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This paper provides novel evidence on the economic impact 
of industrial automation in a large developing economy. 
It combines labor force survey and manufacturing plant-
level data from Indonesia over 2008–15, when the country 
experienced a rapid increase in imports of robots. The find-
ings show a positive impact of robots on various measures 
of plants’ performance and integration into global value 
chains. In contrast to existing evidence on advanced and 
emerging economies, these plant-level impacts result in an 
increase in manufacturing and services employment at the 

local level. Such employment effects are consistent with evi-
dence of positive employment spillovers from downstream 
robot-adopting plants, which help extend the benefits of 
automation to non-adopting plants. The spillover effects 
may provide a rationale to incentivize manufacturing firms 
to adopt industrial robots. The results also suggest that the 
gains from automation are not equally shared: adoption of 
robots is associated with a reduction in the labor share in 
value added and an increase in skill wage premia.
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1 Introduction

Are automation technologies an opportunity or a threat to developing countries? The

literature has examined this question by studying automation in advanced economies -

which have been early adopters - focusing on the impact on imports from developing

countries (Kugler et al. (2020); Artuc et al. (2019); Faber (2018); Artuc et al. (2018)).1

Much less is known about the impact of automation in developing countries on their own

economies. This is an important gap for at least two reasons. First, given the differences

in the structure of production and the type of skills in the labor force, it is not clear that

the evidence on automation in high-income countries may provide useful guidance for

developing countries. Second, firms in low and middle income countries have begun to

invest in automation technologies, whose penetration is expected to grow over the next

decades (Hallward-Driemeier and Nayyar (2017)).

To help fill the gap, this paper focuses on industrial robots, an important class of

automation technology. It examines empirically the impact of robots on firms and local

labor markets in Indonesia, which is a suitable context for this analysis. The number

of robots in the country was very limited before the beginning of our sample in 2008

and accelerated stiffly thereafter. By the end of the sample in 2015, the penetration of

robots in the most automated industries was similar to advanced economies. Therefore,

the experience of Indonesia - an early adopter among developing countries - should be

informative about other large developing economies, in which adoption rates are still

limited today and are expected to grow. Indonesia provides a rich set of high quality

data including a large panel of manufacturing plants and labor force surveys, which our

analysis can leverage along with data on imports of robots.

Our key contribution is to document a positive impact of automation on employment

in Indonesia (at least until 2015). Consistently with the predictions of a task-based model

(Acemoglu and Restrepo, 2018b), the plant level results suggest that the positive impact

on employment is driven by the productivity gains of automating plants. Our result differs
1A commonly tested hypothesis, for instance, is that adoption of robots in advanced economies induced

re-shoring.
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from the existing literature based on advanced (Graetz and Michaels (2018); Acemoglu

et al. (2020); Acemoglu and Restrepo (2019); Koch et al. (2019); Dauth et al. (2017)) and

emerging economies (Giuntella and Wang (2019); Artuc et al. (2019)), which document a

negative impact of robots on employment. Unlike this literature, our results suggest that

for labor the productivity-enhancing effect of robot adoption prevails over the replacement

effect. As a further departure from the evidence in advanced economies, we also find that

automation generates positive employment spillovers from down-stream robots-adopting

plants, which help extend the benefits of automation to non-adopting plants as well. We

discuss potential underlying reasons for the difference in findings between Indonesia and

other more advanced economies in the concluding section.

By increasing revenues and the demand for domestic inputs, robots generate positive

employment spillovers from downstream automating industries. Such spillovers are not

limited to manufacturing, but extend to services and construction, thus boosting the

demand for labor across sectors. This finding is in line with the increasingly important

role of services inputs in manufacturing production, including in Indonesia (Hallward-

Driemeier and Nayyar (2017); Duggan et al. (2013)).

Our second contribution is to examine in depth the plant level impacts of robot

adoption. We provide evidence that plants more exposed to robots lowered real marginal

costs, but they also increased markups, exports, and import. This suggests that robot

penetration in Indonesia allowed firms to produce higher quality products and upgrade

in global value chains (GVCs).2

We focus the analysis on the impact of robots at two levels of aggregation: plant and

local labor market. The local labor market analysis exploits labor force survey data to

calculate the shares of workers at high risk of automation in each industry of a local

market in the base year. The shares are then used to aggregate robot import by industry

and year within the local labor market.3 We study long-run trends and account for the
2Rodrik (2018) argues that GVC integration requires strict production requirements, which are hard

to satisfy using manual work. Similarly, World Bank (2020b) and De Backer et al. (2018) suggest that by
adopting technologies used in advanced economies, developing countries could boost trade relationships.
Maloney and Molina (2019) discuss how automation in developing countries can improve the quality of
inputs demanded by advanced economies.

3The methodology in this part of the analysis is similar to Acemoglu and Restrepo (2017) and Dauth
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potential correlation of residuals across local markets with similar industry composition

by calculating shift-share errors (Adao et al. (2019)).

For the plant level analysis, the main challenge is that we do not observe robots’

adoption at the plant level. Instead, we follow Autor et al. (2003) and assume that

industrial robots are best suited to perform manual routine tasks. Since we observe the

educational attainments of employment at the plant level, we calculate the typical level

of education of routine task-intensive occupations based on the Indonesian labor force

survey. This turns out to be either Junior or Senior High School Diploma (“secondary

education” hereafter).4 We measure plant level exposure to robots by interacting yearly

imports of robots by 2-digit industry to plants’ share of secondary education workers

in the base year. Under the assumption that within robot-adopting industries, plants

with larger shares of secondary education have greater opportunities for automation,

our exposure measure can be used to estimate the impact of robots by comparing the

outcomes of firms with large and small shares of employment with secondary education.

We perform a battery of tests to assess the validity of our exposure measure and

we show that it is strongly correlated with plant level investments in machinery and

equipment. Our empirical methodology addresses concerns related to unobserved firm

heterogeneity and time-varying industry characteristics that may be related with robot

imports and firm outcomes. We also provide robustness tests instrumenting Indone-

sia’s robot imports with OECD imports, an approach similar to Acemoglu and Restrepo

(2017), Dauth et al. (2017), Faber (2018) and Giuntella and Wang (2019).

Our paper is related to the growing literature on the impact of industrial automation

on advanced economies at the industry and local labor market-level (Graetz and Michaels

(2018); Acemoglu and Restrepo (2017); Dauth et al. (2017); Giuntella and Wang (2019);

Artuc et al. (2019); Kugler et al. (2020)), and at the firm-level (Acemoglu et al. (2020);

Koch et al. (2019); Stapleton and Webb (2020)). These contributions suggest that differ-

ently to Indonesia, robots have an overall negative impact on labor demand in high-income

et al. (2017), among others.
4Our definitions of routine task-intensive occupations follow Graetz and Michaels (2018) and Frey

and Osborne (2017). The details are presented in Section 2.1.
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as well as large emerging economies.

A related body of literature focuses on the determinants and impact of reshoring,

providing mixed results. Artuc et al. (2019), Kugler et al. (2020) and Faber (2018) look

at local labor markets and find that automation in the United States reduces exports from

Mexico and Colombia to the United States. De Backer et al. (2018) exploit a sample of

developing and advanced economies, while Oldenski et al. (2015) use a sample of US

firms: they both find only limited evidence of reshoring. On the contrary, Artuc et al.

(2018) find that greater robot intensity in an advanced economy leads to higher imports

and exports from and to developing economies.

The paper is also related to the literature on firm upgrading in developing countries

(see Verhoogen (2020) for a review). It contributes to this literature by providing indirect

evidence on the factors driving adoption of an increasingly important class of technology.

It also complements existing studies documenting the (large) returns to technology adop-

tion not only at the firm level (Bloom et al. (2013); Cai and Szeidl (2018)) but also across

firms via backward linkages. In so doing it provides evidence that robot adoption could

be an effective way to reduce the gap in the growth-age gradient between manufacturing

firms in developing countries vis-à-vis the United States (Hsieh and Klenow, 2014). This

in turn could reduce the large gap in aggregated productivity across many developing

and high-income countries.

The rest of the paper is organized as follows: Section 2 presents plant level methodol-

ogy and data; Section 3 presents the plant level results; Section 4 presents the aggregate

analysis at the level of both industry (4.2) and local labor markets (4.3); Section 5 explores

the distributional impact of automation, and Section 6 concludes.

2 Plant-Level Analysis

The empirical methodology is based on increasing levels of aggregation. We start at the

most refined level by examining the impact of automation on plant level outcomes.
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2.1 Measuring Plant-Level Automation

Unlike some other studies in high-income countries (e.g. Acemoglu et al. (2020) and

Stapleton and Webb (2020)), we do not directly observe plants’ use of robots. Instead, we

match data on Indonesian imports of industrial robots by industry with plants’ observable

characteristics to build various plausible measures of plant level exposure to automation.

The key assumption underlying our proxies of plant exposure is that routine task-

intensive occupations are the most likely to be automated (Autor et al., 2003). As

we do not observe the tasks performed by workers in each plant, our baseline measure

of exposure proxies routine-intensive tasks with the educational level of each plant’s

workforce, which we observe in 2006 when our manufacturing plants’ data becomes a

census.

Specifically, we identify the production occupations most exposed to being automated

using two alternative definitions of occupations’ “replaceability”. The first is the definition

used in Graetz and Michaels (2018) (GM). GM exploit information on the applications

for which robots are used. They look at 3-digit occupational classifications in the United

States and assign a replaceability value of 1 to an occupation if its title corresponds to

at least one of the IFR application categories and 0 otherwise. For instance, if robots

perform the task “handling materials”, they deem an occupation to be replaceable if

the occupational title includes the word “handling”. The second is the probability of

computerization calculated by Frey and Osborne (2017) (FO henceforth), which update

the probability of computerization by occupation originally computed by Autor et al.

(2003) and David and Dorn (2013). Compared to these studies, FO has the advantage of

accounting for the more recent technological progress.

Using Indonesian labor force survey data (described in Section 4.3), we compute the

distribution of workers in occupations at high risk of automation by their educational

attainments in 2007, the first year such information is available.5 Using the GM definition,

secondary education is the typical educational attainment of workers in occupations at

risk of automation in Indonesia (column 1 of Table 1). The results in column (2) of
5As in FO, we deem an occupation as highly likely to be automated if the probability of computeri-

zation is larger than 0.7.
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Table 1 confirm that using the FO definition, it is still the case that the typical level of

education of workers in occupations at risk of automation is secondary education.

Table 1: Share of employed workers in occupation at high risk of automation, by educa-
tional attainment.

(1) (2)
Educational attainments GM FO

Primary .39 .42
Secondary .59 .56
Tertiary .02 .02

The table reports the share of employment in production occupations at high risk of automation, by the educational attainments of
Indonesian workers in 2007. Primary education includes up to completed primary school. Secondary education includes junior and senior
high-school. Tertiary education includes education levels from diplomas to PhD. FO indicates that the list of occupations at risk of
automation is based on the methodology in Frey and Osborne (2017). GM indicates that the list of occupations at risk of automation is
based on the methodology in Graetz and Michaels (2018). Sources: Sakernas (LFS); Frey and Osborne (2017); Graetz and Michaels (2018).

The finding that occupations at risk of automation are dominated by secondary edu-

cated workers is consistent with two pieces of evidence. First, the literature on employ-

ment polarization suggests that automation technologies tend to replace occupations with

an intermediate level of skills.6 While we do not observe the skill level of plants’ work-

force directly, secondary education is both the median and the mean level of education

of workers in manufacturing plants in 2006.

Second, an analysis of the characteristics of production occupations compiled by the

World Bank for Indonesia, Thailand and Malaysia, suggests that secondary education is

the typical educational attainment for all of the occupations at greater risk of automation

across countries with similar economic characteristics.7 The information provided in

the World Bank occupation profiles is similar to the Occupational Information Network

database (O*NET) for the United States, but it is based on analyses of labor force survey

data for comparable Asian economies. An example of the Occupation Profile for “Welders

and Flame Cutters” is provided in Figure A3. According to the World Bank, this is an

occupation at high risk of automation. The key piece of information provided by the

Occupation Profiles is the typical educational attainments of the occupation: Junior High
6E.g. Goos et al. (2014); David and Dorn (2013); Goos et al. (2009); Goos and Manning (2007)).
7We thank Mauro Testaverde for sharing these unpublished profiles with us. More details on the

Occupation Profiles are presented in Section B.
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School and Vocational High School, which fall into our category of secondary education

(see Section 2.3).

Formally, we define exposure to robots for plant f , ETRf,t, as:

ETRf,t ≡ ETRi,t × secondaryf,t0 (1)

where:

ETRi,t ≡
Ri,t

Li,t0

(2)

In (2), Ri,t

Li,t0
is the number of industrial robots shipped to industry i (measured at 2-

digit ISIC code) in year t, divided by the number of workers in industry i (in thousands).

To minimize potential endogeneity concerns, as in Acemoglu and Restrepo (2017) we fix

the denominator of (2) to the 2006 number of industry workers.8

2.2 Robots Data

Data on imports of industrial robots are obtained from the IFR. Industrial robots are

defined by ISO 8373:2012 as an automatically controlled, reprogrammable, multipurpose

manipulator programmable in three or more axes, which can be either fixed in place or

mobile for use in industrial automation applications. The IFR collects data from each

national robotics association. Since almost all robot suppliers are members of national

associations, the dataset includes virtually all robots used worldwide. An advantage of

the data is that the IFR has a common protocol to count robots, so that it ensures

consistency across countries and years. Information is available for each country, 2-digit

industry and year.

Figure 1 shows the total number of robots shipped to the Indonesian manufacturing

sector, from 2006 to 2015. Total robots’ counts from IFR are consistent with Comtrade.

However, unlike IFR data, Comtrade does not provide an industry breakdown. Imports

in Indonesia were roughly constant up to 2009, with approximately 350 units used every
8We use 2006 as the base year to be consistent with the share of secondary education workers, which

is available for the 2006 census year.
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year. From 2009, the total number of industrial robots imported began to increase to

reach almost 3000 units in 2015. Our analysis exploits this large jump in adoption of

robots.

The aggregate figures hide a large amount of industry heterogeneity in the use of

robots. Figure 2 plots (2) by group of industries and shows that the number of robots

per thousand workers used in manufacturing was substantially higher in Motor vehicles

and Rubber and plastics industries. While Motor vehicles is by far the most automated

industry worldwide, the high concentration of robots in Rubber and plastics is more

peculiar to Indonesia. This is one of the largest manufacturing industries in Indonesia

particularly for auto-parts, such as tires, which often employ state-of-the-art technologies

of production.

Figure 1: Total number of robots used in the Indonesian manufacturing sector.

The figure shows the total number of industrial robots used in the manufacturing sector over the years of the sample. Source: IFR.

2.3 Plant-Level Data

Plant level data are taken from the Indonesian survey of manufacturing plants with at

least 20 employees (Statistik Industri, SI). The survey is administered by the Indonesian

statistical office (BPS) and its coverage is extensive. In fact it becomes an actual census

9



Figure 2: Robots per thousand workers used in the Indonesian manufacturing sector, by
industry.

The figure shows the number of industrial robots per thousand employees used in selected industries over the years of the sample. Source:
IFR, SI.

in 2006 and it is very close to a census in the remaining years, hence ensuring high rep-

resentativeness even at very low levels of aggregation. Importantly, the 2006 Indonesian

census includes also plant level information on employment by educational attainment,

which allows to construct the plant-based measures of exposure to robots as described

above. In particular, the educational categories in our plant level data are: i) Not fin-

ished primary school; ii) Primary school; iii) Junior high school; iv) Senior high school; v)

Diploma; vi) Bachelor; vii) Master, and viii) Ph.D. We define as “secondary” educational

attainments falling into the categories iii) and iv).

In addition to plant level output, capital, labor and export, SI data provide infor-

mation also on the quantity and value of 9-digit products produced and input used

(domestically produced and imported) by each plant.9

We match SI and IFR data by constructing an industry crosswalk. Industry classi-

fications in both SI and IFR data are roughly equivalent to ISIC Rev. 4. However, in

some cases SI industries are more granular than IFR. Thus, we group together some SI
9In our sample, each plant produces on average 2 products and 25% of the plants produce more than

one product. On average, each plant uses four different varieties of raw inputs.
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industries to ensure maximum compatibility across the two datasets. Around 8.5 percent

of the plants in our sample switch industry over the period of analysis. To avoid poten-

tial endogeneity of industry choice to robots’ adoption, we drop the observations after a

plant switches industry. However, we obtain very similar results if we do not drop such

observations, or adopt alternative strategies.10

We keep only plant-year cells with non-missing observations for all the dependent

variables involved in the analysis. Our final plant level (unbalanced) panel includes

22,288 plants operating in thirteen 2-digit manufacturing industries between 2008 and

2015, for a total of 55,417 observations.11 Table 2 presents summary statistics for the

variables used in the analysis.

2.4 Empirical Specification

We use equation (1) for the plant level analysis using the following model:

Yf,i,t = γ0 + γ1ETRf,t + ηf + ui,t + If × θt + εf,t (3)

where Yf,i,t is an outcome of plant f in industry i at time t; ηf are plant fixed effects;

ui,t are industry-year effects defined using the same classification as IFR robots’ import

data; If is a plant-specific innovation intensity index (measured in the 2006 census year);

and θt are time effects.

The plant fixed effects should absorb the impact of unobserved time-invariant charac-

teristics correlated with the available opportunities for automation i.e. plants’ 2006 share

of secondary education and the outcome variables. That may be the case for instance

as foreign owned plants are usually more productive and have a larger share of routine

labor.
10The first alternative strategy is assigning robots to plants based on the industry in which it operates

the year of the first available information. The second strategy is dropping altogether all switching
plants.

11In principle, we could run the plant level analysis starting in 2007. However, representative data by
regency and industry, which are discussed in Section 4.3, are only available from 2008. Therefore, to
be consistent across levels of analysis, we start from 2008. Plant level results for the period 2007-2015
are very similar, which is not surprising given that robots’ adoption started to take off in 2009. This is
discussed in Section ??.
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Table 2: Summary statistics of the variables involved in the plant level analysis.

(1) (2) (3) (4) (5)
N mean sd min max

Industry number of robots (1000s of workers) 55,417 0.181 0.676 0 4.802
OECD-average industry number of robots (1000s of workers) 46,467 3.257 5.474 0.171 54.95
Innovation-intensity index 55,417 0.210 0.268 0 1
Share of secondary education workers 55,417 0.611 0.361 0 1
Share of primary education workers 55,417 0.375 0.368 0 1
Share of tertiary education workers 55,417 0.0135 0.0486 0 1
Principal component of: secondary, size, foreign capital, openness 55,413 -1.30e-09 1.298 -1.418 9.513
Downstream exposure to robots (1000s of workers) 42,773 0.108 0.363 0 4.234
Real investment in machinery and equipment (log) 55,417 1.659 3.467 0 19.03
TFPQ (log) 55,417 -7.015 15.94 -51.91 25.99
Real marginal cost (log) 55,417 2.245 1.732 -2.644 6.831
Real markup (log) 55,417 2.625 1.534 -0.792 7.168
Real value added (log) 55,417 12.58 1.828 5.925 22.85
Real revenue (log) 55,417 13.64 1.890 6.961 23.42
Exports (share of revenue) 55,417 0.118 0.295 0 1
Imports (share of revenue) 55,417 0.0383 0.143 0 1.009
Labor share in value added 55,417 0.615 2.616 0.000136 481.2
Gross surplus (share of renveue) 55,417 0.385 2.616 -480.2 1.000
Employment (log) 55,417 3.933 0.934 2.197 9.458
Real average wage (log) 55,417 7.588 1.107 0.131 16.43
Production employmeent (log) 55,417 3.735 0.952 0 8.821
Real average production wage (log) 55,417 7.533 1.139 0 16.34
Non-production employment (log) 55,417 1.609 1.428 0 8.827
Real average non-production wage (log) 55,417 6.253 3.402 -2.913 16.59
Real expenditure on domestic inputs (log) 55,417 12.68 2.114 2.772 22.59
Real expenditure on services (log) 55,417 1.563 3.588 0 19.70

The industry-year effects are based on the IFR industrial classification, thus capturing

any industry-specific, time varying shocks, which may be related to both the outcome

variables and the adoption of robots, such as changes in international trade patterns,

demand or supply shocks. This mitigates the concern that exposure to robots in an

industry may be endogenous to the outcomes of plants operating in that industry. At the

same time it also absorbs the variation of ETRi,t, which therefore cannot be estimated.

Estimates of γ1 in (3) quantify the differential impact of robots’ adoption within an

industry in a given year across plants with different degrees of exposure to robots.

The inclusion of a rich set of time invariant and time-varying fixed effects in (3) should

minimize the potential bias afflicting estimates of ETR. However, it might still be the

case that the interaction of industry characteristics and their share of routine labor might

be correlated to unobserved variables having an impact on plants’ outcomes. In partic-

ular, one concern is that the share of routine labor might be systematically correlated

12



with innovation and adoption of other non-automation technologies in industries with

high exposure to robots. In that case, our estimates would be biased.12 To mitigate such

concerns, we exploit 2006 census year information on R&D units, product and process

innovation, use of computers and the Internet to construct an index of “innovation inten-

sity”. Then we interact the index with year effects. To the extent that innovation activity

and IT use are correlated to plants’ propensity to adopt non-automation technologies,

this approach should allow us to purge the estimates from their impact.

2.5 Is the Plant-Level Approach Solid?

This section presents several pieces of evidence on the robustness of the key assumption

underlying equation (3), i.e. that secondary education is a good proxy for routine task-

intensive employment. If that is the case, plants with a larger share of workers with

secondary education should be more likely to adopt robots.

First, we check whether the industries with an initial large share of secondary educa-

tion workers have adopted relatively more robots in subsequent years. Figure 3 shows that

this is indeed the case, thus providing some initial support to our approach. In particular,

the two industries with the highest penetration of robots, Motor vehicles and Rubber and

plastics, are among the industries with the largest share of secondary education workers.

Next, we exploit the fact that in our manufacturing data plant level investment in

machinery and equipment should also include investment in robots. Consistently with

this assumption, Figure 4 shows that imports of industrial robots shipped to each man-

ufacturing industry in a year are positively related to total investment in machinery and

equipment in the same industry-year pair.13

Having established a positive link between imports of robots and aggregate investment

in the data, an important check of the validity of our plant level proxy for exposure to

automation is whether ETRf,t in (3) is positively correlated with machinery and equip-

ment investments at the plant level. This is done in column (1) of Table 3, which reports
12For instance, logistics management software might be particularly valuable in the motor vehicle

industry, which is also a strong adopter of robots. If large plants are more likely to have a large share of
secondary education labor, the estimates of γ1 in (3) might capture the impact of software.

13The figure excludes industry-year cells with zero imports.
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Figure 3: Correlation between the 2006 shares of workers with secondary education and
robots in use in 2015, by industry.

On the horizontal axis there is the industry-average share of workers with secondary education, computed from plant level data in 2006. On
the vertical axis there is, for each industry, the log number of robots per thousand employees in 2015. Sources: IFR, SI.

the results of regressing log-real investment in machinery and equipment on ETRf,t con-

trolling for plant and industry-year fixed effects.14 Reassuringly, the coefficient is positive

and statistically significant. It suggests that one additional robot per thousand workers

in a given industry is associated with a nine percent increase in machinery and equip-

ment investment by plants one standard deviation above the average share of secondary

education workers in that industry.

As a placebo test, Table A1 presents results of interacting industry exposure with the

share of plants’ employment with at most primary education (column 1). The coefficient

in column (1) is negative and significant, which suggests that robot adoption is discour-

aged by a large share of workers with low educational attainments. This might reflect

the fact that relatively uneducated workers typically perform non-routine manual tasks,

which are hard to automate. In column (2), we interact industry exposure to robots with
14Given the lumpiness of investment at the plant level, for the dependent variable we employ a log-

transformation (see Section C). Qualitatively identical results are obtained with a dummy variable taking
value 1 if, in a given year, a plant has positive investment.
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Figure 4: Correlation between IFR data on robots and SI data on investment, by industry
and year.

The figure shows the correlation between industry-level IFR data on robots and plant level investment in machinery and equipment. On the
horizontal axis there is the number of industrial robots shipped to each manufacturing industry and year in Indonesia (dropping
observations with zero value). On the vertical axis there is the industry-year-average of plant level investment in machinery and equipment.
Sources: IFR, SI.

plants’ share of workers with tertiary education (Diploma or above, see Section B for de-

tails on education data). The coefficient is not statistically significant, consistently with

the observation that workers with tertiary education usually perform cognitive and non-

routine problem-solving and complex communications tasks (Autor et al. (2003)). These

placebo tests provide further support to the assumption that secondary education is a

reasonable proxy for routine task-intensity in the context of Indonesian manufacturing.

2.6 Alternative Measures of Exposure to Automation

While using workers’ education to identify exposure to automation is consistent with

the consensus in the literature, there are also other potential ways to define plant level

exposure. For instance, Acemoglu et al. (2020) and Koch et al. (2019) provide evidence

from advanced economies that firms that are large, have foreign capital, and export and

import are more likely to adopt robots. We use this evidence to construct an alternative
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measure of exposure to robots. We employ a principal component analysis to identify

the relative importance of these factors to predict automation in Indonesia. Specifically,

we focus on the 2006 values of the following variables: i) firm (employment) size; ii) a

dummy for having more than fifty percent foreign capital; iii) the sum of revenue shares

of import and export, and iv) the share of secondary education workers.15 Column (2)

of Table 3 presents the results of replacing the share of secondary education workers

with this variable.16 The positive correlation of this alternative exposure measure with

machinery investments is consistent with the existing evidence for advanced economies

and adds to the thin evidence on the drivers of technology adoption in developing countries

(Verhoogen, 2020). In light of this result, we can use this measure in the next section

to check the robustness of the plant level results obtained with our preferred exposure

measure.17

Table 3: Correlations between plant level exposure to robots and plant level investment.

(1) (2)
Investment Investment

ETR × secondary 0.089***
(0.011)

ETR × PC (secondary, size, foreign capital, openness) 0.074**
(0.021)

Observations 53,447 53,447
R-squared 0.658 0.658
Plant FE yes yes
Year FE yes yes
Industry-year FE yes yes
Other technologies yes yes

The table presents OLS estimates of the relationship between plants’ exposure to robots and investment. The dependent variable is the log
of plant level investment in machinery and equipment. Secondary is the 2006 share of plants’ employment with secondary education,
normalised to have zero mean and unitary standard deviation. The PC term is the first principal component of the 2006 values of the
following variables: i) firm (employment) size; ii) a dummy for having more than fifty percent foreign capital; iii) the sum of revenue shares
of import and export, and iv) the share of secondary education workers. Standard errors are clustered at the 2-digit industry- and year-level.
The coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at the 10% level.

15The principal component analysis reveals that only the first component has an eigenvalue larger than
1, equal to 1.69. The first component explains 42 percent of the variation in the four variables.

16As for the share of secondary education workers, we normalize this variable such that it has zero
mean and unitary standard deviation in the sample.

17Including the share of secondary education workers in the principal component analysis increases
substantially the predictive power of the component, which in turn provides additional support for our
preferred specification.
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2.7 Estimation of Plant-Level Productivity, Marginal Costs and

Markup

To measure plants’ productivity, marginal cost and productivity, we estimate production

functions using the panel data of manufacturing plants (Statistik Industri - SI) from

2008 to 2015. The details of the estimation procedure can be found in Section F of

the Appendix. Unlike most empirical work using productivity estimates, we observe

plant level physical output and input quantities and values. To deflate the total revenue

of multi-product plants, capital and intermediate inputs expenditure (including energy

consumption), we construct plant-specific output and input price indexes, as in Eslava

et al. (2004). This is an advantage over contributions employing industry-level price

deflators, which essentially assume that all plants within an industry face similar inputs’

cost and charge the same price.18 Our approach allows us to obtain a measure of quantity-

total factor productivity (TFPQ). Exploiting quantity information, the latter reflects

changes in pure technical efficiency, rather than in revenues.

A key challenge in the measurement and identification of productivity relates to the

endogeneity of the firm’s optimal choice of inputs. We follow Ackerberg et al. (2015) and

adopt a control function approach with the objective of proxying productivity known

by plants’ managers, but unobserved by us, with energy expenditures.19 Following

De Loecker and Warzynski (2012), we adapt the methodology of Ackerberg et al. (2015)

and allow plants’ exposure to robots to affect the expected value of future productivity,

which in turn might determine differences across exposed and non-exposed plants and

affect the estimation results.20 After estimating the the parameters of the production

functions industry by industry, we follow De Loecker and Warzynski (2012) and obtain a

measure of plants’ marginal cost and markup, based on the plants’ first order conditions
18Foster et al. (2008) discuss the bias arising when using plant revenue deflated by industry deflators.

De Loecker et al. (2016) extend the analysis in the contest of unobserved variation in input prices.
19We use energy rather than total intermediate inputs to edge against the potential input adjustment

costs, which would be inconsistent with the assumptions on which the estimator is built. A detailed
discussion is presented in Section F.

20Similarly, De Loecker et al. (2016) study the impact of trade reforms and include export dummies
and import tariffs; De Loecker (2007) includes export quotas; Doraszelski and Jaumandreu (2013) include
R&D expenditure, and Konings and Vanormelingen (2015) include measures of workforce training.
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and flexible inputs’ choice.

3 Plant-Level Impact of Automation

All results presented in this Section are obtained by estimating equation (3) with OLS.

Since ETRi,t in (1) varies at the highest level of aggregation, i.e. 2-digit industry and

year, unless differently stated we cluster standard errors accordingly.21 As argued above,

we interpret the relationship between automation and plant level outcome variables as

causal, conditional on the full set of fixed effects employed.

3.1 Productivity

We start by examining the impact of automation on plant productivity, markup, value

added and revenue. Table 4 presents the results.22 The coefficients in columns (1) and

(2) suggest that robots’ adoption is associated to higher TFPQ and lower marginal costs.

This reflects higher technical efficiency as a result of the adoption of robots. This is in line

with the firm-level evidence in Acemoglu et al. (2020), who find a positive productivity

impact of robots. It is also consistent with the productivity effect predicted by task-based

models (Acemoglu and Restrepo, 2018b).

Column (3) shows that robots have a positive and significant impact on markup as

well. The result is consistent with automation of production enabling higher product

quality, for example by increasing the precision of the assembly of parts and components.

Consistently with these impacts, robots’ adoption also increases the plant’s real value

added (column 4) and revenues (Column 5) as well. In particular, the coefficient suggests

that 1 additional robot per thousand workers in a plant with a mean share of secondary

educated workers raises the plant’s revenues by 2.5 percent.
21We also experiment with clustering at the plant level, and we show that the results are almost

identical.
22In Table 4 and all other tables of this section, the number of observations is slightly lower than the

total available of 55,417. This is due to the presence of singletons, i.e. sample units observed only once.
Due to the structure of the panel, such observations are dropped during the estimation.
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Table 4: Plant level productivity, markup, value added and revenue.

(1) (2) (3) (4) (5)
TFPQ Marginal cost Markup Value added Revenue

ETR × secondary 0.029*** -0.086*** 0.051*** 0.028*** 0.041***
(0.005) (0.020) (0.010) (0.006) (0.004)

Observations 53,517 53,517 53,517 53,517 53,517
R-squared 0.999 0.747 0.744 0.885 0.914
Plant FE yes yes yes yes yes
Industry-year FE yes yes yes yes yes
Other technologies yes yes yes yes yes

The table presents OLS estimates of the relationship between plants’ exposure to robots, productivity, markup, value added and revenue.
The dependent variables are TFPQ (1) the log of plant level real marginal cost (2), markup (3) real value added (4) and real revenue (5).
Secondary is the 2006 share of plants’ employment with secondary education. Other technologies are capture by an index of innovation
activities in 2006, interacted with year fixed effects. Standard errors are clustered at the 2-digit industry- and year-level. The coefficients
with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at the 10% level.

3.2 Employment and Wages

Having provided evidence of a significant productivity effect of robots, a key question

in evaluating the economic impact of automation is whether the improved performance

translates into increased labor demand at the plant level. In the terminology of task-

based models, the question is whether the productivity effect is large enough to offset

the displacement effect of automation (Acemoglu and Restrepo (2018b); Acemoglu and

Restrepo (2019)). Table 5 presents the results of estimating equation (3) using the log of

total employment and the log of real average wages as dependent variables. The impact

of robots on total plant level employment is negative and small in absolute magnitude

(column 1). An additional robot per thousand workers in a plant with a mean share

of secondary educated workers reduces the plant’s employment by 0.4 percent. While

significant this effect is particularly small considering that the sample mean of robots is

0.18 per thousand. On the other hand automation does not have any significant effect

on wages (column 2).

As robots are mainly used in production, we also test separately for the impact on

employment of workers engaged in production versus other workers. Columns 1 and 2 in

Table 6 present the results for production workers, and columns 3 and 4 for non-production

workers. Exposure to robots is associated with lower production employment, but higher

non-production employment, which includes a higher share of white-collar occupations
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such as accountants, sales representatives and analysts.23 The asymmetric impact of

automation is in line with the hypothesis that industrial robots substitute for workers

performing production occupations, but complement some non-production occupations.

For example, an industrial robot performing production tasks may send more precise,

real-time information on the production process that would improve the performance of

non-production workers, such as process analysts.

Table 5: plant level impact of robots on employment and wages.

(1) (2)
Employment Wages

ETR × secondary -0.006** -0.018
(0.002) (0.012)

Observations 53,517 53,517
R-squared 0.939 0.653
Plant FE yes yes
Industry-year FE yes yes
Other technologies yes yes

The table presents OLS estimates of the relationship between plants’ exposure to robots and employment. The dependent variables are the
log of plant level employment and average wages. Secondary is the 2006 share of plants’ employment with secondary education. Standard
errors are clustered at the 2-digit industry- and year-level. The coefficients with ??? are significant at the 1% level, with ?? are significant
at the 5% level, and with ? are significant at the 10% level.

Table 6: Plant level impact of robots on production and non-production employment and
wages

(1) (2) (3) (4)
Production Production Non-production Non-production
employment wages employment wages

ETR × secondary -0.023** 0.008 0.050*** 0.060
(0.009) (0.012) (0.009) (0.051)

Observations 53,517 53,517 53,517 53,517
R-squared 0.904 0.596 0.829 0.657
Plant FE yes yes yes yes
Industry-year FE yes yes yes yes
Other technologies yes yes yes yes

The table presents OLS estimates of the relationship between plants’ exposure to robots and employment by type (columns 1-4). The
dependent variable is the log of plant level (total, production and non-production) employment. Secondary is the 2006 share of plants’
employment with secondary education. Standard errors are clustered at the 2-digit industry- and year-level. The coefficients with ??? are
significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at the 10% level.

23Indeed non-production workers have higher education than production workers, with 12 years of
education on average versus 10 years for production workers.
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3.2.1 Backward Linkages

The negative plant level impact of robots on employment contrasts with the results of

other studies in high-income countries, which find a positive employment impact at the

firm-level (Acemoglu et al. (2020); Koch et al. (2019)). Our result could be reconciled

with a positive employment effect if non adopting plants benefited from significant positive

spillover from adopting plants.24

As we do not observe robots’ utilization at the plant level, we cannot test directly for

the effects of automating on non-automating plants. Instead, we try to test for spillover

effects of automation across plants by measuring inter-industry backward linkages. The

idea is to examine whether improved performance of automating industries may translate

into increased demand for upstream plants.

We follow two approaches. First, we test for the impact of robots’ adoption on plant

level demand for domestic inputs. To do so we employ equation (3) using the value of

domestic inputs purchased by each plant as dependent variable. The result - reported in

column (1) of Table 7 - suggests a positive and significant impact: an increase in 1 robot

per thousand workers in a plant with the mean share of secondary educated workers raises

the plant’s purchase value of domestic inputs by 4 percent.

Second, we construct inter-industry linkages by exploiting information on inputs pur-

chased by each plant at the 9-digit level (see Appendix C.4). We first assign the 9-digit

codes to the corresponding 2-digit industry. Then, for each 5-digit buying industry, we

compute the base year share of expenditure on two-digit selling industries.25 The result is

a detailed five-by-two-digit input-output table based on disaggregated information. We

use the table to compute downstream exposure to robots in each five-digit industry.

Let σl,i be the share of inputs bought by five-digit industry l from industry i. Then,
24In fact Acemoglu et al. (2020) and Koch et al. (2019) find evidence of negative spillovers from au-

tomation on non-adopters through competition effects. This result suggests that the positive employment
coefficient at the firm level captures a relative rather than an absolute effect and it helps reconcile the
positive employment effect at the firm-level with the negative effect in the local labor markets in the
literature.

25This procedure leads to the loss of observations as reliable input data is not available for all plants
in all years.
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we calculate downstream exposure to robots as:

ETRd
l,t =

∑
i

σl,iETRi,t (4)

where ETRi,t is defined as in (1).

We use ETRd
l,t as an additional regressor in (3) to measure the impact of automation

on plants via backward linkages. As we are interested in the spillovers on non-adopting

plants, we also add an interaction of ETRd
l,t with the plant level exposure measure.

The results in column 2 of Table 7 suggest that automation has a positive, albeit not

significant, effect on employment in upstream non automating plants, while the effect on

automating plants is precisely zero. The larger employment effect of backward linkages on

non-adopters is consistent with the idea that automating plants upstream would absorb

the increased demand for inputs at least in part through robots as opposed to workers. As

a result of the inclusion of these backward linkage variables, the coefficient of exposure

to automation turns positive and significant. This result provides suggestive evidence

that positive spillovers from automation on upstream non automating plants may drive

the negative impact of automation on employment in 5. This is a plausible channel also

considering that the bulk of manufacturing inputs are used by plants in the same 2-digit

industries as the input-producing plants. Hence most of these beneficiary upstream plants

are part of the relevant control group in (3).

As the downstream linkages are computed at the 5-digit industry-level, 2-digit industry-

year fixed effects are not sufficient to address the endogeneity concerns as it was the case

in the previous tables. Therefore, in column (3) of Table 7 we present 2SLS estimates

instrumenting both ETRd
l,t and its interaction term through a variable based on robots’

imports by OECD countries rather than Indonesia. As the instrument is used exten-

sively in the aggregate analysis, we postpone its description to Section 4.1. Column (3)

reports the 2SLS estimates which show a positive and significant effect of automation

on employment in upstream plants with a coefficient almost double the size than that

in column (2). This result is consistent with the positive impact of ETR on demand of

local inputs (column 1). Again, non-automating plants experience a larger employment
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effect than automating plants from the increased demand for inputs, although in this case

the backward linkage effect on employment is positive also for automating plants. The

coefficient of exposure to automation is again positive and significant.

As the sample in columns (2) and (3) is smaller than that in table 5 (given the avail-

ability of plant level input data), to check that this is not driving the change in the ETR

coefficient, in column (4) we replicate the result of table 5 (column 1) but over the smaller

sample. The coefficient of exposure to automation is negative and significant and even

larger in absolute term than in table 5, thus lending further support to the hypothesis

that the negative ETR coefficient on employment is driven by the positive vertical link-

ages. The results are robust also to using directly the exogenous instruments in an OLS

regression so as to avoid having to instrument two endogenous variables (column 5).

The improved performance of plants induced by automation does not only result in

increased demand for goods, but also of services. This is documented in column (6) which

uses services’ expenditure as dependent variable. The positive and significant coefficient

suggests that plants adopting robots spend additional resources on professional services,

which include R&D and marketing consulting.

Table 7: Plant level impact of robots on domestic inputs’ expenditures and employment:
vertical linkages.

(1) (2) (3) (4) (5) (6)
Domestic

VARIABLES inputs Employment Employment Employment Employment Services

ETR × secondary 0.064*** 0.028** 0.018** -0.014** -0.003 0.064*
(0.010) (0.008) (0.006) (0.005) (0.004) (0.033)

Downstream ETR 0.020 0.036**
(0.017) (0.012)

Downstream ETR × ETR × secondary -0.018*** -0.014***
(0.001) (0.003)

Downstream ETR (oecd) 0.002**
(0.000)

Downstream ETR (oecd) × ETR × secondary -0.001***
(0.000)

Observations 53,517 40,958 40,958 40,958 40,958 53,517
R-squared 0.867 0.940 0.940 0.940 0.710
Plant FE yes yes yes yes yes yes
Industry-year FE yes yes yes yes yes yes
Other technologies yes yes yes yes yes yes
First stage F-stat 13.78

The table presents OLS and 2SLS estimates of the relationship between plants’ exposure to robots / downstream exposure, log real domestic
inputs’ expenditures and employment. For the 2SLS estimates, exposure to robots is instrumented with the average exposure in the OECD
region. Secondary is the 2006 share of plants’ employment with secondary education. Standard errors are clustered at the 2-digit industry-
and year-level. The coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at
the 10% level.
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3.3 International Trade

Next, we examine whether robots are associated to stronger engagement in GVC by

looking at the shares of exported revenue and imported input expenditure. Whether

robots translates into greater competitiveness in international markets is important given

the relevance of export markets to fuel the sustained growth of manufacturing sectors.

The results in Table 8 suggest that the increase in turnover spurred by automation is

matched by a more than proportionate increase in plants’ exports so that robots’ adoption

raises the export share of plants’ sales (column 1). This is consistent with the idea that

robots’ adoption improves productivity and product quality enabling plants to compete

more effectively in international markets.

The increase in the export share is also accompanied by a similar increase in the

import share of inputs induced by robots’ adoption (column 2). This is consistent with

the higher proportion of imported inputs used for exports than for domestic sale (Amiti

and Konings, 2007). These results suggest that robots’ adoption in a developing country

increases the integration of plants into GVCs, a finding that to the best of our knowledge

has not been documented before.

Table 8: Plant level engagement in international trade.

(1) (2)
Export share Import share

ETR × secondary 0.004*** 0.004***
(0.000) (0.001)

Observations 53,517 53,517
R-squared 0.852 0.792
Plant FE yes yes
Industry-year FE yes yes
Other technologies yes yes

The table presents OLS estimates of the relationship between plants’ exposure to robots, the share of exported output and the share of
imported inputs. Secondary is the 2006 share of plants’ employment with secondary education. Other technologies are capture by an index
of innovation activities in 2006, interacted with year fixed effects. Standard errors are clustered at the 2-digit industry- and year-level. The
coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at the 10% level.

3.4 Robustness

In this section we test the robustness of the plant level results to changing the key

identification assumption in (1). In particular we replace the share of secondary education
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workers with the principal component of key plant level observables described in Section

2.5. The results are presented in Table A2 in the Appendix and suggest that both

the performance results (columns 1-2) and those on GVC participation (columns 4-5)

are largely robust to the alternative specification. On the other hand, the impact on

revenues is not significant. More importantly, the results on labor impact are not in line

with Table 5. The employment effect is not distinguishable from zero (column 6) while

the wage impact becomes negative and significant (column 7).

In a second set of robustness test, we go back to the baseline specification, but we

cluster errors at the plant level instead of the 2-digit industry-year level. This might

be important because our baseline specification has only 91 clusters. The results are

presented in Table A3 in the Appendix. Similarly to the previous table, the results on

both performance (columns 1-2) and GVC integration (columns 3-5) are robust to this

test. However the effects on employment and wage are not significant (columns 6-7).

Taken together these tests provide confidence on the robustness of the positive impact

of automation on plants’ performance and on their integration with international markets.

At the same time they cast doubts on the negative employment effects estimated in table

5, reinforcing the case made through the results in Table 7 that the true impact of

automation on labor demand is in fact not negative at the plant level.

4 Aggregate Impact of Automation

Next we extend the plant level analysis to the aggregate level, both at the industry and

local labor market level.

In the plant level analysis, the inclusion of industry-year fixed effects in (3) mitigates

the concern that industry-level adoption might be correlated with other industry trends

affecting the outcome variables. However, in both the industry-level and local labor

market-level analyses presented in this section, including industry-year fixed effects is not

possible.26 Hence, to address the endogeneity concerns, we implement an instrumental
26In the industry-level analysis, including industry-year fixed effects would absorb all the variation of

the explanatory variables. In the local labor market analysis, we aggregate industries at the local labor
market level, which makes it impossible to control for industry-year fixed effects.
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variable approach similar to Acemoglu and Restrepo (2017) and Dauth et al. (2017).

4.1 Instrumental Variable

This approach instruments ETRi,t with robots’ adoption in the same industry in other

countries. The idea underlying the instrument is that the use of industrial robots is

induced by improvements in technology (or a reduction of their price) increasing their

profitability for adopters. As such, these are trends that are largely unrelated to the

specific market conditions prevailing in Indonesian industries. Similarly to Acemoglu

and Restrepo (2017), we focus on countries that are ahead Indonesia in terms of robots’

adoption. To that end we use data from OECD countries, and we first match IFR data

with 2-digit industry employment figures from the OECD Structural Analysis Database

(STAN).27

Then for each 2-digit industry-year pairs we compute the number of imported robots

per thousand workers averaged across OECD countries. To construct the instruments

at various levels of aggregation, we simply replace the density of robot imports from

Indonesia with this OECD average for each industry-year pair.

If technological trends drove robot adoption, we would expect that the industries with

higher exposure of robots should be broadly the same across countries, even for countries

with different levels of economic development. The strong correlation between 2007-2015

changes in ETRi,t between Indonesia and OECD countries is consistent with the notion

that Indonesia’s automation across industries is driven by technological factors (Figure

5).28

An endogeneity concern relates to the possible relation between robots’ adoption,
27We are not able to construct employment for Wood and furniture, and Installation and repairs

industries. Those are available in IFR data but not in STAN, which does not report a sufficiently
disaggregated breakdown of employment for these 2 industries. As a result, the number of available
2-digit industries drops to twelve.

28As the change for Motor vehicles and Plastic and rubbers is much larger than for the other industries,
the figure uses a log-scale to ease readability. The log-scale allows to include only nine of the twelve
available industries as Textile and Paper did not experience any robots’ adoption in Indonesia and the
average change in robots per thousand workers was negative in Other transport equipment for the OECD.
Figure A1 in the Appendix shows that the positive relationship holds also when using a normal scale,
which allows to include Textile, Paper and Other transport equipment while it excludes Motor vehicles
and Plastic and rubbers.
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Figure 5: Correlation between Indonesian and OECD-average exposure to robots (log-
scale).

On the horizontal axis there is the change between 2007 and 2015, of the OECD region industry-average number of robots per thousand
employees. On the vertical axis, there is the change between 2007 and 2015, of the industry-level number of robots per thousand employees
in Indonesia. Sources: IFR, STAN, SI.

demand shocks and labor market outcomes. For example increased demand in an industry

may spur both the need to adopt more robots to improve production processes and an

increase in labor demand. This type of relation would make the instrument invalid as it

would not be exogenous. To mitigate this issue, we control for global demand by industry.

To conform this control to our regency-based estimation, we aggregate global exports by

industry (excluding Indonesian exports) to the regency-level using industries shares in

each regency’s total employment in the base year as weights.

4.2 Industry-Level Analysis

Table 9 examines the impact of automation on the Herfindahl–Hirschman (HH) Index

of concentration based on plants’ sales, and the number of plants entering and exiting

the markets each year, respectively. As explained, we instrument Indonesia’s imports of

robots with OECD imports to mitigate endogeneity concerns.

The coefficient of the HH Index is positive and of similar size in the unweighted and
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weighted specifications of columns (1) and (4), but it is only significant in the latter. The

estimates for entry and exit are always statistically significant and imply that within an

industry, ten additional robots per thousand workers results in entry of 17 new plants

and the exit of 41 incumbents. Therefore, the number of plants operating in an industry

drops by 24 units, which is consistent with increased concentration.

In column 4-6 we weigh the estimates by the number of workers in each industry in the

base year. Weighted estimates suggest that the increased concentration due to robots is

stronger in the largest industries.29 Thus, robots’ adoption significantly increases business

dynamism on both margins, and a higher number of exiting plants implies an increase

in industry concentration, which could also be responsible for the positive impact on

markup presented in Table 4.

We turn next to assess the industry-level implications for factor reallocation and

aggregate productivity (Π). Based on the production function estimates discussed in 2.7,

we compute quantity-total factor productivity (ω) and apply the standard decomposition

of aggregate productivity of Olley and Pakes (1992):

Πit = Π̄it +
∑
f∈i

(sft − s̄it)(ωft − ω̄it) ≡ Π̄it + COV (sft, ωft) (5)

where sft is the output share of plant f (in industry i) and upper bars denote industry

averages. The last term in (5) is the covariance between plants’ productivity and their

output shares. Higher values of COV (sft, ωft) implies a better allocation of resources, as

the most productive plants make up a large share of the market.

Table 10 presents the results for aggregate productivity, average productivity and

the covariance term. Unweighted estimates (columns 1-3) show a positive impact of

robots on industries’ aggregate productivity. Weighted estimates (columns 4-6) suggest

a positive impact of robots on factor reallocation, as more productive plants tend to

disproportionately benefit from automation in terms of output shares.

While not conclusive these results suggest a possible positive impact of automation

also on the aggregate dynamism and performance of the industry.
29Using entry and exit rates delivers similar results, but less precisely estimated.
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Table 9: Industry-level results: entry and exit.

(1) (2) (3) (4) (5) (6)
HH index Entry Exit HH index Entry Exit

ETR 0.024 1.674* 4.089* 0.024* 4.838* 12.960*
(0.015) (0.848) (2.412) (0.014) (2.434) (6.532)

Observations 108 108 108 108 108 108
Weights no no no yes yes yes
Industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Industry demand shifter yes yes yes yes yes yes
First stage F-stat 9.841 9.841 9.841 16.98 16.98 16.98

The table presents 2SLS estimates of the relationship between industry exposure to robots and business dynamism. Exposure to robots is
instrumented with the average exposure in the OECD region. The dependent variables are, respectively, the number of entrants and exiting
plants in an industry. Standard errors are clustered at the industry-level. Weights are constructed using 2006 (base year) industry
employment. The coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at
the 10% level.

Table 10: Industry-level results: aggregate productivity and factor reallocation.

(1) (2) (3) (4) (5) (6)
Aggregate Average Covariance Aggregate Average Covariance

ETR 0.033** 0.018 0.015 0.032 -0.021 0.053*
(0.015) (0.011) (0.010) (0.027) (0.026) (0.031)

Observations 108 108 108 108 108 108
Weights no no no yes yes yes
Industry FE yes yes yes yes yes yes
Year FE yes yes yes yes yes yes
Industry demand shifter yes yes yes yes yes yes
First stage F-stat 9.841 9.841 9.841 16.98 16.98 16.98

The table presents 2SLS estimates of the relationship between industry exposure to robots, aggregate productivity and its decomposition
according to the formula Πit = Π̄it +

∑
f∈i(sft − s̄it)(ωft − ω̄it) ≡ Π̄it + COV (sft, ωft). Exposure to robots is instrumented with the

average exposure in the OECD region. Standard errors are clustered at the industry-level. Weights are constructed using 2006 industry
employment. The coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at
the 10% level.

4.3 Local Labor Market Analysis

In order to examine the local labor market impact of automation we use Indonesian

regencies as our key unit of observation. That represents the second level of sub-national

administrative divisions (the first being the province). A number of features make it

a reasonable proxy for local labor markets in Indonesia. First, the mobility of labor is

limited across regencies. In 2010 for example only 5 percent of the workforce worked in a

different regency than their residence.30 Second, regencies hold significant administrative
30Indonesia’s island geography and often underdeveloped transportation infrastructures make the hy-

pothesis of limited mobility likely to hold.
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powers following the 1999 decentralization reform in Indonesia. Those include also the

minimum wage setting. We use the pre-decentralization reform division in 292 regencies

to ensure the consistency of the analysis over time.

The identification strategy exploits the variation in occupational composition across

regency-industry pairs.31 Specifically, we compute regency r share of employment in

industry i for occupations at high risk of automation:

si,r =
LH
r,i,t0

Lr,i,t0

(6)

For the baseline estimates of this section, we identify the occupations at high risk of

automation following GM.32 However, since our baseline plant level estimates are based

on information on educational attainments, we experiment as well with shares of workers

with secondary education, which deliver similar results.

To compute regency-level exposure to robots, ETRr,t, we use the shares in (6) to

aggregate industry exposure in each regency:

ETRr,t =
∑
i∈r

si,rETRi,t (7)

One concern with using ETRr,t as a regressor is its likely endogeneity with respect to

regency-level outcomes. For instance, a positive demand shock in industry i would result

in higher employment in regencies where those industries concentrate, i.e. a large share

computed as in (6). If investment in robots responds to the shock, for instance to keep

up with higher demand, the estimated impact of ETRr,t will be upwardly biased. To

address this concern, we use the instrumental variable presented in Section 4.1 combined

with the regency-level demand shifter.

We estimate the following system of equations in first difference:

 ∆ETRr = b0 + b1∆ETR
oecd
r + ∆Dr +BXr + up + εr

∆Yr = β0 + β1∆ETRr + ∆Dr +BXr + up + εr

(8)

31Unlike for the plant level analysis, in the labor force survey data we observe occupations.
32We chose to follow GM because their list is derived by information on what robots actually do.

However, we obtain similar results if we use the list compiled by FO.
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In (8), the operator ∆ represents the difference of a variable between 2015 and 2008.

∆ETRoecd
r is the change in instrumental variable obtained by substituting OECD average

robots’ exposure in (7). ∆Yr is the change of an outcome variable in regency d. The

change in regency-level demand shifter is denoted by ∆Dr. The vector Xr includes a

series of regency-level characteristics in the 2007 base year, which may affect the outcome

variables including: i) population; ii) shares of workers with tertiary and no education

(separately); iii) real output per capita, and iv) the shares of manufacturing employment.

Finally, equation (8) includes province fixed effects up to account for differences in local

economic development.

This approach is in line with Acemoglu and Restrepo (2017), Dauth et al. (2017)

and Giuntella and Wang (2019), which use long differences to capture aggregate long-

run trends in local labor markets. That is different from the plant level regressions that

instead exploit yearly variation in robots’ import. We argue that the yearly analysis is

appropriate for two reasons. First, running the plant level specifications in long difference

would reduce the sample size by almost two-thirds relatively to the yearly regression

model as it would only focus on surviving plants throughout the entire period.33 Second,

dropping plants that were in the sample in 2006 but exited before 2015, might introduce

selection bias.

In the baseline specifications, standard errors are robust to arbitrary heteroskedastic-

ity within each regency. We also experiment with two alternative specifications. First,

we calculate shift-share standard errors following the methodology of Adao et al. (2019).

They show that shift-share designs, such as those used in this part of the analysis, might

lead to residuals that are correlated across regions with similar industry shares and so

over-rejection of the null hypothesis of no impact. In the second alternative specification,

we provide errors clustered at the province-level.

Table A4 presents the first stage regression of regency-level exposure on the instrument

based on the OECD region. In column (1), we compute the share of employment at high

risk of automation based on GM. The coefficient of OECD exposure is significant at the
33Labor force survey data are not subject to this problem, which allows us to estimate models in long

differences.
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99 percent level and the R-square of the regressions is 0.67. In column (2), we compute

the share of employment at risk of automation based on educational attainments. Also in

this case, the coefficient is positive and significant at the 1 percent level and the R-square

is 0.65.

The main data source for the labor market analysis is the Indonesia’s labor force survey

(Survei Tenaga Kerja Nasional - Sakernas), which is published by Indonesia National

Statistics Bureau (BPS). The Sakernas is a cross-sectional dataset with wide national

representation undertaken twice a year. The August waves of the survey since 2008 are

representative at the regency level, which allows us to construct regency-level labor market

measures.34 Besides information on wages, employment status, sector and work location,

the survey also includes information on the occupation of the worker identified according

to the Indonesian classification (Klasifikasi Baku Jenis Pekerjaan Indonesia - KBJI).

This is compatible with the International Standard Classification of Occupations (ISCO),

allowing us to construct exposure to robots measures at the regency level as explained

above. We focus on wage employees as those are the workers more directly affected by

firms’ adoption of robots. This focus is also relevant from a policy perspective, as wage

employment typically provides a more reliable and higher incomes than self-employment

in a developing country like Indonesia.

Summary statistics for the labor market data are presented in Table 11. To facilitate

the interpretation of the results, we normalize the change of regency ETR to have zero

mean and unitary standard deviation in the sample.

Employment increased substantially during the period with a 12 percent mean increase

across regencies. Employment growth has been particularly high in services, construction

and utility sectors, which were the sectors where most jobs were created as a result of the

commodity-driven growth of the 2000s in Indonesia (World Bank (2015)). At the same

time, wages doubled in the average regency, partly driven by minimum wage growth,

particularly since 2012.

Table 12 presents the baseline results on total and manufacturing employment and
34Since we do not need 2006 census year information in the regency-level analysis, in this part of the

analysis we take 2007 as the base year.
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Table 11: Summary statistics of the variables involved in the labor market analysis
(regency-level).

(1) (2) (3) (4) (5)
N mean sd min max

Regency-level change in robots (EDU) 284 0 1.000 -0.529 10.48
Regency-level change in robots (OECD, EDU) 284 0 1.000 -3.939 9.843
Regency-level change in robots (GM) 284 0 1.000 -0.876 7.620
Regency-level change in robots (OECD, GM) 284 0 1.000 -7.682 4.789
Change in total employment (log) 284 0.122 0.128 -0.178 0.615
Change in total wages (log) 284 1.006 0.219 0 1.687
Change in manufacturing employment (log) 284 0.121 0.376 -2.839 1.325
Change in manufacturing wages (log) 283 1.026 0.349 -0.175 2.072
Change in production employment (log) 284 0.117 0.374 -2.839 1.310
Change in production wages (log) 283 1.018 0.346 -0.188 2.072
Change in non-production employment (log) 197 0.328 1.004 -2.017 3.500
Change in non-production wages (log) 142 0.972 0.716 -1.071 3.172
Change in services employment (log) 284 0.276 0.210 -0.176 1.373
Change in construction and utilities employment (log) 284 0.373 0.310 -1.049 1.564
Change in construction and utilities wages (log) 236 0.663 0.447 -0.762 1.832
Change in agriculture and mining employment (log) 284 -0.0920 0.273 -1.400 0.869
Change in agriculture and mining wages (log) 244 0.638 0.494 -1.682 2.066
Change in RoW export by regency (log) 276 0.0771 0.380 -2.913 0.829
Population in 2007 281 793,849 704,630 29,682 5.756e+06
Share of workers with tertiary education in 2007 281 0.0482 0.0324 0.00898 0.206
Share of workers with no education in 2007 281 0.113 0.0459 0.0178 0.270
Manufacturing share of output in 2007 281 0.100 0.0780 0.00110 0.447
GDP per capita in 2007 (log) 281 2.934 0.638 1.757 5.518

wages. Since we are interested in aggregate effects, we weigh the estimate by regencies’

population in the base year. Due to the normalization of the independent variable, the

coefficient β1 in (8) measures the long run impact of robots in the regencies whose change

in exposure over the period is one standard deviation above the mean.

The dependent variables in columns (1) and (2) are total regencies’ employment and

real average wages (in log). The coefficient of total regency’s employment is positive,

although not significant at conventional levels. The coefficient of wages is positive and

statistically significant. The magnitude of the coefficients in columns (1) and (2) imply

that on average, robots have increased wages by roughly 5 percentage point over the

period in the most exposed regencies.

Columns (3) and (4) of Table 12 focus on manufacturing, which is the sector employ-

ing robots in production. The coefficient on employment in column (3) is positive and

statistically significant, and implies a long-run average increase in employment of 6 per-

cent. Conversely, the impact on real manufacturing wages is not statistically significant.

The positive impact of automation on local employment along with the negative (or neu-

33



tral) employment effect at the plant level corroborate the hypothesis that non adopting

plants may benefit from adopting plants in the same industry. This is consistent with the

positive inter-plant spillovers documented above. In light of these results, the spillovers

are likely to be intra-industry.

Columns 5-8 of Table 12 split manufacturing employment and wages for production

and non-production workers. Columns (5) and (7) show that the positive impact of robots

on manufacturing employment is stronger for non-production workers. This is consistent

with the plant level analysis, which reveals a positive direct impact of automation on

non-production workers. For production employment, the coefficient reflects the negative

direct impact vs the positive indirect impact due to vertical spillovers. The coefficient of

non-production wages is also positive and significant.

Table 13 presents the results of estimating equation (8) through 2SLS for non-manufacturing

sectors. The evidence supports the hypothesis that automation in manufacturing gen-

erates positive employment and wage spillovers in services. The coefficients in columns

(1) and (2) imply that on average over the period, robots have increased employment by

3 percent and services wages by 5 percent in the most exposed regencies. The impact

on services is consistent with the plant level results as well as with extensive evidence

showing the presence of backward linkages of manufacturing and services, including in In-

donesia (Hallward-Driemeier and Nayyar (2017); Duggan et al. (2013)). For Construction

and Utilities, the coefficients in columns 3 and 4 are not statistically significant.

The coefficient for employment in agriculture and mining, on the other hand, is large,

negative and statistically significant. The estimated impact of robots on agriculture em-

ployment is almost 10 percent in the most exposed regencies. This is consistent with

reallocation of labor towards manufacturing and services facilitated by the robots’ adop-

tion.

The results in Tables 12 and 13 are robust to different alternative specifications. First,

Table A5 reports the results in which the share of employment at risk of automation

is based on (secondary) educational attainments. The coefficients are in line with the

baseline results, but in this specification exposure to robots has a positive and significant
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impact on total employment as well. Second, results are similar using the instrument

directly as a regressor, in place of the endogenous ETR (see Table A6 in the Appendix).

Table A7 experiments with alternative calculations of standard errors. Square brackets

include shift-share errors, computed as in Adao et al. (2019). As expected, shift-share

errors are larger than the robust errors of the baseline specification, but the level of

significance of the coefficients remains roughly the same.

Round brackets include province-level clustered errors, which are systematically smaller

of both baseline robust and shift-share errors. This is likely to be due to the low number

of clusters available of 26 provinces.35

Table 12: Regency-level results: employment and wages, total and manufacturing sector

(1) (2) (3) (4) (5) (6) (7) (8)
Total Total Manufacturing Manufacturing Production Production Non-production Non-production

Change 2008-2015 of: employment wages employment wages employment wage employment wage

Regency ETR (GM) 0.022 0.053*** 0.059** 0.035 0.050* 0.021 0.169** 0.123**
(change 2008-2015) (0.014) (0.019) (0.028) (0.025) (0.028) (0.023) (0.073) (0.059)

Observations 276 276 276 275 276 275 193 139
Province FE yes yes yes yes yes yes yes yes
District demand shifter yes yes yes yes yes yes yes yes
District base year covariates yes yes yes yes yes yes yes yes
First stage F-stat 14.89 14.89 14.89 14.79 14.89 14.79 14.25 12.46

The table presents 2SLS estimates of the relationship between regency-level exposure to robots and employment. Exposure to robots is
instrumented with the average exposure in the OECD region. The dependent variables are the 2008-2015 differences of log of employment
(total or manufacturing) in each regency. The regency demand shifter is regency-level average global exports excluding Indonesia. Base year
regency covariates include: i) population; ii) the shares of workers with tertiary and no education (separately); iii) real output per capita,
and iv) the share of manufacturing employment. Standard errors are clustered at the regency-level. Weights are constructed using 2007
(base year) regency population. The coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ?

are significant at the 10% level.

Table 13: Regency-level results: employment and wages in non-manufacturing sectors

(1) (2) (3) (4) (5) (6)
Services Services Cons/Util Cons/Util Agr/Mining Agr/Mining

Change 2008-2015 of: employment wages employment wages employment wages

Regency ETR (GM) 0.027* 0.052*** 0.001 0.037 -0.095*** 0.119
(change 2008-2015) (0.016) (0.017) (0.028) (0.044) (0.031) (0.108)

Observations 276 276 276 229 276 238
Province FE yes yes yes yes yes yes
District demand shifter yes yes yes yes yes yes
District base year covariates yes yes yes yes yes yes
First stage F-stat 14.89 14.89 14.89 12.58 14.89 12.81

The table presents 2SLS estimates of the relationship between regency-level exposure to robots and employment. Exposure to robots is
instrumented with the average exposure in the OECD region. The dependent variables are the 2008-2015 differences in log of employment
by sector in each regency. The regency demand shifter is regency-level average global exports excluding Indonesia. Base year regency
covariates include: i) population; ii) the shares of workers with tertiary and no education (separately); iii) real output per capita, and iv)
the share of manufacturing employment. Standard errors are clustered at the regency-level. Weights are constructed using 2007 (base year)
regency population. The coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are
significant at the 10% level.

35This justifies our choice of relegating such specification in the appendix.
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The evidence presented in this section thus departs from previous studies, which

use a similar empirical approach but document a negative local labor market impact

of robots in manufacturing. Acemoglu and Restrepo (2017) and Dauth et al. (2017)

find evidence of a negative impact on both employment and wages in the United States

and Germany, respectively. Giuntella and Wang (2019) and Artuc et al. (2019) provide

similar evidence for developing economies in China and Mexico, respectively. We discuss

a possible explanation behind this difference in Section 6.

5 Distributional Impact of Automation

Automation seems to deliver unambiguous benefits to manufacturing plants and even to

benefit workers on average. However it is important to examine how these benefits are

distributed across production factors, including capital, skilled and unskilled labor. This

is a relevant policy question as inequalities within countries are rising and recent research

identifies automation as one of the key drivers behind this rise (Hemous and Olsen (2014);

Prettner and Strulik (2020)).

We look first at the impact of automation on the labor share in value added and the

profit rate (measured as gross surplus over revenue). The results - presented in Table 14 -

suggest that automation reduces the share of labor in value added (column 1). Consistent

with this result, column (2) shows that automation is associated with a higher profitability

(column 2), although the coefficient is not statistically significant at conventional levels

(p-value = 0.12). These results are consistent with the idea that most of the gains of

automation are captured by the capital owners. This is also consistent with the empirical

evidence based on firm-level analysis in the US (Acemoglu et al. (2020)).

Next we test for the impact of automation across workers by skills’ level. To that end

we estimate the following Mincer-type regression by matching IFR data and two cross

sections of labor force survey data for 2008 and 2015:

yv,t = β0 + βXv,t + γ1Educv,t + γ2Educv,t ∗ ETRr,t + αr,t + εv,t (9)
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Table 14: Plant level labor share and profit rate.

(1) (2)
Labor share Profit rate

ETR × secondary -0.051** 0.073
(0.017) (0.041)

Observations 53,517 53,517
R-squared 0.500 0.244
Plant FE yes yes
Industry-year FE yes yes
Other technologies yes yes

The table presents OLS estimates of the relationship between plants’ exposure to robots, labor share in value added and gross operating
surplus over revenue. Secondary is the 2006 share of plants’ employment with secondary education. Other technologies are capture by an
index of innovation activities in 2006, interacted with year fixed effects. Standard errors are clustered at the 2-digit industry- and year-level.
The coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at the 10% level.

Where yv,t is real wages, Xv,t is a vector including the number of years of experience

of worker v at year t (defined as years of schooling minus the worker’s age), its squared

term and a gender dummy, Educv,t is the years of schooling, and ETRr,t is the regency

r exposure, defined as in (7). We also control for regency-time fixed effect as αr,t.

The coefficient γ2 captures the impact of automation on schooling wage premia (a

measure of wage inequality across skill levels). In particular it measures the difference

in the change in return to schooling between a worker in a regency highly-exposed to

automation versus a worker in a low-exposed regency. A positive coefficient indicates

that automation is associated with increased wage inequality. As the main regressor

varies at the district-year level, standard errors are clustered at that level too. As usual

we instrument the exposure variable and its interaction terms through the same variables

but replacing Indonesia’s robot imports with OECD countries’ imports.

Table 15 presents the results only of the coefficient of interest γ2, which suggests a

significant inequality-inducing effect of automation, both for all sectors (odd columns)

and for manufacturing only (even columns). The result applies whether using monthly

wages (columns 1-2) or hourly wages (columns 3-4).36

These results confirm the emerging evidence that automation is associated with a rise

in economic inequality both through a reduction in the labor share in value added and

an increase in the skill wage premia.
36The results are very similar if we do not instrument the exposure variable and if measure the

automatability of occupations using the FO instead of GM probabilities (tables available upon request).
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Table 15: Worker individual-level results: IV Estimation

(1) (2) (3) (4)
Monthly Hourly

Wage Wage Wage Wage

Schooling x Regency ETR 0.442*** 1.180** 0.390*** 1.024***
(0.179) (0.523) (0.0945) (0.335)

Observations 458,684 52,798 450,722 51,962
R-squared 0.208 0.195 0.177 0.144
Worker Controls Yes Yes Yes Yes
District-Year FE Yes Yes Yes Yes
Sample All Manufacturing All Manufacturing

The table presents 2SLS estimates of the relationship between industry exposure to robots and worker’s income. Exposure to robots is
constructed as the share of workers susceptible to automation (Graetz and Michaels (2018)) at the regency-level in a year. The dependent
variables are, respectively, log of real monthly wage and log of real hourly wage. Standard errors are clustered at the regency-year level. The
coefficients with ??? are significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at the 10% level.

6 Conclusions

This paper has provided novel evidence that robots increase plant level efficiency, value

added and employment in a large developing country experiencing a robust increase in

imports of robots. Moreover, we find evidence of positive employment spillovers from

downstream automation, within manufacturing and across other sectors.

The positive employment impact of automation in Indonesia contrasts with the evi-

dence not only from advanced economies but also from emerging ones, such as Mexico

(Artuc et al., 2019) and China (Giuntella and Wang, 2019). In these countries the in-

crease in labor demand driven by higher productivity is not sufficient to offset the labor

displacement effect of robots. While a systematic investigation of the reasons behind this

difference is beyond the scope of this paper, we discuss two candidate explanations.

The first is related to the evidence that the productivity impact of robots is subject to

diminishing returns to scale (Graetz and Michaels, 2018). In a country with a low initial

density of robots, their adoption may result in particularly large productivity increases

that could offset the labor displacement effect. This low initial density seems to apply to

Indonesia, which in 2011 - the first year we have the data for the 3 countries - recorded

0.018 robots per thousand workers, versus 0.04 in Mexico and 0.1 in China.37 This
37These numbers are obtained by combining IFR data on robots’ stock with ILO data on total em-

ployment across all sectors.
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intuition is akin to the idea of marginal decreasing returns to capital. Consistently with

the low density of robots, the median Indonesian firm employs a much smaller amount

of capital per worker than its counterpart in the same 2-digit ISIC sector in China and

Mexico (Figure A2 in Appendix).38

The second (non mutually exclusive) possible explanation hinges on the lack of rel-

evant skills. By filling skill shortages, robots may induce large productivity gains that

more than compensate the labor replacement effects. In contexts where the quality of

labor is relatively low, robots can provide substantial improvements to the production

process as they enable firms to achieve higher product standards.39 This paper provides

suggestive evidence that this type of mechanism may be at play in Indonesia where the

penetration of robots significantly increases markups and international trade integration,

which are enabled by higher production standards. This hypothesis is also consistent

with the relatively low quality of skills in Indonesia as proxied by high-school students’

test scores through the OECD Programme for International Student Assessment (PISA

2018).40

From a policy perspective, the evidence of positive inter-industry employment spillovers

provides a possible rationale to facilitate or even incentivize the adoption of automation

technologies among manufacturing firms in Indonesia. Further research will be needed

to support the external validity of our findings and the related policy implications. In

particular, firm-level information on the adoption of automation technologies in develop-

ing countries would be a crucial first step towards that end. In addition, why we do not

see more Indonesian firms adopting robots given the high returns to adoption remains an

important question for future research.41

38The computation is based on firm-level data from different waves of the World Bank Enterprise
Survey. Specifically we compute the median real value of the capital stock per worker (in international
dollars) for all of the manufacturing industries the data allows. The data is available for Indonesia in
2009, for Mexico in 2010 and for China in 2012.

39This is similar to Acemoglu and Restrepo (2018a), where robots offset the scarcity of young workers
in advanced economies. Maloney and Molina (2019) also cite anecdotal evidence that Chinese firms
choose to improve the quality of their export by employing robots, rather than investing in employees’
training.

40The average reading literacy score of Indonesian students is 371, against 555 for China, 420 for
Mexico and 487 for the OECD average. Similarly, science performance is 396 for Indonesia, against 590
for China, 419 for Mexico and 489 for the OECD region.

41Evidence in Calì et al. (2019) presents a similar puzzle also in the context of the switching from
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At the same time, the analysis also documents that the gains from automation are

mainly captured by the firms’ owners in the form of higher profit rate, while the share

of labor in value added shrinks as a result of automation. This unequal distribution of

gains extends also to wage employment, with automation increasing the wage of skilled

workers’ relatively to that of unskilled workers. Shifting the tax burden from labor to

profits could help counter the inequality-inducing impact of automation.

fuel-based to more modern electricity-based technologies in Indonesian manufacturing.
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A Figures and Tables Appendix

Figure A1: Correlation between Indonesian and OECD-average exposure to robots ex-
cluding Motor Vehicles and Rubber and plastics.

On the horizontal axis there is the change between 2007 and 2015, of the OECD region industry-average number of robots per thousand
employees. On the vertical axis, there is the change between 2007 and 2015, of the industry-level number of robots per thousand employees
in Indonesia. The figure excludes two high-exposure industries in Indonesia, Motor vehicles and Rubber and Plastics. Sources: IFR, STAN,
SI.

Table A1: Correlations between Industry- and plant level exposure to robots, and plant
level investment: placebo tests

(1) (2)
Investment Investment

ETR × none and primary -0.091***
(0.018)

ETR × tertiary -0.006
(0.009)

Observations 53,447 53,447
R-squared 0.658 0.658
Plant FE yes yes
Year FE yes yes
Industry-year FE yes yes
Other technologies yes yes

The table presents OLS estimates of the relationship between plants’ exposure to robots and investment in machinery and equipment. The
dependent variable is the log of plant level investment in machinery and equipment. Primary is the base year share of employment with at
most primary education; tertiary is the base year share of employment with higher education. Both share are normalised to have zero mean
and unitary standard deviation. Standard errors are clustered at the 2-digit industry- and year-level. The coefficients with ??? are
significant at the 1% level, with ?? are significant at the 5% level, and with ? are significant at the 10% level.
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Table A4: Regency-level first stage regression

(1) (2)
Change 2008-2015 of: Regency ETR Regency ETR

(GM) (EDU)

Regency ETR (OECD,GM) 0.812***
(0.210)

Regency (OECD,EDU) 0.808***
(0.310)

Observations 276 276
R-squared 0.673 0.650
Province FE yes yes
District demand shifter yes yes
District base year covariates yes yes

The table presents OLS estimates of the relationship between regency-level exposure to robots and regency-level exposure based on the
average industries in the OECD region. The dependent and independent variables are expressed as the 2008-2015 differences in log
exposure. Base year regency covariates include: i) population; ii) the shares of workers with tertiary and no education (separately); iii) real
output per capita, and iv) the share of manufacturing employment. Standard errors are clustered at the regency-level. Weights are
constructed using 2006 (base year) regency population. The coefficients with ??? are significant at the 1% level, with ?? are significant at
the 5% level, and with ? are significant at the 10% level.

Figure A2: Median capital-labor ratio by 2-digit ISIC industry.

The figure shows the median real value of capital-labor ratio (in international dollars) for China (2012), Mexico (2010), and Indonesia
(2009). The data have been cleaned from outliers. Sources: World Bank Enterprise Survey.
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B Occupation Profiles

The Occupation profiles are compiled by the World Bank in partnership with national

governments. The Occupational profiles are used as key inputs of Critical Occupations

Lists, which aim to identify shortages of certain occupations of strategic importance to

the economy (e.g. World Bank (2020a)).

The methodology used by the world bank is based on the probability of computeri-

zation provided by Frey and Osborne (2017). Occupations with probability greater than

0.7 are deemed at high risk of automation.

The list of occupations at high risk of automation extracted from the World Bank Oc-

cupation profiles for Indonesia, Malaysia and Thailand are: Welders and Flame Cutter;

Handicraft Workers in Wood, Textile, Leather and Related Materials; Power-Production

Plant Operators; Woodworking-machine tool setters and operators; Mineral and stone

processing plant operators; Cement, stone and other mineral products machine oper-

ators; Well drillers and borers and related workers; Cement, stone and other mineral

products machine operators; Metal processing plant operators; Metal finishing, plating

and coating machine operators; Chemical products plant and machine operators; Rubber

products machine operators; Plastic products machine operators; Food and related prod-

ucts machine operators; Packing, bottling and labelling machine operators; Stationary

plant and machine operators; Mechanical machinery assemblers; Electrical and electronic

equipment assemblers.

The key piece of information provided in the Occupation Profiles is the typical edu-

cational attainments of workers in occupations at high risk of automation. An example

of occupation profile for “Welders and Flame Cutters” is provided in Figure A3. As for

Welders and Flame cutters, a manual inspection of all available occupations suggests that

the modal educational attainment for occupations at high risk of automation is junior or

senior secondary education - items iii) and iv) in the SI educational category.
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Figure A3: Example of occupation profile, compiled by the World Bank.

Sources: World Bank Occupation Profiles
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C Data Appendix

C.1 Robots Data

One issue with IFR data is that in the early years of the sample, a breakdown of imports

by sector is not available and they are grouped under the label “unspecified”. In this case,

shares by sectors are estimated using information for the years in which the breakdown

is available. We experiment with two alternatives, namely taking simple averages over all

the available years and using the observation for the most recent available year. Results

are very similar. The resulting shares are used to construct the deliveries by sector.

As in Graetz and Michaels (2018), the construction of the stock of operational robots

is obtained by assuming a yearly depreciation rate of 10% and applying the perpetual

inventory method, using 1993 estimates of the existing stock by the IFR as initial values.

The IFR does provide estimates of the stock, but it adopts a different assumption that

robots fully depreciate after twelve years.

The original IFR industry classification has been converted to obtain eighteen indus-

tries, roughly corresponding to 2 digit-level ISIC rev.4. These are: Agriculture, Food

and tobacco, Textiles, Paper, Wood and furniture, Chemicals, Rubber and plastics, Non-

metallic mineral products, Basic metals, Metal products, Electronics, Machinery and

equipment, Motor vehicles, Other transport equipment, Repair and installation of ma-

chinery, Construction, and Education and R&D, and Utilities.

C.2 Manufacturing Data

From SI data, we select the following plant level variables: Output; Fixed assets (cap-

ital); Production employment; Non-production employment; Production wage bill Non-

production wage bill; Intermediate materials; Share of exported output; Share of imported

inputs; Investment in machinery and equipment

From these data we derive the following variables: Total employment (production+non-

production employment); Total wage bill (production+non-production wage bill); Aver-

age production wage (production wage bill / production employment); Average non-
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production wage (non-production wage bill / non-production employment); Share of im-

ported materials (imported materials / intermediate materials) Labor share (wage bill /

value added); Profit rate (gross profits (value added minus wage bill) / revenue).

After taking logs of employment and wage bills, we replace the observation with zero

if the original variables are zero. Due to the high number of observations equal to zero,

we adopt the following log-transformation for investment in machinery and equipment:

ln[x+ (x2 + 1).5].

One challenge of the Statistik Industri data is the lack of complete series of capital

stock. Earlier studies tried to re-construct capital stock series applying the perpetual

inventory method (PIM) to the first year of capital stock data reported by the plant

(Amiti and Konings (2007); Javorcik and Poelhekke (2017)). However this imputation

method crucially relies on the capital value self-reported by the plant the first year this

data is available, which is not necessarily accurate.42 One potential advantage of using

PIM is that purchase and sales data might be more accurate relative to self-reported

value of the stock, requiring an appropriate calculation of market values and depreciation.

However, PIM needs to rely on measures of capital depreciation, which are difficult to

accurately estimate. To mitigate such trade-off, we have adopted a hybrid strategy. We

first clean the self-reported adopting an algorithm which keeps only observations that

fulfill a battery of tests, which are described in Section E. Then, we apply the PIM only

to fill the gaps between the missing observations and reapply the same battery of tests

to ensure consistency of the series.

In order to allow the matching between SI and IFR data, we build a consistent in-

dustry classification. Plants in SI are grouped into 5-digit sectors following the definition

Klasifikasi Baku Lapangan Usaha Indonesia (KBLI). A KBLI code is assigned to a plant

according to the classification in which the main product produced belongs. The KBLI

classification has been adjusted to be consistent over the whole sample, ranging from 2006

to 2015. One issue is that in converting codes from KBLI rev.3 (in use until 2009) to

KBLI rev.4, some industries are split in more than one industry, or vice-versa. For such
42In particular, there is no a priori reason to believe that the quality of the self-reported capital stock

the first year is necessarily better than the value in other years.
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reason, we only keep those KBLI codes that have an unambiguous one to one mapping

across the two revisions. We also experimented with a looser conversion including more

industries, without significant changes in our main results.

C.3 Matching SI and IFR Data

The KBLI classification of SI data is very similar to the ISIC Rev. 4 coding of the IFR

data. However, in some cases the SI data re more detailed than the IFR ones. Thus, we

group together some KBLI industries to ensure maximum compatibility across the two

datasets. The correspondence is shown in Table A8. We observe that 8.5% of plants

switches to another industry during the 10 years covered by our sample. Therefore,

to avoid potentially confounding effects, we assign to each plant the trends in robots’

adoption of the industry to which it belonged in the first year of observation.

Table A8: Correspondence between IFR and SI industry classification.

IFR industries Description KBLI industries

D10T12 Food products, beverages and tobacco 10,11,12

D13T15 Textiles, wearing apparel, leather and related products 13,14,15

D16and3132 Wood, furniture, n.e.c 16,31,32

D17T18 Wood and paper products 17,18

D19T21 Chemicals 19,20,21

D22 Rubber and plastics products 22

D23 Other non-mineral products 23

D24 Basic metals 24

D25 Metal products 25

D26T27 Electronics 26,27

D28 Machinery and equipment n.e.c. 28

D29 Motor vehicles 29

D30 Other transport equipment 30
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C.4 Nine-digit Products and Inputs Data

Our data include information on quantities and values of the products produced and raw

materials used by each plant. These are both defined at a highly granular level, namely 9-

digit Klasifikasi Komoditi Indonesia (KKI). In our sample, each plant produces on average

2 products and 25% of the plants produce more than one product. We use disaggregate

products information to measure the number of products produced by each plant. After

computing unit prices by dividing value with quantities, we compute yearly price growth.

If the price grow by more than a factor of 10 or decreases more than by a factor of 1/10,

we drop the observation. Average unit prices are then used to construct plant level price

deflators (see D). On average, each plant uses four different varieties of raw materials.

We also have information on use of domestically produced and imported materials, which

we aggregate at the plant level to measure the share of imported materials.

D Construction of plant level Price indices

The derivation of plant-specific price indices from product-level price data closely follows

Eslava et al. (2004) and Mertens (2019).

These are plant level Tornqvist indices exploiting information on 9-digit products

produced and inputs used by each plant.

πjt =
n∏

p=1

( Ppjt

Ppj,t−1

).5(spjt+spj,t−1)

πj,t−1

where Ppjt is the price of good p and spjt is the share of this good in total product market

sales of plant j in period t. Therefore, the growth of πjt is the product of each plant’s price

growth, each weighted with the average share of sales in t and t−1. Wee set πjt = 100 in

2006. For plants entering after 2006, we follow Eslava et al. (2004) and Mertens (2019)

and use the 5-digit industry average of the plant price indices as a starting value. When

price growth data are missing, we replace it with an average of product or inputs price
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changes within the same 5-digit industry.

E Construction of the Capital Series

In order to avoid relying on depreciation rates, we tried to preserve the self-reported

original values by the plant as much as possible and applied the PIM only to fill gaps.

In this paper self-reported capital series were object of an extensive cleaning algorithm

aimed at mitigating measurement errors. One problem with the reported series is that

in some years, there are plants were characterised by implausible large values of capital.

Studying the behavior of the stock within plants reveals that in some circumstances plants

reported values in different units. The phenomenon is somewhat more frequent in 1996

and 2006, when the BPS conducted a wider economic census that collected information in

units rather than in thousand Rupiah. For instance, in 2006 the number of surveyed firms

increased by 40%. The increase in coverage required hiring inexperienced enumerators

that were more likely to make mistakes, which contributed to increase measurement

errors.

Our algorithm consists first in replacing zero or negative values as missing observations

and then applying a two-steps procedure based on capital-labor ratios (KL). For each

year, we compute the average KL in each 4-digit KBLI sector over the whole sample, but

excluding the years in which the average and total values of the capital stock exhibited

suspicious jumps, i.e. 1996, 2000, 2003, 2006, 2009 and 2014. An observation is dropped

is the ratio of plant-KL to the sector average KL is below 0.02 or larger than 50. We

experiment with stricter thresholds which result in too many observations dropped. Then,

in a second step we compare a plant KL in a given year with the average value of the KL

within the same plant but in the other years of observation. An observation is dropped if

the ratio of plant-year-KL to the plant average KL is below 0.2 or larger than 5. Plants

are dropped from the sample in case the cleaning procedure results in all missing values

of self-reported capital. When a plant has some but not all valid observations for self-

reported capital stock, then missing values are replaced by applying a forward/backward
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perpetual inventory method (PIM). Being only a fraction of the total observations, we

rely less on estimates of depreciation rates. We follow Arnold and Javorcik (2009) and

assume that the annual depreciation rate for buildings is 3.3 percent, for machinery 10

percent, and for vehicles and other fixed assets 20 percent. For land, we assumed no

depreciation.

Previous studies focus on the first year of observation of a plant, without assessing

the plausibility of the data point. Since PIM series are very sensitive to the choice of the

initial observation, especially with relatively short time series, the resulting capital stock

could be severely mis-measured. Moreover, information on purchases and sales of capital

equipment, which is subject to the same measurement errors of the reported capital. For

such a reason, after filling missing values with the PIM we re-apply the two stages check

described above in order to minimize the possibility of mis-measurement. As a final test,

we compute plant level growth rates of KL and we check that it is reasonably distributed

(Figure A4). Figure A5 compares original and clean capital stock series.
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Figure A4: Plants’ growth rate distribution of capital-labor ratio.

Figure A5: Comparison of Aggregate Nominal Capital Stock Series.
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F Estimation of Marginal Cost and Markup

We assume that in each year t, plant f produces output Qft with the following production

function:

Qft = min
{
γmMft, F (Kft, Lft) · Ωjt

}
(10)

where Mft are intermediate inputs, Kft the capital stock and Lft labor. The term Ωjt

represents Hicks-neutral productivity.

The production function (10) is a structural value added specification De Loecker and

Scott (2016) in which capital and labor are allowed to be characterised by some degree of

substitution and inputs are perfect complements to the combination of the other inputs.

Given (10), a profit maximising plant sets

Qft = γmMft = F (Kft, Lft) · Ωft (11)

Our objective is estimating plants’ production function parameters, in order to obtain

estimates of TFP and markups. To recover such parameters from the data, we estimate

the logged version of production function (11).

qft = f
(
kft, lft;β

)
+ ωft + εft (12)

Recall that ωft represents the log of Hicks-neutral productivity, which is known by

plants’ managers but not by us. The variable εft is an i.i.d. error term that captures

factors such as measurement errors.

We are interested in estimating the vector of the production function parameters

β. To recover unbiased and consistent estimates of firms’ production function (12), we

need to address the well-known simultaneity problem deriving from the fact that ωft is

correlated to labor but not to capital, which is chosen one period ahead. We build on

the methodology of Ackerberg et al. (2015). In particular, we make the following timing

assumptions concerning inputs’ decisions: i) capital kft is chosen at t− 1; ii) lft is chosen
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at t− b after observing ωft, and iii) materials mft are chosen at t− a, with 1 < b < a.

We then specify the materials’ demand function, mft = h̃(ωft, kft, lft,θft). The vector

θft includes variables that affect plant level demand for materials.

Assuming that the materials’ demand function of the plant, h̃ is monotonically in-

creasing and invertible in ω, we obtain a control function that proxies for unobserved

productivity,

ωft = h(mft, kft, lft,θft) (13)

where h ≡ h̃−1. Adding h(·) to (12), we get

qft = f
(
kft, lft;β

)
+ h(mft, kft, lft,θft) + εft (14)

We follow Ackerberg et al. (2015) by approximating the right-hand-side of (14) with

a third-order polynomial in all its elements, except for the elements of θ, which we enter

linearly.43 From the first stage, we obtain expected output q̂ft and the residuals ε̂ft.44

The next step is specifying a law of motion for productivity ωft. We assume that ωft

follows a Markov process that can be shifted by plant managers’ action:

ωft = g
(
ωf,t−1,Γf,t−1

)
+ ξft (15)

In (15), ξft denotes the innovation to productivity and the vector Γ includes variables

controlled by plants’ managers that influence the expected future value of productivity

and state variables which determine differences in productivity dynamics across plants. In

our framework, these variables capture the opportunities for automation available to each

plant, which we measure as the industry-level exposure of robots, the plant level share of

secondary education workers and their interactions.45 Current expected productivity is
43This approach is similar to Mertens (2019).
44It should be noticed that in the first stage, none of the production function parameters are identified,

because they enter both f(·) and h(·).
45In our application we impose a simple AR(1) form for (15).
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then expressed as a function of the data and parameters,

ω(β)ft = q̂ft − f
(
kft, lft;β

)
(16)

To estimate β, we form moments based on the innovation ξft in the law of motion

(15),

ξ(β)ft = ω(β)ft − E
[
ω(β)ft|ω(β)f,t−1,Γf,t−1

]
(17)

The moments that identify the parameters are:

E
[
ξ(β)ftMft

]
= 0 (18)

where the vectorMft includes current capital, lagged labor, and lagged materials use.

In our empirical application, we use a flexible trans-log specification to approximate

f(·). Moreover, our setup and timing assumptions are based on the idea that materials

are the most flexible inputs in production. Therefore, to avoid problems related to the

existence of raw inputs’ adjustment costs, in our empirical application we use energy

consumption to proxy for unobserved productivity. It should be noticed that labor and

electricity consumption are both significantly correlated within a plant over time, which

justify their inclusion in (18) as instruments. We deflate output and energy expenditure

with the plant-specific deflators (see Appendix D). For capital, we employ asset specific

price indexes, distinguishing between machinery and equipment, vehicles, buildings, and

land.

We obtain the production function parameter vector β̂ by estimating 18 with GMM

and bootstrapping errors over fifty repetitions.

F.1 Deriving TFPQ, Markup and Marginal Cost From Plants’

Cost Minimisation

Quantity-total factor productivity (TFPQ) is obtained using (16).
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We follow De Loecker and Warzynski (2012) to obtain a measure of plant level markup

from the plants’ first order conditions. Cost minimisation with respect to labor, which

we consider a static input, implies the following first order condition:

∂Ljt

∂Lft

= Wft − λft
∂F (Kft, Lft) · Ωft

∂Lft

= 0

where L is plant’s f Lagrangian, Wft wages and λft the Lagrangian multiplier. Rear-

ranging terms and multiplying both sides of the previous equation by Lft

Qft
, we obtain

∂F (Kft, Lft) · Ωft

∂Lft

Lft

Qft

=
1

λft

WftLft

Qft

As in De Loecker and Warzynski (2012), we define the plant’s markup over the

marginal cost of output λft as

µft ≡
Pft

λft

where Pft is the price of output produced by the plant. The previous equation yields an

expression of plants’ markup depending on the elasticity of output with respect to the

variable input, βl, and the inverse of the revenue share of expenditure on Llt:

µft =
∂F (Kft, Lft) · Ωft

∂Lft

Lft

Qft

PjtQjt

WjtLjt

= βl
PjtQjt

WjtLjt

In our empirical application, the markup is given by

µft = βl
PftQft

WftLft

1

ε̂ft
(19)

where the last term in (20) is the residual obtained from the first stage estimation of

(14). As discussed in De Loecker and Warzynski (2012), including ε̂ft is important, as

it allows to purge the estimated markup for variation in output not due to changes in

inputs.
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Finally, we recover marginal cost as

mcft =
Pft

µft

(20)

Prior to estimation, we drop the bottom and top one percent of the distribution of

markup and marginal cost in order to avoid outliers driving the results. We obtain very

similar coefficients if we do not trim our estimates.
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