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This paper examines the causal relationship between energy 
efficiency and economic growth based on panel data for 56 
high- and middle-income countries from 1978 to 2012. 
Using a panel vector autoregression approach, the study finds 
evidence of a long-run Granger causality from economic 
growth to lower energy intensity for all countries. The study 

also finds evidence of long-run bidirectional causality between 
lower energy intensity and higher economic growth for 
middle-income countries. This finding suggests that beyond 
climate benefits, middle-income countries may also earn 
an extra growth dividend from energy efficiency measures.
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1 Introduction

Energy efficiency is commonly seen as a key policy option for climate change mitigation. It

also has recently been promoted as an industrial policy to boost economic competitiveness.

For example, the European Union’s 2030 Energy Strategy describes energy efficiency as

fundamental in the transition toward a more competitive, secure, and sustainable energy

system.1 And the U.S. government has acknowledged energy efficiency as a key part of its

strategy to support trade competitiveness.2

There are several potential channels through which energy efficiency policies could spur

competitiveness and growth (Deichmann and Zhang, 2013). First, they could encourage

innovation and technology development. When firms become more productive by using less

energy per unit of output, they could become more cost-competitive in export markets. Sec-

ond, these policies could create new demand and new markets for energy efficient technologies

and products. The ensuing investment could bring new jobs and growth. Third, by enabling

government to reduce energy-related expenditures, especially in energy-importing countries,

they could allow greater spending in other priority areas that would benefit growth in the

long run, such as health and education. Finally, by producing energy savings for households,

they could boost disposable income and encourage growth-promoting consumption.

Despite many anecdotal accounts of the relationship between energy efficiency and eco-

nomic growth, empirical evidence on a causal link is thin. Existing analysis takes a deep

dive into specific industries to explore productivity benefits of energy efficiency measures,

such as in iron and steel manufacturing (Worrell et al., 2003), paper and steel manufacturing

(DOE, 1997), and the glass industry (Boyd and Pang, 2000), At the macro level, numer-

ous studies have investigated the causal relationship between total energy consumption and

economic growth (for example Kraft and Kraft 1978 and Costantini and Martini 2010; see

also Ozturk 2010 for a detailed review). But there has been no broader examination of the

macroeconomic effect of energy efficiency policies.

In this paper, we explore the causal relationship between energy efficiency and GDP

growth based on a panel dataset of 56 countries spanning the period from 1978 to 2012.

Causality here is confined to Granger causality, in which a variable is said to “Granger-

cause” another variable if it serves as a useful predictor of future values of that variable

after controlling for several lags. Energy efficiency is proxied by energy intensity, defined as

energy use per unit of economic output. Because changes in energy intensity can be driven

by both efficiency effects (resulted in lower energy use to produce the same amount of a good)

and structural effects (resulted in the tendency of energy intensity to first rise as a country

moves from agriculture to industry and then fall as it shifts from industry to services), we

1 European Commission. “Energy Efficiency and its contribution to energy security and the 2030 Framework
for climate and energy policy”

2 http://trade.gov/press/publications/newsletters/ita 1009/energy 1009.asp
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combine macro-level analysis with sector-level analysis of industry and agriculture to control

for change in the sectoral composition of the economy.

Previous studies using country-level time-series data or multicountry panel data to test

for Granger causality between total energy consumption and growth have been mostly con-

fined to a bivariate model with energy use and GDP as the two variables (Ozturk, 2010).

However, inference form bivariate models must be interpreted with caution because of po-

tential omitted variable bias (Lütkepohl, 1982; Zachariadis, 2007). For example, some recent

studies have underscored the importance of controlling for energy price, as energy price could

have a causal impact on both energy use and output growth (Lee and Lee, 2010; Costantini

and Martini, 2010; Belke et al., 2011). In this paper, we specifically control for energy price

as an endogenous variable so as to allow more conclusive causal inferences.

We apply a panel vector autoregression (PVAR) approach for the causality analysis. We

first test for unit roots in the variables using tests proposed by Pesaran (2007) and Deme-

trescu et al. (2006). Both these tests allow for cross-section dependence between countries.

After establishing unit roots in the variables of interest, we test whether the variables are

cointegrated using the panel conintegration test of Pedroni (2004). We find evidence of panel

cointegration, which leads us to estimate long-run cointegrating parameters based on gener-

alized methods of moments (GMM). Finally, we use the lagged residuals estimated from the

cointegrating regression as an exogenous error correction term in a PVAR.

Our sample covers a diverse set countries of different income levels. Because energy needs

differ at different stages of development, we categorize countries into three groups: high in-

come, upper middle income (UMI) and lower middle income (LMI).3 We find evidence of

unidirectional causality from GDP growth to lower aggregate energy intensity and lower

industrial energy intensity for high-income countries in the long run. We also find bidi-

rectional Granger causality between economic growth and lower aggregate energy intensity

for lower-middle-income countries and between growth and lower industrial energy inten-

sity for upper-middle-income countries, both in the long run. These findings suggest that

economic development provides opportunities for countries to become more energy efficient,

possibly through capital and technology upgrades (Deichmann and Zhang, 2013). Moreover,

the bidirectional causality for lower-middle-income countries and for the industrial sector of

upper-middle-income countries implies that energy efficiency could be an instrument for ac-

celerating growth and productivity. In other words, beyond climate benefits, middle-income

countries may also earn an extra growth dividend from energy efficiency measures.

The rest of the paper is organized in the following ways: Section 2 describes the data.

Section 3 discusses the PVAR approach and presents the results. Section 4 discusses the

policy implications and concludes the paper.

3 The analysis excludes low-income countries because energy price data for these countries are not available.
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2 Data and Descriptive Analysis

We use three types of data for the analysis: data on total final energy consumption and

the sectoral energy consumption of agriculture and industry from the International Energy

Agency (IEA) World Energy Statistics and Balances database; data on GDP and value added

of agriculture, services, and industry from the World Bank World Development Indicators

(WDI) database; and energy price data from the IEA Energy Prices and Taxes database, the

Energy Regulators Regional Association (ERRA) Tariff database, and various government

reports and websites. The IEA reports after-tax industry and household electricity and

natural gas prices for OECD and selected non-OECD countries. The ERRA database reports

after-tax prices for residential and non-residential consumers. We use industry or non-

residential electricity price as a proxy for energy price.4 When electricity price data are not

available, we use the industry natural gas price as a substitute. All price and value added

data are converted to 2005 U.S. prices.5 For countries that have gaps in energy price data,

we linearly interpolate those missing observations using the growth rate in the corresponding

country’s Consumer Price Index.6 Table A1 reports the countries as well as the years for

which energy price data are linearly interpolated.

Our main variable of interest is energy intensity, defined as total final energy consump-

tion divided by GDP. Sector-specific energy intensity is defined as the total final energy

consumption of the sector (industry or agriculture) divided by sector value added.

Our yearly dataset consists of an unbalanced panel of 56 countries spanning the period

from 1991 to 2012. We categorize the countries as high income, upper middle income, or

lower middle income based on the World Bank’s income classification and the countries per

capita gross national income in 2012. Table 1 lists the countries by their income level in

2012 and by data availability for different measures of energy intensity.

Table 2 reports the summary statistics. Figures 1, 2, 3, and 4 show the trends in average

GDP, aggregate and sectoral energy intensity, value added shares, and energy price for each

income group over the sample period, respectively. GDP and aggregate energy intensity are

strongly trending in opposite directions since 1990. While GDP has steadily increased, the

aggregate energy intensity of all income groups has fallen dramatically over the past two

decades.7 The negative correlation between GDP and aggregate energy intensity is highly

significant, although it does not indicate causality or the direction of causality. Industrial

4 We use IEA data on industry electricity prices whenever available. We use ERRA data on non-residential
electricity prices when IEA data are not available. The same approach applies to natural gas prices data.

5 GDP data are based on purchasing power parity.
6 Our main conclusions are robust to the alternative approach by which missing observations of energy prices

are not interpolated.
7 There was a significant increase in energy intensity in middle-income countries after 1991. This is because

many middle-income countries in the sample are transition economies and experienced a sharp contraction
in output after the end to centrally planned production. Our main conclusions are robust when we restrict
sample to observations between 1991 and 2012.
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energy intensity shows a declining trend for middle-income countries especially after mid

1990s while it remains flat for high-income countries. Agricultural energy intensity shows no

clear time trend. While the value added share of industry have been on a steady decline for

high income countries, the corresponding shares for middle income countries have been in-

creasing until 2010. The value added share of agriculture are declining for all income groups.

Finally, the average energy prices for high-income and upper-middle-income countries have

more than doubled since 2000. For lower-middle-income countries, it fluctuates around 60

U.S. dollars per MWh between 1991 and 2010 and then declined to 40 USD per MWh in

2012.

3 Model and Results

In this section, we describe procedures for and results of three types of tests: panel unit root

test, panel cointegration test and Granger causality test.

3.1 Panel Unit Root Test

Causality tests are very sensitive to the stationarity of the series. Thus we begin by testing

for data stationarity using panel unit root tests proposed by Pesaran (2007) and Deme-

trescu et al. (2006). These tests do not assume that individual time series in the panel are

cross-sectionally independently distributed. Furthermore, they can be applied to unbalanced

panels and are easy to implement with good power and size properties. The test in Pesaran

(2007), the CIPS test, is an extension of the augmented Dickey-Fuller (ADF) test in which

the standard ADF test is augmented with first differences of individual series and cross sec-

tional averages of lagged levels. The test proposed in Demetrescu et al. (2006), the DHT

test, is based on combining the p-values obtained from a Dickey-Fuller test performed on

individual panels. This test is similar to those in Maddala and Wu (1999) and Choi (2001),

except that the DHT test uses the modified inverse normal method of Hartung (1999) that

is robust to dependence among cross sections.

For the CIPS test, we fit the following cross-sectionally augmented Dickey-Fuller regres-

sion:

∆yit = ai + biyi,t−1 + ciȳt−1 + di∆ȳt + eit (1)

where yit is the observation of the ith country at time t, ∆ is the first difference operator,

ȳt−1 is the first lag of the dependent variable averaged over all panels, and ∆ȳt is the first

difference of the average. ai, bi, ci, di are parameters and eit is the idiosyncratic error. Under

the unit root null hypothesis, there is bi = 0 for all i. The alternative hypothesis corresponds

to some panels being stationary.
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For the DHT test, we fit the following panel version of the augmented Dickey-Fuller test:

∆yit = ai + biyi,t−1 + eit (2)

where the null hypothesis of unit root is bi = 0 for all i and the alternative hypothesis cor-

responds to all panels being stationary. The individual Dickey-Fuller p-values are combined

to obtain the resulting p-value for the panel unit root test.

To determine the order of integration, we test both the levels and the first differences of

the variables. All variables are transformed into logarithms before testing. Table 3 presents

the test results applied to the levels of the variables. For all variables (except agricultural

energy intensity), the null hypothesis is a random walk with a possible drift, with the al-

ternative hypothesis being stationary around a linear time trend. For agricultural energy

intensity, because there was no clear time trend in the series, we test the null hypothesis of a

random walk against the alternative of stationary with no time trend. We fail to reject the

null hypothesis of a random walk with a possible drift in almost all series. In some cases,

we get mixed evidence of nonstationarity when one test rejects the null hypothesis while the

other one fails to do so.

Table 4 reports test results applied to the first difference of all variables. We find that both

tests reject the null hypothesis of a random walk with a possible drift in the first difference

of the variables. The unit root tests provide evidence that all variables are integrated with

order one.

3.2 Panel Cointegration Test

Having established the nonstationarity of all variables in the previous section, we now test

whether the variables are cointegrated. Specifically, we are interested in testing whether

aggregate and sector-level energy intensity are cointegrated with economic growth after con-

trolling for energy price. The existence of cointegration implies Granger causality.

We use the residual-based tests developed by Pedroni (1999, 2004) to test for panel cointe-

gration that allows for a heteregenous cointegrating vector. The null hypothesis is that there

is no cointegration among the variables in the individual panels. The alternative hypothesis

is that either the variables are cointegrated in all panels with a common autoregressive pa-

rameter or the variables are cointegrated in all panels with a country-specific autoregressive

parameter. The later case allows for additional heterogeneity among panels.

We consider the following regression for the test:

intensityit = αi + δit+ β1igdpit + β2ipriceit + εit (3)

where subscript i denotes country and t denotes year. αi is the individual-specific intercepts

or fixed-effects, δi is the coefficient on the time trend t, β1i and β2i are the individual slope
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coefficients. intensityit is aggregate energy intensity and the energy intensity of industry

and agriculture. gdpit is the GDP, and priceit is energy price. Pedroni (2004) provides two

sets of statistics: within-dimension or panel cointegration statistics and between-dimension

or group mean panel cointegration statistics. These test statistics differ in how they pool

information across panels. In both cases, the residual-based cointegration test involves fitting

the following regression of the estimated residuals:

ε̂it = γiε̂it−1 + uit (4)

where ε̂it is the estimated residuals after fitting the model in (3).

The within-dimension statistics are constructed by pooling the autoregressive coefficient

in (4) across different countries. The null hypothesis in this case is H0 : γi = 1 whereas

the alternative hypothesis is Ha : γi = γ < 1. The rejection of the null hypothesis of no

cointegration then implies that the variables in all panels are cointegrated with a common

autoregressive parameter. The null hypothesis for the between-dimension statistics is the

same as that of the within-dimension. However, it differs in the alternative hypothesis which

assume country-specific autoregressive parameter given by Ha : γi < 1. The rejection of the

null hypothesis in this case implies that the variables in all panels are cointegrated with a

country-specific autoregressive parameter. Pedroni (1999) provides seven test statistics for

testing cointegration among the variables in a panel setting. The first four are the within-

dimension statistics: Panel ν, Panel ρ, Panel t (PP), and Panel t(ADF), where PP and ADF

are test statistics of the Phillips-Perron and augmented Dickey Fuller type. The last three

statistics are the between-dimension statistics: Group ρ, Group t(PP), and Group t(ADF).

We apply these tests to the regression in (3).

Table 5 reports the results of cointegration tests for each of the three country income

groups. Almost all test statistics indicate cointegration between different measures of energy

intensity and economic growth for high- and upper-middle-income countries, while all do so

for lower-middle-income countries.

3.3 Estimation of Long-Run Parameters

The existence of cointegration implies a causal relationship between GDP and energy inten-

sity, but it does not indicate the direction of the causality. Before we proceed with Granger

causality tests, we first estimate the parameters of the long-run relationship described in

equation (3) using dynamic ordinary least squares (DOLS) to establish the sign of the corre-

lation between GDP, energy intensity, and energy price. The DOLS estimator for univariate

time series was proposed in Saikkonen (1991) and Stock and Watson (1993) and extended

to a panel setting by Kao and Chiang (2000) and Mark and Sul (2003). Using Monte Carlo

simulation, Kao and Chiang (2000) and Wagner and Hlouskova (2010) show that this estima-

tor performs better than the nonparametric fully-modified ordinary least squares estimator
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in finite samples. Similar to the single-equation DOLS, the panel version adds leads and

lags of the regressors to correct for endogeneity of the regressors and serial correlation in the

residuals.

Table 6 reports the estimation results. These results show that for all income groups,

GDP growth and a higher energy price are correlated with lower aggregate energy intensity.

The income elasticity is −0.37 for high-income countries, −0.22 for upper-middle-income

countries, and −0.36 for lower-middle-income ones. The price elasticity is −0.10 for high-

income countries, −0.02 upper-middle-income countries, and −0.18 for lower-middle-income

countries. However, the price effect is not statistically significant for upper-middle-income

countries.

Results at the sector level are similar. GDP growth is correlated with a decrease in both

industrial and agricultural energy intensity for all income groups. The effect is especially

large for agricultural energy intensity in high-income countries, with a 1 percent increase in

GDP associated with a 1.20 percent decline in this measure. In general, income elasticity

of high-income countries is larger that of middle-income countries. For industrial energy

intensity, it is −0.67 for high-income countries, and between −0.14 and −0.50 for middle-

income countries.

A higher energy price is associated with lower industrial and agricultural energy intensity

for all income groups. Interestingly, sectoral energy intensity is more responsive to energy

price changes in middle-income countries than it is in high-income countries. The price

elasticity of industrial energy intensity ranges from −0.03 for high-income countries to −0.29

for upper-middle-income countries, and −0.27 for lower-middle-income countries. There is

no statistically significant correlation between energy price and agricultural energy intensity

in high-income countries. In middle-income countries, the price elasticity ranges from −0.13

in upper-middle-income countries to −0.06 in lower-middle-income countries.

3.4 Granger Causality Tests

In this section, we test for Granger causality using a vector error correction model (VECM).

The VEC term represents any deviation from the long-run equilibrium between GDP, energy

price and energy intensity described above. Adopting the Engle-Granger method, we use

the first lags of the residuals as a proxy for long-run deviations in a VECM. Specifically, we

consider the following multivariate panel VECM with the first difference of intensity, GDP,

and energy prices as the dependent variables:
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∆intensity it = θ1i +

p∑
l=1

θ11,l ∆gdpit−l +

p∑
l=1

θ12,l ∆price it−l + γ1 ε̂it−1 + νit,1 (5)

∆gdpit = θ2i +

p∑
l=1

θ21,l ∆intensity it−l +

p∑
l=1

θ22,l ∆price it−l + γ2 ε̂it−1 + νit,2 (6)

∆price it = θ3i +

p∑
l=1

θ31,l ∆intensity it−l +

p∑
l=1

θ32,l ∆gdpit−l + γ3 ε̂it−1 + νit,3 (7)

where ∆ is the first difference operator, θki for k = 1, 2, 3 are country-specific fixed effects,

and θkk,l are the coefficients corresponding to the lth lag of the endogenous variables. γk are

the coefficients of the error correction terms and νit,k are idiosyncratic errors.

Because all variables are nonstationary I(1), we take first differences to make the system

of equations (5)-(7) stable. However, using lagged differences of the dependent variable in

this system introduces a bias, and a standard fixed-effects estimator would be inconsistent

(Arellano and Bond, 1991). To obtain consistent estimators, we estimate panel GMM pro-

posed by Holtz-Eakin et al. (1988); Arellano and Bond (1991). The panel GMM estimator

uses further lagged differences of the dependent variable as instruments to remove endogene-

ity arising from lagged regressors. In our application, we use second and third lags of the

dependent variables as instruments.

A VECM allows testing for both short- and long-run causality. In the system of equations

(5)-(7), the coefficients θkk,l represent the short-run effect of the endogenous variables. A

standard Wald test on these coefficients can be used to test for short-run Granger causality.

Specifically, we test the null hypothesis H0 : θkk,l = 0 for l = 1, . . . , p. In equation (5),

rejecting the null hypothesis θ11,1 = 0 implies that GDP growth Granger-causes change in

energy intensity in the short run. In other words, the first lag of the GDP growth is a

significant predictor of changes in energy intensity. Similarly, rejecting the null hypothesis

H0 : θ21,1 = 0 in equation(6) implies that GDP is responding to short-term shocks to energy

intensity. The joint significance of the coefficients θ11,1 and θ21,1 implies bidirectional causality

in which the two variables Granger-cause each other in the short run, while the rejection of

only one of the hypotheses implies unidirectional causality.

We can test for long-run Granger causality between variables in our model by examining

the significance of the coefficient γk, which represents the speed of adjustment to the long-run

equilibrium in response to any shocks to the system. We test the null hypothesis H0 : γk = 0

for k = 1, . . . , 3. The rejection of the null hypothesis implies long-run Granger causality

running from the error- correcting term to the respective dependent variable. For example,

the significance of γ1 in equation (5) implies that changes in energy intensity adjust in the

long run to any temporary deviations from economic growth. Similarly, the significance of

γ2 in equation (6) implies that changes in energy intensity directly drive economic growth
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in the long run.

Tables (7)-(9) report the estimated coefficients of the error correction terms and the chi-

squared statistics for the test of Granger causality. We find evidence of long-run causality

from GDP and energy price to energy intensity for all income groups. For lower-middle-

income countries, we also find evidence of long-run causality from energy intensity and

energy price to GDP growth. This implies that in these countries, GDP in the long run

responds to shocks to energy intensity and energy prices.

In the short run, we find bidirectional causality between aggregate energy intensity and

economic growth in high-income countries. We find no Granger causality between energy

intensity and economic growth for middle-income countries.

Tables 7-9 show the results of Granger causality tests at the sector level. For all income

groups, there is long-run causality from GDP and energy price to industrial energy intensity.

We also find Granger causality from industrial energy intensity and energy price to GDP

for upper-middle-income countries in the long run, and for high- and lower-middle-income

countries in the short run. Finally, there is evidence that GDP and energy price Granger-

cause agricultural energy intensity for upper-middle-income countries in the long run.

As noted, an aggregate analysis at the country level may not reflect variation in sectoral

composition. As a robustness check to control for the effect of structural change on energy

intensity, we include in the system of equations (5)-(7) an additional variable measuring the

ratio of industrial and services value added to GDP. The second panel to the right in Tables

7-9 report corresponding long- and short-run Granger causality test results. Our main con-

clusions on the direction of causality between GDP and energy intensity remain the same

under this alternative specification. This is consistent with findings in the literature on the

decomposition of energy intensity indicating that most of the gains in energy productiv-

ity over the past few decades can be attributed to genuine efficiency improvements while

structural change in the mix of economic activities has had less influence (Zhang, 2013).

4 Conclusion

Energy efficiency is recognized as playing an important part in climate change mitigation.

However, the long-term relationship between energy efficiency and growth has not been fully

understood. Using panel data for 56 countries from 1991 to 2012, this paper presents a

first effort to shed light on this question. We employ panel unit root tests, panel cointegra-

tion analysis, and a multivariate panel vector autoregression framework to investigate the

long- and short-run causal relationship between energy intensity (used as a proxy for energy

efficiency) and GDP for a mix of high and middle-income countries. Because changes in

energy intensity can be driven by both changes in sectoral composition and improvements

in efficiency, we combine macro-level analysis and analysis of the industrial and agricultural

sectors to differentiate the effects of these two processes on energy intensity.
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Our main results indicate unidirectional long-run causality running from economic growth

and higher energy prices to lower energy intensity. This conclusion holds for all income

groups and at the sector level. This finding corroborates the intuition that higher energy

prices provide incentives for increasing energy efficiency, while economic development and

demand growth provide opportunities for achieving efficiency gains by replacing old plants

and technologies with new ones.

More interestingly, we find evidence of bidirectional long-run Granger causality between

energy intensity and economic growth for middle-income countries, implying a feedback

between GDP and energy intensity. This finding suggests that encouraging energy efficiency

could support higher economic growth in the long run. Thus beyond climate benefits, energy

efficiency could also provide long-term economic growth benefits.
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Figure 1: Average per capita GDP
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Figure 2: Average aggregate and sectoral energy intensities
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Table 1: List of countries

Aggregate energy intensity

High income Australia, Austria†, Belgium†, Canada, Chile, Croatia, Cyprus†,
Czech Republic, Denmark, Estonia, Finland†, France, Germany,
Greece†, Hong Kong, Ireland, Israel, Italy, Japan, Korea,
Luxembourg†, Netherlands†, New Zealand, Norway†, Poland,
Portugal, Russia, Singapore, Slovak Republic, Slovenia, Spain,
Sweden†, Switzerland, United Kingdom, United States

Upper middle income Albania, Bosnia and Herzegovina, Brazil, Bulgaria, Hungary, Jordan,
Kazakhstan, Macedonia†, Malaysia, Mexico, Romania†,
Serbia, South Africa, Thailand, Turkey, Venezuela

Lower middle income Armenia, Georgia, India, Indonesia, Moldova, Mongolia†, Ukraine

Industrial energy intensity

High income Australia, Austria†, Belgium†, Canada, Chile, Croatia, Cyprus†,
Czech Republic, Denmark, Estonia, Finland†, France, Germany,
Greece†, Hong Kong, Ireland, Israel, Italy, Japan, Korea,
Luxembourg†, Netherlands†, New Zealand, Norway†, Poland,
Portugal, Russia, Singapore, Slovak Republic, Slovenia, Spain,
Sweden†, Switzerland, United Kingdom, United States

Upper middle income Albania, Brazil, Bulgaria, Hungary, Jordan, Kazakhstan, Macedonia†,
Malaysia, Mexico, Romania†, Serbia, South Africa, Thailand, Turkey,
Venezuela

Lower middle income Armenia, Georgia, India, Indonesia, Moldova, Mongolia†, Ukraine

Agricultural energy intensity

High income Australia, Austria†, Belgium†, Canada, Chile, Croatia, Cyprus†,
Czech Republic, Denmark, Estonia, Finland†, France, Germany,
Greece†, Hong Kong, Ireland, Israel, Italy, Japan, Korea,
Luxembourg†, Netherlands†, New Zealand, Norway†, Poland,
Portugal, Russia, Slovak Republic, Slovenia, Spain, Sweden†,
Switzerland, United Kingdom, United States

Upper middle income Albania, Bosnia and Herzegovina, Brazil, Bulgaria, Hungary, Jordan,
Kazakhstan, Macedonia†, Malaysia, Mexico, Romania†,
Serbia, South Africa, Thailand, Turkey, Venezuela

Lower middle income Armenia, Georgia, India, Indonesia, Moldova, Mongolia†, Ukraine

Note: † denotes countries for which gaps in energy price observations are linearly interpolated
using Consumer Price Index for multiple years.
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Table 2: Summary statistics

GDP Mean Std. Dev. Min Max No. of Obs.

High income 22476.39 17834.08 1330.75 116664.3 1269
Upper middle income 4036.65 3053.55 218.49 15,649.72 503
Lower middle income 1060.31 955.16 97.16 4387.70 340

Aggregate energy intensity Mean Std. Dev. Min Max No. of Obs.

High income 0.12 0.06 0.005 0.404 2104
Upper middle income 0.11 0.08 0.006 0.52 1378
Lower middle income 0.14 0.10 0.036 0.75 1095

Industrial energy intensity Mean Std. Dev. Min Max No. of Obs.

High income 0.13 0.07 0.01 0.52 1106
Upper middle income 0.27 0.24 0.004 1.70 1173
Lower middle income 0.48 0.57 0.002 4.76 915

Agricultural energy intensity Mean Std. Dev. Min Max No. of Obs.

High income 0.11 0.10 0.0003 0.75 1106
Upper middle income 0.11 0.14 0.0001 1.27 1181
Lower middle income 0.07 0.15 0.00007 1.16 915

Energy price Mean Std. Dev. Min Max No. of Obs.

High income 75.86 11.64 42.17 327.78 1056
Upper middle income 64.88 33.25 12.22 169.64 309
Lower middle income 56.47 24.87 7.36 166.71 154

Note: The unit of per capita GDP is 2005 USD PPP. The unit of aggregate and sectoral
energy intensities is toe per thousand 2005 USD PPP. The unit of energy price is USD
per MWh.
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Table 3: Panel unit root tests in levels

CIPS

Income group GDP Aggregate Industry Agriculture Price

High income −1.70 −2.31 −2.15 −1.94 (rw) −2.92∗∗∗

No. of Obs. 1645 1615 903 856 1050
Upper middle income −2.52 −2.44 −2.37 −2.14 (rw) −2.77∗∗

No. of Obs. 570 562 463 443 309
Lower middle income −2.39 −2.65 −2.90∗∗ −2.08 −1.83
No. of Obs. 211 211 210 210 132

DHT

High income 5.53 2.03 3.20 -0.19 (rw) 3.12
Upper middle income 0.55 1.19 0.62 −0.92 (rw) 1.16
Lower middle income −0.87 0.96 0.30 −0.38 1.13

Note: ∗∗∗, ∗∗, and ∗ denotes significance at the 1%, 5%, and 10% level respec-
tively. (rw) indicates a null hypothesis of random walk. In all other cases,
the null hypothesis is a random walk with a drift. Number of observations
for DHT test are the same as reported for the CIPS test.

Table 4: Panel unit root tests in first differences

CIPS

Income group ∆ GDP ∆ Aggregate ∆ Industry ∆Agriculture ∆ Price

High income −5.35∗∗∗ −7.22∗∗∗ −5.25∗∗∗ −5.43∗∗∗ −5.11∗∗∗

Upper middle income −4.84∗∗∗ −5.99∗∗∗ −5.90∗∗∗ −6.33∗∗∗ −4.11∗∗∗

Lower middle income −4.66∗∗∗ −5.52∗∗∗ −5.55∗∗∗ −4.85∗∗∗ −3.10∗∗∗

DHT

High income −16.46∗∗∗ −24.92∗∗∗ −17.78∗∗∗ −21.08∗∗∗ −13.43∗∗∗

Upper middle income −9.82∗∗∗ −17.50∗∗∗ −16.45∗∗∗ −20.44∗∗∗ −7.14∗∗∗

Lower middle income −6.33∗∗∗ −11.04∗∗∗ −11.38∗∗∗ −11.96∗∗∗ −1.47∗∗∗

Note: ∗∗∗, ∗∗, and ∗ denotes significance at the 1%, 5%, and 10% level respectively. Number
of observations are the same as reported in Table 3.
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Table 5: Panel cointegration test

High income

Test statistic Aggregate Industry Agriculture

Panel ν −4.16∗∗∗ −1.09 3.61∗∗∗

Panel ρ −2.17∗∗ −2.05∗∗ −24.74∗∗∗

Panel t - PP 5.45∗∗∗ 2.95∗∗∗ −2.89∗∗∗

Panel t - ADF 1.73∗ 0.97 −2.70∗∗∗

Group ρ −50.20∗∗∗ −68.37∗∗∗ −149.56∗∗∗

Group t - PP −2.64∗∗∗ −5.80∗∗∗ −14.14∗∗∗

Group t - ADF −0.76 −2.66∗∗∗ −4.60∗∗∗

Upper middle income

Test statistic Aggregate† Industry Agriculture

Panel ν 2.95∗∗∗ 5.55∗∗∗ 7.48∗∗∗

Panel ρ −3.74∗∗∗ −2.94∗∗∗ −15.27∗∗∗

Panel t - PP −1.77∗ 0.56 −3.87∗∗∗

Panel t - ADF −0.83 1.27 −2.81∗∗∗

Group ρ −10.79∗∗∗ −7.22∗∗∗ −28.74∗∗∗

Group t - PP −3.13∗∗∗ −0.86 −8.03∗∗∗

Group t - ADF −2.17∗∗ −0.27 −7.13∗∗∗

Lower middle income

Test statistic Aggregate Industry Agriculture

Panel ν −1.30 −1.54 −0.29
Panel ρ 1.66∗ 0.02 −3.64∗∗∗

Panel t - PP 2.75∗∗∗ 0.85 −3.08∗∗∗

Panel t - ADF 2.84∗∗∗ 3.84∗∗∗ −1.88∗

Group ρ 1.97∗∗ 1.04 −4.08∗∗∗

Group t - PP 1.82∗ 1.24 −3.10∗∗∗

Group t - ADF 1.51 3.11∗∗∗ −2.67∗∗∗

Note: ∗∗∗, ∗∗, and ∗ denotes significance at the 1%, 5%,
and 10% level respectively. † denotes no deterministic
terms and ‡ denotes a constant and a trend term.
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Table 6: Estimation of long-run cointegration parameters

High income Upper middle income Lower middle income

Intensity GDP Price GDP Price GDP Price

Aggregate −0.37∗∗∗ −0.10∗∗∗ −0.22∗∗∗ −0.02 −0.36∗∗∗ −0.18∗∗∗

Industry −0.67∗∗∗ −0.03∗ −0.14∗∗∗ −0.29∗∗∗ −0.50∗∗∗ −0.27∗∗

Agriculture −1.20∗∗∗ −0.04 −0.16∗∗∗ −0.13∗∗∗ −0.16∗∗∗ −0.06∗

Note: ∗∗∗, ∗∗, and ∗ denotes significance at the 1%, 5%, and 10% level respectively.
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Appendix

Table A1: Linear interpolation for energy price

Country Years

Austria 2001-2003; 2009-2011
Belgium 2001-2007
Cyprus 2007
Finland 2006
Greece 2006-2007

Luxembourg 1990-2007
Netherlands 2002-2006

Norway 1992 - 1999
Sweden 1998 - 2006

Macedonia 2000 - 2003
Romania 2006 - 2007
Mongolia 2000 - 2002
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