
- ind./dom.	0.06		20S	2.5	
Wood: dom.	15	0.5	0.2	1.4	
Refuse burning: domestic	37	1.0	0.5	3.0	
- dumps	8	5			
Coal: domestic	10				
Dung: domestic	10				
Road vehicles (g/km)		4 6 4 7 4 4 1 4 4 2 4 7 4 0 4 6 1 4 6 1 4 6 4 5 4 4 6 4 5 4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	************************	************************************
Gasoline: Cars	0.2	1.0		2.7	87:0.25
Trucks, light duty	0.33	1.0		•	83:0.20
Buses and trucks, heavy duty	0.68	1.0			
MC/TC	0.5	1.0		0.1	
Diesel: Cars	0.6	1.0		1.4	1.0
Trucks, light duty	0.9	1.0			
Buses and trucks, heavy duty	2.0			13	

Table 2.8: Emission factors used for URBAIR. Bombay, 1992

a) A: Ash content, in %; S: sulfur content, in %

b) Well \rightarrow poorly maintained furnaces

Note: For additional information on the compilation of emission factors, see Appendix 5.

Emissions from the TATA power plant have been calculated based on the fuel consumption figures of Table 2.5, and assuming ESP emission control. The emissions do not contribute much to ground level exposure due to their tall stacks (278 meters).

Dockside emissions are primarily a result of petroleum products sold to ships. It is not known how much of this petroleum is actually burned in the docks. Emissions also come from ships waiting in the bay for dock space. These emissions are substantial and contribute to the extra urban background concentrations, particularly SO_2 and SPM. They are calculated from ship counts and waiting time.

No specific data on industrial process emissions are available. Emissions from large/medium industries have been collected on a separate file which contains data from about 280 large/medium plants in Bombay. Process and fuel combustion emissions have not been separated. Also, the emission data for some of the plants are based on actual emission measurements, and may not be representative.

TSP. Total annual TSP emissions are estimated at about 32,400 tons per year for 1992–1993. Road traffic, particularly resuspension of road dust, wood burning, domestic refuse burning, and furnace oil use in industry are the largest sources of TSP emissions. Because these sources exhaust emissions at low heights, they contribute significantly to population exposure.

In some areas, stone crushers expose nearby populations to TSP. Emissions from stone crushers are assumed to be uncontrolled and have been worked out separately. The emission figure for domestic refuse burning refers to commonly burned street litter and leaves, although little is known about the magnitude of the practice. A first gross estimate of one kilogram per household per week was used. The

Table 2.9: Fuel consumption data for Greater Bombay,1992–1993 (April–March)

Category	Fuel type	10 ³ me	tric tons/year
TATA Power Plant	LSHS	927	
	Coal	298	
	Gas	496	(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
Industrial	LSHS	499	279 in Petrochem. industry
			164 in large/medium industry
			56 in small scale industry
	FO	306	183 in large/medium industry
			123 in small scale industry
	LDO	42	
	Diesel (HSD)	40	
	LPG	7	
Domestic	Wood	289	
	SKO	480	
	LPG	233	
Marine (port/bay)	FO	100	
	LSHS	56	
	Diesel	6	
	LDO	3	

Note: For mobile sector fuel consumption and traffic activity, see Appendix 4.

emission factor is highly uncertain. Based on WHO (1993) and NILU experiments (Semb, 1986), an emission factor of 37 grams per kilograms (g/kg) has been used. For burning at municipal refuse dumps, 8 g/kg has been used with reference to WHO (1993). An emission figure has not been developed for construction in Bombay due to lack of data, even though the experience of other Asian cities such as Manila leads us to believe that TSP emissions from construction tend to be substantial (Larssen et al., 1995).

Table 2.10 lists USEPA suggested emission factors (EPA AP 42) for road dust resuspension.

These factors are valid for dry road conditions. Much of the traffic activity takes place on roads with annual average daily traffic (AADT) greater than 50,000. Assuming the traffic activity share on these road are 5

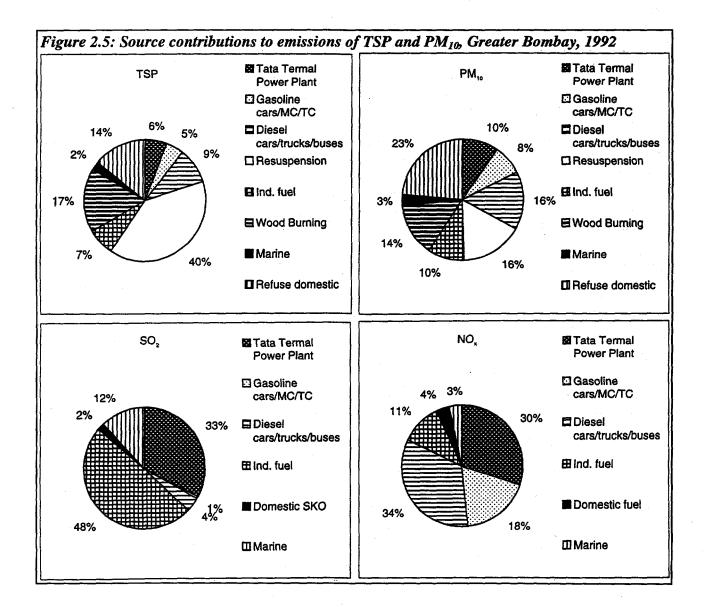
 Table 2.10: USEPA suggested road dust resuspension

 emission factors

Road class	AADT	Emission factor in g/km
Local streets	<500	15.00
Collector streets	500-10,000	10.00
Major streets	10,000-50,000	4.40
Freeways/expressways	>50 000	0.35
Source: USEPA (1986).		

percent (local), 25 percent (collector), 30 percent (major), and 40 percent (freeway/expressway), and that the roads are wet 50 percent of the time, EPA emission factors give an average factor of a little more than 2 grams per kilometer. A recent evaluation of road emission rates supports, in general, the EPA emission factors for paved roads, although the study concludes that more investigation is needed (Claiborn et al., 1995). We select 2 grams per kilometer as an average resuspension emission factor.

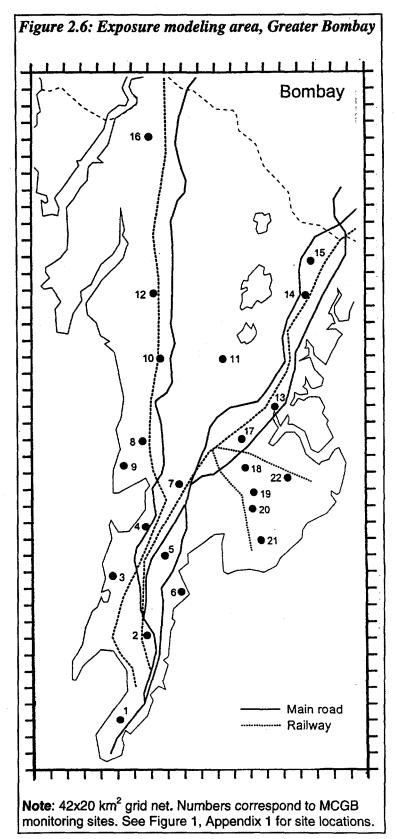
 PM_{10} . Total PM₁₀ emissions are calculated at about 16,000 tons per annum for 1992–1993. Refuse


burning, resuspension, vehicle exhaust from diesel trucks, and fuel oil combustion in industry were the dominant PM_{10} sources. Source distribution is shown in Figure 2.5.

 SO_2 . Emissions of SO_2 are calculated on the basis of the maximum sulfur contents of fuel as shown in Table 2.11.

Total SO₂ emissions are roughly 79,000 tons per annum. Industries, fuel oil, LSHS, and the TATA power plant are the main contributors. The actual sulfur content of fuels, and thus actual SO₂ emissions, may be lower.

Table 2.11: Typical fuel sulfur


Sulfur content (%)
4.0
1.8
1.0
1.0
0.25
0.25
0.20

 NO_x Total annual NO_x emissions are calculated at 37,000 tons per annum with vehicle exhaust, especially from diesel trucks and gasoline cars, and the TATA power plant being the main causes.

Spatial emission distribution. A base-line situation for air pollution exposure was established as a basis for a cost-benefit or costeffectiveness analysis of abatement measures for Greater Bombay. In addition, spatial concentration fields over the urban area were demarcated. To model the spatial distributions, a grid-formed particle emission survey was designed to measure high particle concentrations-the main air pollution problem in Bombay. The calculated total emissions were distributed over a square kilometer (km²) grid net of 42 by 20 km², covering the area shown in Figure 2.6.

Point source emissions were distributed according to their actual location. Fuel consumption in small industries, and in households, were distributed in relation to the population (See Appendix 4). Traffic emissions on the main road network were based on the locations of various corridors. The remaining diesel and gasoline used was distributed among the non-slum population distribution.

DISPERSION MODEL CALCULATIONS FOR GREATER BOMBAY

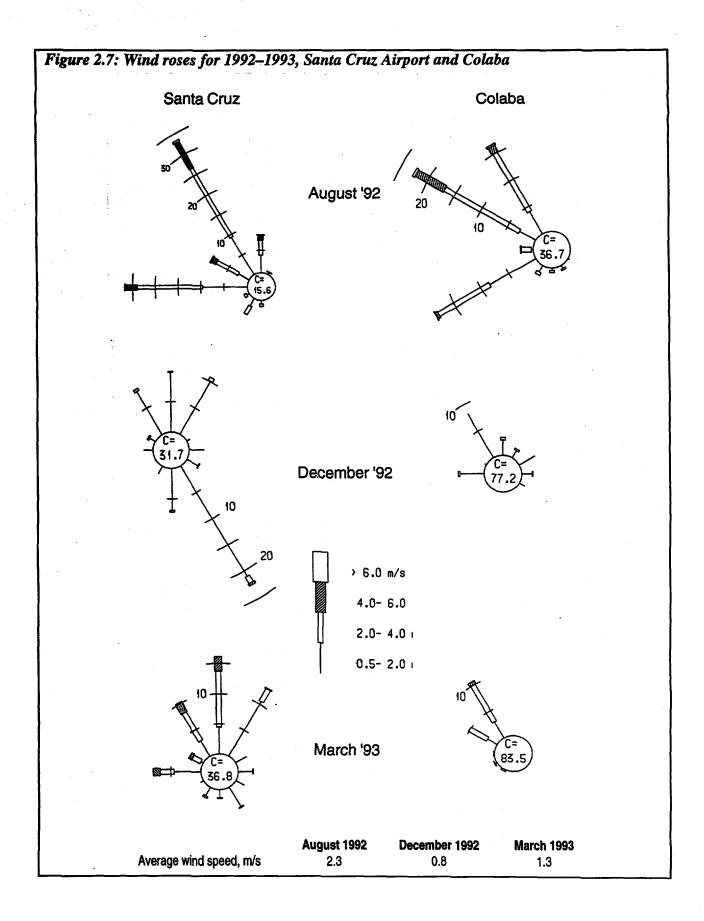
Dispersion conditions

and the second second

General description of topography, climate and dispersion. Bombay has a mean elevation of 11 meters above sea level, and it consists of several islands on the Konkan coast. The city has a tropical savanna climate, with monthly mean humidity ranging between 57–87 percent. The annual average temperature is 25.3°C, rising to a maximum of 34.5°C in June and minimum of 14.3°C in January. Average annual precipitation is 2,078 millimeters with 34 percent (709 millimeters) falling in the month of July.

In the winter the predominant local wind direction is northerly, while in the summer monsoon season, north-westerly winds predominate. A sea breeze is usual during the day, with mean wind speeds between 1.5-2 meters per second. Nights, between the hours of 22:00 and 06:00, are calm. The mixing depth varies between 30 meters and 3,000 meters (NEERI, 1991).

Studies have shown that active monsoon conditions are associated with a lowering of the mixing layer height, an absence of inversion/stable layers, and decreased convective instability in the lower layers of the monsoon atmospheric boundary. The reverse is observed on monsoon break days. In weak and break monsoon conditions there is a subsidence and feeding of dry air from the sky. In moderate to active monsoon conditions, the moisture reaches higher levels due to synoptic scale convergence.


High pollution concentrations in Bombay usually occur in the winter when adverse meteorological situations, and weak and break monsoon conditions dominate. In the early mornings the inversion layer is lowest (closest to the ground), and leads to poor vertical mixing of pollutants. In the daytime when there is high insulation, a sea breeze blows inland. This wind direction may cause stagnation of the airmass when the monsoon winds run in the opposite direction. Such a condition can usually be seen on winter days and early summer mornings.

Dispersion conditions. Dispersion of air pollution emissions is dominated by wind conditions and the vertical stability of the atmosphere. Wind statistics from the meteorological stations at the Santa Cruz airport and Colaba Observatory, at Bombay's southern tip, have been obtained from the Indian Meteorological Department (IMD).

Winds are generally calmer at Colaba than at Santa Cruz indicating that the wind counter has a high starting velocity, or that it is shielded by nearby vegetation or buildings. During the monsoon (August), winds are fairly strong and the dominating directions at Santa Cruz are from west and northwest. At Colaba, the wind direction seems to be shifted some 30° counterclockwise. During the winter (December) winds are very weak, and the main wind sectors are southeast and north. During the summer (March), the wind speed picks up again and the northerly sector dominates.

Figure 2.7 shows wind roses from Santa Cruz for December (winter), March (summer) and August (monsoon conditions) as recorded in 1992/1993.

and the second secon

From this data, and from calculations of the stability class based on hourly observations of wind and cloud cover, a combined

wind/stability matrix has been constructed. Such a matrix, representing the statistics of dispersion climatology, can be used as input to dispersion models for calculation of long-term average concentrations of pollutants. The combined matrix, based on the Santa Cruz data, is given in Table 2.12. This matrix is used for the dispersion conditions over the entire modeling area.

Table 2.12: Wind/stability frequency matrix), San	ta
Cruz Airport, June 1992–May 1993 (% annual)	

Stability classes	Velocity classes (m/s)	Frequency of calm	
I - unstable	0.3-2.0 (1.1 m/s average)	In unstable class: 10.5%	
N - neutral	2.0-4.0 (2.9 m/s average)	In neutral class: 0%	
SS - slightly stable	4.0-6.0 (4.8 m/s average)	In SS class: 4.2%	
S- stable	>6.0 (6.8 m/s average)	In stable class: 16.7%	

Note: The calm frequencies are distributed in the direction sectors within each of the stability classes of the 0.3–2 m/s velocity class, proportional to the occurrence of wind.

Dispersion model calculations, city background

Model description. The dispersion modeling work in the first phase of URBAIR concentrates on the calculation of long-term (annual) average concentrations, representing averages within square kilometer grids (city concentrations). Contributions from nearby local sources in specific receptor points (streets, industrial hot spots) must also be evaluated. The model used is a multisource Gaussian model that treats area, point, and volume sources separately.

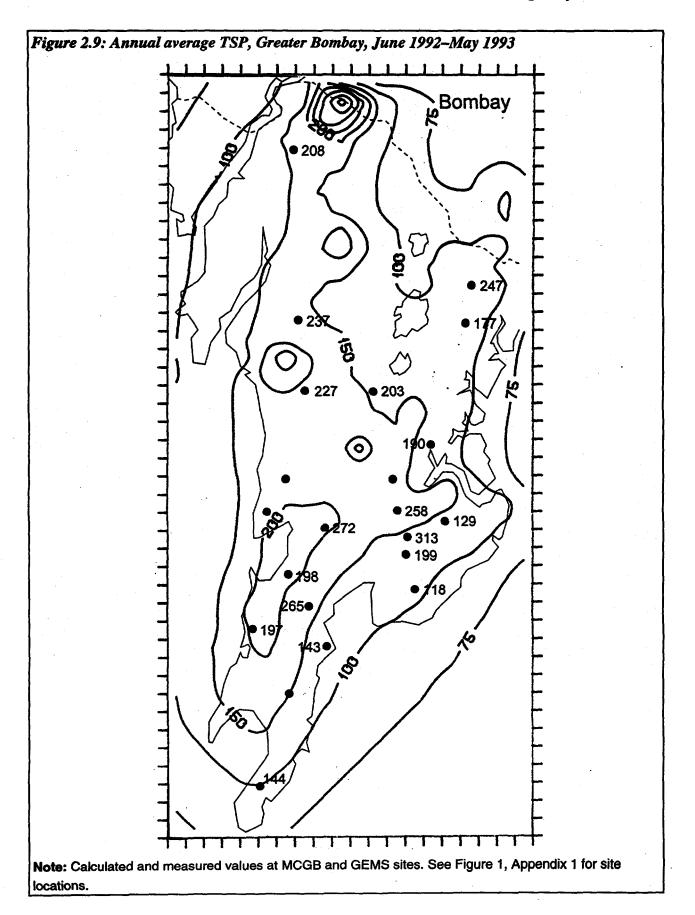
Meteorological input to the model is represented by a joint wind speed/direction/stability matrix representing the annual frequency distributions of these parameters. The dispersion conditions are assumed to be spatially uniform over the model area. For point sources, account is taken of plume rise (Briggs equations), the effects of building turbulence, and plume downwash. For area sources, the total emissions in a square kilometer grid are simulated by 100 ground level point sources equally spaced over the grid.

McElroy-Pooler classification for low-level area sources, and Brookhaven classification for point sources (stacks) were used as the dispersion parameters. The software package used in the KILDER model system was developed at NILU (Gram and Bøhler, 1992).

TSP. Calculated annual average TSP concentration distributions are shown in Figure 2.8 for the following source categories:


- road traffic (vehicle exhaust);
- area sources—domestic fuel combustion (wood, SKO, LPG), fuel combustion in small industries (LSHS, LDO), stone crushers, and burning in refuse dumps;
- point sources (emission from 280 large and medium size industrial plants); and,
- resuspension from roads.

A total background concentration of 60 μ g/m³ has been estimated based on measurements carried out near Vikram and Thal South of Bombay (data provided by M.G. Rao; Rashtriya Chemicals and Fertilizer, Ltd. and ADITYA). This total also includes resuspension from roads. The concentrations from resuspension are calculated to be about 2.5 times those from exhaust particles, based on emission factors. We estimate that resuspension of dust from roads is the most important source of TSP.


Domestic burning of refuse has not been added to area sources when calculating the concentrations. The rough estimate of emissions from refuse burning is about the same as from vehicle exhaust. This emission should be distributed according to the population burning refuse. Contribution from refuse burning would be about the same as from traffic, about 20- $30 \ \mu g/m^3$ in the maximum zone. The concentration peaks correspond to stone crushers (in the area source distribution), and to specific industrial sources (in the point source distribution).

In Figure 2.9, measured annual TSP concentrations are plotted (from Figure 2.1). The calculated and measured values are generally of the same magnitude. Many of the sites with high measured values were seen to be situated in industrial areas, indicating possibilities of contributions from local sources. In this comparison it should be noted that TSP from refuse burning is in addition to the calculated concentrations.

 PM_{10} Concentration distributions for PM_{10} have not been calculated, but can be estimated based on calculated TSP concentrations and PM_{10} /TSP ratios. Estimated PM_{10} concentration contributions in the maximum concentration distribution zone (Dadar-Sion) are tabulated in Table 2.13.

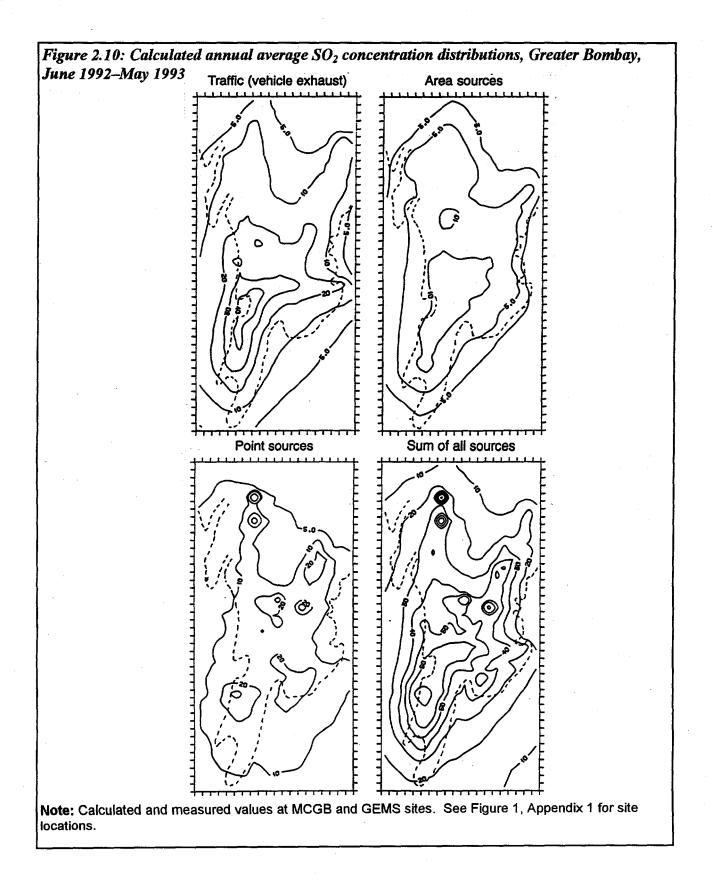
See Figure 1, Appendix 1 for site locations.

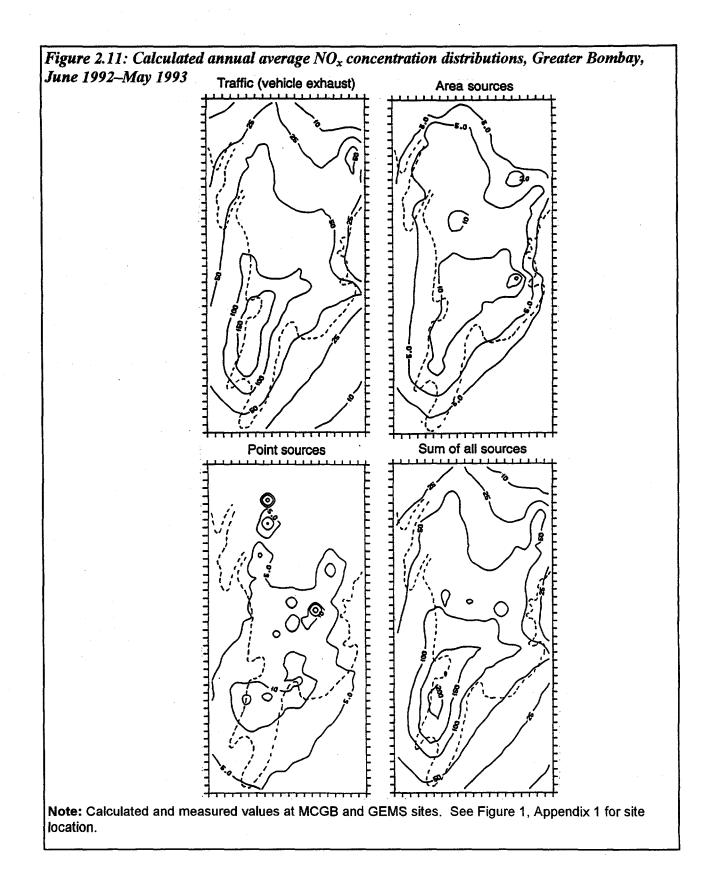
URBAIR-Mumbai

Annual average PM_{10} concentrations of about 100 µg/m³ represent about 50 percent of the TSP concentrations in the Dadar-Sion area for 1992. This is slightly higher than the PM_{10} concentrations reported in Table 2.2, as measured in 1982. It can be expected that the PM_{10} concentrations have increased since 1982.

 SO_2 Dadar-Parel (excluding peaks near specific industries) has the highest calculated annual average SO_2 at 70 µg/m³. This is significantly higher than the measured SO_2 concentration which ranges from 30–40 µg/m³. The discrepancy can be mostly accounted for by the maximum sulfur content of fuel. Actual sulfur content is less and,

Table 2.13: Calculated TSPand PM_{10} concentrations


TSP ~ 30	PM10 ~ 30
~ 30	~ 30
~ 80	~ 20
~ 30	~ 15
~ 5	~ 3
60	~ 30
~205	~100
	~ 80 ~ 30 ~ 5 60


therefore, the SO₂ concentrations should also be less. Figure 2.10 shows calculated SO₂ concentration distributions (annual average, June 1992–May 1993). In this case, the distribution represents the sum from traffic (vehicle exhaust), area sources (fuel combustion) and point sources with no extra-urban background added. Vehicle exhaust from traffic is the most important source for ground level SO₂ concentrations in Bombay.

 NO_x Figure 2.11 shows the calculated NO_x concentration distributions from vehicle exhaust, fuel combustion in area sources, and point sources. Calculated concentrations of around 200 µg/m³ are highest in the Dadar-Sion area. Measured NO_x concentrations are about 100 µg/m³, roughly half the calculated concentrations (see Appendix 1). Vehicle exhaust is the most important source for ground-level NO_x concentrations.

Pollution hot spots

Pollution hot spots are areas with large concentration contributions. They are generally located along main roads, and near industrial areas with significant emissions from low stacks. The calculated concentration distributions of Figures 2.8, 2.9 and 2.10 indicate industrial pollution hot spots, including stone crushers. The measurements described in Figure 2.1 and in Table 2.2 show that the highest concentrations measured are indeed in industrial zones (e.g. Maravali) and near road crossings. Such hot spot pollution areas may contribute significantly to air pollution exposure.

POPULATION EXPOSURE TO AIR POLLUTION IN GREATER BOMBAY

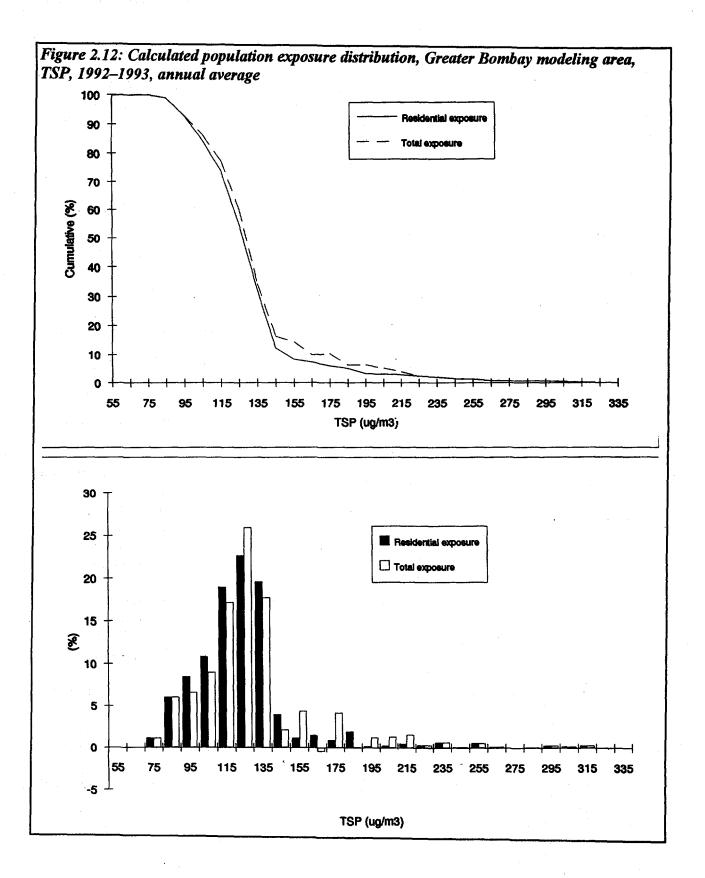
People are generally exposed to air pollutants at home, on roads, and at work. *Population* exposure is defined as the number of inhabitants experiencing concentrations of pollution compounds above certain concentrations. The cumulative population exposure distribution gives the percentage of the total population exposed to concentrations above given values.

Correct mapping of pollution exposure requires data on:

- Concentration distributions and their variation with time—
 - at residences (general urban air pollution, city background);
 - along main roads;
 - near other hot spots, such as near industrial areas; and,
- Population distribution (residences and workplaces), the number of commuters and timedependent travel habits.

The methodology used for calculating population exposure is described in Appendix 6. Briefly, it can be described as follows:

- calculate concentration distribution from all sources (except from domestic refuse burning);
- add exposure for residents close to the main roads;
- calculate residence exposure from this concentration distribution and the km² population distribution; and,
- add exposure for commuters and drivers traveling on roads.


This method gives a rough estimate of actual population exposure in Bombay. Industrial hot spot exposure is not accounted for, except near stone crushers.

TSP. Population exposure to TSP, the major air pollution problem in Greater Bombay, is an input into health damage analysis. This is not to diminish the importance of exposure to high short-term concentrations of suspended particles and other pollution compounds in hot spots. Calculating such exposure requires a more extensive database than was available for Greater Bombay. In addition, although air quality guidelines have been set for short-term exposures, comprehensive dose-effect relationships regarding health have not yet been developed for such exposures.

The results of the population exposure calculations for annual average TSP in Greater Bombay (present conditions 1992–1993) are shown in Figure 2.12 and can be summarized as follows:

- about 97 percent of the population is exposed to TSP concentration above the WHO AQG (90 μg/m³);
- approximately 8 percent of the population is exposed to TSP more than twice the WHO AQG (180 µg/m³), including an estimated 300,000 drivers;
- most seriously exposed are roadside residents and public transport drivers, policemen and other roadside workers (estimated at 300,000 or 3 percent of the population), and residents near stone crushers.

Exposure to TSP in homes is due to resuspension from roads, domestic wood combustion and refuse burning, and exhaust from diesel vehicles.

 PM_{10} . Corresponding population exposure to PM_{10} can be estimated by multiplying the TSP axis in Figure 2.12 by 0.5. The long-term WHO AQG for TSP, 90 µg/m³, is exceeded to a larger extent than the corresponding PM_{10} guideline of 60 µg/m³. Thus, for long-term exposure to particles, TSP is the limiting parameter.

Main sources of PM_{10} exposure at residences are diesel vehicles, domestic refuse and wood burning, and resuspension of road dust. Additional exposure in hot spot areas near industries may be significant.

SUMMARY OF THE AIR QUALITY ASSESSMENT

Greater Bombay air quality. Total annual emissions (1992–93) are the following:

- 32,343 tons TSP
- 79,264 tons SO₂
- 37,547 tons NO_X
- 16,031 tons PM₁₀

For many years, concentrations of TSP, SO_2 and NO_x have been measured regularly at more than 22 fixed locations for a few days each month. The locations are distributed among arearepresentative stations, street-side locations and in industrial areas. Despite its limitations, this database shows:

- TSP frequently exceeds the WHO air quality guideline at all stations;
- concentrations at street crossings are sometimes extremely high, exceeding the WHO air quality guideline by a factor of 10 or more;
- relative to their respective air quality guidelines, TSP and PM₁₀ are the most important pollution parameters in Bombay; and
- it is desirable to substantially improve the air quality monitoring system of Greater Bombay. *Emission sources.* Large amounts of suspended particles come from road traffic, exhaust

(particularly from diesel vehicles), and resuspension of road dust. Other particle sources are domestic refuse burning (roughly estimated), wood combustion, and industrial and marine fuel oil combustion. Road traffic dominates NO_x emissions, while power plant and industrial fuel oil combustion dominate SO_2 emissions. Improvements are needed in the emissions inventory, especially with respect to industrial emissions, domestic refuse burning, resuspension, and construction. Estimated contributions from different sources are shown in Table 2.14.

Population exposure. Calculations show that about 97 percent of the population is exposed to annual average TSP

Table 2.14: Estimated contributions	of
emissions from differenct sources	

	Source	Percentage
TSP	Resuspended road dust	40 (rough estimate)
	Wood combustion	17
	Diesel vehicle exhaust	9
	Domestic refuse burning	14 (rough estimate)
	Industrial fuel combustion	7
PM ₁₀	Diesel vehicle exhaust	16
	Domestic wood	14
	Domestic refuse burning	23
	Resuspension from roads	16
	Gasoline vehicle exhaust	8
SO2:	Industrial fuel combustion	82 (incl. power plant 33%)
_	Diesel vehicle exhaust	4
	Marine fuel combustion	12
NOx	Industrial fuel combusion	41
	Gasoline vehicle exhaust	18
	Diesel vehicle exhaust	34

concentrations exceeding the WHO air quality guideline. Of this, 8 percent of the population is exposed to TSP that is double the guideline. This includes approximately 300,000 drivers, other roadside workers, roadside residents, and those who live near stone crushers.

Main sources of TSP exposure are resuspension from roads, domestic wood combustion, diesel vehicles, and domestic refuse burning. Diesel vehicles, domestic wood and refuse burning, and resuspension are the main sources of PM_{10} . Additional exposure in industrial hot spots may also be significant.

Method for calculating effects of abatement measures on population exposure. A simple procedure for calculating emissions, and population exposure has been programmed into spreadsheets to estimate the effects of various abatement measures on exposure distribution.

IMPROVING AIR QUALITY ASSESSMENT FOR GREATER BOMBAY

Shortcomings and data gaps

Air quality. The present measurement system operated by MCGB can be briefly characterized as follows:

- 24 hour (3x8 hours) samples of TSP, SO₂, NO₂ and NH₃ collected infrequently (1-4 days per month);
- PM₁₀, lead, CO and O₃ and other compounds not routinely measured;
- Monitoring on rooftops (4-12 meters above ground);
- No stations are monitored as frequently as required under the Indian AQG (at least 104 days per year); and,
- Many of the measurement sites are not clearly defined in terms of their representativeness, as: - city stations (commercial, industrial, and residential);
 - traffic exposed (street side) stations; and,
 - industrial hot spot stations.

It is clear that the MCGB air monitoring laboratory operates under considerable financial constraints. Although the analyses are good, financial constraints affect methodological and manpower capacities. It is important to improve air quality monitoring in Greater Bombay by including:

- at least 5 city sites, covering areas of typical, and maximum concentrations;
- 1-3 traffic exposed sites (to monitor street level pollution);
- 1-5 industrial area and hot spot sites;
- 1 background site;
- continuous monitors for PM₁₀, CO, NO_x, SO₂, O₃, depending upon the site; and,
- an online data retrieval system linked to a lab database, via telephone or modem.

Emissions. The main shortcomings of the emission inventory are:

- industrial emissions (use and combustion of fuel, process emissions);
- resuspension from roads;

- other coarse particle sources, such as construction;
- domestic refuse burning;
- consumption patterns for domestic and commercial fuel use; and
- absence of local emission factors.

Less important shortcomings regard traffic distribution data which forms the background for the car exhaust emission distribution. It is necessary to fill the data gaps and upgrade the inventory. It is necessary to fill the data gaps and upgrade the inventory.

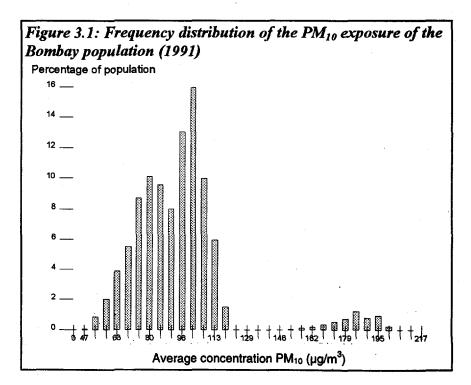
Population exposure. Population exposure from various sources is determined by a combination of dispersion modeling and air pollution monitoring. It is vital that the population exposure distribution be reliable, since it forms the basis for assessing damage to health and the costs stemming from such damage. Further, it feeds into the cost-benefit analysis of measures to reduce exposure.

In order to make improvements to the population exposure calculations that have been developed in the first phase of URBAIR, dispersion modeling expertise in Bombay should be identified, and the use of dispersion modeling integrated into the control agencies' Air Quality Management work. Dispersion modeling expertise and appropriate models for air pollution management and control strategies should be based in Bombay.

Proposed actions to improve air quality assessment are summarized in Table 2.15.

Actions	Time Schedule
Air Quality Monitoring	
Design and establish a modified/ improved/extended ambient air and meteorological/dispersion monitoring system - evaluate sites; number (at least 10) and locations; - select parameters (CO, NO _x , O ₃ ,HC, TSP and PM ₁₀ recommended) /methods/monitors/operation schedule; - upgrade laboratory facilities, and manpower capacities.	This activity should start immediately, and a proposed schedule is as follows: Now: Finalize plan for an upgraded air quality monitoring system, including plans for laboratory upgrading. Within one year: Establish of 1–2 new modern monitoring stations; and Carry out first phase of laboratory upgrading.
Design and establish a Quality Control/Quality Assurance System	This activity should also start immediately, phased in with the improved monitoring system, and the laboratory upgrading.
Design and establish an Air Quality Information System, including - database; and - information to control agencies; lawmakers; and public. Emissions	<u> </u>
 Improve emission inventory for Greater Bombay a) Improve industrial emissions inventory (location, process, emissions, stack data) b) Improve road and traffic data inventory c) Improve domestic emissions inventory d) Study resuspension from roads from other surfaces e) Estimate contribution from construction and refuse burning. f) Establish emission factors for Indian conditions. Develop an integrated and comprehensive emission inventory procedure, include emission factor review, update and quality assessment procedures. Improve methods and capacity for emission measurements. 	 Priority: industrial emissions inventory study of resuspension from roads start developing an emission inventory procedure.
 Population exposure Assess current modeling tools/methods, and establish appropriate models for control strategy in Greater Bombay. 	

Table 2.15: Proposed actions to improve air quality assessment


3. AIR POLLUTION: IMPACTS AND VALUATION

INTRODUCTION

As large cities in Europe and North America industrialized, and the energy used by industries and homes increased, so did pollution. Air pollution in urban areas became a major public health concern, as exemplified by the killer fogs that claimed thousands of lives in London in 1952 and 1956 (Lave and Seskin, 1977). Economic development in Asia has had similar consequences, and air pollution problems have become endemic in Asian cities. This chapter presents an overview of major impacts of air pollution in Bombay, including a rough estimation of the monetary value of these damages. As concluded in Chapter 2, high concentrations of suspended particles and lead are the leading problems in air pollution. This chapter details the impact of PM_{10} . A frequency distribution of the PM_{10} exposure of Bombay's population is summarized in Figure 3.1. Unfortunately, current data on lead exposure were not available.

Health impact estimates are based on research conducted in the United States(Ostro, 1994), and their methodology is described in the URBAIR Guidebook. Although damage to human health is not the only adverse effect of air pollution, lack of appropriate data prevented us from quantifying other impacts such as a reduction in the economic life of capital goods, tourism, crop production, and other intangible impacts.

This chapter summarizes health studies carried out in Bombay; addresses the calculated

impacts on health and mortality in Bombay; and calculates the costs that can be attributed to these impacts.

SUMMARY OF STUDIES BY ENVIRONMENTAL POLLUTION RESEARCH CENTER, (KEM HOSPITAL, BOMBAY)

In addition to inadequate housing and sanitation, Bombay's urban population (of which 50 percent lives in slums) is exposed to rising levels of air pollution. It has been experimentally established that air pollutants like SO_2 , ozone, oxides of nitrogen, benzopyrene, and suspended particulate matter (SPM) result in incidence if respiratory diseases. High SO_2 levels have been shown to cause increased incidence of chronic bronchitis, frequent colds, and decline in lung functions. In order to determine the actual impact of pollution on health in Bombay, the Environmental Pollution Research Center (EPRC), KEM Hospital has conducted studies since 1976, correlating air pollution to morbidity.

In 1978, when automobile fuel had higher concentrations of lead and sulfur, EPRC conducted a study on 1,008 subjects (522 male and 486 female) from a residential community in Parel, in Central Bombay. Because of a coal gas factory and many textile mills, together with main arterial roads and heavy traffic, levels of pollution in Parel were very high. The incidence of respiratory symptoms (coughing and dyspnoea) was observed to be higher in this suburb than in Chembur. Chembur is surrounded by chemical and fertilizer factories, and a thermal power station, but has comparatively low vehicular traffic.

In 1990, following a decline in the sulfur content of fuel, and the closing of the coal gas

factory and many textile mills, SO₂ levels in Parel dropped from 103 μ g/m³ to 29 μ g/m³. At the same time due to increases in vehicular traffic, NO₂ levels increased from 16 μ g/m³ to 54 μ g/m³, and SPM levels increased from 242 μ g/m³ to 304 μ g/m³. Different studies conducted in this area suggested that although frequent colds, headaches and eye irritation were less common, cough, dyspnoea and hypertension had increased. Similarly, while the prevalence of bronchitis had decreased, cardiac disease had increased. Table 3.1 shows SO₂, NO₂ and SPM mean

Table 3.1: Pollution trend and	mortali	ity rates in	
Parel			

1 41 Ct				-			
	Pollution trends (µg/m³)						
Pollutants	1978	1982	1986	1990			
SO ₂	102	62	37	29			
NO ₂	16	41	52	54			
SPM	242	219	326	304			
Mortality rate	Affected Population (100,00						
Respiratory diseases	117.0	109.6	129.1	113.7			
Heart diseases	156.7	263.2	164.5	170.7			
Cancer	51.8	48.2	35.5	40.8			

levels in different years in Parel, along with the mortality rate due to respiratory diseases, heart diseases and cancer.

A 1988 cross sectional study examined symptom and disease patterns in four localities:

- 421 subjects (194 male and 227 females) of a community located about 2 kilometers from a large fertilizer factory (Tolaram Nagar);
- 397 subjects (185 males and 212 females) of a locality with comparatively low pollution (Telecom township); and

URBAIR-Mumbai

• 297 subjects (131 males and 166 females) of Parel (central suburb); and 430 subjects (209 males and 221 females) of Dadar (central suburb).

It was observed that coughs and dyspnoea were higher in Tolaram and Parel compared to Dadar and Telecom. Also, bronchitis, tuberculosis, cardiac diseases, and restrictive lung diseases were more prevalent among subjects of Parel and Tolaram Nagar as compared to the other two localities.

A 1978 study in Chembur examined 586 males and 536 females living near fertilizer and chemical factories and thermal power stations. Automobile traffic added to the pollution in this, area. To check for the effect of increased pollution, a cross-sectional study was conducted in 1990 on:

- 409 subjects (161 males and 248 females) of a community near the fertilizer factory;
- 342 subjects (144 males and 198 females) of a community about 2 kilometers away from the factory; and,
- 341 subjects (167 males and 174 females) in another community devoid of industrial pollution.

The results showed that the incidence of respiratory symptoms like coughs and dyspnoea had increased by 8 to 13 percent. Further, the incidence of bronchitis (4.5 to 7.6 percent), cardiac diseases (4.3 to 6.7 percent), and other chest disorders (0.1 to 4.4 percent) had also risen between 1978 and 1990 (Table 3.2). It was also observed that different respiratory symptoms and cardiac diseases, respiratory tract infection, and skin allergy were about 5 to 10 percent higher among people of the communities near the factory. The lung functions of study subjects in both these communities were about 5 to 8 percent lower than the subjects of the control community.

In 1990, an awareness survey was conducted in communities near the chemical and fertilizer factories of Chembur. More than 95 percent of the population complained of strong smells that caused discomfort. The incidence of symptoms declined as distance from the chemical factories increased. For example, 80 percent of the sample complained of headache and eye irritation in Maharashtra State Electricity Board (MSEB) colony, just about 100 meters away from the Oswal Agro chemical factory; 73 percent reported similar symptoms in Railway Colony, about 500 meters away from the Rashtriya Chemicals and Fertilizer, Ltd. factory; as did 50 percent in Tolaram Nagar about 2 kilometers away from the Rashtriya Chemicals and Fertilizer, Ltd. factory.

In 1980–1981, a similar study of food and water was carried out in two middle-class communities in central Bombay. A community of 552 subjects near a wholesale vegetable market with fairly dirty ground conditions and bad ventilation was compared to 671 subjects in a comparatively clean location. The results suggested that contamination of the food supply was due to unhygienic handling, and water supply contamination was due to sanitary effluent. The prevalence of respiratory diseases was about 3 to 4 percent higher in communities near the market, compared to the control site.

From 1986 to 1988, a three-year prospective study was conducted of two high-density traffic areas of Bombay (King Circle and Peddar Road) with 383 subjects (164 males and 219 females) from King Circle, and 473 subjects (241 males and 232 females) from Peddar Road. Observed mean levels of CO were 9 to 18 PPM, reaching a maximum of 63 PPM in these two areas, contributing to a high incidence of coughs, bronchitis, and cardio-respiratory disorders. A significant correlation was also observed between SPM levels, the frequency of colds, attacks of breathlessness, and NO₂ and SPM levels. The prevalence of cardiac diseases had increased in these localities (Table 3.2).

		Pollutant Levels			Symptoms			Disorder Prevalence			
Locality	Year	SO ₂	NO ₂	SPM	Cough	Colds	Dyspnoea	Bronchitis	TB	Cardiac	Other chest
Chembur n=1122	1978	51	12	196	3.0	21.9	5.9	4.5	0.2	4.3	0.1
Chembur n=751	1990	12	53	372	16.2 •	10.9	13.1	7.6	0.5	6.7	4.4
n=341 Telecom (control)	1990	18	40	231	7.4	5.6	7.6	1.2	0.3	2.1	6.5
Parel n=1008	1978	103	16	242	5.4	17.3	7.9	4.5	0.9	6.8	1.0
Parel n=757	1979	90	25	264	6.1	7.6	6.4	5.0	0.3	7.6	*
Parel n=676	1980	*	*	*	11.6	7.5	6.5	*	*	*	*
Parel n=349	1986	37	52	326	6.9	29.0	17.0	2.1	0.9	4.0	4.6
Parel n=297	1987	29	53	339	12.1	13.5	12.5	3.3	1.3	10.1	6.7
Parel n=297	1988	38	59	323	5.7	22.0	14.7	4.1	0.0	11.0	5.3
Parel n=492	1991	29	54	304	7.9	11.6	10.8	2.4	0,6	4.1	*
Peddar Road n=473	1986		*		11.0	14.0	13.0	5.7	2.3	5.6	9.1
Peddar Road n=291	1987		11		8.0	12.0	9.0	3.0	1.0	7.0	5.0
Peddar Road n=236	1988		*		5.1	9.7	9.8	3.0	1.7	7.2	3.0
ł			CO (PPN	A)				••••••••••••••••••••••••••••••••••	*****	********	******
King Circle n=383	1986		*		9.9	16.0	17.0	4.1	0.8	7.0	5.5
King Circle n=283	1987		13.3		7.0	12.0	9.0	2.0	1.0	11.0	1.0
King Circle n=210	1988		*		8.1	17.6	10.4	3.3	0.9	8.6	1.9
Quarries		S	SPM (μg/ι	m ³)				••••••••••••••••••••••••••••••••••			
Amboli n=506	1988		2,016		24.0	*	22.6	1.5	0.9	1.1	
Kandivli n=587	1991		618		8.5	9.7	7.2	2.6	0.3	1.5	
Check Posts							*******				•••••
Dahisar n=211	1991				14.2	6.6	7.6	6.2	*	1.9	
BPH n=198	1991				8.6	7.1	8.6	2.5	*	9.1	
	······	SO ₂	NO ₂	SPM				***************************************			
Navy Nagar n=413	1990	6	11	107	8.7	6.3	8.5	2.2	0.4	2.4	

Table 3.2: Summary of EPRC studies along with air pollutant levels

URBAIR-Mumbai

In 1988, 507 subjects (144 males and 203 females) who lived near Amboli quarry where mean SPM level is 2,016 μ g/m³, were studied. A similar study involving 587 subjects (246 males and 341 females) was conducted in 1991 near Kandivili quarry where the mean SPM level is 618 μ g/m³. It was observed that the people living near these two quarries were more affected than the quarry workers. Although the incidence of respiratory symptoms like cough and dyspnoea were higher among workers, the lung functions of residents were about 5 to 15 percent lower than workers. About 10 percent of radiographs of workers showed either vascular markings or nodular shadows.

Dahisar and BPH employees were examined in 1992 to look for the effect of CO gas on carboxyhemoglobin. The study included 211 male employees from Dahisar and 198 male employees from BPH. In addition, another study examined 45 traffic police and 75 vendors working at six traffic junctions in Bombay. The mean COHb levels of non-smokers at Dahisar and BPH check posts was 1.7 percent, and that of traffic police was 2.3 percent. Among check post employees, occupational history showed significant correlation with COHb levels. The traffic junction study showed a significant correlation between ambient CO levels and COHb levels.

Table 3.2 summarizes EPRC studies, along with pollutant levels, incidence of different respiratory symptoms, and prevalence of respiratory diseases. A similar type of study was conducted in Navy Nagar, a comparatively clean area devoid of vehicular or industrial pollution. Table 3.2 shows that, compared to residents of Navy Nagar, the incidence of various respiratory symptoms is higher in communities near quarries, and among traffic police, employees of check posts, and the residential Chembur population near chemical factories. Furthermore, the prevalence of bronchitis and cardiac diseases was significantly higher among traffic police, compared to other localities. Similarly, people living near fertilizer factories or heavy traffic had a higher incidence of bronchitis and cardiac diseases compared to the control area, Navy Nagar.

Table 3.3 shows that lung function levels of Telecom (the control area of Chembur) subjects were higher than Chembur subjects who lived near the fertilizer and other chemical factories. There was no difference observed in lung functions of Parel subjects over the years. Overall, however, Parel residents had significantly worse lung function than that of Navy Nagar subjects (the Bombay control area). Peddar Road and King Circle subjects showed significant deterioration in lung function levels (by 200 to 500 milliliter) in a 1988 study, compared to a 1986 study. Also, BPH and Dahisar check post employees showed low lung function levels compared to Navy Nagar.

				Age Grou	1ps (%)		FV	С	FEV	′ 1
Locality	Year	Sex	1-10	11-20	20-44	45+	7-19	>19	7-19	>19
Chembur	1978	Male	20.5	24.5	34.9	20.1	2.19±0.73	3.20±0.76	1.98±0.64	2.66±0.61
		Female	17.5	24.7	44.2	13.6	1.71±0.51	2.04±0.46	1.61±0.45	1.84±0.62
	1990	Male	22.0	27.2	28.5	40.6	2.64±1.09	3.24±0.88	2.40±1.02	2.82±0.63
		_Female	15.0	18.4	44.8	21.7	2.11±0.59	2.08±0.64	1.97±0.58	1.86±0.63
Telecom (control)	1990	Male	17.4	38.3	26.3	18.0	2.71±1.04	3.31±0.73	2.56±0.97	3.05±0.69
		Female	13.8	27.6	42.0	16.7	2.04±0.59	2.12±0.52	1.94±0.57	1.95±0.54
Parel	1978	Male	20.5	24.5	34.9	20.1	2.11±0.75	3.13±0.60	1.94±0.66	2.62±0.57
		Female	17.5	24.7	44.2	13.6	1.73±0.84	2.02±0.52	1.73±0.81	1.77±0.45
	1986	Male	14.2	25.9	37.7	22.2	*	3.39±1.10	*	2.87±0.95
•		Female	8.1	15.1	47.8	29.0	*	2.59±0.40	*	1.90±0.40
	1991	Male	17.6	29.2	33.8	19.4	2.45±0.89	3.05±0.72	2.27±0.86	2.63±0.63
		Female	14.5	18.1	39.9	27.5	1.94±0.46	2.00±0.43	1.80±0.44	1.77±0.44
Peddar Road	1986	Male	16.6	18.3	45.6	19.5	*	3.36±0.57	* * *	2.84±0.53
		Female	15.5	15.1	42.2	27.2	*	2.27±0.40	*	1.96±0.36
	1988	Male	17.2	28.0	30.1	24.7	2.56±1.02	2.84±0.57	*	2.61±0.57
		_Female	11.9	22.4	37.1	28.7	1.82±0.49	1.83±0.37	*	1.74±0.34
King's Circle	1986	Male	14.6	20.7	34.8	29.9	*	3,34±0.65	*	2.88±0.55
		Female	15.5	11.9	40.8	32.4	*	2.25±0.72	*	1.62±0.45
	1988	Male	17.1	29.3	26.8	26.8	2.75±0.81	2.45±0.45	*	2.23±0.46
	·	Female	11.7	18.8	38.3	31.3	2.13±0.64	1.96±0.36	*	1.78±0.35
Kandivli	1988	Male	7.7	41.5	42.3	8.5	2.67±0.57	3.41±0.79	2.45±0.53	2.97±0.77
		Female	2.9	29.3	55.7	12.0	1.78±0.42	2.20±0.52	1.64±0.40	1.95±0.49
Navy Nagar	1990	Male	11.3	40.5	36.9	11.3	2.87±0.91	3.78±0.58	2.69±0.89	3.39±0.56
		Female	4.7	21.5	64.9	8.9	2.22±0.65	2.49±0.86	2.12±0.59	2.23±0.84
Locality			Age Groups (%)			FVC		 FEV1		
Check Posts	Year	Sex	15-25	26-35	36-45	45+	Non-smoker	Smoker	Non-smoker	Smoker
Dahisar	1991	Male	13.3	37.4	37.4	11.8	3.20±0.64	3.22±0.78	2.28±0.60	2.76±0.65

Table 3.3: Gender distribution of age and summary of lung function levels

,

MORTALITY

Health impacts are divided into mortality (excess deaths) and morbidity (excess illness). Mortality and morbidity numbers are derived from air quality data using dose-effect relationships. In principle, such relations are found by statistically comparing death rates and morbidity in urban areas, with different air quality. Appropriate dose-effect relations have been estimated by Ostro (1994). Admittedly, these dose-effect relations are derived from studies of U.S. cities and it is speculative to apply them to Bombay. However, until specific dose-effect relations for tropical conditions are derived, Ostro's relations are useful for preliminary estimates. Further, while it is clear that indoor air pollution such as that caused by cooking, can also damage health, this analysis was limited to outdoor air pollution.

Mortality due to PM_{10} . The relationship between air quality and mortality, where P equals the number of people exposed to a specific concentration; c equals the crude rate mortality (0.0076 in Bombay); and PM_{10} stands for its annual average concentration (µg/m³), can be represented as follows:

Excess death = $0.00112 \times ([PM_{10}] - 41) \times P \times c$

The PM_{10} benchmark is 41. Above this benchmark, mortality increases corresponding to the WHO guideline of 75 µg/m³ TSP (PM_{10} /TSP ratio of 0.55) on a yearly basis (section 2.1). From this relation and the data presented in Chapter 2 (also Figure 4.1), it was estimated that the excess mortality due to PM_{10} (and TSP) was about 2,765 cases and of an exposed population of 9.8 million.

MORBIDITY

Inhaling particles can lead to chronic bronchitis, restricted activity days, respiratory diseases that require hospitalization, emergency room visits, bronchitis, asthma attacks and respiratory symptoms days. The estimated impact of PM_{10} on health in Bombay is illustrated in Table 3.4.

The following dose-effect relationships for impact estimation are described in the URBAIR Guidebook

• Change in yearly cases of *chronic bronchitis* per 100,000 persons is estimated at 6.12 per $\mu g/m^3 PM_{10}$. The total number of yearly cases of chronic bronchitis per 100,000 persons is thus 6.12 x ([PM₁₀] - 41).

Table 3.4: Estimated impact of PM_{10} air pollution on health in Bombay, 1991

Type of health impact	Number of cases (thousands)
Chronic bronchitis	20
Restricted activity days	18,680
Emergency room visits	76
Bronchitis in children	190
Asthma	741
Respiratory symptom days	60 (millions)
Respiratory hospital admissions	4

Change in *restricted activity days* per person, per year, per μg/m³ PM₁₀ is estimated at 0.0575. If the WHO standard is used, the change is 0.0575 x ([PM₁₀] - 41).

- Change in respiratory hospital diseases per 100,000 persons is estimated at 1.2 per μg/m³ PM₁₀. Using the WHO standards, respiratory hospital diseases per 100,000 persons are estimated at 1.2 x {[PM₁₀] 41).
- Number of *emergency room visits* per 100,000 persons is estimated at 23.54 per μ g/m³ PM₁₀, and the total number per 100,000 persons at 23.54 x ([PM₁₀] 41).
- Change in the annual risk of *bronchitis* in children below 18 years is estimated at 0.00169 x ([PM₁₀] 41). Approximately 35 percent of the total population is under 18 years of age. The change in daily *asthma attacks* per asthmatic person is estimated at 0.0326 x ([PM₁₀] 41). The number of asthmatic persons is estimated at 7 percent of the population.
- Respiratory symptoms days per person, per year, are estimated at $0.183 \times ([PM_{10}] 41)$.

VALUATION OF HEALTH IMPACTS

Mortality. Placing a monetary value on mortality is admittedly debatable. Many argue that such a valuation cannot be made ethically. By deleting mortality, however, we would seriously underestimate the total damage that air pollution causes.

A case (single instance) of mortality can be valued in two ways. The first is based on "willingness to pay," the other on "income potential." The "willingness to pay" approach is described in detail in the *URBAIR Guidebook*. In the United States a value of about US\$3 million per statistical life is often used. Although such a valuation is not readily transferable from one country to another, an approximation can be derived by correcting the U.S. figure by a factor of purchasing power parity in India, divided by the purchasing power in the United States. This factor is 970/21,900 = 0.044 (Dichanov, 1994). At an exchange rate of Rs 1 = US\$0.032, this results in a value of Rs 4.25 million per statistical life in India.

The second approach is based on income lost income due to mortality. The value of a statistical life (VSL) is then estimated as the discounted value of expected future income at the average age. If the average age of population is 24 years and the life expectancy at birth is 62 years, the VSL formula is:

$$VSL = \sum_{t=0}^{38} w / (1+d)^{t}$$

In the formula, w = average annual income, and d = the discount rate (Shin et al., 1992). In this approach, the value of persons without a salary (e.g. housewives) is taken to be the same as the value of those with a salary. If we estimate the daily wage in Bombay at Rs 75 per day (average, chief wage earner) and assume 200 working days in a year, using d = 5 percent as the discount rate, the value of a statistical life is VSL = Rs 250,000. For comparison, the highest compensation in the Bhopal case amounted to Rs 200,000. Considering both approaches to the valuation of premature death, the cost figure associated with increased mortality due to PM_{10} air pollution in 1990 ranges from Rs 0.7 billion to Rs 12 billion.

one-third of average wage) was

valuation of illness is presented	Table 3.5: Valuation of health impacts						
in Table 3.5. It presents	Type of health impact	Specific costs Rs	Total costs million Rs				
estimated health cost figures	Effects of PM ₁₀		·				
and the evolving total costs, by	Mortality	4.25 million (US WTP)	11,753				
combining the figures for mortality and illness.		250,000 (lost salary)	691				
	Restricted activity day	28	523				
	Emergency room visit	260-310	22				
	Bronchitis (children)	320	61				
Restricted activity days. Ostro's	Asthma attacks	1,000	741				
(1992) calculation of 20	Respiratory symptoms day	20	1,189				
percent work loss (valued at	Hospital admission	9,646	38				
average wage), and 80 percent	Chronic Bronchitis	161,000	3,201				
lower productivity (valued at	Total Cost		18,219				

used. The average wage is about Rs 60 per day. The estimate is thus: $0.2 \ge 0.2 = 0.2 = 0.2 \ge 0.2 = 0.2 = 0.2 = 0.2 \ge 0.2 = 0.2 = 0.2 = 0.2 = 0.2 = 0$

Emergency room visit. Private hospitals charge Rs 100 to 150 for an emergency room visit. This includes the doctor's bill, and medication. To this is added the cost of the loss of one work day (Rs 60), cost of transport ($2 \times Rs$ 50), resulting in a total of Rs 260 to 310.

Respiratory symptoms day. No surveys on willingness to pay to prevent a respiratory symptom day have been carried out in India. Therefore it is difficult to make a reliable valuation. Considering the valuation in Jakarta (US\$2), India's lower per capita income, and the restricted activity days valuation above, an estimate of Rs 20 seems appropriate.

Cases of *bronchitis in children* may be high because doctors often don't want to use the more ominous word "asthma". The duration of bronchitis averages 13.2 days, and is valued at respiratory symptoms day (Rs 20). Ostro's figure of 2 days of a parent's restricted activity, valued at Rs 28 per day, was used. The total loss is calculated as follows: $13.2 \times 20 + 2 \times 28 = Rs$ 320.

A severe *asthma* attack lasts on average 9.1 days. The daily hospital fee in private hospitals is about Rs 1,000; to this we add 9.1 lost working days. The total for a severe attack is thus $9.1 \times (1,060) = \text{Rs } 9,646$. For a milder attack, the same figure as for an emergency room visit (Rs 260 to 310) could be used. For still milder attacks only the medication costs apply; aerosols and tablets cost approximately Rs 200. Depending on the severity, the cost of an asthma attack can range from Rs 200 to Rs 9,646. Considering that milder attacks are more frequent, the average valuation is estimated at Rs 1,000 per attack.

Respiratory hospital admission. The valuation is the same as for a severe asthma attack (Rs 9,646).

Chronic bronchitis becomes more serious as people age. Elderly people and younger smokers are especially vulnerable to chronic bronchitis. The average age at which people become chronically ill with bronchitis is 35 years. Average life expectancy at birth is 62 years. It is estimated that the number of work loss days per year is about 50. Work days lost are valued at Rs 60 per day,

resulting in Rs 46,000 if discounted at 5 percent. To this we add the costs of hospital visits, which are estimated at 0.5 times per year. Such a visit would average 13.1 days at a fee of Rs 1,000 per day. Discounted at 5 percent, total hospital costs amount to Rs 100,000. Finally, yearly expenditure on medication is about Rs 1,000—totaling a discounted amount of Rs 15,200 over 27 years. The valuation of a case of chronic bronchitis is thus Rs 46,000 + Rs 100,000 + Rs 15,000 = Rs 161,000.

CONCLUSIONS

Air pollution damages human health, vegetation and crops, buildings and monuments, ecosystems and tourism. Assessing these impacts is hampered by incomplete and missing data. Nevertheless, the mortality and morbidity resulting from excess concentrations of PM₁₀ have been estimated using dose-effect relationships derived for U.S. cities. The lack of data for airborne lead prevented an estimate of its health impact, which includes increased mortality, IQ point loss in children, hypertension, and coronary heart disease.

It is difficult to estimate the monetary value of a lost life. The value of a statistical life is Rs 250,000; a figure estimated by the human capital approach (earnings lost due to premature death) is used in this analysis. Costs of morbidity (illness) are relatively more reliable. They consist of foregone wages, and medical treatment costs. This valuation of damage to human health tends to underestimate the suffering due to illness or premature death.

Table 3.6 provides preliminary information for calculating the benefits of measures to reduce emissions. Benefits of the emission reduction are estimated by potential health costs avoided by the absolute emission reduction. The table shows also "marginal" benefits from addressing each category of emissions. It appears that addressing emissions from industry is the most effective in terms of benefits per ton of emission reduced. This relates to the high estimated PM_{10}

Source category	Emissions (tons)	Mortality (cases)	Respiratory symptom days (million)	Health costs (Rs million)	"Marginal" benefits (Rs <i>million per ton</i>
All source reference		2,765	60	6,467	
Industry	706				
Domestic	6,443		 1141 (±1) 	Section Section	
Traffic	6,286				
Reduction of industry sources		Avoided	Avoided	Avoided	Avoided
25%	176.5	64	1.4	151	0.85
50%	353.0	121	2.6	284	
Reduction of domestic sources					•
25%	1610.75	466	10	1091	0.34
50%	3221.50	971	21	2271	
Reduction of traffic sources		a second and		· · · ·	
25%	1571.50	216	4.6	505	0.67
50%	3143.0	421	9	985	

and the states of the

Table 3.6: Reduction of emissions and related benefits. Situation 1991, 9.8 million inhabitants in Bombay modeling area

Note: Mortality valued according to the lost salary method (see Table 3.5).

52

concentrations near stone crushers. However, considering industry's limited share of total emissions, the scope for improving Bombay's air quality by addressing industrial emissions is small. Not taking into account costs of measures, and only considering the health benefits, domestic emissions followed by traffic emissions should be targeted first.

4. ABATEMENT MEASURES: EFFECTIVENESS AND COSTS

INTRODUCTION

This chapter outlines measures for reducing air pollution in Bombay, and for drafting an action plan that would translate these measures into practice. Information is organized by pollution source category: traffic, large point source power plants, fuel combustion other than in power plants, industrial/commercial sources, and refuse burning and domestic emissions. For the main source categories, characteristics of appropriate measures are described:

- effectiveness in terms of both emission reduction and reduced impacts in the year 1990 (using Table 3.6). On average, 1.35 excess deaths are avoided by reducing 10 tons of PM₁₀. The reference data include: mortality (2,765 due to PM₁₀), number of respiratory symptom days (60 million in 1990), and total health costs (Rs6.5 billion);
- costs (mostly annual costs at the societal level);
- *benefits* estimated by interpolating figures from the Table 3.6;
- policy instruments that might be used to implement measures; and
- term for emissions reduction: short-term (less than 2 years), mid-term (2-5 years), or long term (more than 5 years).

Identifying measures to address traffic emission, for example, is straightforward because the major causes of air pollution are commonly known. Policy measures that are especially cost efficient include: an inspection and maintenance scheme, and the introduction of unleaded gasoline and low-smoke lubricating oil. Other measures with less clear cost-benefit ratios (due to lack of data or methodological problems) are: improving automotive diesel fuel quality; clean car standards; increased consumption of natural gas for automotive and stationary use; and improving the public transportation system.

A similar list of measures addressing pollution sources, other than traffic, was not possible due to lack of information. In particular, refuse burning and cooking with wood, appear to be more important to PM_{10} exposure in Bombay than traffic sources (Table 3.4). The list of measures is derived from the information presented by the local URBAIR working group, the URBAIR Guidebook, and from earlier plans (see Chapters 3 and 6) addressing problems in Bombay.

TRAFFIC

This section describes the effectiveness of abatement measures for reducing emissions and, to the extent possible, the benefits of measures such as:

- introducing unleaded gasoline;
- implementing a scheme for inspection and maintenance;
- addressing excessively polluting vehicles;
- improving diesel fuel quality;
- improving quality of lubricating oil in two-stroke engines;
- switching fuel (gasoline to or LPG/CNG) in the transportation sector, induced by price shifts;
- adopting clean vehicle emission standards; and
- other measures.

Introducing unleaded gasoline

Unleaded		
gasoline	Table 4.1: Introdu	cing low lead and unleaded fuel
addresses the	Effectiveness:	Depending on rate of introduction.
ambient lead	Costs:	Costs at refinery Rs 0.7 to 1 per liter unleaded fuel (corresponding with
problem and is a		Rs 250–360 million—1990
prerequisite for	Benefits:	Unknown in Bombay;
introducing		Unleaded fuel required when catalytic-exhaust gas control is introduced;
strict emission	· · · · · · · · ·	Need to control of benzene and aroma tics, to not offset benefits.
	Instruments/institutions:	
standards, and	Term:	Two to five years.
for the use of an	Target groups:	Oil and gasoline industry.
exhaust catalyst	-	n 1990 were 362 millions liters (Table 1.9), corresponding with Rs. 250–360
(see summary in	million.	

Table 4.1). An

"intermediate" approach is to reduce the permitted lead content of gasoline. Current plans call for reducing the maximum lead content to 0.15 grams per liter. The present level is 0.18 to 0.19 grams per liter for gasoline supplied from Bombay refineries, about 70 percent of the total supply. The remainder has a lead content of 0.56 to 0.80 grams per liter.

Assuming simultaneous introduction of vehicles with catalytic converters, unleaded gasoline would require a separate fuel distribution system that does not mix leaded with unleaded fuel. Retailers usually sell both fuels. Older engines may require leaded fuel because of the lubrication required for their valve seats, or because of its higher RON-number. Unleaded gasoline is widely available in many countries, so technical obstacles should not be a major constraint.

Removing the lead compound in gasoline may require reformulation in order to maintain ignition properties (octane number). This can be done by increasing the aromatics content or adding oxygenated compounds such as MTBE (methyl-tertiary-butyl-ether). Aromatics include benzene, a carcinogenic compound. This is an environmental concern, both due to the evaporation of gasoline (at production, storage and handling) and from the possible increase in benzene in exhaust gases (Tims et al, 1981, Tims, 1983). A limit on the amount of benzene and total aromatics in gasoline is necessary. A decision on the scale of the limit requires data on benzene as it relates to current air quality (AIAM, 1994). Experience in other countries indicates

URBAIR-Mumbai

that this issue can be resolved. It should be noted that catalytic devices effectively destroy benzene in exhaust, so any net outcome in airborne benzene will probably be small. Unleaded gasoline with a high RON-number is usually produced by adding MTBE, which may be imported or produced in India.

Effectiveness. Reduction in emissions is proportionate to the eventual market shares of unleaded and low-lead gasoline and, in case of low-lead gasoline, also to the lead content.

Costs of the measure. Reduced-lead gasoline must be reformulated in order to retain the RON number. The lead is replaced by oxygenated compounds; MTBE is a preferred substitute. These changes increase production costs by Rs 0.7–Rs 1 per liter of gasoline, depending on the local market for refinery products, the required gasoline specifications, and the costs of MTBE (Turner et al, 1993).

Policy instruments and target groups. Lowering the maximum allowed lead content of gasoline is the first step. In countries where gasoline is taxed, unleaded gasoline may be taxed less and leaded fuel taxed more so that the fiscal authority's net yield does not change. The oil industry and gasoline distribution firms will have to produce unleaded gasoline. The oil industry is the main actor in the process (AIAM, 1994).

Term. Since it is relatively simple to produce, unleaded fuel can be commonly available within 5 years.

Improving diesel quality

Diesel's ignition and combustion properties are important parameters for PM_{10} emissions from diesel engines (Hutcheson and van Paassen, 1990, Tharby et al, 1992). Its volatility (boiling range), viscosity, and cetane number (an indicator of its ignition properties) determine these properties and, consequently, PM_{10} emissions. A minimum cetane number of 42 is

Table 4.2: Improving diesel fuel quality

Effectiveness:	250 tons PM ₁₀ (1990).				
Costs:	Rs 0.3 per liter (about Rs 300 million annually).				
Benefits:	Less mortality, 35; less RSD, 0.75 million; avoided health costs Rs 80 million; reduction of				
	SO ₂ emissions.				
Instruments/institution:	Energy authorities.				
Terms:	Two-five years.				
Target groups:	Petroleum industry.				

required in Bombay for automotive purposes. In the United States, Western Europe, and Japan the corresponding quality varies from 48 to 50. Another factor is the presence of detergents and dispersants in diesel fuels. These additives keep injection systems clean and have discernible efficiency effects (Parkes, 1988). The Indian automobile manufacturing industry advocates an improvement in fuel quality (AIAM, 1994). See summary in Table 4.2. *Effectiveness.* It is assumed that an improvement in fuel properties, as expressed by an increase in the cetane number² and the addition of detergents, results in a 10 percent or about 230 ton reduction (1990) in PM_{10} emissions (AIAM, 1994, Mehta et al, 1993). A reduction in the sulfur content of fuel would not result in a proportional decline in SO₂ emissions, it would also lead to a fall in PM_{10} emissions. This is because a part of the PM_{10} particle consists of sulfates.

Costs. The cost of improving diesel fuel, in particular increasing the cetane number, is determined by the oil-product market, the refinery structure (capacity for producing light fuels/visbreaking/hydrotreating etc.), and Government. The latter eventually determines the at-the-pump-price for fuels.

The cost of reducing the sulfur content of diesel fuel stems from the extensive desulfurization that must occur at the refinery. The costs for a reduction from 0.7 percent to 0.2 percent sulfur are about Rs 0.3 per liter. Combustion of sulfur in diesel fuel also leads to the formation of corrosive sulfuric acid. Therefore, reducing the sulfur content also lowers the costs of vehicle maintenance and repair.

Policy instruments and target groups. Improving the quality of diesel fuel should be a part of India's energy policy. The oil industry should take the necessary steps to expand its capacity for producing better quality diesel fuel.

Term. The typical period for adjusting refineries (such as extension of visbreaking capacity) is about 3 to 5 years.

Introduction of low-smoke lubricating oil for two-stroke, mixed-lubrication engines

Bombay traffic has a large share of motorcycles and autorickshaws, both equipped with two-stroke mixed-lubrication engines. These vehicles cause about a third (2,700 tons) of PM_{10} emissions from traffic exhaust. A substantial fraction of the particles emitted by these vehicles are microdroplets of unburned

Table 4.3: Low-smoke lubricating oil for two-stroke, mixed-lubrication engines

Effectiveness:	450 tons PM ₁₀ (1990).
Costs:	Rs 30 million.
Benefits:	Less mortality,65; less RSD, 1.5 million; avoided health costs, Rs 150 million.
Instruments/institution:	
Term:	Two years.
Target groups:	Petroleum industry.

lubrication oil. According to Shell Oil Company (private communication, 1993) the lubricating oil used in most Southeast Asian countries is cheap and has poor combustion qualities. See summary in Table 4.3.

² The physico-chemical properties—as expressed in the **cetane** number—of diesel fuel influence the magnitude of the **TSP** emissions of diesel-powered vehicles. The relation between these properties (such as volatility and viscosity) and the production of TSP in a diesel motor is not straightforward; the characteristics of the diesel motor, its load and its injection timing plan are other important parameters.

URBAIR-Mumbai

Effectiveness. It can be assumed that a better-quality lubrication oil will decrease emissions by half (1,350 tons reduction).

Costs. Annually, 1,000 cubic tons of poor quality lubricating oil is consumed. Introducing better oil is estimated to double the expenditure on lubricating oil. A rough estimate of the total costs of low-smoke oil is Rs 30 million.

Policy instruments and target groups. A standard should be set for the quality of lubricating oil. The oil industry and lubricating oil importers are the main target groups.

Implementation of an inspection and maintenance scheme

Effectiveness. Maladjusted fuel injection systems or carburetors, and worn-out motor parts present a threat to traffic safety, increase fuel consumption and thus costs, and lead to traffic emissions. The semi-annual inspection and maintenance of vehicles will probably result in a substantial reduction of PM_{10} , VOC, and CO emissions. An accurate assessment of emission

Table 4.4: Implementation of an inspection and maintenance scheme Effectiveness: 35% reduction, 800 tons PM₁₀. Costs: Bs 150–300 million. Maintenance costs are expected if

Ellectiveness.	
Costs:	Rs 150–300 million. Maintenance costs are expected to be
	offset by improved fuel efficiency.
Benefits:	Less mortality, 110; less RSD, 2.5 million;
	avoided health costs, Rs 250 million; reduction of CO, VOC
	emissions, improvement of road safety (if roadworthiness is
	included in the scheme).
Term:	Two to five years.
Target groups:	The scheme could be carried out by the private sector.

reduction, associated with an inspection and maintenance scheme, requires statistical data about emission characteristics of the Bombay vehicle fleet relative to its state of maintenance. This information is not available.

The proposed inspection and maintenance scheme, would lead to 35 percent reduction in tail pipe emissions of PM_{10} , VOC, and CO. This is in line with an estimate by the Association of Indian Automobile Manufacturers (AIAM, 1994) and the World Bank estimate for Manila (Mehta, 1993). See summary in Table 4.4.

Costs of an inspection and maintenance scheme. The present capacity for vehicle-emission testing is insufficient. In order to circumvent capacity problems in government agencies, testing can be done by private firms⁴. Such a scheme, involving all vehicles, may have a total cost of approximately US\$5-10 million or Rs 150-300 million for vehicle owners (US\$2-5 or Rs 60-

⁴ Such a scheme might include the following actions:

private firms would be licensed to carry out inspections.

authorities would spot-check the firms to oversee inspections.

⁻ vehicles that pass the test would get a sticker valid for a specific period, and drivers would show a test report on request.

vehicles would be spot-checked.

150 per test⁵, 1.5 million vehicles, environmental inspection part of roadworthiness test). Better engine performance and the resulting reduction in fuel costs would offset the maintenance cost.

Term. An inspection and maintenance scheme can be implemented within 5 years.

Address the problem of excessively polluting vehicles

Almost a quarter of all vehicles are estimated to emit excessive exhaust. These vehicles are badly maintained, use worn-out engines, or have maladjusted engine controls. A program focusing on these vehicles would result in an emissions reduction equaling 400 tons of PM₁₀ (15 percent reduction in total tailpipe

Effectiveness:	400 tons PM ₁₀
Costs:	
Benefits:	Less mortality, 50; less RSD 1.2 million; avoided health costs, Rs 125 million.
Instrument/institution:	Motor Vehicles Act (1988) and Environment Protection Act (1986), second amendment Rule (1990), Ministry of Surface Transport and State Transport Department.
Term:	
Target groups:	Traffic authorities/Vehicle owners.

emissions). This measure may include a system of spot-checks of vehicles on the road, in combination with a penalty system. Awareness campaigns would enhance the feasibility of such a measure. See summary in Table 4.5.

Fuel switching in the transportation sector

Using gaseous fuels such as LPG (Liquid Petroleum Gas) and CNG (Compressed Natural Gas) is an option for addressing air pollution from PM₁₀ emissions from vehicles. Liquid LPG is widely used in areas where supply is abundant and fuel taxes favor its use. The use of LPG or CNG requires adapting the engine and its

 Table 4.6: Introduction of CNG to replace 50% of gasoline

 consumption (1990 situation) in passenger cars

Effectiveness:	200 tons PM ₁₀ .
Costs:	Costs for vehicle owner depends on the price differential
	between gasoline and CNG (natural gas is cheaper).
Benefits:	Less mortality, 25; less RSD, 0.6 million; avoided health
	costs, Rs 75 million
Trade-off:	Increased emissions of methane (greenhouse gas), the
x	main constituent of natural gas.
Instruments/institution:	Department of Energy.
Term:	
Target groups:	Energy authorities.

controls. Such a switch will only pay off when LPG or CNG prices are lower than those of gasoline or diesel. CNG has already been introduced as an automotive fuel in Bombay. The lack of filling stations is a major impediment. See summary in Table 4.6.

⁵ Order of magnitude. Cost in Manila estimated at US\$3. Cost in the Netherlands (including roadworthiness) is US\$30.

LPG can be used as a clean alternative to both gasoline and diesel. Its advantage over CNG is that it can be more easily transported in tanks, and its energy density (energy per volume of fuel) is higher, resulting in better mileage. Its market price is a disadvantage.

Effectiveness. CNG is used as a fuel substitute in four-stroke gasoline cars. It can effectively reduce PM_{10} emissions by 90 percent. If all gasoline cars had been modified to use CNG in 1990, PM_{10} emissions would have been less by 400 tons.

Costs. Whether these investments are made depends ultimately on the price difference between CNG and gasoline. Wider use of CNG requires investments in natural gas distribution (connection filling stations with the piping grid); compressors at the filling station; and conversion kits for the vehicles.

Policy instruments and target groups. The main bottleneck for introducing CNG and LPG seems to be the lack of filling stations, which is in turn relates to a limited gas distribution system. Connecting a filling station to the gas distribution grid requires large investments. A scheme for subsidies or cheap loans might facilitate this. The viability of the scheme will increase as use of natural gas in other sectors increases, thus justifying extending the distribution grid. The country's energy policy will have a bearing on this measure.

Adoption of clean vehicle emission standards

Many countries have adopted standards for permissible emissions from vehicles. These standards require that vehicles with fourstroke gasoline engines be equipped with exhaust gas control devices based on the use of threeway catalysts (closed-loop

Table 4.7: Adoption of clean	vehicle standards.	Gasoline passenger
cars and vans		

Effectiveness:	80% effectiveness per (gasoline) vehicle (for 1990 in total 400 tons).
Costs:	Rs 3,000 per vehicle (including costs of unleaded fuel). In total, Rs 750 millions annually.
Benefits:	Less mortality, 50; less RSD, 1.2 million; avoided health costs, Rs 125 million (hypothetical situation in 1990). Reductions of emissions of lead, CO, NO_x and VOC are the justification for introducing these systems, in other countries.
Instruments/institution:	
Term:	Two to five years. Tied to the renewal of the car fleet.
Target groups:	Oil industry — the first move is to make unleaded fuel available, vehicle importers, vehicle manufacturers.

systems). A few countries, including Austria and Taiwan, have also set standards for motorcycle emissions, requiring two-stroke engine-powered vehicles to be equipped with open-loop catalysts. Such devices control VOC, PM_{10} emissions, and CO, but not NO_x . See summary in Tables 4.7 and 4.8.

Diesel-powered vehicles are also subject to regulations. The emission requirements are met by adjusting the motor design. Tailpipe emission treatment may also be used, and existing buses retrofitted with new equipment. If the last method is employed, the diesel must be of a much better quality than is presently used in Bombay (sulfur content below 0.02 percent). This type of standard is now being introduced in some parts of the world. The catalyst technology uses unleaded gasoline, the sulfur content of which should be less than 500 PPM. Therefore, introducing such standards requires infrastructure for producing and distributing unleaded gasoline⁶.

tricycles	
Effectiveness:	80% effectiveness per vehicle (for 1990 in total 750 tons)
Costs:	Rs 230 per vehicle (including costs of unleaded fuel). In total, Rs 600 million
Benefits:	Less mortality, 100: less RSD 2.4 million; avoided health costs, Rs 250 million (hypothetical situation in 1990). Reductions of emissions of lead, CO, NO_x and VOC are the main justification for introduction of these systems in other countries.
Instruments/institution:	·
Term:	Two to five years. The result of such measures is the renewal of the fleet.
Target groups:	Petroleum industry, vehicle importers, vehicle manufacturers.
Notes Oten deade in alude	

 Table 4.8: Adoption of clean vehicle standards for motorcycles and tricvcles

Note: Standards include two-stroke engines, either requiring catalytic converters or fourstroke engines.

Effectiveness.

Catalytic devices for

treating exhaust gases require the use of unleaded gasoline. Thus such devices not only result in cleaner emissions but also in a reduction in lead pollution. With closed-loop catalytic treatment of exhaust gases (three-way catalysts) from gasoline-engine vehicles, emissions of NO_x , CO and VOC are reduced by about 85 percent. In addition lead emissions are reduced by 100 percent, as unleaded fuel is a prerequisite for this type of standards.

Open-loop catalytic treatment of exhaust gases from two-stroke motorcycles reduces CO, VOC, and PM_{10} (oil mist) emissions, by as much as 90 percent. Successful use of these catalysts also requires unleaded gasoline. An alternative is using well designed and adequately maintained four-stroke engines. A similar emission reduction can be obtained by following this approach.

Costs. The cost of closed-loop catalytic treatment of exhaust gases stems from the increased purchasing costs of vehicles. In the United States, this increase averages about US\$400, ranging from US\$300 to \$500 (Wang et al, 1993). While catalytic devices have minor adverse effect on fuel economy, this cost is compensated by an increase in the life-time of replacement parts such as the exhaust system. The total annual cost per automobile is estimated at US\$100 (US\$50 depreciation per car and US\$50 extra fuel costs) or Rs 3,000.

The cost of open-loop catalytic treatment of exhaust gases of two-stroke motor cycles is related to increased equipment costs. Benefits include lower fuel cost due to improved engine operation. Taiwan adopted standards that require the use of open-loop catalytic devices which result in a US\$60 to US\$80 cost increase. This is offset by fuel savings (Binnie & Partners, 1992). Total annual cost is estimated at US\$75 or Rs 230 per vehicle (depreciation plus increased fuel costs). It is assumed that the cost of motorcycles is similar to the cost of four-stroke engines.

The higher price of unleaded gasoline, due to increased production costs and adjustments to the logistic system (modification of pump nozzles) should also be included here. A very rough estimate of the cost is Rs 3,000 annually, per car (Rs 1,500 depreciation of control system, plus a Rs 1,500 increase in fuel costs, depending on subsidies and levies on gasoline).

⁶ A single gram of lead will contaminate the catalyst and render it useless. In addition, lead destroys the oxygen sensor of the fuel injection system.

Due to methodological problems it is not possible to calculate the total cost of introducing this standard in Bombay. However, as explained above, costs can be estimated on a vehicle-by-vehicle basis.

Policy instruments and target groups. The groups involved in introducing "clean" vehicles are:

- petroleum industry, and gasoline retailers (clean cars require unleaded gasoline);
- car and motorcycle industry;
- repair shops/garages (proper skills required to maintain clean vehicles); and
- vehicle owners (must pay the price).

Term. In practice, standards are set only for new cars and motorcycles. It is expensive to equip existing vehicles with the necessary devices. Practically all vehicles currently sold on the world market are designed to be equipped with catalytic converters. This will affect the replacement rate of existing vehicles.

Other options

The United States and the European Union are discussing ways to tighten standards by:

- improving current abatement techniques;
- improving inspection and maintenance, since a small number of maladjusted and worn-out cars cause disproportionately large emissions; and
- enforcing the use of "zero-pollution" vehicles, especially electric vehicles, in downtown areas.

Diesel engines are a bottleneck in decreasing automotive air pollution. This is because treating exhaust from diesel engines is not easy.

Resuspension emission

Resuspension of road dust is clearly a high-priority issue. Unfortunately, there is a lack of quantitative information about control measures appropriate to Bombay. Further analyses should give priority to measures dealing with resuspension. In general, all methods for reducing entrainment should be evaluated and applied. Controlling resuspension of road dust may be the most cost effective way of reducing TSP exposure.

Improving traffic management

Traffic management includes a variety of measures including: traffic control by policemen or traffic lights, one-way streets, new roads, and road-pricing systems. One of the major aims of traffic management is to solve the problem of congestion. Curb-side traffic management may improve air quality⁷, but it may also increase emissions because it usually results in increased use of the transport system. In terms of exposure, traffic management leads to an improvement in the

⁷ Accelerating vehicles, a dominant feature of congested traffic, emit disproportionally large amounts of pollutants.

downtown air quality, and a reduction in road exposure. In terms of total exposure, however, the net result may be small. Improved traffic management may have other environmental benefits such as reduction of noise and congestion. More detailed analysis is needed, but traffic management seems to be a cost-effective policy.

Construction and improvement of mass-transit systems

In BMR, almost 80 percent of passenger trips are made by public transport: 44 percent by bus and 36 percent by suburban trains (Cooper & Lybrand and AIC, 1994). This compares favorably with many other Asian cities. However, the present public transport system is overstretched and inadequate to meet rising demand, resulting in a shift toward the use of private vehicles.

Assessing the costs and effectiveness of measures to improve the Bombay public transport system involves:

- describing a future system appropriate to Bombay;
- appraising the performance of a such system;
- assessing the construction costs;
- specifying the baseline (future situation without such system);
- avoiding emissions;
- calculating non-environmental benefits; and
- designing a scheme to identify costs and benefits to impute to the environmental aspects. The costs of constructing mass-transit systems are high, and projects cannot be justified from

an air pollution point of view alone. However, mass-transit systems have a variety of other benefits, including a reduction in congestion.

LARGE POINT SOURCES

Cleaner fuels in existing power plants. Under special weather conditions, power plants in Bombay may have a significant impact on concentrations. On a yearly average basis they do not contribute much to the air pollution problem. The use of cleaner fuel (low sulfur oil or coal) or natural gas might be contemplated, but the benefits relate to SO_2 or CO_2 emissions that are regional and global.

Other point sources. Furnace oil (residual fuel oil or bunker fuel) with a sulfur content of about 4 percent (by weight) contributes about 75 percent of emissions from large point sources. The obvious measure is to reduce the sulfur content. The order of magnitude of the costs to use 2 percent, instead of 4 percent sulfur fuel, is about Rs 750 million (fuel consumption 200,000 tons annually). As these point sources contribute little to ambient PM_{10} , the estimated benefits are small.

DISTRIBUTED INDUSTRIAL/COMMERCIAL SOURCES

The combustion of furnace oil by small industries is the main source of PM_{10} emissions (source category domestic). This emission is estimated at 300 tons (see Chapter 2). Halving these emissions by using 2 percent sulfur oil would cost approximately Rs 450 million. It would, however, lead to a decline in excess mortality by 22, 0.5 million fewer RSD, and Rs 50 million less in health damage (derived from Table 4.6, reduction of domestic and distributed sources).

REFUSE BURNING AND DOMESTIC EMISSIONS

Refuse burning and domestic emissions, together with resuspension, are the main sources of air pollution in Bombay. Refuse burning can be avoided by extending the public refuse collection system. This may require an increase in municipal taxes, or overall management. Domestic emissions are caused by cooking on traditional stoves or "chullas." These stoves are a major cause of indoor air pollution and pose a special threat to the health of women and children. In addition, they are energy inefficient, have an adverse impact on the overall air quality in the city.

CONCLUSIONS

This chapter describes measures for improving Bombay's air quality, their effectiveness, costs, benefits, implementation, and the institutions and authorities that would be responsible for each of the measures. A comparison of the costs and benefits leads to the prioritization of the measures.

Identifying measures to address traffic emissions is straightforward because the major causes of air pollution are obvious. From a cost-benefit point of view the measures that should receive priority are:

- an inspection and maintenance scheme;
- introducing unleaded gasoline; and,
- introducing low-smoke lubricating oil.

Other measures for which it is difficult to tabulate cost-benefit ratios because of lack of data or methodological problems are:

- improving automotive diesel fuel quality;
- clean car standards;
- increased use of natural gas for automotive and other use, and
- improving the public transport system.

Although other sources of pollution such as domestic cooking with wood, appear to be very important, measures to deal with these are not reported due to a lack of data. Resuspension of road dust constitutes a large part of TSP and controlling it would probably be one of the most cost effective ways of reducing ambient TSP exposure.

5. ACTION PLAN

The following action plan is based on the cost-benefit analysis of various measures that reduce air pollution and the damages that result from it. This plan is based on available data, the shortcomings of which are identified throughout the text. Improving the database is necessary in order to extend the action plan to include additional measures.⁸

The "actions" fall into two categories:

- Technical and other measures that will reduce exposure and damage.
- Improving the database, and the regulatory and institutional basis for establishing an operative System for Air Quality Management in Greater Bombay.

The time frame in which the actions/measures could be implemented and will be effective, is indicated as short (less than 5 years), medium (5 to 10 years) or long-term (more than 10 years).

ACTIONS TO IMPROVE GREATER BOMBAY AIR QUALITY, AND ITS MANAGEMENT

Actions to improve air quality

Actions and measures have been formulated and proposed by the Bombay URBAIR working groups (Table 5.1), and consultants.

Technical measures, to be introduced in the short term, are prioritized in Table 5.2. For most of these measures, the estimated benefits as well as the estimated costs are substantial. Clean vehicle standards for cars and vans are the exception. Lowering the lead content of gasoline is an important measure in

Table 5.1: Meas	sures proposed by the URBA	IR working group
Vehicular pollution:	Exhaust monitoring,	Use of CNG,
	Expiration of PUC Certificate,	Traffic flow,
	Adulterated fuels,	Pedestrian flow,
	High pollution vehicles,	Inspection/maintenance,
	Fuel quality polic (gasoline/diesel).	Mass transit.
Monitoring:	Air quality monitoring,	***************************************
-	Meteorological monitoring,	
	Health monitoring.	
Industrial pollution:	Reporting format,	*****
	Emission factors,	-
	Stone crushers,	
	Waste burning.	
Community sources:	Refuse burning,	Emission inventory,
	Wood burning,	Energy demand,
	Dust resuspension,	Organization.
	Decongestion.	-

It should be noted that the additional road side exposure for commuters and drivers has not been considered in the present analysis. This means that the benefits are underestimated.

· .			a set and a set a set			Time frame	
Abatement measure	Avoided emissions (tons PM₁₀/yr)	Mortality reduction	Reduced RSD (million days)	Annual health benefits (million Rs)	Annual costs (million Rs)	Introduction of measure ^a	Effect of measure
Vehicles							
Unleaded gasoline:	NQ	NQ	NQ	NQ	250-360	Immediate	2-5 years
Low-smoke lub. oil, 2- stroke:	450	65	1.5	150	30	Immediate	2 years
Inspection/	800	110	2.5	250	150-300	Immediate	2-5 years
maintenance:							
Address gross polluters:	400	50	1.2	125	NQ	Immediate	2 years
Clean vehicle					•••••••••••••••••••••••••••••••••••••••		***************************************
standards					ti i serve e		
Cars and vans:	400	50	1.2	125	750	Immediate	5-15 years
Motorcycles and tricycles:	750	100	2.4	240	600 L	Immediate	5-10 years
Improved diesel quality:	250	35	0.75	80	300	Immediate	2-5 years
CNG replace gasoline, 50%:	200	25	0.6	75	NQ	Immediate	5-10 years
Fuel combustion							PT =
Cleaner fuel oil (FO to 2% S):	150	22	0.5	50	450	Immediate	25 years

Table 5.2: Action plan of abatement measures, based on cost-benefit analysis

a: Time frame for starting the work necessary to introduce measure. NQ: Not quantified.

itself as it leads to a reduction in lead concentrations. In addition it is also a prerequisite for clean vehicle standards.

The success of these measures rests with enforcement. It is important to ensure that necessary technical improvements and adjustments such as workshop capacity and capability for adjusting engines, and the availability of reasonably priced spare parts can be assured.

- The action plan incorporates the following measures (as discussed in Chapter 4):
- Introducing unleaded gasoline;
- Improving diesel quality;
- Introducing low-smoke lubrication oil for 2-stroke, mixed lubrication engines;
- Implementing an inspection/maintenance scheme;
- Addressing excessively polluting vehicles;
- Fuel switching in the transportation sector, gasoline to LPG or CNG in vehicles;
- Adopting clean vehicle emission standard;
- Improving diesel quality;
- Improving abatement and other propulsion techniques;
- Improving traffic management;
- Constructing, and improving mass-transit systems; and
- Using cleaner fuel oil:

Table 5.3 lists abatement measures for which cost-benefit analysis has not been performed. These could also be introduced in the short- to medium-term, and would benefit air quality.

		Time fr	ame	
Abatement measure/action		Introduction of measure	Effect of measure	
Vehicles		······································		
Address dilution and adulteration of fuel:		Short term	Short term	
Restrict life time of public UVs and buses:		Short term	Medium term	
Traffic management				
Improve capacity of existing road network:	 improve surface remove obstacles improve traffic signals 	Short term	Medium term	
Extend/develop road network, Improve/eliminate bottlenecks:		Short/medium term	Medium term	
Transport demand management			1886 44 848 844 8 <i>9 8 4</i> 5 8 4 6 8 9 6 6 6 6 6 7 6 8 9 8 9 8	
Improve existing bus and rail system:	 improve time schedules improve junctions/stations make integrated plan 	Short term	Medium term	
Develop parking policy:	 restrictions in central area 	Short term	Short term	
•••••	• parking near mass transit terminals		Short term	
	• car-pooling		Short term	

Table 5.3: Additional measures for short- to medium-term introduction

Table 5.4 lists actions to improve the Air Quality Management System. These apply to:

- air quality assessment;
- assessment of damage and costs;
- the institutional and regulatory framework; and
- building social awareness.

Table 5.4: Actions to in	prove the air qualit	y assessment o	f Greater Bombay
--------------------------	----------------------	----------------	------------------

Air Quality Monitoring:	٠	Improve the ambient air quality monitoring system;
	٠	Upgrade laboratory facilities and manpower capacities;
	٠	Establish, and improve a quality control system; and
	٠	Establish a database suitable for providing air quality information to the public/control agencies/law
		makers.
Emissions:	٠	Improve inventory of industrial emissions;
	٠	Develop integrated, comprehensive emission inventory procedure; and
	٠	Study resuspension on roads.
Population exposure:	٠	Establish appropriate dispersion modeling tools for control strategy in Greater Bombay.

The list of measures proposed by the Bombay URBAIR working group is presented in Table 5.5. Table 5.6 lists additional measures suggested by consultants that are not in the Bombay Working Groups' action plan (Table 5.5). This list includes low smoke lubrication oil for 2-stroke vehicles (already on the market in Bombay), ban of further sales of new 2-stroke motorcycles, and parking

restrictions. The MCGB, MPCB and the Transport Commissioner have presented lists of additional action items. These are presented as Annexes to Table 5.5.

Issue	Action Required	Lead Agency	Cost Estimate (Rs Lakhs)	Time- frame	Priority Estimate
VEHICULAR POLLUTI	ON				
1. Exhaust Monitoring:	Stricter enforcement of existing legal provisions. Compliance to be checked: a) Four wheelers: at annual tax payment; b) Three wheelers: vigilance monitoring; c) Two wheelers: awareness campaign. At all transactions, e.g. Transfer/Hypothecation tax payment, etc.	Transport Dept.	342.81	1 year	
2. Expiration of PUC Certificate	Month of expiration of validity should be prominently displayed on each PUC certificate. This will enable the enforcement agency to detect defaulters.	Transport Dept.			
3. Adulterated Fuels	Increased vigilance to prevent sale of adulterated fuels. Set up a cell to receive complaints and take prompt action. Make public the names/ addresses of retail outlets found guilty.	Oil Cos. BIS			
4. High Polluting	Identify high polluting vehicles (especially	Transport.	*******		**********************
Vehicles	commercial transport vehicles such as	Dept./			
	trucks/tempos, etc.) and levy stiff penalties. Prevent entry of such vehicles into the city by asking for a PUC certificate and by posting staff at entry points.	Traffic Dept.			
5. Policy on fuel	Petrol:	Oil Cos.			
quality -	 (a) Reduce content of lead in petrol to 0.15g/lt; (b) Provide lead free petrol (0.915g/lt.); (c) Use of catalytic converters to be made compulsory for all vehicles; (d) Reduce sulfur content to 0.15% as per US/European standards. 	BIS			
6. Use of CNG	Increase use in taxis/cars. Provide more filling stations. Increase awareness about its use.	GAIL		<i>.</i>	
7. Traffic Flow	(a) Improve traffic speed by ensuring proper repairs/ maintenance of roads. Ensure better utilization of existing road network by clearing roads and footpaths. Ensure that utility	MCGB			
	companies carryout proper resurfacing of roads whenever any digging is carried out. (b) Provide additional sets of signals at	Traffic			
	elevated locations to ensure free flow of traffic.	police			
8. Pedestrian Flow	Provide and maintain footpaths, remove hawkers and other encroachments.		******		*******************

Table 5.5: Categorized action plan for Greater Bombay

issue	Action Required	Lead Agency	Cost Estimate (Rs Lakhs)	Time- frame	Priority Estimate
9. Inspection & Maintenance	Lower time span for fitness certification of vehicles to 10 years from the present limit of 15 years.	Transport	91.0	1 yr.	
	In addition to existing requirement, specify engine performance criteria and establish				
	standard practices for fitness testing.				
·	Appoint/nominate private garages for fitness				
	determination as authorized agencies, or				
	initiate procedure for approval of garages to				
	ensure quality and explore possibility of private				
	agencies checking PUC Certificates.			******	
10. Mass Transit	Improve present Mass Transit facilities.	BMRDA/M			
	Provide additional mode of mass transit that	CGB/			
	will effectively reduce vehicular emissions.	Railways			
MONITORING					
11. Air Quality	(a) Make daily monitoring data publicly				
Monitoring	available				
	(b) Rationalize ambient air quality monitoring	MCGB			
	locations by reducing and/or relocating some				
· · ·	stations to provide increased frequency of				
	monitoring network to provide better coverage				
	of impacted areas. The frequency of				
	monitoring should conform to the CPCB standards				
	(c) Optimize sampling station height and	MCGB			
	identify locations for extended monitoring	MOGD			
	through rapid surveys. Ensure better				
	coordination among monitoring agencies and				
	optimize resource use through sharing				
	monitoring locations. Monitor additional				
	parameters: HC & Pb at 2 locations. Locations				
	to be determined through rapid surveys.				
	Monitoring of PM10 and CO should be carried				
	out regularly.				
	(d) Standardize data collection/analysis	MCGB			
	methods and reporting formats. Provide for				
	better training facilities. Establish procedures				
	for quality assurance. Arrange for data sharing				
	and common processing facilities. Introduce				
	quality audit for monitoring/analysis activities.				
12. Meteorological	Establish meteorological monitoring stations	MPCB			
Monitoring	with automatic recording facility in the city to	Environ.			
	provide data for air quality modeling at four	Dept.			
	locations (Chembur, Central Bombay, Western				
	suburb and Central suburb) as recommended				
	by the expert sub-committee. Procure one				
	SODAR for conducting low level inversion studies.				

Table 5.5: Categorized action plan for Greater Bombay

Ŷ

issue	Action Required	Lead Agency	Cost Estimate (Rs Lakhs)	Time- frame	Priority Estimate	
13. Health Monitoring	Strengthen present health monitoring carried out by KEM Hospital. Provide necessary equipment to other hospitals in Bombay for monitoring health effects of air pollution throughout the city of Greater Bombay.	KEM Hospital				
	Improve and standardize maintenance of records in hospitals. Make arrangements to pool and analyze the gathered data.			•		
	Evaluate indoor air quality by rapid surveys to estimate health damage.	MCGB MPCB	5.0	14 mths	medium priority	
INDUSTRIAL POLLUT	ION					
14. Reporting format	Standardize formats for industrial emission data. Standardize industry specific monitoring/analysis methods as per international procedures. Introduce compulsory quality audit.	MPCB			<u>.</u> *	
15. Emission factors	Create database of fugitive/process emissions	MPCB				
	through rapid surveys of targeted industries to	MCGB				
	establish industry specific emission factors. Change to cleaner fuels.	CPCB	•			
16. Stone crushers	Take punitive action against units that violate environmental laws through better coordination among agencies.	MPCB				
17. Waste burning	Disallow industrial solid, hazardous waste burning by road sides or close to factory premises.		• •			
COMMUNITY SOURCE		0		*********		
18. Refuse burning	Discourage practice of refuse burning on	MCGB	•			
	dumps through stricter vigilance. Conduct special surveys to determine magnitude of the problem and to establish emission factors for	МРСВ				
	Indian conditions.	MCGB/		********************		
19. Wood burning	Increase use of electricity in crematoria. Invite participation of social organizations for increased awareness about need of forest	BMRDA		•		
	conservation and to influence public opinion for change in religious practices. All crematoria should be provided with efficient pyres.					
	Encourage bakeries and other commercial establishments to switch to cleaner fuels. Provide incentives to so the same.	MCGB/ BMRDA				
20. Dust resuspension	Establish contribution of road dust resuspension, road repair activity and construction debris in air pollution problem.	MPCB/ MCGB				
	Remove accumulated dirt from road side.	****			****	

Table 5.5: Categorized action plan for Greater Bombay

2

issue	Action Required	Lead Agency	Cost Estimate (Rs Lakhs)	Time- frame	Priority Estimate			
21. Decongestion	Decongest business areas through entry Levy	MCGB/						
	a toll tax/high parking fees, and area licensing.	BMRDA						
4 1	An entry tax should be high enough to							
	discourage use of private vehicles in busy districts.							
22. Emission inventory	Complete and upgrade emission inventory for	MPCB/		*****************				
·	Bombay for SO ₂ , NO _x , TSP, HC, PM ₁₀ , etc.	MCGB						
23. Energy Demand	Identify energy demand and consumption	MPCB/			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
an an taon an t	patterns for domestic (slum and non-slum) and commercial sectors.	MCGB						
24. Organization	Designate coordinating agency for AQMS.	MPCB/						
	Such an agency should coordinate the	MCGB/						
	operations of concerned Govt./Semi-govt.	BMRDA/						
	agencies; should oversee this action plan's	Transport						
	progress and implementation.	Dept.						
Signatures of	Maharashtra Pollution Control Board (MPCB)							
concerned major	Municipal Corporation of Greater Bombay (MCG	iB)						
agencies:	Environment Department							
	Bombay Metropolitan Region Development Authority (BMRDA)							
	Transport Department							
	Traffic Police							
	Bhaba Atomic Research Centre							

Table 5.5: Categorized action plan for Greater Bombay

Table 5.5: Annex I		
Action	Timeframe Estimate (months)	Concerned Departments
 Improve traffic speed by ensuring proper repairs, and maintenance of roads, and better utilization of available roads through removal of vehicles that have broken down. 	6–12	Traffic & Roads
 Decongest business areas through entry tax/cordon pricing and area licensing. Such entry tax should be high enough to discourage use of private vehicles in busy districts. 	6–12	Traffic & Roads
3. Reduce and/or relocate some stations to provide increased frequency of monitoring and extended monitoring network to provide better coverage of impacted areas.	6–12	Dy. C.E. (C) E.S.P.
4. Monitor additional parameters viz. PM ₁₀ /CO Pb/0 ₃ , optimize sampling station height and identify locations for extended monitoring through rapid surveys. Ensure better coordination among monitoring agencies and optimize resource use through sharing monitoring locations.	6–12	Dy. C.E. (C) E.S.P.
5. Establish meteorological stations with automatic recording facility for air quality modeling data at four locations (Chembur, Central Bombay, Western suburb, and Central suburb) as recommended by expert sub-committee. Procure one SODAR	6–12	Dy. C.E. (C) E.S.P.

for conducting low-level inversion studies.

Action Plan

Table 5.5: Annex I		
Action	Timeframe Estimate (months)	Concerned Departments
 Standardize data collection/analysis methods and reporting formats. Provide for better training facilities. Establish procedures for quality assurance. Arrange for data sharing and common processing facilities. Introduce quality audit for monitoring/analysis activities. 	6–12	Dy. C.E. (C) E.S.P.
7. Strengthen present health monitoring carried out by KEM Hospital. Provide necessary equipment to other Bombay hospitals for monitoring health effects of air pollution. Improve and standardize maintenance of hospital records. Make arrangements to pool and analyze the data.	6–12	Dy. C.E. (C) E.S.P.
 Standardize reporting formats for industrial emission data. Standardize industry specific monitoring/analysis methods. Methods as per international procedure (for MPCB approved laboratories) introduce compulsory quality audit. 	6–12	Dy. C.E. (C) E.S.P.
 Identify target industries to generate database of fugitive/process emissions through rapid surveys to establish industry specific emission factors. 	6–12	Dy. C.E. (C) E.S.P.
 Identify energy demand for domestic and commercial establishment. Quantify consumption of fuels (Wood/Charcoal/Kerosene etc.). Generate adequate database for establishment of emission factors for Indian conditions. 	6–12	Dy. C.E. (C) E.S.P.
 Discourage practice of refuse burning on dumps through stricter vigilance. Conduct special surveys to determine magnitude of this problem and to establish emission factors for Indian conditions. 	6–12	Solid Waste
 Stop unauthorized stone crushing units. Take punitive action against authorized units which violate environmental laws through better coordination among agencies. 	6–12	Dy. C.E. (C) E.S.P.
 Conduct study to establish contribution of road dust resuspension in air pollution problem. Remove accumulated dirt from the roadsides regularly. 	6–12	Dy. C.E. (C) E.S.P.
 Establish contribution of road repair activities and construction debris in air pollution problem. 	6–12	Dy. C.E. (C) E.S.P.
 Conduct rapid surveys to evaluate indoor air quality. Such data will have direct bearing on estimation of health damage. 	6–12	Dy. C.E. (C) E.S.P.
16. Increase use of electricity in crematoria. Invite participation of social organizations for increased awareness about need of forest conservation and to influence public opinion for change in religious practices. All crematoria should be provided with efficient pyres to reduce wood consumption	6–12	Dy. C.E. (C) E.S.P. Eng. M&E
17. Fill data gaps by implementing the projects and actions recommended during the second phase of URBAIR to prepare a comprehensive emission inventory for Greater Bombay. Update inventory to assist authorities in planning strategy for better Air Quality Management	6–12	Dy. C.E. (C) E.S.P.

)

Activity	Action	Cost	Time Frame
1. Standardize data	(1) Standardize analysis methods for pollutants in	50,000	3 months
collection/analysis methods	ambient air;	MPCB-funded	
and reporting formats. Provide	(2) Standardize data collection and reporting formats.		
for better training facilities.	Circulate both to Industrial Association and MPCB,		
Establish procedures for	approved laboratories;	N	
quality assurance. Arrange for	(3) Arrange for data sharing and common processing	3 lakhs	6 months
data sharing common	facilities.		
processing facilities. Introduce	After agency for coordinating the data collection, e.g.:	1 lakh	
quality audit for	MPCB has BWRDA/MPCB is selected earmarked		
monitoring/analysis activities.	facilities like computer hardware & software & related		
	infrastructure will have to be developed.		
	Data supplied to agencies (other than contributors)		
	shall be at nominal charge for genuine use.		
2. Established meteorological	Site selection for establishing meteorological	Capital: 20	
stations with automatic	monitoring stations at four locations.	lakhs	
recording facility in the city to		Recurring: 1	•
provide data for air quality	.*	lakh/yr.	
modeling at four locations		(M&R of	
(Chembur, Central Bombay,	· · · · · · · · · · · · · · · · · · ·	equipment; data	
Western suburb, and Central		collection and	
suburb) as recommended by		processing).	
the expert subcommittee.		Capital: 5 lakhs	
Procure one SODAR for	SODAR equipment installation and operation in	Recurring: 2	
conducting low level inversion	cooperation with experts from Met Dept./BARC	lakhs/ year	
studies.	Frequency of operation: Once a week.		
3. Evaluate indoor air quality by	Project Proposal:	5 lakhs/ year	
rapid surveys to estimate	(1) Select about 100 families of lower income group		
health damage	for first year;		
	(2) Same number of families of middle income group		
	for second year;		
	(3) Same number of families of higher income group		
	for third year.		
	Monitor 40 families/month and cover all every 3		
	months.		
	Cost of monitoring of CO, RPM, PM, SO ₂ , NO _X is		
	about Rs 1,000 per set of samples.		*******
4. Reporting Format	(1) Identify type of industries;	50,000	
	(2) Identify type of pollutants in each with point of	MPCB funded	
	emissions;		
	(3) Standardize methods of monitoring/analysis;		
	(4) Standardize formats for:		
	(i) Utilities,		
	(ii) Process emissions,		
	(iii) Fugitive emissions.		
· · · · · · · · · · · · · · · · · · ·	Circulate to concerned agencies.		

Ė

Table 5.5: Annex II					
Activity		the second se	ction	Cost	Time Frame
5. Identify target industries to	(1) Identify the type of industries & type of emissions;			5 lakhs	3 years
generate database of			o monitor the missions;	CPCB funded	
fugitive/process emissions			of same type with different		
through rapid surveys to	•		ut control equipment and		
establish industry specific		es of control			
emission factors.			n and compilation per type of		
	industry @				
6. Take punitive action against			identify the no. of crushers;	350,000	6 months
units which violate		lection for eac	•		
environmental laws through		area-wise of c			
better coordination amongst			ons/crusher; Approx. 10		1.1
agencies.	persons/day	/ for one mon	th/ward and pay Rs 40/day.		
Table 5.5: Annex III			·····		
Sr. Action	Cost	Timefra		Remarks	
No.	(Rs)	me			
		Estimate	•		
VEHICULAR POLLUTION					
1. Exhaust Monitoring					
Stricter enforcement of existing					
legal provisions.		1 a.			
(1) Four wheelers at annual tax	342.81	1 year	There are 33 lakhs Motor Ve		
payment	lakhs		31 March 1994. Earlier it wa		•
			routinely check exhaust emi		
			Rules 1989 which came into		
			of PUC Certificate has been		
. *			has to check validity of PUC	Certificate, and on	ly randomly check
			exhaust emissions.		
(2) Three wheelers vigilance		· .	Although there is no legal p		
monitoring			the PUC Certificate at the time of acceptance of tax, this is usually		
			done. PUC s are checked w certificate.	hen MVs are inspec	cted for a fitness
(3) Two wheelers awareness			There are six mobile auto po		
campaign			check the PUCs of all Mvs,	•	
(4) At all transactions e.g. transfer,			All offices of MV Departmen		
hypothecation, tax payment, etc.			respect of auto-pollution. Pr		
			exhibited. Publicity is given		
			Instructions are being issue		
			Certificate before any transa	action (transfer, HP/	A etc.) pertaining to
			MV is effected in MV Dept.		A

Sr. Action No.	Cost (Rs)	Timefra me	Remarks
	(,	Estimate	
······································			39 more mobile auto pollution control squads are needed. The details are as under:
			PUC PROPOSED RTO
			SQUADS EXISTING REMAINING
· · ·			OFFICES REQUIRED SQUADS SQUADS
			10 2 x 10 = 20 6 14
			AKTO/Dy.RTO
			<u>OFFICES</u> 25 1 x 25 = 25 0 25
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
			Constitution of one PUC Squad Average Cost (Rs).
			1 Motor Vehicle 300,000
			2 Inspectors of Motor Vehicles 130,000
			1 Driver 34,000
			1 Operator 28,000
			1 Jr. Gr. Clerk 34,000
			1 Petrol Equipment (testing machine) 130,000
			1 Diesel Equipment (testing machine) 225,000
· · · · · · · · · · · · · · · · · · ·			Total Average cost of one PUC squad 879,000
			Total cost for 39 PUC squads 342.81 lakhs
2. Expiration of PUC Certificates			Transport Commission's Office has already initiated new PUC
Month of expiration of validity			sticker scheme. Under this scheme sticker with digit of month
should be prominently displayed on			showing validity of PUC is displayed on Motor Vehicle. These
PUC Certificate. This will enable the			stickers are issued by Authorized Pollution testing stations along
enforcement agency to detect			with PUC certificates. With this scheme it will be possible to check
defaulters.			more vehicles with limited staff.
			Comparative Figures
	·		Before introduction After introduction of
			stickers (1–5-93 to stickers (1-5-94 to
			30-11-93) 30-11-94)
			Mvs. Mvs. Mvs. MVs. Checked Detected Checked Detected
			Checked Detected Checked Detected 108,850 8,228 267,778 11,912
3. High Polluting Vehicles	**************	******	As per legal provisions, in case a vehicle is found without PUC
dentify high polluting vehicles			Certificate, seven days show cause notice is issued, directing the
especially commercial vehicles			vehicle owner to produce the PUC Certificate. In case of the
such as truck/tempos, etc.) and levy			owner's non-response, the court imposes a penalty of Rs 1,000. Fo
stiff penalties. Also prevent entry of			a second offense, the fine is Rs 2,000, and the vehicle cannot
such vehicles into the city by			operate on the operate pending a PUC certificate. Non-production
costing staff at entry points.			valid PUC certificate at the time of checking is punishable under
			agetion 477 with fing up to Do 100 for first offense, and up to Do 20

section 177 with fine up to Rs 100 for first offense, and up to Rs 300

for subsequent offenses.

)

e

Table 5.5: Annex III Sr. Action No.	Cost (Rs)	Timefra me Estimate	Remarks
4. Inspection and Maintenance Lower time span for fitness certification of vehicles to 10 years from the present limit of 15 years. In addition to existing requirement, specify engine performance criteria and establish standard practices for fitness testing. Appoint/nominate private garages as authorized agencies for determination of fitness, or initiate procedure for approval of garages to ensure	91 lakhs	1 year	Registration certificate issued to vehicles other that transport vehicles is valid for 15 years from the date of issue. For renewal or registration, application shall be made not more than 80 days before the date of expiration of registration. (See section 30 of Motor Vehicle Act, 1988 and Rule 52 of Central Motor Vehicle Rules, 1989).
approval of garages to ensure quality.			

Table 5.6: Additional proposed actions and measures, introduced by the URBAIR consultants.

Introduce policies to increase use of low-smoke lubrication oil in 2-stroke motorcycles.

Ban further sales of new 2-stroke motorcycles.

Begin Public campaign to educate owners to maintain their vehicles to reduce smoke emissions (e.g. cleaning fuel injectors, etc.), resulting in fuel cost savings.

Reduce sulfur contents of fuel oils and motor diesel.

Price fuels to reflect their quality.

Restrict lifetime of public utility vehicles, and buses.

Develop parking policy for Central and South Bombay business districts.

Develop public awareness campaigns regarding the effects of air pollution, and individuals' responsibility and behavioral options.

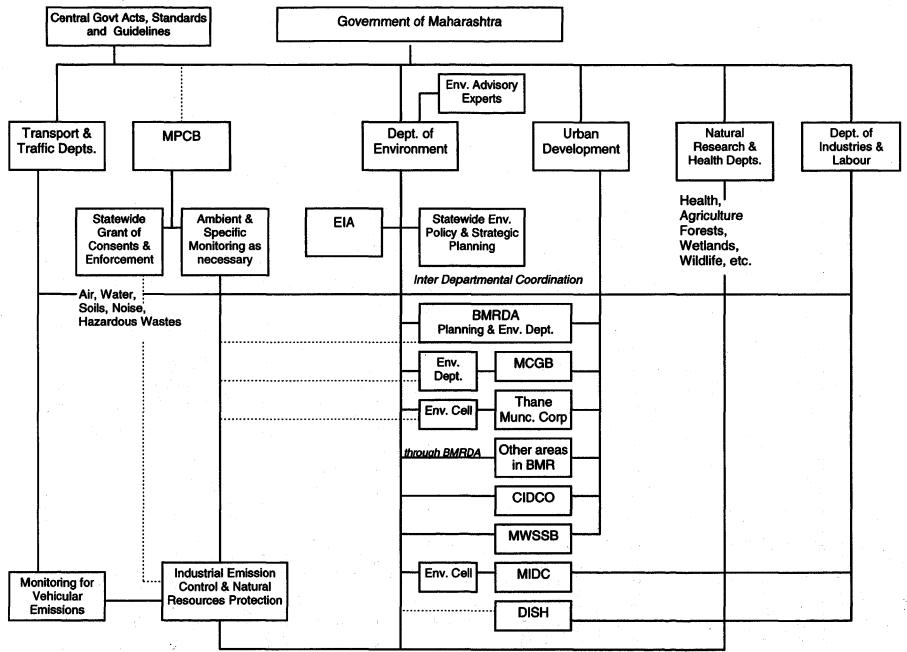
Develop the dispersion/exposure model capability and capacity by investing in local institutions and consultants.

6. INSTITUTIONAL FRAMEWORK

ENVIRONMENTAL INSTITUTIONS IN BOMBAY

At the Central Government level, the main law-enforcing body is the Central Pollution Control Board (CPCB), in the Ministry of Environment and Forests. At the State level, the Maharashtra Pollution Control Board (MPCB) is responsible for monitoring and enforcing all pollution control regulations, and issuing permits for new projects and activities. Motor vehicle regulations are an exception. They are enforced by the Transport Commissioner. At the city level, responsibility for monitoring air quality is shared by the MPCB and the Municipal Corporation of Greater Bombay (MCGB), with the latter monitoring within the city limits. Figure 6.1 depicts a flowchart of environmental institutions in Bombay. Functions of various boards are described in the following section.

AIR POLLUTION LEGISLATION


The Government of India has legislated constitutional provisions for protecting and improving the environment. The Indian Penal Code, Criminal Procedure Code, Factories Act, Wild Life Protection Act, Forests Conservation Act, Merton Shipping Act, Mines and Minerals (Regulation & Development) Act, Atomic Energy Act, as well as laws relating to local bodies and corporations, etc. contain provisions to regulate and take legal action with respect to specific environmental issues. All these enactments include specific provisions for environmental regulation and legal action. As India continues to experience industrialization, modernization, and urbanization, the existing laws have proven to be ineffective in controlling environmental degradation.

Following the Stockholm Conference on Human Environment in June 1972, it was considered appropriate to create a uniform national legal code that would tackle environmental problems. The Indian Parliament brought into operation specific and comprehensive legislation simultaneously institutionalizing the regulatory agencies for controlling pollution of various categories. There have been number of amendments to these Acts and a set of Rules also have been laid down for the efficient enforcement of these legislations.

Environmental legislation falls under:

- Water (Prevention & Control of Pollution) Act, 1974.
- Water (Prevention & Control of Pollution) Cess Act, 1977.
- Air (Prevention & Control of Pollution) Act, 1981.

Source: Coopers & Lybrand and AIC (1994).

80

URBAIR-Mumbai

- Environment (Protection) Act, 1986.
- Public Liability Insurance Act, 1991.

These Acts prescribe the Environment and Forests Agency as the nodal regulatory agency at the central level. It is in charge of policy formulation, planning, and coordination of all issues and programs related to environmental protection. The Central Pollution Board is the law-enforcing body at the Central level. It is entrusted with the work of enforcement of environmental legislations in Union Territories. It also has the role of coordinating the activities of State Boards, establishing environmental standards, planning, and executing a nationwide program for prevention control and abatement of pollution, etc. Pollution Control Boards, under the administrative control of various Departments of Environment, enforce environmental legislations at the state level.

The laws and regulations for air environment

The Air (Prevention & Control of Pollution) Act, 1981. This Act provides for prevention, control, and abatement of air pollution. It can apply to a specific area by issuing a gazette notification. Once an area is notified under this Act, no industrial or other pollution-causing activity can commence or be carried out without the permission of the concerned State Pollution Control Board.

Functions of the Central Board

- Advise the Central Government on matters concerning air quality improvement, and the prevention, control, or abatement of air pollution.
- Plan and arrange to execute a nationwide program for the prevention, control, or abatement of air pollution.
- Coordinate the activities of the State Boards.
- Provide technical assistance and guidance to the State Boards, carry out and sponsor investigations and research relating to problems of air pollution, and prevention, control or abatement of air pollution.
- Establish air quality standards.

Functions of State Boards

- Plan a comprehensive program for the prevention, control or abatement of air pollution, and secure its execution.
- Advise the State Government on matters concerning the prevention, control, or abatement of air pollution.
- Collect and disseminate information relating to air pollution.
- Collaborate with the Central Board to organize training for people who are, or will be, engaged in air pollution prevention and control programs; and organize related mass-education programs.
- Inspect control equipment, industrial plants, or manufacturing processes, and give directions to responsible persons to take necessary steps for the prevention, control or abatement of air pollution.
- Inspect air pollution control areas at such intervals as necessary, assess the quality of air and take steps for the prevention, control or abatement of air pollution in such areas.

- Establish emission standards for industrial plants, automobiles, or other sources (with the exception of ships and aircraft) that discharge any pollutant into the atmosphere. This is done in consultation with the Central Board and its standards for air quality. Under this clause, different emission standards may be established for different industrial plants, depending on the quantity and composition of pollutants emitted into the atmosphere.
- Advise the State Government on the geographic location of a potentially pollution-generating industry.
- Perform such other functions as may be prescribed, or as may be entrusted to it by the Central Board or the State Government, from time to time.

The Environment (Protection) Act, 1986, and Environment Protection rules formed under the Act. The Environment (Protection) Act is an umbrella Act. It empowers the Central Government to take necessary measures for a) protecting and improving the environment; and for b) prevention, control and abatement of pollution. Under the provisions of this Act, the Government is empowered to set standards for environmental quality, and limits for emissions/discharges of pollutants from various specified sources.

This Act also empowers the Government to prohibit and/or restrict certain activities, industrial or otherwise, in specified areas to ensure protection of environment; and it also confers enforcement agencies with necessary punitive powers to restrict any activity detrimental to environment.

The Motor Vehicles Act 1988, and The Central Motor Vehicles Rules 1989. Although the Air Act, and the Environment (Protection) Act provide for the prescription of automobile emissions standards by the Central Pollution Control Board, or Ministry of Environment and Forests, implementation and enforcement of these standards is the responsibility of the transport commissioner. (His office is responsible for registration of motor vehicles, and hence better equipped for enforcement.)

The Bombay Smoke-Nuisances Act 1912 and Rules under the act.

- No stack can be erected or modified unless it conforms to the regulations of the above Act.
- No furnace, flue, or chimney may be erected, altered, added to, or re-erected except in accordance with plans and for the purpose approved by the commission.
- No furnace, flue, or chimney shall be used for a purpose other than that which has been approved by the commission. Exceptions may be granted by the Commission for particular cases.
- A furnace at a lower altitude than 100 feet (30 m.) is not permitted to emit smoke from the firing floor level (unless specifically exempted).

The Bombay Municipal Corporation Act, 1818 (section 63 [amended] and section 390). As a part of its civic duties, the Municipal Corporation of Greater Bombay conducts air quality monitoring.

URBAIR-Mumbai

Air pollution standards and regulations

National ambient air quality standards have been established by the Ministry of Environment and Forests, Government of India. Standards are established for different types of areas (industrial, residential, and sensitive) (Appendix 2).

Emission standards are industry specific, and include stack height. These standards are mandatory for industries. As of June 1992, the Maharashtra Pollution Control Board had granted about 7,500 permits to industries in Bombay. Vehicle emission standards are implemented by the Office of the Transport Commissioner. Regular emission tests, performed by authorized agents, are mandatory (Appendix 3).

Environmental audit. Industries are required to submit an annual "Environmental Audit" report whose purpose is to improve compliance survey techniques.

Central Action Plan (1992) has been promulgated by the Government of India to speed up enforcement against non-compliance with emission standards. Chembur, Bombay, has been selected one of the 15 sensitive areas that fall under the "Sensitive Area Approach" of this plan. Eight industry categories have been identified as highly polluting. These are: cement, thermal power plants, iron and steel, fertilizer, zinc/copper/aluminum smelters, oil refineries.

Under the Central Action Plan, strict compliance with Environmental Standards and Minimal National Standards must be achieved within set time limits. Monthly progress reports are required.

Licensing of industries. According to the Pollution Acts, industry-specific discharge and emission standards commonly referred to as MINAS (Minimum National Standards), have been prescribed. All industries, including small scale units, must comply with MINAS. State Pollution Control Boards have the responsibility of enforcing compliance with the Acts. The units under their jurisdiction obtain either a permission to operate, or a consent to discharge pollutants.

All existing units must obtain the consent of their respective Boards. New units must obtain an NOC (No Objection Certificate) from the relevant Board before they can start operations. Financial institutions and banks demand proof of an NOC before disbursing loans, even though the loans may have been sanctioned on the basis of the project's techno-economic feasibility.

In order to obtain an NOC from a Pollution Control Board, an application must be made with a complete project-report, including the proposed pollution control measures. Since pollution control is site specific, the Pollution Control Board must also be appraised of the proposed project site and, if appropriate, ask for an Environmental Impact Assessment (EIA) for site clearance.

The Boards have declared some areas as "sensitive regions" because of their fragile environmental condition. New industries, especially pollution-intensive ones, may not be allowed in sensitive areas or may be prescribed much stricter standards. Proximity to protected monuments, national wildlife parks or sanctuaries are also reasons for industries to seek out a prior site clearance.

Non-compliance invites prosecution, fines, penalties, and even imprisonment. Under the Environmental Protection Act of 1986, Pollution Control Boards are empowered to close a unit if they believe it is in the public interest to do so. Without going to a court of law, they can implement closure decisions by directly ordering concerned authorities to cut power and water supply to violating units.

State and local institutions and policies on environmental protection in Maharashtra and Bombay include:

- The Environmental Safety Committee, established after the Bhopal accident, provides experts for safety inspection of major plants;
- Industrial Location Policy, 1984, for Bombay Metropolitan Region. This policy disallows the expansion of large and medium scale units in Bombay. Restrictions also exist for small-scale unit development; and
- Restriction on the Use of Coal, 1979, Urban Development Department, Government of Maharashtra. Ban on issuing new permits for using coal in Bombay.
- Ban on operation of three wheelers in Central Mumbai.

SUGGESTIONS FOR IMPROVING INSTITUTIONS AND POLICIES

The following suggestions for improvement are extracted from the Bombay EMS Study (Coopers & Lybrand and AIC [1994], Preferred Options for EMS), and discussions held by URBAIR working groups in Bombay.

- The State Environment Department should have a stronger role in environmental policy making.
- The environmental wing within BMRDA must have the responsibility for environmental planning.
- Establish, at the metropolitan level, an organization responsible for strategic environmental planning for BMR.
- Create "environmental cells" in all sectoral organizations to include environmental considerations in their decision making.
- Establish a dedicated BMR transportation authority with representation from all relevant agencies and organizations.
- Use a charge on fuels to raise environmental management funds.
- Make environmental regulation more effective by tightening emission standards, and introducing fees and fines for pollution offenses.
- Give the Department of Environment a role in the BMRDA Policy/Executive Committee so that environmental issues will receive proper consideration at the planning stage. (Note: This has already been implemented.).
- The State Environment Department should receive proper orientation for strategic air quality management. It should outline priorities for air quality imperatives and goals. Targets should be identified, and a timetable for implementation should be prescribed. The Department of Environment should provide leadership and professional management to achieve these goals.
- The activities of MPCB, MCGB, and other organizations concerned with air quality monitoring and air pollution control are uncoordinated, largely sector-driven, not systematically integrated, and often duplicated. Cross-sectoral issues between environment, development and investment are not properly addressed. As a nodal agency, this should be done by the State Environment Department.

URBAIR-Mumbai

.

- MPCB needs finance, equipment, and adequately trained and technically qualified personnel.
- The Department of Environment would benefit from a special Advisory Committee to help with policymaking and program development. The same Committee can also help to coordinate the functions of air quality management agencies.
- The Air Act (1981) permits action against defaulting industries. However, this action is time consuming since the complaints filed in law courts are not dealt with expeditiously. Closing polluting industries may be too harsh and other departments, especially Labor, often oppose such action. It is therefore necessary that MPCB should be able to penalize the defaulter on the spot, in keeping with the "Polluter Pays" principle. This provision should be included in future legislation. Special courts for trying cases under The Air Act (1981) and the Environment Protection Act (1986) are necessary (Central Environment Ministry).
- There is a dire need to establish an "Environmental Training and Information Center" for decision makers and managers in governmental departments, industries and NGOs. Such a Center should be equipped with a database, environmental status and survey reports, and other information that may be vital to decision making by the Department of Environment and other agencies.
- MCGB's air quality monitoring and research laboratory needs strengthening. This is necessary in order to undertake the monitoring of air pollutants related to global warming and ozone depletion. This would require staff training, and the provision of sophisticated instruments and equipment.
- Effective monitoring and work reviews are necessary to improve MPCB and MCGB operations.
- Present procedure requires checking vehicles and issuing "Pollution Under Control" certificates only through approved centers. These centers should be checked unannounced by the Regional Transport Office, at least occasionally. This would increase identification of defaulters and help create awareness. The Transport Department would need more manpower and equipment to carry this out.

.

REFERENCES

Association of Indian Automobile Manufacturers (AIAM). (1994). "Letter from Association of Indian Automobile Manufacturers to various Indian Ministries 28/02/1994." AIAM, New Delhi.

Atkins International (1993). "Comprehensive Transport Plan for the Bombay Metropolitan Region." Report submitted to BMRDA, Bombay, Atkins International, Mumbai.

Baker J. et al. (1992). "Final Report for Vehicular Emission Control Planning in Metro Manila." T.A. No. 1414 - PHI, Asian Development Bank, Manila.

Baker, J., R. Santiago, T. Villareal, and M. Walsh. (1993). "Vehicular Emission Control in Metro Manila." Report PPTA 1723, Asian Development Bank, Manila.

Binnie and Partners. (1992). "Modernization of Environmental Monitoring Facilities and Capabilities in Response to Philippines' Energy Development Project." Interim Report to EMB, Binnie and Partners, Mumbai.

Bombay Metropolitan Region Development Authority (BMRDA). (1990). Traffic Survey in Greater Bombay (1988). Volume I: Classified Traffic Volume Survey, Part I: The report. BMRDA, Transport & Communication Division, Mumbai.

Central Pollution Control Board. (1993). Communication to the World Bank dated 20/08/1994, CPCB, New Delhi.

Claiborn, C. et al. (1995). "Evaluation of PM₁₀ Emission Rates from Paved and Unpaved Roads using Tracer Techniques." *Atmospheric Environment* 29:1075–1089.

Coopers and Lybrand, and Associated Industrial Consultants (1994) "Preferred Options for Environmental Management Strategy." Report to the Government of Maharashtra, Bombay, Coopers and Lybrand, London.

Despande et al. (1993). Reports on Air Pollution Related to activities by Bombay Municipal Corporation (Internal Reports).

Dichanov, Y. (1994). Sensitivity of PPP-based Income Estimates to Choice of Aggregation Procedures. Washington D.C.: World Bank.

Economopoulos, A. P. (1993). Assessment of Sources of Air, Water and Land Pollution. A Guide to Rapid Source Inventory Techniques and their Use in Formulating Environmental Control Strategies. Part I: Rapid Inventory Techniques in Environmental Pollution. Geneva: World Health Organization (WHO/PEP/GETNET/93.1-A).

Gram, F. and T. Bøhler. (1993). "User's Guide for the "KILDER" Dispersion Modeling System." Report TR 5/92, Norwegian Institute for Air Research, Lillestrøm, Norway.

Hutcheson, R. and C. van Paassen. (1990). "Diesel Fuel Quality into the Next Century." Shell Public Affairs, London.

Lave, L.B. and E.S. Seskin. (1977). Air Pollution and Human Health. Baltimore/London: Johns Hopkins University Press.

- McGregor, D.B. and C.S. Weaver. (1992). "Vehicle I/M test Procedures and Standards." Draft Report. Engine, Fuel and Emissions Engineering, Sacramento, California.
- Mehta, K.H. (1993). "Air Pollution Control Measures and Strategies for Bombay." Paper presented at the International Conference on Computerized Air Quality Management: Monitoring, Modeling and Emission control strategies, Bangkok 1993. Available from Maharashtra Pollution Control Board, Bombay.
- Midgely, Peter. (1993). Urban transport in Asia: An Operational Agenda for the 1990s. Technical Paper No. 224. Asia Technical Department Series. Washington D.C.: World Bank.
- Ostro, Bart. (1994). Estimating the Health Effects of Air Pollutants: A Method with Application to Jakarta." Policy Research Working Paper 1301, The World Bank, Washington, D.C.
- Ostro, Bart. (1992). "Estimating the Health and Economic Effects of Air Pollution in Jakarta: A Preliminary Assessment." Paper presented at the Fourth Annual Meeting of the International Society of Environmental Epidemiology, Cuernavaca, Mexico.
- Paassen, C.W.C. van et al. (1992). "The Environmental Benefits and Cost of Reducing Sulfur in Gas Oils." Oil Companies European Organization for Environmental Protection and Health (CONCAWE), Brussels.
- Parkes, D. (1988) "Matching Supply and Demand for Transportation in the Pacific Rim Countries post-1990." Selected Papers. Shell Oil Company, London.
- Perissich, R. (1993) "Auto Emissions 2000: "Stage 2000" of the European Regulations on Air Polluting Emissions of Motor Vehicles." Proceedings of the Symposium, Commission of the European Communities UCSC-EEC-EAEC, Brussels.
- Semb, A. (1986). "Measurement of Emissions from Open Burning." NILU Report AS/SBH/0-8622/10, Lillestrøm, Norway.
- Shah, Jitendra, Tanvi Nagpal and Carter Brandon eds. (1997) Urban Air Quality Management Strategy in Asia (URBAIR), Guidebook. Washington, D.C.:World Bank.
- Shah, Jitendra and Tanvi Nagpal eds. (1997) Urban Air Quality Management Strategy in Asia (URBAIR): Metro Manila Report, Technical Paper No. 380. Washington, D.C.: World Bank.
- Shin, E., R. Gregory, M. Hufschmidt, Y-S Lee, J.E. Nickum, and C. Umetsu. (1992). *Economic* Valuation of Urban Environmental Problems. Washington D.C.:World Bank.
- Tharby, R.D., W. Vandenhengel, and S.Panich. (1992). "Transportation Emissions and Fuel Quality Specification for Thailand." Draft Report, Monenco Consultants Ltd., Oakville, Canada.
- Tims, J.M. et al. (1981). Exposure to Atmospheric Benzene Vapor Associated with Motor Gasoline. CONCAWE Report 2/81, Brussels: CONCAWE.
- Tims, J.M. (1983). Benzene Emissions from Passenger Cars. CONCAWE Report 12/83, Brussels: CONCAWE.
- Turner et al. (1993). "Cost and Emissions Benefits of Selected Air Pollution Control Measures for Santiago, Chile." Report to the World Bank. Engine, Fuel and Emissions Engineering, Sacramento, California.
- United State Environmental Protection Agency (EPA) (1986). "Fuel Oil Combustion." In: Compilation of Air Pollutant Emission Factors, 4th ed., Suppl. A. Research Triangle Park, NC:EPA. pp. 1.3-1- 1.3-11.

URBAIR-Mumbai

- Wang, Q., C. Kling and D. Sperling. (1993). "Light-duty Vehicle Exhaust Emission Control cost Estimates Using a Part-pricing Approach." Journal of Air Waste Management Association. 43: 1461–1471.
- Weaver, C.S. and P.E. Lit-Mian Chan. (1993). "Motorcycle Emission Standards and Emission Control Technology." Draft Report Submitted to the World Bank and the Thai Government. Engine Fuel and Emissions Engineering, Sacramento, California.
- World Bank (1993). Philippines Environmental Sector Study: Toward Improved Environmental Policies and Management. Sector Report No. 11852-PH, East Asia, Country Department 1, World Bank, Washington D.C.
- World Health Organization (WHO)/United Nations Environment Programme (UNEP). (1992). Urban Air Pollution in Megacities of the World. Oxford, U.K.: Blackwell Publishers.
- W.S. Atkins International. (1993). "Comprehensive Transportation Study for Bombay Metropolitan Region." Technical Working Paper No. 3, Mumbai.

. •

APPENDIX 1 AIR QUALITY STATUS, GREATER BOMBAY

CONTENTS

1. Description of past and present measurements programs

2. Analysis of measurement results

3. References

ANNEX 1. Intercomparison of gravimetric weighing analysis of glass-fibre high-volume filters between MCGB and NILU laboratories.

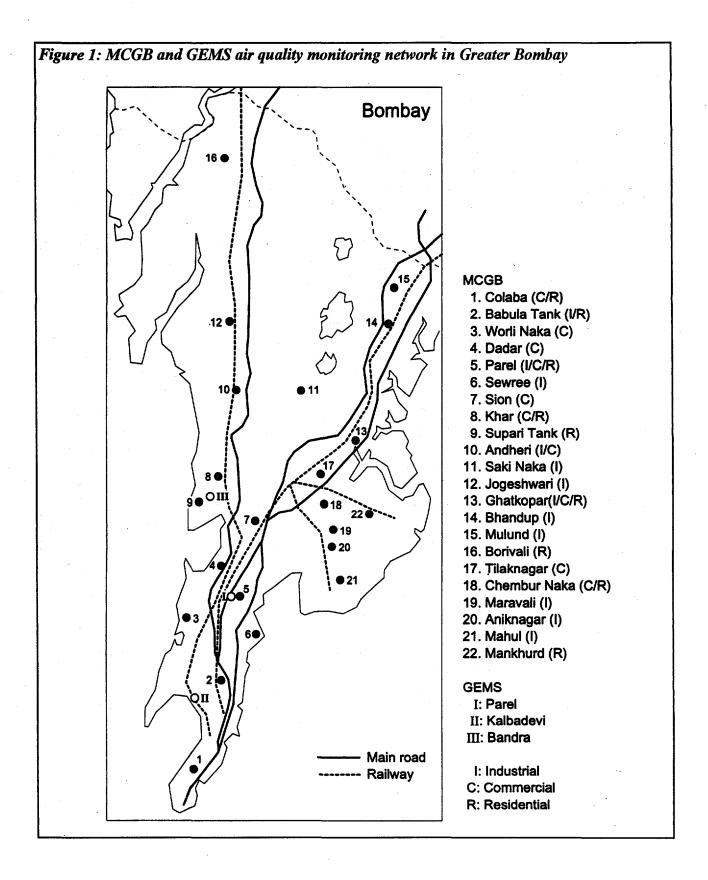
ANNEX II. Monthly averages for SO_2 , TSP, NO_x and NH_3 , MCGB sites, for the period 1978–1990.

ANNEX III. Monthly average SO_2 , NO_x and TSP at MCGB and GEMS (NEERI) stations, for the URBAIR period June 1992 to May 1993.

DESCRIPTION OF PAST AND PRESENT MEASUREMENT PROGRAMS

Stations and parameters. The Municipal Corporation of Greater Bombay (MCGB) monitors air quality within the city limits, and Maharashtra Pollution Control Board (MPCB) monitors air quality in the rest of Bombay Metropolitan Region (BMR). MCGB has adapted the method designed by the United States Environmental Protection Agency (USEPA) to establish an air quality monitoring program. This includes determining the frequency and procedure of sampling and analysis of the samples.

MCGB has measured ambient air quality regularly at 22 stations in Greater Bombay over 15 years now. The pollutants measured are sulfur dioxide (SO₂), total suspended particles (TSP), oxides of nitrogen (NO_x) and ammonia (NH₃). Ambient air quality is also occasionally measured at selected traffic junctions in Bombay for SO₂, NO_x, carbon monoxide (CO) and benzo(a)pyrenes from total and respirable particulates.


The MCGB air quality monitoring network in Bombay is shown in Figure 1. There are few details available as to the location of these measuring sites, except that they are located at fixed points, most of them on terraces of municipal buildings, 10 to 12 meters above the ground. A few stations are located 3–4 meters above the ground. The stations are visited once a week and operated continuously for 24 hours, but the sampling period is 8 hours, giving three samples in 24 hours. Sampling is performed 1–4 days a month and not necessarily on a fixed weekday.

Since 1978 NEERI (National Environmental and Engineering Research Institute) has operated United Nations GEMS (Global Environment Monitoring System) air monitoring stations in Bombay. These sites are also shown in Figure 1. At these sites SO₂, TSP and NO₂ is measured. Monitoring was discontinued in 1988 and recommenced in January 1990.

Both MCGB and NEERI monitor at Parel. The results are somewhat different, as shown e.g. in Annex I, since the sites are not exactly the same, measurements are done on different days, and analysis is done in different laboratories.

In 1991 and 1992 an air quality monitoring program was performed at 7 stations around the Thal RCF industrial complex south of Bombay. This study was coordinated by Projects and Development India (PDIL) and RCF. The measurements included TSP, SO_2 , NO_x and NH_3 on an 8 hourly basis.

Also in 1991 and 1992 measurements of air quality was performed at 5 stations even further to the south around the Vikram Ispat Ltd, Salav Project site. The measurements included TSP, SO_2 , NO_x , THC and CO on an 8 hourly basis 8 days in each two month periods. The measurement stations were located 1–7 kilometers from the plant. There are no information as to which agency actually did the analysis.

Measurement and analysis methods. The measurement methods used by MCGB are listed in Table 1.

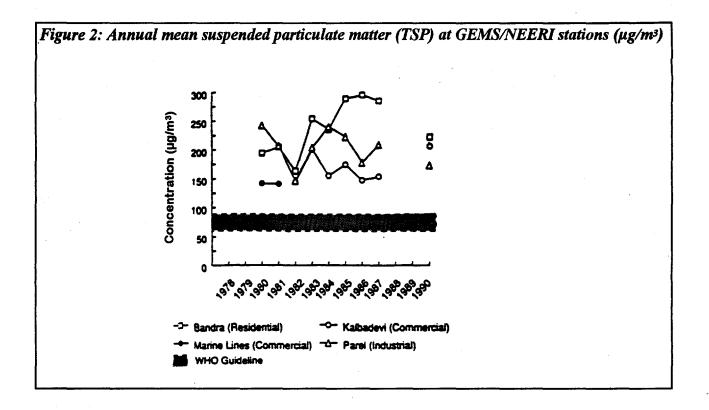
Table 1: Measurement ma	thods used by	v MCGB in Bom	ıbav.
-------------------------	---------------	---------------	-------

Parameter	Analysis method
Suspended particulates (TSP)	Gravimetric. High volume sampler.
Sulfur dioxide (SO ₂)	Pararosaniline method.
•	SO ₂ is collected in midget impinger and absorbed in a solution of TCM (Potassium Tetrachloromercurate)
Nitrogen oxides as NO ₂	TGS Ansa Method. Midget impinger.

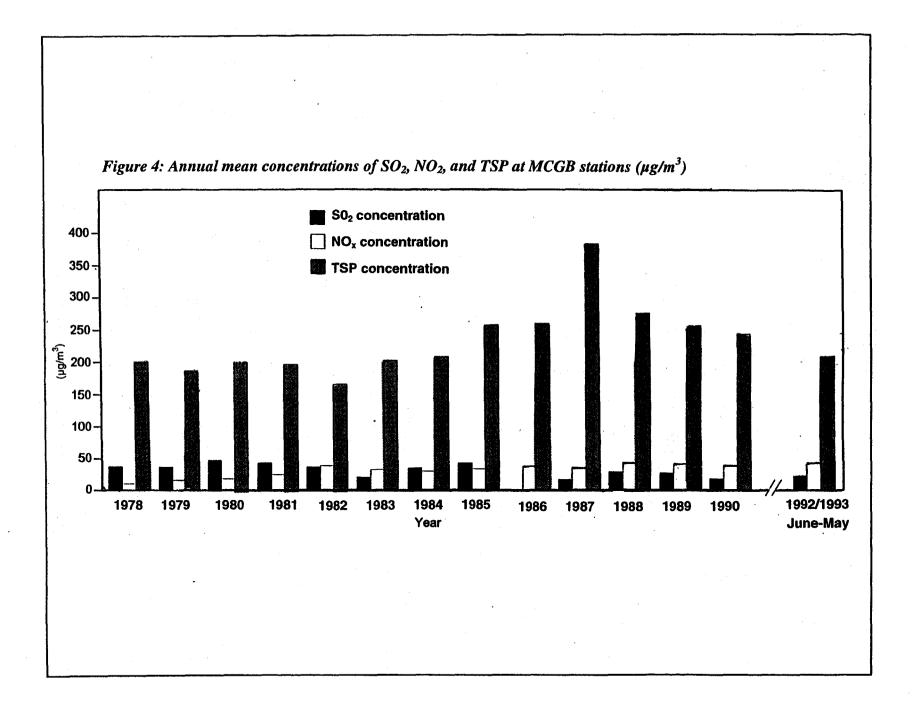
As part of the URBAIR study, a comparison of results of

gravimetric weighing of glass-fibre high-volume filters were carried out. Pre-weighted filters from NILU were brought to Bombay, weighted, exposed (24-hour sampling), weighted again and returned to NILU for last weighting. Also MCGB-type filters went through the same procedure. The results were quite good, in that the net particle weight on 6 filters (net weight range 66.4– 131.6 mg) (NILU figures) deviated on the average about 4 percent (highest at NILU). Maximum difference was about 15 percent.

ANALYSIS OF MEASUREMENT RESULTS


The Municipal Corporation of Greater Bombay (MCGB) has operated 22 measuring stations in Greater Bombay for the last 15 years. In addition NEERI has operated 3 GEMS stations in the same period. At all stations SO_2 , TSP and NO_x is measured and in addition NH_3 at the MCGB stations. The MCGB stations are operated once a week, 1–4 days a month.

There are few details about the results other than annual mean concentrations. Annual mean values for fixed 8 hour periods (1200–2000 hrs, 2000–0400 hrs, 0400–1200 hrs) for the period June 1992–May 1993 are also given.


Total suspended particles (TSP). Annual mean and 98th percentile TSP levels from the GEMS/NEERI stations are shown in Figures 2 and 3. The TSP concentrations are well above the WHO guidelines. In 1990 annual TSP levels were about 170–220 μ g/m³ and 98th percentile levels about 400–500 μ g/m³ at these stations.

Annual TSP levels at the MCGB stations are shown in Figure 4, for the period 1978–1990. These values are probably mean values from all the 22 stations in operation. The 1990 level was 243 μ g/m³, a little higher than at the NEERI stations. The 1990 level was the lowest since 1984. The highest level, 383 μ g/m³, was recorded in 1987.

Data from 18 stations from the period June 1992–May 1993 show a mean value of 207 μ g/m³, that means an even lower level than in 1990, and about the same level as during the period 1978–1984, see Figure 5.

Data tables for all stations, with monthly average SO_2 , TSP, NO_x and NH_3 values are enclosed as Annex II to this Appendix.

Figure 5 shows the highest annual concentration at the Maravali station $(313 \ \mu g/m^3)$ situated in an industrial area. The Colaba, Sewree, Mahul and Mankhurd stations observed the lowest concentrations (118–144 $\mu g/m^3$). Compared to the year 1987, 1993–92 TSP concentrations has fallen 20–30 percent at the Worli Naka, Dadar, Parel, Sewree and Saki Naka stations, while there is no change in the TSP level at the Sion and Chembur Naka stations.

Figures 6 and 7 show, as examples, the monthly averages at two selected sites, Parel and Saki-Naka, for 1987/88 and 1992/93. Similar figures for all available MCGB sites for 1992/93 are enclosed in Annex III to this Appendix. There is a considerable variation in the monthly mean TSP concentrations as shown in Figures 6 and 7. The lowest concentrations are measured during the months July-September, the monsoon season. The highest concentrations are usually measured during the months November–March. During the rainy season mean concentrations are usually lowered by a factor between 2 and 3 compared to the dry season.

There is a very little information available as to maximum 8 hour TSP levels. Data from April 1992, however, show maximum values much higher than the monthly mean values, see Table 2. During April 1992 maximum 8 hour values varied between 265 μ g/m³ and 1 365 μ g/m³. Maximum values seems to be between 1.5 and 3 times higher than monthly mean values.

> n en ser en en fan ste fan de ste en ste en ser en en ser en s

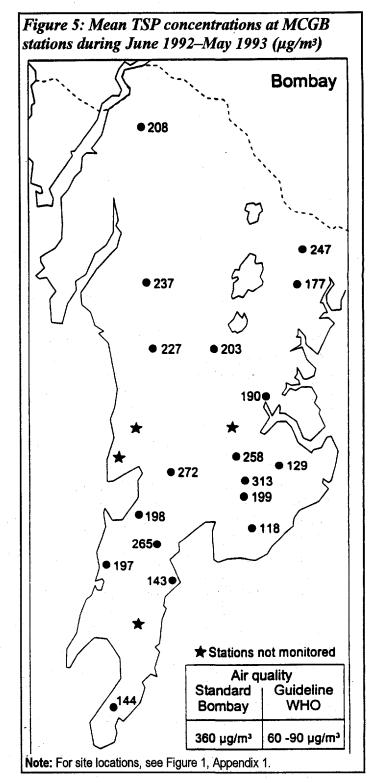
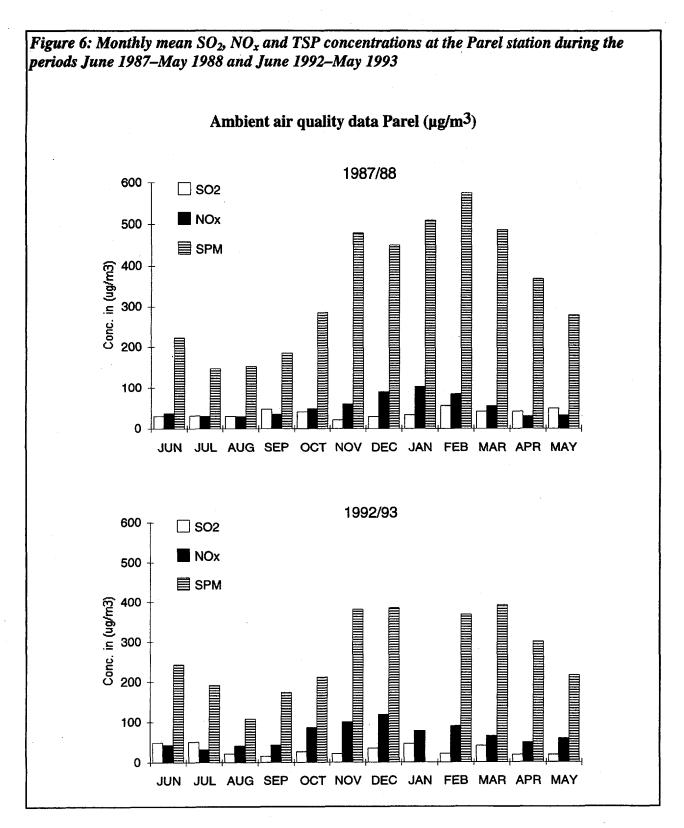
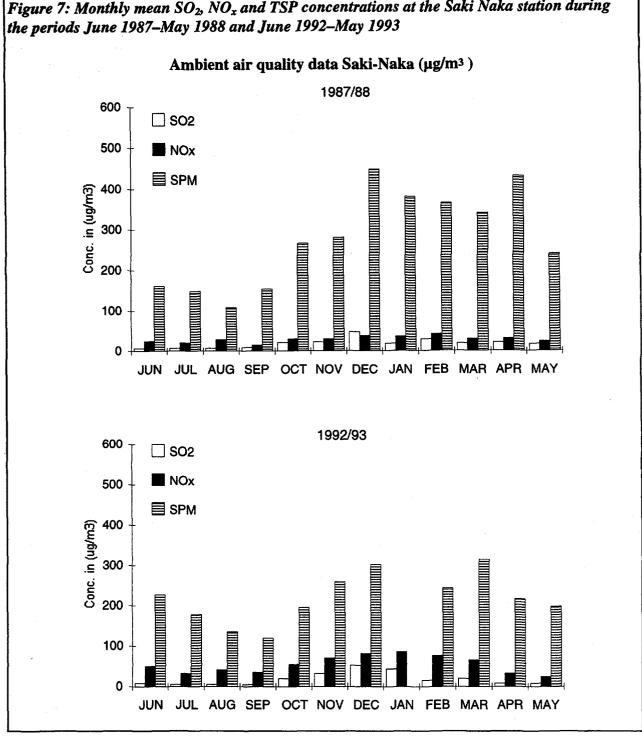
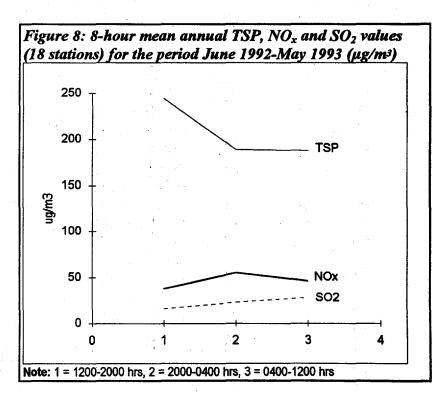



Figure 8 shows that TSP concentrations usually is about 30 percent higher during the hours 1200–2000 than during the night time and during the morning period. This is probably due to the

and the second secon

general activity pattern. Why NO_x and SO_2 do not follow this pattern, cannot be explained by available information.




Figure 7: Monthly mean SO₂, NO_x and TSP concentrations at the Saki Naka station during

Sites	SC	2	NC	2	N	IH3	TSF)
and the second sec	A.M.	MAX	A.M.	MAX	A.M.	MAX	A.M.	MAX
1. Colaba	8	20	26	36	37	57	176	265
2. Babula Tank	-	· · · · - ·	•	•	· - ·	-	-	-
3. Worli	13	90	43	78	56	96	281	645
4. Dadar	9	28	31	54	60	79	238	408
5. Parel	23	72	37	61	41	65	360	834
6. Sewree	39	91	31	59	50	82	225	393
7. Sion	18	60	89	126	59	87	465	1,365
8. Khar	-	· · · ·	-	-	-	-	-	· · ·
9. Supari Tank	-	- se - 1 - 1 - 1	•	- 1 -	-	-	- ⁻	-
10. Andheri	20	55	32	90	55	97	348	659
11. Sakinaka	16	28	41	93	38	77	273	504
12. Jogeshwari	. 71	13	26	49	61	109	337	495
13. Ghatkopar	11	29	25	52	48	104	353	556
14. Bhandup	50	96	29	62	56	106	320 ·	662
15. Mulund	7	20	20	38	43	65	275	533
16. Borivali	6(?)	6	15	· 28 ·	37	44	199	291
17. Tilaknagar		· : , -	-	-	· <u> </u>	• ·	-	-
18. Chemburnaka	14	31	45	83	57	88	319	496
19. Maravali	12	54	55	119	73	165	207(?)	381
20. Anik Nagar	23	63	36	59	97	168	259	379
21. Mahul	-	-	-	-	-	-	-	•
22. Mankhurd	14	56	39	85	46	94	250	395

Table 2: Concentrations of SO₂, NO₂, NH₃ and TSP from MCGB stations in April 1992 $(\mu g/m^3)$

Note: A.M.: Monthly average conc. Max.: Maximum 8-hour conc.

There are only a few TSP data available from highly exposed traffic sites in Bombay. In 1991 and 1992, 3 or 4 days measurements of SO₂, NO_x, TSP and CO were performed at 6 traffic junctions in Greater Bombay. TSP mean values ranged from 480 µg/m³ to more than 1,300 μ g/m³ and maximum 8 hour values ranged from about 550 µg/m³ to more than $3,100 \ \mu g/m^3$. These values are considerably higher than from the stations in the MCGB air quality monitoring network and show that TSP could be a very serious problem close to the main roads. These high values

are probably caused by resuspension of road dust and not so much by direct exhaust emissions from the cars.

In 1989–1990 Sharma and Patil (1991, 1992) did some measurements of mass concentration of size-distributed aerosols using a quartz crystal microbalance cascade impactor (QCM-CI). The instrument operates at a low flow rate (0.24 l/min) and separates the aerosols into 10 size fractions. The 50 percent cut-off sizes varies from 25 μ m to 0.05 μ m. For comparison conventional High Volume Sampler was also used. These samples were analyzed for size distribution by a Centrifugal Analyzing System (CAS) and Image Analyser System (IAS).

Samples were taken one day on hourly basis each week at two sites. Site 1 (CESE, IIT, Bombay) is a relatively clean area and Site 2 (Hindustan Ciba-Geigy Ltd, Bhandup) is a "mixed region" with highly polluting industries surrounded with dense population. Site 2 was along the highway Lal Bahadur Shastri (LBS) Marg with a peak traffic density of about 2 000 vehicles per hour. It is not clear if the Bhandup site is the same as the Bhandup site in the BMC network, but from maps it is obviously in the same region.

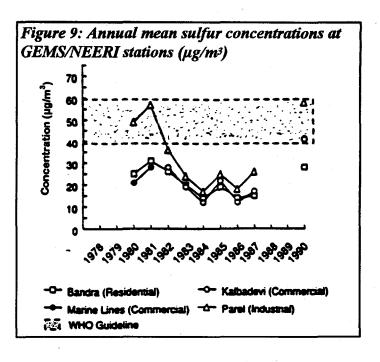
The TSP values collected by the high volume sampler were much higher than total particulate collected by QCM-CI ($\leq 25 \ \mu m$) for both sites: 180 and 541 $\mu g/m^3$ by high volume sampler as compared to 86 and 110 $\mu g/m^3$ by QCM-CI. But the cumulative percentage of particulates $\leq 25 \ \mu m$ was approximately equal by the two instruments.

 PM_{10} values (particles with diameter $\leq 10 \ \mu$ m) were about 85–90 percent of total mass collected by the QCM-CI measurement method and the mass segregated by the CAS/IAS analyzer system ($\leq 45 \ \mu$ m) on high volume samples. This shows that PM_{10} levels are much lower than TSP levels and that the difference is highest in the most polluted areas where the mass of particles $\geq 45 \ \mu$ m dominates.

TSP high volume samples at Site 1 and Site 2 in 1989 were analyzed for 27 chemical species using inductively coupled plasma emission spectroscopy (ICP-MS), energy dispersive x-ray fluorescence spectroscopy (XRF) and UV/VIS spectrophotometry. Factor analysis applied on 19 marker elements extracted 7 factors indicating 7 major source types contributing to aerosol mass at the sampling sites. It was found that soil related elements were attached with more than one factor indicating collinearity of sources. However, results obtained indicated many anthropogenic sources present in the region like ferrous and non-ferrous industrial emissions, combustion processes such as refuse burning, oil and coal burning, road transport and secondary emissions.

Table 3 shows the annual average concentrations of TSP and the 27 analyzed elements at the two sites for 1989. The concentrations were much higher at Site 2 than at Site 1, especially for TSP, Al, Cr, S, Si, V, and Zn.

Table 3: Annual average TSP and its components (ngm³)


Component	Site 1 Mean	Site 2 Mean
TSP*	130.21	800.71
Al*	2.31	10.54
As	273.60	695.50
Br	244.20	384.40
Ca*	4.82	8.43
Cd	35.70	75.70
Cl*	9.13	11.08
Со	25.70	30.50
Cr	39.00	104.10
Cu	290.80	436.20
Fe*	2.95	5.06
K*	1.27	2.27
La	36.70	48.20
Mg	705.60	802.05
Mn	401.90	635.00
Na*	5.87	8.20
Ni	35.00	79.10
Pb*	0.55	1.21
S*	0.94	4.75
Sb	86.80	104.00
Si*	3.59	9.48
Sn	95.10	189.10
Ti	471.50	661.00
V	109.50	311.00
Zn	204.90	785.50
SO4*	1.59	1.77
NO3-*	1.03	1. 14
NH4 ⁺	739.90	868,90

Background TSP levels. There are no data available from real background stations, but measurements are performed south of Bombay both around the Thal RCF industrial Complex and during the Vikram Ispat Ltd. Salav Project. Especially the Thal RCF data are interesting.

During the 1991/92 Thal RCF project TSP, SO₂, NO_x and NH₃ were measured at 7 locations. The number of 8 hour observations ranged between 84 and 141. Arithmetic mean TSP values ranged between 79.8 μ g/m³ and 117.6 μ g/m³ and maximum 8 hour mean values ranged from 164 μ g/m³ to 234 μ g/m³. Even though local industrial emissions are supposed to contribute, the measured TSP levels around the Thal RCF Complex are quite lower than at all MCGB stations in Greater Bombay, pointing out the great importance of local emission sources in Bombay.

Sulfur dioxide (SO_2) . Annual mean SO_2 concentrations from the GEMS/NEERI sites are shown in Figure 9. The concentrations dropped significantly between 1980 and 1987 to well below WHO annual guideline levels, and increased substantially again in 1990, but are still within the WHO guideline range.

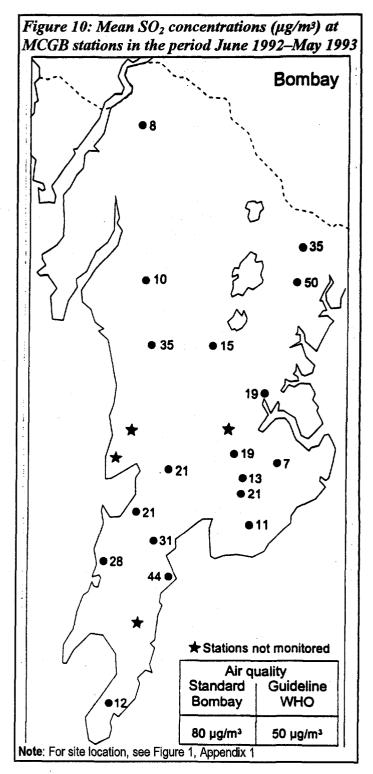
Annual SO₂ levels at the MCGB sites are shown in Figure 4. These values are mean values from all the 22 stations in operation. The 1990 level was 18 μ g/m³, well below that at the NEERI stations. The 1990 level was the same as in 1987, while the SO₂ concentrations at the NEERI sites increased substantially from 1987 to 1990. The reason for this difference between NEERI and MCGB sites is not known. The MCGB data from the period June 1992–May 1993 show a

mean value of 22 μ g/m³, that is a little bit higher than in 1990.

Figure 10 shows annual mean SO₂ levels for the period June 1992–May 1993. These levels are ranging from 7 μ g/m³ at the Mankhurd station to 50 μ g/m³ at the Bhandup site. These values are all within the WHO guideline of 50 μ g/m³.

As shown in Figures 6 and 7, there is a quite similar seasonal variation for SO_2 and TSP at the Saki Naka station, while this seasonal variation is not so clear for SO_2 at the Parel station. The reason for this is not known. It is also difficult to explain why SO_2 levels at most stations usually are higher during the late night and morning period than during the rest of the day as shown in Figure 8.

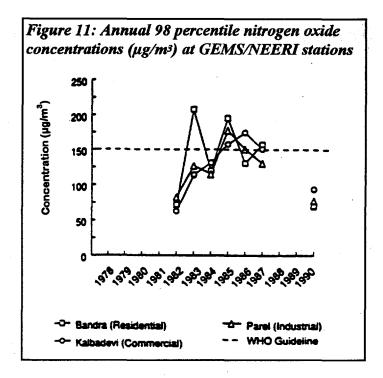
Available data from April 1992 from 17 MCGB stations show maximum SO₂ values (8 hour mean values) between 13 μ g/m³ and 96 μ g/m³, see Table 2.


A few measurements at traffic junctions in 1991 and 1992 show mean values ranging from 38 μ g/m³ to 117 μ g/m³ at 6 stations and maximum 8 hour values from 80 μ g/m³ to 162 μ g/m³. SO₂ concentrations at traffic junctions therefore seem to be considerably higher than at the MCGB network. The Indian Guideline value for short-term (24 hourly) in Industrial & Mixed Use areas is 120 μ g/m³.

Air quality data around the Thal RCF Complex in 1991 and 1992 show mean values from 2.3 μ g/m³ to 5.7 μ g/m³ and maximum 8 hour values from 11.4 μ g/m³ to 24.8 μ g/m³ at 7 stations. These values are considerably lower than in the Greater Bombay area.

Nitrogen oxides (NO_x as NO_2). Annual 98th percentile NO_2 levels at GEMS/NEERI sites are shown in Figure 11 (annual mean levels are not shown in reports available at NILU). Annual 98th percentile levels have dropped significantly from 1987 to 1990. Concentrations are relatively consistent suggesting NO_2 concentrations to be evenly distributed throughout the city.

Annual mean concentrations at MCGB sites are shown in Figure 4. These values are probably mean values from all 22 stations. The mean value in 1990 was 40 μ g/m³, and the level has varied between 30 μ g/m³ and 44 μ g/m³ the last ten years. MCGB sites NO_x level has increased about 10 percent from 1987 to 1990, while 98th percentile values at GEMS/NEERI sites have dropped significantly from 1987 to 1990. As very little details about monitoring methodology and site location are available for both monitoring networks, direct comparison of the data is not attempted. MCGB data from June 1992-May 1993 show a mean of 46 µg/m³ indicating that the NO_x level still is rising.

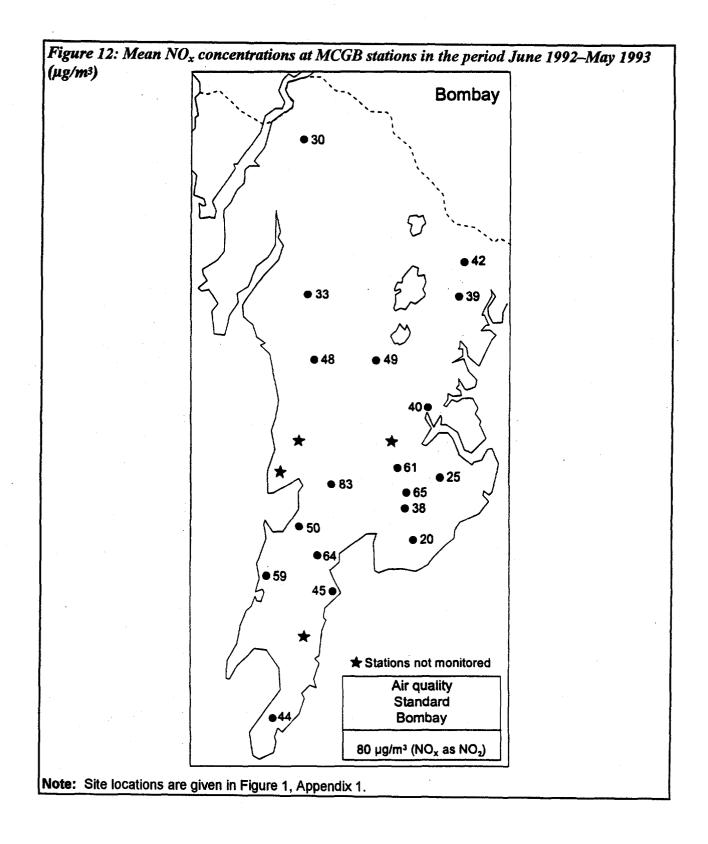

Figure 12 shows mean NO_x concentrations for the period June 1992– May 1993. The levels are ranging from 20 µg/m³ at the Mahul site to 83 µg/m³ at the Sion site.

As shown in Figures 6 and 7 the seasonal NO_x variation seems to be quite similar as for TSP. The NO_x levels usually are highest during the night time (Figure 8), while TSP concentrations are highest at daytime and SO₂ concentrations are highest at late night and morning hours.

Available data from April 1992 from 17 MCGB stations show maximum NO_x values (8 hour mean values) between 28 μ g/m³ and 126 μ g/m³, see Table 2. The Indian guideline value for 24 hours in industrial areas is 120 μ g/m³.

1991 and 1992 NO_x measurements at some traffic junctions show mean values from 56 μ g/m³ to 175 μ g/m³ and maximum 8 hour values from 83 μ g/m³ (Worli Naka site) to 296 μ g/m³ (VT site). As for TSP and SO₂ these values are much higher than at the MCGB

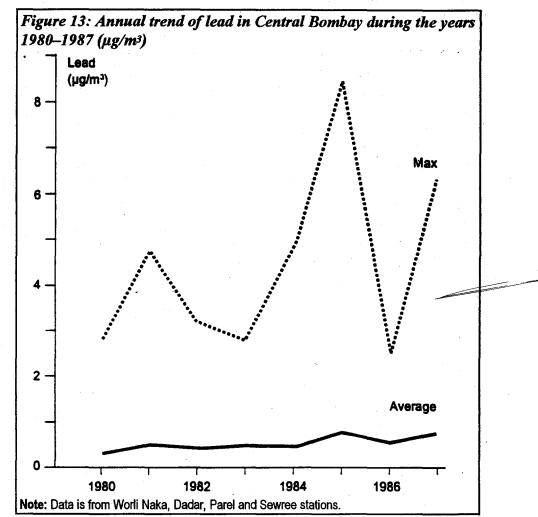
monitoring stations, indicating traffic emissions to be very important.


Air quality data around the Thal RCF Complex in 1991 and 1992 show mean NO_x values between 10.2 μ g/m³ and 17.0 μ g/m³ and maximum 8 hour mean values between 28.0 μ g/m³ and 52.2 μ g/m³ at 7 stations. These values are considerably lower than in the Greater Bombay area.

Lead (Pb). Monthly mean concentrations of lead during the Air pollution survey of Greater Bombay in 1971–1973 ranged from 0.4 μ g/m³ to 2.4 μ g/m³.

Lead was monitored at the 22 MCGB sites during the years 1980–1987. The Greater Bombay area was divided into 6 sub-areas; South Bombay, Central Bombay, Western Suburb, Eastern Suburb, Petrochemical Complex and Urban Clean (Borivali station).

This study showed an increasing trend in the whole area and the highest levels in the Eastern Suburb zone. The annual mean levels ranged from 0.5 μ g/m³ to 1.3 μ g/m³. The highest monthly mean level was 17.9 μ g/m³ at the Mulund site in October 1984.


As an example annual mean Pb concentrations in the Central Bombay area are shown in Figure 13. Annual mean concentrations for 4 stations range from $0.2 \ \mu g/m^3$ to $1.1 \ \mu g/m^3$. The highest level (probably mean monthly value) was 8.4 $\mu g/m^3$ at Dadar in January 1985. The second highest level of $6.2 \ \mu g/m^3$ was recorded during February 1987 at Parel. The annual mean levels of Pb in this area showed an increasing trend during the years 1980–1987. From 1980 to 1987 the annual mean Pb level nearly doubled.

There is no information available about Pb monitoring at the MCGB stations after 1987.

Monitoring undertaken in 1990 at the GEMS/NEERI sites indicates that annual airborne Pb levels have fallen significantly since the 1970's to between 0.25 μ g/m³ and 0.33 μ g/m³, well below the WHO guideline of 1 μ g/m³. It is likely that curbside levels will be much higher.

As shown in the TSP paragraph annual Pb levels at two sites in 1989 were $0.55 \ \mu g/m^3$ and $1.21 \ \mu g/m^3$, the latter site being close to a road. In the most heavily traffic-exposed city center streets it is likely that Pb levels are even higher.

Carbon monoxide (CO). Some short-term CO roadside surveys have been undertaken between 1984 and 1987. Monitoring was performed at several roadside sites during periods of peak traffic flow. 8 hour mean values ranged between 4 mg/m³ and 21 mg/m³. A maximum hourly concentration of 50 mg/m³ was recorded at the Haji Bachoo Ali Hospital. Maximum hourly concentrations were generally around 23–29 mg/m³, close to the WHO guideline of 30 mg/m³. These roadside surveys are not representative of ambient background levels which are likely to be much lower.

CO has also been measured at 6 traffic junctions on a few days in 1991 and 1992. Mean values ranged from 5.1 mg/m³ (Worli Naka) to 11.1 μ g/m³ (VT station) and maximum values ranged from 7 mg/m³ (Nana Chowk) to 15.6 mg/m³ (Mahim).

CO was also measured during the Vikram Ispat Ltd. Salav project south of Bombay in the period January 1991–June 1992. The values usually ranged from 0.3 mg/m³ to 0.5 mg/m³, and only a few 8 hour values were above 1 mg/m³. These values seem to represent ambient background levels.

)

Ozone (O_3) . Ozone is not measured in Bombay. Some monitoring should be started to identify the levels of ambient urban O_3 in and near Bombay.

Ammonia (NH_3). Ammonia is routinely measured at the MCGB sites, but information about the results are very limited. The April 1992 report shows mean values between 37 µg/m³ and 97 µg/m³ and maximum values between 44 µg/m³ and 168 µg/m³. The highest observed 24 hour maximum NH₃ value was 1 995 µg/m³ at the Maravali station in 1985. There is no available information on NH₃ standards.

Air quality data at 7 stations around the Thal RCF Complex in 1991 and 1992 show mean NH₃ values ranging from 5.5 μ g/m³ to 46.7 μ g/m³. Maximum 8 hour values ranged from 15 μ g/m³ to 233 μ g/m³. These values are somewhat lower than in the Greater Bombay area.

Benzo(a)pyrenes. Occasionally samples of total and respirable TSP are taken at traffic junctions with heavy traffic. The level of benzo(a)pyrenes from total TSP ranges between 2.7 μ g/m³ and 13 μ g/m³, and the level of benzo(a)pyrenes from respirable TSP ranges between 2.3 μ g/m³ and 8.4 μ g/m³. There are no information on standards for benzo(a)pyrenes, but the measured levels seem to be quite high.

REFERENCES

- Sharma, V.K. and R. S. Patil. (1991). "In situ Measurements of Atmospheric Aerosols in an Industrial Region of Bombay." *Journal of Aerosol Science*. 22:501–507.
- Sharma, V.K. and R. S. Patil. (1992). "Size Distribution of Atmospheric Aerosols and their Source Identification using Factor Analysis in Bombay, India." Atmospheric Environment. 26B: 135-140.
- Sharma, V.K. and R.S. Patil. (1992). "Chemical Composition and Source Identification of Bombay Aerosol." *Environmental Technology*. 13:1043-1045.

Ę

ANNEX I INTERCOMPARISON OF GRAVIMETRIC WEIGHING ANALYSIS OF GLASS-FIBRE HIGH-VOLUME FILTERS BETWEEN MCGB AND NILU LABORATORIES

NORSK INSTITUTT FOR LUFTFORSKNING - NORWEGIAN INSTITUTE FOR AIR RESEARCH POSTBOKS 64, N-2001 LILLESTRØM

Office of the Dy. City Engineer (Civil) Env. Sanitation & Projects New Transport Garage Bldg. 3rd Floor Dr. E. Moses Rd. Worli BOMBAY 400 018 INDIA

Att.: Mr. V.S. Mahajan, Dy. City Engineer

Deres ref./Your ref .:

Vår ref./Our ref.: STL/EMN/O-92117 Dato/Date: 20 August 1993

Dear Sir,

with reference to your letter of 4 May this year I hereby enclose Tables and Figures giving the results of our comparison of weighing results on the High volume sampler filters performed by your laboratory, and by NILU, as also handed over to you in Bombay on 4 August.

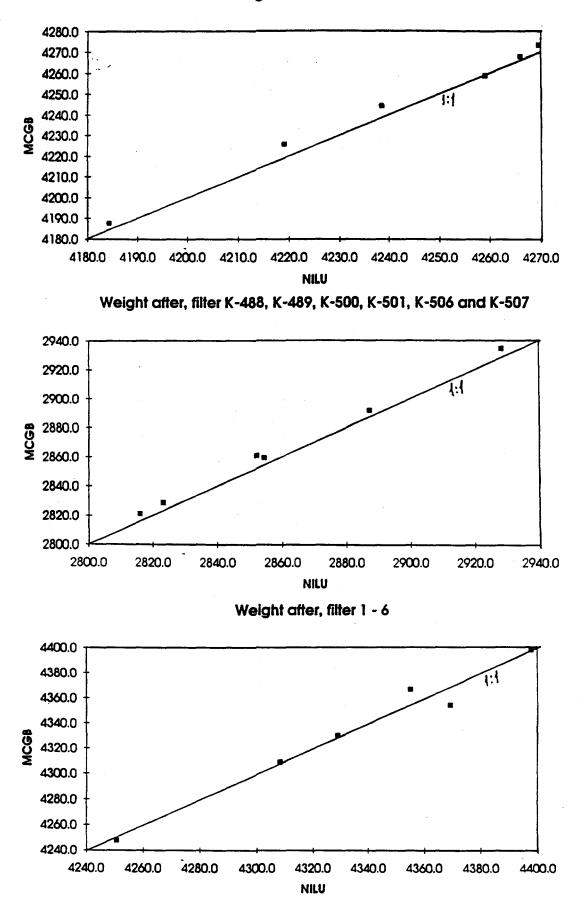
The comparison of weighing results comes out quite favourably. The results show the following main features:

- The weights recorded at your laboratory are on the average about 4 mg higher than those recorded at NILU, varying between -15 mg and +11 mg
- The net weights recorded at NILU were also on the average somewhat higher than recorded by MCGB. NILU net weights were on the average 4.9% higher than MCGB net weights (for 6 samples), varying between +15.3% and -8.8%.
- Comparison of results from co-located samplers, one with MCGB filter paper, and one with Whatman GF/A filter paper (used by NILU) show that the MCGB filters give somewhat higher concentrations.

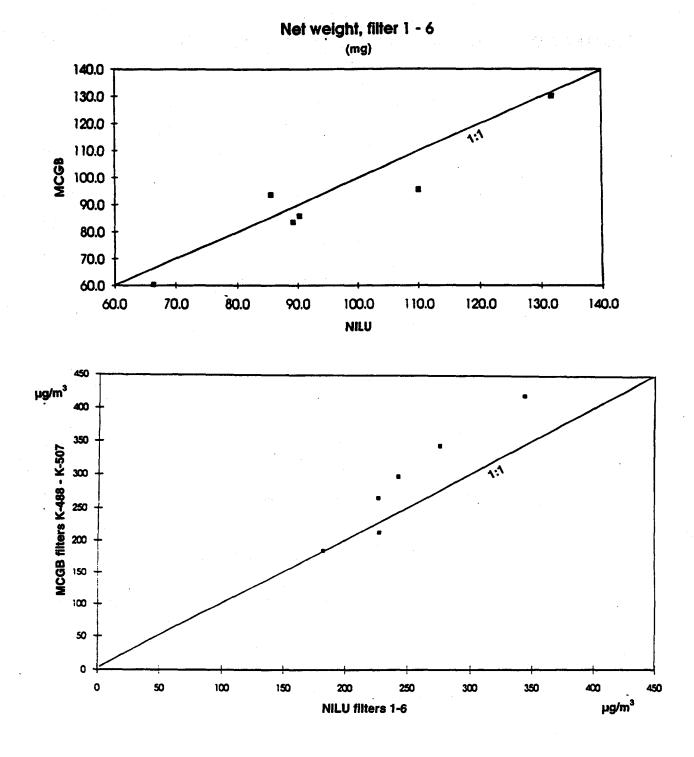
This is an interesting result. The reason for this effect cannot be determined from this experiment. It may possibly be connected with irreversible absorption of water wapor in the MCGB filters, or to loss of fibers from the Whatman filters.

The results from this limited experiment supports the good quality of the particle weight data given by your laboratory.

Sincerely yours, Steinar Larssen


Head of department LOCAL AIR QUALITY

BOWBAI	/ TSP, Tes		-	<u> </u>						
	Weight be	efore	Weight af	ter	Net weigt	nt, mg	m³	µg/m3	Station	
Filter no.	NILU	MCGB	NILU	MCGB	NILU	MCGB		MCGB		
1	4219.1	4225.6	4308.3	4309.2	89.2	83.6	303.6	275	SION	
2	4184.3	4187.5	4250.7	4247.8	66.4	60.3	331.2	182	SION	
3	4259.1	4259.0	4369.1	4354.4	110.0	95.4	393.6	242	JOGESHW	ARI
4	4269.6	4273.3	4355.1	4367.0	85.5	93.7	412.8	227	JOGESHW	ARI
5	4266.0	4267.9	4397.6	4397.9	131.6	130.0	379.2	343	MARAVU	
6	4238.6	4244.4	4328.9	4330.2	'90.3	85.8	379.2	226	MARAVLI	
7	4245.3	4253.4	4249.8		4.5			1	unexpose	d
8	4202.8	4213.7	4210.9		8.1				•	
9	4224.3	4234.5	4232.7		8.4				•	
10	4228.8	4236.5	4234.3		5.5		······································		•	
K-488		2712.8	2854.4	2859.4		146.6	493.5	297	JOGESHW	I /ARI
K-489	1	2708.9	2815.9	2821.3		112.4	528.0	213	JOGESHM	/AR
K-500	1	2735.9	2928.0	2934.8		198.9	475.2	419	MARAVU	
K-501	1	2733.3	2852.1	2860.9		127.6	480.0	266	MARAVLI	
K-506	<u> </u>	2742.6	2887.1	2892.2		149.6	435.6	343	SION	
K-507		2740.0	2823.1	2828.8		88.8	480.0	185	SION	
K-544	1		2762.0	2766.9					unexpose	d
K-545	1	1	2753.3	2756.5				1	•	


· ·

. . 110

~

111

ANNEX II MONTHLY AVERAGES FOR SO₂, TSP, NO_x and NH₃, MCGB sites, for the PERIOD 1978–1990

		Januar	Y				February		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH3
1981	36	159	42		1981	70	283	55	
1982	44	157	56		1982	35	143	33	
1983	105	249	69		1983	31	142	44	
1984	69	195	93		1984	73	211	77	
1985	50	216	50		1985	49	218	63	
1986	39	264	64	96	1986	13	210	71	82
1987	12	235	64	131	1987	12	297	60	171
1988	21	240	93	64	1988	21	302	68	88
1989	13	238	87	68	1989	16	273	74	70
1990	26	299	93	70	1990				
		March			a <u></u>		April	<u> </u>	
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1981					1981				
1982	30	132	39		1982	9	95	11	
1983	17	137	21		1983	21	133	19	
1984	31	241	48		1984	9	175	37	
1985	25	233	32	87	1985	35	205	29	52
1986	20	225	43	87	1986	17	154	39	96
1987	8	271	32	108	1987	10	240	35	90
1988	8	227	40	67	1988	1 1	225	17	54
1989	9	260	53	35	1989	10	174	29	67
1990					1990				
		May					June		
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH ₃
1981					1981				
1982	9	86	14		1982	13	89	10	
1983	14	98	13		1983	15	90	12	
1984	12	157	18		1984	9	91	10	
1985	10	120	13	43	1985	6	82	11	23
1986	16	205	27	72	1986	8	126	32	75
1987	6	218	29	129	1987	6	144	20	81
1988	19	116	10	56	1988	6	126	20	42
1989	14	176	23	47	1989	6	112	18	29
1990					1990				

Ambient Air Quality in Bombay Station: Colaba (A1)

		July					August		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH₃
1981	6	91	5		1981	6	71	6	
1982	6	82	6		1982	6	74	8	
1983	13	119	15		1983	10	112	15	
1984	9	92	11		1984	12	118	8	
1985	6	113	10	37	1985	6	115	9	20
1986	7	151	14	64	1986	7	102	20	89
1987	9	89	18	20	1987	6	77	17	74
1988	7	133	14	33	1988	6	106	10	32
1989	6	88	17	27	1989	6	66	14	30
1990					1990				
		Septemb	er	<u></u>			October		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH3
1981	22	83	17		1981	48	99	35	
1982	7	74	14		1982	52	128	61	
1983	1 1	105	12		1983	. 19	134	30	
1984	17	90	29		1984	33	131	51	
1985					1985	27	149	27	55
1986	7	115	29	82	1986	6	158	30	20
1987	19	81	32	52	1987	6	154	35	78
1988	8	62	29	22	1988	12	188	69	31
1989	12	95	29	25	1989	13	133	42	44
1990					1990				
		Novemb	er				December		
Year	SO ₂	SPM	NOx	NH₃	Year	SO ₂	SPM	NOx	NH₃
1981	58	105	48		1981	72	193	56	
1982	49	113	58		1982	71	233	60	
1983	57	227	74		1983	71	206	92	
1984	57	160	62		1984	68	210	76	
1985	50	219	40	110	1985	41	234	45	35
1986	14	284	52	178	1986	10	269	77	152
1987	10	242	71	68°	1987	· 9	313	60	66
1988	13	215	89	24	1988	28	214	57	28
1989	22	178	61	78	1989	24	209	70	82
1990					1990				

Ambient Air Quality in Bombay Station: Colaba (A1) Units: µg/m³

NH3

NH₃

NH₃

. . /

		Januar	у				February		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH
1980	112	548	49		1980	× .	1 - 1 - 		
1981	95	328	60		1981	70	283	55	
1982	11	274	39		1982	35	143	33	
1983	213	380	92	•	1983	31	142	44	
1984	109	298	95		1984	73	211	77	
1985	88	323	56		1985	49	218	63	
1986	56	521	68	158	1986	13	210	71	82
1987	66	388	92	125	1987	12	297	60	171
1988	26	476	90	92	1988	21	302	68	88
1989	27	400	94	74	1989	16	273	74	70
1990	20	458	101		1990				
		March	·				April		
Year	SO ₂	SPM	NOx	NH3	Year	SO2	SPM	NOx	NH
1981		· · · · · · · · · · · · · · · · · · ·			1981	2			
1982	30	132	39		1982	9	95	11	
1983	17	137	21		1983	21	133	19	
1984	31	241	48		1984	9	175	37	
1985	25	233	32	67	1985	35	205	29	52
1986	20	225	43	87	1986	17	154	39	96
1987	8	271	32	108	1987	10	240	35	90
1988	8	227	40	67	1988	11	225	17	54
	9	260	53	35	1989	10	174	29	67
1989					1990				
1989 1990									
		Мау					June		
	SO2	May SPM	NOx	NH3	Year	SO2	June SPM	NOx	NH
1990	SO2	•	NOx	NH3	Year 1981	SO ₂		NOx	NH
1990 Year	SO 2	•	NO x 14	NH3		SO₂ 13		NO x 10	NH
1990 Year 1981		SPM		NH3	1981		SPM		NH

Aml Units

47

		July				·····	August		
Year	SO ₂	SPM	NOx	NH	Year	SO ₂	SPM	NOx	NH _{3.}
1980					1980				
1981	6	91	5		1981	6	71	6	
1982	6	82	6		1982	6	74	8	
1983	13	119	15		1983	10	112	15	
1984	9	92	11		1984	12	118	8	
1985	6	113	10	37	1985	6	115	9	20
1986	7	151	14	64	1986	7	102	20	89
1987	9	89	18	20	1987	6	77	17	74
1988	7	133	14	33	1988	6	106	10	32
1989	6	88	. 17	27	1989	6	66	14	30
1990			•		1990	and and a second second			
		Septemb	er				October		
Year	SO ₂	SPM	NOx	NH	Year	SO ₂	SPM	NOx	NH ₃
1981	22	83	17		1981	48	99	35	
1982	7	74	14		1982	52	128	61	
1983	11	105	12		1983	19	134	30	
1984	17	90	29		1984	33	131	51	
1985					1985	27	149	27	55 [°]
1986	7	115	29	82	1986	6	158	30	20
1987	19	81	32	52	1987	6	154	35	78
1988	8	62	29	22	1988	12	188	69	31
1989	12	95	29	25	1989	13	133	42	44
1990					1990				
-		Novemb					December		· · · · · ·
Year	SO2	SPM	NOx	<u>NH</u>	Year	SO ₂	SPM	NOx	NH ₃
1981	58	105	48		1981	72	193	56	
1982	49	113	58		1982	71	233	60	
1983	57	227	74		1983	71	206	92	
1984	57	160	62		1 9 84	68	210	76	•
1985	50	219	40	110	1985	41	234	45	35
1986	14	284	52	178	1986	10	269	77	152
1987	10	242	71	68	1987	9	313	60	66
1988	13	215	89	24	1988	28	214	57	28
1989	22	178	61	78	1989	24	209	70	82
1990					1990				

Ambient Air Quality in Bombay Station: Babula Tank (A2)

Units: µ	ym ³				-				
		Januar	-				February		
Year	SO ₂	SPM	NOx	NH3	<u>Year</u>	SO ₂	SPM	NOx	NH ₃
1980					1980				
1981	119	284	49		1981	77	345	4 4	
1982	92	213	49		1982	40	250	25	
1983	135	365	51		1983	79	299	31	
1984	108	374	55		1984	132	324	52	
1985	109	273	5	241	1985	61	245	84	85
1986	65	418	65	178	1986	37	398	52	44
1987	36	400	77	140	1987	19	310	64	170
1988	40	364	108	113	1988	41	334	95	74
1989	27	400	102	98	1989	12	246	67	80
1990	73	444	119		1990	45	311	87	
		March			2		April		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH ₃
1981	66	264	29		1981				
1982	39	303	32		1982	55	304	18	
1983	36	304	25		1983	17	211	13	
1984	95	305	48		1984	56	228	18	
1985	72	376	76	20	1985	41	245	28	102
1986	22	233	40	50	1986	42	236	38	103
1987	16	278	49	95	1987	26	235	28	114
1988	37	318	58	40	1988	8	205	35	50
1989	10	277	57	23	1989	32	278	40	78
1990	35	247	53		1990	19	267	66	
1991					1991	10	214	28	
		May					June	•••-•	
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1980		180	11		1980	22	171	17	
1981	20	202	8		1981	38	247	8	
1982	12	225	16		1982	22	171	10	
1983	43	190	17		1983	80	154	17	
1984	15	264	9		1984	45	162	10	• .
1985	21	153	21	37	1985	8	236	16	28
1986	20	239	24	64	1986	11	206	18	73
1987	9	202	28	69	1987	7	216	26	51
1988	40	231	25	63	1988	11	206	34	64
					1989				
1989									

Ambient Air Quality in Bombay Station: Worli-Nak (A3)

		July					August		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH3
1980	179	148	6		1980	21	198	5	
1981	51	163	11		1981	49	163	7	
1982	14	148	9		1982	11	91	10	
1983	40	131	17		1983	39	68	17	
1984	88	130	10		1984	164	167	17	
1985	7	189	11	38	1985	6	210	13	29
1986	7	217	14	61	1986	28	172	18	79
1987	13	186	28	44	1987	12	143	33	95
1988	6	146	23	38	1988	6	153	24	28
1989			,		1989				
1990	6	160	15		1990				
		Septemb				······································	October		
Year	SO₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1980	43	143	9		1980	74	272	16	
1981	79	126	23		1981	118	150	33	
1982	17	108	16		1982	77	257	56	
1983	46	115	14		1983	92		31	
1984	49	158	17		1984	28	201	19	
1985	41	176	25	45	1985	69	243	42	86
1986	22	193	31	58	1986	40	309	58	128
1987	8	167	31	95	1987	19	221	51	114
1988	13	129໌	47	30	1988	57	272	82	42
1989					1989				
1990					1990				
••••		Novemb	er				December		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH3
1980	106	281	48		1980	176	341	48	
1981	141	247	.48		1981	172	336	48	
1982	135	159	79		1982	92	283	79	
1983	104	369	77		1983	141	372	77	
1984	73	226			1984				
1985	81	370	46	191	1985	47	366	46	139
1986	95	345	70	79	1986	53	376	70	165
1987	51	352	94	109	1987	47	355	94	128
1988	70	300	95	73	1988	53	371	95	98
1989				-	1989				

Ambient Air Quality in Bombay Station: Worli-Nak (A3)

		January	1				February	•	
Year	SO₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1980	44	294	29		1980	46	453	30	
1981	59	245	46		1981	40	317	43	
1982	45	212	47		1982	40	227	40	
1983	58	333	50		1983	32	262	38	,
1984	65	232	73		1984	55	250	61	
1985	56	327	74		1985	44	290	62	
1986	50	323	67	116	1986	34	338	68	51
1987	21	371	69	158	1987	14	350	45	108
1988	22	413	97	63	1988	27	347	68	75
1989	34	355	70	67	1989	31	331	64	78
1990	33	411	88	the second of	1990	39	366	94	
		March					April		
Year	SO₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1979					1979	37	241	20	
1980	51	339	32		1980	44	216	18	
1981	40	217	33		1981	27	211	22	
1982	28	255	41		1982	16	145	21	
1983	12	221	26		1983	27	158	28	
1984	63	220	56		1984	21	214	31	×.
1985	63	283	47	23	1985	22	200	27	40
1986	36	315	42	72	1986	39	253	43	157
1987	14	294	37	104	1987	8	205	26	720
1988	15	322	41	56	1988	20	285	23	75
1989	13	267	37	46	1989	17	258	31	74
1990	9	202	47		1990	9	176	28	
		May					June		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1979	26	243	20	2. e	1979	18	195	15	
1980	20	104	11		1980	21	115	22	
1981	11	125	14		- 1981	19	137	9	
1982	17	129	18		1982	18	128	12	
1983	26	112	22		1983	35	138	21	
1984	12	163	21		1984	55	121	20	
1985	38	173	22	178	1985	29	139	18	50
1986	36	373	21	20	1986	60	190	26	48
1987	13	231	22	86	1987	11	190	32	55
1988	20	180	15	62	1988	10	146	22	36
1989	17	238	28	30	1989	22	1278	22	46
1990	7	161	19		1990	7	164	31	

Ambient Air Quality in Bombay Station: Dadar (A4) Units: µa/m³

Units: µ	g/m³								
Year	SO2	July SPM	NOx	NH ₃	Year	SO ₂	August SPM	NOx	NH3
1979	33	150	15	1113	1979				14113
1979	33 105	176	7		1980	42	154	11	
			14		1981	41	135	8	
1981	36	116 108	14 16		1981	36	100	12	
1982	12				1983	30 7	93	12	
1983	26	223	20					28	
1984	42	131	16	~~	1984	30	99		
1985	44	136	18	60	1985	66	177	18	20
1986	19	162	20	71	1986	41	165	24	30
1987	13	141	21	60	1987	11	99	25	86
1988	9	146	25	28	1988	8	99	25	73
1989	23	116	29	42	1989	15	141	20	25
1990	9	131	21		1990	17	87	21	22
		Septemb					October		
Year	SO2	SPM	NÓx	NH ₃	Year	SO2	SPM	NOx	NH ₃
1979	52	128	19		1979	58	279	27	
1980	45	70	11		1980	23	191	19	
1981	46	101	21		1981	65	144	33	
1982	19	90	24		1982	48	227	65	
1983	39	121	29		1983	33	184	40	
1984	35	99	32		1984	31	193	45	
1985					1985	44	195	32	100
1986	11	125	30	78	1986	34	300	48	107
1987	12	157	36	100	1987	17	266	52	100
1988	22	87	28	26	1988	26	368	55	34
1989	42	97	31	41	1989	48	195	45	87
		Novemb					December		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO2	SPM	NOx	NH ₃
1979	62	169	28		1979	51	226	32	
1980	68	256	31		1980	53	297	42	
1981	76	161	43		1981	69	201	43	
1982	34	163	46		1982	63	269	71	
1983	6 9	229	74		1983	114	317	97	
1903		244	65		1984	48	270	58	
1984	61			404	1985	31	319	39	113
	61 51	298	38	161					
1984 1985	51	298						43	99
1984 1985 1986	51 31	298 298	53	101	1986	31	361	43 78	99 43
1984 1985	51	298						43 78	99 43

Ambient Air Quality in Bombay Station: Dadar (A4)

Units: µg	g/m³									
		January	1					February	····	
Year	SO ₂	SPM	NOx	NH ₃	_	Year	SO ₂	SPM	NOx	NH ₃
1978	158	348	42			1978	141	217	34	
1979	100	346	10			1979	122	314	13	
1980	109	291	33			1980	105	349	35	
1981	84	247	49			1981	154	339	53	
1982	75	318	43			1982	75	315	28	
1983	98	330	26			1983	52	322	41	•
1984	84	418	101			1984	79	438	80	
1985						1985				
1986	44	463	63	239		1986	31	507	64	67
1987	29	476	90	166		1987	18	483	83	177
1988	33	509	103	108		1988	57	575	85	47
1989	36	426	57	130		1989	37	487	66	101
1990	56	315	123			1990	33	432	92	
		March					-	April		
Year	SO ₂	SPM_	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1978	94	318	32			1978	85	222	12	
1979	99	308	9			1979	76	328	23	
1980	123	353	30			1980	84	249	21	
1981	99	234	39			1981	89	251	22	
1982	57	246	35			1982				
1983	30	278	37			1983	61	173	18	
1984	130	307	73			1984	56	272	37	
1985						1985	72	266	37	83
1986	29	413	47	65		1986	46	. 318	45	85
1987	20	438	52	123		1987	24	372	48	105
1988	42	487	56	73		1988	42	369	30	71
1989	37	420	48	54		1989	38	277	36	91
1990	31	355	63			1990	24	288	38	
		May						June		
Year	SO ₂	SPM	NOx	NH₃		Year	SO ₂	SPM	NOx	NH3
1978	65	184	5			1978	107	243	11	
1979	126	301	19			1979	89	274	18	
1980	86	158	18			1980	96	123	21	
1981	46	221	17			1981	82	262	11	
1982	31	201	24			1982	61	114	14	
1983	65	132	24			1983	109	140	25	
1984	25	221	21			1984	83	138	15	
1985	74	187	19	36		1985	45	139	21	38
1986	27	322	35	68		1986	25	148	32	121
1987	24	391	34	107		1987	30	223	37	65
1988	50	279	32	52		1988	21	216	50	69
1989	36	317	32	41		1989	51	263	26	45
1990	28	297	33			1990	17	158	30	

Ambient Air Quality in Bombay Station: Parel (A5) Units: ug/m³

Units: µ	_			iy Suuon.						
July						August				<u></u>
Year	SO ₂	SPM	NOx	NH₃		Year	SO ₂	SPM	NOx	NH₃
1978	164	211	6		-	1978	91	277	5	
1979	49	241	15			1979	41	246	14	
1980	64	133	8			1980	72	107	6	
1981	41	156	12			1981	54	234	15	
1982	48	154	16			1982	18	126	11	
1983	56	160	22			1983	54	169	24	
1984	82	160	24			1984	81	160	23	
1985	28	131	14	26		1985	63	163	27	52
1986	30	183	25	68		1986	47	152	25	38
1987	31	147	30	62		1987	30	153	29	47
1988	24	123	24	43		1988	20	135	24	30
1989	27	143	19	52		1989	52	128	25	33
1990	18	143	27		_	1990				
		Septemb	per		-			October		
Year	SO ₂	SPM	NOx	NH₃	-	Year	SO ₂	SPM	NOx	NH ₃
1978	100	178	8			1978	97	258	16	
1979	84	205	34			1979	137	236	34	
1980	151	129	14			1980	117	223	30	
1981	74	158	20			1981	154	218	48	
1982	51	140	29			1982	91	230	80	
1983	68	174	25			1983	71	139	44	
1984	57	135	37			1984	62	243	53	100
1985	10					1985	67	225	43	100
1986	42	216	41	82		1986	47	354	70	163
1987	48	185	35 ⁻	127		1987	41	285	49	117
1988	36	128	32	30		1988	37	302	43	94
1989	77	145	26	36	.	1989	67	253	47	90
Year	SO ₂	Novemb SPM	NO _x	NH3		Year	SO₂	December SPM	NOx	NH₃
1978	54	260	14		-	1978	67	358	12	
1979	82	239	35			1979	79	367	36	
1980	125	240	36			1980	144	290	62	
1981	85	246	57			1981	107	177	55	
1982	91	232	81			1982	84	327	94	
1983	75	304	67			1983	105	368	101	
1984					÷	1984				
1985	84	385	50	157		1985	74	405	68	318
1986	49	411	78	99		1986	29	426	104	290
1987	21	479	61	209		1987	29	450	90	249
1988	60	369	65	199		1988	47	387	69	186
1989	46	325	56	217		1989	40	441	70	202

Ambient Air Quality in Bombay Station: Parel (A5)

3

Units: µ	g/m³								
Year	SO ₂	January SPM	NOx	NH3	Year	SO ₂	February SPM	NOx	NH3
1980		SFM	ΠΟχ	14613	1980	302	JFM	NUX	NIT13
1981	45	280	40		1981	83	429	55	
1982	47	179	41		1982	42	202	23	
1983	83	278	54		1983	46	212	28	
1984	44	275	54 50		1984	40 65	296	49	
1904	71 ·	255	50 42	75	1985	102	311	49 56	71
1986	52	255	42 52	162	1986	58	258	50 50	124
1987	52 21	258	52 55	156	1987	56 18	296	50	156
					1988		296	55 84	
1988	25	327	84	82	1989	63			82
1989	36	260	62	57		29	360	57	57
1990	30	326	71		1990	24	260	71	
		March			· · · · · · · · · · · · · · · · · · ·		April		
Year	SO ₂	SPM	NOx	NH3	Year 1979	SO2	SPM	NOx	NH ₃
1979			-	•					
1980			AA		1980	40	044	00	
1981	89	226	34		1981	49	244	22	
1982	48	234	35	•	1982	33	136	11	
1983	33	179	26		1983	50	168	19	
1984	64	254	40		1984	43	223	22	
1985	93	217	32	49	1985	112	142	24	65
1986	63	321	45	149	1986	60	220	32	120
1987	20	253	29	111	1987	22	356	35	110
1988	51	247	43	46	1988	52	301	36	73
1989	21	221	55	51	1989	33	221	36	69
1990	38	240	41		1990	26	217	30	
	~~~	May		- A 11 A	Vaar	00	June SPM	NOx	NH3
Year	SO ₂	SPM	NOx	NH ₃	Year 1979	SO₂	<u> </u>	NUx	
1979		4.40				50	405	11	
1980	56	140	21		1980	50 50	125		
1981	40	161	13		1981	56	129 95	9 8	
1982	36	122	13		1982	42	85 117	8 13	
1983	28	127	9		1983	<b>4</b> 6	117 104	8	
1984	21	183	12	20	1984	22		8 10	25
1985	106	197	16	30	1985	13 27	133		
1986	49	216	19	75	1986	37	160	26	86 60
1987	21	228	22	110	1987	18	152	22	69 CE
1988	48	176	15	58	1988	13	117	12	65
1989	37	251	23	53	1989	10	180	11	67
1990	14	92	15		1990	22	127	17	

Ambient Air Quality in Bombay Station: Sewree (A6) Units: ua/m³

Units: µg	g/m³									
	July							August		
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1979	÷.,		· ·			1979				
1980	110	176	9			1980	115	255	8	
1981	33	115	13			1981	28	111	11	
1982	36	76	8			1982	24	107	13	
1983	13	107	13			1983	39	125	16	
1984	57	101	11			1984	56	142	10	
1985	29	130	13	102		1985	39	175	12	45
1986	49	171	22	89		1986	73	133	25	88
1987	26	123	16	43		1987	25	132	22	82
1988	18	104	19	30		1988	25	89	20	32
1989	27	96	21	62		1989	40	98	27	43
1990	20	126	16			1990				
	· ·	Septemb	er		• 			October		
Year	SO ₂	SPM	NOx	NH3		Year	SO ₂	SPM	NOx	NH₃
1979					•	1979		·		- <u></u>
1980	79	160	10			1980	76	294	20	
1981	28	87	18			1981	47	116	26	
1982	15	94	16			1982	66	93	38	
1983	20	95	13			1983	23	106	20	
1984	42	112	17			1984	36	200	32	
1985						1985	23	130	19	126
1986	46	120	33	87		1986	20	179	38	62
1987	24	91	18	100		1987	25	187	27	117
1988	21	83	19	22		1988	28	174	36	42
1989	39	137	22	49		1989	40	188	50	84
		Novemb	er		-			December		
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1979						1979				
1980	76	263	26		7	1980	50	267	36	
1981	59	171	26			1981	60	190	41	
1982	36	110	33			1982	58	161	46	
1983	37	136	42			1983	54	251	51	
1984	41	199	44			1984	58	254	42	
1985	62	257	44	229		1985	49	285	30	109
1986	20	247	47	147		1986	26	266	64	245
1987	14	196	41	155		1987	16	208	40	81
1988	43	174	40	67		1988	33	259	69	57
1989	29	176	38	106		1989	24	236	59	94

Ambient Air Quality in Bombay Station: Sewree (A6)

Units: µ	g/m³				_								
	January							February					
Year	SO ₂	SPM	NOx	NH ₃	_	Year	SO ₂	SPM	NOx	NH ₃			
1980						1980							
1981	49	303	48			1981	71	421	50				
1982	34	354	3 <del>9</del>			1982	44	236	31				
1983	82	342	51			1983	47	249	43				
1984	48	304	69			1984	49	308	55				
1985	83	374	137	83		1985	50	365	80	72			
1986	41	363	65	97		1986	33	352	63	65			
1987	33	412	74	123		1987	18	432	77	100			
1988	32	428	128	87		1988	23	360	86	70			
1989						1989							
1990	43	527	127			1990	26	522	121				
		March			F		-	April					
Year _	SO ₂	SPM	NOx	NH ₃	_	Year	SO ₂	SPM	NOx	NH3			
1979						1979							
1980						1980							
1981	50	275	40			1981	32	277	25				
1982	34	331	23			1982	16	189	17				
1983	29	229	38			1983	29	146	22				
1984	63	301	50			1984	21	302	26				
1985	46	267	49	50		1985	38	234	39	119			
1986	33	363	40	50		1986	27	279	34	8 <del>9</del>			
1987	10	365	51	8 <del>9</del>		1987	9	283	40	73			
1988	14	417	63	45		1988	24	349	42	62			
1989						1989							
1990	12	300	77		_	1990	11	284	65				
		May						June					
Year	SO ₂	SPM	NOx	NH3	-	Year	SO2	SPM	NOx	NH3			
1979						1979							
1980						1980	26	100	31				
1981	11	182	14			1981	12	310	10				
1982	18	193	15			1982	13	318	10				
1983	17	122	14			1983	31	129	13				
1984	9	165	20			1984	24	134	12				
1985	30	273	19	20		1985	16	103	25	22			
1986	22	245	26	47		1986	22	196	28	64			
1987	14	291	39	49		1987	8	151	28	64			
1988	23	249	42	56		1988	7	197	29	79			
1989						1989							
1990	11	249	30			1990	7	201	32				

Ambient Air Quality in Bombay Station: Sion (A7) Units: ua/m³

•

Ambient Air Quality in Bombay Station: Sion (A7)

Units: µ	g/m ³			-								
		July				August						
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3			
1979					1979							
1980	12	171	9		1980	17	127	9				
1981	16	235	15		1981	11	102	11				
1982	13	103	10		1982	- <b>8</b>	105	11				
1983	15	89	17		1983	15	107	20				
1984	20	101	14		1984	33	148	20				
1985	10	251	17	20	1985	48	163	28	20			
1986	. 8	206	20	66	1986	12	145	19	98			
1987	8	163	30	86	1987	7	124	25	86			
1988					1988							
1989					1989							
1990	7	173	25		1990							
		Septemb		· · · · · · · · · · · · · · · · · · ·			October					
Year	SO ₂	SPM	NOx	NH₃	Year	SO ₂	SPM	NOx	NH₃			
1979					1979							
1980	24	98	10		1980	50	253	20				
1981	31	115	21		1981	71	178	35				
1982	19	135	24		1982	61	213	53				
1983	20	87	20		1983	41	211	33				
1984	24	122	27		1984	34	214	50				
1985					1985	48	281	41	54			
1986	17	185	39	64	1986	31	278	52	102			
1987	7	182	45	92	1987	18	299	63	89			
1988					1988							
1989					1989							
-		Novemb					December					
Year	SO₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3			
1979			•		1979							
1980	65	283	32		1980	65	317	52				
1981	72	214	44		1981	73	264	43				
1982	66	219	54		1982	81	262	69				
1983	66	198	47		1983	66	358	66				
1984	56	269	61		1984	41						
1985	76	362	57	230	1985	21	489	80	98			
1986	53	324	62	94	1986		336	62	110			
1987	15	264	83	90	1987	30	290	62	53			
1988					1988							
1989					1989		405	81	54			

January										
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	February SPM	NOx	NHa
1978	34	181	23		-	1978	52	206	23	
1979	28	261	8			1979	28	163	9	
1980	46	297	27			1980	44	348	21	
1981	44	241	43			1981	52	304	34	
1982	53	233	39			1982	33	191	26	
1983	37	224	26			1983	24	270	23	
1984	48	309	49			.1984	51	250	35	
1985	41	267	44	3		1985	26	266	-35	
1986	26	271	36	50		1986	18	278	24	35
1987	32	350	49	92		1987	11	351	53	13
1988	21	424	87	89		1988	14	375	78	77
1989	8	339	58	76	. · · · ·	1989	8	267	-44	30
		March						April		
Year	SO ₂	SPM	NOx	NH3		Year	SO ₂	SPM	NOx	NHa
1978	25	226	40	3.4	•••, • •• .	1978	29	164	5	
1979	24	205	-14			1979	14	173	11	
1980	29	258	17			1980	14	215	9	
1981	30	189	23			1981	20	158	12	•
1982	39	203	26			1982	8	144	10	
1983	9	194	11			1983	9	164	10	
1984	47	237	30			1984	16	183	12	
1985	31	301	53	58		1985	27	241	16	72
1986	18	357	26	136		1986	18	243	24	75
1987	6	326	28	26		1987	6	294	25	128
1988	7	403	22	39		1988	13	334	18	108
1989	7	381	31	53		1989	6	293	24	81
		May	•					June		
Year	SO ₂	SPM	NOx	NH3		Year	SO ₂	SPM	NOx	NH3
1978	18	129	5		<b>.</b>	1978	35	134	9	
1979	16	163	8		•	1979	8	456	6	
1980	10	12	9			1980	10	112	9 5	
1981	7	129	6			1981	7	137		
1982	7	137	7		•	1982	9	94	10	
1983	7	91	9			1983	11	127	11	
1984	8	132	7			1984	10	119	6	
1985	12	145	8	44		1985	7	128	7	29
1986	18	172	24	117		1986	22	211	24	83
1987	6	227	17	64		1987	6	166	25	68
	18	246	8	88		1988				

Ambient Air Quality in Bombay Station: Santacruz (A9)

		July			· · · · · ·		August		
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1978	15	135	· 6 · ··		1978	8	118	6	
1979	6	133	6		197 <del>9</del>	7	149	6	
1980	6	108	5		1980	8	168	5	
1981	6	113	5		1981	6	64	5	
1982	7	61	7		1982	7	84	7	
1983	10	136	9		1983	16	101	24	
1984	9	119	7		1984	18	125	5	
1985	7	129	8	41	1985	8	156	9	29
1986	6	190	9	20	1986				
1987	8	160	8	49	1987	6	120	11	64
1988	6	138	6	45	1988	6	144	20	20
1989					1989				
		Septemb	er		1. A.		October	• .	
Year	SO2	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH3
1978	30	88	9		1978	36	189	11	
1979	16	136	8		1979	34	170	15	
1980	18	78	7		1980	44	153	15	
1981	22	82	14		1981	57	124	29	
1982	19	88	20		1982	27	182	42	
1983	15	45	27		1983	39	243	31	
1984	15	105	17		1984	12	196	14	
1985			`		1985	36	222	31	50
1986					1986				
1987	8	151	20	64	1987	22	270	47	6 <del>9</del>
1988	7.	89	11	27	1988	10	287	49	20
		Novemb	er				December		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1978	42	235	14	· .	1978	39	265	8	
1979	46	154	24		1979	49	208	23	
1980	48	164	23		1980	49	204	45	
1981	62	140	36	دور ر	1981	46	228	38	
1982	26	128	42		1982	64	215	60	
1983	51	267	35		1983	89	355	59	
1984	49	226	40		1984	49	280	52	
1985	48	356	38	122	1985	44	411	51	34
1986	36	337	62	64	1986	40	356	64	234
1987	8	254	<b>4</b> 6	<b>4</b> 9	1987	24	352	80	71
1988	45	322	66	27	1988	18	355	60	50

Ambient Air Quality in Bombay Station: Santacruz (A9)

,

130	
-----	--

		Januar	y	•	. •		February		·
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH₃
1980	69	387	22		1980	41	352	14	
1981	61	233	29		1981	67	358	34	
1982	73	233	36		1982	17	228	44	
1983	89	385	41		1983	58	320	31	
1984	118	298	59		1984				
1985	60	314	33		1985	32	266	19	
1986					1986	32	384	37	55
1987	25	438	30	156	1987	16	341	30	115
1988	19	380	37	106	1988	30	365	43	78
1989	26	393	63	28	1989	22	389	42	29
1990	33	487	55		1990	23	353	43	
		March					April		
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1979					1979	31	229	20	
1980	23	285	12		1980	43	262	17	
1981	48	266	21		1981	37	325	18	
1982	58	337	24		1982	38	163	22	
1983	21	311	16		1983	46	244	26	
1984					1984				
1985	25	351	37	41	1985	34	244	16	133
1986	37	384	27	53	1986	43	346	28	91
1987	13	465	28	103	1987	7	308	22	79
1988	20	340	31	46	1988	22	430	32	53
1989	14	366	48	39	1989	15	356	38	72
1990	12	323	28		1990	8	328	28	
<u> </u>		May					June		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH ₃
1979	17	251	16		1979	14	140	15	
1980	28	153	11		1980	43	119	16	
1981	17	200	8		1981	55	145	8	
1982	14	230	18		1982	28	114	8	
1983	33	159	17		1983	27	182	11	
1984					1984				
1985	20	229	11	31	1985				
1986	25	257	18	69	1986	17	147	21	67
1987	20	234	24	31	1987	7	161	25	41
		241	25	56	1988	-9	172	30	62
1988	18	271							
	15	308	26	20	1989	8	208	26	37

Ambient Air Quality in Bombay Station: Sakinaka (A11) Units: ua/m³

Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1979	30	133	15			1979	25	167	10	
1980	6	110	6			1980	27	121	7	
1981	19	134	10			1981	9	124	7	
1982	34	107	17			1982	12	106	9	
1983	12	86	14			1983	19	151	19	
1984						1984	17	166	12	
1985						1985				
1986	8	170	14	58		1986	23	129	19	53
1987	7	148	21	46		1987	7	108	29	88
1988	8	126	28	25		1988	6	176	19	29
1989	6	127	15	58		1989	6	128	27	38
1990	6	152	24			1990				
		Septemb	er					October		
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1979	67	94	20	-		1979	69	209	18	
1980	52	91	9			1980	73	185	12	
1981	55	105	14			1981	95	146	17	
1982	38	143	24			1982	81	210	62	
1983	27	121	25			1983	39	162	23	
1984	18	125	18			1984	65	41	33	
1985						1985				
1986	43	180	28	52		1986	49	329	33	104
1987	9	154	15	81		1987	22	266	31	53
1988	10	130	28	28		1988	28	241	43	26
1989	27	182	27	55		1989	31	200	32	57
		Novemb	er					December		
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH₃
1979	82	198	18			1979	65	311	23	
1980	67	180	20			1980	91	237	27	
1981	99	173	37			1981	102	230	23	
1982	121	223	41		•	1982	110	340	51	
1983	67	221	33			1983	76	316	3 <del>9</del>	
1984	59	262	30			1984	36	267	26	
1985						1985	50	332	18	66
1986	30	303	30	71		1986	38	384	25	92
1987	23	280	31	55		1987	48	447	39	71
1988	51	295	53	34		1988	29	349	48	50
1989	24	292	39	44		1989	29	416	51	51

Units: µg	g/m³			-	- · ·				
Veen	0.0	January SPM	NOx	NH3	Year	SO ₂	February SPM	NO	NH3
Year 1979	<b>SO</b> 2 72	304	11		1979	71		<u>NOx</u>	<b>NIT</b> 3
1979	100	304 452	27	2	1979	67	288 327	8 30	
1981	96	452 246	35		1981	137	300	49	
	90 102	240	30		1982				
1982		210 286	50 52			46	281	22	
1983	140				1983	67 67	253	32	
1984	78	400	58		1984	69	391	41	
1985	33 75	349	53	~~	1985	57	339	31	40
1986	75 50	480	51	66	1986	35	433	48	<b>4</b> 8
1987	52	438	69	156	1987	52	505	47	131
1988	32	445	63	86	1988	34	350	40	86
1989	40	364	59	57	1989	39	471	64	73
1990	38	498	58		1990	37	468	70	
N.		March		A11 1			April		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH ₃
1979	75	355	8		1979	38	279	12	
1980	73	416	28		1980	60	277	19	
1981	54	243	21		1981	48	365	22	
1982	49	269	22		1982	24	217	15	
1983	56	290	39		1983	31	196	21	
1984	46	372	36		1984	10	280	27	
1985	105	311	45		1985				
1986	46	428	45	66	1986	44	407	35	136
1987	21	438	26	135	1987	7	312	29	142
1988	47	225	40	39	1988	27	491	23	67
1989	19	437	37	60	1989	19	343	30	84
1990	10	329	65		1990	11	339	26	
		May		n di kara ya kata ya K			June		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO2	SPM	NOx	NH ₃
1979	15	322	16		1979	15	140	16	
1980	45	183	12		1980	29	129	14	
1981	10	191	14	~	1981	9	163	7	
1982	19	140	18	52 ⁴	1982	18	101	8	
1983	29	181	13		1983	22	107	14	
1984	12	267	23		1984	12	121	12	
1985					1985				
1986	32	343	25	73	1986	13	172	17	82
1987	7	266	20	111	1987	6	122	18	134
1988	21	265	23	59	1988	7	223	71	108
	05	312	33	60	1989	13	366	17	56
1989	25	312	55	00	1000			25	

Ambient Air Quality in Bombay Station: Ghatkopar (A13) Units: µg/m³

Units: µ	g/m³					-				. *
		July						August		
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1979	11	143	12		•	1979	10	178	10	
1980	9	116	6			1980	32	78	8	
1981	9	82	9			1981	7	88	7	
1982	14	105	9			1982	9	79	18	
1983	11	110	18			1983	17	160	22	
1984	7	98	13			1984	14	112	13	
1985						1985				
1986	6	211	14	51		1986	26	148	26	63
1987	6	130	17	50		1987	6	98	22	69
1988	6	104	20	53		1988	6	122	14	21
1989	9	128	21	55		1989	7	97	22	32
1990	6	117	. 11			1990	· · · · · ·			
		Septemb	er		•			October		
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1978	40	325	9		-	1978	34	211	10	
1979	78	184	16			1979	100	211	21	
1980	60	97	10			1980	64	209	17	
1981	51	101	17			1981	84	131	22	
1982	19	112	17			1982	83	215	51	
1983	16	97	22			1983	81		31	
1984	19	141	20			1984	19	162	24	
1985						1985				
1986	37	135	38	57		1986	33	308	39	46
1987	9	167	18	67		1987	15	237	34	90
1988	- 11	113	28	22		1988	64	294	53	25
1989	28	145	29	33		1989	82	255		55
		Novemb	er			ونبكمهماليبنيك	وي المراجع المراجع المراجع	December	<u></u>	
Year	SO ₂	SPM	NOx	NH ₃		Year	SO ₂	SPM	NOx	NH ₃
1978	35	245	10			1978	60	295	8	
1979	106	154	27			1979	91	249	32	
1980	83	207	22			1980	99	25 <del>9</del>	36	
1981	81	154	31			1981	100	218	18	
1982	92	218	45			1982	125	315	55	
1983	73	345	51			1983	102	287	60	
1984	48	203	33			1984	73	311	41	
1985						1985	47	431	48	166
1986						1986	66	408	55	177
1987	27	276	41	45		1987	43	337	48	43
1988	88	334	67	23		1988	50	397	64	53
1989	61	323	59	66		1989	51	398	58	61

Ambient Air Quality in Bombay Station: Ghatkopar (A13) Units: uo/m³

		Januar	y.				February		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH3
1981	96	267	. 31		1981	143	399	35	
1982	92	252	26		1982	99	281	23	
1983	136	290	30		1983	94	332	30	
1984	125	387	61		1984	73	319	33	
1985	52	334	25		1985	21	361	16	
1986	41	385	29	80	1986	27	382	2 <del>9</del>	50
1987	32	405	43	96	1987	24	362	22	87
1988	41	361	31	76	1988	34	382	31	83
1989	58	363	57	85	198 <del>9</del>	47	389	58	83
1990	55	432	39		1990	45	357	3 <del>9</del>	
		March					April		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH ₃
1981	83	248	26		1981	47	361	14	
1982	53	252	18		1982	25	175	24	
1983	44	317	28		1983	17	223	14	
1984	31	320	20		1984	14	266	21	
1985	125	345	30	20	1985	100	231	1 <del>9</del>	154
1986	36	341	30	93	1986	33	297	20	89
1987	11	345	24	165	1987	23	371	17	118
1988	29	331	20	53	1988	26	339	16	62
1989	15	306	35	35	1989	16	214	20	47
1990	19	309	46		1990	11	259	28	
		May	1		· · ·		June		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1979					1979				
1980				*	1980	27	78	12	
1981	20	170	11		1981	10	140	6	
1982	33	178	16		1982	20	89	6	
1983	15	176	10		1983	10	138	12	
1984			40		1984	16	122	9	
1985	28	202	10	20	1985	17	155	9	20
1986	14	269	16	49	1986	22	165	12	56
1987	16	218	20	138	1987	9	122	15	38
1988	26	209	9	73	1988	8	130	16	41
1989 1990	34	280 183	21 13	61	1989 1990	6	129 134	24 14	20
1001	8	183	14		1440		1.54	14	

Ambient Air Quality in Bombay Station: Mulund (A15)

Units: µ	g/m ³								
	,	July					August		
Year	SO ₂	SPM	NOx	NH3	Year	SO2	SPM	NOx	NH3
1980	7	150	6		1980	29	102	7	
1981	10	83	5		1981	13	75	6	
1982		,			1982	8	82	9	
1983	8	143	9		1983	16	105	26	
1984	6	10	9		1984	12	125	9	
1985	7	5	7	65	1985	9	141	9	39
1986	8	100	8	54	1986	9	135	11	54
1987	9	166	16	70	1987	8	90	16	60
1988	6	112	8	40	1988	9	113	15	28
1989	10	110	21	52	1989	8	112	15	45
1990	6	105	19		1990				
1991	. 1	152	the second		1991				
		Septemb	per				October		
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	NOx	NH3
1980	62	110	10		1980	125	196	16	
1981	48	96	10		1981	116	102	15	
1982	42	150	19		1982	139	225	50	
1983	9	86	19		1983	44	104	31	
1984	14	133	13		1984	20	231	27	
1985					1985	55	198	18	20
1986	11	161	19	51	1986	28	289	21	93
1987	19	195	18	89	1987	29	264	32	70
1988	16	85	19	21	1988	46	190	36	25
1989	22	112	30	29	1989	31	179	32	33
		Novemb	er		-		December		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH ₃
1980	122	216	24		1980	129	302	38	
1981	103	160	30		1981	112	188	30	
1982	181	221	49		1982	122	259	41	
1983	69	270	37		1983	98	298	52	
1984	49	266	24		1984	49	310	18	
1985	69	379	16	34	1985	98	442	22	23
1986	36	347	30	59	1986	39	374	33	13 <del>9</del>
1987	22	305	29	61	1987	32	336	32	41
1988	70	332	47	21	1988	49	339	55	45
1989	49	232	35	29	1989	68	311	41	<b>4</b> 4

Units: µ	g/m³					•			
		Januar	у				February		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH₃
1979	9	214	4		1979	7	226	5	
1980	8	271	21		1980	7	278	19	
1981	7	230	21		1981	8	285	20	
1982	12	205	23		1982	13	244	20	
1983	31	283	24		1983	13	276	18	
1984	18	288	34		1984				
1985	13	341	32		1985	8	298	27	
1986	8	348	23	90	1986	8	373	31	57
1987	8	320	39	103	1987	7	352	40	138
1988	7	440	38	68	1988	11	408	42	57
1989	6	374	61	73	1989	9	310	32	42
1990	10	503	68		1990	8	381	38	
1991					1991	11			
		March					April		
Year	SO ₂	SPM	NOx	NH₃	Year	SO ₂	SPM	NOx	NH₃
1979	8	208	5		1979	6	140		
1980	14	283	15		1980	18	257	13	
1981	9	244	18		1981	9	238	9	
1982	10	240	25		1982	9	164	12	
1983	11	180	14		1983	12	182	12	
1984	13	216	19		1984	10	179	11	
1985	13	282	27	46	1985	10	218	13	136
1986	13	431	28	67	1986	22	331	17	110
1987	6	287	15	67	1987	6	225	13	47
1988	11	295	18	45	1988	14	351	8	67
1989	8	256	22	69	1989	7	224	16	52
1990	7	314	27		1990	6	255	25	

Ambient Air Quality in Bombay Station: Borivali (A16) Units: µg/m³

		Januar	y i		February						
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3		
1978	63	271	28	······································	1978	59	254	26			
979	38	420	9		1979	50	458	9			
980	56	404	34		1980	53	468	42			
981	43	356	44		1981	94	539	68			
1982	47	198	35		1982	54	308	49			
1983	63	356	58		1983	64	235	34			
1984	81	417	83		1984	58	367	55			
1985	55	444	60		1985	61	478	65	214		
				405							
1986	49	585	58	125	1986	37	512	51	124		
987	37	533	76	105	1987	22	608	63	100		
988	28	571	82	74	1988	32	541	76	77		
1989	34	426	68	104	1989	32	316	66	99		
990	74	440	97		1990	45	362	77			
		March					April				
Year	SO ₂	SPM	NOx	NH ₃	Year	SO2	SPM	NOx	NH ₃		
978	32	238	23		1978	45	273	14			
979	30	398	11		1979	31	289	22			
1980	35	432	30		1980	37	368	27			
1981	43	325	45		1981	41	292	36			
1982	51	300	46		1982						
983	41	282	34		1983	32	274	34			
1984	79	348	39		1984	54	283	49			
1985			•••		1985	35	360	36	123		
1986	51	428	48	160	1986	40	329	33	98		
1987	16	529	43	122	1987	11	389	45	168		
1988	31	513	49	64	1988	21	396	24	87		
1989	17	443	40	66	1989	<b>4</b> 1	000	27	01		
1990	35	295	40 54	00	1990	22	250	27			
		May	<u> </u>	· · · · · · · · · · · · · · · · · · ·			June	6m (			
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH₃		
978	54	265	10		1978	81	184	13			
979	33	311	28		1979	22	231	12			
1980	15	193	21		1980	52	99	15			
1981	15	220	20		1981	9	156	14			
1982	26	275	23		1982	18	138	9			
1983	36	194	22		1983	19	132	18			
984	18	309	24		1984	15	128	24			
985	26	193	26	130	1985	11	151	22	33		
986	27	294	28	100	1986	26	199	22 36	131		
987	13	416	20 27	69	1987						
						9	232	43 27	155		
988	27	332	20	85	1988	6	230	37	96		
989	14	193	19	62	1989 1990						
990											

Ambient Air Quality in Bombay Station: Tilaknagar (A17)

Units: µg	/m ³					·· <b>/</b>			
		July		······································			August		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1978	94	207	9		1978	25	198	4	
1979	12	196	14		1979	49	201	14	
1980	<b>1</b> 1	105	12		1980	31	119	11	
1981	10	74	. 7		1981	6	104	9	
1982	27	100	13		1982	8	109	10	
1983	16	347	31		1983	19	124	23	
1984	17	67	16		1984	44	208	29	
1985	10	161	17	47	1985	18	146	21	59
1986	10	206	25	89	1986	8	128	22	64
1987	7	167	32	123	1987	7	154	<b>29</b>	171
1988	6	146	45	63	1988	7	151	24	26
	<u></u>	Septemb	er				October		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1978	25	173	12		1978	30	235	12	
1979	55	224	22		1979	48	214	25	
1980	55	134	12		1980	51	259	23	
1981	20	116	19		1981	40	219	33	
1982	20	131	30		1982	61	279	78	
1983	22	87	18		1983	40	348	32	
1984	27	187	30		1984	61	256	65	
1985	51				1985	51	208	27	66
1986	30	265	37	57	1986	44	467	62	112
1987	9	260	33	124	1987	17	368	48	101
1988	13	<u>13</u> 9	48	51	1988	36	422	55	30
<u> </u>		Novemb	er			· · · · · · · · · · · · · · · · · · ·	December		
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH ₃
1978	26	297	12		1978	28	345	5	
1979	29	240	18		1979	29	216	22	
1980	51	306	29		1980	59	302	49	
1981	94	155	34		1981	5 <del>9</del>	219	28	
1982	45	283	66		1982	33	434	62	
1983	71	263	69		1983	87	412	68	
1984	86	367	61		1984	56	387	49	
1985	58	494	50	177	1985	52	466	35	93
1986	51	425	60	112	1986	54	457	58	74
1987	16	421	58	86	1987	48	392	57	41
1988	50	460	60	27	1988	40	474	88	52

Ambient Air Quality in Bombay Station: Tilaknagar (A17) Units: µa/m³

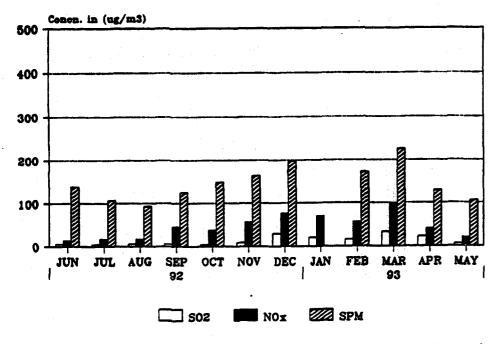
Units: µ	g/m³				- <u></u>				
		Januar	У				February		
Year	SO ₂	SPM	NO _x	NH₃	Year	SO ₂	SPM	NOx	NH₃
1979	42	322	52		1979	64	277	52	
1980	71 .	348	28		1980	60	368	28	
1981	52	274	38		1981	92	416	38	
1982	62	255	48		1982	71	230	48	
1983	71	334	44		1983	51	315	44	
1984	62	324	54		1984	48	311	54	
1985	47	358	50	20	1985	33	328	50	20
1986	22	434	40	95	1986	21	374	40	95
1987	. 15	388	35	83	1987	16	377	35	83
1988	23	368	65	79	1988	39	389	65	79
1989	28	435	82	64	1989	51	461	82	64
1990	62	504	94		1990	29	455	94	
		March					April		
Year	SO2	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3
1979	43	347	8		1979	29	185	23	
1980	48	237	26		1980	37	193	19	
1981	61	269	43		1981	19	241	23	
1982	27	227	26		1982	18	170	25	
1983	36	281	37		1983	26	217	26	
1984	61	291	41		1984	22	242	35	
1985	41	315	43	90	1985	33	225	34	115
1986	29	406	49	116	1986	22	273	31	118
1987	9	396	27	64	1987	12	358	43	113
1988	23	296	50	50	1988	34	329	49	254
1989	19	370	65	60	1989	22	292	47	95
1990	21	333	69		1990	9	300	44	
		May					June		
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH ₃
1979	9	190	18		1979	13	146	18	
1980	16	142	12		1980	49	114	19	
1981	9	199	18		1981	15	128	11	
1982	25	166	30		1982	27	130	17	
1983	24	171	26		1983	30	178	26	
1984	12	197	23		1984	31	163	27	
1985	52	200	31	119	1985	11	151	38	71
1986	24	240	38	82	1986	14	147	34	94
1987	17	293	244	113	1987	6	155	25	95
1988	20	214	23	53	1988	15	191	53	227
4000	18	249	34	107	198 <del>9</del>	7	264	57	689
1989 1990	9	233	29		1990	7	170	42	

Ambient Air Quality in Bombay Station: Chembur Naka (A18) Units: uo/m³

Ć.

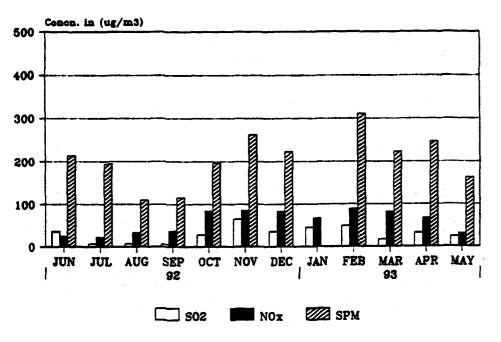
Units: µ	g/m³										
July						August					
Year	SO ₂	SPM	NOx	NH ₃	Year	SO₂	SPM	NOx	NH		
1979	13	116	18		1979	29	226	16			
1980	14	151	8		1980	39	126	12			
1981	9	98	9		1981	11	401	12			
1982	19	113	26		1982	7	117	13			
1983	20	140	34		1983	11	203	31			
1984	29	149	23		1984	41	183	26			
1985	7	143	31	51	1985	9	169	29	55		
1986	7	223	32	85	1986	8	144	24	61		
1987	10	125	33	247	1987	8	111	19	177		
1988	12	115	32	162	1988	13	148	39	34		
1989	8	116	35	134	1989	9	134	31	129		
1990	6	185	33		1990						
		Septemb					October				
Year	SO ₂	SPM	NOx	NH ₃	<u>Year</u>	SO2	SPM	NOx	NH		
1978	26	201	8		1978	22	212	7			
1979	53	189	19		1979	63	145	23			
1980	52	96	11		1980	66	230	18	- 		
1981	40	102	19		1981	58	123	30			
1982	27	124	24		1982	58	187	49			
1983	8	198	27		1983	26	216	30			
1984	39	150	32		1984	32	184	39			
1985	24	156	27	54	1985	28	233	31	25		
1986	12	163	33	56	1986	22	369	64	154		
1987	10	152	27	65	1987	16	259	49	133		
1988	9	132	47	128	1988	33	261	62	48		
1989	_25	134	39	83	1989		207	51	46		
		Novemb				, ,	December				
Year	SO2	SPM	NOx	NH3	Year	SO ₂	SPM	NO _x	NH		
1978	21	05	9		1978	38		9			
1979	45	95	26		1979	56	414	27			
1980	68 49	218	24		1980	81	236	38			
1981	43	130	36		1981	99	232	32			
1982	70	210	45		1982	68	258	51			
1983	36	340	42		1983	76	299	65			
1984	40	277	38		1984	58	336	43			
1985	37	361	33	105	1985	36	431	31	64		
1986	17	299	37	124	1986	23	40	40	199		
1987	23	258	48	77	1987	23	4227	49	82		
1988	43	261	52	35	1988	37	369	71	44		
1989	27	306	61	65	1989	27	323	60	61		

Ambient Air Quality in Bombay Station: Chembur Naka (A18) Units: µg/m³


January					February						
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3		
1978	65	176	24		1978	81	237	4			
1979	47	206	5		1979	40	132	9			
1980	36	154	16		1980	53	249	21			
1981	25	160	18		1981	39	308	23			
1982	43	135	19		1982	24	171	11			
1983					1983						
1984	26	263	61		1984	23	391	43			
1985	37	332	59	152	1985	33	304	55			
1986	27	238	59	327	1986	30	352	42	156		
1987	19	327	51	192	1987	22	318	50	320		
1988	47	360	89	176	1988	62	287	61	120		
1989	••				1989	39	348	63	205		
1990	27	409	55		1990	40	3220	72			
	March					April					
Year	SO2	SPM	NOx	NH ₃	<u>Year</u>	SO2	SPM	NOx	NH ₃		
1978	27	190	18		1978	48	179	10			
1979	30	182	5		1979	27	166	15			
1980	30	220	16		1980	30	223	15			
1981	43	164	22		1981	31	183	11			
1982	86	169	18		1982						
1983					1983						
1984	65	261	45		1984	13	258	25			
1985					1985	46	272	38	141		
1986	41	387	39	200	1986	40	297	46	154		
1987	14	290	37	208	1987	17	345	23	145		
1988	39	493	37	160	1988	32	267	19	140		
1989	18	306	38	274	1989	22	236	41	181		
1990	23	231	53			24	256	32			
Year	SO ₂	May SPM	NOx	NH3	Year	SO2	June	NOx	NH3		
1978	43	145	8		1978	105	233	11			
1979	43	205	17		1979	42	186	10			
1980	18	159	18		1980	68	156	11			
1981	28	126	14		1981						
1982					1982						
1983					1983		,				
1984	14	133	26		1984	29	154	17			
1985	34	193	24	84	1985	19	95	28	95		
1986	27	332	28	102	1986	22	144	24	111		
1987	9	202	28	265	1987	36	181	21	20		
1988	23	194	19	137	1988	52	173	32	113		
4000	18	257	27	115	1989	37	229	16	46		
1989 1990	10	201				20					

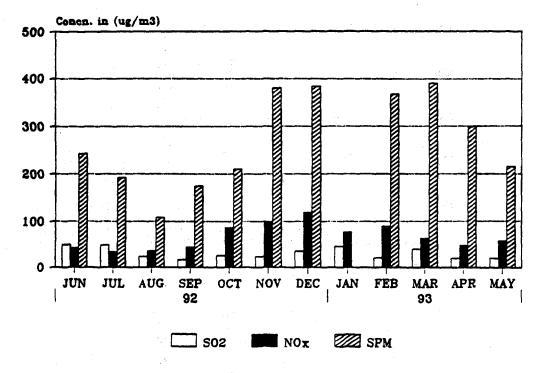
Ambient Air Quality in Bombay Station: Aniknagar (A20)

July					August						
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH₃		
1978	92	273	7		1978	29	219	8			
1979	20	324	16		1979	28	320	13			
1980	43	127	15		1980	37	115	13			
1981	14	47	6		1981	12	143	7			
1982	22	122	9		1982	9	100	15			
1983					1983	38	112	23			
1984	38	121	27		1984	34	115	27			
1985	20	126	22	49	1985	26	112	20	45		
1986	11	134	22	72	1986	15	113	19	84		
1987	15	119	20	90	1987	26	104	26	82		
1988	33	97	27	51	1988	15	136	21	34		
1989	19	75	20	157	1989	17	73	24	55		
990	27	141	27		1990						
		Septemb	er		October						
Year	SO ₂	SPM	NOx	NH ₃	Year	SO ₂	SPM	NOx	NH3		
978	34	157	9		1978	32	230	8			
1979	25	127	11		1979	33	141	12			
1980	58	104	10		1980	43	144	12			
981	23	74	8		1981	16	56	9			
982	24	121	36		1982	40	162	58			
1983	19	66	26		1983	40	225	48			
1984	41	134	32		1984	35	224	43			
1985					1985	38	284	35	54		
986	17	125	26	104	1986	36	245	53	175		
987	16	190	31	199	1987	67	171	20	119		
988	14	93	17	35	1988	28	171	35	42		
989	38	110	26	67	1989	60	206	46	145		
		Novemb				_	December				
Year	SO ₂	SPM	NOx	NH3	Year	SO ₂	SPM	<u>NOx</u>	NH3		
978	25	173	9		1978	30 34	181	7			
979	29	101	9		1979	34 66	128	14			
1980	32	129	14		1980	66 40	155	24			
1981	12	83	9		1981	19	115	13			
1982	<b>2</b> 5		50		1982	E0	077	64			
1983	35	040	50		1983	58 75	277	64 46			
1984	25	213	34	404	1984	75 40	253	46 20	102		
1985	31	290	30	131	1985	46	333	39 52	123		
986	23	249	34	154	1986	29	266	53	196		
987	22	229	44	103	1987	29	240	36	92		
988	51	270	54	23	1988	34	256	49	33		
989	31	233	45	128	1989	26	315	54	34		


Ambient Air Quality in Bombay Station: Aniknagar (A20) Units: ug/m³

# ANNEX III MONTHLY AVERAGE SO₂, NO_x and TSP at MCGB and GEMS (NEERI) STATIONS, FOR THE URBAIR PERIOD JUNE 1992–MAY 1993

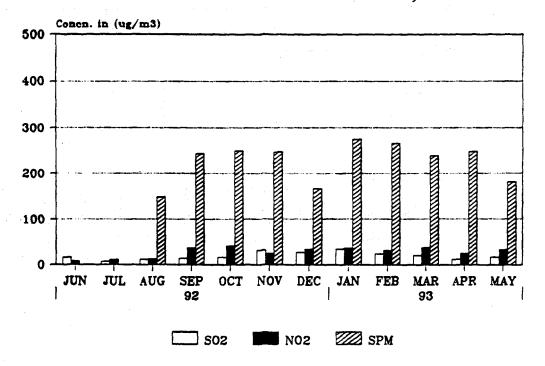


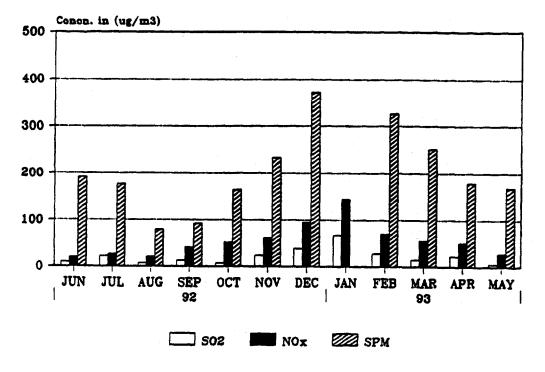

AMBIENT AIR QUALITY DATA - COLABA MONITORING AGENCY: M.C.G.B.

All values in Microgram/cu.m.



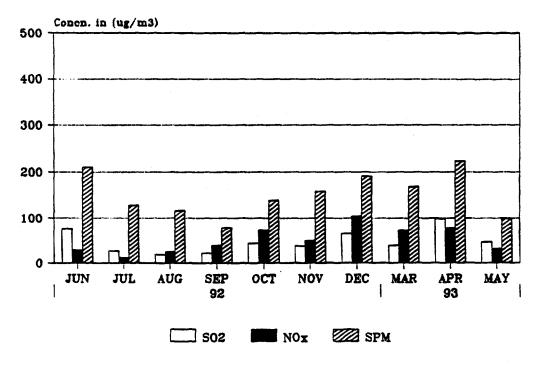
(

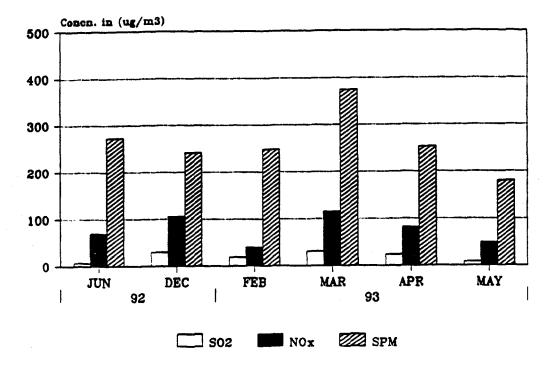

AMBIENT AIR QUALITY DATA - WORLI NAKA MONITORING AGENCY: M.C.G.B.




AMBIENT AIR QUALITY DATA - PAREL MONITORING AGENCY: M.C.G.B.

All values in Microgram/cu.m.

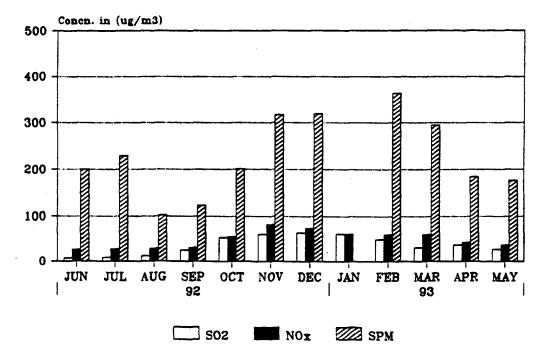

AMBIENT AIR QUALITY DATA - PAREL MONITORING AGENCY: NEERI (GEMS)

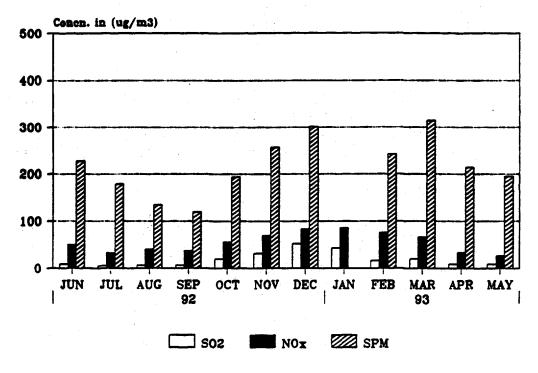





AMBIENT AIR QUALITY DATA - DADAR MONITORING AGENCY: M.C.G.B.

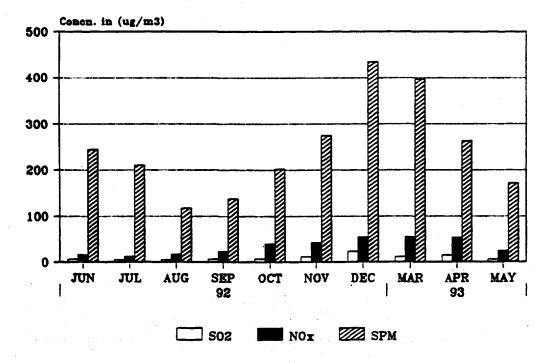
AMBIENT AIR QUALITY DATA - SEWREE MONITORING AGENCY: M.C.G.B.

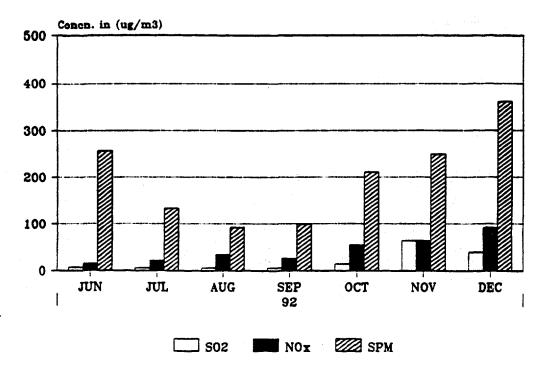



## AMBIENT AIR QUALITY DATA - SION MONITORING AGENCY: M.C.G.B.

All values in Microgram/cu.m.

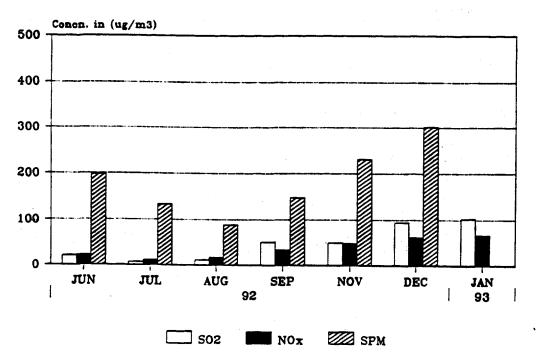

AMBIENT AIR QUALITY DATA - ANDHERI MONITORING AGENCY: M.C.G.B.

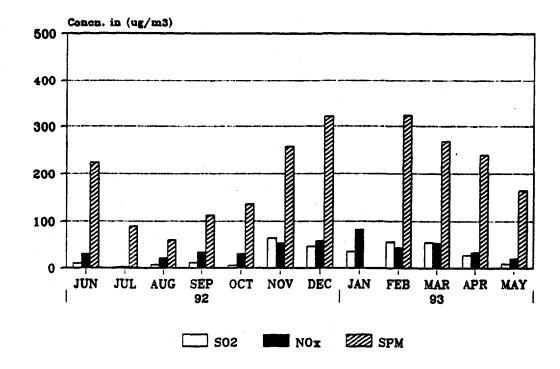





AMBIENT AIR QUALITY DATA - SAKI NAKA MONITORING AGENCY: M.C.G.B.

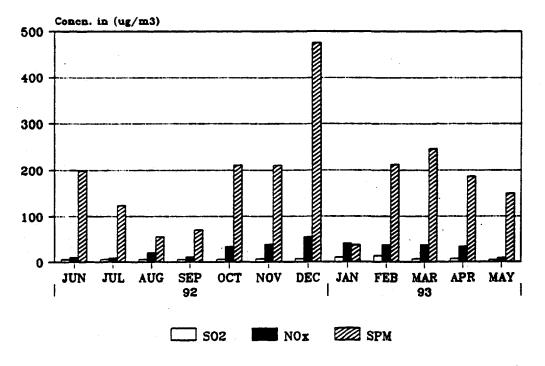
AMBIENT AIR QUALITY DATA - JOGESHWARI MONITORING AGENCY: M.C.G.B.

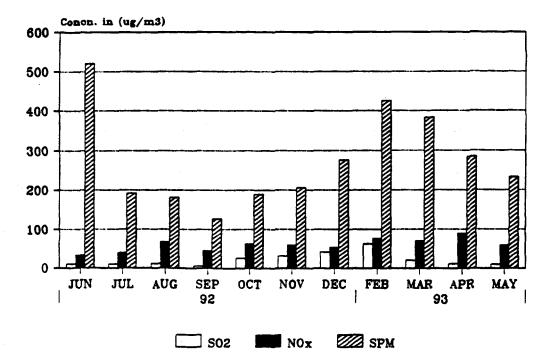



#### AMBIENT AIR QUALITY DATA - GHATKOPAR MONITORING AGENCY: M.C.G.B.

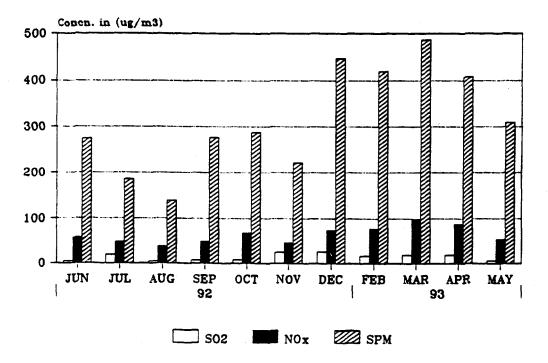
All values in Microgram/cu.m.

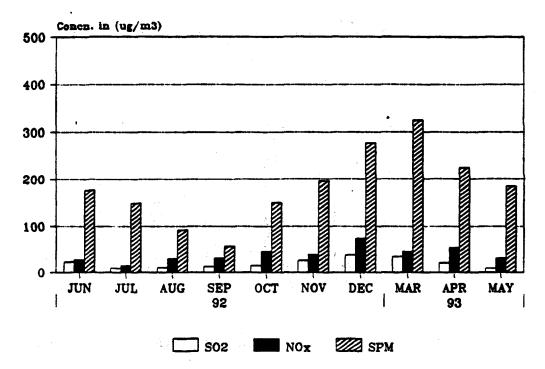

#### AMBIENT AIR QUALITY DATA - BHANDUP MONITORING AGENCY: M.C.G.B.





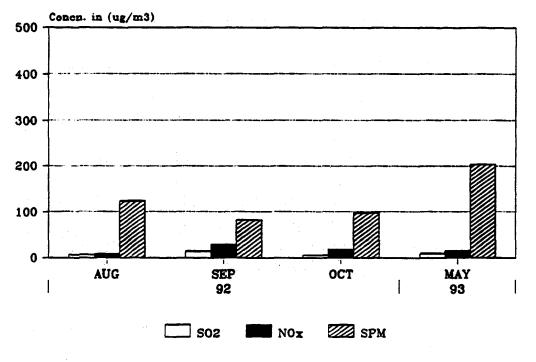

AMBIENT AIR QUALITY DATA - MULUND MONITORING AGENCY: M.C.G.B.

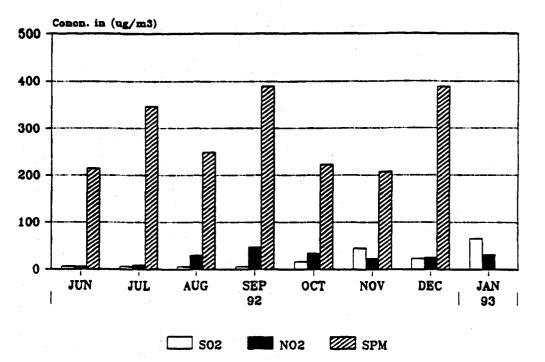

AMBIENT AIR QUALITY DATA - BORIVALI MONITORING AGENCY: M.C.G.B.






AMBIENT AIR QUALITY DATA - CHEMBUR NAKA MONITORING AGENCY: M.C.G.B.

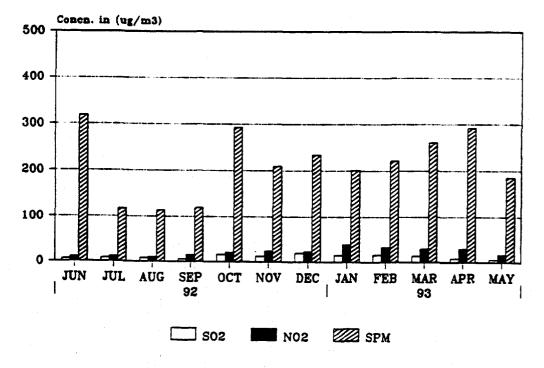

AMBIENT AIR QUALITY DATA - MARAVALI MONITORING AGENCY: M.C.G.B.






AMBIENT AIR QUALITY DATA - ANIKNAGAR MONITORING AGENCY: M.C.G.B.

AMBIENT AIR QUALITY DATA - MAHUL MONITORING AGENCY: M.C.G.B.






#### AMBIENT AIR QUALITY DATA - BANDRA MONITORING AGENCY: NEERI

All values in Microgram/cu.m.

AMBIENT AIR QUALITY DATA - KALBADEVI MONITORING AGENCY: NEERI



All values in Microgram/cu.m.

ŝ.

• • •

# APPENDIX 2 AIR QUALITY GUIDELINES

#### **AIR QUALITY GUIDELINES**

National ambient air quality standards in India. These were established in 1994 and are given in Table 1 below. The Indian Standards differentiate between Industrial, Residential and Sensitive areas. Bombay is considered an Industrial area. The Indian Standards for industrial areas are less restrictive than the WHO guidelines (Table 2) for SO₂ annual average, and especially for TSP and PM₁₀ (the WHO recommended guideline for PM₁₀ is 70  $\mu$ g/m³, as 24 hour average). For NO₂, the Indian standards are stricter than WHO.

		Conc	entration in ambi				
Pollutants	Time weighted average	Industrial area	Residential, Rural and other areas	Sensitive of Area	Method of measurement		
Sulfur Dioxide SO ₂	Annual average* 24 hours**	80 µg/ m³	60 µg/m³	15 µg/m³	1. Improved West and Geake method		
		120 µg/ m³	80 µg/m³	30 µg/m³	2. Ultraviolet fluorescence		
Oxides of Nitrogen as NO ₂	Annual average*	80 µg/ m³	60 µg/m ³	15 µg/m³	1. Jacob & Hochheiser modified (Na-Arsenite) Method		
	24 hours*	120 µg/m³	80 µg/m³	30 µg/m³	2. Gas Phase Chemiluminescence		
Suspended Particulate	Annual average*	360 µg/m³	140 µg/m³	70 µg/m³	High Volume sampling,		
Matter (SPM)	24 hours**	500 µg/m³	200 µg/m ³	100 µg/m³	(Average flow rate not less than 1.1 m ³ /minute)		
Respirable matter (size	Annual average*	120 µg/m³	60 µg/m³	50 µg/m ³	Respirable particulate		
less than 10 µm) (PM10)	24 hours**	150 µg/m³	100 µg/m³	75 µg/m³	matter sampler		
Lead (Pb)	Annual average*	1.0 µg/m³	0.75 µg/m³	0.50 µg/m³	ASS method after sampling		
	24 hours**	1.5 µg/m ³	1.00 µg/m³	0.75 µg/m ³	using PM 2000 or equivalent Filter paper		
Carbon Monoxide (CO)	8 hours**	5.0 mg/m ³	2.0 mg/m ³	1.0 mg/m ³	Non dispersive infrared		
	1 hour	10.0 mg m ³	4.0 mg/m ³	2.0 mg/ m ³	spectroscopy		

#### Table 1: National Ambient Air Quality Standards

* Annual Arithmetic mean of minimum 104 measurements in a year taken twice a week 24 hourly at uniform interval.

** 24 hourly/8 hourly values should be met 98% of the time in a year. However, 2% of the time, it may exceed but not on two consecutive days.

NOTE:

1. National Ambient Air Quality Standard: The levels of air quality with an adequate margin of safety, to protect the public health, vegetation and property.

2. Whenever two consecutive values exceed the limit specified above for the respective category, it would be considered adequate reason to institute regular/continuous monitoring and further investigations.

 The State Government/State Board shall notify the sensitive and other areas in the respective states within a period of six months from the date of Notification of National Ambient Standards.

Par	ameter	10 minutes	15 minutes	30 minutes	1 hour	8 hours	24 hours	1 year	Year of standard
SO ₂	µg/m³	500			350		125ª	50 a	1987
SO2	µg/m ³						100–150	4060	1979
BS♭	µg/m³						125 ª	50 ª	1987
BSÞ -	μ <b>g/m</b> ³						100–150	40-60	1979
TSP	μ <b>g/m</b> ³						120 ª		1987
TSP	μ <b>g/m</b> ³						150–230	60–90	1979
PM ₁₀	μg/m ³						70ª		1987
Lead	µg/m³							0.5–1	1987, 1977
CO	mg/m ³		100	60	30	10			1987
NO2	μg/m ³				400		150		1987
NO2	µg/m ³				190-320 ^c				1977 ^b
O3	μg/m³				150-200	100-120			1987
O3	µg/m³	с		1999 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 19	100-200				1978

Table 2: WHO Air Quality Guidelines (WHO, 1977a, 1977b, 1978, 1979, 1987)

Notes:

 a) Guideline values for combined exposure to sulfur dioxide and suspended particulate matter (they may not apply to situations where only one of the components is present).

b) Application of the black smoke value is recommended only in areas where coal smoke from domestic fires is the dominant component of the particulates. It does not necessarily apply where diesel smoke is an important contributor.

c Not to be exceeded more than once per month.

#### Suspended particulate matter measurement methods

BS = Black smoke; a concentration of a standard smoke with an equivalent reflectance reduction to that of the atmospheric particles as collected on a filter paper.

TSP = Total suspended particulate matter; the mass of collected particulate matter by gravimetric analysis divided by total volume sampled.

PM₁₀ = Particulate matter less than 10 μm in aerodynamic diameter; the mass of particulate matter collected by a sampler having an inlet with 50 per cent penetration at 10 μm aerodynamic diameter determined gravimetrically divided by the total volume sampled.

TP = Thoracic particles (as PM₁₀).

IP = Inhalable particles (as PM₁₀).

Source: (WHO/UNEP 1992)

. . . .

# APPENDIX 3 AIR POLLUTION LAWS AND REGULATIONS FOR INDIA AND BOMBAY

# CONTENTS

1. Legal aspects of pollution control—operational requirements. A note prepared by Mr. U. Joglekar, ADITYA, Bombay

2. Mass emission standards for motor vehicles, effective from 1/4/1995

3. Fuel specifications for India

## LEGAL ASPECTS OF POLLUTION CONTROL—OPERATIONAL REQUIREMENTS

The Government of India has promulgated 3 important Acts in the field of pollution control:

i. The Water Pollution (Prevention & Control) Act, 1974.

ii. The Air Pollution (Prevention & Control) Act, 1981.

iii. The Environment Protection Act, 1986.

According to these Acts, industry-specific discharge/emission standards called MINAS (Minimum National Standards) have been prescribed. A few general standards as applicable to SSI units for air pollution are given in Annexure. All industries including SSI units are to comply with these standards and meet other stipulation laid down in these Acts. The responsibility of enforcing the provisions of these Acts rests with the Central/State Pollution Control Boards. Depending on the location of unit, the concerned State Boards expect that the units in their jurisdiction will obtain their permission to discharge the pollutants, or their 'CONSENT.'

The legal position, is that all the existing units are to obtain the CONSENT of their respective Boards. New units, even before they start putting up the industry, have to obtain a NOC (No Objection Certificate) from the Board. In fact, now, financial institutions and banks, too, demand production of NOCs before disbursement of loans even though the loans may have been sanctioned on the basis of the techno-economic feasibility of the project.

In order to obtain the NOC from a Pollution Control Board (PCB), application is to be made with a complete project-report, including the proposed measures of controlling pollution. Since, pollution control is site-specific, the PCBs also have to be apprised of proposed project site and, sometimes, depending on the need, Board may even ask for EIA (Environment Impact Assessment) reports for site clearance.

The Boards, because of fragile environmental condition, have declared some regions as sensitive. New industries, especially pollution-intensive types, may not be allowed in sensitive areas or may be prescribed much stricter standards. Proximity to protected monuments, national wildlife parks or sanctuaries could also be the reasons for industries to obtain a prior siteclearance.

Non-compliance with the legal stipulation invites prosecution with fines and penalties and even imprisonment. Under EPA 86 the PCBs are even empowered to order closure of an unit if they believe it to be in public interest. Without going to the court of law, they can implement closure decisions by approaching the authorities concerned directly to cut power and water supply to the violating units.

#### SALIENT FEATURES OF POLLUTION RELATED ACTS

# The Air (Prevention and Control of Pollution) Act, 1981

An Act to provide for the prevention, control and abatement of air pollution, given assent by the President of India on March 29, 1981.

The Act has the following chapters:

- I. Preliminary
- II. Central and State Boards for the Prevention and Control of Air Pollution
- III. Powers and Functions of Boards
- IV. Prevention and Control of Air Pollution
- V. Fund, Accounts and Audit
- VI. Penalties and procedure
- VII. Miscellaneous

#### Salient features

This Act is applicable to the whole of India.

## Central and State Boards for the prevention and control of air pollution

#### Constitution of State Board:

- a. The State Government will appoint a Chairman, member representing institutions, industries, government departments and social bodies etc. and a member secretary as executive head.
- b. In union territory Central Board is to act as State Boards.
- c. The Board may appoint officers and other employees as it may fit for efficient functioning of the Board.

#### Functions of Central Board:

- a. Advise the Central Government on any matter concerning the improvement of the quality of air and the prevention and control of abatement of air pollution,
- b. Plan the nation-wide programme for air pollution abatement,
- c. Coordinate the activities of State Boards,
- d. Provide guidance and technical assistance to the State Boards,
- e. Plan and organize training of persons engaged in air pollution abatement programmes,
- f. Organize through media abatement plans,
- g. Collect, compile, and publish technical and statistical data relating to air pollution,
- h. Lay down standards for the quality of air,
- i. To establish and recognize a laboratory to enable it to perform its function under this Act.

## Functions of State Boards:

- a. to plan comprehensive programmes for air pollution abatement,
- b. to advise the State Government on any matter concerning the air pollution abatement,
- c. to collaborate with Central Board,
- d. to collect and disseminate information relating to air pollution,
- e. to inspect industrial plants at intervals as it may consider necessary and to give directions to related persons for air pollution abatement,
- f. to lay down, in consultation with the Central Board, standards for the quality of air, standards for emissions of air pollutants into the atmosphere for industrial plants, automobiles, and other sources excluding ships and air crafts.
- g. to establish or recognize a laboratory/laboratories to enable it to perform its functions efficiently.

#### Powers to give directions:

- a. Central Board shall be bound by written direction issued by Central Government; and
- b. State Board shall be bound by written direction issued by Central Board or the State Government.

# **Prevention and control of air pollution**

The State Government may, after consultation with the State Board by official Gazette notification declare:

- a. any area or areas within the State as "Air Pollution control Area or Areas" for the purposes of this act,
- b. alter any air pollution control area,
- c. prohibition of usage of any fuel other than the approved fuel in air pollution control area,
- d. prohibition of burning of any material (other than fuel) in any air pollution control area or part of it.

#### Restriction or use of certain industrial plants:

- a. No person shall without the prior consent of the State Board, operate any industrial plant for the purpose of any industry specified in the schedule in an air pollution control area;
- b. An application for the consent of the Board shall be accompanied by prescribed fee and shall be made in the prescribed form and shall contain the particulars of the industrial plant and other prescribed particulars;
- c. The State Board may make such inquiries at it may deem fit in respect of the application for consent and shall follow the prescribed procedures;
- d. Within a period of 4 months after the receipt of consent application the State Board shall by order in writing either grant or refuse it, for reasons recorded in the order;
- e. Every person to whom consent has been granted by the State Board shall comply with the following conditions;

i. The prescribed control systems shall be installed and operated in existing/proposed industry.

ii. The existing control equipment if any shall be altered/replaced in accordance with the directions of State Board.

iii. The control system as per clause (i) or (ii) will be kept under good conditions.

iv. Chimney wherever necessary of prescribed specifications, shall be erected or re-erected in the premises.

v. And the condition prescribed from (i) or (iv) complete within the prescribed period.

- f. If due to technological improvement, State Board may alter as a whole or part, of the conditions mentioned above;
- h. In case of the transfer of the unit from one person to the other person the consent will deemed to be transferred with conditions.

Persons carrying on industry etc. not to allow emission of air pollutants in excess of the standards laid down by State Board. No person carrying on any industry specified in the schedule or industrial, plants in any air pollution control area shall discharge or cause or permit to be discharged, the emission of any air pollutants in excess of the standard laid down by the State Board.

# Power of entry and inspection

Any person empowered by a State Board shall have a right to enter, at all reasonable times with necessary assistance, any place:

- a. for the purpose of performing any of the function entrusted to him,
- b. for the purpose of examination of control system, inspection of related documents, to conduct search and to check whether all directions/ instructions, issued time to time are being followed,
- c. all persons carrying on any industry specified activities in the schedule are bound to render all assistance to the persons empowered by the Board and delay or non-cooperation shall be an offense under this Act.

## Power to obtain information

The State Board or its empowered person may ask for any information like the type of pollutants and the level of emission from the occupier or the person carrying on any industry and can inspect the premises/control equipment for verifying purposes.

The State board or any officer empowered by it shall have power to take, for analysis purpose sample of air or emission from any chimney, flue, duct or any other outlet in prescribed manner.

Where a sample of emissions has been sent for analysis by Board to the laboratory established or recognized by the State Board the Board's analyst shall analyze the sample and submit a report in the prescribed form.

## State Air Laboratory

State Government may, by official notification, establish or specify one or more laboratory or institutions as state laboratory.

## Analyst

The State Government may by official Gazette notification appoint a Government Analyst.

## **Report of Analysts**

The report of a Government Analyst may be used as evidence in the court of the law.

## Appeals

Any person aggrieved by an order made by the State Board may appeal to an appropriate Appellate Authority within 30 days of the action.

#### Fund, accounts, and audit

- a. The Central Board and every State Board shall have its own fund funded by Central Government/State Government.
- b. The Central Board and every State Board shall prepare annual budget and annual report duly audited by a competent authority.

# **Penalties and Procedures**

Failure to comply with the orders or directions of the Board issued under the Act:

- a. Whoever fails to comply with the provisions mentioned above is punishable with imprisonment up to 3 months or fines up to Rs 10,000 or both. And in case the failure continues, with an additional fine up to Rs 10/- day during which the failure continues after the conviction for the first such failure.
- b. If the failure continues beyond 1 year after the date of conviction, the offender shall be punishable with imprisonment up to 6 months.

#### **URBAIR-Mumbai**

## Penalties for certain acts

Whoever damages the Board's property, fails to furnish information asked for, obstructs any Board's officer from performing his duty or makes false statements etc., shall be punished with imprisonment up to 3 months or fine up to Rs 500/ or both.

## Penalty for contravention of certain provisions of the Act

For any contravention of any the provisions of the act for which no penalty has been else where provided in this Act shall be punishable with a fine of up to Rs 5000/- and with continuation of contravention a fine Rs 100/day after conviction for first contravention.

## **Offenses by Companies and Government Departments**

Where an offense under this act has been committed by a company/ government department, every person who was at that time directly in charge of the company/department shall be deemed to be guilty of the offense and shall be liable to be prosecuted and punished accordingly unless he proves that the offense was made without his knowledge.

# Miscellaneous

- a. State Central Government/State Government may supersede Central Board/State Board respectively.
- b. The Central Government may amend the schedule of industries.

#### THE SCHEDULE

- 1. Asbestos and asbestos product industries,
- 2. Cement and cement products industries,
- 3. Ceramic and ceramic product industries,
- 4. Chemical,
- 5. Coal and lignite based chemical industries,
- 6. Engineering industries,
- 7. Ferrous metallurgical industries,
- 8. Fertilizer industries,
- 9. Foundries,
- 10. Food and agricultural product industries,
- 11. Mining industries,
- 12. Non-ferrous metallurgical industries,
- 13. Ores/mineral processing industries including benefaction, pelletization etc.,
- 14. Power (coal, petroleum and their products) generating plants and boiler plants,

15. Paper and pulp (including paper products) industries,

16. Textile processing industries (made wholly or in part of cotton),

17. Petroleum refineries,

18. Petroleum products and petrochemical industries,

19. Plants for recovery from and disposal of wastes,

20. Incinerators.

# **CENTRAL POLLUTION CONTROL BOARD**

(MINISTRY OF ENVIRONMENT & FORESTS, GOVERNMENT OF INDIA)

#### No-B-31012/2/91/PCI -II/

September 17, 1992

# DIRECTIONS FROM THE CENTRAL POLLUTION CONTROL BOARD UNDER CLAUSE (b) OF SUB-SECTION 1 OF SECTION 18 OF THE AIR (PREVENTION & CONTROL OF POLLUTION) ACT, 1981

Whereas Clause (g) of Sub-section 1 of Section 17 of the Air (Prevention and Control of Pollution) Act, 1981 establishes standards by a State Pollution Control consultation with Central Pollution Control Board for emission of air pollutants into the atmosphere from industrial plants and automobiles.

And whereas the mass emission standards for petrol, and diesel driven vehicles as given in Annexure I & II respectively, have been evolved and proposed to be made effective from the first day of April, 1995.

As where it is further proposed to strive to attain the indicative standards by all the petrol and diesel driven vehicles as given in Annexure III & IV respectively for the year 2000.

Now, therefore, in exercise of the power vested with the Central Pollution Control Board under Clause (b) of sub-section I of Section 18 of the Air (Prevention and Control of Pollution) Act, 1981, the following directions are issued herewith:-

> "State Council Board shall ensure that on and from the 1st day of April 1995 all petrol and diesel driven vehicles shall be so manufactured that they comply with the mass emission standards as specified in Annexure I and II respectively given herein above;

> "The State Pollution Control Board shall also ensure to strive to attain the indicative standards by the petrol and diesel driven vehicles for the year 2000 as given in Annexure III and IV respectively."

# (A. BHATTACHARIYA) Chairman

# MASS EMISSION STANDARD FOR PETROL DRIVEN VEHICLES EFFECTIVE FROM 1/4/1995

# Type approval tests

1	- 77.			
	~ ~ /	1000	noor	cars
			ILEVI	cars

Reference mass R(Kg)	CO g/km	HC + NOx g/km
R < 1020	5.0	2.0
1020 < R < 1250	5.7	2.2
1250 < R < 1470	6.4	2.5
1470 < R < 1700	7.0	2.7
1700 < R < 1930	7.7	2.9
1930 < R < 2150	8.2	3.5
R > 2150	9.0	4.0

Note:

1. The test will be as per Indian driving cycle with cold start.

2. There should be no crankcase emission. (To be implemented from 1/1/1994)

3. Evaporative emission should not be more than 2.0 g/test. (To be implemented from 1/1/1994)

2. Two-wheelers (for all categories). The test will be as per Indian driving cycle with cold start.

- CO 3.75 g/km
- HC 2.40 g/km

3. Three-wheelers (for all categories). The test will be as per Indian driving cycle with cold start.

- CO 5.6 9/km
- HC 3.6 g/km

# Conformity of production tests

Passenger Cars (For all categories).

• A relaxation of 20% for CO & 25% for combined HC+NO_x for the corresponding values of Type Approval Test given above would be permitted.

Two & Three Wheelers (For all categories).

• A relaxation of 20% for CO and 25% for HC for the values of Type Approval Test given above would be permitted.

Annexure II

# MASS EMISSION STANDARD FOR DIESEL VEHICLES EFFECTIVE FROM 1/4/1995

# Type approval tests

Vehicle category	HC* (g/kWh)	CO* (g/kWh)	NO _x (g/kWh)	Smoke
Medium & Heavy over 3.5-Ton/GVW	2.4	11.2	14.4	*** ***
Light diesel up to 3.5 Ton GVW	2.4	11.2	24.4	***

#### or

Reference mass	CO**	HC + NO _x
R(Kg)	g/km	g/km
R < 1020	5.0	2.0
1020 < R < 1250	5.7	2.2
1250 < R < 1470	6.4	2.5
1470 < R < 1700	7.0	2.7
1700 < R < 1930	7.7	2.9
1930 < R < 2150	8.2	3.5
R > 2150	9.0	4.0

Note:

* The test cycle is as per 13 mode cycle on dynamometer.

** The test should be as per Indian driving cycle with cold start.

*** The emissions of visible pollutants (smoke) shall not exceed the limit values to smoke density, when expressed as light absorption coefficient given at Page 2 of Annexure II for various nominal flows when tested at constant speeds over full load.

# Conformity of production tests

A relaxation of 10% for the values of Type Approval Test given above would be permitted.

Nominal Flow G (1/s)	Light Absorption Coefficient (K (m ^{.1} )
42	2.00
45	1. 91
50	1. 82
55	1. 75
60	1. 68
65	1. 61
70	1.56
75	1.50
80	1. 46
85	1. 41
90	1.3 8
95	1.34
100	1,31
105	1.27
110	1.25
115	1.22
120	1.20
125	1.17
130	1.15
135	1.13
140	1.11
145	1. 09
150	1. 07
155	1. 05
160	1.04
165	1.02
170	1. 01
175	1.00
180	0.99
185	0. 97
190	0.96
195	0.95
200	0. 93

Nominal flows tested at constant speeds over full load

#### Annexure III

# MASS EMISSION STANDARD FOR PETROL DRIVEN VEHICLES EFFECTIVE FROM 1/4/2000

# Type approval test

1. Passenger cars (for all categories). The test-should be as per Indian start.

• CO - 2.72 g/km

• HC + NOx - 0.97 g/km

2. Two-wheelers (for all categories). The test start should be as per Indian driving cycle with cold start.

- CO 2. 0 g/km
- HC 1. 5 g/km

3. *Three-wheelers* (for all categories). The test start should be as per Indian driving cycle with cold start.

- CO 4.0 g/km
- HC 1.5 g/km

# Conformity of production tests

- 1. Passenger Cars (For all categories)
- A relaxation of 16% for CO & combined HC + NOx for corresponding values of Type Approval Test would be permitted.
- 2. Two- & Three-Wheelers (For all categories)
- A relaxation of 20% for CO as well as HC for the values of Type Approval Test given above would be permitted.

Annexure IV

# MASS EMISSION STANDARD FOR DIESEL VEHICLES EFFECTIVE FROM 1/4/2000

Vehicle category	HC*	CO* (g/kWh)	NOx *	FM*	Smoke
Medium & Heavy over 3.5 ton GVW	1.1	4.5	8.0	0.36	***
Light diesel up to 3.5 ton GVW	1.1	4.5	8.0	0.61	***
)r	CO**	HC + NO _x *	**	PM**	<del>_</del> `.
	g/km	g/km		r m	
	2.72	0.97		0.14	-

#### Note:

* The test should be as per 13 mode cycle.

** The test should be as per Indian driving cycle with cold start.

*** The emission of visible pollutants (smoke) shall not exceed the limit values of smoke density, when expressed and light absorption coefficient given at Page 2 of Annexure IV for various nominal flows when listed at constant speed over full load.

# Conformity of production tests

A relaxation of 10% for the values of Type Approval Test given above would be permitted for Conformity Of Production Test for all vehicles.

# URBAIR-Mumbai

Nominal Flow G (1/s)	Light Absorption Coefficient K(m ^{.1} )
42	2.00
45	1.91
50	1.82
55	1.75
60	1.68
65	1.61
70	1.56
75	1.50
80	1.46
85	1. 41
90	1.38
95	1. 34
100	1.31
105	1.27
110	1.25
115	1.22
120	1.20
125	1.17
130	1.15
135	1.13
140	1.11
145	1.09
150	1.07
155	1.05
160	1.04
165	1.02
170	1.01
175	1.00
180	0.99
185	0.97
190	0.96
195	0.95
200	0.93

Various nominal flows listed at constant speed over full load

Sr. No	Characteristics	Commercial Butane	Requirements Commercial Butane Propane Mixture	Commercial Propane	Method of Test Ref. To (P) of IS-1448
i.	Vapour Pressure @ 65ºC, kgf/cm2 (see note 1)	10 max.	16.87 max (see note 2)	26 max.	P:71
ii.	Volatility evaporate temperature in °C, for 95% vol. @ 760 mm. pressure, max.	2	2	-38	P:72
iii.	Total volatile sulphur, % by mass, max.	0.02	0.02	0.02	P:34
iv.	Copper strip corrosion @ 38°C for one hour.		Not worse than no.	1	P:15
۷.	Hydrogen Sulfide	absent	absent	absent	P:73
vi.	Dryness	No free entrained	No free entrained	shall pass the	P:74
vii.	Odour (See note 4)	water Level 2	water Level 2	test Level 2	(see note 3) P:75

# Requirements of liquefied petroleum gases

NOTE 1: Vapour pressure may be determined at any temperature and convened to 65'C by means of suitable vapour pressure temperature graph. The same can also be determined by analyzing the gas by means of gas chromatograph and then using the composition. The vapour pressure can be calculated @ 65°C from the standard value of vapour pressures at various temperatures.

NOTE 2: Each consignment of commercial butane - propane mixture shall be designated by its maximum vapour pressure in kgf/cm @ 65°C. Further, if desired by the purchaser and subject to prior agreement between the purchaser and the supplier, the minimum vapour pressure of that mixture shall not be lower than 2 kgf/c m² gauge compared to the designated maximum vapour pressure and in any case the minimum for the mixture shall not be lower than 10 kgf/cm² @ 65°C.

**NOTE 3:** The presence or absence of free entrained water in commercial butane or commercial butane - propane mixture shall be determined by visual inspection of the sample.

**NOTE 4:** Subject to agreement between the purchaser and the supplier, odour requirements of LPG may be changed for certain applications where unodourised LPG is required.

## CONFORMS TO IS:4576-1978 FOR LPG.

			Requi	irements
Sr. No.	Characteristics	Test Method IS:1448	87 OCTANE	93 OCTANE
i.	Colour, Visual	•	Orange	Red
ii.	Copper Strip Corrosion for 3 hours at 50°C	P:15	Not worse than No. 1	Not worse than No. 1
ili.	Density at 15°C, g/mi	P:16		
iv.	Distillation	P:18		
	Initial Boiling point °C		To be reported	To be reported
	Recovery upto 70°C, % v, min.		10	10
	Recovery upto 125°C, % v, min.		50	50
	Recovery upto 180°C, % v, min.		90	90
	Final boiling point °C, max.		215	215
	residue, %v, max.		2	2
V.	Octane number (Research Method) min.	P:27	87	93
vi.	Oxidation Stability in Minutes, min.	P:28	360	360
<b>vi</b> i.	Residue on Evaporation, mg/100 ml, max.	P:29 (Air-Jet, Solvent Washed)	4.0	4.0
<b>viii</b> .	Sulphur, % wt. max.	P:34	0.25	0.20
ix.	Lead content (as Pb), g/l max.	P:38	0.56	0.80
<b>X</b> .	Reid Vapour Pressure at 36°C, kgf/cm². max.	P:39	0.70	0.70

CONFORMS TO IS:2796-1971 SPECIFICATIONS FOR MOTOR GASOLINES

Sr. No.	Characteristics	Test Method IS:448	HSD	LDO
1.	Acidity, inorganic	P:2	Nil	Nil
2.	Acidity, total, mg KOH/g, max.	P:2	0.50	-
3.	Ash. % wt., max.	P:4	0.01	0.02
4.	Carbon residue (Ramsbottom), % wt max.	P:8	0.20	1.50
5.*	Cetane number, min.	P:9	<b>42</b> '	-
6.**	Pour Point, °C, max.	P:10	6	Winter 12*** Summer 18
7.	Copper strip Corrosion for 3 hrs. at 100°C	P:15	Not worse than No. 1	Not worse than No. 2
8. 9.****	Distillation, percentage recovery at 366°C. min. Flash Point	P:18	90	· · · · · · · · · · · · · · · · · · ·
	a) Abel °C. mín.	P:20	32	•
	b) PMCC °C. min.	P:21	-	66
10.	Kinematic Viscosity cSt at 38°C	P:25	2.0 to 7.5	2.5 to 15.7
11.	Sediment, % wt., max.	P:30	0.05	0.10
12.	Total Sulphur, % wt., max.	P:33 or P:35	1.0	1,8
13.	Water Content, % V. max.	P:40	0.05	0.25
14.	Cold Filler Plugging Point (CFPP) °C, max.	IP 309/76	To be reported	-
15.****	Total Sediments, mg/100 ml. max.	Appendix A of Specification	1.0	- -

# Specification of diesel fuels

Notes:

Cetane Number: Diesel Fuel for Naval applications shall have a cetane number of 45, min. When an engine for determination of celane number is not available, diesel index determined by IS:1448-1960. Methods of test for petroleum and its products P:17. Diesel Index may be used as a rough indication of ignition quality. A diesel index of 45 is normally considered sufficient to ensure a minimum cetane number of 42. This approximate correlation holds good only in case of fuels which are of petroleum origin and contain no additives. For arbitration purposes, the direct determination of cetane number by means of the standardized engine test shall be used unless the buyer and the seller agree otherwise.

** Pour Point: Subject to agreement between purchaser and supplier, a lower or higher maximum pour point may be accepted. The Ministry of Petroleum & Natural Gas issues instructions periodically to the refineries to reduce/increase pour point of HSD according to ambient temperature conditions.

*** Winter shall be the period from November to February (both months inclusive) and rest of the months of the year shall be called as summer.

**** Flash Point: Diesel Fuel for Naval applications and for Merchant Navy shall have a flash point of 66°C, min. when tested by the method prescribed in IS:1448 (P:21)-1970. Methods of test for petroleum and its products P:21 Flash Point (Closed) by Pensky-Manens apparatus (first revision).

***** Total Sediments: This test shall be carried out only at the refinery or manufacturer's end.

CONFORMS TO IS: 1460-1974 SPECIFICATIONS FOR DIESEL FUELS

Sr. No.	Characteristics	Requirements
1.	Colour, ASTM, max.	3.5
2.	Flash Point. min.	55°C
		(Navy - min. 65°C)
3.	Cetane No., min.	45
4.	Diesel index, min.	48
5.	Distillation:	
	% recovered upto 357°C. min.	90%
	F.B.P., max.	385°C
	Residue. % vol., max.	2.0
6.	Total Sulphur. % wt., max.	0.5
7.	Olefins, % vol., max.	5.0
8.	Aromatics, % vol., max.	20.0
9.	Carbon (Ramsbottom on 10% residue), max.	0.2

# Specification of diesel high pour point-a

# OTHER REQUIREMENTS AS PER IS: 1460-1974 SPECIFICATIONS FOR HSD

# Specification of furnace oil

	······································		Requirements			
Sr. No.	Characteristics	Test Method IS:1448	Grade LV	Grade MV1	Grade MV 2	Grade HV
1.	Acidity, inorganic	P:2	Nil	Nil	Nil	Nil
2.	Ash, % wt., max.	P:4 (Method A)	0.1	0.1	0.1	0.1
3.	Gross. calorific value, cal/g.	P:6 or 7	Not limited	, but to be rep	orted (typical -1	.0260)
4.	*Relative density at 15/I5°C.	P:32	Not limited	, but to be rep	orted (typical -1	.950)
5.	Flash point, (PMCC) C, min.	P:21	66	66	66	66
6.	Kinematic viscosity in centistokes at 50°C.	P:25	80 Max.	80-125	125 - 180	180-370
7.	Sediment, % wt., max.	P:30	0.25	0.25	0.25	0.25
8.	**Sulphur, total, % by wt., max.	P:33 or P:35	3.5	4.0	4.0	4.5
9.	Water content, % by vol., max.	P:40	1.0	1.0	1.0	1.0

Note:

* Furnace oil for marine uses in diesel engines shall not exceed a limit of 0.99

** Sulphur Content: Recognizing the necessity for low-sulphur fuel oils in some specialized use, a lower limit may be specified by mutual agreement between the purchaser and the supplier.

## CONFORMS TO IS:1593-1988 SPECIFICATIONS FOR FUEL OIL

# APPENDIX 4 EMISSION INVENTORY

#### INTRODUCTION

Several attempts have been made to establish a comprehensive survey of air pollution emissions for the Bombay area (refs). The most recent survey was worked out by Coopers & Lybrand and AIC, as part of their Study on Environmental Strategy and Action Plan for Bombay Metropolitan Region (Government of Maharashtra, 1993).

For the URBAIR project for Bombay, a more through procedure was conducted to work out the best

Most of the data collection and emission calculations was performed by Aditya Environmental Services of Bombay. The production of gridded emission files (emissions distributed in a km² grid net) was done using the supporting software programs for the KILDER dispersion modeling program system developed by NILU.

The road traffic activity and emissions distribution was calculated by NILU, based on traffic and road data provided by W.S. Atkins 1993, produced in connection with their Comprehensive Transportation Study for Bombay Metropolitan Region.

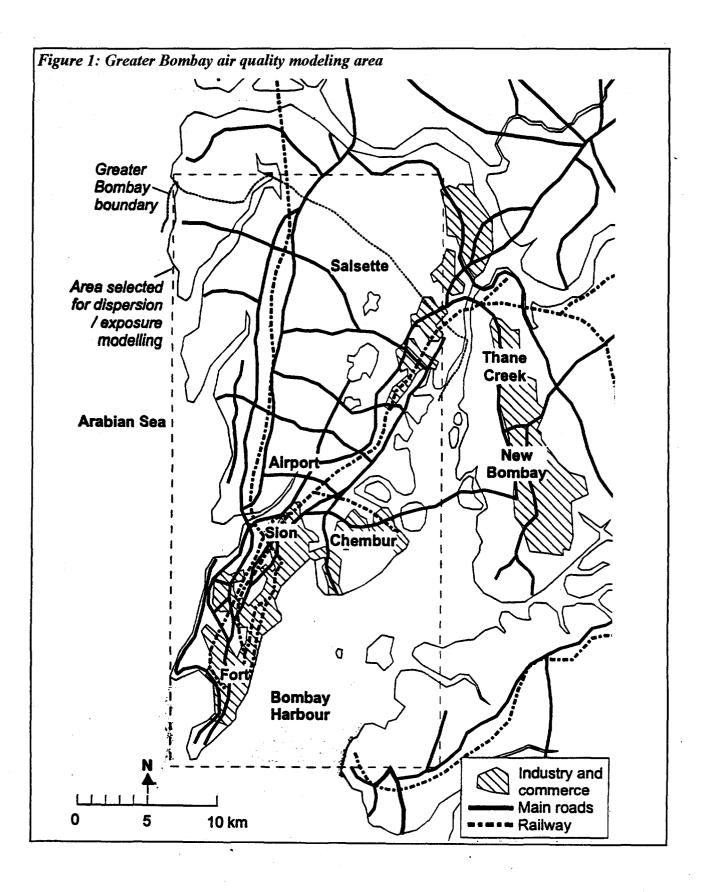
The area selected for air quality modeling, and thus for emission inventorying, is shown in Figure 1. It consists of 42x20 km² grid squares, covering the area from the tip of Colaba in the South to Bassein Creek in the North, and from the ocean in the West to Thane Creek in the East. It includes the Chembur-Thane industrial area.

In the following, the data sources and methods for distributing the consumption and emissions is described, and then the calculated emissions are presented.

An evaluation of data gaps and short-comings is presented at the end of this Appendix.

#### **POPULATION DISTRIBUTION**

The spatial distribution of the population within the grid system is important information when the fuel consumption, especially domestic fuel consumption, is to be distributed within the grid system.


The fuel consumption practices differ for the non-slum and slum populations. For Bombay, separate spatial distributions has thus been worked out for the two populations.

The total population for the URBAIR modeling area for Bombay, for the year 1991, is given in Table 1.

Details of the procedure for distribution of the population is given in Annex 1.

The distribution of the total population is given in Figure 2.

Table 1: Total									
population of Bombay									
URBAIR model	ing area								
Non slum population	7,056,760								
Slum population	2,806,260								
Total population	9,863,020								



Fi
gur
e 2:
Di
istribui
buti
tion (
oft
f total l
B
mb
Figure 2: Distribution of total Bombay p
ulai
ion
wit
hin
opulation within km ² g
² grid
id n
nod
elin
n Si
odeling area, 199
. 19
00

		۲	Ļ	ų		•	Ļ	¥	¥	ų	Ļ	ب		r i	L.	Ļ	Jate	51 eC	7.14	¥	7-3	1		JeZo	ž	Jaži	Ļ	L.	ter.	3646	1set	Jea	¥	L L	العز	¥	ţ	ž	¥	Ļ	L.	¥	¥	¥	ţ.	Jad		
		-	N	•	•	•	-	•	•	•	•	5		:	5	<b>G</b>	ž.	3	ã	17	ē	i	-	-	-	-	2	X				_	4				-	x	4	×.	4	. 4	2	8	3	2		NALESTOCK
										Ľ	• .																												ie.	•		<b>*</b>		••	Ņ	Ņ	-	FIDICK.
					•						2	r																•									••	2	2	•	Ä			2	•	<u>,</u>	••	-
		7	75. 12	9. 109				•	•	ਤ. ਹ		. <u>F</u>						•	·	·					•	•	•	•			•				7		79, 11	,6 N	2	<u>я</u> 2		•		<u>,</u> ,		ţ.	•	72 8
			•	•		•	•	•	ž.	9 9	й 2	<u>ب</u> بو		2		i A	4	9								• •			·	•							1 <b>50</b> .	7	17. NO			•	•	•	•		•	2
					115. 227				7	13. 971.	H. 1238	8 7		2 2	14 14	х Ч	3 ¥	17. 420		·	96. 29	1		М	¥. ¥	. <del>.</del> Х	40	•			19. 219.		77.	•				•	5	19. 264.	<b>1</b>	•		•	•		4	200 M
					•		•	•			18. 530	•			5	•	4. 972	15. 546	5. 431	N	9, 171	•		<u>u</u> 90	7. 8		0. <b>29</b> 1	19. 161.	17. u	5. 493	17. 500	37. <b>6</b>	. 315	ă		. 278		87. G	241			Ž	N		·		•	E1.63
		•			26.			·	•		10, 266	-	•	-		a A	N 52	6, 47	17. 791	ē.	7. 63	ļ		5	₩ £	я Х	1. 315	11. 220	HR. 220	ы. У	ă *	N. Ag			Y	jë A	3. 45		= 456	U Z	0.0		7.3	р. 2		•	7	
				•	N	•	ñ	Ŗ								2 2	6 2	.7 .0	3	Б	9 2	3	-		а 2	r X	ų V	10. 237.	70, 234		 문	18. SO7	11. 313	17. 38		17. 342	5. 364	1. 375	я́ Х	7	14. 23	सु		17. 24	17. 24	ם. אי	•	
		•		·					•	·	·				Ā	7	ē z		lē. 554	M. 550	5 2		-		H. 224	9 26	М	17. 224	18. 21	7. 2	13. 134			•	•	12. 123	1.12	3.	.¥. 	, F.	74. N	și N			<u>x</u> a		*	
	•	•		•			•	·	•							•	5		14. Jane.					-	74. 200	ž ē	12. 218	14. 220	N. 244	H. 291		2 2	•	•	<b>\$</b>	0. 2	19. 139	, <b>4</b> 2	т. 		2 7	. <del>.</del>	8 2		<b>%</b>		6	
										·								5		×	0, 749,				•	#. 422		8 2	5. N	7. 2	3		•	<b>.</b>	<b>,</b>		19. 139		2		ž.	ă Z	×	N Z		8	2	
		•		•	•		•	•	·	•	·	•					6		<i>0. 260</i> .	22	19, 286	-		G A	۹. ۱	ม		X X	7. 2	5. 2			\$	<u>,</u>	ţ,	<b>X</b>	•		3. 7	<b>5</b>	5	10 <b>6</b> , 10		, MA	×	×.	ñ	
										·						•	6 2	8. ≥	6 N	6	16. JZ2.			222	5 •	19. JSS	7. 43	19. 421.	95. JJQ	א ע	N N		7.	<b>30</b> .	3	75	<b>ð</b>			<b>±</b>	1	0 <b>6</b> .	<b>106</b> .	×	•		3	
					•		•	•	·		•					•	6	8	8	•	2 2			2	2 2	15. 35?				92. Z		77. 18	2		ġ	8	ğ	2	2	Ň	•		•				×.	
		•					•	•			•					•	·				ğ		3	2 N	10. 2	99. 10	371. 2	<b>1</b>	8	76. 272		199. 249.	97. z		<u>N</u>	8	5	3					•				ä	
								•	·	·											5. 2	-	5 =		<b>1</b>	ä	1. 230. 32.	24 24	17. z	2 2		•	, K N	28 20		8 2		jii	<u>,</u>								ñ	
								•	•										ğ		5. 1	1	8	8			Ņ,	X	<b>.</b>	272.	ŝ	292. 2	249, 2	234. 3	165, 2	91. 2	70 72	•									17	
							•	·								•			97.	3	14								20	3				•									•	·			4	
		•																								·			. ·				<u>,</u>	, R	9. 11	9. 2	Ŗ							·	·		<b>4</b>	
								•	•	•	•	•							·	·						•							·		N.	7	·	ã						•			8	
										•																				la l																		
							•																																									

## **FUEL CONSUMPTION**

The consumption of various petroleum fuels by industries is available from four Petroleum Refineries selling their products in Bombay.

Data for LPG and SKO (Kerosene) consumption for domestic purposes is available from the Rationing Office of Bombay.

Consumption of wood was considered for the slum population, and for bakeries and crematoria, according to information and evaluation from various agencies.

The evaluation and considerations made by Aditya E.S. Inc. regarding the calculation and distribution of the fuel consumption for domestic purposes and for industries, are given in Annexes II and V of this Appendix.

The resulting fuel consumption data are given in Table 2. (Fuel consumption for road traffic is considered in Chapter 4 of this Appendix)

Table 2: Fuel	consumption	data fo <b>r</b>	Greater E	<i>Sombay</i>
for 1992-93				

JUT 1994-95			
Category	Fuel type		10 ³ Metric tons/yr
Tata Power Plant	LSHS	927	
	Coal	298	
	Gas	496	
Industrial	LSHS	499	279 in Petrochem. ind. 164 in large/medium ind. 56 in small scale ind.
·	FO	306	183 in large/medium ind.
			123 in small scale ind.
	LDO	42	
	Diesel (HSD)	40	
	LPG	7	
Domestic	Wood	289	
	SKO	480	
	LPG	233	
	Tata Power Plant	CategoryFuel typeTata Power PlantLSHS Coal GasIndustrialLSHSFOLDO Diesel (HSD) LPGDomesticWood SKO	CategoryFuel typeTata Power PlantLSHS927Coal298Gas496IndustrialLSHS499FO306LDO42Diesel (HSD)40LPG7Wood289SKO480

#### Wood consumption:

the day.

Bakeries: a total of 440 tons/day, in 1100 bakeries, distributed in the total population, 12 hours per day.

takes place during 10 hours of

Note: Data for industry, domestic purposes, and by ships in Bombay port/bay area.

100

56

6

3

Crematoria: a total of 87.5 tons/day in 76 crematoria, distributed in the total population, 24 hours per day.

Marine (port/bay)

FO

LSHS Diesel

LDO

Combustion in slums: a total of 276 tons/day, distributed in the total population, 10 hours per • day.

#### Industrial:

- There are some 40,000 commercial establishments and industries in Bombay of which 400-500 use fuel for combustion.
- A total of 280 large- and medium-scale industries were identified and located, based on the • following criteria:

183

- LSHS consumption greater than 500 tons/year
- FO consumption greater than 200 tons/year

The industries were mainly in the categories engineering (10-15 large industries), chemical, pharmaceutical and textile.

For these industries, emission data were given based on reported measurement data, and, where not available, emissions were calculated based on emission factors. Stack data were also given.

This list of industries included the Tata Power Plant, three chemical/petrochemical plants and a fertilizer plant, all in the Chembur area.

The gridwise distribution of the fuel consumption was done in the following manner:

- The fuel consumed by the identified large/medium sources was assigned to the grids where the industries were located.
- The remainder (balance) fuel was distributed in the grids according to the number of medium/small industries in the grid for which data was not available.

#### **TRAFFIC ACTIVITY, FUEL CONSUMPTION AND EMISSIONS**

The basis for the calculation of vehicle exhaust emissions, and their spatial distribution, is the file with traffic and road data provided by Atkins Inc., produced within their Comprehensive Transportation Study for Metropolitan Bombay Region. This file basically contained:

- the main road network, separated into links (a total of 275 links), with the link endpoint coordinates (nodes) fixed in an arbitrary co-ordinate system
- traffic data for each link, for morning rush hour (10-11 A.M.):
  - light duty traffic (cars + MC/TC), in passenger car units (PCU);
  - truck traffic, in PCU (1 truck = 2.4 PCU);
  - bus traffic, in PCU (1 bus = 3.4 PCU); and
  - traffic speed.

It was considered that the morning rush hour (10-11 A.M.) accounted for 6 percent of the annual average daily traffic.

The traffic activity, for each vehicle class, has been calculated separately for the "Island" Area and "Suburb" area (see Figure 1), and distributed in the km² grid.

Additional data from the Atkins' report, and from Aditya were used to estimate the overall distribution of traffic activity between the vehicle classes, and the gasoline/diesel mix (Table 3):

The total fuel consumption for road traffic in Greater Bombay used in this analysis, is, as provided by Aditya:

- Gasoline: 248,578 tons/year.
- Motor diesel: 243,444 tons/year. The calculated traffic activity for
- separate classes/road systems is given in Table 4.

Table 3: Vehicle classes and gasoline and dieselconsumption

Vehicle classes	Gasoline/diesel	Fuel cons. (l/km)
Passenger cars	80% gasoline/20% diesel	0.1
Motorcycles/tricycles	100% gasoline	0.067*
Trucks	100% diesel	0.3
Buses	100% diesel	0.3
* Based on: Motorcycl	es: 40% 0.05 l/km	
Tricycles: 50% 0.075	/km	

The methodology used was as follows:

- 1. The traffic activity on the main road (Atkins') network, and the associated fuel consumption was calculated.
- 2. The traffic activity was distributed in the km² grids, according to the location of the road links.
- 3. The fuel consumption not accounted for by this main road traffic, was calculated by difference (total minus main road fuel consumption).
- 4. This balance fuel consumption was used to distribute the balance traffic activity, assuming:

- the same vehicle composition in the traffic as on the main road system.

- the spatial distribution

of this balance traffic activity within the km² grid

system is as the distribution of the non-slum population.

Using the following emission factors, the calculated emissions of TSP (e.g. exhaust particles) and  $NO_x$  from traffic is as given in Table 5.

# Table 4: Traffic activity $(10^3 \text{ vehicle } \text{km/day})$ , Greater Bombay 1992

	Cars	MC/TC	Trucks	Buses	Total
Traffic activity					
Main roads (Atkins' data)					
"Island"	1 827	457	306	177	2 767
"Suburbs"	1 353	1 793	833	234	4 213
Sub-total	3 180	2 250	1 139	411	6 980
Additional ("small") roads					
"Island"	2 097	480	148	86	2 811
"Suburbs"	1 771	2 160	177	113	4 221
Sub-total	3 868	2 640	325	199	7 032
Total	7 048	4 890	1 464	610	14 012

Table 5: Exhaust Particles and NO.

Emission factors (g/km)	Exhaust particles	NOX
Cars, gasoline	0.2	2.7
Cars, diesel	0.6	1.4
MC/TC, gasoline	0.5	0.1
Trucks, diesel	2.0	13.0
Buses, diesel	2.0	13.0

# Table 6: Exhaust emissions from road traffic, Greater Bombay, 1992 (kg/h, averaged over the year, all hours)

		TSP	, N	lO _X
	main roads	"small" roads	main roads	"small" roads
Gasoline				
Cars	26.5	29.7	358	401
MC/TC	29.1	55.0	9	11
Diesel				
Cars	79.5	7.7	186	18
Trucks	94.9	46.0	617	299
Buses	34.2	16.6	222	108
Total	264.2	155.0	1,392	826

Table 7: Total annual el		realer Dom		eiric ions/yet	ur)
Vehicles	TSP	PM10	SO ₂	NOX	Hours of operation
Gasoline Cars	492	492	160	6 643	12
MC/TC	737	737	250	179	12
Diesel Cars	765	765	395	1 783	12
Buses	445	445	566	2 891	12
Trucks	1 234	1 234	2 120	8 024	12
Sum vehicle exhaust	3 673	3 673	3 490	19 520	12
Resuspension from roads	10 200	2 550	· -	-	12
Power plant	~1 500	~1 500	~26 000	~11 200	24
Fuel combustion					
Industrial LSHS	1401	84	11 9201	1 690	24
FO	1 6521	1 399	24 4801	2 140	24
LDO	121	6	1 5101	120	24
Diesel	121	6	8001	115	24
LPG	0,5	0.5	-	20	24
Sum industrial	1 817	1 496	38 7 10	4 085	
Domestic Wood	4 395	2 198	5 <del>9</del>	410	12 (day)
Kerosene (SKO)	23	23	1 628	258	10 (day)
LPG	14	14	0,7	676	10 (day)
Sum domestic	4 432	2 235	1 688	1 344	
Marine (docks) FO	540	459	8 000	750	24
LSHS	16	8	1 120	425	24
Diesel	2	1	120	45	24
LDO	1	1	110	25	24
Sum marine	560	469	9 350	1 245	
Industrial processes ²					
Refuse burning Domestic	3 700	3 700			
Dumps	408	408	26	153	12 (3 PM-3 AM)
Construction					
Stone crushers	6 053				12 (day)
1 Uncontrolled					

Table 7: Total annual emission in Greater Bombay, 1992 (metric tons/year)

1 Uncontrolled

2 Emissions from processes in Bombay is considered less important than to the fuel combustion emissions.

#### **EMISSION FACTORS**

The emission factors used in this URBAIR calculation for Bombay were selected based on the following sources of data:

- USEPA emission factors of AP42 publication.
- Emission factors of the WHO publication: "Assessment of Sources of Air, Water and Land Pollution", Part I: Rapid inventory techniques in Environmental Pollution (Geneva, 1993).
- Emission factors worked out by the Bombay Urbair Working Group I (on Air Quality Assessment), shown in Table 8.
- Emission factors for road vehicles described in Appendix 5.
- Emission factors from Indian vehicles (IIP, 1985; Luhar and Patil, 1986). The selected emission factors for fuel combustion and road vehicles are shown in Table 7.

	TSP	PM, /TSP	SO ₂	NOx	%S max.
Fuel combustion (kg/t)					
Coal, bituminous, power plant					
- uncontrolled	5A1)		19.5Sa)	10.5	
- cyclone	1.25A	0.95	19.5S	10.5	
- ESP	0.36A		19.5S	10.5	
Residual oil (FO) ind./comm.	1.25S+0.38	0.85	20S	7	4
Distillate oil ind./comm.	0.28	0.5	20S	2.84	LSHS: 1
(LSHS, HSD, LDO) residential	$0.36 \rightarrow 1.6^{\text{b}}$	0.5	20S	2.6	HSD: 1 LDO: 1.8
LPG ind./dom.	0.06	1.0	0.007	2.9	0.02
Kerosene dom.	0.06	1.0	17S	2.5	0.25
Natural gas utility	0.061	1.0	20S	11.3 · f	
ind./dom.	0.061		20S	2.5	
Wood dom.	15	0.5	0.2	1.4	
Refuse burning, open	37	1	0.5	3	
Road vehicles (g/km)					
Gasoline Cars	0.2	1		2.7	87:0.25
Trucks, light duty	0.33	1			83:0.20
Buses and trucks, heavy duty	0.68	1			
MC/TC	0.5	1		0.1	
Diesel Cars	0.6	1		1.4	1
Trucks, light duty	0.9	1		13	
Buses and trucks, heavy duty	2.0			u	

 Table 8: Emission factors used for URBAIR, Bombay, 1992

a) A: Ash content, in %; S: sulfur content, in %

b) Well  $\rightarrow$  poorly maintained furnaces

Table 9: Emission factors as worked out by the Bombay URBAIR Working Group I on air quality assessment

Type of Source	Fuel Burned	Unit	Particulates (kg/unit)	SO ₂ (kg/unit)	NO _X (kg/unit)
Power plants	Coal	t	8(A)	19(S)	9
·	Fuel Oil	t	1.04 (controlled)	19.9(S)	13.2
	Natural Gas	103m3	0.24	16.6(S)	9.6
		t	0.29	19.9(S)	11.5
Industrial & Commercial	Coal	t	6.5(A)	19(S)	7.5
Furnaces	Fuel Oil	t	2.87	19(S)	7.5
	Oil, distillate	t	2.13	20.1(S)	7.5
	LPG	m ³	0.21	0.01(Ś)	1.43
	-	t	0.38	0.02(S)	2.6
	Natural Gas	10 ³ m ³	0.29	6.6(S)	3
		t	0.34	20(S)	3.6
Domestic Furnaces	Coal (hand fired)	t	10	19(S)	1.5
	Wood	t	13.7	0.5	5
	Kerosene	t	3	17(S)	2.3
	LPG	m ³	0.23	0.01(S)	1
		t	0.42	0.02(S)	1.8
Solid Waste Dumps	Refuse	t	8	0.5	3
·	Wood	t	13	0.1	4
	Rubber Tires	t	138	-	-
	Municipal Refuse	t	37	2.5	-

Note: A is % ash content (combustible by wt.); S is % sulfur content (combustible by wt.); Coal used in Bombay by Industries and for Domestic purposes is of Bituminous type.

The selected factors for fuel combustion is in some cases somewhat different from those worked out by the Bombay Working Group I. The factors in Table 7 (from EPA AP42) were used because factors from the AP42 reference were used also in the other URBAIR cities (Manila, Jakarta), and because the Bombay factors were worked out a bit late in the process, after dispersion calculations were well under way. The Bombay factors would modify the emission inventory and calculated concentrations somewhat, but would not change the main results from the calculations.

The emission factors for Indian vehicles referenced, include:

For  $NO_x$ , these are in fair agreement with the selected factors in Table 7. For "TSP" (presumably exhaust particles) from buses and trucks, they are considerably lower, and seem quite a bit too low compared to all other references.

Total emissions. Table 10 gives the total annual emissions of TSP,  $PM_{10}$ ,  $SO_2$  and  $NO_x$  associated with the various source categories, fuels and vehicle types. Those emission figures were calculated by multiplying the fuel consumption with the emission factor. The table also gives the operation hours of the various sources.

Table 10:	Emission	factors	for	Indian	
vehicles					

Light duty, gasoline	2.1 g/km at 30 km/h		
MC/3-wheelers	0.06 g/km at 30 km/h.		
	NŎx	TSP	
Buses, suburban	11.1	0.37	
urban	8.52	0.28	
Trucks	6.65	0.22	
Light commercial vehicles	2.5	0.1	

Comments to Table:

- There is no specific file of data available regarding industrial process emissions. Based on their survey work in Bombay, Aditya is of the opinion that the process emissions are not significant totally in Bombay, compared to emissions from fuel combustion. Still, process emissions will in many cases give significant exposure in areas near industrial process plants.
- There is a large discrepancy between the calculated emissions of SO₂ and NO_x in Table 11, and those from the emission data file produced by AES Inc. for the input to the KILDER model (see below), regarding industrial emissions. The discrepancy is as follows:

Table	11:	<b>Discrepancies</b>	betweer	l
omicci	one			

	<b>Emissions in</b> <b>Table</b> 6	Emissions from the AES Point source file
SO ₂ (t/yr)	66,710	18,290
NO _x (t/yr)	15,285	5,590

• Part of the discrepancy may be explained as follows:

- In the AES point source file, results from actual emission measurements were used, where available. Where not available, a calculation of the emissions was based on fuel consumption and emission factors.

- Table 5 is based on the maximum S contents of oil, while the average actual S contents may be considerably lower.

• Refuse burning, open burning on dumps.

AES has estimated the total emissions from the Dumps Deonar, Chincholi + Gorai, and Mulund. The estimation was based on TSP, SO₂ and NO_x measurements carried out by MCGB near Deonar, by means of box model. The details are described in Annex IV to this Appendix.

NEERI has also estimated total emissions of the same compounds from open burning on dumps in Bombay, based on some measurements of their own.

Table 12 below summarized the results.

There is a fair agreement between these estimates, considering that the burning mainly takes place during 10-15 hour periods evening-nights.

The AES estimates have been used in Table 6.

Table 12: Summary of estimates of emissions from open burning on dumps in Bombay

		TSP	SO ₂	NOx
AES	kg/hr	54.3	3.4	20.4
NEERI	kg/day	950	71	175

Refuse burning, domestic. Several discussions

within the URBAIR groups have not led to a conclusion regarding the amount of refuse burnt domestically (street sweepings, vegetation debris, domestic refuse) in Bombay.

It might be estimated that a total of 2 mill households in Bombay each burn 1 kg of refuse per week. Using a SPM emission factor of 37 g/kg, this produces annually some 3 700 tons of SPM.

Stone crushers. The SPM emissions from 47 registered stone crushers in Greater Bombay has been estimated by AES, as described in Annex V to this Appendix.

#### Spatial emission distribution

The total emissions from each source category has been distributed within the km² grid system based on

- the actual location of point sources
- the population distribution, separate for non-slum and slum populations
- the traffic activity distribution.

AES and NILU has produced the spatial emission distributions listed below. For each distribution, an average emission rate was calculated for each grid square, in kg/hr, representing the

#### Table 13: Spatial emission distribution

Fuel consumption	Operating time (hrs/day)	Distribution
Road traffic, gasoline	12	According to traffic activity on roads, and non-slum population
Road traffic, diesel	12	According to traffic activity on roads, and non-slum population
LPG, domestic	10 (day)	Non-slum population
SKO, domestic	10 (day)	Total population
Wood, domestic	10 (day)	Slum population
Wood, bakeries	12 (day)	Total population
Wood, crematoria	24	Total population
Refuse burning, dumps	12 (evening-night)	3 dumps
Stone crushers	12	47 units
Balance fuel	24	Non-slum population
Point sources	24	Actual locations

average emission during the operating hours of the source.

For some further details, see Annex VII of this Appendix.

# References

Luhar, A.K. and R. S. Patil. (1986). "Estimation of Emission Factors for Indian Vehicles." Indian Journal of Air Pollution Control. 17 (4). New Dehli.

Tata Energy Research Institute (1992). Environmental Effects of Energy Production, Transportation and Consumption in National Capital Region, 1992. TERI: New Delhi.

# Annexure I

# DATA ON POPULATION DISTRIBUTION-GRID-WISE

# Total population

# Data available:

- Total population and area of each Census District obtained from BMRDA. (There are a total of 88 Census Districts in Bombay).
- Map of Bombay.

# Distribution of population:

- Population Density per sq. km. area was calculated using data obtained from BMRDA. However, it was noticed that area with no possible human habitation (like waterbodies/marshy lands/airport/ industrial area etc.) was also included in many of the census districts. Hence, new population densities were derived after deducting such areas.
- Actual habitable area of each of the census districts in a grid was measured and multiplied by population density to arrive at population per grid.

#### Data Constraints:

• Non-availability of Specific Zoning Maps showing clearly the land use pattern.

# Slum population

#### Data Available:

- Wardwise list of slums in Bombay on Private land/Central Govt. lands/State Govt. lands/BHADA (Bombay Housing and Area Development Authority) and M.C.G.B. land giving number of tenements in each slum pocket. List obtained from Slum Improvement Dept., M.C.G.B. and is for the year 1985. (No updated list was available from the Dept.).
- Map of Bombay from MHADA (Maharashtra Housing & Area Development Authority) showing positions of these slums.

#### Slum population distribution:

• No figures were available on actual population in the slums. Also distribution of slums in each Census District was not available.

• Available data on total population and number of households obtained from BMRDA and discussions with faculty of Tata Institute of Social Sciences, Deonar indicates average number of persons per tenement as 5. Hence total slum population was derived as:

Number of Tenements	561,252
Average no. of persons per tenement	x 5
Total Slum Population	2,806,260

The slum population was then distributed in the grids based on number of tenements in each grid.

#### Data gaps:

- Conflicting reports exist on total population of Bombay residing in slums. Estimates indicate upto 40-45% (of total population) as total slum population.
- The Book "Slums Squatter Settlements & Organised Sector Worker Housing in India some Affordable Myths" authored by R.M. Kapoor and M.S. Mitra published by the Times Research Foundation (1987) puts Task Force Estimates on slum population for million plus cities for 1981 (based on 1981 population) as varying from a low of 40% to a high of 45% of total population.
- It is suspected that data given by Slum Improvement Dept. gives number of registered slums only and hence total slum population as worked out for URBAIR is only 28.5% of total population. This is a major data gap as this will affect the consumption pattern of SKO/Wood in the grids.

# Non-slum population

The slum population in each grid was substracted from total population in that grid to arrive at non-slum population in that grid.

#### Annexure II

# **DATA ON DOMESTIC FUEL CONSUMPTION**

# Data available

- LPG Consumption for Domestic purposes as indicated by Rationing Office
- SKO Consumption for Domestic purposes as indicated by Rationing Office.
- (Data on LPG/SKO consumption for domestic purposes was not separately available for one of the Petroleum Companies and hence data from Rationing Inspectorate was used).
- Total Population/Slum Population/Non-slum population gridwise from POPDIST1.WK1 files.

# **Basis for distribution of data**

LPG consumption: Total LPG consumption per day for domestic purposes as indicated by Rationing Inspectorate is 639 MT/d. As this is predominantly used in well-to-do households, the entire LPG consumption was distributed gridwise in the non-slum population. Daily use of LPG is for cooking purposes and hence restricted to 10 hours/day, LPG consumption in Kg/hr was calculated for this period.

SKO consumption: The total SKO consumption for domestic purposes and by establishments is 1,236 KL/d or 1062.96 T/d. This was distributed in the grids according to total population in that grid. Daily use of SKO is mainly for cooking and to some extent water heating. Total daily period of such use is restricted to 10 hours. Hence, SKO consumption in Kg/hr was calculated for this period.

*Wood consumption:* Major wood consumers in Bombay were identifid as bakeries, other small establishments, domestic households (slums/pavement dwellers) and crematories.

## WOOD CONSUMPTION IN BAKERIES/SMALL ESTABLISHMENTS

#### Data available

No figures were available on wood consumption by small establishments. The Indian Bakers Association indicated that there are about 1,100 bakeries in the city which are using wood for their fuel needs. The average wood consumption in each bakery was estimated by them as @ 400 kg/day. (Large bakeries in the city are not using wood, but are using HSD or electricity). Based on these figures the total wood consumption by bakeries works out to be 440 T/day.

# **Basis for distribution**

The bakeries are more or less evenly spread out in the city and hence wood consumption was distributed based on % of total population in a particular grid.

#### WOOD CONSUMPTION IN CREMETORIA

# Data available

- Wardwise list of Hindu cremetoria.
- Death figures for 1991 from Health Dept., M.C.G.B.
- Wood consumption per dead body 500 Kg (obtained from a visit to cremetoria).

## Data derived

- Deaths in Bombay: 80,000 (1991).
- Hindu Deaths (approx. 80%): 64,000.
- Deaths/day (approx.): 175.

Deaths per day:	175
Wood required per body:	500 Kg/day
Total wood consumption :	87,500 kg/day or 87.5 T/day

• No. of cremetoria (Pvt. & Municipal): 76

Hence, the total wood consumption was distributed in the wards based on location of cremetoria in the wards. Daily use of wood in cremetoria is for purpose of burning dead bodies. Such use covered whole 24 hours period. Hence use of wood in Kg/hr was based on 24-hours usage period.

#### **WOOD CONSUMPTION IN SLUMS**

#### Data available

Discussions with faculty members of Tata Institute of Social Sciences, Deonar showed that wood and not charcoal (as shown by the E.M.S. study) was used as fuel in slums. However, no figures were available to substantiate the total slum population using wood or the per capita wood consumption.

# Data derived

A study on "Energy Consumption in Pune City" conducted by S.P. College, Pune (1989) indicates that 20% of slum dwellers use firewood and average consumption is 180-200 Kg/capita/year. Since Pune city has a colder climate compared to Bombay, the lower figures of 180 kg/capita/year was assumed for Bombay city. Based on the above, the total wood consumption by this source per day works out as given below :

Total Slum Population: 20% population assumed using wood:	28 lakhs 5.6 lakhs 560,000 (persons) x 180 (kf/capita/day)
Total wood consumption per year	100,800 T/year
Total wood consumption per day	276 T/day

This was distributed in the grids based on slum population in the grid. Daily use of wood in slum is extended over 10-hours period. Hence, to calculate the load in kg/hr this period was considered.

# Total wood consumption

Since, bakeries and crematoria are situated in predominantly domestic areas the total wood consumption by these sources was added to wood consumption by slum population for estimating total wood consumption for Bombay city.

Wood consumption (T/day)	
for cemetaries:	87.5
for bakeries:	440.0
for slums:	276.0
Total wood consumption (T/day):	803.5

Gridwise distribution of wood was added to arrive at total wood consumption per grid.

# Data gaps

From the available data no energy consumption pattern could be derived for the urban population of Bombay. Attempts to derive energy consumption pattern gave rise to very conflicting results.

The S.P. College, Pune, showed the fuel consumption pattern in slums is as below:

Energy requirements in slums :

SKO	70%
Wood	20%
LPG/others	10%

The per capita consumption of SKO is indicated by the study as 50 L/capacity/year. This works out to a average figure of 135 ML/capita/day. Assuming a higher value of 150 ML/capita/day, the consumption pattern of SKO works out as follows:

Slum population:	28 lakhs
Population using SKO (@70%):	20 lakhs
SKO used in slums @ 150 ML/capita/day:	300 KL/day

Available data indicates total domestic consumption for SKO as 1,198 KL/day. Balance SKO of 898 KL/day when distributed on the basis of 150 ML/capita/day shows a total of 59.86 lakhs people using SKO. This means about 85% of non-slum population uses SKO which is a unreasonably high figure.

Even assuming 45% of total population as slum population (i.e. including the non-registered slums) the total SKO consumed by slums works out as below:

Total population:	98 lakhs
Slum population:	44.1 lakhs
SKO users:	30 lakhs
SKO consumed:	463 KL/day
(based on 150 ML/cap/day)	

The balance 735 KL/day when distributed @ 150 ML/cap/day shows 49 lakh non-slum population using SKO which also works out to a high figure of 70%.

The LPG consumption for domestic purposes has been indicated by Rationing Inspectorate as 233,235 MT/year (16,425,000 cylinders/year). Assuming requirement of each household as 1 cylinder/month or 12 cylinders/year.

No. of households using LPG works out to 16,425,000 divided by 12 cylinders/year equals 13.69 lakhs.

Assuming average size of each household as 5; total population using LPG works out to @ 68 lakhs which is @ 70% of Bombay's total population which is a very high figure.

The SKO consumption by establishments (Hotels/Restaurants) has been shown as 38 MT/day which is a very low figure considering numerous such establishments in the city.

Available data for Pune indicates that charcoal is used in slums by a very small amount of population (<5%). However, no quantification exists for Bombay.

Considering the above, it is very much apparent that data on fuel distribution by domestic sector is very much rudimentary and there is an urgent need to study the pattern of usage in these sectors and consider cost effective alternatives to reduce pollution from this sector.

Annexure III

# **EMISSION FROM DOMESTIC SOURCES**

# Data available

Fuel consumption by Domestic Sources for Total SKO/LPG and Wood consumption (inclusive of usage by establishments).

**Emission Factors used:** 

Type of Source	Fuel burned	Unit	Particulates (Kg/unit)	SO2 (Kg/unit)	NO _x (Kg/unit)
Domestic	Wood	t	13.7	0.5	5.0
	Kerosene	t	3.0	17.0 (s)	2.3
Furnaces	LPG	t	0.42	0.02 (s)	1.8

SOURCE: Rapid Assessment of sources of Air/Water and Land Pollution, WHO Offset Publication No. 62.

#### **EMISSIONS FROM REFUSE BURNING**

# Data available

Total quantity disposed: 4,000 T/day.				
Site	Quantity (T/day)	Available Area		
Deonar	2526.5	200 acres		
Mulund (Checknaka)	631.5	50 acres		
Chincholi	421.0	60 acres		
Gorai Rd. (Borivali)	421.0	20 acres		
Total quantity disposed	4,000.0			

Source: Mr. D.K. Dhokale (Asst. Engineer), Solid Waste Management, M.C.G.B.

The Bombay Solid Waste has the following composition :

Moisture:	40% (by wt)
Combustible:	22% (by wt)
Ash content:	38% (by wt)
Total	100%

Physical Composition:

Paper:	10% (by wt.)
Glass:	0.2% (by wt.)
Metal:	0.2% (by wt.)
Plastics:	2% (by wt.)
Textile:	3.6% (by wt.)
Wood/Grass:	20% (by wt.)
Ash/Soil:	38% (by wt.)
Others:	26% (by wt.)
TOTAL	100%

Although municipal officials claim that no refuse burning takes place (or is very negligible), a number of complaints are received and the fact that refuse burning does take place is definitely established.

The Air Quality Monitoring laboratory of the M.C.G.B. (Environmental Sanitation & Projects Dept.) has carried out air monitoring near the solid waste dump site at the time of refuse burning. The reports are as given as follows:

Parameters	Concentration	Sampling Period
TSP 2011	μg/m ³	16:30 to 22:15 hrs.
SO ₂ 702	$\mu g/m^3$	19:00 to 22:15 hrs.
NO ₂ 164	μg/m ³	19:00 to 22:15 hrs.
NH ₃ 1014	$\mu g/m^3$	19:00 to 22:15 hrs.

Source: MCGB (Environmental Sanitation & Projects Dept.

There is no documented data on rate of burning; area of dump which is burnt or the emission factors.

To find out the rate of burning of the Solid Wastes it was decided to develop a Box Model and back calculate from the ambient monitoring data.

To find out total emissions from refuse burning discussions were held with residents in the neighbourhood, NGOs and factory owners near the Deonar dump. The findings from this discussions are as follows:

- 1. Refuse burning is an unauthorised activity of rag pickers operating at the dumps. Objective is to recover metallic scrap, glass and other valuables.
- 2. Fresh refuse is high in moisture content and is left to dry for 10-15 days. Generally the dry refuse is lighted at 4-5 p.m. and burns till late night 2-3 a.m.
- 3. The nuisance of the smoke is felt upto 3rd/4th floors and, hence, height of smoke plume can be guessed as 10-15 m. Nuisance is felt upto a downwind distance of 3-4 km.

#### **BOX MODEL CALCULATIONS**

From the above, the emissions (Qj) from refuse burning (from Deonar site) were back calculated as below :

Cj = Qj / uWD

It is assumed in the development of the box model that:

- 1. Air is transported through the volume with a face velocity of u and
- 2. The pollutants are assumed to be instantaneously and uniformly mixed throughout the volume of the box.

From the available data the following values were assigned to various variables:

u = Avg. wind velocity = 1 m/sec. (Observed for night time from Santacruz data)

W = Width of box normal to wind direction = 500 m.

D = Depth of box normal to wind direction = 15 m (Elevation of 4 storeyed building)

 $C_j = Concentration \ recorded = 2,011 \ \mu g/m^3 = 2,011 \ x \ 10^{-6} \ gm/m^3$ 

Therefore:  $2,011 \ge 10^{-6} = Qj / (1 \ge 500 \le 15)$ 

 $Q_j = 15.0825 \text{ gm/sec. or } 54.297 \text{ Kg/hr.}$ 

Assuming WHO emission factor 8 Kg/T for SPM from Refuse burning, Quantity of Refuse burnt was calculated:

Quantity burnt/hour = 54.297 / 8 = 6.787 T/hr.

Further calculations were carried out by applying WHO Emission Factors for  $SO_2/NO_x$  (by assuming above rate of burning). Thus emissions at Deonar for  $SO_2$  and  $NO_x$  are estimated as :

 $SO_2 = 3.393 \text{ Kg/hr.}$  $NO_r = 20.361 \text{ Kg/hr.}$ 

As no details regarding other sites are available, it is assumed that refuse burning is proportional to daily quantity of waste dumped. Applying WHO emission factors the emission from these dumps are calculated as below :

Grid No.	Site	Wastes dumped/day	SPM	SO ₂ (kg/hour)	NOx
16-17	Deonar	2056.0	54.29	3.39	20.36
6-36	Chincholi + Gorai	842.0	22.22	1.39	8.34
17-30	Mulund	631.5	16.66	1.04	6.25

# Data gaps

No specific studies have been carried out as burning of refuse and the air pollution impact of these.

NEERI is currently carrying out a study under MEIP on this aspect. Results of this study will be shortly available.

### Annexure V

### **STONE CRUSHER EMISSION**

### Data available

Data on capacity of stone crushers was obtained from M.P.C.B. records.

The data collected shows that there are 19 registered stone crushers in Kandivali (Ward 'R'/North); 21 registered crushers in Dahisar (Ward R/North) and 7 in Andheri (Ward K/W) area. No data is available of any air monitoring carried out close to these sites.

### **Emissions** from crushers

Emissions from stone crushers were calculated by using EPA emission factors as outlined below:

Type of Process Dry Crushing Operation	Suspended Dust Emission (Kg/MT)		
Primary Crushing	0.05		
Secondary Crushing/Screening	0.30		
Tertiory Crushing/Screening	1.80		
Recrushing & Screening	1.25		
Fines Mill	2.25		
Source: EPA.			

The capacity of each crusher and the emission from them work out to very high loads as indicated in enclosed sheets. Hence, seperate box file has been prepared for this source.

### **Preparation** of box file

While preparing box files, the following assumption were made:

- 1. The exact locations of the crushers on map were not known, but as it is well known that these crushers are very close to each other, they have been clubbed together and total emission has been shown from one particular grid only.
- 2. Micro-level details of each crusher like the types of control measures existing, the method of transfer of rock, the moisture content of rock, etc. are not known and it is assumed in preparation of the box file that all crushers have no installed control systems.
- 3. It has been assumed that crusher operates for 24 hours and suspended particulate emissions reported as Kg/hour accordingly. However, normal period of operation of crushers is between 8:00 hrs. and 19:30 hrs. and emissions should be corrected for further accuracy in the box file.

### **Annexure VI**

### **BALANCE FUEL EMISSION FILE**

### Data available

The consumption of various Petroleum fuels by industries in Bombay is available from four Petroleum Refineries selling their products in Bombay. The data on fuel consumption obtained from emission inventory carried out for URBAIR was compiled and used to prepare box file (area files) for industries for which adequate data was not available and for small scale industries.

### Emission inventory

Data available thus far from emission inventory indicates the following:

- 1. There are about 40,000 odd commercial establishments and industries in Bombay. About 500-600 of these use fuel for combustion. (Very small scale and tiny units are not considered in preparing this estimate).
- 2. The data indicates the following pattern of fuel use:

Industry Type	<b>Estimated Nos./Area Where Present</b>	Fuel	
Large scale	3 (Chembur)	LSHS/Gas	
(Chemical/Petrochemical)			
Large (Engineering)	10-15 (Western/Central Suburbs)	LDO/LPG& small quantity LSHS.	
Medium scale	250-275 (Western/central Suburbs)	FO/LSHS small	
(Chemical/Pharmaceutical/ Textile)	(Textile Industires:Bombay Island)	quantity LDO.	
Medium scale (Dyeing/Printing/Bleaching works)	50-75 (Western/Central Suburbs)	FO	
Small scale	100-150 (Western/Central Suburbs)	FO/LDO	

In general, usage of LPG and SKO is restricted to Engineering industries. Usage of HSD is generally in diesel generators/compressors and in large bakeries.

## Fuel usage

*Furnace Oil:* About 839 T/d of Furnace Oil was sold in Bombay city in 1992-93. F.O. is used by industries in boilers for steam generation; of this 500 T/day was accounted for in the emissions inventory data gathered for preparation of POISOURC.DAT file. The balance 339 T/d was

distributed in the grids based on number of industries in each grid for which adequate data is not available.

LSHS: The two Petroleum Refineries, Fertilizer Plant and the Power Plant together account for more that three-quarters of the LSHS consumption in the city.

These units are not allowed to burn Furnace Oil and use Associated Gas (available through pipeline from GAIL/ONGC) alongwith LSHS. For some part of the year, the Associated Gas supply from ONGC was affected and, consequently, LSHS consumption in the city has increased considerably.

LSHS consumption by Tata Thernal: Tata Thermal has 6 units for power generation at Chembur. Unit Nos. 1,2, and 4 are normally on stand-by and used for peaking the supply. Unit 3 has been decommissioned and is not in use. Units 5 & 6 are of 500 MW capacity each. All units have multi-fuel capabilities. Unit 5 can fire LSHS/Coal/Gas, whereas Unit 6 can fire LSHS and Gas. The total daily heat requirement at Tata Thermal is estimated at  $5.25 \times 10^{10}$  Kcal/d and the fuels burnt for this consumption for 1992-93 work out as an average daily basis as (please refer enclosed sheets):

Consumption based on annual sales figures of product				
Oil (LSHS) 2710 T				
Gas	1448 T			
Coal 870 T				

The higher LSHS requirement may be due to reduced supply of gas during the year form ONGC.

LSHS Consumption by refineries: The Refineries (BPCL & HPCL) have daily usage of LSHS as 230 T and 534 T, respectively, (based on MPCB Consent figures).

Fertilizer Factorv (RCF): RCF uses associated gas for steam generation and as feedstock for their plants. They have no consented LSHS usage.

*Emission Inventory for URBAIR:* The emission inventory could account for additional 450 T of LSHS usage by other Large/Medium Industries.

LSHS Consumption from Refinery Sales Figures: The total average per day sale for LSHS is put at 3,312 T/day. The difference between the consumption figures (indicated above) and average sale per day comes out as follows:

Difference between consumption and average sale per day		
Estimated average supply LSHS 3,312 T/day		
- Tata Thermal	- 2,710	
- Emission inventory	- 450	
	152 T/day	

Average daily usage of LSHS				
Estimated average supply LSHS 3,312 T/day				
Consumption by refineries	+ 534			
	+ 230			
	4,076 T/day			

*Comments*: LSHS consumption in Bombay is highly variable, the daily consumption being governed by the four large factories in Chembur.

The availability of Associated Gas changes the entire consumption pattern of all these four units. This makes it very difficult to arrive at the average daily consumption figure based on yearly consumption/sales dates. Considering the above, the balance LSHS of 152 T/d has not been distributed in the grids while preparing Balance fuel distribution files (*FUE.DAT).

LDO Consumption: About 135 T of LDO was supplied per day in 1992-93. Of this about 67 T/d could be accounted for in the Emission Inventory. The balance 69 T was distributed in the grids based on number of industries in each grid (for which adequate data is not available).

HSD Consumption: About 127 T/d of HSD was supplied on an average basis in 1992-93. Of this about 30 T could be accounted for in the Emission Inventory. The balance 97 T was distributed in grids based on number of industries in each grid for which adequate data is not available.

### CALCULATION FOR TATA THERMAL

2 units, 500 MW each

Each 500 MW requires 5,000 T/d Coal, or 2,500 T/d 0il.

Therefore, total requirement of fuels works out as 10,000 T Coal or 5,000 T 0i1; total heat requirement works out as follows:

Quantity in tons	5,000
x Kcal/kg	x 10,500
x Conversion factor to Kg	x 1,000
Total Heat Requirement (Kcal/day)	5.25 x 10 ¹⁰

Tata have reported annual purchase of fuels as follows:

LSHS:	926,886 T
Gas:	495,082 T
Coal:	297,556 T

### **URBAIR-Mumbai**

Corresponding Heat load/year works out as:

LSHS	$9.73 \times 10^{12}$ Kcal/yr.
Gas	6.67 x 10 ¹² Kcal/yr.
Coal	$1.56 \ge 10^{10}$ Kcal/yr.
TOTAL	1.796 x 10 ¹³ Kcal/yr

For a total of 342 working days this gives a heat load/day as  $5.25 \times 10^{10}$ .

Therefore:Total Oil required/day:2710 T/dTotal Gas supply/day:1448 T/d.Total Coal supply/day:870 T/d.

## **Comments**

This has been worked out considering that total fuel purchased by the plant in the year has been utilized. Quantities in stock have not been considered and daily average consumption may vary to that extent.

Annexure VII

### **BASIS OF PREPARATION OF POISOURC.DAT**

### Data available

Data on emissions from industries was gathered from the applications made by them to obtain MPCB consents. Data was gathered for about 210 industries belonging primarily to large and medium sector. Data was collected on the basis of following criteria :

F.O. consumption > 200 T/year; LSHS consumption > 500 T/year.

Data collected included physical details of stacks and data on type of emisions, velocity, flow rate and monitoring data wherever available.

### **Preparation** of poisourc.dat file

This is on following basis:

- 1. Wherever possible monitoring data (as submitted by Industries) has been used to calculate emission load. Only where monitoring data was entirely absent, emissions were calculated from fuel quantity.
- 2. No data is required to be submitted by Industries on total NO_x emission and hence this data was entirely computed from emission factors.
- 3. Emission Factors used for calculations are as given below, where A = % Ash, S = % Sulphur by wt.

Type Of Fuel	Unit	Particulates	SO ₂	NO _x
Bituminous Coal	t	6.5 (A)	19 (S)	7.5
Fuel 0i1	t	2.87	19 (S)	7.5
LPG	t	0.38	0.02 (S)	2.6
Natural Gas	t	0.34	20 (S)	3.6

There is only one power plant in Bombay and emissions were directly taken from actual monitored levels at the plant.

Process emissions in Bombay are unimportant compared to the large number of stacks connected to fuel sources. Wherever available data from such sources is collected and complied in Poisour.dat file.

### **URBAIR-Mumbai**

4. Building heights and widths were not available for buildings nearest to the chimney and, hence, default width and heights of 30 m and 10 m were given in the file.

### Data gaps

A wide variation is observed in the monitored data and data calculated from emission factors. This may be because of any of the following reasons:

- Low amount of sulphur in fuels compared to those available in standard specifications. For example: BPCL specifications for FO shows Sulphur content between 3.5-4% whereas actual observed level is between 2.5-3%. Similarly for LSHS actual % observed is between 0.5-0.7% whereas specifications shows sulphur content of 1%.
- 2. Greater amount of excess air used by the industries.
- 3. Inaccurate monitoring practices adopted.

The type of data in MPCB files is not up-to-date and should be improved.

 $NO_x$  monitoring is not required by MPCB, even when there is a ambient air standard prescribed for the same.

a i ja

ra Terriga

Sr. No.	File Name	Basis	Source	Additional details
WO	<b>RKSHEET FILES</b>			
1.	popdist1.wk1	Census districtwise population distribution for year 1991. Distribution into grids based on actual area of census districts in	BMRDA	Annexure 1
2.	fuelcond.wkl	each grid.		Annexure II
<b>4</b> .	LPG (Domestic)	Total Usage: 639 TPD.	Rationing	Annexure II
	LFO (Domestic)	Period of use: 10 hrs/day. User: Non-slum population.	office	-
	SKO (Domestic)	Total usage: 1,236 KL/day. Period of Use: 10hrs/day. User: Slum/non-slum population.	Rationing office	
	Wood	Total usage: 276 TPD.	S.P.College	-
	(Domestic)	Period of Use: 12 hrs/day. User: 20% slum population.	Pune study	
	Wood (Bakeries)	Total usage: 440 TPD. Period of Use: 12 hrs/day. User; Bakeries.	Bakeries association	• ************************************
	Wood	Total usage: 87.5 TPD.	Health	-
	(Crematoria)	Period of Use: 24 hrs/day. User: Crematoria.	Dept./BMC & visits to crematoria	
	Total Wood	Gridwise addition of wood consumption by domestic source + bakeries + crematoria.	-	
3.	emisndom.wk1	Emissions from Domestic fuel usage.	Fuel data from	Annexure III
			FUELCON D.WK.1	
		Emission factors - WHO		541 544 500 700 844 500 700 566 567 500 700 646 500 500
4.	BOX FILES popdist.dat	Population distribution in box.	Data from POPDISTI. WK1	Annexure I

## **BASIS FOR DATA FILES**

URBAIR-Mumbai

Sr. No.			Source	Additional details	
5.	slumdist.dat	Slum population distribution in	Data from	Annexure I	
•		box	POPDISTI.		
			WK1		
6.	bldg-ht.dat	Average building height in grid	Own	-	
		الا المراجع ال المراجع المراجع	observation		
7. D	OMESTIC DAT	A FILES			
7.1	spmardom.dat	Area source SPM from	Data from	-	
	• • • • • • • • • • • • • • • • • • • •	LPG/SKO/total wood	FUELCON		
	• • • • • • • • • • • • • • • • • • •		D.WK1 &		
			EMISNDO		
			M.WKI		
7.2	so2ardom.dat	Area source $SO_2$ from	Data from	-	
		LPG/SKO/Total wood	FUELCON		
			D.WK1 &		
			EMISNDO		
			M.WKI		
7.3	noxardom.dat	Area source No _x from	Data from	-	
		LPG/SKO/Total wood	FUELCON		
			D.WK1 &		
		a de la companya de l	EMISNDO		
			M.WKI		
8	<b>REFUSE BURN</b>	VING			
8.1	spmarsw.dat	Area source SPM from Solid	Box model	Annexure	
	r	Waste (refuse burning).	calculations	IV	
		E.F WHO & monitoring data			
		from MCGB.			
8.2	so2arsw.dat	Area source $SO_2$ from Solid	Box model	Annexure	
		Waste (refuse buring).	calculations	IV	
		E.F WHO			
8.3	noxarsw.dat	Area source $NO_x$ from Solid	Box model	Annexure	
		Waste (refuse buring).	calculations	IV	
		E.F WHO			
	<b>STONE CRUSH</b>		•••••		
9.0	spmarcru.dat	Area source SPM from stone	E.F EPA	Annexure	
	- <b>F</b>	crushers	capacity of	V	
			crushers		
			MPCB files		
10.	BALANCE FUI	EL DISTRIBUTION			

### 10. BALANCE FUEL DISTRIBUTION

÷.,

Sr. No.	File Name	Basis	Source	Additional details
10.1	smparfue.dat	Area source SPM from Balance fuel consumption	Total fuel consumption from POISOURC .DAT and sale figures from petroleum companies	Annexure VI
10.2	so2arfue.dat	Area source S0 ₂ from Balance fuel consumption	Total fuel consumption from POISOURC .DAT and sale figures from petroleum companies	Annexure VI
10.3	noxarfue.dat	Area source NO _x from Balance fuel consumption	Total fuel consumption from POISOURC .DAT and sale figures from petroleum companies	Annexure VI
11.	POINT SOURC	CE DATA FILES	*****,,	••••••••••••••••••••••••••••••••••••••
11.0	poiscourc.dat	Emission from industries	MPCB files (monitoring data submitted by industries) + E.F WHO	Annexure VII

## **APPENDIX 5 EMISSION FACTORS, PARTICLES**

### **INTRODUCTION**

Emission factors (emitted amount of pollutant per quantity of combusted fuel, or per kilometers driven, or per produced unit of product) are important input data to emission inventories, which again are essential input to dispersion modeling.

The knowledge of emission factors representative for the present technology level of Asian cities is limited. For the purpose of selecting emission factors for the URBAIR study, references on emission factors were collected from the open literature and from studies and reports from cities in Asia.

This appendix gives a brief background for the selection of emission factors for particles used in the air quality assessment part of URBAIR.

### Motor vehicles

The selection of emission factors for motor vehicles for use in the URBAIR project to produce emission inventories for South-East Asian cities, was based on the following references:

- WHO (1993)
- USEPA (EPA AP42 report series) (1985)
- Vehicles Emission Control Project (VECP), Manila (Baker, 1993)
- Indonesia (Bosch, 1991)
- Williams et al. (1989)
- Motorcycle emission standard and emission control technology (Weaver and Chan, 1993) Table 1 gives a summary of emission factors from these references for various vehicle

classes. From these, the emission factors given in Table 2 were selected, for use as a basis for URBAIR cities.

Taking account of the typical vehicle/traffic activity composition, the following vehicle classes give the largest contributions to the total exhaust particle emissions from traffic:

- Heavy duty diesel trucks
- Diesel buses
- Utility trucks, diesel
- 2-stroke 2- and 3-wheelers.

Thus, the emission factors for these vehicle classes are the most important ones.

### COMMENTS

It is clear that there is not a very solid basis in actual measurements on which to estimate particle emission factors for vehicles in South-East Asian cities. The given references represent the best available basis. Comments are given below for each of the vehicle classes.

### Gasoline:

- Passenger cars: Fairly new, normally well maintained cars, engine size less than 2.5 1, without 3-way catalyst, running on leaded gasoline (0.2-0.3 g Pb/l), have an emission factor of the order of 0.1 g/km. Older, poorly maintained vehicles may have much larger emissions. The USEPA/WHO factor of 0.33 g/km can be used as an estimate for such vehicles.
- Utility trucks: Although the VECP study (Manila) uses 0.12 g/km, we select the EPA factor of 0.33 g/km was selected for such vehicles, taking account of generally poor maintenance in South-East Asian cities.
- Heavy duty trucks: Only the USEPA have given an estimate for such vehicles, 0.33 g/km, the same as for passenger cars and utility trucks.
- 3-wheelers, 2-stroke: The USEPA and WHO suggest 0.2 g/km for such vehicles.
- Motorcycles, 2-stroke: The Weaver report supports the 0.21 g/km emission factor suggested by USEPA/WHO. In the VECP Manila study a factor of 2 g/km is suggested. This is the same factor as for heavy duty diesel trucks, which seems much too high.

Visible smoke emissions from 2-stroke 2- and 3wheelers is normal in South-East Asian cities. Low-

quality oil as well as worn and poorly maintained engines probably both contribute to the large emissions. The data base for selecting a representative emission factor is small. In the data of Weaver and Chan (1993), the highest emissions factor is about 0.55 g/km. For URBAIR, we choose a factor of 0.5 g/km. Realizing that this is considerably higher than the factor suggested by USEPA, we also have a view to the factor 2 g/km used in the VECP study in Manila, which indicates evidence for very large emissions from such vehicles.

Fuel and Vehicle	Particles (g/km)	Reference
Gasoline		
Passenger cars	0.33	USEPAWHO
·	0.10	VECP, Manila
	0.16	Indonesia (Bosch)
and and a second se	0.07	Williams
Trucks, utility	0.12	VECP, Manila
•	0.33	USEPA
		USEPA
Trucks, heavy duty	0.33	USEPA
3-wheelers, 2-stroke	0.21	USEPA/WHO
MC 2/4 stroke	0.21/	USEPAWHO
	2.00/	VECP, Manila
	0.21/0.029	Indonesia VWS
•.•	0.28/0.08	Weaver and Chan
Diesel		
Car, taxi	0.6	VECP, Manila
	0.45	USEPAWHO
	0.37	Williams
Trucks, utility	0.9	VECP, Manila
	0.93	EPA
Trucks, heavy/bus	0.75	WHO
	1.5	VECP, Manila
	0.93	USEPA

Table	1:	Emissi	ion fl	actors	(g/km)	) for	particle
emissi	ion	s from	mote	or veh	icles		

Note: Relevant as a basis for selection of factors to be used in South-East Asian cities.

Bosch

Williams

1.2

2.1

### **Table 2: Selected emission factors** (g/km) for particles from road vehicles used in URBAIR study

Vehicles class	Gasoline	Diesel
Passenger cars/taxies	0.20	0.6
Utility vehicles/light trucks .	0.33	0.9
Motorcycles/tricycles	0.50	
Trucks/buses		2.0

• Motorcycles, 4-stroke: The emission factor is much less than for 2-stroke engines. The Weaver report gives 0.08 g/km, while 0.029 g/km is given by the VWS study in Indonesia (Bosch, 1991).

### Diesel:

- Passenger cars, taxis: The factor of 0,6 g/km given by the VECP Manila is chosen, since it is based on measurements of smoke emission from vehicles in traffic in Manila. The 0,45 g/km of USEPA/WHO was taken to represent typically maintained vehicles in Western Europe and the United States, as also measured by Larssen and Heintzenberg (1983) on Norwegian vehicles. This is supported by the Williams' factor of 0.37 g/km for Australian vehicles.
- Utility trucks: The USEPA and the VECP Manila study give similar emission factors, about 0.9 g/km.
- Heavy duty trucks/buses: The factors given range from 0.75 g/km to 2.1 g/km. It is clear that "smoking" diesel trucks and buses may have emission factors even much larger than 2 g/km. In the COPERT emission data base of the European Union ( ), factors as large as 3-5 g/km are used for "dirty" city buses. Likewise, based on relationships between smoke meter reading (e.g. Hartridge smoke units, HSU) and mass emissions, it can be estimated that a diesel truck with a smoke meter reading of 85 HSU, as measured typically on Kathmandu trucks and buses (Rajbahak and Joshi, 1993), corresponds to an emission factor of roughly 8 g/km!

As opposed to this, well maintained heavy duty diesel trucks and buses have an emission factor of 0.7-1 g/km.

As a basis for emission calculations for South-East Asian cities we choose an emission factor of 2 g/km. This corresponds to some 20 percent of the diesel trucks and buses being "smoke belchers". A larger fraction of "smoke belchers", such as in Kathmandu, will result in a larger emission factor.

### **FUEL COMBUSTION**

*Oil.* The particle emission factors suggested by USEPA (AP 42) is taken as a basis for calculating emissions from combustion of oil in South-East Asian cities. The factors are given in Table 3.

### Table 3: Emission factors for oil combustion (kg/m³)

	Emission factor				
	Uncontrolled	Controlled			
Utility boilers:					
Residual oila)					
Grade 6	1.25(S)+0.38	×0.008 (ESP)			
Grade 5	1.25	×0.06 (scrubber)			
Grade 4	0,88	×0.2 (multicyclone)			
Industrial/commercial boilers:					
Residual oil	(as above)	×0.2 (multicyclone)			
Distillate oil	0.24				
Residential furnaces:	* 				
Distillate oil	0.3				

Note: S: Sulfur content in % by weight

a): Another algorithm for calculating the emission factors is as follows: 7,3xA kg/m³, where A is the ash content of the oil.

Source: USEPA (1985).

### References

- Baker, J., Santiage, R., Villareal, T. and Walsh, M. (1993) Vehicular emission control in Metro Manila. Draft final report. Asian Development Bank (PPTA 1723).
- Bosch, J. (1991) Air quality assessment in Medan. Extract from Medan urban transportation study. Final Report. Washington D.C., World Bank.
- Larssen, S. and Heintzenberg, J. (1983) Measurements of emissions of soot and other particles from light duty vehicles. Lillestrøm (NILU OR 50/83). (In Norwegian).
- Rajbahak, H.L. and Joshi, K.M. (1993) Kathmandu Valley vehicular transportation and emission problems. *Metropolitan Environment Improvement Program. Urban Air Quality Management Workshop (URBAIR)*, December 2, 1993.
- U.S. Environmental Protection Agency (1985) Compilation of air pollutant emission factors, 4th ed. Supplement A. Research Triangle Park, NC, EPA (Environmental Protection Agency; AP-42).
- Weaver, C.S. and Chan, L.-M. (1993) Motorcycle emission standards and emission control technology. Draft report. Sacramento, CA., Engine, Fuel, and Emissions Engineering, Inc.
- Williams, D.J., J. W. Milne, D. B. Roberts, and M. C. Kimberlee. (1989). Particulate emissions from 'in-use' motor vehicles - I. Spark ignition vehicles. *Atmos. Environ.*, 23, 2639-2645.
- Williams, D.J., S. M. Quigley, J. W. Milne, D. B. Roberts, and M. C. Kimberlee. (1989). Particulate emissions from 'in-use' motor vehicles - II. Diesel vehicles. Atmos. Environ., 23, 2647-2662.
- World Health Organization (1993) Assessment of sources of air, water, and land pollution. A guide to rapid source inventory techniques and their use in formulating environmental control strategies. Part One: Rapid inventory techniques in environmental pollution. By A.P. Economopoulos. Geneva (WHO/PEP/GETNET/93.1-A).

# APPENDIX 6 POPULATION EXPOSURE CALCULATIONS

The basis for the calculations of the exposure of the Bombay population to TSP is the following:

- 1. The population distribution, calculated per km² as described in Appendix 2, Chapter 2, and shown in Figure 2 in that appendix.
- 2. The TSP distribution in Bombay, calculated by dispersion modeling as annual average concentration in km² grids (city background) described in the main report.

These two distributions are combined, and give an estimate of the residential exposure frequency distribution shown in Table 1 of this Appendix, Columns 1. and 2.

This residential exposure is modified to account for additional roadside exposure experienced by drivers, commuters and roadside workers. This modification is done in the following way --

• 300,000 drivers are given fairly high annual exposures,

- 100,000 at 195 μg/m³
- 100,000 at 205 μg/m³
- 100,000 at 215 μg/m³

• 1,500,000 commuters are given a moderately high annual exposure (see 3rd column, Table 1),

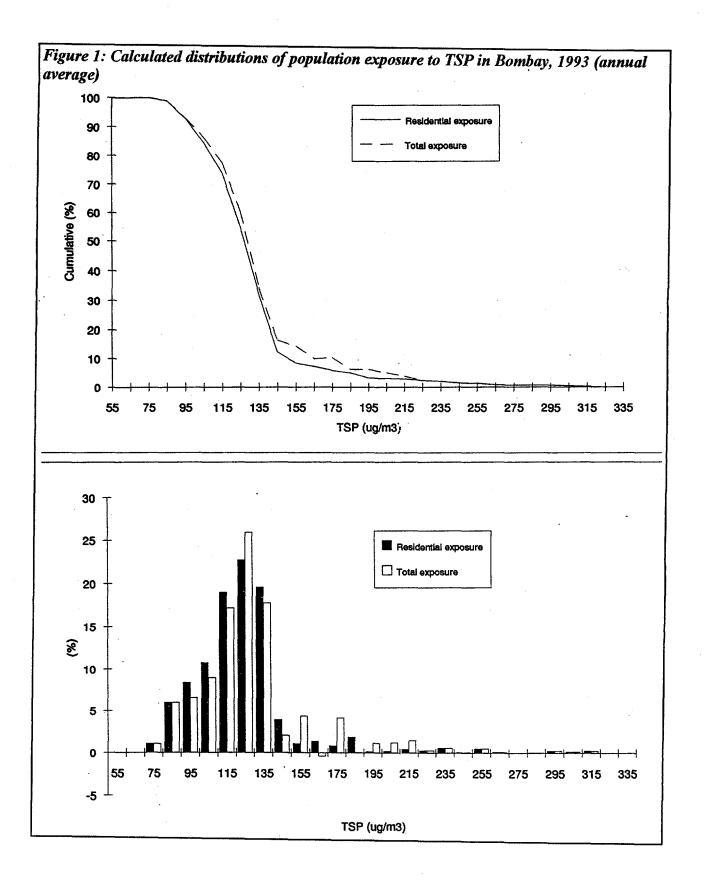
- 500,000 at 125 µg/m³
- 500,000 at 155  $\mu$ g/m³
- 500,000 at 175 μg/m³

--which is thought to correspond to commuting on intermediate, high and very high traffic density roads.

These 1.8 million people are then subtracted from the residence distribution, somewhat arbitrarily at equal rate from exposure classes between 95  $\mu$ g/m³ and 185  $\mu$ g/m³ (see 4th column, Table 1), i.e. the residents of the commuters and drivers are thought to be in moderately-to-fairly highly exposed areas.

This modification gives the total exposure frequency distribution of Table 2, column 5. Columns 6 and 7 of Table 1 give the resulting cumulative distributions.

Figure 1 shows the calculated exposure distributions.


The residential distribution show that most people are exposed to annual concentrations between 110-140  $\mu$ g/m³ (annual average TSP). Small fractions of the population are exposed to higher concentrations near specific particle sources, which are stone quarries. The roadside exposure causes a considerably increased exposure for a considerable part of the population.

Γ.

exposu	Residential exposure, freq. distr.		exposure ication	Total exposure freq.distr.	Cumulative	e distr.
		Add.	Subtr.		Residential	Total
	0.0			0.0	99.843	99.873
	0.0			0.0	99.843	99.873
	1.085			1.085	99.843	99.873
	6.007			6.007	98.758	98.788
	8.405		1.83	6.575	92.751	92.781
	10.800		1.83	8.970	84.346	86.206
	40.000		4.00	47 470	70 540	77 000

Table 1: Calcul l average, µg/m³) Exposure class ( µg/m³)

		Add.	Subtr.		Residential	Total
55	0.0			0.0	99.843	99.873
65	0.0			0.0	99.843	99.873
75	1.085			1.085	99.843	99.873
85	6.007			6.007	98.758	98.788
95	8.405		1.83	6.575	92.751	92.781
105	10.800		1.83	8.970	84.346	86.206
115	19.008		1.83	17.178	73.546	77.236
125	22.662	5.09	1.83	25.922	54.538	60.058
135	19.600		1.83	17.770	31.876	34.136
145	3.900		1.83	2.070	12.276	16.366
155	1.100	5.09	1.83	4.360	8.376	14.296
165	1.400		1.83	-0.430	7.276	9.936
175	0.846	5.09	1.83	4.106	5.876	10.366
185	1.868		1.83	0.038	5.03	6.260
195	0.143	1.02		1.163	3.162	6.222
205	0.218	1.02		1.238	3.019	5.059
215	0.466	1.02		1.486	2.801	3.821
225	0.302	· · ·		0.302	2.335	2.335
235	0.606			0.606	2.033	2.033
245	0.093			0.093	1.427	1.427
255	0.518			0.518	1.334	1.334
265	0.108			0.108	0.816	0.816
275	0.0			0.0	0.708	0.708
285	0.020			0.020	0.708	0.708
295	0.270			0.270	0.688	0.688
305	0.152			0.152	0.418	0.418
315	0.266			0.266	0.266	0.266
325	0.0			0.0	0.0	0.0
335	0.0			0.0	0.0	0.0



# APPENDIX 7 SPREADSHEET FOR CALCULATING EFFECTS OF CONTROL MEASURES ON EMISSIONS

### SPREADSHEET FOR CALCULATING EFFECTS OF CONTROL MEASURES ON EMISSIONS

### **Emissions spreadsheet**

The spreadsheet is shown in Figure 1. (Example: TSP emissions, Greater Bombay, Base Case Scenario, 1992.) Figure 2 shows emission contributions in absolute and relative terms.

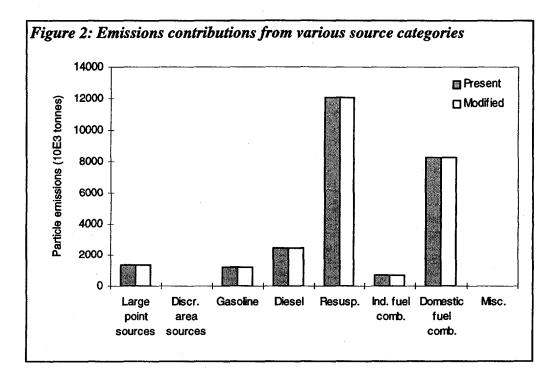
The purpose of the spreadsheet is to calculate modified emission contributions, due to control measures, such as:

- new vehicle technology
- improved emission characteristics, through measures on existing technology
- reduced traffic activity/fuel consumption
- other.

The emissions are calculated separately for large point sources (with tall stacks) and for area sources and smaller distributed point sources. The reason is that air pollution concentrations and population exposures are calculated differently for these two types of source categories.

The columns and rows of the worksheet are as follows:

### Columns:


- a) q: Emission factor, g/km for vehicles, kg/m³ or kg/ton for fuel combustion and process emissions. For vehicles, emission factors are given for "existing" and "new" technology.
- b) F,T: Amount of "activity"
  - T (vehicle km) for traffic activity
  - $F(m^3 \text{ or ton})$  for fuel consumption in industrial production.
- c) qT,qF: Base case emissions, tons, calculated as product of columns a) and b).
- d) fq, fF, fT, f-: Control measures. Relative reduction of emission factor (fq), amount (fF, fT) or other (f-) resulting from control measures.
- e) qFfqfFf-: Modified emissions, due to control measures.
- f) d(qFfqfFf-): Relative emission contributions from each source, per source category:
   vehicles
  - fuel combustion
  - industrial processes
  - miscellaneous
- g) d(qFfqfFf): Relative emissions contributions, all categories summed.

### Rows:

- a) Separate rows for each source type and category, "existing" and "new" technology.
- b) "Background": Fictitions emissions, corresponding to an extra-urban background concentration.
- c) Modified emission/emissions: Ratio between modified and base case emissions.

Figure 1: URBAIR spreadsheet for emissions calculations, Greater B	ombay,
TSP base case, 1992	

			Amount	Base-	Control	measure	9	Modified	Relative	Relative
	ļt .	factor		C888	1			emissions	emissions	emissions
				Emissions					per category	total
LARGE POINT SOURCES	st			1	1					
EARLET ONT COOLE	<u> </u>				4			- 5 (- 15 (	(1)	(
		q	F	qF	fq	fF	1-	qF fq fF f	(dqF fq fFf)	(dqF fq fFf)to
		(kg/t)	(10E3 Va)	(tonnes)	ļ			(10E3 tonnes)	(percent)	(percent)
	SHS	0.10	927	93		1.00	1.00	93		6.
C	Coal	0.50	298	149	1.00	1.00	1.00	149		10
	3as	0.06	496		1.00	1.00	1.00	30		2
Petrochem. ind. L	SHS	0.28	279	78	1.00	1.00	1.00	78		5
Large/med. ind. Li	SHS	0.28	164	46	1.00	1.00	1.00	46		3
F	io I	5.40	183	988	1.00	1.00	1.00	988		71
Sum large point sources				1384	1		Ċ.	1384		100
Modified emissions/emissions, point :	sourc.							1		
DISCRETE AREA SOURC	CES									
Waste dumps					1.00	1.00	1.00			
Stone crushers					1.00	1.00	1.00			
Sum discrete area sources				0.00				0		
Modified emissions/emissions, discr.	. area sor	urc.			ł					
DISTRIBUTED AREA SO	URCE	S		[						
Vehicles	T	9	т	αΤ	fg	fT	f-	gT fg fTf	(dqT fq fTf)	(dqT fq fTf)
			(10E9 vehicn/a)	(tonnes)	"	••	. •	(10E3 tonnes)	(parcent)	(oqrigili)
Gasoline exhaust		(	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1011100)				(1000	(Jeneral)	(percent)
Cars. taxis		0.20	2.46	492	1	1	1	492	13.4	2
MC/TC		0.50	1.47	735	1	1	1	735	20.0	3.
Sum gasoline	-+			1227	<u> </u>	· · · ·		1227		5
Modified emissions/emissions, gasoline								1		
Diesel exhaust	<u> </u>									
Cars. taxis		0.6	1.27	762	1 1	1	1	762	20.8	3.
Trucks		2.0	0.62	- · · ·	1	1		1240	33.8	5
		2.0	0.02	440		. 1	1	440	12.0	
Buses		2.0		2442	<u> </u>		· · · ·	2442	12.0	1.
Sum diesel Modified emissions/emissions, diesel				2442				2942 1	100.0	9.
Sum total vehicle exhaust	+			3869				3669		14.
Modified emissions/emissions, total veh	i hide evhr	auet		3003	· ·			1.00		14.
		2.0	6.04	12080	1	1	1	12080		48.
Resuspension		2.7	0.04		<u> </u>			15749		
Sum total vehicles (exh.+resusp.)	1	/		15749				1.00	1997 - A. 1997 -	63.
Modified emissions/emissions, total v	/enicies (		_							
Fuel combustion		- <b>q</b>	F	qF		fF	t-	qF tq fF t	(dqF fq fFf)fuel	(dqF fq fFf)toi
					fq			(10E3 Va)	(memory)	6
		(ligit)	(10E3 Va)	(tonnes)	ייי			(1059 84)	(Personn)	(percent)
Industrial		(kg/t)	(10E3 Va)	(tonnes)	PT I			(1023 84)	( control ( )	(percent)
		(kg/t) 0.28	(10E3 Va)		1.00	1.00	1.00	15.68	0.2	
LHSH				15.68		1.00 1.00	1.00			0.
LHSH FO		0.28 5.40	56 123	15.68 664.20	1.00 1.00	1.00	1.00	15.68 664.20	0.2 7.4	0. 2.
LHSH FO LDO		0.28 5.40 0.28	56 123 42	15.68 664.20 11.76	1.00 1.00 1.00	1.00 1.00	1.00 1.00	15.68 664.20 11.76	0.2 7.4 0.1	0. 2. 0.
HSH FO LDO Diesel (HSD)		0.28 5.40 0.28 0.28	56 123	15.68 664.20 11.76 11.20	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	15.68 664.20 11.76 11.20	0.2 7.4 0.1 0.1	0. 2. 0. 0.
LHSH FO LDO Diesel (HSD) LPG		0.28 5.40 0.28	56 123 42 40	15.68 664.20 11.76 11.20 0.42	1.00 1.00 1.00	1.00 1.00	1.00 1.00	15.68 664.20 11.76 11.20 0.42	0.2 7.4 0.1	0. 2. 0. 0. 0.
LHSH FO LDO Diesel (HSD) LPG Sum industrial		0.28 5.40 0.28 0.28	56 123 42 40	15.68 664.20 11.76 11.20	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26	0.2 7.4 0.1 0.1	0. 2. 0. 0. 0.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria	<u>u</u>	0.28 5.40 0.28 0.28	56 123 42 40	15.68 664.20 11.76 11.20 0.42	1.00 1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42	0.2 7.4 0.1 0.1	0. 2. 0. 0. 0.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic	1	0.28 5.40 0.28 0.28 0.06	56 123 42 40 7	15.68 664.20 11.76 11.20 0.42 703.26	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00	0.2 7.4 0.1 0.0	0. 2. 0. 0. 0. 2.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria <b>Domestic</b> Wood		0.28 5.40 0.28 0.28 0.06	56 123 42 40 7 293	15.68 664.20 11.76 11.20 0.42 703.26 4395.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	15.68 684.20 11.76 11.20 0.42 703.26 1.00 4395.00	0.2 7.4 0.1 0.0 48.9	0. 2. 0. 0. 0. 2. 17.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Wodified emissions/emissions, industria Domestic Mood SKO	1	0.28 5.40 0.28 0.28 0.06 15.00 0.06	56 123 42 40 7 293 480	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80	0.2 7.4 0.1 0.0 48.9 0.3	0. 2. 0. 0. 2. 2. 17. 0.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG	1	0.28 5.40 0.28 0.28 0.06 15.00 0.06	56 123 42 40 7 293	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98	0.2 7.4 0.1 0.0 48.9 0.3 0.3 0.2	0. 2. 0. 0. 0. 2. 17. 0. 0. 0.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal	8	0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00	56 123 42 40 7 293 480	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 684.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0	0. 2. 0. 0. 2. 17. 0. 0. 0.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung	ul .	0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00 10.00	56 123 42 40 7 293 480 233	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0	0. 2. 0. 0. 2. 17. 0. 0. 0. 0. 0.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse	81	0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00	56 123 42 40 7 293 480	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.00 3848.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0	0. 2. 0. 0. 0. 2. 17. 0. 0. 0. 0. 0. 15.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic		0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00 10.00	56 123 42 40 7 293 480 233	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0	0. 2. 0. 0. 0. 2. 17. 0. 0. 0. 0. 0. 15.
LHSH FO LDO Diesel (HSD) LPG Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestic		0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00 10.00	56 123 42 40 7 293 480 233	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.3848.00 8285.78	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 8285.78 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0 42.8	0. 2. 0. 0. 2. 17. 0. 0. 0. 0. 0. 33.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestic Sum fuel combustion		0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00 10.00	56 123 42 40 7 293 480 233 104	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.00 3848.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 3848.00 8285.78 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0	0. 2. 0. 0. 2. 17. 0. 0. 0. 0. 0. 33.
Industrial LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestik Sum fuel combustion Modified emissions/emissions, fuel		0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00 10.00 37.00	56 123 42 40 7 293 480 233 104	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.3848.00 8285.78	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 3848.00 8285.78 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0 0.0 0.0 0.0 100.0	0. 2. 0. 0. 2. 17. 0. 0. 0. 15. 33. 35.
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestic Sum fuel combustion Modified emissions/emissions, fuel		0.28 5.40 0.28 0.28 0.06 15.00 0.06 0.06 10.00 10.00 37.00	56 123 42 40 7 293 480 233 104	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.3848.00 8285.78	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 3848.00 8285.78 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0 42.8 100.0 (dqM fq fMf)misc	0. 2. 0. 0. 2. 17. 0. 0. 0. 0. 0. 0. 33. 35. 36. (dqM 1q fMf)to
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestik Sum fuel combustion Modified emissions/emissions, fuel Miscellaneous		0.28 5.40 0.28 0.28 0.06 15.00 0.06 10.00 10.00 37.00	56 123 42 40 7 293 480 233 104	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 3848.00 8285.78 <b>8969.04</b>	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 3848.00 8285.78 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0 0.0 0.0 0.0 100.0	(jentern) 0. 2. 0. 0. 0. 2. 17. 0. 0. 0. 0. 15. 33. 35. (dqM fq fMf)to (percent)
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestic Sum fuel combustion Modified emissions/emissions, fuel Miscellaneous Construction		0.28 5.40 0.28 0.28 0.06 15.00 0.06 10.00 10.00 37.00	56 123 42 40 7 293 480 233 104	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.00 3848.00 8285.78 8989.04 qM	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 684.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 8255.78 1.00 <b>8959.04</b> 1.00 <b>999.94</b> 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0 42.8 100.0 (dqM fq fMf)misc (percent)	0. 2. 0. 0. 2. 17. 0. 0. 0. 0. 0. 0. 0. 15. 33. 36. 36. (dqM fq fMf)to (percent)
LHSH FO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestic Sum fuel combustion Modified emissions/emissions, fuel Miscellaneous Construction Sum miscellaneous		0.28 5.40 0.28 0.28 0.06 15.00 0.06 10.00 10.00 37.00	56 123 42 40 7 293 480 233 104	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 3848.00 8285.78 <b>8969.04</b>	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 664.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 8285.78 1.00 8285.78 1.00 8999.04 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0 42.8 100.0 (dqM fq fMf)misc	0. 2. 0. 0. 2. 17. 0. 0. 0. 0. 0. 15. 33. 36. (dqM fq fMf)to (percent)
LHSH FO LDO Diesel (HSD) LPG Sum industrial Modified emissions/emissions, industria Domestic Wood SKO LPG Coal Dung Refuse Sum domestic Modified emissions/emissions, domestic Modified emissions/emissions, domestic Modified emissions/emissions, fuel Miscellaneous Construction	c	0.28 5.40 0.28 0.28 0.06 15.00 0.06 10.00 10.00 37.00	56 123 42 40 7 293 480 233 104	15.68 664.20 11.76 11.20 0.42 703.26 4395.00 28.80 13.98 0.00 0.00 3848.00 8285.78 8989.04 qM	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	15.68 684.20 11.76 11.20 0.42 703.26 1.00 4395.00 28.80 13.98 0.00 0.00 3848.00 8255.78 1.00 <b>8959.04</b> 1.00 <b>999.94</b> 1.00	0.2 7.4 0.1 0.0 48.9 0.3 0.2 0.0 0.0 42.8 100.0 (dqM fq fMf)misc (percent)	0. 2. 0. 0. 2. 17. 0. 0. 0. 0. 0. 33. 35. 36. 36.



# APPENDIX 8: PROJECT DESCRIPTIONS, LOCAL CONSULTANTS

### **PROJECT DESCRIPTION REGARDING AIR QUALITY ASSESSMENT**

Information should be collected regarding the items described below. The information to be collected *shall go beyond* the information contained in the material referenced in the Draft Report from NILU and Institute of Environmental Studies (IES) of the Free University of Amsterdam prepared for the Workshop, and summarized in that report.

Available information shall be collected regarding the following items, and other items of interest for Air Quality Management System Development in Bombay:

- Meteorological measurements in and near the city.
- Activities/population data for Bombay:
  - Fuel Consumption data:

Total fuel consumption (1) per type (high/low sulfur oil, coal, gas, firewood and other biomass fuels, other) and (2) per sector (industry, commercial, domestic)

— Industrial plants:

Location (on map), type/process, emissions, stack data (height, diameter, effluent velocity and temperature)

— Vehicle statistics:

1. number of vehicles in each class (passenger cars, small/medium/large trucks,

buses, motorcycles (2- and 3-wheels, 2- and 4-stroke);

- 2. Age distribution;
- 3. Average annual driving distance per vehicle class.
- Traffic data:

Definition of the main road network marked on map.

Traffic data for the main roads:

1. annual average daily traffic (vehicles/day)

2. traffic speed (average, and during rush hours)

3. vehicle composition (passenger cars, motorcycles, trucks/buses).

— Population data:

Per city district (as small districts as possible)

1. total population;

2. age distribution.

- Air pollution emissions
  - Emission inventory data (annual emissions)

1. per compound (SO₂, NO_x, particles in size fractions:  $<2 \mu g$ , 2-10  $\mu g$ , >10  $\mu g$ , VOC, lead);

2. emissions per sector (industry, transport, domestic, etc.).

- Air pollution data:
  - concentration statistics per monitoring station:
    - 1. annual average, 98 percentile, maximum concentrations (24-hour, 1 hour);
    - 2. trend information;
    - 3. methods description, and quality control information on methods.
- Dispersion modeling: Reports describing studies and results.
- Air pollution laws and regulations: Summary of existing laws and regulations.

### • Institutions:

- Description of existing institutions working in and with responsibilities within the air pollution sector, regarding:

- 1. monitoring,
- 2. emission inventories,
- 3. law making,
- 4. enforcement.
- The information shall include:
  - 1. responsibilities and tasks of the institution,
  - 2. authority,
  - 3. manpower,
  - 4. expertise,
  - 5. equipment (monitoring, analysis, data, hard/software),
  - 6. funds.

It is important that the gathering of information is *as complete as possible* regarding each of the items, so that we have a basis of data which is as updated and complete as possible. Remember that this updated completed information database is to form the basis for an action plan regarding Air Quality Management in Bombay. Such an action plan will also include the need to collect more data. In that respect, it is very important that the gathering of existing data is *complete*.

### **PROJECT DESCRIPTION REGARDING DAMAGE ASSESSMENT AND ECONOMIC** VALUATION

## URBAIR: topics for research

### Physical impacts

1. Describe available studies on relations between air pollution and health.

- 2. Decide on the acceptability of dose-effect relationships from U.S.A.
  - a) Mortality:  $10 \mu g/m^3$  TSP leads to 0.682 (range: 0.48-0.89) percentage change in mortality.
  - b) Work loss days (WLD): 1 µg/m³ TSP leads to 0.00145 percentage change in WLD.
  - c) Restricted activity days (RAD):  $1 \mu g/m^3$  TSP leads to 0.0028 percentage change in RAD per year.
  - d) Respiratory hospital diseases (RHD):  $1 \mu g/m^3$  TSP leads to 5.59 (range: 3.44-7.71) cases of RHD per 100,000 persons per year.
  - e) Emergency room visits (ERV):  $1 \mu g/m^3$  TSP leads to 12.95 (range: 7.1-18.8) cases of ERV per 100,000 persons per year.
  - f) Bronchitis (children):  $1 \mu g/m^3$  TSP leads to 0.00086 (range: 0.00043-0.00129) change in bronchitis.

g) Asthma attacks:  $1 \mu g/m^3$  TSP leads to 0.0053 (range: 0.0027-0.0079) change in daily asthma attacks per asthmatic persons.

h) Respiratory symptoms days (RSD):  $1 \mu g/m^3$  TSP leads to 1.13 (range:0.90-1.41) RSD per person per year.

i) Diastolic blood pressure (DBP): change in DBP = 2.74 ([Pb in blood]_{old}-[Pb in blood]_{new}) with [Pb in blood] is blood lead level ( $\mu$ g/dl).

j) Coronary heart disease (CHD): change in probability of a CHD event in the following ten years is --

 $[1 + exp - \{-4.996 + 0.030365(DBP)\}]^{-1} - [1 + exp - \{-4.996 + 0.030365(DBP_2)\}]^{-1}$ 

i) Decrement IQ points: IQ decrement = 0.975 x change in air lead ( $\mu g/m^3$ )

Calculation example:

- Let population be 10 million people.
- Let threshold value of TSP be 75  $\mu$ g/m³ (the WHO guideline).
- Let the concentration TSP be  $317 \,\mu g/m^3$ .
  - $\Rightarrow$  Concentration threshold = 317 75 = 242 = 24.2 (10 µg/m³).
  - $\Rightarrow$  Change in mortality = 24.2 x 0.682 = 16.5%.
- Let crude mortality be 1% per year.
  - $\Rightarrow$  Crude mortality = 100,000 people per year.
  - $\Rightarrow$  Change in mortality due to TSP = 16.5% of 100,000 people = 16,500 people per year.
- For those dose-effect relationships that are acceptable, base value must be gathered, e.g.:
   a) crude mortality
  - b) present work days lost

### Valuation

1. Mortality.

a) Willingness to Pay. In the United States, research has been carried out on the relation between risks of jobs and wages. It appeared that 1 promille of change in risk of mortality leads to a wage difference of ca. US\$1,000. If this figure is applicable to all persons of a large population (10 million), the whole population values 1 promille change in risk of mortality at US\$1,000 x 10 x  $10^6 = $10$  billion. An increase in risk of 1 promille will lead to ca. 10,000 death cases, so per death case the valuation is US\$1 million. It should be decided if in other countries, c.q. cities, this valuation should be corrected for wage differences (e.g. if the average wage is 40 times lower than in the United States the valuation of 1 death case is US\$25,000). If this approach is acceptable, the only information needed is average wage. b) Production loss. If the approach of willingness to pay is not acceptable, the alternative is valuing human life through production loss, i.e. foregone income of the deceased. Again. the information needed is average wage. Moreover, information is needed on the average number of years that people have a job. However, those without a job should also be assigned a value. An estimate of the income from informal activities can be an indication. Otherwise a value derived from the wages (e.g. half the average wage) can be a (somewhat arbitrary) estimation.

- 2. Morbidity. Estimates are needed for all cases of morbidity of the duration of the illness, so as to derive an estimation of foregone production due to illness. Just as in the case of mortality (B.1.b) wages can be used for valuation of a lost working day. Moreover, the hospital costs and other medical costs are to be estimated. These costs still do not yet include the subjective costs of illness, which can be estimated using the willingness-to-pay approach to pay to prevent a day of illness.
- 3. Willingness to pay to prevent a day of illness. Valuation in the United States, based on surveys among respondents, indicate that the willingness to pay to prevent a day of illness is ca. US\$15. This amount could, just like the amount of willingness to pay for risk to human health, be corrected for wage differences. The acceptability of such a procedure is, perhaps, somewhat lower.
- 4. *IQ points*. Loss of IQ of children may lead to a lower earning capacity. A U.S. estimate is ca. US\$4,600 per child, per IQ point, summed over the child's lifetime. If this is acceptable, the figure could be corrected for wage differences between the United States and the city.

### Other impacts

- 1. *Buildings*. An estimate by Jackson et al is that prevented cleaning costs per household per year are US\$42 for a reduction in TSP concentration, from 235  $\mu$ g/m3 to 115  $\mu$ g/m3. This would imply a benefit of US\$0.35 per household per  $\mu$ g/m3 reduction. This figure could be corrected for wage differences between the United States and the city. If that is acceptable, the information needed is the number of households in the city.
- 2. *Monuments*. It is difficult to say which value is attached to monuments, as they are often unique and their value is of a subjective character. Nevertheless, the restoration and cleaning costs of monuments could be an indication of the order of magnitude of damage to monuments. Revenue of tourism might also give a certain indication of valuation of future damage to monuments.

### **URBAIR-Mumbai**

### Remark

• In most cases, the valuation of damage is not very precise, and certainly not more than an indication of the order of magnitude.

*Technological reduction options*. To give a reliable estimate of the costs of technological reduction options, one needs a reliable emission inventory in which is included the currently used technologies and the age and replacement period of the installed equipment. In the absence of this, the study by the city team might wish to concentrate on a case study (e.g. traffic, fertilizer industry, large combustion sources.)

- The first step is to identify options. Cooperation with IES is possible, once a case study is identified.
- The second step is to estimate the costs, i.e. investment costs and O&M (operation and maintenance) costs. Based on the economic lifetime of the invested equipment, the investment costs can be transformed to annual costs, using writing-of procedures. Costs will often depend to a large extent on local conditions.
- The third step is to estimate the emission reductions of the various reduction options.
- The fourth step is to rank the options according to cost-effectiveness. For this purpose the various types of pollution have to be brought under a common denominator. A suggestion could be to calculate a weighed sum of the pollutants, using as weights the amount by which ambient standards are exceeded on average.

The calculation of the cost-effectiveness consists then of the calculation of the ratio of reduction over annual cost (R/C). The options with the highest ration R/C are the most cost-effective ones.

### **Distributors** of World Bank Publications

Prices and credit terms vary from country to country. Consult your

local distributor before placing an order.

### ARGENTINA

Oficina del Libro Internacional Av. Cordoba 1877 1120 Buenos Aires Tel: (54 1) 815-8354 Fax: (54 1) 815-8156

AUSTRALIA, FIJI, PAPUA NEW GUINEA. SOLOMON ISLANDS, VANUATU, AND WESTERN SAMOA **D.A. Information Services** 648 Whitehorse Road Mitcham 3132 Victoria Tel: (61) 3 9210 7777 Fax: (61) 3 9210 7788 E-mail: service @dadirect.com.au URL: http://www.dadirect.com.au

#### AUSTRIA

Gerold and Co. Weihburggasse 26 A-1011 Wien Tel: (43 1) 512-47-31-0 Fax: (43 1) 512-47-31-29 URL: http://www.gerold.co/at.online

BANGLADESH

Micro Industries Development Assistance Society (MIDAS) House 5, Road 16 Dhanmondi R/Area Dhaka 1209 Tel: (880 2) 326427 Fax: (880 2) 811188

#### BELGIUM Jean De Lannoy Av. du Roi 202

1060 Brussels Tel: (32 2) 538-5169 Fax: (32 2) 538-0841

RRA7II Publicações Tecnicas Internacionais Ltda. Rua Peixoto Gomide, 209 01409 Sao Paulo, SP Tel: (55 11) 259-6644 Fax: (55 11) 258-6990 E-mail: postmaster@pti.uol.br URL: http://www.uol.br

#### CANADA

Renouf Publishing Co. Ltd. 5369 Canotek Road Ottawa, Ontario K1J 9J3 Tel: (613) 745-2665 Fax: (613) 745-7660 E-mail: order .dept@renoufbooks.com URL: http:// www.renoufbooks.com

### CHINA

China Financial & Economic Publishing House 8, Da Fo Ši Dong Jie Beijing Tel: (86 10) 6333-8257 Fax: (86 10) 6401-7365

COLOMBIA Infoenlace Ltda. Carrera 6 No. 51-21 Apartado Aereo 34270 Santafé de Bogotá, D.C. Tel: (57 1) 285-2798 Fax: (57 1) 285-2798 COTE D'IVOIRE Center d'Edition et de Diffusion Africaines (CEDA) 04 B P 541 Abidjan 04 Tel: (225) 24 6510;24 6511 Fax: (225) 25 0567 CYPRUS Center for Applied Research Cyprus College 6, Diogenes Street, Engomi P.O. Box 2006 Ninneia Tel: (357 2) 44-1730 Fax: (357 2) 46-2051 CZECH REPUBLIC National Information Center prodejna, Konviktska 5 CS - 113 57 Prague 1 Tel: (42 2) 2422-9433 Fax: (42 2) 2422-1484 URL: http://www.nis.cz/ DENMARK SamfundsLitteratur Rosencerns Allé 11 DK-1970 Frederiksberg C Tel: (45 31) 351942 Fax: (45 31) 357822 URL: http://www.sl.cbs.dk ECUADOR Libri Mundi

Libreria Internacional P.O. Box 17-01-3029 Juan Leon Mera 851 Ouito Tel: (593 2) 521-606; (593 2) 544-185 Fax: (593 2) 504-209 E-mail: librimu1@librimundi.com.ec E-mail: librimu2@librimundi.com.ec. EGYPT. ARAB REPUBLIC OF

Al Galaa Street Tel: (20 2) 578-6083 Fax: (20 2) 578-6833

Cairo

41. Sherif Street Cairo Tel: (20 2) 393-9732 Fax: (20 2) 393-9732

FINLAND Akateeminen Kirjakauppa P.O. Box 128 FIN-00101 Helsinki Tel: (358 0) 121 4418 Fax: (358 0) 121-4435 E-mail: akatilaus@stockmann.fi URL: http://www.akateeminen.com/

FRANCE World Bank Publications 66, avenue d'Iéna 75116 Paris Tel: (33 1) 40-69-30-56/57 Fax: (33 1) 40-69-30-68

GERMANY UNO-Verlag Poppelsdorfer Allee 55 53115 Boon Tel: (49 228) 949020 Fax: (49 228) 217492 URL: http://www.uno-verlag.de

E-mail: unoverlag@aol.com GREECE Papasotiriou S.A.

106 82 Athens Tel: (30 1) 364-1826

Asia 2000 Ltd.

Al Ahram Distribution Agency

The Middle East Observer

35. Stournara Str.

Fax: (30 1) 364-8254 HAITI Culture Diffusion 5, Rue Capois C.P. 257 Port-au-Prince Tel: (509) 23 9260

Fax: (509) 23 4858 HONG KONG, MACAO Sales & Circulation Department Seabird House, unit 1101-02 22-28 Wyndham Street, Central Hong Kong Tel: (852) 2530-1409 Fax: (852) 2526-1107 E-mail: sales@asia2000.com.hk URL: http://www.asia2000.com.hk

HUNGARY Euro Info Service Margitszgeti Europa Haz H-1138 Budapest Tel: (36 1) 111 6061 Fax: (36 1) 302 5035 F-mail: euroinfo@mail.matav.hu INDIA Allied Publishers Ltd. 751 Mount Road Madras - 600 002

Tel: (91 44) 852-3938 Fax: (91 44) 852-0649 INDONESIA Pt. Indira Limited Jalan Borobudur 20 PO. Box 181 Jakarta 10320 Tel: (62 21) 390-4290

Fax: (62 21) 390-4289 **IRAN** Ketab Sara Co. Publishers Khaled Eslamboli Ave., 6th Street Delafrooz Alley No. 8 P.O. Box 15745-733 Tehran 15117 Tel: (98 21) 8717819: 8716104 Fax: (98 21) 8712479 E-mail: ketab-sara@neda.net.ir Kowkab Publishers

P.O. Box 19575-511 Tehran Tel: (98 21) 258-3723 Fax: (98 21) 258-3723

IRELAND Government Supplies Agency Oifig an tSoláthair 4-5 Harcourt Road Dublin 2 Tel: (353 1) 661-3111 Fax: (353 1) 475-2670

ISRAEL Yozmot Literature Ltd. PO. Box 56055 3 Yohanan Hasandlar Street Tel Aviv 61560 Tel: (972 3) 5285-397 Fax: (972 3) 5285-397

R.O.Y. International PO Box 13056 Tel Aviv 61130 Tel: (972 3) 5461423 Fax: (972 3) 5461442 E-mail: royil@netvision.net.il

Palestinian Authority/Middle East Index Information Services PO.B. 19502 Jerusalem Tel: (972 2) 6271219 Fax: (972 2) 6271634

ITALY Licosa Commissionaria Sansoni SPA Via Duca Di Calabria, 1/1 Casella Postale 552 50125 Firenze Tel: (55) 645-415 Fax: (55) 641-257 E-mail: licosa@ftbcc.it URL: http://www.ftbcc.it/licosa

**JAMAICA** Ian Randle Publishers Ltd. 206 Old Hope Road, Kingston 6 Tel: 876-927-2085 Fax: 876-977-0243 E-mail: irpl@colis.com

**JAPAN** Eastern Book Service 3-13 Hongo 3-chome, Bunkvo-ku Tokyo 113 Tel: (81 3) 3818-0861 Fax: (81 3) 3818-0864 E-mail: orders@svt-ebs.co.jp URL: http://www.bekkoame.or.jp/~svt-ebs KENYA Africa Book Service (E.A.) Ltd. Quaran House, Mfangano Street P.O. Box 45245 Nairobi Tel: (254 2) 223 641 Fax: (254 2) 330 272

KOREA, REPUBLIC OF Daejon Trading Co. Ltd. P.O. Box 34, Youida, 706 Seoun Bldg 44-6 Youido-Dong, Yeongchengpo-Ku Secul Tel: (82 2) 785-1631/4 Fax: (82 2) 784-0315

MALAYSIA University of Malaya Cooperative Bookshop, Limited P.O. Box 1127 Jalan Pantai Baru 59700 Kuala Lumpur Tel: (60 3) 756-5000 Fax: (60 3) 755-4424 E-mail: umkoop@tm.net.my

MEXICO INFOTEC Av. San Fernando No. 37 Col. Toriello Guerra 14050 Mexico, D.F. Tel: (52 5) 624-2800 Fax: (52 5) 624-2822 E-mail: infotec@rtn.net.mx URL: http://rtn.net.mx

NEPAL Everest Media International Services (P) Ltd. GPO Box 5443 Kathmandu Tel: (977 1) 472 152 Fax: (977 1) 224 431

NETHERLANDS De Lindeboom/InOr-Publikaties P.O. Box 202, 7480 AE Haaksbergen Tel: (31 53) 574-0004 Fax: (31 53) 572-9296 E-mail: lindeboo@worldonline.nl URL: http://www.worldonline.nl/~lindeboo

NEW ZEALAND EBSCO NZ Ltd. Private Mail Bag 99914 New Market Auckland Tel: (64 9) 524-8119 Fax: (64 9) 524-8067

NIGERIA University Press Limited Three Crowns Building Jericho Private Mail Bao 5095 Ibadan Tel: (234 22) 41-1356 Fax: (234 22) 41-2056

NORWAY NIC Info A/S Book Department, Postboks 6512 Etterstad N-0606 Óslo Tel: (47 22) 97-4500 Fax: (47 22) 97-4545

PAKISTAN Mirza Book Agency 65, Shahrah-e-Quaid-e-Azam Lahore 54000 Tel: (92 42) 735 3601 Fax: (92 42) 576 3714

```
Oxford University Press
5 Bangalore Town
Sharae Faisal
PO Box 13033
Karachi-75350
Tel: (92 21) 446307
Fax: (92 21) 4547640
E-mail: ouppak@TheOffice.net
Pak Book Corporation
Aziz Chambers 21, Queen's Road
```

I abore Tel: (92 42) 636 3222: 636 0885 Fax: (92 42) 636 2328 E-mail: pbc@brain.net.pk

```
PFRU
Editorial Desarrollo SA
Apartado 3824, Lima 1
Tel: (51 14) 285380
Fax: (51 14) 286628
```

PHILIPPINES International Booksource Center Inc. 1127-A Antipolo St, Barangay, Venezuela Makati City Tel: (63 2) 896 6501; 6505; 6507 Fax: (63 2) 896 1741

#### POLAND International Publishing Service Ul. Piekna 31/37 00-677 Warzawa Tel: (48 2) 628-6089 Fax: (48 2) 621-7255 E-mail: books%ips@ikp.atm.com.pl URL: http://www.ipscg.waw.pl/ips/export/

MUMP DOM: L Livraria Portugal Apartado 2681, Rua Do Carmo 70-74 1200 Lisbon Tel: (1) 347-4982 Fax: (1) 347-0264

ROMANIA Compani De Librarii Bucuresti S.A. Str. Lipscani no. 26, sector 3 Bucharest Tel: (40 1) 613 9645 Fax: (40 1) 312 4000

**RUSSIAN FEDERATION** IsdateIstvo <Ves Mir> 9a, Kolpachniv Pereulok Moscow 101831 Tel: (7 095) 917 87 49 Fax: (7 095) 917 92 59

SINGAPORE. TAIWAN. MYANMAR, BRUNEI Ashgate Publishing Asia Pacific Pte. Ltd. 41 Kallang Pudding Road #04-03 Golden Wheel Building Singapore 349316 Tel: (65) 741-5166 Fax: (65) 742-9356 E-mail: ashgate@asianconnect.com

SLOVENIA Gospodarski Vestnik Publishing Group Dunaiska cesta 5 1000 Ljubljana Tel: (386 61) 133 83 47; 132 12 30 Fax: (386 61) 133 80 30 E-mail: repansekj@gvestnik.si

SOUTH AFRICA, BOTSWANA For single titles: Oxford University Press Southern Africa Vasco Boulevard, Goodwood P.O. Box 12119, N1 City 7463 Cape Town Tel: (27 21) 595 4400 Fax: (27 21) 595 4430 E-mail: oxford@oup.co.za

For subscription orders: International Subscription Service P.O. Box 41095 Craighall Johannesburg 2024 Tel: (27 11) 880-1448 Fax: (27 11) 880-6248 E-mail: iss@is.co.za

SPAIN Mundi-Prensa Libros, S.A. Castello 37 28001 Madrid Tel: (34 1) 431-3399 Fax: (34 1) 575-3998 E-mail: libreria@mundiprensa.es URL: http://www .mundiprensa.es/

Mundi-Prensa Barcelona Consell de Cent. 391 08009 Barcelona Tel: (34 3) 488-3492 Fax: (34 3) 487-7659 E-mail: barcelona@mundiprensa.es

SRI LANKA, THE MALDIVES Lake House Bookshop 100, Sir Chittampalam Gardiner Mawatha Colombo 2 Tel: (94 1) 32105 Fax: (94 1) 432104 E-mail: LHL@sri.lanka.net

المعار الغ Wennergren-Williams AB P. O. Box 1305 S-171 25 Solna Tel: (46 8) 705-97-50 Fax: (46 8) 27-00-71 E-mail: mail@wwi.se

SWITZERLAND Librairie Payot Service Institutionnel Côtes-de-Montbenon 30 1002 Lausanne Tel: (41 21) 341-3229 Fax: (41 21) 341-3235

ADECO Van Diermen EditionsTechniques Ch. de Lacuez 41 CH1807 Blonav Tel: (41 21) 943 2673 Fax: (41 21) 943 3605

THAILAND Central Books Distribution 306 Silom Road Bangkok 10500 Tel: (66 2) 235-5400 Fax: (66 2) 237-8321

TRINIDAD & TOBAGO AND THE CARRIBBEAN Systematics Studies Ltd. St. Augustine Shopping Center Eastern Main Road, St. Augustine Trinidad & Tobago, West Indies Tel: (868) 645-8466 Fax: (868) 645-8467 E-mail: tobe@trinidad.net

UGANDA Gustro Ltd PO Box 9997, Madhvani Building Plot 16/4 Jinia Rd. Kampala Tel: (256 41) 251 467 Fax: (256 41) 251 468 E-mail: gus@swiftuganda.com

UNITED KINGDOM Microinfo Ltd. P.O. Box 3, Alton, Hampshire GU34 2PG

England Tel: (44 1420) 86848 Fax: (44 1420) 89889 E-mail: wbank@ukminfo.demon.co.uk URL: http://www.microinfo.co.uk

VENEZUELA Tecni-Ciencia Libros, S.A. Centro Cuidad Comercial Tamanco Nivel C2, Caracas Tel: (58 2) 959 5547; 5035; 0016 Fax: (58 2) 959 5636

ZAMBIA University Bookshop, University of Zambia Great East Road Campus P.O. Box 32379 l usaka Tel: (260 1) 252 576 Fax: (260 1) 253 952

### **RECENT WORLD BANK TECHNICAL PAPERS (continued)**

- No. 348 Goldstein, Preker, Adeyi, and Chellaraj, Trends in Health Status, Services, and Finance: The Transition in Central and Eastern Europe, Volume II, Statistical Annex
- No. 349 Cummings, Dinar, and Olson, New Evaluation Procedures for a New Generation of Water-Related Projects
- No. 350 Buscaglia and Dakolias, Judicial Reform in Latin American Courts: The Experience in Argentina and Ecuador
- No. 351 Psacharopoulos, Morley, Fiszbein, Lee, and Wood, Poverty and Income Distribution in Latin America: The Story of the 1980s
- No. 352 Allison and Ringold, Labor Markets in Transition in Central and Eastern Europe, 1989-1995
- No. 353 Ingco, Mitchell, and McCalla, Global Food Supply Prospects, A Background Paper Prepared for the World Food Summit, Rome, November 1996
- No. 354 Subramanian, Jagannathan, and Meinzen-Dick, User Organizations for Sustainable Water Services
- No. 355 Lambert, Srivastava, and Vietmeyer, Medicinal Plants: Rescuing a Global Heritage
- No. 356 Aryeetey, Hettige, Nissanke, and Steel, Financial Market Fragmentation and Reforms in Sub-Saharan Africa
- No. 357 Adamolekun, de Lusignan, and Atomate, editors, Civil Service Reform in Francophone Africa: Proceedings of a Workshop Abidjan, January 23-26, 1996
- No. 358 Ayres, Busia, Dinar, Hirji, Lintner, McCalla, and Robelus, Integrated Lake and Reservoir Management: World Bank Approach and Experience
- No. 360 Salman, The Legal Framework for Water Users' Associations: A Comparative Study
- No. 361 Laporte and Ringold. Trends in Education Access and Financing during the Transition in Central and Eastern Europe.
- No. 362 Foley, Floor, Madon, Lawali, Montagne, and Tounao, The Niger Household Energy Project: Promoting Rural Fuelwood Markets and Village Management of Natural Woodlands
- No. 364 Josling, Agricultural Trade Policies in the Andean Group: Issues and Options
- No. 365 Pratt, Le Gall, and de Haan, Investing in Pastoralism: Sustainable Natural Resource Use in Arid Africa and the Middle East
- No. 366 Carvalho and White, Combining the Quantitative and Qualitative Approaches to Poverty Measurement and Analysis: The Practice and the Potential
- No. 367 Colletta and Reinhold, Review of Early Childhood Policy and Programs in Sub-Saharan Africa
- No. 368 Pohl, Anderson, Claessens, and Djankov, Privatization and Restructuring in Central and Eastern Europe: Evidence and Policy Options
- No. 369 Costa-Pierce, From Farmers to Fishers: Developing Reservoir Aquaculture for People Displaced by Dams
- No. 370 Dejene, Shishira, Yanda, and Johnsen, Land Degradation in Tanzania: Perception from the Village
- No. 371 Essama-Nssah, Analyse d'une répartition du niveau de vie
- No. 373 Onursal and Gautam, Vehicular Air Pollution: Experiences from Seven Latin American Urban Centers
- No. 374 Jones, Sector Investment Programs in Africa: Issues and Experiences
- No. 375 Francis, Milimo, Njobvo, and Tembo, Listening to Farmers: Participatory Assessment of Policy Reform in Zambia's Agriculture Sector
- No. 376 Tsunokawa and Hoban, Roads and the Environment: A Handbook
- No. 378 Shah and Nagpal, eds., Urban Air Quality Management Strategy in Asia: Kathmandu Valley Report
- No. 377 Walsh and Shah, Clean Fuels for Asia: Technical Options for Moving toward Unleaded Gasoline and Low-Sulfur Diesel
- No. 382 Barker, Tenenbaum, and Woolf, *Governance and Regulation of Power Pools and System Operators: An International Comparison*
- No. 383 Goldman, Ergas, Ralph, and Felker, Technology Institutions and Policies: Their Role in Developing Technological Capability in Industry
- No. 384 Kojima and Okada, Catching Up to Leadership: The Role of Technology Support Institutions in Japan's Casting Sector
- No. 385 Rowat, Lubrano, and Porrata, Competition Policy and MERCOSUR
- No. 386 Dinar and Subramanian, Water Pricing Experiences: An International Perspective
- No. 387 Oskarsson, Berglund, Seling, Snellman, Stenbäck, and Fritz, A Planner's Guide for Selecting Clean-Coal Technologies for Power Plants
- No. 388 Sanjayan, Shen, and Jansen, Experiences with Integrated-Conservation Development Projects in Asia
- No. 389 International Commission on Irrigation and Drainage (ICID), Planning the Management, Operation, and Maintenance of Irrigation and Drainage Systems: A Guide for the Preparation of Strategies and Manuals
- No. 395 Saleth and Dinar, Satisfying Urban Thirst: Water Supply Augmentation and Pricing Policy in Hyderabad City, India



### THE WORLD BANK

1818 H Street, N.W. Washington, D.C. 20433 USA

Telephone: 202-477-1234

Faesimile: 202-477-6391

Telex: MCI 64145 WORLDBANK MCI 248423 WORLDBANK

Cable Address: INTBAFRAD WASHINGTONDC

World Wide Web: http://www.worldbank.org

E-mail: books@ worldbank.org

### METROPOLITAN ENVIRONMENTAL IMPROVEMENT PROGRAM

Environment and Natural Resources Division Asia Technical Department, The World Bank

1818 H Street, N.W. Washington, D.C. 20433 USA Telephone: 202-458-1598

Faesimile: 202-522-1664

0077-3

Internal Documents Unit, H B1-151



ISBN 0-8213-4037-9