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The Decomposition of a House Price index into Land and Structures Components: 
A Hedonic Regression Approach   
 
By W. Erwin Diewert, Jan de Haan and Rens Hendriks1
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Crowne Plaza Hotel, Coogee Beach, Sydney, Australia. Revised January 25, 2010. 
 
Abstract 
 
The paper uses hedonic regression techniques in order to decompose the price of a house 
into land and structure components using readily available real estate sales data for a 
Dutch city. In order to get sensible results, it proved necessary to use a nonlinear 
regression model using data that covered multiple time periods. It also proved to be 
necessary to impose some monotonicity restrictions on the price of land and structures. 
 
Key Words 
 
Property price indexes, hedonic regressions, repeat sales method, rolling year indexes, 
Fisher ideal indexes.  
 
Journal of Economic Literature Classification Numbers 
 
C2, C23, C43, D12, E31, R21. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
1 Diewert: Department of Economics, University of British Columbia, Vancouver B.C., Canada, V6T 1Z1 
(e-mail: diewert@econ.ubc.ca); de Haan, Statistics Netherlands (email: Jhhn@cbs.nl) and Hendriks, 
Statistics Netherlands (email: r.hendriks@cbs.nl ). The authors thank Christopher O’Donnell, Alice 
Nakamura and Keith Woolford for helpful comments. The authors gratefully acknowledge the financial 
support from the Centre for Applied Economic Research at the University of New South Wales, the 
Australian Research Council (LP0347654 and LP0667655) and the Social Science and Humanities 
Research Council of Canada. None of the above individuals and institutions are responsible for the content 
of this paper. 

mailto:diewert@econ.ubc.ca�
mailto:Jhhn@cbs.nl�
mailto:r.hendriks@cbs.nl�


 2 

  
 
 
 
1. Introduction 
 
Our goal in this paper is to use readily available multiple listing data on sales of 
residential properties and to somehow decompose the sales price of each property into a 
land component and a structures component. We will use the data pertaining to the sales 
of detached houses in a small Dutch city for 10 quarters, starting in January 1998.  
 
In section 2, we will consider a very simple hedonic regression model where we use 
information on only three characteristics of the property: the lot size, the size of the 
structure and the (approximate) age of the structure. We run a separate hedonic regression 
for each quarter which lead to estimated prices for land and structures for each quarter. 
These estimated characteristics prices can then be into land and structures prices covering 
the 10 quarters of data in our sample. We postulate that the value of a residential property 
is the sum of two components: the value of the land which the structure sits on plus the 
value of the residential structure. Thus our approach to the valuation of a residential 
property is essentially a crude cost of production approach. Note that the overall value of 
the property is assumed to be the sum of these two components.  
 
In section 3, we generalize the model explained in section 2 to allow for the observed fact 
that the per unit area price of a property tends to decline as the size of the lot increases (at 
least for large lots). We use a simple linear spline model with 2 break points. Again, a 
separate hedonic regression is run for each period and the results of these separate 
regressions were linked together to provide separate land and structures price indexes 
(along with an overall price index that combined these two components). 
 
The models described in sections 2 and 3 were not very successful. The problem is the 
variability in the data and this volatility leads to a tendency for the regression models to 
fit the outliers, leading to volatile estimates for the price of land and structures. Thus in 
section 4, we note that since the median price of the houses sold in each quarter never 
declined, it is likely that the underlying separate land and structures prices also did not 
decline over our sample period. Thus we imposed this monotonicity restriction on our 
nonlinear regression model by using squared coefficients and nonlinear regression 
techniques in one big regression using all 10 quarters of data. We obtained reasonable 
estimates for the land and structures components using this technique. 
 
Buoyed by the success of our quarterly model, we implemented the model using monthly 
data instead of quarterly data in section 5. This is more challenging since we had only 30 
to 60 observations for each month. However, the monthly model also worked reasonably 
well and when we aggregated the monthly results into quarterly results, we obtained 
quarterly results which were very similar to the results obtained in section 4. 
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In section 6, we decided to compare our quarterly results with a more traditional hedonic 
regression model for residential properties. In this more traditional approach, the log of 
the property price is regressed on either the logs of the main characteristics of the 
property (the land area and the floor space area) or on the levels of the main 
characteristics, with dummy variables to represent quarter to quarter price change. We 
found that the log-log regression fit the data much better than the log-levels regression 
and the overall index of prices generated by the log-log regression was quite close to our 
overall index of prices generated by the cost of production model explained in section 4. 
However, when we used the log-log model to generate separate price index series for 
land and for structures, the results did not seem to be credible. 
 
Section 7 concludes with an agenda for further research on this topic.     
 
2. Model 1: A Very Simple Model 
 
Hedonic regression models are frequently used to obtain constant quality price indexes 
for owner occupied housing.2 Although there are many variants of the technique, the 
basic model regresses the logarithm of the sale price of the property on the price 
determining characteristics of the property and a time dummy variable is added for each 
period in the regression (except the base period).  Once the estimation has been 
completed, these time dummy coefficients can be exponentiated and turned into an 
index.3

 
 

Since hedonic regression methods assume that information on the characteristics of the 
properties sold is available, the data can be stratified and a separate regression can be run 
for each important class of property.  Thus hedonic regression methods can be used to 
produce a family of constant quality price indexes for various types of property.4

 
 

A real estate property has two important price determining characteristics:5

 
 

• The land area of the property and  
• The livable floor space area of the structure. 

                                                 
2 See for example, Crone, Nakamura and Voith (2000) (2009), Gouriéroux and Laferrère (2009), Hill, 
Melser and Syed (2009) and  Li, Prud’homme and Yu (2006). 
3 An alternative approach to the time dummy hedonic method is to estimate separate hedonic regressions 
for both of the periods compared; i.e., for the base and current period. See Haan (2008) (2010) and Diewert, 
Heravi and Silver (2010) for discussions and comparisons between these alternative approaches. 
4 This property of the hedonic regression method also applies to stratification methods. The main difference 
between the two methods is that continuous variables can appear in hedonic regressions (like the area of the 
structure and the area of the lot size) whereas stratification methods can only work with discrete ranges for 
the independent variables in the regression. Typically, hedonic regressions are more parsimonious; i.e., 
they require fewer parameters to explain the data as opposed to stratification methods. 
5 A third important characteristic is the location of the property; i.e., how far is the property from shopping 
centers, places of employment, hospitals and good schools; does the property have a view; is the property 
subject to noise or particulate pollution and so on. The presence or lack of these amenities will affect the 
price of land in the neighbourhood and thus it is important to stratify the sample in order to control for 
these neighbourhood effects. In our example, the Dutch town of “A” is small enough and homogeneous 
enough so that these neighbourhood effects can be neglected.  
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For some purposes, it would be very useful to decompose the overall price of a property 
into additive components that reflected the value of the land that the structure sits on and 
the value of the structure. The purpose of the present paper is to determine whether a 
hedonic regression technique could provide such a decomposition. 
 
Diewert (2007) suggested some possible hedonic regression models that might lead to 
additive decompositions of an overall property price into land and structures components. 
We will now outline his suggested model (with a few modifications).  
 
If we momentarily think like a property developer who is planning to build a structure on 
a particular property, the total cost of the property after the structure is completed will be 
equal to the floor space area of the structure, say S square meters, times the building cost 
per square meter, β say, plus the cost of the land, which will be equal to the cost per 
square meter, α say, times the area of the land site, L.  Now think of a sample of 
properties of the same general type, which have prices vn

t in period t6 and structure areas 
Sn

t and land areas Ln
t for n = 1,...,N(t), and these prices are equal to costs of the above 

type plus error terms ηn
t which we assume have means 0.  This leads to the following 

hedonic regression model for period t where αt and βt are the parameters to be estimated 
in the regression:7

 
 

(1) vn
t = αtLn

t + βtSn
t + ηn

t ;                                                           n = 1,...,N(t); t = 1,...,T. 
 
Note that the two characteristics in our simple model are the quantities of land Ln

t and the 
quantities of structure Sn

t associated with the sale of property n in period t and the two 
constant quality prices in period t are the price of a square meter of land αt and the price 
of a square meter of structure floor space βt. Finally, note that separate linear regressions 
can be run of the form (1) for each period t in our sample. 
 
The hedonic regression model defined by (1) is the simplest possible one but it is a bit too 
simple since it neglects the fact that older structures will be worth less than newer 
structures due to the depreciation of the structure. Thus suppose in addition to 
information on the selling price of property n at time period t, vn

t, the land area of the 
property Ln

t and the structure area Sn
t, we also have information on the age of the 

structure at time t, say An
t. Then if we assume a straight line depreciation model, a more 

realistic hedonic regression model than that defined by (1) above is the following model: 
 

                                                 
6 Note that we have labeled these property prices as vn

0 to emphasize that these are values of the property 
and we need to decompose these values into two price and two quantity components, where the 
components are land and structures. 
7 In order to obtain homoskedastic errors, it would be preferable to assume multiplicative errors in equation 
(1) since it is more likely that expensive properties have relatively large absolute errors compared to very 
inexpensive properties. However, we think that it is preferable to work with the additive specification (1) 
since we are attempting to decompose the aggregate value of housing (in the sample of properties that sold 
during the period) into additive structures and land components and the additive error specification will 
facilitate this decomposition.    
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(2) vn
t = αtLn

t + βt(1 − δtAn
t)Sn

t + ηn
t ;                                            n = 1,...,N(t); t = 1,...,T 

  
where the parameter δt reflects the depreciation rate as the structure ages one additional 
period. Thus if the age of the structure is measured in years, we would expect δt to be 
between 1 and 2%.8

 

 Note that (2) is now a nonlinear regression model whereas (1) was a 
simple linear regression model. Both models (1) and (2) can be run period by period; it is 
not necessary to run one big regression covering all time periods in the data sample. The 
period t price of land will the estimated coefficient for the parameter αt and the price of a 
unit of a newly built structure for period t will be the estimate for βt. The period t quantity 
of land for property n is Ln

t and the period t quantity of structure for property n, 
expressed in equivalent units of a new structure, is (1 − δtAn

t)Sn
t where Sn

t is the floor 
space area of property n in period t. 

We implemented the above model (2) using real estate sales data on the sales of detached 
houses for a small city (population is around 60,000) in the Netherlands, City A, for 10 
quarters, starting in January 1998 (so our T = 10). The data that we used can be described 
as follows: 
 

• vn
t is the selling price of property n in quarter t in units of 10,000 Euros where t = 

1,...,10; 
• Ln

t is the area of the plot for the sale of property n in quarter t in units of 100 
meters squared;9

• Sn
t is the living space area of the structure for the sale of property n in quarter t in 

units of 100 meters squared;  

 

• An
t is the (approximate) age (in decades) of the structure on property n in period 

t.10

 
  

There were 1404 observations in our 10 quarters of data on sales of detached houses in 
City A. The sample means for the data were as follows: v = 11.198, L = 2.5822, S = 
1.2618 and A = 1.1859. Thus the sample of houses sold at the average price of 111,980 
Euros, the average plot size was 258.2 meters squared, the average living space in the 
structure was 126.2 meters squared and the average age was approximately 12.6 years. 
The sample median price was 95,918 Euros. 
 
The results of our 10 nonlinear regressions of the type defined by (2) above are 
summarized in Table 1 below. The Adjusted Structures Quantities in quarter t, ASt, is 
equal to the sum over the properties sold n in that quarter adjusted into new structure 
units, ∑n (1 − δtAn

t)Sn
t. 

 
                                                 
8 This estimate of depreciation will be an underestimate of “true” structure depreciation because it will not 
account for major renovations or additions to the structure. 
9 We chose units of measurement in order to scale the data to be small in magnitude in order to facilitate the 
nonlinear regression package used, which was Shazam. 
10 The original data were coded as follows: if the structure was built 1960-1970, the observation was 
assigned the dummy variable BP = 5; 1971-1980, BP=6; 1981-1990, BP=7; 1991-2000, BP=8. Our Age 
variable A was set equal to 8 − BP. Thus for a recently built structure n in quarter t, An

t = 0. 
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Table 1: Estimated Land Prices αt, Structure Prices βt, Decade Depreciation Rates 
δt, Land Quantities Lt and Adjusted Structures Quantities ASt 
 
Quarter αt βt δt Lt ASt 
1 1.52015 5.13045 0.10761 380.1 177.5 
2 1.40470 6.33087 0.15918 426.9 166.4 
3 1.83006 5.13292 0.13410 248.6 111.2 
4 1.71757 5.56902 0.14427 285.2 122.0 
5 0.70942 8.23225 0.12613 390.2 158.4 
6 0.26174 9.94447 0.09959 419.4 168.7 
7 2.12605 6.27949 0.13258 368.9 136.5 
8 1.71496 7.29677 0.13092 347.3 136.2 
9 1.47354 7.86387 0.10507 356.7 156.4 
10 2.68556 6.21736 0.18591 402.1 161.6 

 
It can be seen that the decade depreciation rates δt are in the 10 to 18% range which is not 
unreasonable but the volatility in these rates is not a good sign. However, it can be seen 
that our estimated land and structures prices are not at all reasonable: the price of land 
sinks to a very low level in quarter 6 while the price of structures peaks in this quarter.  
 
It is of some interest to compare the above land and structures prices with the mean and 
median prices for houses in the sample for each quarter. These prices were normalized to 
equal 1 in quarter 1 and are listed as PMean and PMedian in Table 2 below. The land and 
structures prices in Table 1, αt and βt, were also normalized to equal 1 in quarter 1 and 
are listed as PL and PS in Table 2. Finally, we used the price data in Table 1, αt and βt, 
along with the corresponding quantity data, Lt and ASt, in Table 1 in order to calculate a 
“constant quality” chained Fisher house price index, which is listed as PF in Table 2.  
 
Table 2: Quarterly Mean, Median and Predicted Fisher Housing Prices and the 
Price of Land and Structures 
 
Quarter PMean PMedian PF PL  PS 
1 1.00000 1.00000 1.00000 1.00000 1.00000 
2 1.11935 1.07727 1.10689 0.92406 1.23398 
3 1.07982 1.11666 1.08649 1.20387 1.00048 
4 1.13171 1.13636 1.10735 1.12987 1.08548 
5 1.20659 1.24242 1.13521 0.46668 1.60459 
6 1.31463 1.32424 1.20389 0.17218 1.93832 
7 1.36667 1.33333 1.33644 1.39858 1.22397 
8 1.43257 1.43939 1.32944 1.12816 1.42225 
9 1.41027 1.44242 1.32764 0.96934 1.53278 
10 1.45493 1.51515 1.47253 1.76665 1.21185 

 
Note that the median price increases in each quarter while the mean price drops (slightly) 
in quarters 3 and 9. It can be seen that the overall Fisher housing price index PF is 
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roughly equal to the mean and median price indexes but again, the separate price series 
for housing land PL and for housing structures PS are not realistic. 
 
The series in Table 2 are graphed in Chart 1 below. 
 
Chart 1: Quarterly Mean, Median and Predicted Fisher Housing Prices and the 
Price of Land and Structures Using Model 1  
 

  
 
It can be seen that while the overall predicted Fisher house price index is not too far 
removed from the median and mean house price indexes, the separate land and structures 
components of the overall index are not at all sensible. 
 
One possible problem with our highly simplified house price model is that our model 
makes no allowance for the fact that larger sized plots tend to sell for an average price 
that is below the price for medium and smaller sized plots. Thus in the following section, 
we will generalize the model (2) to take into account this empirical regularity.   
 
3. Model 2: The Use of Linear Splines on Lot Size 
 
We broke up our 1404 observations into 3 groups of property sales: 
 

• Sales involving lot sizes less than or equal to 200 meters squared (Group S); 
• Sales involving lot sizes between 200 and 400 meters squared (Group M) and 
• Sales involving lot sizes greater than 400 meters squared (Group L). 

 
For an observation n in period t that was associated with a small lot size, our regression 
model was essentially the same as in (2) above; i.e., the following estimating equation 
was used: 

0 

0.5 

1 

1.5 

2 

2.5 

1 2 3 4 5 6 7 8 9 10 

PMean PMedian PFisher PLand PStructures 
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(3) vn

t = αS
tLn

t + βt(1 − δtAn
t)Sn

t + ηn
t ;                             t = 1,...,T; n belongs to Group S 

 
where the unknown parameters to be estimated are αt, βt and δt. For an observation n in 
period t that was associated with a medium lot size, the following estimating equation 
was used:11

 
 

(4) vn
t = αS

t (2) + αM
t (Ln

t − 2) + βt(1 − δtAn
t)Sn

t + ηn
t ;     t = 1,...,T; n belongs to Group 

M 
 
where we have now added a fourth parameter to be estimated, αM

t. Finally, for an 
observation n in period t that was associated with a large lot size, the following 
estimating equation was used: 
 
(5) vn

t = αS
t (2) + αM

t (4 − 2) + αL
t (Ln

t − 4) + βt(1 − δtAn
t)Sn

t + ηn
t ;      

                                                                                           t = 1,...,T; n belongs to Group L 
 
where we have now added a fifth parameter to be estimated, αL

t. Thus for small lots, the 
value of an extra marginal addition of land in quarter t is αS

t, for medium lots, the value 
of an extra marginal addition of land in quarter t is αM

t and for large lots, the value of an 
extra marginal addition of land in quarter t is αL

t. These pricing schedules are joined 
together so that the cost of an extra unit of land increases with the size of the lot in a 
continuous fashion.12

 

 The above model can readily be put into a nonlinear regression 
format for each period using dummy variables to indicate whether an observation is in 
Group S, M or L.  

The results of our 10 nonlinear regressions of the type defined by (3)-(5) above are 
summarized in Table 3 below. 
 
Table 3: Marginal Land Prices for Small, Medium and Large Lots, the Price of 
Structures βt and Decade Depreciation Rates δt   
                                                
 

Quarter αS
t αΜ

t αL
t βt δt 

1 0.31648 3.30552 0.87617 6.17826 0.06981 
2 0.79113 2.96475 0.78643 6.44827 0.13999 
3 1.77147 2.57100 1.27783 4.96547 0.12411 
4 0.49927 3.48688 1.02879 6.61768 0.09022 
5 0.59573 3.01473 0.44064 7.39286 0.13002 
6 0.08365 3.81462 −0.2504 8.38993 0.09269 

                                                 
11 Recall that we are measuring land in 100’s of square meters instead of in squared meters. 
12 Thus if we graphed the total cost C of a lot as a function of the plot size L in period t, the resulting cost 
curve would be made up of three linear segments whose endpoints are joined. The first line segment starts 
at the origin and has the slope αS

t, the second segment starts at L = 2 and runs to L = 4 and has the slope 
αM

t and the final segment starts at L = 4 and has the slope αL
t. 
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7 1.09346 4.12335 1.26155 6.84204 0.09168 
8 2.44028 3.06473 1.29751 5.71713 0.14456 
9 2.00417 3.88380 0.88777 6.38234 0.14204 
10 3.04236 3.33855 2.30271 5.49038 0.20080 

 
Obviously, the estimated prices are not sensible; in particular, it is not likely that the cost 
of an extra unit of land for a large plot could be negative in quarter 6! 
 
Looking at the median price of a house over the 10 quarters in our sample, it was noted 
earlier that the median price never fell over the sample period. This fact suggests that we 
should impose this condition on all of our prices; i.e., we should set up a nonlinear 
regression where the marginal prices of land never fall from quarter to quarter and where 
the price of a square meter of a new structure also never falls. We will do this in the 
following section and we will also impose a single depreciation rate over our sample 
period, rather than allowing the depreciation rate to fluctuate from quarter to quarter. 
 
4. Model 3: The Use of Monotonicity Restrictions on the Price of Land and 
Structures 
 
For the model to be described in this section, the data for all 10 quarters were run in one 
big nonlinear regression. The equations that describe the model in quarter 1 are the same 
as equations (3), (4) and (5) in the previous section except that the quarter one 
depreciation rate parameter, δ1, is replaced by the parameter δ, which will be used in all 
subsequent quarters. For the remaining quarters, equations (3), (4) and (5) can still be 
used except that the parameters αS

t, αM
t, αL

t and βt are set equal to their quarter 1 
counterparts plus a sum of squared parameters where one squared parameter is added 
each period; i.e., αS

t, αM
t, αL

t and βt are reparameterized as follows:    
 
(6) αS

t = αS
1 + (δS2)2 + ... + (δSt)2 ;                                                                   t = 2,3,...,T;      

(7) αM
t = αM

1 + (δM2)2 + ... + (δMt)2 ;                                                                t = 2,3,...,T;      
(8) αL

t = αL
1 + (δL2)2 + ... + (δLt)2 ;                                                                   t = 2,3,...,T; 

(9) βt = β1 + (δ2)2 + ... + (δt)2 ;                                                                          t = 2,3,...,T; 
(10) δt = δ ;                                                                                                        t = 2,3,....T. 
 
Thus our new parameters δS2,...,δSt; δM2,...,δMt; δL2,...,δLt and δ2,...,δt and their squares 
enter equations (6)-(9). It can be seen that this reparameterization will prevent the 
marginal price of each type of land from falling and it will also impose monotonicity on 
the price of structures.  
 
The results of the above reparameterized model were as follows: the quarter 1 estimated 
parameters were αS

1 = 0.91595 (0.36782), αM
1 = 3.3527 (0.15247), αL

1 = 0.30862 
(0.049515), β1 = 5.7653 (0.57508) and  δ = 0.14763 (0.009926) (standard errors in 
brackets) with an R2 of .8383. Thus the overall decade depreciation rate was a very 
reasonable 14.76% and the other parameters seemed to be reasonable in magnitude as 
well. The only mild surprise was the fact that, at the beginning of the sample period, the 
marginal valuation of land for small plots was 0.91595 while the marginal valuation for 
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medium plots was 3.3527 which was over 3 times as big. Thus small plots of land 
suffered a discount in price per meter squared as compared to medium plots of land.13

 

 Of 
the 36 squared parameters that pertain to quarters 2 to 10, 22 were set equal to 0 by the 
nonlinear regression and only 14 were nonzero with only 7 of these nonzero parameters 
having t statistics greater than 2. The quarter by quarter values of the parameters αS

t  αM
t  

αL
t  and βt defined by (6)-(9) are reported in Table 4 below. 

Table 4: Marginal Prices of Land for Small, Medium and Large Plots and New 
Construction Prices by Quarter 
 

Quarter αS
t   αΜ

t   αL
t   βt 

1 0.91595 3.35274 0.30862 5.76531 
2 0.95659 3.35274 0.30862 5.83293 
3 1.08763 3.35274 0.30862 5.83293 
4 1.08763 3.38135 0.30862 6.19944 
5 1.17047 3.38135 0.30862 6.19944 
6 1.59381 3.38135 0.30862 6.19944 
7 1.86173 3.58656 1.06497 6.19944 
8 1.93392 3.58656 1.06497 6.19944 
9 2.09467 3.58656 1.06497 6.19944 
10 2.16906 3.58656 1.68323 6.19944 

 
The above results look sensible (for a change!). The imputed price of new construction, 
βt, was approximately equal to a constant 6 over the sample period (this translates into a 
price of 600 Euros per meter squared of structure floor space).14 The imputed value of 
land for a small lot grew from 91.6 Euros per meter squared in the first quarter of 1998 to 
216.9 Euros per meter squared in the second quarter of 2000. The imputed marginal value 
of land15 for a lot size in the range of 200 to 400 meters squared grew very slowly from 
335.3 Euros per meter squared to 358.7 Euros per meter squared over the same period. 
Finally, the imputed marginal value of land 16

 

 for a lot size greater than 400 meters 
squared grew very rapidly from 30.8 Euros per meter squared to 168.3 Euros per meter 
squared over the sample period. 

It is possible to work out the total imputed value of structures transacted in each quarter, 
VS

t, and divide this quarterly value by the total quantity of structures (converted into 
equivalent new structure units), QS

t, in order to obtain an average price of structures, PS
t. 

                                                 
13 This may not be a “genuine” effect; it is likely that the quality of construction is lower on small plots as 
compared to the quality of medium and larger plots and since we are not taking this possibility into account 
in our model, the lower average quality of structures on small plots may show up as a lower price of land 
for small plots. 
14 Thus the imputed value of a new house with a floor space area of 125 meters squared would be 
approximately 75,000 Euros. 
15 This is our estimate of the value of an extra square meter of land above the threshold of 200 meters 
squared (and below the threshold of 400 meters squared). 
16 This is our estimate of the value of an extra square meter of land above the threshold of 400 meters 
squared. 



 11 

Similarly, we can add up all of the imputed values for small, medium and large plot sizes 
for each quarter t, say VLS

t, VLM
t and VLL

t, and then add up the total quantity of land 
transacted in each of the three classes of property, say QLS

t, QLM
t and QLL

t. Finally, we 
can form quarterly unit value prices for each of the three classes of property, PLS

t, PLM
t 

and PLL
t, by dividing each value series by the corresponding quantity series. The resulting 

price and quantity series are listed in Table 5 below.     
 
Table 5: Average Prices for New Structures, Small, Medium and Large Plots and 
Total Quantities Transacted per Quarter of Structures and the Three Types of Plot 
Size    
 
Quarter PS

t PLS
t PLM

t  PLL
t QS

t QLS
t QLM

t QLL
t 

1 5.76531 0.91595 1.54388 1.21882 174.9 157.0 150.9   72.2 
2 5.83293 0.95659 1.69649 1.51438 178.7 141.7 150.5 134.7 
3 5.83293 1.08763 1.61619 1.49880 114.5   86.5 104.4   57.8 
4 6.19944 1.08763 1.67685 1.32253 124.6   98.4 118.4   68.4 
5 6.19944 1.17047 1.78600 1.28946 160.0 111.5 166.3 112.3 
6 6.19944 1.59381 2.08535 1.45049 164.0   99.3 190.3 129.8 
7 6.19944 1.86173 2.35472 2.07883 138.0 103.6 134.4 130.9 
8 6.19944 1.93392 2.39501 1.92618 137.8   89.6 155.3 102.4 
9 6.19944 2.09467 2.48640 2.00769 153.2 114.4 151.9   90.4 
10 6.19944 2.16906 2.57689 2.42353 180.1 123.4 207.8   71.0 

 
Note that the price of structures series, PS

t, and the price of land for small plots, PLS
t, in 

Table 5 coincides with the series of values for βt and αS
t listed in Table 4. However, the 

average prices for land in medium size plots, PLM
t, and for large size plots, PLL

t, listed in 
Table 5 no longer coincide with the corresponding marginal prices αM

t and αL
t listed in 

Table 4. This is understandable since we have used splines to model how the price of a 
meter squared of land varies as the lot size varies. Note that PLM

t shows a much greater 
rate of price increase over the sample period than the corresponding marginal price series 
αM

t, which hardly changed over the sample period. This is due to the fact that our model 
prices the first 200 meters squared of a medium sized lot at the average price of a small 
lot and the price of small lots increased quite rapidly over the sample period. Another 
striking feature of Table 5 is the tendency for the prices of land for small, medium and 
large lots to equalize over time; i.e., at the beginning of the sample period, the price per 
meter squared of a small lot was 91.6 Euros, for a medium lot, 154.4 Euros and for a 
large lot, 121.9 Euros but by the end of the sample period, the prices were 216.9 Euros, 
257.7 Euros and 242.3 Euros, which was a considerable relative compression in the 
dispersion of these prices. A final feature of Table 5 that should be mentioned is the 
tremendous volatility in the quantities transacted in each quarter.         
 
The four price series, PS

t, PLS
t, PLM

t and PLL
t, were all normalized to equal unity in quarter 

1 and they are plotted in Chart 2 below. 
 
Chart 2: Prices For Structures PS

t and for Three Sizes of Plot PLS
t, PLM

t and PLL
t   
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The data listed in Table 5 were further aggregated. We constructed a chained Fisher 
aggregate for the three land series and the resulting aggregate land price and quantity 
series, PL

t and QL
t, are listed in Table 6 below along with the structures price and quantity 

series (normalized so that the price equals 1 in quarter 1), PS
t and QS

t. Finally, a chained 
Fisher aggregate for structures and the three land series was constructed and the resulting 
aggregate price and quantity series, Pt and Qt, are also listed in Table 6. 
 
Table 6: Aggregate Quarterly Price and Quantity Series for Housing 
 

Quarter Pt PL
t PS

t Qt QL
t QS

t 
1 1.00000 1.00000 1.00000 1473.4 464.7 1008.6 
2 1.04712 1.11966 1.01173 1563.6 531.3 1030.3 
3 1.04959 1.12710 1.01173   969.1 310.0   660.0 
4 1.08823 1.11403 1.07530 1074.0 355.5   718.6 
5 1.10535 1.16452 1.07530 1415.1 491.5   922.3 
6 1.18642 1.39356 1.07530 1483.6 533.4   945.6 
7 1.29832 1.70330 1.07530 1260.8 458.9   795.5 
8 1.29433 1.69226 1.07530 1233.4 438.7   794.2 
9 1.32431 1.77854 1.07530 1320.2 449.1   883.2 
10 1.36569 1.90086 1.07530 1531.6 513.0 1038.4 

 
    
Finally, Chart 3 below plots the aggregate house price series Pt, the land price series PL

t 
and the structures price series PS

t from Table 6 above along with the quarterly mean price 
series PMean

t and median series PMedian
t. 
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Chart 3: Quarterly Mean Price PMean
t, Median Price PMedian

t, Constant Quality 
Housing Price Pt, Land Price PL

t and New Structures Price PS
t  

 

 
 
 
From Chart 3, it is evident that our estimated constant quality price of housing for City A 
grew more slowly than the corresponding mean and median series. The major 
explanatory factor for this difference is probably due to the fact that the average age of 
the structure in the quarterly sample tended to fall as time marched on.17

 
 

We have used only 3 characteristics of the property sales: the age of the structure, the 
area of the land and the floor space area of the house. Real estate data bases generally 
have information on many other characteristics of the house and these characteristics 
could be integrated into the above hedonic framework. 
 
In the following section, we will attempt to implement the model explained in this section 
using monthly data in place of quarterly data.  
 
5. A Monthly Model Using Monotonicity Restrictions 
 

                                                 
17 The time series of average age by quarter in our sample was as follows: 1.38, 1.30, 1.24, 1.06, 1.19, 1.21, 
1.16, 1.10, 0.957 and 1.18. The average amount of land tended to increase a bit over time; the quarterly 
averages were as follows: 2.30, 2.60, 2.35, 2.48, 2.69, 2.80, 2.75, 2.78, 2.57 and 2.50. The average structure 
size transacted by quarter was fairly steady: 1.26, 1.28, 1.26, 1.24, 1.28, 1.27, 1.20, 1.26, 1.24 and 1.29.   
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Before we repeat the Tables that were listed in the previous section using monthly data 
instead of quarterly data, it is useful to list the descriptive statistics that describe the 
monthly data. Thus in Table 7 below, we list various averages for the 30 months of data 
in our sample as well as N, the number of observations in each month, which range from 
a low of 26 in month 9 to a high of 63 in month 3.   
 
Table 7: Descriptive Statistics for the Monthly Data 
 
Month N   Mean Median      L      S      A     fS      fM      fL 

1 55   8.81447   7.4874 2.24109 1.27873 1.45455 0.63636 0.30909 0.05455 
2 47   8.59045   7.4420 2.31872 1.21979 1.34043 0.61702 0.34043 0.04255 
3 63   9.32068   7.7143 2.34635 1.28254 1.33333 0.57143 0.36508 0.06349 
4 46   9.55868   7.7188 2.31326 1.30609 1.26087 0.56522 0.34783 0.08696 
5 57   9.60040   7.9412 2.37298 1.24860 1.19298 0.63158 0.26316 0.10526 
6 61 10.73692   9.4386 3.03672 1.29590 1.44262 0.45902 0.34426 0.19672 
7 42 10.60333   8.4290 2.65738 1.28452 1.11905 0.47619 0.40476 0.11905 
8 38   8.74363   8.1680 2.10316 1.24711 1.36842 0.52632 0.42105 0.05263 
9 26   9.46656   8.4516 2.19615 1.25500 1.26923 0.65385 0.26923 0.07692 
10 37   8.94806   8.1680 2.30027 1.18405 1.24324 0.54054 0.43243 0.02703 
11 41 10.96991   8.6218 2.79439 1.27293 1.00000 0.53659 0.34146 0.12195 
12 37 10.35631   8.8487 2.31162 1.26081 0.94595 0.54054 0.37838 0.08108 
13 51 10.44940   9.3025 2.98471 1.23941 1.43137 0.47059 0.47059 0.05882 
14 40 10.12645   8.1680 2.35350 1.28575 1.07500 0.62500 0.25000 0.12500 
15 54 11.60774 10.4256 2.66296 1.30981 1.03704 0.40741 0.48148 0.11111 
16 40 11.18432 11.1176 2.61050 1.25925 1.35000 0.45000 0.50000 0.05000 
17 53 11.49708   9.5385 3.04830 1.27453 1.05660 0.45283 0.37736 0.16981 
18 57 12.40321 10.7319 2.69088 1.28018 1.26316 0.38596 0.50877 0.10526 
19 46 12.09197 10.3258 2.69978 1.23217 1.26087 0.47826 0.36957 0.15217 
20 37 12.28354   9.9378 2.74324 1.18595 1.05405 0.56757 0.29730 0.13514 
21 51 12.29845 10.0966 2.80902 1.18529 1.15686 0.45098 0.39216 0.15686 
22 36 11.45179 10.4483 2.53528 1.19500 1.41667 0.47222 0.47222 0.05556 
23 43 12.75577 10.1647 2.88791 1.27116 1.09302 0.51163 0.34884 0.13953 
24 46 13.93129 11.9968 2.86565 1.31087 0.84783 0.36957 0.52174 0.10870 
25 36 12.96740 10.8226 2.76778 1.28361 0.80556 0.52778 0.33333 0.13889 
26 50 12.95475 10.8453 2.68940 1.24160 1.04000 0.48000 0.44000 0.08000 
27 53 12.05086 10.5504 2.31226 1.21755 0.98113 0.52830 0.41509 0.05660 
28 61 12.17228 10.7773 2.32656 1.26246 1.21311 0.54098 0.40984 0.04918 
29 50 13.33456 10.6638 2.69700 1.31660 1.22000 0.42000 0.48000 0.10000 
30 50 13.71641 12.7625 2.50760 1.30640 1.10000 0.44000 0.50000 0.06000 

 
It can be seen that the monthly means and medians no longer steadily trend upwards; 
there are now many ups and downs in these series. The L and S series are the monthly 
average amounts of land and structures (in 100s of square meters) sold in each month. 
There are large fluctuations in some of these averages: L ranges from a low of  2.10 to a 
high of 3.05 while S ranges from 1.18 to 1.32. The average age in decades, A, ranges 
from a low of 0.81 to 1.45. The fraction of small lots transacted in a given month, fS, 
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ranges from a low of 0.370 to a high of 0.654; the fraction of medium sized lots 
transacted in a given month, fM, ranges from a low of 0.250 to a high of 0.522 and the 
fraction of large lots transacted in a given month, fL, ranges from a low of 0.027 to a high 
of 0.197. Given the magnitude of these fluctuations, it can be seen that it is unreasonable 
to expect the mean and median series to give a good approximation to pure price change 
because the underlying monthly characteristics are changing so dramatically from month 
to month (and so the mean and median series embody quantity effects as well as price 
effects). 
 
The model described in the previous section was rerun using the monthly data so that we 
now have 30 monthly time periods in place of the old 10 quarterly time periods. The 
number of parameters to be estimated has skyrocketed to 121 from the old 41 parameters.  
The results for the monthly model were as follows: the month 1 estimated parameters 
were αS

1 = 0.99767 (0.17751), αM
1 = 3.2434 (0.11801), αL

1 = 0.29878 (0.043824), β1 = 
5.5632 (0.32939) and  γ = 0.14860 (0.00994) (standard errors in brackets) with an R2 
of .8454. Recall that the corresponding quarterly model parameters for quarter 1 were: 
αS

1 = 0.91595 (0.36782), αM
1 = 3.3527 (0.15247), αL

1 = 0.30862 (0.049515), β1 = 5.7653 
(0.57508) and  δ = 0.14763 (0.009926) with an R2 of .8383. Thus the monthly model has 
generated parameter estimates that are quite similar to the quarterly model (at least at the 
beginning of the sample period) but the standard errors for the monthly parameters are all 
lower (much lower in most cases) than the corresponding standard errors for the quarterly 
model (and the R2 has also increased modestly). This is very encouraging! Of the 116 
squared parameters that pertain to months 2 to 30, 99 were set equal to 0 by the nonlinear 
regression and only 17 were nonzero with 8 of these nonzero parameters having t 
statistics greater than 2. The month by month values of the parameters αS

t  αM
t  αL

t  and 
βt defined by (6)-(9) are reported in Table 8 below. 
 
Table 8: Marginal Prices of Land for Small, Medium and Large Plots and New 
Construction Prices by Month 
 
Month      αS

t       αΜ
t      αL

t       βt   
1 0.99767 3.24338 0.29878 5.56322 
2 0.99767 3.24338 0.29878 5.70008 
3 0.99767 3.24338 0.29878 5.70008 
4 0.99767 3.24338 0.29878 5.70008 
5 1.13331 3.24338 0.29878 5.70008 
6 1.13331 3.24338 0.29878 5.70008 
7 1.19700 3.24338 0.29878 5.70008 
8 1.19700 3.24338 0.29878 5.70008 
9 1.19700 3.24338 0.29878 5.70008 
10 1.19700 3.24338 0.29878 5.70008 
11 1.19700 3.24338 0.29878 6.16317 
12 1.19700 3.24338 0.29878 6.16317 
13 1.19700 3.24338 0.29878 6.16317 
14 1.19700 3.24338 0.29878 6.16317 
15 1.39826 3.24338 0.29878 6.16317 
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16 1.39826 3.24338 0.29878 6.16317 
17 1.39826 3.24338 0.29878 6.16317 
18 1.81248 3.59946 0.98436 6.16317 
19 1.81248 3.59946 0.98436 6.16317 
20 1.94070 3.59946 0.98436 6.16317 
21 1.94070 3.59946 0.98436 6.16317 
22 1.94070 3.59946 0.98436 6.16317 
23 1.94070 3.59946 0.98436 6.16317 
24 2.04119 3.59946 0.98436 6.16317 
25 2.04119 3.59946 0.98436 6.16317 
26 2.07040 3.59946 1.51651 6.16317 
27 2.11420 3.59946 1.51651 6.16317 
28 2.11420 3.59946 1.65081 6.16317 
29 2.11420 3.59946 1.65081 6.16317 
30 2.25443 3.81381 3.71600 6.16317 

 
Comparing the entries in Table 8 with the corresponding quarterly entries in Table 4, it 
can be seen that the monthly results agree fairly well with the quarterly results with the 
exception of the sudden surge in the marginal price for large lots in month 30 of Table 8 
from 1.65 in month 29 to 3.72 in month 30 (the corresponding surge from quarter 9 to 10 
of the marginal price of large lots recorded in Table 4 was 1.06 to 1.83). This discrepancy 
could be due to the fact that the fraction of large lots sold is rather small and so the 
estimate of the marginal price of large lots is particularly uncertain. Another possible 
explanation for the large surge in the marginal price for large lots in both the quarterly 
and monthly models is the fact that nonparametric time series models tend to be 
unreliable at the endpoints of the sample period because there is a tendency for the model 
to fit the errors at the endpoints. Our model is very close to being a nonparametric time 
series model since it has many free parameters for each time period and thus, it may be 
subject to this type of bias.18

 
  

As in the previous section, it is possible to work out the total imputed value of structures 
transacted in each month, VS

t, and divide this monthly value by the total quantity of 
structures (converted into equivalent new structure units), QS

t, in order to obtain an 
average price of structures, PS

t. Similarly, we can add up all of the imputed values for 
small, medium and large plot sizes for each month t, say VLS

t, VLM
t and VLL

t, and then 
add up the total quantity of land transacted in each of the three classes of property, say 
QLS

t, QLM
t and QLL

t. Finally, we can form monthly unit value prices for each of the three 
classes of property, PLS

t, PLM
t and PLL

t, by dividing each value series by the 
corresponding quantity series. The resulting (average) price and quantity series are listed 
in Table 9 below.     
 
Table 9: Average Prices for New Structures, Small, Medium and Large Plots and 
Total Quantities Transacted per Month of Structures and the Three Types of Plot 
Size    
 
                                                 
18 This hypothesis could be checked by adding some additional months of data to the original sample. 
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Month PS
t PLS

t PLM
t  PLL

t QS
t QLS

t QLM
t QLL

t 

1 5.56322 0.99767 1.60698 1.30112 58.4 54.8 46.7 21.8 
2 5.70008 0.99767 1.47684 0.91554 48.0 44.7 40.7 23.6 
3 5.70008 0.99767 1.61759 1.38761 68.3 57.5 63.5 26.8 
4 5.70008 0.99767 1.64109 1.64760 51.5 40.0 44.8 21.6 
5 5.70008 1.13331 1.79016 1.57229 61.1 56.1 43.6 35.6 
6 5.70008 1.13331 1.81513 1.46894 66.0 45.7 62.0 77.5 
7 5.70008 1.19700 1.70577 1.38617 47.0 31.0 45.3 35.3 
8 5.70008 1.19700 1.60423 1.81919 39.7 29.9 40.0 10.1 
9 5.70008 1.19700 1.74733 1.54141 27.7 25.6 19.1 12.4 
10 5.70008 1.19700 1.70836 1.01640 37.0 31.7 42.7 10.7 
11 6.16317 1.19700 1.77644 1.23196 46.1 34.3 39.1 41.2 
12 6.16317 1.19700 1.68211 1.69702 45.9 35.8 40.7 18.3 
13 6.16317 1.19700 1.7993 0.79731 52.4 38.0 68.0 46.3 
14 6.16317 1.19700 1.73924 1.69010 45.0 39.3 27.2 27.6 
15 6.16317 1.39826 1.89336 1.56091 62.4 34.3 71.1 38.5 
16 6.16317 1.39826 1.97569 1.21322 42.3 28.5 58.2 17.7 
17 6.16317 1.39826 1.88742 1.33043 59.2 36.6 54.4 70.6 
18 6.16317 1.81248 2.26538 1.97975 62.3 34.2 77.7 41.5 
19 6.16317 1.81248 2.33078 2.13814 48.1 34.5 47.9 41.8 
20 6.16317 1.94070 2.44863 1.98785 38.1 34.2 31.7 35.6 
21 6.16317 1.94070 2.38913 2.05146 51.7 34.9 54.8 53.6 
22 6.16317 1.94070 2.33266 1.72763 35.4 27.5 44.5 19.2 
23 6.16317 1.94070 2.41604 1.88852 47.7 34.7 42.1 47.4 
24 6.16317 2.04119 2.51182 2.01176 54.5 27.3 68.8 35.7 
25 6.16317 2.04119 2.40728 1.94534 41.9 30.1 31.4 38.2 
26 6.16317 2.07040 2.51694 2.12495 54.4 37.6 62.2 34.7 
27 6.16317 2.11420 2.47966 2.43401 56.8 46.7 58.4 17.5 
28 6.16317 2.11420 2.49731 2.43394 66.0 56.1 67.4 18.5 
29 6.16317 2.11420 2.51566 2.29851 56.8 31.8 65.8 37.2 
30 6.16317 2.25443 2.76893 3.18049 57.1 35.5 74.6 15.3 

 
Comparing the monthly prices in Table 9 with their quarterly counterparts in Table 5, it 
can be seen that the prices of structures and the (average) prices of small lots are very 
similar in the two tables. However, there are some substantial differences between the 
quarterly and monthly average prices of medium and large lots. Moreover, in both tables, 
it can be seen that there are some fluctuations in the average prices of medium and large 
lots, with the fluctuations being quite substantial in the case of monthly prices. These 
fluctuations are due to the smaller sample sizes in the monthly model compared to the 
quarterly model and to the nature of our spline model for the cost of land. The marginal 
price of land for an extra unit of land for a medium lot is greater than the marginal price 
for an extra unit of land for a small lot. Thus if the average size of a medium lot increases 
going from one period to the next, then the average price for medium lots will increase. 
Similarly, the marginal price of land for large lots is less than the marginal price for 
medium lots. Thus if the average size of a large lot increases going from one period to the 
next, then the average price for large lots will decrease. Since monthly sample sizes can 
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be small for medium and large lots, substantial fluctuations in the average size of lots 
sold in each month within these two categories of lot size will lead to substantial 
fluctuations in the average prices for these two types of lot.19 This type of fluctuation can 
be controlled by making the lot size ranges smaller so that divergences between marginal 
and average prices within each lot size category would be reduced.20

 

 Another method for 
controlling these spline model induced fluctuations would be to drop the spline model for 
the price of land and simply have one price of land for all lot sizes. However, we are 
reluctant to do this since our results for the Dutch city “A” indicate that the price levels 
and trends for the different sized lots differed substantially.  

A final method for controlling spline model induced fluctuations in the price of land 
would be to value the entire stock of detached houses in the city using our model. Since 
the stock of houses changes very little from month to month, this would eliminate large 
fluctuations in the average amount of land for medium and large lots.21

 
  

We note that our model could serve many purposes. As indicated in the above paragraph, 
the model could be used to provide up to date valuations for the entire stock of detached 
houses in the city, provided that we had information on the age, land area and floor space 
area for each house in the city. The model could also be used to value new additions to 
the city’s housing stock provided that information on the age, land area and floor space 
area for each newly constructed house in the city was available.22

 
  

The data listed in Table 9 were further aggregated. We constructed a chained Fisher 
aggregate for the three land series and the resulting aggregate land price and quantity 
series, PL

t and QL
t, are listed in Table 10 below along with the structures price and 

quantity series (normalized so that the price equals 1 in quarter 1), PS
t and QS

t. Finally, a 
chained Fisher aggregate for structures and the three land series were constructed and the 
resulting aggregate price and quantity series, Pt and Qt, are also listed in Table 10. 
 
Table 10: Aggregate Monthly Price and Quantity Series for Housing 
 

                                                 
19 Analogous fluctuations for small lots (and for structures) cannot occur because for these commodities, 
average and marginal prices coincide. 
20 A possible problem with this strategy is that the sample sizes within each category of lot would decline 
and become zero in some cases. However, this is not necessarily a problem since our spline model does not 
really require that the sample size within each lot size category be nonzero; i.e., our spline model shifts the 
entire schedule of lot size costs up (or down if we entered the squared terms in equations (6)-(8) into the 
model with negative signs instead of positive signs) and we do not require actual transactions in a given 
period for all possible lot sizes. Thus the main cost of increasing the number of spline segments appears to 
be the fact that a large number of additional parameters would have to be estimated.  
21 This is our preferred method for controlling price fluctuations due to the changing composition of the 
houses sold from period to period. However, this method requires information on the total stock of housing 
for the neighbourhood under consideration. Alternatively, one could simply use the characteristics of a 
“representative” dwelling unit for the neighbourhood. 
22 If the country uses the acquisitions approach to the treatment of housing in a Consumer Price Index 
where only the price of the new structure is to enter the index, then it can be seen that our suggested model 
could be very useful in this context. For a review of alternative ways of treating housing in a CPI, see 
Diewert (2002; 611-121) (2007). 
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Month Pt PL
t PS

t Qt QL
t QS

t 
1 1.00000 1.00000 1.00000 483.1 158.0 325.1 
2 0.98367 0.90296 1.02460 406.3 139.8 266.9 
3 1.02322 1.01875 1.02460 573.4 193.7 380.1 
4 1.03842 1.06444 1.02460 426.0 140.0 286.3 
5 1.06182 1.13450 1.02460 513.8 174.1 339.7 
6 1.05410 1.11416 1.02460 620.7 249.7 367.0 
7 1.03870 1.07414 1.02460 415.0 152.0 261.3 
8 1.05201 1.11031 1.02460 327.3 106.5 220.7 
9 1.05492 1.11921 1.02460 228.6   74.3 154.2 
10 1.02777 1.03874 1.02460 323.5 117.2 205.7 
11 1.10324 1.10087 1.10784 403.6 146.4 256.4 
12 1.12844 1.17182 1.10784 377.0 121.4 255.5 
13 1.07897 1.04048 1.10784 488.8 196.7 291.3 
14 1.14840 1.23650 1.10784 364.5 114.1 250.6 
15 1.17216 1.30861 1.10784 535.0 185.3 347.2 
16 1.16331 1.28324 1.10784 375.9 137.4 235.6 
17 1.16251 1.28103 1.10784 527.1 193.4 329.5 
18 1.30446 1.67238 1.10784 539.6 191.4 346.4 
19 1.32683 1.73494 1.10784 421.9 151.9 267.4 
20 1.33544 1.75877 1.10784 336.6 122.1 211.9 
21 1.33615 1.76073 1.10784 469.3 175.2 287.5 
22 1.30038 1.66369 1.10784 314.5 114.5 197.2 
23 1.32457 1.73082 1.10784 417.0 149.4 265.2 
24 1.35520 1.81700 1.10784 469.5 165.3 303.2 
25 1.33672 1.76372 1.10784 351.2 119.8 233.1 
26 1.36767 1.85284 1.10784 470.2 166.3 302.4 
27 1.38407 1.90045 1.10784 459.6 150.5 316.0 
28 1.38631 1.90728 1.10784 532.8 173.9 367.2 
29 1.38116 1.89227 1.10784 483.8 168.2 315.8 
30 1.47653 2.17090 1.10784 465.6 154.4 317.9 

 
Comparing the monthly price series in Table 10 with the corresponding quarterly price 
series in Table 6, it can be seen that they are reasonably close with the exception of the 
price of housing in the last three months (1.38631, 1.38116 and 1.47653) and the price of 
land in the last three months of our sample period (1.90728, 1.89227 and 2.17090). The 
corresponding prices of housing and land for the last quarter in the quarterly model were 
1.36569 and 1.90086, which are well below the unweighted average of the corresponding 
3 monthly prices. However, as we will see in Table 11 below, when we take 
appropriately weighted averages of the monthly data, these discrepancies are greatly 
reduced.  
 
Chart 4 below plots the monthly aggregate house price series Pt, the land price series PL

t 
and the structures price series PS

t from Table 10 above along with the monthly mean 
price series PMean

t and median series PMedian
t. 
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Chart 4: Monthly Mean Price PMean
t, Median Price PMedian

t, Constant Quality 
Housing Price Pt, Land Price PL

t and New Structures Price PS
t  

 

 
 
From Chart 4, it is evident that our estimated constant quality price of housing for City A 
grew more slowly than the corresponding mean and median series. As was the case with 
the quarterly Chart 3, the major explanatory factor for this difference is due to the fact 
that the average age of the structure in the sample tended to fall as time marched on. 
 
It is of interest to take the monthly data from Table 9 and aggregate these data into 
quarterly unit value prices and the corresponding quarterly quantities. This was done, 
generating three aggregated quarterly land price and quantity series and the aggregated 
quarterly structures price series, APS

t. These three aggregated land price series were then 
aggregated into an overall aggregated quarterly price series APL

t using chained Fisher 
aggregation. Finally, the three aggregated land price series and the aggregated constant 
quality structures series APS

t were aggregated into an overall aggregated quarterly 
housing price index, APt, which is listed in Table 11 below along with APL

t and APS
t. For 

comparison purposes, the corresponding quarterly price series for housing, land and 
structures, Pt, PL

t and PS
t, from Table 6 in section 4 (i.e., the estimates from the original 

quarterly regression model) are also listed in Table 11.     
 
Table 11: Quarterly Price Series for Housing Pt, Land PL

t and for Structures PS
t 

and Aggregated Quarterly Price Series for Housing APt, Land APL
t and for 

Structures APS
t from the Monthly Model 

 
Quarter     APt     APL

t     APS
t     Pt     PL

t     PS
t 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0 

0.5 

1 

1.5 

2 

2.5 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 

PMean PMedian P PL PS 
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2 1.05456 1.14511 1.00810 1.04712 1.11966 1.01173 
3 1.05324 1.14122 1.00810 1.04958 1.12710 1.01173 
4 1.08638 1.12440 1.06652 1.08823 1.11402 1.07530 
5 1.11630 1.16636 1.09000 1.10535 1.16452 1.07530 
6 1.18687 1.36005 1.09000 1.18642 1.39355 1.07530 
7 1.30256 1.67089 1.09000 1.29833 1.70333 1.07530 
8 1.29930 1.66214 1.09000 1.29433 1.69226 1.07530 
9 1.32929 1.74573 1.09000 1.32432 1.77854 1.07530 
10 1.37454 1.87564 1.09000 1.36570 1.90086 1.07530 

       
The above series are graphed in Chart 5 below. 
 
Chart 5: Quarterly Constant Quality Housing Price Pt, Land Price PL

t and New 
Structures Price PS

t and the Corresponding Quarterly Aggregates Generated by the 
Monthly Model, APt, APL

t and APS
t  

 

 
 
It can be seen that the original quarterly overall house price index series, Pt, coincides so 
closely with the corresponding aggregated series from the monthly model, APt, that the 
two series can barely be distinguished from each other in Chart 5. Similarly the original 
quarterly constant quality structures price index, PS

t, can barely be distinguished from its 
aggregated counterpart from the monthly model, APS

t. Finally, the original quarterly 
series for land, PL

t, lies slightly below its monthly aggregated counterpart, APL
t, for the 
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first half of the sample period and slightly above for the second half. Our conclusion is 
that the monthly and quarterly hedonic regression models are in fairly close agreement 
with each other. Both models seem to give sensible results. 
 
It can be seen that the logic behind our functional form assumptions for our hedonic 
regression model come from the supplier perspective; i.e., we justified our model from 
the perspective of a builder who buys a lot at a given price per squared meter and then 
builds a structure on the lot at another price per squared meter of floor space of the 
structure. But it is important to justify a hedonic regression model from a consumer or 
purchaser perspective as well23

 
 and in the following section, we explore such an approach. 

6. Hedonic Regressions for Housing from a Consumer Perspective  
 
A very simple way to justify a hedonic regression model from a consumer perspective is 
to postulate that households have the same (cardinal) utility function, f(z1,z2), that 
aggregates the amounts of two relevant characteristics, z1 > 0 and z2 > 0, into the overall 
utility of the “model” with characteristics z1, z2 into the scalar welfare measure, f(z1,z2). 
Thus households will prefer model 1 with characteristics z1

1,z2
1 to model 2 with 

characteristics z1
2,z2

2 if and only if f(z1
1,z2

1) > f(z1
2,z2

2).24 Thus having more of every 
characteristic is always preferred by households. The next assumption that we make is 
that in period t, there is a positive generic price for all models, ρt, such that the 
household’s willingness to pay, Wt(z1,z2), for a model with characteristics z1 and z2 is 
equal to the generic model price ρt times the utility generated by the model, f(z1,z2); i.e., 
we have for each model n with characteristics z1n

t,z2n
t that is purchased in period t, the 

following willingness to pay for model n:25

 
 

(11) Wt(z1n
t,z2n

t) = ρt f(z1n
t,z2n

t). 
 
In order to relate the above model to sales in the Dutch city of “A”, identify the first 
characteristic with the size of the land area of the house n sold in period t, Ln

t, and the 
second characteristic with the quality adjusted (for the age of the structure) size of the 
structure, ASn

t, so that  
 
(12) ASn

t ≡ (1 − δA)Sn
t  

 
where Sn

t is the unadjusted size of the structure, δ is the depreciation rate for structures 
and A is the age of the structure. Finally, set the willingness to pay for the housing unit, 

                                                 
23 Purchaser preferences for properties are perhaps more important than producer costs of production since 
a property will not be purchased unless the utility of the property to the buyer is equal to or greater than its 
cost. 
24  It is natural to impose some regularity conditions on the characteristics aggregator function f like 
continuity, monotonicity (if each component of the vector z1 is strictly greater than the corresponding 
component of z2, then f(z1) > f(z2) and f(0,0) = 0. 
25 For more elaborate justifications for household based hedonic regression models, see Muellbauer (1974) 
and Diewert (2003). 
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Wt(Ln
t,(1 − δA)Sn

t), equal to the selling price of the property, vn
t and we have the 

following hedonic regression model: 
 
(13) vn

t = ρt f(Ln
t,(1 − δA)Sn

t). 
 
There remain the problems of choosing a stochastic specification for the hedonic 
regression model (12) and of choosing a functional form for the hedonic utility function f. 
The simplest choices for f(L,AS) are that (i) f is a linear function of L and AS or (ii) f has 
a Cobb-Douglas functional form. These two choices lead to the following hedonic 
regression models after adding mean zero error terms ηn

t to each choice:26

 
 

(14) vn
t = ρt(αLn

t + β(1 − δAn
t)Sn

t) + ηn
t ;                                       n = 1,...,N(t); t = 1,...,T; 

(15) lnvn
t = lnρt + α + β lnLn

t + γ ln[(1 − δAn
t)Sn

t] + ηn
t ;               n = 1,...,N(t); t = 1,...,T. 

 
In order to identify all of the parameters, we require a normalization on the hedonic 
prices ρt. It is natural to set ρt equal to one in the first period: 
 
(16) ρ1 = 1. 
 
It can be seen that the hedonic regression model defined by (14) and (16) is essentially a 
reparameterization of our first simple regression model explained in section 2 above 
(with some additional restrictions on the parameters). However, the Cobb-Douglas model 
defined by (15) and (16) is a new model and we will use our 10 quarters of data in order 
to estimate the nine time dummy parameters, ρ2, ρ3, ... , ρ10, and the 4 remaining 
parameters, α, β, γ and δ. This model is essentially a standard log-log time dummy 
hedonic regression model.27

 
           

The results of the above reparameterized model were as follows: the quarter 1 estimated 
parameters were α = 1.7662 (0.016564), β = 0.49941 (0.011127), γ = 0.50163 (0.024201)  
and  δ = 0.12609 (0.0072004) (standard errors in brackets) with an R2 of 0.8244.28

 

 The 
parameters lnρ2, lnρ3,..., lnρ10 were 0.0376, 0.0265, −0.0034, 0.0496, 0.0669, 0.0554, 
0.0217, 0.0161 and 0.0314 respectively and the standard errors for all of these time 
dummy variables was very close to 0.02. Thus the estimate for the quarter 4 time dummy, 
lnρ4, turned out to be negative but it was not significantly negative since the t statistic 
was only −0.15.  

                                                 
26 Note that the linear f(L,AS) that is defined in (14) is linearly homogeneous in the variables L and AS. 
The Cobb-Douglas f that is defined in (15) will be linearly homogeneous if β + γ = 1.  
27 The only unusual feature of this model is the nonlinearity that arises from the use of quality adjusted 
structures as a characteristic rather than the use of unadjusted structures and age as explanatory variables. 
28 Recall that in the quarterly model estimated in section, the R2 was .8383 and the estimated depreciation 
rate was 0.14763 which is a bit higher than our present estimated decade depreciation rate of 0.12609     
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The most interesting feature of our quarterly log-log regression is that our estimated 
Cobb-Douglas hedonic aggregator function exhibited virtually constant returns to scale 
in the two characteristics; i.e., our parameter estimates for β and γ summed to 1.00104.29

 
            

Our estimated time dummy variables were exponentiated and are reported as the ρt series 
in Table 12 below.30

 

 These estimated overall house price indexes can be compared with 
our earlier estimates listed in Table 6 above; see the series Pt listed there. It can be seen 
that the correspondence between ρt and our earlier price series for housing Pt is fairly 
close; see Chart 6 below.   

We now encounter a problem with the log-log hedonic regression model as compared to 
the linear hedonic regression model explained in section 4 above: the linear model 
generated separate estimates for the price of land and for the price of quality adjusted 
structures whereas the present model does not seem to be able to generate these separate 
estimates for the price of land and structures. However, it is possible to use the log-log 
model (or any other hedonic model based on a hedonic utility function f(z1,z2)) in order to 
generate imputed estimates for the price of land, ρL

t, and for quality adjusted structures, 
ρS

t. The basic idea is to take the consumer’s period t willingness to pay function, 
Wt(z1,z2), and differentiate it with respect to z1 and z2. These two partial derivatives will 
give us estimates of the consumer’s increase in well being in period t, valued at the 
period t price for the hedonic aggregate, due to a marginal increase in the quantities of z1 
and z2; i.e., we will have imputed prices for extra units of z1 and z2 in period t. Thus we 
define ρL

t and ρS
t as follows: 

 
(17) ρL

t ≡ ∂Wt(z1
t*,z2

t*)/∂z1 = ρt∂f(z1
t*,z2

t*)/∂z1 ;                                                   t = 1,...,T ; 
(18) ρS

t ≡ ∂Wt(z1
t*,z2

t*)/∂z2 = ρt∂f(z1
t*,z2

t*)/∂z2 ;                                                   t = 1,...,T 
 
where z1

t* and z2
t* are the average amounts of land and quality adjusted structures for the 

properties sold in period t; see the last two columns of Table 12 for a listing of these 
average quantities for our sample of 10 quarters of data. Note that the average amount of 
land series is more volatile than the average quantity of quality adjusted structures series. 
We use (17) and (18) to generate imputed price series for land and quality adjusted 
structures, using our estimated coefficients for α, β and γ in order to form an estimated 
f(z1,z2) function.31

 

 The average utility or quantity of housing in each quarter generated by 
our log-log model, ut* ≡ f(z1

t*,z2
t*), is also listed in Table 12.     

                                                 
29 We also estimated the log-linear variant of a hedonic regression; i.e., our estimating equation for this 
model was lnvn

t = ρt(αLn
t + β(1 − δAn

t)Sn
t) + ηn

t. Our Dutch data did not support this model at all; the final 
log likelihood for this model was only 226.3350 as compared to the final log likelihood for the log-log 
model of 587.2707. The R2 for the log-linear model was only 0.7064 as compared to the R2 of 0.8244 for 
the log-log model. Both the log-linear and the log-log model have the same dependent variables so their log 
likelihoods and R2 can be compared.   
30 We set ρ1 = 1. 
31 We also use our estimated δ coefficient in order to form quality adjusted structures for each observation 
in our sample. 
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Table 12: Quarterly Price Series for Housing ρt, Land ρL
t and for Structures ρS

t and 
Average Quantity of Housing ut*, Land z1

t* and Adjusted Structures z2
t* 

      
Quarter      ρt    ρL

t     ρS
t     ut*      z1

t*     z2
t* 

1 1.00000 0.59342 1.31578 2.73702 2.30339 1.04346 
2 1.03838 0.58707 1.43397 2.94696 2.60311 1.07046 
3 1.06632 0.63251 1.40368 2.78595 2.34557 1.06163 
4 1.06271 0.61942 1.42368 2.89453 2.48009 1.08384 
5 1.11679 0.62730 1.55238 3.02638 2.69076 1.09214 
6 1.19406 0.65592 1.69707 3.07518 2.79573 1.08537 
7 1.26213 0.67971 1.82945 2.96912 2.75336 1.02753 
8 1.28984 0.71421 1.81872 3.08031 2.77816 1.09584 
9 1.31074 0.75710 1.77193 2.96772 2.56590 1.10122 
10 1.35251 0.79026 1.80755 2.92238 2.49783 1.09691 

 
The land and quality adjusted structures prices generated by the log-log model were 
normalized to equal unity in quarter one and these normalized series are listed as ρL

t and 
ρS

t in Table 13 below. These series can be compared to the price of land PL
t and quality 

adjusted structures PS
t that were generated by our quarterly linear model listed in Table 6 

of section 4 above, which are also listed in Table 13.  
 
Table 13: Quarterly Price Series for Housing Pt and Imputed Prices for Land PL

t 
and for Constant Quality Structures PS

t from the Linear Hedonic Model and their 
Counterparts, ρt, ρL

t and ρS
t from the Log-Log Model 

 
Quarter    Pt     ρt    PL

t    ρL
t     PS

t    ρS
t 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
2 1.04712 1.03838 1.11966 0.98930 1.01173 1.08982 
3 1.04959 1.06632 1.12710 1.06587 1.01173 1.06681 
4 1.08823 1.06271 1.11403 1.04380 1.07530 1.08201 
5 1.10535 1.11679 1.16452 1.05708 1.07530 1.17982 
6 1.18642 1.19406 1.39356 1.10532 1.07530 1.28978 
7 1.29832 1.26213 1.70330 1.14541 1.07530 1.39039 
8 1.29433 1.28984 1.69226 1.20355 1.07530 1.38223 
9 1.32431 1.31074 1.77854 1.27582 1.07530 1.34668 
10 1.36569 1.35251 1.90086 1.33170 1.07530 1.37375 

 
The series listed in Table 13 are graphed in Chart 6. 
 
Looking at Table 13 and Chart 6, it can be seen that our overall estimates of house price 
inflation from the linear hedonic model, Pt, and from the log-log hedonic model, ρt, are 
very close to each other. However, the two hedonic models produce very different 
estimates of land and structures inflation: the estimates of land price inflation from the 
linear model, PL

t, are well above the corresponding log-log estimates, ρL
t, whereas the 

estimates of structures price inflation from the linear model, PS
t, are well below the 
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corresponding log-log estimates, ρS
t. The question naturally arises: which set of estimates 

is closer to the “truth”? 
 
Chart 6: Quarterly Price Series for Housing Pt and Imputed Prices for Land PL

t and 
for Constant Quality Structures PS

t and their Counterparts, ρt, ρL
t and ρS

t  
 

 
 
We believe that the estimates from the linear model are more credible. Evidently, there 
was a bit of a house price “bubble” in the Netherlands during these 10 quarters. The log-
log model attributes more than half of the bubble to increases in the price of structures 
whereas the linear model attributes most of the bubble to increases in the price of land. A 
look at construction prices in the Netherlands shows that construction prices did not 
increase dramatically during these 10 quarters starting at the first quarter of 1998.32

                                                 
32 The Statistics Netherlands (national) Construction Price Index for new dwellings for the same period 
took on the following values (with Q1 in 1998 normalized to equal unity): 100, 100.4, 100.4, 100.8, 101.0, 
101.7, 102.7, 103.1, 104.5,105.1. 

 Thus 
the linear model is more consistent with the actual pattern of construction prices and the 
price of raw land during this period. One could argue that this is irrelevant: what counts 
are household, or more generally, purchasers valuations of the characteristics and these 
valuations do not have to coincide with market prices for units of the characteristics 
purchased separately. However, a situation where a purchaser’s valuation of an extra unit 
of land is well below the market price of land and where the valuation of an extra unit of 
structure is well above the market price of building that extra unit should not persist 
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indefinitely: there will be a tendency for purchasers to buy houses with more floor space 
and less land in order to move their marginal willingness to pay for land and structures 
closer to the corresponding market prices for land and structures.   
 
7. Conclusion 
 
Our tentative conclusion at this point is that hedonic regression techniques can be used in 
order to decompose the selling prices of properties into their land and structure 
components but it is not a completely straightforward exercise. In particular, 
monotonicity restrictions on the parameters will generally have to be imposed on the 
model in order to obtain sensible results33

 

 We found that our model worked fairly well on 
monthly data as well as on quarterly data. Our results also indicate that stable coefficients 
cannot be obtained using just data for one quarter. An open question is: how many 
quarters (or months) of data do we need to run in the one big nonlinear regression in 
order to obtain stable imputed prices for land and structures? 

Here is a list of topics where further research is required: 
 
• Can we adapt our method into a rolling year method; i.e., we use only the data for 

a full year plus one additional time period and use the results to update our 
previous series?34

• We did not eliminate any outliers in our preliminary research. Do we get similar 
results if outliers are eliminated?

 

35

• Is it worthwhile to consider more characteristics? 
 

• How does our suggested method compare to the repeat sales method36

• Can our method be generalized to deal with the sales of condominiums and 
duplexes?

 (using the 
same data set)? 

37
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