LC Ut

The World Bank

Asia Sustainable and Alternative Energy Program

TERANIECUTADIA

H-H CONCRETE SCREED

Transport

Greenhouse Gas Emissions Mitigation in Road Construction and Rehabilitation: *A Toolkit for Developing Countries*

June 2011

ized

Copyright © 2011

The International Bank for Reconstruction and Development / The World Bank Group 1818 H Street, NW Washington, DC 20433, USA

All rights reserved

First printing: June 2011 Manufactured in the United States of America.

Photo credits: Egis

The World Bank

Asia Sustainable and Alternative Energy Program

Transport

Greenhouse Gas Emissions Mitigation in Road Construction and Rehabilitation: *A Toolkit for Developing Countries* June 2011

© 2011 The International Bank for Reconstruction and Development/The World Bank Group 1818 H Street NW Washington, DC 20433

All rights reserved

First printing: June 2011

Photo credits: Egis

The findings, interpretations, and conclusions expressed in this report are entirely those of the authors and should not be attributed in any manner to the World Bank or its affiliated organizations, or to members of its board of executive directors or the countries they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility whatsoever for any consequence of their use. The boundaries, colors, denominations, and other information shown on any map in this volume do not imply on the part of the World Bank Group any judgment on the legal status of any territory or the endorsement or acceptance of such boundaries.

Contents

Acronyms a	Ind Abbreviations	vii
Acknowledg	gments	viii
1.1. Conte 1.1.1. 1.1.2. 1.1.3. 1.2. Purpos	tion xt and Background Context Purpose of the Toolkit Approach Followed to Develop the ROADEO Calculator se of this Background Report ure of this Background Report	1
 2.1. GHG E 2.1.1. 2.1.2. 2.2. Main I 2.2.1. 2.2.2. 2.2.3. 2.3. Currer 2.3.1. 2.3.2. 2.3.3. 2.3.4. 2.3.5. 2.3.6. 2.3.7.0 2.3.8. 	Analysis of Road Construction Emissions Emissions in Road Construction Road Transport GHG Emissions Globally and by Region Rationale for Focusing on Road Construction Activities ssues Global Emissions Emissions Per Work Item and Per Type of Road Emissions Per Phase of Work and Per Type of Road transformer Phase of Work and Per Type of R	
3.1. Need 3.2. Asses 3.2.1. 3.2.2. 3.2.3. 3.3. Functi 3.4. Assum 3.5. Emiss	ment of a Calculation Tool for Tools sment of Existing Tools Main Principles of Existing Tools Comparison of Calculations of Existing Tools Characteristics and Limitations of Existing Tools ons of the Tool ptions, Modeling, and Calibration ions Factors	

4.	Alternative Practices to Reduce GHG Emissions	25
	4.1. Overview	25
	4.2. Identification of Alternative Practices	25
	4.2.1. Transport	26
	4.2.2. Earthworks	26
	4.2.3. Pavement	26
	4.2.4. Structures	28
	4.2.5. Equipment and Road Furniture	29
	4.3. Integration into the ROADEO Calculator	29
	4.4. Financial and Economic Analysis	29
	4.4.1. Financial Analysis	29
	4.4.2. Economic Analysis	29
	4.4.3. Analysis Conclusions	30
	4.4.4. Policy Implications	30
5.	Conclusions	31
	5.1. Main Outcomes	
	5.2. Challenges Ahead	31
Ap	opendix A. Summary of Current Practices and Corresponding Alternatives	33
	opendix A. Summary of Current Practices and Corresponding Alternatives	
	ppendix B. ROADEO User Manual	41
		41 41
	pendix B. ROADEO User Manual User Manual: Model Framework and Assumptions	41 41 41
	pendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction	41 41 41 41
	Dependix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document	41 41 41 41 41
	Dependix B. ROADEO User Manual User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document	41 41 41 41 41 42
	Dependix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice	41 41 41 41 41 42 42
	opendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice Calculation Tool Architecture	41 41 41 41 41 42 42 42 42
	opendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice Calculation Tool Architecture. General Requirements	41 41 41 41 42 42 42 42 42 42 43
	opendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice Calculation Tool Architecture General Requirements Data Arrangements	41 41 41 41 42 42 42 42 42 43 45
	opendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice Calculation Tool Architecture. General Requirements Data Arrangements General Model Framework Architecture Parameters/Background Data	41 41 41 41 41 42 42 42 42 43 45 45 45
	opendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice Calculation Tool Architecture. General Requirements Data Arrangements General Model Framework Architecture Parameters/Background Data GHG Generators	41 41 41 41 41 42 42 42 42 43 45 45 50
	opendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice Calculation Tool Architecture. General Requirements Data Arrangements General Model Framework Architecture Parameters/Background Data GHG Generators Materials	41 41 41 41 42 42 42 42 43 45 45 45 50 50
	opendix B. ROADEO User Manual. User Manual: Model Framework and Assumptions Introduction Purpose of this Document Structure of the Document Notice Calculation Tool Architecture. General Requirements Data Arrangements General Model Framework Architecture Parameters/Background Data GHG Generators	41 41 41 41 42 42 42 42 42 43 45 45 50 50 57

CD Contents:
User Manual—Extended Version
Annex 1. Greenhouse Gas Emissions in Road Construction and Rehabilitation
Annex 2. Review of Current Road Construction Practices in East Asia
Annex 3. Identification of Gaps Between Best Practices from Developed Countries and Practices
in Pilot Developing Countries, with Proposals for Improving the Situation
Annex 4. Assessment of Costs and Benefits of Each Alternative Practice
ROADEO Calculator

Figures

1	Road Transport Emissions as Part of Global and Transport GHG Emissions	3
2	Emissions per Item of Work, by Type of Road	5
3	Emissions per GHG Generator, by Type of Road	5
4	Total CO, Emissions over a 40-Year Period for a 1 Km Long and 13 m Wide Road During Construction,	
	Maintenance, and Operation	14
5	Some of the Emissions Calculations Tools Reviewed	
6	Tools Comparison	17
7	Simplified Calculation Process for Materials	
8	CHANGER Data Input Screen	19
9	Emissions from a Ring Road Section in France—Egis Calculator	19
10	Breakdown of Emissions from a Ring Road Section in France—Egis Calculator	19
11	Proposed ROADEO Calculator Report Format	20
12	ROADEO Calculator Boundaries	24
13	Cumulative GHG Emissions for Construction and Maintenance Activities, Depending on	
	Pavement Construction/Maintenance Strategy	27
14	Comparison of Distributed Costs between Initial Construction and Maintenance Activities,	
	Depending on Pavement Construction/Maintenance Strategy	28
B1	ROADEO Calculator Tool Organization	
B2	Quantities of Steel (kg/m²) for Bridges, Depending on Span	55
B3	Effective Thickness—thus Quantities of Concrete—for Bridges, Depending on Span	55
Table	es	

а	b	le	S

1	Regional Breakdown of Road Transport Share in Transport GHG Emissions	4
2	Typical Unit GHG Emissions of Various Road Categories	
3	Typical Breakdown of GHG Emissions, by Work Item, for Various Road Categories	
4	Typical Breakdown of GHG Emissions, by Generator, for Various Road Categories	
5	Orders of Magnitude of GHG Emissions Related to the Road Construction Program in	
	Three East Asian Countries, 2009–19	7
6	Roles in Environmental Management	10
7	Tools Comparisons Synthesis	16
8	Parameters Used for ROADEO's Summarized Description of the Road	21
9	Case Studies Used to Calibrate the ROADEO Calculator Model	21
10	Emissions Intensities within VicRoads, CHANGER, and Egis Calculators	22
11	Emissions Intensities for Steel, According to Various Sources	23
12	GHG Emissions in kg eqCO, for the Production of 1 Ton of Cement	23
13	GHG Emissions in kg eqCO ₂ for the Production of 1 m ³ of Ready-Mix Concrete	23
14	Relative Importance of Explosives in GHG Emissions from Earthworks Techniques	26
15	Comparison of GHG Emissions from Construction of Embankments, Bridges, and Tunnels	28
A1	Summary of Current Practices and Corresponding Alternatives	33
B1	Combination of GHG Generators and Works Components	45
B2	List of Parameters Used in Calculations of Stage 1 of the Model	46
B3	List of Parameters Used in Calculations of Stage 2 of the Model	48
B4	List of Parameters to be Defined by the User	49
B5	Soil Densities for Binder Mixing with Soil	50
B6	Emission Factors of Hydraulic Binders	50
B7	Typical Pavement Types and Designs	51
B8	Materials Considered in Typical Pavement Designs	
B9	Traffic Classes for Concrete Pavement	51
B10	Subgrade Class for Concrete Pavement Structures	51

Traffic Classes for All Pavement Structures Except Concrete	52
Subgrade Class for All Pavement Structures Except Concrete	52
Subgrade Strength Classes Used When California Bearing Ratio Data are Unavailable	52
Quantities of Materials for Typical Pavement Layers	53
Composition of Pavement Layers	54
Composition of Asphalt and Concrete	54
Quantities of Materials for Drainage Works	54
Quantities of Materials for Walls	55
Quantities of Materials for Major Bridges	56
Quantities of Materials for Directional Signs	56
Quantities of Materials for Tunnels	56
Quantities of Materials for Barriers	56
Quantities of Materials for Lighting Works	57
Quantities of Materials for Wayside Amenities	57
Characteristics of Construction Equipment	58
Emissions Due to Equipment for Various Works Types	61
Default Transport Distances	64
Default Transport Fleet Characteristics	65
Above-Ground Biomass Depending on Land Cover Types in Continental Asia	65
	Traffic Classes for All Pavement Structures Except Concrete Subgrade Class for All Pavement Structures Except Concrete Subgrade Strength Classes Used When California Bearing Ratio Data are Unavailable Quantities of Materials for Typical Pavement Layers Composition of Pavement Layers Composition of Asphalt and Concrete Quantities of Materials for Drainage Works. Quantities of Materials for Valls Quantities of Materials for Standard Bridges Quantities of Materials for Standard Bridges Quantities of Materials for Directional Signs Quantities of Materials for Directional Signs Quantities of Materials for Tunnels Quantities of Materials for Barriers Quantities of Materials for Lighting Works Quantities of Materials for Lighting Works Quantities of Materials for Vayside Amenities. Characteristics of Construction Equipment Emissions Due to Equipment for Various Works Types Default Transport Distances Default Transport Fleet Characteristics Above-Ground Biomass Depending on Land Cover Types in Continental Asia

Acronyms and Abbreviations

AASHTO	American Association of State Highway and Transportation Officials	FUND	Fra anc
AAU	Assigned Amount Unit	GHG	Gre
ADEME	Agence de l'Environnement et de la	HMA	Hot
	Maîtrise de l'Energie	HMAM	Hig
AFD	Agence Française de Développement	IEA	Inte
ASTAE	Asia Sustainable and Alternative Energy Program	IRF	Inte
ATILH	Association Technique de l'Industrie des Liants Hydrauliques	IPCC IRR	Inte Inte
BAU	Business As Usual	ITL	Inte
CBR	California Bearing Ratio	JI	Joi
CDM	Clean Development Mechanism	LCPC	Lab
CER	Certified Emission Reduction		Cha
CRRAP	Cold Recycling of Reclaimed Asphalt	NPV	Net
	Pavement	ODA	Off
DBST	Double Bituminous Surface Treatment (road)	ORN	Ove
DNA	Designated National Authority	PDD	Pro
EAP	East Asia and Pacific Region	PPD	Per
EIRR	Economic Internal Rate of Return	PPM	Par
EMP		QA	Qu
	Environmental Management Plan	QC	Qu
EPA	Environmental Protection Agency	RGGI	Reg
ERU	Emission Reduction Unit	SC	Sta
ESA	Equivalent Standard Axles	SCC	Soc
ETS	Emission Trading Scheme	SETRA	Ser
EU	European Union		et A
FHWA	Federal Highway Administration	TRL	Trai
FIDIC	International Federation of Consulting Engineers	UNFCC	Uni Clir
FIRR	Financial Internal Rate of Return	WMA	Wa

FUND	Framework for Uncertainty, Negotiation, and Distribution
GHG	Greenhouse Gas
HMA	Hot Mix Asphalt
HMAM	High Modulus Asphalt Material
IEA	International Energy Association
IRF	International Road Federation
IPCC	International Panel on Climate Change
IRR	Internal Rate of Return
ITL	International Transaction Log
JI	Joint Implementation
LCPC	Laboratoire Central des Ponts et Chaussées
NPV	Net Present Value
ODA	Official Development Assistance
ORN	Oversea Road Notes
PDD	Project Design Document
PPD	Perpetual Pavement Design
PPM	Parts Per Million
QA	Quality Assurance
QC	Quality Control
RGGI	Regional Greenhouse Gas Initiative
SC	Stage Construction
SCC	Social Cost of Carbon
SETRA	Service D'Etudes Techniques des Routes et Autoroutes
TRL	Transport Research Laboratory
UNFCC	United Nations Framework Convention on Climate Change
WMA	Warm Mix Asphalt

Acknowledgments

This publication, which was funded by the Asia Sustainable and Alternative Energy Program (ASTAE), was authored by the consultant Egis International and guided by the direction of Task Team Leader Fei Deng, Senior Transport Specialist, East Asia Sustainable Development Infrastructure Unit at the World Bank. The World Bank team was supported by the efforts of Emily Dubin, Peng Wang, Jean-Marie Braun, and Geoffrey Kurgan. The Egis International team, which was led by Grégoire Nicolle and Nicolas Morice, was supported by the efforts of Matthew Addison, François-Marc Turpin, Marie-Claire Cao, Benoit Ficheroulle, Michaël Nogues, Robert Lynch, Pierre Sarrat, and Agnès Capron. In addition, Egis International was supported by the Egis Environment team, including Mireille Lattuati and Antonin Caen.

During the course of this study, the Egis team gained considerable knowledge through the support of a number of different agencies and organizations in China, Indonesia, and Vietnam. In particular, the team would like to acknowledge Shandong Luquiao Group Co. Ltd., Hebei Provincial Communications Dept., and the Chinese Metallurgy Civil Engineering Corp. in China. In Indonesia, the team is indebted to the assistance of the Australian Agency for International Development (AusAID), the Ministry of Public Works, and the Directorate General of Highways. Finally, in Vietnam, substantial support was provided by the Asian Development Bank (ADB), the Vietnam Expressway Corporation, and Transport Engineering Design Inc. (TEDI). Both the Bank and the Egis teams gratefully recognize the time and insight provided by these partners-for without them, this project could not have become a reality.

The teams would like to give special recognition to World Bank staff for their help with the peer review process and for providing considerable feedback including: Cesar Queiroz (INTSC), Federico Querio (ENV), Sameer Akbar (ENV), Nat Pinnoi (ENVCF), and Peter O'Neill (TWITR). In addition, the teams would like to gratefully acknowledge the valuable comments that were received during the software review process by Mauricio Ruiz from The Transtec Group, Dr. Richard Jon Porter at the University of Utah, Milena Breisinger from the Inter American Development Bank, Patrice Danzanvilliers at the French Ministry of Transport, as well as Jonathan Slason and Simon Bannock from Beca.

The Bank team would also like to give thanks to Steve Meltzer for editing the document, Laura Johnson for providing the graphic design work, Marti Betz for the work on the cover design, and Laurent Durix for his effective coordination in the publication and dissemination of this report.

Throughout this study, the Bank team enjoyed the encouragement provided by many colleagues; in particular the team would like to recognize the strong support and guidance from Vijay Jagannathan (EASIN) and Ede ljjasz (EASCS). Finally, the teams would like to acknowledge ASTAE for their vision in funding a multisectoral project such as this. The achievement of adopting renewable energy sources, improving energy efficiency, and increasing access to energy cannot be truly accomplished without all sectors working together. This study is a significant step in proving that a multisectoral approach to the ASTAE objectives can be realized.

Introduction

1.1 Context and Background

1.1.1. Context

The goal of the transport sector of the World Bank's East Asia and Pacific Region (EAP) is to identify solutions that minimize greenhouse gas (GHG) emissions caused by road construction and rehabilitation in the region. The transport team was awarded a grant from the Asia Sustainable and Alternative Energy Program (ASTAE) to finance creation of a toolkit addressing GHG emissions resulting from such development and restoration activities.

It is anticipated that over the next several years, developing countries in East Asia will substantially expand and restore their extensive road networks. One result of these activities will be increased GHG emissions. Reducing these could significantly decrease the negative impacts related to these infrastructure works.

There are several steps involved in road construction that contribute to the production and release of GHG emissions: site clearing, subgrade preparation, production of construction materials (granular sub-base, base course, surfacing), site delivery, construction works, ongoing supervision, maintenance activities, and so on. The aggregate GHG emissions for each project or sub-project (phase, section, alignment) can be calculated based on equipment used, local conditions, and standard construction and maintenance practices. This document has been prepared as part of a study aimed at identifying and quantifying the GHG emissions from current practices, and at developing a strategy for better planning, design, and construction of roads. It is meant to give planners, designers, and contractors a tool with which they can explicitly compare emissions and costs, as well as make more informed decisions—some of which will result in lower-emission roads.

1.1.2. Purpose of the Toolkit

The Greenhouse Gas Emission Mitigation Toolkit for Highway Construction and Rehabilitation (ROADEO), together with the accompanying User Manual (see appendix B on the accompanying CD) will guide road practitioners through the various stages and activities of road construction and rehabilitation, help them identify areas sensitive to GHG emissions, and present various mitigation options that take cost and benefit implications into account. With the ROADEO calculator, decision makers, designers, and technicians in the highway sector can easily compare various construction alternatives and optimize their practices to both minimize GHG emissions and maximize energy efficiency. It is envisioned that the ROADEO calculator will be used on both new and existing projects. The toolkit includes:

- A set of reports providing background information on GHG emissions from road construction activities
- A calculator tool, ROADEO (ROADs Emissions Optimisation)
- The ROADEO calculator user manual

1.1.3. Approach Followed to Develop the ROADEO Calculator

The preparation of the ROADEO calculator involved nine activities.

- Task 1: Undertake a broad assessment of GHG emissions related to the transport sector
- Task 2: Complete a detailed literature review on GHG emissions from road construction and rehabilitation activities
- Task 3: Review current road construction and rehabilitation practices in three East Asian developing countries
- Task 4: Select recent case studies, with detailed analysis of GHG emissions, in each country
- Task 5: Perform GHG emissions calculations
- Task 6: Identify gaps between best practices in developed countries and practices in pilot developing countries and propose alternative practices that could represent improvements
- Task 7: Assess costs and benefits of each alternative practice proposed in Task 6
- Task 8: Develop the Greenhouse Gas Emission Mitigation Toolkit for Road Construction and Rehabilitation
- Task 9: Complete the User Manual to accompany the ROADEO calculator

1.2. Purpose of this Background Report

The purpose of this background report is to present the findings of the study that led to the development of the Toolkit. It is intended to introduce nonspecialists to the main issues involved in road construction-related GHG emissions in East Asia. While it was not possible to

investigate all details, or to cover the very wide range of situations met on all road projects, efforts were made to identify orders of magnitude, extents and impacts, as well as converging and diverging practices in the road community on some topics.

It is hoped that the report will provide users with useful, detailed information gathered during the preparation of the Toolkit.

This document does not fully describe the functions of the ROADEO calculator; that is the purpose of the User Manual, which can be found in the CD that accompanies this report. Reference can be made to this background report.

1.3. Structure of this Background Report

This background report includes:

- Main body (this document) provides general information and an executive summary of the document's content.
- Annexes, each covering an aspect of GHG emissions as they relate to road construction and rehabilitation. Due to the extensive volume of material covered through this study, the annexes have been placed in the CD that accompanies this report.
 - Annex 1—Introduction to GHG emissions from road construction
 - Annex 2—Review of current road construction
 practices in East Asia
 - Annex 3—Lower-emissions alternative practices for road construction
 - Annex 4—Economic and financial analysis of road construction GHG emissions

2

General Analysis of Road Construction Emissions

2.1. GHG Emissions in Road Construction

2.1.1. Road Transport GHG Emissions Globally and by Region

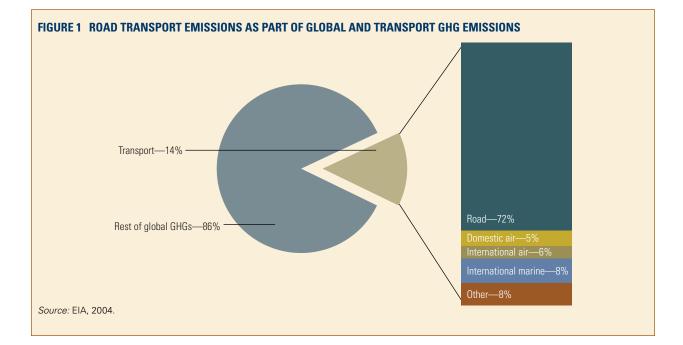

A 2005 International Energy Association (IEA) study revealed that the transport sector (road vehicles, trains, ships, and aircraft) is the second largest producer of GHG emissions. Road transport accounts for about 90 to 95 percent of the sector's production (figure 1).

Table 1 (next page) shows that road transport in Asia is a major contributor to transport GHG emissions. This is the

region of the world currently constructing the most new roads, and represented 37 percent of man-made GHG emissions in 2005.

2.1.2. Rationale for Focusing on Road Construction Activities

- While road construction GHG emissions represent only 5–10 percent of total GHG emissions in the sector, they are growing rapidly, especially in Asia, the result of the region's major ongoing road programs in support of economic development.
- Road construction mitigation efforts are relatively easy to manage, and can have higher-profile impact

	GHG em	GHG emissions in 2005 (Mt eqCO $_{\rm 2}$ and %)			
	Total	Transport sector		contribution to transport sector	
World	38,725.90	5,378.00	14%	72%	
Asia	14,236.90	1,098.80	8%	95 to 100%	
Europe	8,141.90	1,244.10	15%	93%	
North America	7,834.00	1,973.60	25%	85%	
Central America and Caribbean	773.60	161.1	21%	n.a.	
Middle East and N. Africa	2,566.90	388.9	15%	n.a.	
South Africa	2,124.90	286.9	14%	more than 50%	
Sub-Saharan Africa	1,083.20	104.2	10%	n.a.	
Oceania	647.20	93.7	14%	84%	

TABLE 1 REGIONAL BREAKDOWN OF ROAD TRANSPORT SHARE IN TRANSPORT GHG EMISSIONS

Sources: WRI, ADB, EEA, EPA and National Inventories.

(of interest to international financial institutions [IFI] like the World Bank) than actions on road traffic.

 Most road agencies in Asia are not yet aware of the impact of their activities on GHG emissions, even though Asia is at the center of current road construction efforts. It is important to raise stakeholders' awareness to improve current practices and to facilitate more informed decision making.

2.2. Main Issues

4

An assessment of road construction GHG emissions was performed on "typical" road sections of various types or categories. In the absence of order of magnitude of various issues, this was expected to provide an indication of:

- the respective importance of various parts of the road network in GHG emissions, through a comparison of construction emissions of various categories of roads with different characteristics (geometry, pavement, structures, and so on) and ranging from expressways to unpaved rural roads, and
- the emissions contributions of various components of the project, from pavement to structures, earthworks, road furniture (such as guardrails, lighting, signs, barrier walls, and the like) and drainage.

The calculations were made on simplified assumptions, and were performed with the "CHANGER" tool developed by the International Road Federation (IRF).

2.2.1. Global Emissions

The total GHG emissions for the construction of a 1 km section of each type of road are shown in table 2.

We see that the construction of 1 km of expressway emits as many tons of CO_2 as 4 km of national roads, 15 km of provincial roads, and around 33 km of rural roads.

2.2.2. Emissions Per Work Item and Per Type of Road

Figure 2 shows emissions produced by (i) extraction/production of construction materials, (ii) their transport, and (iii) consumption by engines used for placing them.

Structures and road furniture represent almost 50 percent (46.4 percent) of the emissions from construction of an expressway. Choices that can limit these emissions are thus of paramount importance.

For national roads, safety barriers alone represent onequarter of the total emissions during construction. Changes in practices regarding these items would have a very significant impact on the project's final footprint.

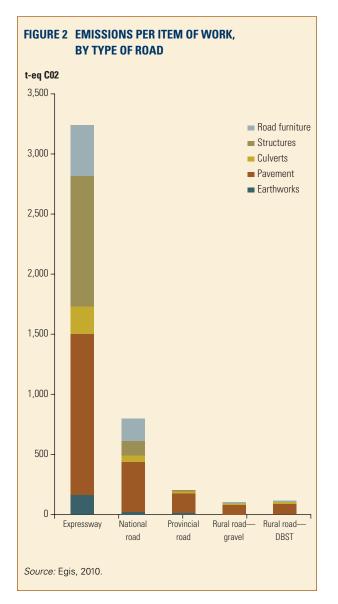
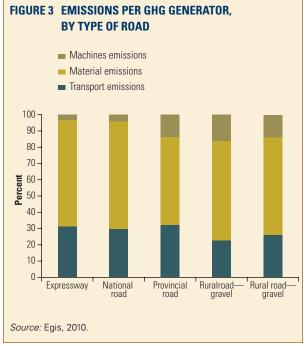

For all the other roads, pavement is the major GHG producer. The main parameters to be considered, as presented in table 4, relate to transport emissions (distance to the concrete factory, distance to the quarry/borrow pit, and so on).

TABLE 2 TYPICAL UNIT GHG EMISSIONS OF VARIOUS ROAD CATEGORIES (t CO, eq./km)
--

	Expressway	National road	Provincial road	Rural road— gravel	Rural road— DBST
Emission (t CO ₂ eq./km)	3,234	794	207	90	103
Factor equivalent to Expressway	100	24.5	6.4	2.8	3.2

Source: EIA, 2004.


Note: Expressway: Divided highway used by high-speed traffic with controlled or partially controlled access; National road: Generally funded, constructed, and operated under the auspices of the national government or, more specifically, the Ministry of Transport (usually these roads have lower traffic and weight demands compared to expressways); Provincial road: Generally funded, constructed, and operated under the auspices of the provincial government (usually have lower speeds, weight classes, and traffic demands compared to a national road); Rural gravel road: Constructed with only a gravel wearing course and operated under the auspices of a local government authority within the provincial government or a separate agency such as a department of feeder roads (usually these roads have unlimited access, are unmarked, and have low traffic demands); Rural DBST road: Double bituminous surface treatment road, generally a major feeder road found in rural areas that falls under the same auspices as the authority or department that oversees rural gravel roads (usually higher quality than rural gravel roads because of their higher traffic and weight requirements).

2.2.3. Emissions Per Phase of Work and Per Type of Road

For expressways and national roads, GHG emissions from the fabrication and extraction of construction materials are the main contributor, at about 90 percent of total emissions; they are less important for provincial and rural roads, at about 80 percent.

Materials transport is also a significant GHG producer, at around 25 percent for expressways and national roads and up to 20 percent for provincial and rural roads.

Emissions (t CO ₂ eq./km)	Expressway	National road	Provincial road	Rural road— gravel	Rural road— DBST
Earthworks	161	16	12	3	3
Pavement	1,334	425	157	72	86
Culverts	238	51	17	12	12
Structures	1,068	119	21	3	3
Road Furniture	432	182	0	0	0
Total	3,234	794	207	90	103

TABLE 3 TYPICAL BREAKDOWN OF GHG EMISSIONS, BY WORK ITEM, FOR VARIOUS ROAD CATEGORIES (t CO, eq./km)

Source: Egis, 2010.

TABLE 4 TYPICAL BREAKDOWN OF GHG EMISSIONS, BY GENERATOR, FOR VARIOUS ROAD CATEGORIES (t CO₂ eq./km)

Emissions (t CO ₂ eq.)	Transport emissions	Material emissions	Machines emissions	Total
Expressway	1,004	2,122	109	3,234
National Road	235	523	36	794
Provincial Road	66	112	29	207
Rural Road—Gravel	20	56	14	90
Rural Road—DBST	26	62	14	103

Source: Egis, 2010.

Extraction and material transport are therefore the main activities that must be considered to significantly improve the GHG impact of a road construction project.

2.3. Current Road Design and Construction Practices in East Asia

Three East Asian countries were designated for data collection by this study—China, Indonesia, and Vietnam. These pilot countries were selected because of the size and potential of their highway sector development activities.

Information was collected on:

- road development, particularly of current road networks, highway master plans, ongoing road projects, and past and future expenditures for road construction or rehabilitation, and
- current practices, particularly contract packaging, implementation techniques, design methodologies, capacity of national contractors, and technical

specifications in road construction or rehabilitation contracts.

The analysis carried out on GHG emissions for typical road sections shows that the construction of expressways would generate far more GHG per kilometer than construction of other road categories. Pavement (only flexible pavement was considered in this analysis) would generally be the major GHG emissions source, but the share of GHG emissions from structures is quite significant as well, as is the share of metallic rails for national roads.

Applying this analysis to selected countries shows that possibilities for reducing GHG emissions may significantly vary depending on current road length, distribution of road networks by type, and their assumed extension in the coming years.

2.3.1. Standards

In general, road authorities in East Asian countries have heavily referenced American Association of State Highway and Transportation Officials (AASHTO) standards

IHREE EAST #	THREE EAST ASIAN COUNTRIES, 2009–19						
	Indo	nesia	Viet	nam	Ch	ina	
\mathbf{CO}_2 emissions (t eq \mathbf{CO}_2)	2009–19	2009–19	2008–20	2008–20	2008–20	2008–20	
Expressway	6,054,048	20%	13,696,941	54%	79,873,000	25%	
National Road	11,706,139	39%	5,848,337	23%	115,683,000	37%	
Provincial Road	4,992,098	17%	2,208,218	9%	54,169,000	17%	
Rural Road—Paved	7,189,451	24%	3,708,669	15%	63,983,000	20%	
Total	29,941,737		25,462,165		313,708,000		
Source: Egis, 2010.							

TABLE 5 ORDERS OF MAGNITUDE OF GHG EMISSIONS RELATED TO THE ROAD CONSTRUCTION PROGRAM IN THREE EAST ASIAN COUNTRIES, 2009–19

when developing their own standards. China and Vietnam have adapted them to fit the specific conditions of the country. Indonesia has developed a set of regulations and standards partly based on AASHTO. In some cases, the AASHTO standards coexist with others (Vietnam also uses some Russian standards).

2.3.2. Geometric Designs

Asian countries face a number of obstacles regarding geometric design, which deals with the portioning of the physical elements of the roadway according to standards and constraints. These are related to land acquisition, use or quality of traffic growth data, project funding, and development strategies of local or national governments. Individually or in combination, this may lead to inappropriate road designs and ultimately to traffic congestion well before the road has reached its design age, which is typically understood to be the age that the road is expected to reach before major reconstruction is necessary due to an increase in traffic demands or natural deterioration.

2.3.3. Pavement Design

Asian countries tend to adopt a policy promoting short design life (about 10 years) to save on construction costs and because of the uncertainty connected with predicting long-term traffic volumes. However, initial cost savings under this strategy are often offset by mid-term and overall life-cycle costs required for maintenance and rehabilitation, which may result in increased GHG emissions.

Though vehicle overloading is a major issue in Asia, it has rarely been taken into account at the design stage. This has commonly resulted in premature end of pavement life. Overloaded vehicles adversely and significantly affect GHG emissions, not only because they decrease road serviceability life, but also because of resulting increases in maintenance costs, vehicle operating costs, and road safety.

Finally, the lack of appropriate maintenance planning and optimization keeps the level of service of highway

Four-Lane Expressway in Yunnan Province, China with Emergency Lane, Concrete Shoulders, and Concrete/Metallic Guardrail

Pavement Surface Fatigue on Provincial Road in Indonesia

7

Modern Asphalt Plant on BaoLong Expressway in Yunnan Province, China

operation below the required standard, leading to an extensive increase in emissions by road users, and the need to reconstruct rather than maintain or rehabilitate pavements.

2.3.4. Structural Design

A wide range of structural design methods and types of structure are currently under construction in East Asia. In China, arch, cable-stayed, prestressed concrete, and suspension bridges are being designed and constructed in large numbers, and low-carbon and environmental considerations are being practiced among bridge practitioners, as well. In an attempt to reduce CO₂ emissions, structure optimization in bridge design is usually pursued by reducing materials usage.

Vietnamese structural design standards are based on American specifications. Until recently, most bridges there were designed with limited span lengths (less than 40m), using basic reinforced concrete designs. Prestressed concrete and metallic and composite structures have not been widely used thus far, but have been gradually introduced.

Old Paver in Use on NH26 Rehabilitation Project in Vietnam

High Labor Intensity in Surface Dressing on County Road in Hubei Province, China

Indonesian standards (other than the Indonesian Reinforced Concrete Code) refer directly to AASHTO standards. Australian practices also have heavily influenced structural design; since the 1980s, several Australian firms have built and erected pre-cast concrete bridges. Transfield metallic prefabricated bridges (either truss or girder) are also very common. In addition, various internationally funded programs have supported the use of truss and girder metallic bridges, which are now built by local firms. In recent projects, integral abutment bridges, which take into account seismic action in a relatively sophisticated way, are being used.

2.3.5. Project Management

Management of road projects in Asia is generally complex, the result of inadequate control of implementation activities by project owners. The most common problems and issues are (i) delays in decision making by public authorities (often related to gaining approval or consensus from various agencies), and (ii) insistence on decisions and solutions that are not always based solely on sound engineering considerations. In many cases, this is a result of the project owner's representatives lacking adequate engineering training and experience.

Delegation of main project implementation responsibilities to the engineer, as understood under International Federation of Consulting Engineers (FIDIC) designation, to the design-build or engineering, procurement, and construction contractors, or both, could greatly expedite the implementation process, while responsibility for major decisions (such as critical design, specification changes, and large variation and change order approvals) could still be retained by project owners.

Asphalt Mixing Plant Producing in Poor Conditions in Vietnam

2.3.6. Contractors

The capacity of contractors on road projects in East Asia varies widely, depending on the type of road, the location and size of the project, and the level of international contractors' involvement. This section provides a brief synopsis of the capabilities and equipment used by local contractors in East Asia, as well as a short overview of international contractor involvement in the pilot countries.

For large projects in Asia, most contractors and expressway companies use the latest generation of equipment for activities such as asphalt production and implementation on site with graders, asphalt finishers, and compactors. Contractor laboratories also benefit from modern devices that can meet international best practices for mixture design of asphalt and other road-works materials.

In Vietnam, very few private contractors have their own equipment; many of them hire subcontractors with specialized equipment for major tasks such as supplying aggregates, production of hot mixtures, and construction of small bridges and culverts. As subcontractors are independent and often engaged in more than one job at a time, follow-up quality control becomes extremely difficult to provide.

In all Asian countries, for smaller provincial and rural road construction or rehabilitation projects, projects are often managed by the local government (county or village, for example), so large work crews are common and motorized equipment is not. Asphalt production in most cases takes place under poor conditions, even in some modern asphalt plants.

Modern Asphalt Plant near Hanoi, Vietnam

For these smaller projects, the results obtained from laboratory tests are often inaccurate, because laboratory staff is insufficiently skilled and compliance with testing standards and procedures is inconsistent. Contractors generally have little capacity for road design, testing, mixture designs, and construction operations. The result is low quality and unexpected delays in the construction stage of various projects.

Private contractors in Indonesia often suffer the same difficulties as Vietnam in meeting good standards. Very few local contractors have the competencies necessary to construct rigid pavements or concrete structures. These types of contracts usually remain in the hands of international contractors. Heavy equipment and other work requiring skilled operators are required to achieve results expected by the international standards that often must be met, but very few Indonesian contractors have or lease heavy equipment.

Since China joined the World Trade Organization, more foreign contractors have attempted to enter the Chinese construction market. The strict legal framework regulating their activities requires all foreign contractors to associate with a local contractor to perform road work. Though the Ministry of Construction's Decree 32 relaxed some restrictions, enough remain in place that the market share of foreign contractors has never exceeded 6 percent.

In Vietnam and Indonesia, foreign contractors (mainly Japanese, Chinese, or Korean), participate in international packages, as they generally have adequate financial resources, significant experience, and efficient management practices. However, these advantages are at least 9

partially offset by equipment costs, travel and housing expenses, and manpower procurement. In view of this, simple tasks (excavation and drainage, for example) are commonly subcontracted to local contractors. This practice is systemic in Indonesia.

2.3.7. Quality Assurance and Quality Control

Road construction quality is based on: (i) Quality Assurance (QA)—assurances that all aspects of the facilities, procedures (sampling, testing and storage), and personnel are appropriate, and (ii) Quality Control (QC)—tests carried out in accordance with the appropriate specifications. For the purposes of this report, "Quality Assurance" is used to denote both QA and QC unless noted otherwise.

Some of the most common road construction Quality Assurance problems and issues across all developing Asian countries follow.

- Aggregate and soil sampling:
 - Failure to take all required samples;
 - Individual sample volumes too small for repeat tests (if required) and storage;
 - Sampling not adequately supervised by an engineer;
 - Samples and/or sampling locations not properly identified or recorded;
 - Failure to protect samples from moisture, sample bag holes, and the like; and
 - Samples taken not representative because of accidental or purposeful selection of atypical samples (at the base of aggregate stockpiles, for example, rather than within the stockpile itself).
- Asphaltic cement and concrete sampling:
 - Samples not taken or tested at the plant or (for concrete) taken from the first rather than subsequent output;

- Incorrect marking and temporary storage of concrete samples on site; and
- Failure to test materials throughout the day and near the end of a placement.
- Sample preparation:
 - Incorrect sample preparation; and
 - Inadequate mixing of samples.
- Testing procedures:
- Wrong procedure;
- · Incorrect edition of testing procedure; and
- Lack of close technician supervision of the required testing procedure.
- Testing equipment:
 - Antiquated and damaged equipment;
 - Lack of spare parts; and
 - Malfunctioning equipment.
- Testing implementation:
 - Testing at the wrong (nonstandard) temperature (difficult in hot countries to maintain 20 degrees Celsius);
 - Samples compacted on non-rigid floors or benches; and
 - Instruments or dial gauges read incorrectly.

In China, contractors are strictly controlled by the government. All bids require adequate qualification certificates for contractors, for design institutes, and for laboratories. The preparation of an approved Quality Assurance plan is mandatory. In Indonesia and Vietnam, the Quality Assurance approach is still in its early stages. Insufficient QA results in lower road-life duration and in some cases requires more materials to be used.

2.3.8. Environmental Management

All countries studied in East Asia now require and include an Environmental Management Plan (EMP) before beginning any major construction project. Table 6 shows the agencies responsible for implementing and monitoring an EMP.

	China	Vietnam	Indonesia
Governing Institution	Ministry of Environmental Protection	Vietnam Environment Authority, MoNRE	Ministry of Environment
Implementation Unit	Project-specific Environmental Management Office (EMO)	National Environment Agency	Environmental Management Agency

TABLE 6 ROLES IN ENVIRONMENTAL MANAGEMENT

There are a number of environment-related deficiencies in construction implementation in the pilot countries. The two below are commonly reported.

- Generic or generalized mitigation measures, that is, mitigation measures that are too general ("minimize erosion/dust/runoff," for example). These make some mitigation measures impossible for the contractor to implement and the engineer to control-and leads to disagreements among environmentalists, engineers, owners, and contractors. At best, only extreme issues and inadequate compromises can be realistically achieved. This situation can be remedied, at least in part, by (i) adopting criteria presently in place in developed countries to ensure that mitigation measures or requirements are realistic and quantifiable; (ii) adding relevant, appropriately developed requirements in the Conditions of Contract; and (iii) adding, where possible and relevant, unit prices for the mitigation activities to be carried out.
- Priority sensitive issues not agreed at the highest level. In one not atypical instance, a decision was made at a high level (Ministry of Environment)—but not at the highest level (Governor)—to restrict the right-of-way in a forest reserve, resulting in inadequate width for road and drainage. The Governor of the affected province subsequently gave a direct order to the contractor to clear the width of trees to provide for minimum standards—with the outcome that additional trees were unnecessarily cut down and the EMP was not followed as intended.

2.3.9. Construction Practices

2.3.9.1. Earthworks

There are several general earthwork design and construction issues that adversely affect GHG emissions in all Asian developing countries, including:

- use of high fills in flood-prone areas,
- adoption of steep side-slopes with inadequate slope protection, and
- use of inappropriate equipment and construction techniques.

These general issues are discussed in annex 2 on the CD; and specific issues (including identification of countries in which the issues are acute) are detailed in the subsequent subsections of the annex for the individual countries studied.

2.3.9.2. Drainage

Road drainage problems dominate in the pilot countries, the result of high rainfall, flooding and damage to road facilities, and governments' insufficient awareness of the range of detrimental effects of inadequate or inappropriate measures. Drainage structures are expensive (a major consideration during the design stage), but the resulting high maintenance costs (and the reduced traffic efficiency during maintenance operations) attributable to lack of adequate drainage is even more costly. The additional GHG emissions attributable to congestion and other side-effects of maintenance operations are significant.

2.3.9.3. Pavement

Some of the more common pavement-related GHG emissions problems in Asia follow.

- Low pavement quality;
- Inadequate pavement design, often the result of inadequate traffic background studies or projections or of failure to consider the impact of overloaded vehicles;
- Use of materials and quarries that contain relatively soft (generally sedimentary) aggregate particles, lack of adequate quality control, particularly in provision of true crusher dust instead of clayey, silty fines and fine sand (from lack of crusher pre-screening); and
- Failure to adjust laboratory asphaltic mixture designs for actual hot bin materials and/or making subsequent adjustments to the job mixture formula as the materials undergo change; and
- Premature pavement failure, requiring early and more frequent maintenance.
- Poor pavement maintenance:
 - Frequent delays in pavement maintenance because of constraints on budget amounts and availability;

Concrete Drainage Ditch in Urban Area In Vietnam

- Delay of pavement maintenance until the end of the rainy seasons; and
- Maintenance or repair of pavement failures often conducted by only replacing the asphaltic surface layers rather than the more often substandard subgrade and gravel layers below the asphaltic surface.

The additional pavement work caused by these problems and the delays in traffic during as work is carried out have an adverse effect GHG emissions.

2.3.9.4. Structures

Structures for roadway projects in Asia are generally of a higher standard than the connecting road sections. Specific structure issues in the three selected countries are presented in annex 2 on the CD.

In all Asian developing countries, one of the main opportunities for GHG emissions reductions is increased use of precast prestressed concrete bridges rather than the typical composite construction bridges. This can effect significant reductions in materials costs (concrete and steel) and in construction (erection) time. It can also reduce delays in concrete placement during the wet season, and disruption of both public and construction traffic.

2.3.9.5. Road furniture

There are several road furniture types and levels of effectiveness in the East Asian pilot countries. In China, slip forms are commonly used for concrete barriers. A mix of metallic crash barriers and concrete crash barriers is used on many expressways, in the median and/or on the shoulders. Concrete crash barriers are very common on bridges. Although these are intended to protect the motoring public, metallic or concrete crash barriers are often not properly installed.

In Indonesia and Vietnam, there has been very limited use of slipform for concrete barriers. Their use may increase as future expressway projects (the first) are completed. On highways, safety barriers are not constructed to international standards (concrete posts with metal guardrails), and often are poorly maintained, resulting in severe damage to vehicles in accidents, and adverse safety issues for users or local inhabitants behind the barriers.

2.3.9.6. Maintenance

Maintenance is typically not sufficiently integrated into planning scenarios in Asian countries. There is a significant lack of comprehensive, reliable, and updated road data, which would give road authorities a clear picture

Paving of Binder Course on National Road in Vietnam

of the conditions of their respective networks—essential in planning routine and corrective maintenance and corresponding funding. There is also a lack of experienced input on optimum maintenance scenarios, and decisions do not take advantage of experience gained on implemented projects. Perhaps the main problems with maintenance are the result of inadequate or absent "soft" skills rather than engineering skills such as lack of managerial capacity, poor information and data management, institutional weaknesses.

Routine maintenance is generally under the control of local authorities, although the budget may be provided by the central government. Any delay in the appropriation of national funds to local authorities—and in subsequent planning and performing maintenance works—commonly results in routine maintenance issues becoming more acute and therefore more suitable for periodic maintenance.

Expressway with a Mix of Concrete Crash Barriers in the Median Reservation and Metallic Crash Barriers on the Shoulders in China

High-Capacity Deflectometer for Deflection Measurements and Pavement Structural Assessment in Hebei Province, China

Routine Maintenance Work on a Rural Road in Indonesia

Attempts to use late-arriving routine maintenance funds to resolve these now acute defects result in substandard repair or proper repair of only some defects. In many cases, lack of experience results in maintenance not being carried out on a priority basis.

Periodic maintenance programs are generally carried out by the central government, often using international funding. Delays similar to those noted above have the same result: identified periodic maintenance works that are delayed may require reconstruction by the time funding is received and contractors are selected.

In some cases, slight delays can disrupt an entire program, as works not completed before the onset of the wet season may not receive maintenance under the program—and in many cases may be completely destroyed during the wet season.

2.3.9.7. Work zone traffic management

GHG emissions from vehicle operation are extremely high; minimizing delays and other constraints to traffic operation during construction and subsequent maintenance therefore represents a significant emissionsreduction opportunity.

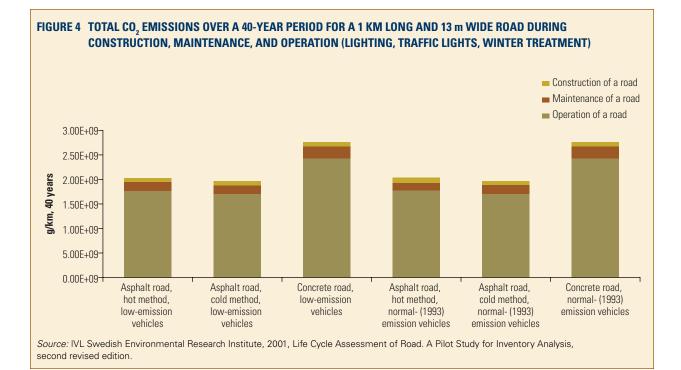
Road improvement projects in Asia typically do not begin until the road is approaching capacity. This causes traffic management problems and constraints—and associated GHG emissions— to be far greater than if work had begun before capacity became critical. This is also commonly true for new road projects, as maintaining alternate roads is generally given a low priority; authorities often prioritize completing the new road over maintaining the current one.

Road project implementation time in some Asian countries is relatively long because using small packages allows a number of small contractors to participate. This means that there are delays for each package within the project; fewer delay points are common when one large contractor is used. The longer the implementation period, the longer traffic is subject to road closures, delays (section closures), and lower operating speeds. Increasing the capacity of local contractors or utilizing larger and more experienced local or foreign contractors could reduce implementation time.

The reduced actual road life typical in Asia means that traffic operation constraints (and therefore GHG emissions) over a particular period are greatly increased. The constraints for 20-year design roads that last only 10 years are double those for roads that achieve actual design life.

Traffic operations delays in Asia are generally far less a matter of concern than in developed countries, resulting in simplistic traffic management plans that are (generally) advantageous to the contractor. Improved traffic management planning, and the creation of government guidelines establishing maximum delay points and delay periods, would together reduce delays— while motivating contractors to be more proactive in minimizing delays. This could be achieved in part by guidelines, for example, requiring all significant road closures to be at night, during off-peak hours, or on days with the least traffic).

Generally, the relatively low quality of road works in Asia (particularly pavement works) requires that there be more maintenance work and therefore more interruptions to normal traffic operation. These can be minimized by (i) improved pavement construction quality, (ii) use of materials and construction procedures that minimize the time required to perform works, and (iii) scheduling maintenance works at off-peak periods as noted above. 13


Development of a Calculation Tool

3.1. Need for Tools

Concern about climate change and greenhouse gas emissions has prompted action in most sectors and spurred the development of decision tools that help make choices transparent and illuminate their contribution to GHGs. Transport is no exception.

Early development of tools focused on transport activities themselves and sprang from even earlier studies and tools to measure energy efficiency and consumption. Given the lesser contribution to GHG emissions from road construction and maintenance, it is only recently that studies have looked at these contributions, and tools have just started to be developed.

The choice of materials and techniques for road construction and maintenance has a wide variety of impacts, ranging from local pollution and environmental degradation to generation of GHGs and contributions to climate change. Manufacturers and engineering companies have studied the GHG contributions of their materials and alternate construction techniques. Findings include, for example, that concrete and cement are responsible for

14

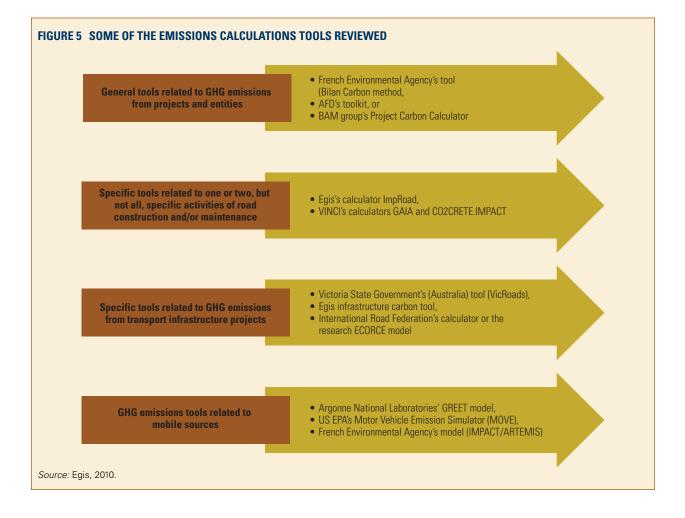
50–160 percent more emissions than asphalt, and that recycling at the end of the life cycle may also provide substantial economic gains, for example, from sale of recycled materials.

3.2. Assessment of Existing Tools

To assess the existing situation, several available emissions calculation tools have been assessed. Figure 5 summarizes those that have been explored in this study.

To facilitate tool comparisons and identification of the relative pros and cons of each model, table 7 and figure 6 present a synthesis of all the tools related to road construction.

This review points out that currently:

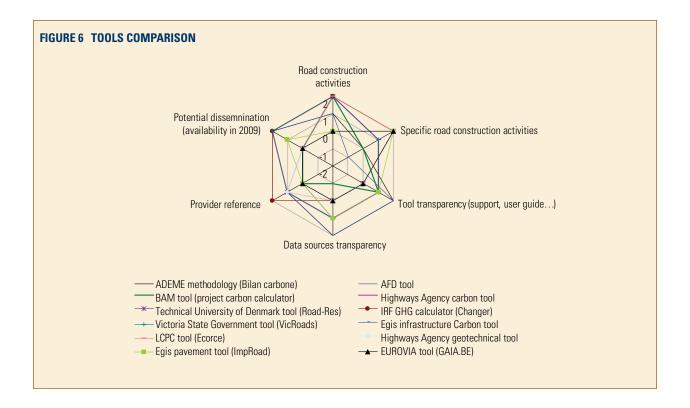

- No tool has been used to calculate GHG emissions from road projects in the Asian region;
- Considering the global score, only five tools reach the average score of 5.5, mainly because of poor

scores for the "dissemination" or "transparency" criteria of the specific road tools;

 Considering the road activities score, six tools have higher than the average score (more than 2): the Australian Victoria State tool (VicRoads), the Highways Agency carbon tool, the Technical University of Denmark tool (Road-Res), the IRF GHG calculator (CHANGER), the Egis infrastructure carbon tool, and the LCPC tool (Ecorce).

One could point out that the five leading tools on the basis of total score will not necessarily perform well when used in the context of road activities. The IRF GHG calculator, the Highways Agency carbon tool, and the Australian Victoria state tool are the only tools in both selections; they therefore are considered good reference tools.

The AFD tool and, to a lesser extent, the ADEME tool do not score well on specific road activities, and therefore could not be selected. The Australian Victoria State and the Highways Agency carbon tools are ready to use, focus on the main GHG emissions related to a road project,



DEMC methodology (Bilan carbone)1021281AFD tool1-1-1221221AFD tool21-121270Motol (project carbon calculator)201111222Motol (project carbon calculator)201111222Motol (project carbon calculator)211111283Motol (project carbon calculator)22111111222Motol (project carbon calculator)22211111133Motol (project carbon calculator)222111111133Motol (project carbon calculator)211111111133Motol (project carbon calculator)2111111111133Motol (project carbon calculator)22111111111111111111111111111111111111 <th></th> <th>Road construction activities</th> <th>Specific road construction activities</th> <th>Tool transparency (support, user guide)</th> <th>Data sources transparency</th> <th>Provider reference</th> <th>Potential dissemination (availability in 2009)</th> <th>Global score</th> <th>"Road activities" score</th>		Road construction activities	Specific road construction activities	Tool transparency (support, user guide)	Data sources transparency	Provider reference	Potential dissemination (availability in 2009)	Global score	"Road activities" score
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ADEME methodology (Bilan carbone)	. 	0	2	2	-	2	ω	~
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AFD tool	. 	<u>,</u>	2	2	-	2	7	0
1 3	BAM tool (project carbon calculator)	2	0		-	0	0	2	2
1 0 3	Highways Agency carbon tool	2	-	~~	,	4	2	œ	n
2 4 4 5 5 5 3 2 2 3 2 5 5 3 2 2 3 3 3 3	Technical University of Denmark tool (Road-Res)	2	2	0	0	1	0	D	4
1 2 2 2 3 2 3 3 4 3 5 3 6 4 7 5 7 5 8 3 9 4 10 5 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10	IRF GHG calculator (Changer)	2	2	0	0	2	2	ω	4
1 1 1 1 1 1 1 1 1	Victoria State Government tool (VicRoads)	2	4	~~	,	1	2	ω	c
23 23 33 24 1 2 2 2	Egis infrastructure Carbon tool	2	4	~~	,	0	0	വ	က
3 3 3 3 3 3 3 3	LCPC tool (Ecorce)	2	2	0	0	1	0	D	4
0 0 2	Highways Agency geotechnical tool	0	2	0	0	1	0	ო	2
0 0	Egis pavement tool (ImpRoad)	0	2	~~	,	0	, -	D	2
<i>Notes</i> : For each criterion, the notation ranges from -2 to +2 (unfavorable, rather unfavorable, neutral, rather favorable, and favorable. These evaluations are very subjective and are the average opinions of the existing tool review team.	EUROVIA tool (GAIA.BE)	0	2	0	0	0	0	2	2
	<i>Notes:</i> For each criterion, the notation ranges from -2 to + These evaluations are very subjective and are the average	2 (unfavorable, rat opinions of the ex	her unfavorable, n isting tool review	neutral, rather favora team.	ble, and favorable.				

TABLE 7 TOOLS COMPARISONS SYNTHESIS

Greenhouse Gas Emissions Mitigation in Road Construction and Rehabilitation: A Toolkit for Developing Countries

16

and provide total GHG emissions. They most likely could be applied to project specificities (for example, material transport by rail, specific data on pavement, and the like).

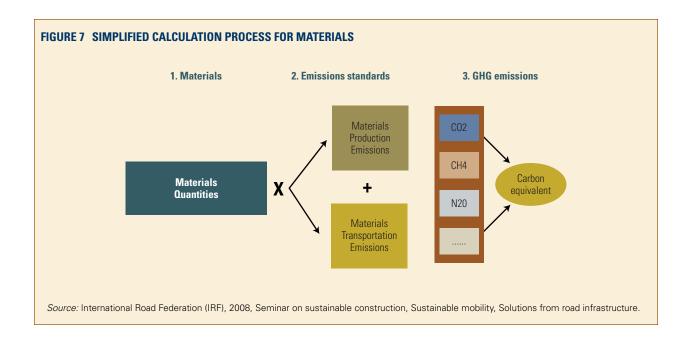
The IRF GHG calculator, the Technical University of Denmark tool, and the LCPC tool appear to be the most flexible, as they are modules-based. Currently, among these three, the IRF GHG calculator tool is the only one available for public use.

This assessment was done by using the selected existing tools in three case studies selected in the three pilot countries (China, Indonesia, and Vietnam).

3.2.1. Main Principles of Existing Tools

All existing tools share the same principles, considering:

- Materials that are elaborated from basic materials through a process that generates emissions, including, by extension, clearing activities;
- Transport (mostly of materials) at various stages of the construction process (supply to the plants, supply to the site, and transport on-site) that has emission factors;
- Construction processes with emission factors in the form of equipment emissions; and


 Others, to a lesser extent, such as personnel transport, management expenses, and so on.

All tools are simple calculation tools that consider these generators and sum the emissions from the various stages of the construction process and from various components of the works.

3.2.2. Comparison of Calculations of Existing Tools

The results of the comparisons made among various existing tools underscore the following points:

- Total GHG emissions from a 1km road construction project (China and Indonesia case studies) range from 700 to 1,700 t-eq. CO₂. Total GHG emissions from a 1 km road maintenance/rehabilitation project (Vietnam case study) comprise between 300 to 500 t-eq. CO₂. This is consistent with the simplified calculation made on "typical roads."
- Depending on the calculator (and therefore on data sources for emissions factors), total GHG emissions for the same case study can vary over a large range of values; the relative difference is consistent (around 15 percent) in the Indonesia case study, and more mixed in the Vietnam (15–30 percent) and

China (0–30 percent) case studies. The relative differences in the value of the findings are rather limited, especially when one considers that emission factors within the various calculators vary.

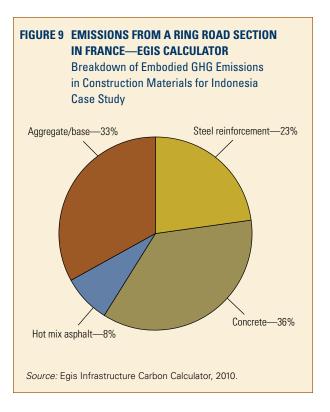
- Materials-embodied energy and transport activities represent the most important part of total GHG emission—more than 80 percent—and on-site impacts represent less than 5 percent; and
- Regarding the calculators, the GHG emissions evaluation performed with the Egis calculator appears between the two others, and the evaluation performed with VicRoads (CHANGER) appears as the greater (smaller) evaluation, except for the Vietnam case study evaluation.

3.2.3. Characteristics and Limitations of Existing Tools

The following observations are noted:

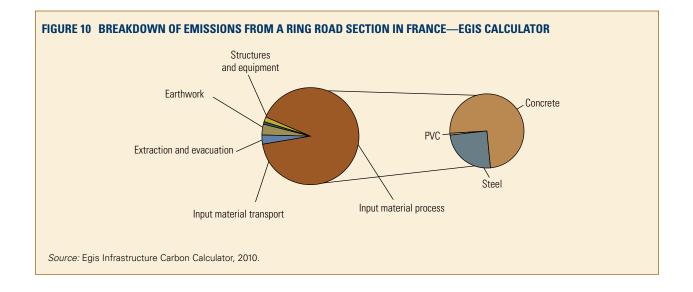
18

- Although interfaces vary from summary (Excelbased) to more sophisticated, the architectures of the assessed calculation tools are essentially the same: emissions related to "on-site" activities (mainly construction equipment), transport of materials, and production of materials, are assessed through the multiplication of quantities by unit emission factors.
- The quantities used require detailed information regarding project construction, such as how many pieces of which types of equipment are present on


site and their production rates. Detailed information is also required regarding the type of transport and sometimes materials composition (for example, the quantities of aggregates and binder in concrete, so that transport emissions can be calculated for aggregates from quarry to batching plant, and cement from cement plant to batching plant). This is very cumbersome for the user and such details are often not available at upstream stages, restricting the utility of the tool to informed specialists and to downstream stages.

- Sometimes the level of detail varies (diameter and age of trees cut are requested) while major approximations are made on other topics such as overall fuel consumption.
- The quality of reports also varies. However, and in general: the breakdowns of emissions are not given according to types of works, which makes using the results difficult—one cannot know on which aspects of construction to focus to reduce emissions. The use of results is made additionally difficult absent a way to export them in practical and editable soft format.
- The emissions factors vary from one tool to another. This does not create major problems, provided the user can modify these factors to suit the specific conditions of the project. In some cases though, (CHANGER) this is not possible; even extracting the emissions factors used for a calculation (using screen captures) is difficult (figure 8).

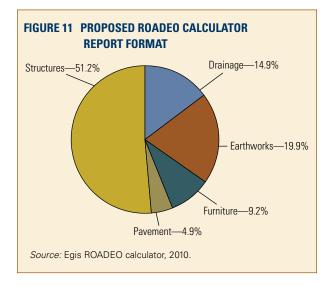
SWIGER	Data Contestine - Clearing and Pring	
Coloring Gent Lines Performance	Viraniani ARE - Viraniani ARE - Viraniani ARE - Norae	
 Carl Samuel Fa Tanapati Fa Tanapati	Remain International Internati	NATION AND A STREET
On Der Higherts Einestrucken felderlich Rederlicht Transport Direktionen felderlichen Direktion befolgt Transfel	Topolder Services III (1999) Services III (1999)	
)		their same later, seal


- The ease with which new materials, transport modes, vehicles, or construction equipment can be added also varies; in some cases, it is impossible. This may prevent users from comparing alternative construction methods that contractors would present during implementation (material alternatives, for example).
- The coverage of construction activities is not always clear and complete. Earthworks, road furniture, structures, and others are difficult to account for. Transport is simplified, and sometimes limited to road transport, while water and rail, which may play a significant role, are not available.

The figures following show typical graphic outputs from VicRoads and Egis (CHANGER does not provide similar

outputs). The information provided cannot be directly used. For example:

- in the VicRoads tool, if there are concrete barriers whose contribution cannot be identified; and
- in the Egis tool, the contributions of various concrete components are not identified, and there might be pavement and structural concrete.


3.3. Functions of the Tool

The above reasons led to a proposal to develop a calculation tool: The Greenhouse Gas Emission Mitigation Toolkit for Highway Construction and Rehabilitation—ROADEO. The tool is intended to perform the following tasks:

- Evaluate GHG emissions Evaluate GHG emissions from a road project. Such evaluation may take place at any of the following stages of a road project:
 - Planning/feasibility studies;
 - Detailed design;
 - Works/implementation; and
 - Completion of works/operation.
- Assess alternative construction practices to limit GHG emissions:
 - Identify technically relevant options based on the project's characteristics;
 - Evaluate GHG emissions of these options; and
 - Generate reports that provide useful information to the designer, planner, or construction manager (breakdown by type of work) to optimize the design and the implementation of the project.

The following principles were followed when the ROADEO calculator was developed:

- The tool should be open and transparent, allowing
 - addition of new equipment, new materials, new transport resources, and
 - easy access to and modification of GHG generators' characteristics, including emission factors; this makes sense where surveys are performed and their results used to update the calculator database.

- The tool should be easy to use, even at upstream stages, helping users (including non-engineers) assess quantities of GHG generators from project macro-quantities.
- The tool should be useful to planners and designers. It might be used at downstream stages for assessing or comparing bids or construction method statements.
- The reporting should be useful in the decision-making (engineering, planning) process to optimize the project, so should identify impacts of decisions.
- The tool should be used to identify, propose, and assess the impact of alternative construction or management practices

3.4. Assumptions, Modeling, and Calibration

For cases when the user at the upstream stage does not have the required details to perform the emissions calculation, a two-stage model has been designed.

- A first stage calculates quantities of items of road works, based on general characteristics of the project. The output of this stage is a theoretical "bill of quantities" at feasibility study stage, and the work items are broken down into "work series" reflecting the types of works.
- A second stage calculates the number of GHG emissions generators, based on the number of road works items and on general characteristics of the project. These generators are broken down into materials, transport, equipment, and others.

Table 8 summarizes ROADEO's 25 model parameters (16 for Stage 1, 9 for Stage 2) to be defined by the user.

This model is highly simplified. It is not based on engineering, but rather on empirical data, and does not intend to reflect real project values. Its intent is to provide rough estimates of a tentative nature for projects at the very initial stage. It has been used on several projects to check its accuracy, as shown in table 9.

While there are significant differences between the model and the project bill of quantities, the model has approached real quantities with an accuracy of less than 40 percent item by item, and with an overall accuracy that can be considered reasonable at upstream stages. Note that the impact of these differences on GHG emissions remains to be assessed.

Parameter	Description	Unit	Stage
%ECD	Length of existing cross drainage as a percentage of requirement	%	1
%ELD	Length of existing longitudinal drainage as a percentage of length of road	%	1
%EWB	Parameter reflecting the balance between cut and fill	%	1
%GLP	General longitudinal profile	%	1
%MNT	Length of road in mountainous terrain as a percentage of road length	%	1
%RCK	Volume of rocky soil as a percentage of volume of soil	%	1
%URB	Length of the road project crossing urban areas as a percentage of road length	%	1
%WDB	Number of bridges to be widened as a percentage of number of bridges	%	1
CBR	California Bearing Ratio	%	2
EAL	Equivalent standard axle (8.2t) loading—ESAL	u	2
ECS	Existing cross section	m	1
L	Road project length	m	1
LW	Lane width	m	1
MW	Median width	m	1
NBL	Number of lanes	u	1
OST	Overlay structure type	list	2
PST	Pavement structure type	list	2
RTP	Road type	list	1
STH	Area where subgrade has to be treated with hydraulic binders	%	2
SW	Shoulder width	m	1
ТВМ	Type of barrier material	list	2
TSB	Type of structure (standard bridges)	list	2
TSM	Type of structure (major bridges)	list	2
TSW	Type of structure (wall)	list	2
TUN	Length of tunnel (not used pending further development)	m	1
WTP	Works type	list	1

TABLE 8 PARAMETERS USED FOR ROADEO'S SUMMARIZED DESCRIPTION OF THE ROAD

TABLE 9 CASE STUDIES USED TO CALIBRATE THE ROADEO CALCULATOR MODEL

Project	Country	Туре	Comment
EINRIP	Indonesia	National roads rehabilitation	Including bridges
PRIP	Cambodia	Rural roads rehabilitation	
NPP	Vietnam	National road rehabilitation	Asphalt overlay no bridge
STDP	Sri Lanka	Expresswaynew alignment	
RPPF	Sri Lanka	Provincial roads widening	
TIIP	Sri Lanka	National road widening	Surface treatment
Rui-Gan Expressway	China	Expressway new alignment	
Source: Egis.	• •		

3.5. Emissions Factors

Significant issues regarding emissions factors include:

- the different units used by different tools (tons, cubic meters, and so on)-an inconsistency that is not user friendly and could be a source of errors, as different densities, for example, are used to convert volumes into weights,
- the various compositions of composite materials, and
- the assumptions made on some materials, mostly in the case of cement, as shown in the table 10.

The emissions factors with high impact, and that vary significantly from tool to tool, include cement, steel, lime, and electricity. The three are somewhat related, as slag can be used in concrete, and electricity is the source of energy for the recycled steel used for steel bars.

To evaluate the impact of the uncertainty inherent in the steel emissions factor, a specific study was done on those emissions, based on the ratios in table 11. Indications are that the data provided by SETRA in the above table are closer to the actual figures. This should be the subject of further research.

Electricity is related to power production-coal, petrol, gas, hydraulic, nuclear. Depending on the country, the region, and even the plant and local power production strategies, electricity-related GHG emissions are subject to variations in the medium term.

Cement is widely used in road construction and rehabilitation, mostly for reinforced and prestressed concrete structures (bridges, culverts).

The cement alone accounts for 85 to 90 percent of the total GHG emissions of a cubic meter of ready-mix concrete for the most used cements (Classes CEM I & CEM II, according to European standard EN 206-1). A study performed by CEMEX, a major supplier of readymix concrete, for a building site in Paris shows a rate of 89 percent with a binary mixture of CEM I and fly ash. Aggregates, transport of all the raw materials to the batch-plant, mixing, and delivery to site (5 km) account for only 11 percent of the total. GHG emissions from concrete placement so are not provided.

		Emi	ssion intensity (kg eq CO ₂ /	unit)		
Material and product	Unit	VicRoads	CHANGER	Egis calculator		
Steel	t	2,650	2,346	3,190		
Cement	t	670	825 (25%)	776		
Concrete (15% cement)	m ³	258				
Concrete (30% cement)	m ³	496				
Concrete (% cement, sand, aggregate)	t		163–269	249–351		
Hot mix asphalt (5% bitumen)	t	10	29.40	54		
Aggregate	t	8	10.32	11		
Transport						
Medium truck (diesel)	veh.km	0.83		0.71		
Heavy truck (diesel)	veh.km	1.58		1.36		
PTAC 6.1–10.9 t	ton.km		0.60	0.53		
PTAC 11–21 t	ton.km		0.30	0.27		
Energy						
Diesel	liter	2.90	3.93	2.94		
Electricity	kw.k	1.31	0.80	0.08		

TABLE 10 EMISSIONS INTENSITIES WITHIN VICROADS, CHANGER, AND EGIS CALCULATORS

Note: PTAC-Poids Total Autorisé en Charge (total allowed weight when loaded).

TABLE 11 EMISSIONS INTENSITIES FOR STEEL, ACCORDING TO VARIOUS SOURCES

Source	Year	kg CO ₂ /kg steel
ADEME	2006	3,190
US EPA	1998	4,162
US EPA	2002	4,081
US EPA	2006	4,081
OFEFP	1998	3,241
AEA Technologie	2001	2,970
MIES	1999–2003	1,599
SETRA	2009	1,027–1,503
	- for a statistic state and a state	

Source: Egis compilation of multiple agencies.

Table 12 compares GHG emissions for the production of 1 ton of cement for various types of cement. The classes are defined by the European Standard EN206-1:

- CEM I: cement (95–100 percent of clinker and up to 5- percent additions)
- CEM II: Composite cement (clinker + up to 35 percent additions)
 - CEM II/A (80–94 percent of clinker)
- CEM II/B (65–79 percent of clinker)
- CEM III: Blast furnace slag
 - CEM III/A (35–64 percent of clinker)
 - CEM III/B (20-34 percent of clinker)
 - CEM III/C (5–19 percent of clinker)
- CEM IV: pozzolan cement
- CEM V: composite

TABLE 12GHG EMISSIONS IN KG EQCO2 FOR THE
PRODUCTION OF 1 TON OF CEMENT

CEM I	CEM II	CEM III/A	CEM III/B	CEM V
866	629 to 759	461	247	502
Source: Info	Ciment.			

TABLE 13GHG EMISSIONS IN KG EQCO2 FOR THE
PRODUCTION OF 1 M3 OF READY-MIX
CONCRETE

CEM I	CEM II/A	CEM II/B	CEM V/A
261	231	200	159
Source: Lafarge.		·	

For 1 m³ of ready-mix concrete, overall GHG emissions depending on cement type are shown in table 13.

Users must exert great care in selecting values or confirming default values that the ROADEO calculator proposes.

3.6. Tool Boundaries

ROADEO's boundaries are set for a practical reason: data readily available to users, under the best circumstances upon completion of works, when all details should be known— usually comes from contractors' bills of quantities and internal information.

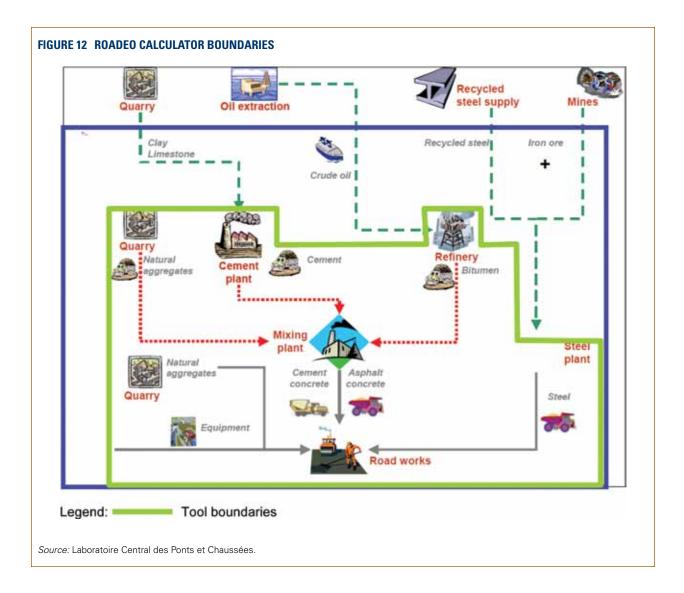
Such data generally identify the source of materials and equipment, up to their immediate origin or provider (quarries, manufacturers, importers, and so on) and indicate the means used to transport them to the site.

Getting information beyond these limits (initial location, production process and shipment of raw materials, spare parts for equipment, and the like) would require significant efforts that typical participants may not be willing to provide.

Figure 12 shows the boundaries set for ROADEO.

Within these boundaries, the ROADEO calculator considers the following:

• Materials and equipment tables


Emission factors must take into account upstream GHG emissions resulting from the initial production of raw materials; fabrication and transport of equipment; and downstream GHG emissions (materials recycling, equipment maintenance, and end-of-life), beyond the boundaries.

• Transport table

Within boundaries, a relevant set of origin and destination types is predefined, including at least the following:

- Material plant (cement, refinery, steel, and so on);
- Material source (quarry, forest, and so forth);
- Mixing plant/workshop; and
- Site

Combinations of transport modes (main mode plus terminal mode, for example) are allowed for each origin-destination couple.

Alternative Practices to Reduce GHG Emissions

4.1. Overview

This chapter provides a synopsis of alternative practices, including:

- technical description of alternative practices,
- identification of inputs required for their implementation,
- assessment of corresponding GHG emissions, and
- estimates of variations in GHG emissions and construction costs compared with current/standard practices

The above information has been gathered into consistent categories of works components:

- Transport;
- Earthworks;
- Pavement;
- Structures; and
- Equipment/road furniture.

Alternative practices are compared with current practices.

4.1 Identification of Alternative Practices

For the purposes of this publication, indications of orders of magnitude of potential impacts of alternative practices on various components of road works are provided. While many alternative construction and rehabilitation practices have been identified that could potentially replace various current practices, only those believed to promise the greatest impact on GHG mitigation—and that are easily transferable to the pilot countries—are discussed.

For further information, appendix A summarizes all current road construction and rehabilitation practices against alternative international best practices explored. In addition, the reader is directed to annex 3 on the CD that accompanies this publication—"Identifying gaps between best practices from developed countries and practices in pilot developing countries and proposals for improving the situation"—for a more detailed investigation.

Alternatives discussed here include:

- modal shift and use of more efficient road vehicles for transport of materials,
- methods for excavation of hard soil,
- reduction in the use of lime as a means to stabilize soil,
- optimizing pavement structures for increased service life and reduced maintenance demands,
- implementation of combined semi-empirical and analytical pavement design standards, which can affect pavement thickness and material usage,
- asset overloading and operational management,
- impact on pavement roughness of reducing shortwavelength unevenness,
- selection of structure type as well as type and volume of steel used in structures, and
- significance of barrier types.

The following sections provide a description of the main findings on alternative practices.

4.2.1. Transport

Transport of materials represents about 30 percent of the GHG emissions of a road project. Of that amount, about 50 percent is related to local (less than 25 km) transport.

Reduction of emissions can be the result of:

- use of more efficient road vehicle fleets with a lower unit emissions ratio, which can be significant, as efficiency improves with the use of higher-payload trucks (an approximately 50 percent decrease in unit emissions and savings of more than 20 percent in total transport emissions), and
- modal shift from road to more efficient modes (rail or water have unit emissions 17 times lower) over long distances; further improvement can be up to 8 percent of total emissions after road transport has been optimized.

4.2.2. Earthworks

4.2.2.1. Rock excavation

- Excavation in hard soil generates two to 3 times more GHG than in ordinary soil.
- The use of drilling rigs rather than light drillers is twice as productive, but produces 35 percent more GHG per cubic meter of rock excavated.
- Productivity of labor-intensive methods is 250 times lower, while involving 3 times more labor. If labor emissions are considered neutral, this is a significant reduction in GHG emissions.
- Explosives represent only 5–7 percent of the emissions of the excavation process.
- The use of explosives for excavation seems to produce fewer GHG emissions, as shown in table 14.
- Excavation and loading and transport to fill sites are of the same order of magnitude, at around 2kg CO₂eq./m³ of excavated rock.
- Putting aside less than satisfactory health and safety considerations, the local lightly mechanized technique is the most efficient in terms of GHG emissions.

4.2.2.2. Soil treatment

Except in cases where materials are not available locally (within less than around 150 km), soil treatment is not very effective in reducing GHG emissions, the result of emissions from and transport of lime.

It should be noted that studies are underway to assess interest in soil treatment in the context of sustainable development with respect to indicators other than GHG emissions.

4.2.3. Pavement

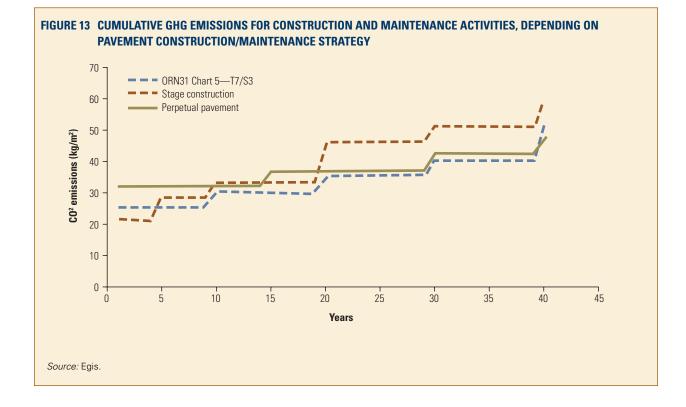
A number of alternative techniques have been identified and their potential impact assessed, based on the use of different materials (recycled, high modulus asphalt and others), design (combined bituminous-concrete structures, investment schedule and budget (which might affect pavement design) or construction technique (warm and half-warm asphalt mixture methods).

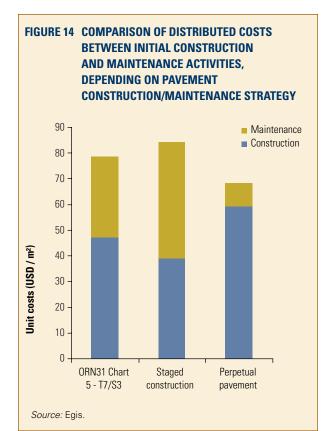
4.2.3.1. Pavement structure types

- For initial construction, concrete pavements produce higher emissions. This may range from a factor of 1.6 (for thinner concrete sections) to 3 (for thick concrete sections) compared to the thin bituminous layers. However, depending on the maintenance and rehabilitation strategy, the life-cycle GHG emissions may be more comparable or may even favor concrete pavement.
- Optimized pavement structures (high-performance bituminous mixtures and Continuously Reinforced Concrete Pavement [CRCP] on bituminous base, which, according to recent studies, make optimal use of materials for concrete pavement structures) have lower emissions than nonoptimized structures.
- Orders of magnitude for the construction, maintenance, and end of life of pavement structures range from 65 to 175 kg/m².
- Cold mixtures as well as recycling technologies and materials have lower emissions (by a factor of three when compared to hot mixture bituminous structures).

Excavation method	Output (m³/day)	Fuel consumption (I)	Explosives (kg)	GHG (kg CO _z eq.)	GHG (kg CO ₂ eq./m³)
Hammer	1,000	864		2,160	2.2
Mining (light driller)	1,250	480	500	1,469	1.2
Mining (drilling rig)	2,500	1,725	1,000	4,851	1.9
Source: Egis field data.					

TABLE 14 RELATIVE IMPORTANCE OF EXPLOSIVES IN GHG EMISSIONS FROM EARTHWORKS TECHNIQUES


4.2.3.2. Investment and maintenance strategies


- Maintenance represents 20–40 percent of overall emissions from pavement over 30 years, indicating that there are tradeoffs between construction and maintenance with regard to both cost and emissions.
- For the given life duration, taking into account the life cycle and standard maintenance scenarios for both structure types, concrete structures in general emit double the GHGs of composite structures, while bituminous structures emit the fewest GHGs.
- The relationship between maintenance and traffic depends on the investment strategy (initial construction and maintenance). Decision-makers and planners in developing countries are often hindered by budgetary constraints; thus the initial construction of a road and the maintenance strategy that is applied to the road may be afffected. Generally, greater initial investment is avoided, often at the cost of long-term cost or reduced maintenance practices. Maintenance strategies and a design catalogue biased toward increased initial investment and the above studies may not fully reflect the whole range of situations.
- Staged construction seems to lead to significantly higher total emissions. The perpetual pavement strategy seems to lead to slightly lower emissions than standard pavement structure after 40 years.

- It should be noted, however, that the damage factor after 40 years is significantly lower (that is, better structural condition of the asset) in the case of perpetual pavement.
- The impact of maintenance operations on traffic has not been taken into account, which may significantly affect the results for a T7 traffic class in TRL ORN31.
- The cost of user delays associated with traffic due to maintenance operations has not been taken into account in figure 13. In particular, this may affect the results for the T7 traffic class on a TRL ORN31 pavement. The traffic and pavement class refer to British standards.
- The above results do not take any discount rate into account.

4.2.3.3. Overloading and impact of standards

Significant discrepancies in GHG emissions can result from the use of different pavement design standards (from 0 to 17 percent, depending on traffic loads considered for this specific case study, and up to 45 percent in the latter comparison). For example, Vietnamese standards are based on empirical methods that attempt to model pavement structures as 2-layer or 3-layer equivalents. Alternative standards are based on combining semi-empirical (AASHTO 1193, TRL ORN 31) and analytical (AASHTO 2004, Austroads) methods that take into account the fatigue performances of road materials.

The impact of overloading on the thickness of pavement structures and on corresponding GHG emissions is significant. It has been assessed at 23–49 percent of pavement emissions, depending on standards considered.

4.2.3.4. Roughness

For a given speed, the maximum range in fuel consumption for different surface textures appears to be about 2 liters/100 km. Limiting rolling resistance caused by pavement texture could lead to significant reductions in GHG emissions in the long term—over the life-cycle of a given road section—although road safety requirements must be concurrently considered: if rolling resistance or road friction is reduced too greatly, vehicles will have braking and stopping problems, especially on wet surfaces.

The impact of pavement roughness on GHG emissions is far more significant than the impact of texture. Improvements in roughness, especially by reducing short-wavelength unevenness, could decrease fuel consumption by up to 4 liters/100 km, as assessed using a mathematical "suspension model."

Actions to ensure low roughness (such as proper construction techniques) are therefore important, although their impacts are difficult to estimate in advance.

4.2.4. Structures

- Bridge construction emits about 3 tons of CO₂ eq./ m² of bridge deck.
- The structure's material has an impact; however, for a given structural type, this impact is typically less than 15 percent of the GHG emissions.
- The structure type has greater impact for a given material. Table 15 summarizes this impact; the more complicated the structure type, the higher the relative emissions.
- Steel is a major component of structures. Uncertainty about its emission factor, which relates to its origin and the technology used to produce it (whether recycled or not, origin of electricity, and so on) can have an impact of up to 30 percent for structure types making extensive use of steel and composite.
- Emissions from maintenance works could be considered as of the same magnitude as emissions during construction.

The relative emissions of typical roads on embankment, viaduct, and in tunnel are summarized in table 15.

GHG emissions from construction	Embankment (tCO ₂ eq./km)	Bridge (tCO ₂ eq./km)	Bridge/ embankment	Tunnel (tCO ₂ eq/km) @420tCO ₂ eq./(m²xkm)	Tunnel/ embankment
Expressway	2,971	74,397	25	75,547	25
National Highway	739	35,649	48	37,773	51
Provincial Road	191	27,899	146	30,219	158
Rural Road	100	20,127	201	23,608	236
Source: Egis field data.					

TABLE 15 COMPARISON OF GHG EMISSIONS FROM CONSTRUCTION OF EMBANKMENTS, BRIDGES, AND TUNNELS

4.2.5. Equipment and Road Furniture

- Over a life cycle, the relative importance of emissions due to barriers ranges
 - from 4 to 23 percent of GHG emissions caused by pavement, in the case of steel or concrete barriers, and
 - from 2 to 12 percent in the case of wooden barriers.
- There may be significant interest in limiting the use of steel and concrete barriers, where possible, through adequate and safe design (safety zones cleared of obstacles, removal of aggressive spots, and the like), or replacing them with wooden barriers where traffic volumes and loads are sufficiently low. The potential impact could be up to 50 percent of the length of barriers, or from 2–12 percent of pavement emissions. This requires foresight in geometric design, and more effort during the design phase to minimize GHG emissions.

Lighting makes a significant contribution to GHG emissions when the operations phase is taken into account. It is outside of the scope of this publication to investigate this contribution in detail.

4.3. Integration into the ROADEO Calculator

Identified alternative practices have been included in the ROADEO calculator. The relevance of some to a particular situation can be summarily assessed through the values of parameters—high traffic, presence/absence of materials, relative importance of emissions attributable to a part of the works, and so on.

Datasheets describing the main issues, potential impacts, and reference materials (sources, for example) can be activated to give the user a first level of guidance to optimize the project. Additional guidance may be found in the technical annexes of this report.

Again, the ROADEO calculator cannot replace the sound engineering study that should always be undertaken in designing any alternative practice. However, it provides information to assess (i) where major opportunities for optimization lie, and (ii) the extent of such optimization. It also provides guidance on the engineering efforts to be deployed to achieve these optimizations.

4.4. Financial and Economic Analysis

In this study, two lines of analysis were followed—financial and economic.

4.4.1. Financial Analysis

The financial analysis presents the costs that would be incurred for road construction and maintenance, and any revenues from carbon credits that could be sold in carbon markets. The main assumptions were:

- A base-year price of US \$15 per ton of carbon, increasing at 5 percent per year;
- A crediting period for emission reduction revenues that does not exceed 20 years; though this may exclude the benefits of reduction technologies over longer periods (50 or 100 years) it is the longest period permitted by the Clean Development Mechanism; if it could be extended, the economics would be more favorable;
- A discount rate of 6 percent; and
- An inflation rate of 3 percent.

Under these assumptions, the carbon market price (in constant price without inflation) reaches US\$19 US/t after ten years and US\$27 US/t after twenty years.

4.4.2. Economic Analysis

The economic analysis compares the costs and benefits to society of alternative methods of road construction and maintenance. For example, the analysis might include the cost of foreign exchange used to import materials or the value to the environment of improved contouring techniques. It would also compare the benefit(s) of reducing carbon emissions as against their potential market price. The main assumptions were:

- A base-year value for carbon emission reductions of US \$85/ton, increasing at 3 percent per year;
- A period over which carbon emission reduction benefits accrue that is much longer than the financial case, and is based on the life of the project rather than the carbon market crediting period;
- Discount rate of 2 percent; and
- An inflation rate of 3 percent.

4.4.3. Analysis Conclusions

The analysis concluded:

- In many cases, the alternative (or best) practices resulted in lower costs on a life-cycle basis than traditional practices. They should be adopted regardless of GHG benefits.
- Based on the financial analysis, the revenues from carbon emissions reductions are minor compared to total costs; thus, no alternative practice would be justified purely on the basis of carbon revenues.
- Based on the economic analysis, using the social value of carbon (not its market value), the GHG benefits are significant, comprising, and in many cases even exceeding, up to 10 percent of total net benefits.

4.4.4. Policy Implications

Based on the current carbon market price, and on the discount rates for financial analysis, and also considering the conditionality to be met for benefiting from carbon credits likely to be generated through the CDM, carbon pricing can probably not be considered a realistic incentive for developing the GHG-friendly alternative practices that have been identified in the Task 6 findings for road construction, rehabilitation, and maintenance. Indeed, the carbon credit revenues likely to be generated by emissions reductions have very limited impact on the financial viability of the practices that have been analyzed. Accordingly, projects aimed at developing such practices would most probably not meet the additionality

criterion of the CDM and would not be eligible to benefit from carbon credits. It has been verified that neither a dramatic increase in the carbon market price from US\$15/ton to US\$100/ton nor changes in other parameters (market price growth rate, discount rate, and the like) would substantially change these conclusions (the accompanying CD provides details). One reason why is the limitation of the evaluation period to 21 years, which is the maximum duration of the crediting period during which GHG-friendly project promoters can benefit from carbon credits generated by their emissions reductions.

On the contrary, the economic benefits of GHG emission reductions significantly enhance the economic return of projects aimed at developing the GHG-friendly alternative practices that have been identified.

This is particularly true for alternative practices affecting a road's life duration, maintenance operations, or both: the present value of economic benefits from GHG emission reductions, including those occurring over the long term, are significant, reaching around 10 percent or more of the total net benefits of applying such alternative practices. Nevertheless, most alternative practices studied in the present report are "intrinsically" economically viable; considering GHG emission reduction benefits would not transform an economically nonviable case into a viable one. A key reason for the economic benefits of GHG emission reductions is that the longer evaluation period adopted for the economic analysis, together with the low discount rate, allows taking into account those reductions' very long-term intergenerational benefits.

Conclusions

5.1. Main Outcomes

The main contributions of the study under which this report has been prepared can be summarized as follows:

- Progress in understanding the main contributions to GHG emissions from road construction activities. This has been realized for various types of projects (covering a broad scope, from access-controlled divided highways to unpaved rural roads) and various work components (earthworks, pavement, drainage, structures, and road furniture).
- Development of an open, transparent, flexible emissions calculation tool that can be used at any stage of a project and provide information for decision making. ROADEO calculator inputs can be entered at the planning level (16 parameters to describe the road); the design level (based on a bill of quantities); or at implementation (as with other available tools, using quantities of materials and detailed descriptions of logistics and construction equipment used). This involves a model that is being calibrated based on data collection from several projects in Asia.
- Functionality previously unavailable—a major improvement for road planners and designers.
- Identification and documentation of alternative practices to reduce GHG emissions from construction and maintenance activities. While the identified alternative actions cover all work items, as well as institutional and planning issues, it is expected that others will be identified that can be integrated in updates of ROADEO, which will accept these actions and help

the user select applicable alternatives that reduce GHG emissions.

 Carbon finance explored as a potential support for the implementation of alternatives. It has been found that the potential market-based financial benefits of alternative implementation are far less than the potential cost savings. The market price of carbon should be more than 10 times higher for such a mechanism to have an impact (except for optimization of materials transport). However, economic analysis based on the social cost of carbon, and on a longer assessment period, supports the greater impact of implementing alternative practices.

5.2. Challenges Ahead

While progress has been made, significant challenges remain:

- The lack of a unified source of information in East Asian countries (and in general) on GHG emissions;
- The uncertainty over (or lack of general agreement on) the values of emissions of some major contributors to road activities emissions (cement, steel, and so on) in the context of a life-cycle assessment. This is due in part to the lack of clarity on the role of by-products, and the role of end-of-life treatment (including recycling);
- The difficulties in assessing the changes in emissions contributions that GHG generators exhibit during the life cycle, and in adapting plans and design accordingly. GHG emissions vary highly depending

on the precise locations of materials sources (quarries, soil treatment, origin of cement, bitumen, and steel), on the choice of construction technology (for example, the type of asphalt mixing plant), or even on the construction schedule (for example, the need to work during the rainy season). The comparison of orders of magnitude between the variations due to the above factors, and the gains due to optimizations, make it difficult to define an optimized design at early stages;

- Insufficient awareness among stakeholders (road agencies, consultants, contractors, and concessionaires) that their actions at all stages of a project can contribute to reducing the CO₂ burden; and
- The need for a user community that helps improve the ROADEO calculator, based on experience gained while using it. To start with, it is hoped that this toolkit will be used to assess road projects' impacts and then optimize applicable aspects of the project.

	Comments		Need for an evaluation tool—the ROADEO calculator might be used in this respect		The share of emissions resulting from road construction equipment in overall GHG emissions for major highways is limited. However, mechanized works may induce the construction of temporary facilities (for example, access roads) which can significantly increase GHG emissions		(continued)
	Gap assessment method				Compare GHG emissions resulting from labor-intensive practices/ mechanized practices for 1km of typical highway		
	Quantifiable gap		0 N	2 Z	Yes	о Z	
	Major/ minor stake		Major	Major	Minor	Minor	
	Transferability to East Asian countries		Difficult	Easy	Difficult	Difficult	
TABLE A1 SUMMARY OF CURRENT PRACTICES AND CORRESPONDING ALTERNATIVES	Measures to be explored		Include constraints on GHG emissions in technical specifications for contractors' bids to comply with	Build up the capacity of the road construction industry through efficient packaging allowing use of efficient technology		Implement QA approach	
	Identified alternative practice		Environmental criteria included in the procurement process	Packaging adapted to the context: major contracts, design/ build, local contracts, framework contracts, performance/outputs- based contracts	Highly mechanized construction methods implemented with upto-date technology to-date technology	Quality Assurance widespread in the industry, including among employers, contractors, and consultants	
MMARY OF CURRENT PRA	General East Asian current practice		Limited consideration of impacts on GHG emissions in procurement of works		Difference between large-sized/smaller- sized projects: – latest technology/ high-efficiency equipment and plant used on major projects – use of labor-intensive approach on smaller- sized projects (including rural roads)	Quality Assurance approach not systematically implemented	
TABLE A1 SUN	Area	General	Procurement	Packaging	Project Size	Quality Assurance	

APPENDIX A

Area	General East Asian	Identified alternative	Measures to be	Transferability to East Asian	Major/ minor stake	Quantifiable	Gap assessment method	Commante
Geometry	Geometry sometimes overdesigned with respect to real traffic needs (over capacity) resulting in high GHG emissions	Lane width adjusted to safety and traffic requirements	Design standards to be fit for purpose and suited to local conditions	Easy	Major	0Z		US standards (and western in general) are generous and space- consuming
Overloading management	Widespread overloading, limited enforcement		Improve overloading enforcement	Difficult	Major	Yes	Evaluate additional costs and emissions due to overloading	
Carbon storage materials		Use products that store carbon during their processing (wood, bamboo, plants, or other composite materials)		Difficult	Minor	Yes	Collect/assess emission factors for carbon store materials (for example, wood, bamboo, jute)	
Earthworks								
Embankment techniques	Use borrow pits for embankments and put bad excavated material in waste deposits	Use cuts treated with lime or cement for embankments		Easy	Minor	Yes	 Compare GHG emissions from embankments made of treated soil vs. from borrow pits Compare GHG emissions between two alternative borrow pit/ waste deposit locations 	Main parameters: - Distance to borrow pit - Quality" (CBR) of local material - Type of transport - Emission of cement/ lime - Distance of lime/ cement plant Main parameters: - Distance to borrow pit (CBR) - Type of transport
Labor intensity in excavation	Widespread excavation by hand using small handheld equipment	Use of mechanized excavators		Easy	Minor	Yes	Compare GHG emissions from hand excavation/ mechanized excavation	Main parameters: - Output of hydraulic hammer (big/small)/of blasting - Fuel/power consumption of hydraulic hammer (big/ small)/of blasting
		_		_		-		(continued)

						May involve additional GHG emissions			(continued)
						May involve add GHG emissions			
Gap assessment	Compare GHG emissions from blasting/hand crushing	Compare GHG emissions of various techniques for slope stabilization	Compare GHG efficiency of scraper/ excavator/loader	Compare GHG efficiency of small and large trucks				Collect/assess emission factors for precast and cast in place concrete	
Quantifiable	Yes	Yes	Yes	Yes		°Z	No	Yes	-
Major/ minor	Minor	Minor	Minor	Minor		Major	Minor	Minor	
Transferability to East Asian	Easy	Easy	Easy	Easy		Difficult	Easy	Easy	
Measures to be	exhibit	Slope treatment criteria: high quantities of cut/fill	Encourage the use of scraper depending on quantities of cut/ fill and percent of rock soil	Optimize truck size depending on actual transport requirements		Include appropriate drainage system in all road projects		Encourage the use of precast drainage items (longitudinal drains, pipes) to limit the amount of concrete involved in drainage	
Identified alternative	practice Blast rocky materials	Standard slope without protection	Widespread use of loaders/scrapers	Widespread use of trailers		Efficient drainage design is an environmental requirement, especially on higher- grade network/ expressways and in urban areas	Precast or slipform cast lined drains	Precast culverts	
General East Asian	Gurrent practice Fragment rocky materials manually with a small machine	Slope protection with steeper slopes	Use of excavator in general	Use of small trucks (6 wheels)		Rain harvesting is not included in projects; it may be a saving in terms of GHG emissions	Lined drains cast in place	Culverts cast in place	
	Labor intensity in rock crushing	Slope protection	Earthworks equipment	Truck size	Drainage	Drainage systems	Lined drains	Culverts	

Area	General East Asian current practice	Identified alternative practice	Measures to be explored	Transferability to East Asian countries	Major/ minor stake	Quantifiable gap	Gap assessment method	Comments
Ditches						Yes	Compare GHG emissions from ditches built manually or cast with a machine as for New Jersey barriers	
Pavement								
Pavement materials	Hot mix asphalt concrete	High modulus asphalt materials	Replace hot mix asphalt with half-warm asphalt mixtures depending on traffic volumes, type of roads, and climate	Easy	Major	Yes	Compare hot mix asphalt with half-warm asphalt mixes and standard asphalt concrete	
Pavement materials	Hot mix asphalt concrete	Warm and half-warm asphalt mixtures	Replace hot mix asphalt with warm and half-warm asphalt mixes depending on traffic volumes, type of roads, and climate	Easy	Major	Yes	Compare warm and half-warm asphalt mixtures and standard asphalt concrete	
Pavement management strategy	Short duration design life	Perpetual pavement (i.e., thicker pavement at construction stage with less maintenance afterwards)	Use perpetual pavement design and limit maintenance	Easy	Major	Yes	Compare perpetual pavement approach and standard design	Applicability depends on traffic volumes and type of roads.
Pavement materials	Very first beginning of recycling	Recycling is developing	Promote relevant techniques depending on type of works (rehabilitation, existing road, widening), project size, and presence of an asphalt plant	Easy	Major	Yes	Existing studies already available in the literature	There is potential for re- cycling in China because of large amounts of homogenous materials remaining from the exist- ing network that is cur- rently being upgraded. However, the technology used to recycle is not widely available and it re- mains unclear who owns the recycled material; issues remain regarding cost assignment and payment policy
								(continued)

		-		_				
Area	General East Asian current practice	Identified alternative practice	Measures to be explored	Transferability to East Asian countries	Major/ minor stake	Quantifiable gap	Gap assessment method	Comments
Pavement materials	Concrete pavement	Use of long life duration (30 years) concrete pavements (JPCP or CRCP) for major highways and motorways	Concrete pavement design and construction to be documented	Easy	Major	Yes	Compare GHG emissions from flexible pavement/ concrete pavement	Development of the use of cement with pozzolan fillers (addition of lime- filler and fly-ash) rather than of ordinary cement
Pavement materials	Use of local materials	Standards applicable to selection of materials, including local materials	Establish/update standards for selection of local and recycled materials	Easy	Minor	oZ		
Pavement materials	Wide preference for paved rural roads	Optimized techniques for gravel roads construction, maintenance, and management	Prefer gravel roads or surface treatment to asphalt concrete whenever possible (low traffic, minor roads)	Easy	Major	Yes	Compare with a rural road with intermediate level of traffic, and perform life-cycle analysis on it	
Roughness	Roughness	Roughness criteria set as a performance target	Implement roughness control with high performance equipment	Difficult	Major	Yes	Existing studies already available in the literature	Major impact of roughness on GHG emissions during operation
Pavement materials	Soil stabilization	Subgrade stabilization	Various techniques are available	Easy	Major	Yes	Existing studies already available in the literature	Stabilization seems to be very emission- prone and may not be recommended for GHG emissions mitigation
Pavement materials		Use of agricultural products (binders) in pavement		Easy	Minor	Yes	Compare GHG emissions resulting from the use of agricultural/ industrial products in pavement	
Pavement materials		Use of absorbing materials	Spread this technique	Easy	Medium	Yes	Assess GHG emissions captured by the improved pavement materials	Effectiveness of the technique to be further assessed.
								(continued)

37

Area	General East Asian current practice	Identified alternative practice	Measures to be explored	Transferability to East Asian countries	Major/ minor stake	Quantifiable gap	Gap assessment method	Comments
Structures								
Bridge design				Easy	Major	Yes	Compare GHG emissions for different types of bridges	
Bridge design	Limited use of steel/ mixed structures for lack of steel on the market resulting in high price	Use of composite (concrete/steel) bridges as efficient structures	Use composite bridges (steel/ concrete)	Easy	Minor	Yes	Compare emissions of composite structures with standard structures	
Interchanges		Compact design of interchanges	Optimize geometric design to minimize quantities of structural concrete	Easy	Minor	Yes	Compare GHG emissions from overdesigned and standard interchanges	
Structural design	Low characteristics of concrete	Long-life design	 Implement long-life structural design depending on traffic and type of road Adjust standards and specifications; improvement of design criteria in order to improve life-cycle duration 	Difficult	Minor	Yes	Compare GHG efficiency depending on concrete quality	
Alignment selection		Optimized alignment to avoid tunnel/ bridges sections	Optimize geometric design to minimize quantities of structural concrete	Easy	Major	Yes	 Compare GHG emissions for 1 km of tunnel or bridge with 1 km of cut/fill Compare tortuous vertical alignments involving cuts and fills with a smoother one involving viaducts and tunnels 	Main parameters: - Width of road (2 lanes/2X2 lanes) - Height of embankment - Type of bridge Main parameters: - Traffic volume forecast (impact on operations) - Design speed - Design life Operation period to be also considered
		_		_	_	-	-	(continued)

Area	General East Asian current practice	ldentified alternative practice	Measures to be explored	Transferability to East Asian countries	Major/ minor stake	Quantifiable gap	Gap assessment method	Comments
Tunnels and cuts				Difficult	Major	Yes	Compare GHG emissions from a tunnel and a cut of the same depth	Main parameters: – Cross-section width – Cut depth – Type of tunnel
Bridges and embankments				Difficult	Major	Yes	Compare GHG emissions from a bridge and an embankment of the same height	Main parameters: – Cross-section width – Height of embankment – Type of bridge
Structural materials		High-performance concrete	Promote the use of high-performance concrete through specific requirements included in technical specifications	Easy	Minor	Yes	Compare GHG emissions from 1m ³ of high performance concrete with 1m ³ of standard concrete	
Structural materials			Use of cement derived from dry production, concrete made with cement substitutes such as pulverized fuel ash, and so on	Difficult	Minor	°Z	Document cement unit emission factor	Modernization of cement plants
Structural materials		Recycling (concrete, steel)	Develop guidelines for recycling of structural materials and promote their usage	Easy	Major	Yes	Compare emission factors for recycled and natural aggregates	
Structural materials	Retaining wall made of reinforced concrete	Reinforced earth wall with gabions outerface		Easy	Minor	Yes	Compare GHG efficiency of reinforced concrete and reinforced earth	
								(continued)

39

		suc					@
		Might not be better in terms of GHG emissions	Safety considerations need to be taken into account		Institutional issue: prioritization of works, data collection, and management		Need for another tool; outside of scope of the ROADEO calculator
Comments		Might not terms of (Safety cor need to bo account		Institutional issue: prioritization of wor data collection, and management		Need for another to outside of scope of ROADEO calculator
Gap assessment method			Compare GHG emissions from steel and concrete guardrails with those made of wood or bamboo		Compare GHG emissions of an optimized strategy and a nonoptimized strategy		Assess GHG emission savings from efficient traffic management and congestion avoidance
Quantifiable gap		No	Yes		Yes		Yes
Major/ minor stake		Minor	Major		Major		Major
Transferability to East Asian countries		Easy	Difficult		Easy		Easy
Measures to be explored		Promote the use of slipforms for concrete barriers			 Improve maintenance planning Take into account maintenance in design and construction 		Suggest work zone traffic management planning, possibly with tools such as Quickzone (FHWA) and indicate how to use these tools to evaluate GHG emissions
Identified alternative practice		Use of slipform for concrete barriers			Optimized design and construction to provide the best possible level of service within the available budget		 Organize and study work zone traffic management Mitigate congestion as well as ensure safety and comfort Plan works to decrease impact on users
General East Asian current practice		Cast in place/precast			General absence of asset-management strategy	Work Zone Traffic Management	
Area	Road Furniture	Concrete barriers	Barriers materials	Maintenance	Asset management strategy	Work Zone Traff	Traffic management

ROADEO User Manual

Model Framework and Assumptions

Introduction

Purpose of this Document

This appendix has been developed as part of an effort to prepare a toolkit for the evaluation and reduction of GHG emissions in the road construction industry. This is an abridged version of the User Manual. For a complete version that includes a more detailed overview of assumptions made an in-depth explanation of the development of equations used to estimate the various parameters for quantities of road works items within the algorithm, and alternative practice data sheets, the user is referred to the complete User Manual on the CD that accompanies this document.

The User Manual is intended to provide guidance to the user of the GHG emissions evaluation and reduction tool "Greenhouse Gas Emission Mitigation Toolkit for Highway Construction and Rehabilitation" (ROADEO, ROADEO calculator, the Toolkit), which takes the form of software.

The purpose of this document is to

- describe the structure of the software and explain the logic behind its development, so that users may successfully implement it, and
- detail the assumptions made to assist ROADEO calculator users who may not have the comprehensive information required to assess GHG generators.

The modelling of GHG emissions is not covered by this document. The user may refer to annex 1" Introduction to GHG Emissions in Road Construction and Rehabilitation" for information and guidance on this aspect. This information is found on the CD that accompanies this document.

These assumptions, as will be evident from further reading, are not expected to provide accurate results. However, in the absence of information, and especially at early stages of projects (planning and early feasibility study stages, for example) the model can provide orders of magnitude.

The model is highly empirical; it has very little interface with engineering considerations, apart from some considerations of pavement. Therefore, it should be used with great care.

It is expected that feedback from experience will allow major improvements.

Structure of the Document

This document first presents the structure of the ROADEO calculator, then describes the overall model principles, and finally, details estimation of GHG generators, in terms of materials, equipment, and transport. Practical guidance is also given in a specific section on best practices.

A report on the calibration of the model used in the ROADEO calculator appears in an appendix.

Notice

The following facts should be noted by the reader and ROADEO calculator users:

- The tool is the result of a somewhat contradictory effort to
 - make it as open as possible, so users can adjust most of the parameters affecting GHG emissions calculations and integrate their specific project conditions into the considerations and calculations, and
 - make it easy to use and accessible to a wide range of users who are not GHG or road construction specialists;
- The decisions made by users in selecting values for the calculation parameters may have a major impact on the results. The ROADEO calculator provides guidance and orders of magnitude to assist in this difficult task. However, the current status of calculation parameters selection and available information still leave space for major uncertainties. As discussed in the review of GHG provided with the Toolkit, sources sometimes disagree significantly on values to be considered.
- Some parameters cannot be precisely assessed at upstream stages; any calculation should be accompanied by a short note summarizing the assumptions made and the limits or risks of the calculation.
- Engineering or empirical results available from the ROADEO calculator may not represent the specific condition of the user's project, and careful consideration should be given before using the default values. These are provided to help users identify main issues and their orders of magnitude.

Calculation Tool Architecture

General Requirements

Objective

ROADEO, along with its User Manual and a manual on GHG emissions and best practices, comprises a toolkit for the evaluation and reduction of road construction GHG emissions.

The ROADEO calculator is intended to perform the following tasks:

- Evaluate GHG emissions Evaluate GHG emissions from a road project. Such evaluation may take place at any of the following stages of a road project:
 - Planning/feasibility studies;
 - · Detailed design;
 - Works/implementation; and
 - Completion of works/operation.
- Assess alternative construction practices to limit GHG emissions:
 - Identify technically relevant options based on the project's characteristics;
 - · Evaluate GHG emissions of these options; and
 - Generate reports that provide useful information to the designer and planner (breakdown by type of work) to optimize the GHG-relevant design and implementation of the project.

The ROADEO calculator does not perform road engineering designs, nor does it compute quantities. However, it enables identification of relevant alternatives to be further explored by users, with the support of the manual of best practices and through additional engineering studies as required.

Though the ROADEO calculator can be used at all stages of a project, it is most useful at upstream stages (planning and design) where other tools—those available and those under development—do not offer comparable functionality.

Programming Environment

The ROADEO calculator was developed as a standalone spreadsheet. It does not include any macro and it is compatible with most versions of Microsoft Excel and Open Office, regardless of the OS platform. All parameters, default values and formulas can be accessed without password protection through a familiar, flexible, and transparent user interface.

User Interface Language

Users may switch from one interface language to another in real time through a dedicated menu.

Tool Organization

Figure B1 shows the general organization of the tool, including main user steps, data inputs/outputs and calculation protocols.

Data Arrangements

Data Transparency and Flexibility

The ROADEO calculator is based on transparent assumptions. Each variable is accessible to users and its value can be customized.

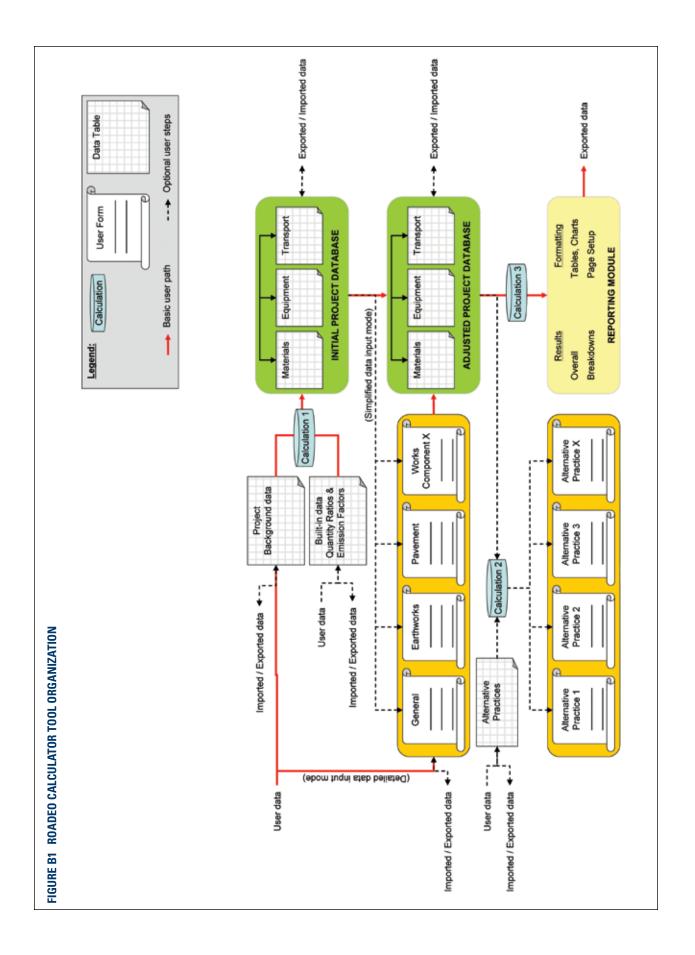
Data used for calculations comes from either

- built-in values initially proposed within the tool for selected tables and variables,
- suggested values proposed by the tool based on built-in values and calculations, or
- user-defined values imported by users or directly set by users (through user forms or table editing) to replace built-in or suggested values, either temporarily (project specific data) or permanently (calibration data).

Database Structure

The database structure cannot be modified by users, but its contents may be adjusted—users can add or remove rows in each table, and change the value of any cell.

The database structure consists of one predefined table for each GHG generator:


- Materials used;
- Equipment used; and
- Transport variables.

Each GHG Generator has multiple associated variables falling into four groups:

- Works Components: These are predefined tables. Each works component has multiple associated variables, allowing users to specify their project's characteristics and quantities. Users can duplicate works components tables and create new ones (by duplicating a specific component with generic contents (hereinafter "others") depending on actual project requirements— for example, multiple types of bituminous pavement, tunnels, ITS, and so on.
- Characteristics: Variables providing basic information on each GHG generator (designation, material's physical composition, type, transport mode, originstops-destination, and the like).
- Quantifying Data: Measurement variables used for emissions calculations for each GHG generator (volume, weight, capacity, distance, fuel/electricity consumption, and so on), each one to be filled in with a predefined measurement unit.
- 4. GHG Emission Factors: kg CO₂ equivalent/selected measurement unit.

Table B1 shows a simplified view of GHG generators distributed by works components.

Each column and each row has multiple associated variables. GHG emissions are calculated by combining (factoring and aggregating) these variables together.

TABLE B1 COMBINATI	ON OF GHG GENERATORS AND WO	ORKS COMPONENTS	
GHG Generators works components	Materials	Equipment	Transport
Earthworks			
Drainage			
Utilities			
Pavement			
Structures			
Furniture			
Landscaping			
Management			
Others			

General Model Framework

Architecture

The model included in ROADEO to assist users at upstream stages of projects (when all detailed information is not available) works in two stages.

In Stage 1, the user is able to calculate quantities of road works items based on general characteristics of the project. The output of this stage is a "bill of quantities" at the feasibility study stage, and the works items are broken down into "works series" reflecting the types of works.

In Stage 2, the user can calculate the number of GHG emissions generators, based on the guantities of items of road works and on general characteristics of the project. These generators have been broken down into materials, transport, equipment, and others.

Parameters/Background Data

The purpose of the model is to provide outputs as close as possible to reality, while keeping the need for user inputs minimal, as a high level of need for inputs may lead to:

- lack of interest among nontechnical users, and
- high costs or an overly long period for data collection.

The background data that the user is required to enter in ROADEO are as follows.

Table B2 shows the parameters used in calculations during Stage 1. The assumptions made and equations used to estimate quantities for each item of works are elaborated in chapter 4 of the full-length User Manual. The user is invited to refer to it for a detailed overview of the Stage 1 inputs. Parameters used in calculations of Stage 1 are presented in table B3. Table B4 summarizes the 25 model parameters (16 for Stage 1, 9 for Stage 2) to be defined by the user.

TABLE B2 LIST OF PARAMETERS USED IN CALCULATIONS OF STAGE 1 OF THE MODEL

Parameter	Description	Unit	Comment and explanation
%ECD	Length of existing cross drainage as a percentage of requirement	%	User input: • 0%: no existing cross drain • 100%: all required drains exist
%ELD	Length of existing longitudinal drainage as a percentage of length of road	%	User input: • 0%: no existing longitudinal drain (also value for new project) • 100%: all required drains exist
%EWB	Parameter reflecting the balance between cut and fill	%	User input: • 100%: cut is wholly reused in fill • 0%:cut is wholly evacuated
%GLP	General longitudinal profile	%	User input: • –100%: cut only • +100%: fill only
%MNT	Length of road in mountainous terrain as a percentage of road length	%	User input
%RCK	Volume of rocky soil as a percentage of volume of soil	%	User input
%URB	Length of the road project crossing urban areas as a percentage of road length (in%)	%	User input
%VET	Volume of embankment to be treated as a percentage of the volume of cut reused	%	User input
%WDB	Number of bridges to be widened as a percentage of number of bridges	%	User input
A1	Parameter		
A2	Parameter		
A3	Parameter		
A4	Parameter		
A5	Parameter		
A6	Parameter		
A7	Parameter		
A8	Parameter		
A9	Parameter		
A10	Parameter		
CGA	Area of clearing and grubbing	m²	
CUE	Volume of cut evacuated	m ³	
CUR	Volume of cut reused as fill	m³	
CUT	Volume of cut	m³	
DSA	Directional sign area	m²	
ECS	Existing cross section	m	User input: • Width of existing road including shoulders • 0 for new projects
FBP	Volume of fill from borrow pit	m³	
FIL	Volume of fill	m ³	
			(continued)

TABLE B2 CONTINUED

Parameter	Description	Unit	Comment and explanation
HCF	Average height of cut and fill	m	
HRE	Volume of hard rock evacuated	m³	
HRRP	Volume of hard rock reused for pavement	m ³	
HRRF	Volume of hard rock reused for fill	m³	
IBA	Interchanges bridge deck area	m²	
ILCT	Dry metric tons/ha for selected initial land cover types	ton/ha	<i>Source:</i> 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Values for Continental Asia)
L	Road project length	m	User input
LBC	Length of box culverts	m	
LBR	Length of barriers	m	
LED	Length of earth longitudinal drain	m	
LLD	Length of lined longitudinal drain	m	
LPC	Length of pipe culverts	m	
LVV	Lane width	m	User input
MBA	Deck area of major bridges on main section	m²	
MW	Median width	m	User input
NBL	Number of lanes	u	User input
NCS	New cross section	m	
NPA	New pavement area	m²	
NPS	Number of vertical signs (police)	u	
NSL	Number of streetlights	u	
OPR	Area of other paved roads	m²	
POA	Pavement overlay area	m²	
RTP	Road type	list	User input: • Expressway • Provincial road • National road • Rural road
SBA	Deck area of standard bridges on main section	m²	
SGP	Area of subgrade preparation	m²	
SW	Shoulder width	m	User input
TEA	Tunnel excavation volume	m³	
TLV	Tunnel lining volume	m²/m	Area of wall lined per length of tunnel
TUN	Length of tunnel	m	User input
VET	Volume of embankment treatment	m³	
WAL	Area of walls	m²	
WBA	Wayside amenities area	m²	
WPA	Wayside amenities pavement area	m²	
WTP	Works type	list	User input: • New alignment • Rehabilitation • Widening

Parameter	Description	Unit	Comment and explanation
ASO	Area of surface dressing for overlay	m²	
CBR	California Bearing Ratio	%	User input • to be homogeneous for the whole road
DAS	Distance asphalt plant—site	km	
DBS	Distance batching plant—site	km	
DCB	Distance cement plant—batching plant	km	
DCF	Distance cut on site—fill on site	km	
DCS	Distance cement plant—site	km	
DQA	Distance quarry—asphalt plant	km	
DQB	Distance quarry—batching plant	km	
DRA	Distance refinery—asphalt plant	km	
DRS	Distance refinery—site	km	
DSB	Distance site—borrow pit	km	
DSD	Distance site—disposal site	km	
DSS	Distance steel plant—site	km	
EAL	Equivalent standard axle (8.2t) loading—ESAL		User input: • Basic traffic • Traffic growth • Truck rate • Design life
MHB	Mass of hydraulic binder	t	
OST	Overlay structure type	list	User input: • Bituminous • Gravel • Surface dressing
PST	Pavement structure type	list	User input: • Concrete pavement • Bituminous pavement on granular materials • Bituminous pavement on hydraulic bound materials • Bituminous pavement on bituminous bound materials • Surface dressing • gravel
STH	Area where subgrade has to be treated with hydraulic binders (as a % of subgrade preparation area)	%	User input
ТВМ	Type of barrier material	list	User input: • Concrete • Timber • Steel
Ti	Thickness of pavement layer No i	mm	Thickness of pavement layers calculated by the model on the basis of EAL, CBR, and PST
TSB	Type of structure (standard bridges)	list	User input: • Composite (steel/concrete) • Concrete (reinforced/prestressed)
TSM	Type of structure (major bridges)	list	User input: • Composite (steel/concrete) • Concrete (reinforced/prestressed) • Steel
			(continued)

TABLE B3 CONTINUED			
Parameter	Description	Unit	Comment and explanation
TSW	Type of structure (wall)	list	User input: • Steel (sheet pile) • Reinforced earth • Reinforced concrete
VBO	Volume of bituminous concrete for overlay	m³	
VGO	Volume of gravel for re-gravelling	m³	

TABLE B4 LIST OF PARAMETERS TO BE DEFINED BY THE USER

Parameter	Description	Unit
%ECD	Length of existing cross drainage as a percentage of requirement	%
%ELD	Length of existing longitudinal drainage as a percentage of length of road	%
%EWB	Parameter reflecting the balance between cut and fill	%
%GLP	General longitudinal profile	%
%MNT	Length of road in mountainous terrain as a percentage of road length	%
%RCK	Volume of rocky soil as a percentage of volume of soil	%
%URB	Length of the road project crossing urban areas as a percentage of road length	%
%VET	Volume of embankment treatment	%
%WDB	Number of bridges to be widened as a percentage of number of bridges	%
CBR	California Bearing Ratio	%
EAL	Equivalent standard axle (8.2t) loading—ESAL	u
ECS	Existing cross section	m
ILCT1	Initial land cover type I	list
ILCT1%	% of project alignment covered with initial land cover type I	%
ILCT2	Initial land cover type II	list
ILCT2%	% of project alignment covered with initial land cover type II	%
L	Road project length	m
LW	Lane width	m
MW	Median width	m
MT	Median type	list
NBL	Number of lanes	u
OST	Overlay structure type	list
PST	Pavement structure type	list
RTP	Road type	list
STH	Area where subgrade has to be treated with hydraulic binders	%
SW	Shoulder width	m
TBM	Type of barrier material	list
TSB	Type of structure (standard bridges)	list
TSM	Type of structure (major bridges)	list
TSW	Type of structure (wall)	list
TUN	Length of tunnel	m
WTP	Works type	list

GHG Generators

This chapter focuses on ROADEO's Stage 2 output identification of GHG generators, based on the quantities of works for various components of the road project as defined in Stage 1.

Materials

The ROADEO calculator focuses on the following main materials (currently) including:

- granular materials,
- hydraulic binder treated materials (currently including cement and lime),
- bitumen-treated materials,
- metals (copper, steel),
- rammed soil, and
- timber.

Earthworks

For earthworks, materials do not represent a significant input, except for hydraulic binders (which can be a major contributor).

 $\mathbf{MHB} = \mathsf{STH} \times \mathsf{SGP} \times 0.3 \times 0.05 + \mathsf{VET} \times 0.02$

Where

MHB: Mass of hydraulic binder (in t)

- STH: Area where subgrade has to be treated with hydraulic binders (as a % of subgrade preparation area)
- SGP: Area of subgrade preparation (in m²)
- VET: Volume of embankment to be treated (in m³)

This assumes treatment of:

- the required area over a thickness of 30 cm, for a soil density of 2t/m³ and for a hydraulic binder proportion of 2.5 percent, and
- the required volume of embankment, for a soil density of 2t/m³ and for a hydraulic binder (lime) proportion of 1 percent.

The quantity and binder type can be adjusted manually by the user to reflect other conditions (treatment thickness, proportion of binder).

Soil densities can be considered as shown in table B5.

TABLE B5 SOIL DENSITIES FOR BINDER MIXING WITH SOIL

Materials dry density (t/m³)	Min	Мах
Silt	1.6	1.8
Clay	1.7	1.8
Sand		
Homometric sand	1.4	1.6
Graduated sand	1.6	1.9
Granular soil	1.8	2.2

Other binders can be considered (either as an alternative or as a combined solution, for example, treatment with 3 percent lime and 2 percent cement), with the emissions factors in table B6.

Pavement

New Pavement

The model considers six types of pavement structures (table B7). For each of these, a pavement catalogue has been used.

The materials in table B8 have been considered.

TABLE B6 EMISSION FACTORS OF HYDRAULIC BINDERS

Binder	CO ₂ impact (kg CO ₂ eq./t)	Source
Cement CEM I	868	ATILH
Cement CEM II	650	ATILH
Hydraulic road binder HRB 70% slag	294	ATILH
Hydraulic road a HRB 50% slag	459	ATILH
Hydraulic road binder HRB 30% slag	625	ATILH
Hydraulic road binder HRB 30% limestone	614	ATILH
Hydraulic road binder HRB 30% fly ash	613	ATILH
Quicklime	1,059	Union of Lime Producers (France)

Notes:

ATILH—Association Technique de l'Industrie des Liants Hydrauliques (Technical Association of Hydraulic Binders Industry. Percentage of binder in volume.

TABLE B7 TYPICAL PAVEMENT TYPES AND DESIGNS

Pavement type (PST)	Catalogue used
Concrete pavement	California Department of Transportation Highway Design Manual, Tables 623 F and 623G
Bituminous pavement on granular materials	Transport Research Laboratory Road Note 31, Charts 3 and 5
Bituminous pavement on hydraulic bound materials	Transport Research Laboratory Road Note 31, Chart 4
Bituminous pavement on bituminous bound materials	Transport Research Laboratory Road Note 31, Chart 7
Surface dressing	Transport Research Laboratory Road Note 31, Chart 1
Gravel	Transport Research Laboratory Road Note 31, Chart 1

The ROADEO calculator requires the following input from the user:

- Traffic data, in ESAL (106 equivalent standard axles to 8.16t); and
- Surface strength, as a CBR result.

Data are then converted according to the following tables, to find the corresponding pavement layer types and thicknesses in the above catalogues.

TABLE B8 MATERIALS CONSIDERED IN TYPICAL PAVEMENT DESIGNS

Material	Reference
Double surface dressing	Transport Research Laboratory Road Note 31
Flexible bituminous surface	
Bituminous surface (usually a wearing course WC and a base course BC)	
Bituminous road base, RB	
Granular road base, GB1–GB6	
Granular subbase, GS	
Granular capping layer or selected subgrade fill, GC	
Cement- or lime-stabilized road base 1, CB4	
Cement- or lime-stabilized road base 2, CB5	
Cement- or lime-stabilized subbase, CS	
Concrete with dowels, JPCP	California Department of
Concrete (lean concrete), LCB	Transportation Highway Design Manual, Tables 623 F and 623G

For concrete pavement, see tables B9 and B10. For all other structures, see tables B11 and B12.

If CBR Values are not available, the Overseas Road Note provides table B13 (p. 52).

Quantities of material are then calculated according to the following table, depending on the type of works (in the formulas, Ti is the thickness of type i resulting from the above catalogue consideration).

TABLE B9 TRAFFIC CLASSES FOR CONCRETE PAVEMENT

TI=9x(ESA 8t/10 ⁶) ^{0.119}	Traffic indexes
0.0	TI1
9.5	TI2
10.5	TI3
11.5	TI4
12.5	TI5
13.5	TI6
14.5	TI7
15.5	TI8
16.5	T19
17.0	TI10

TABLE B10 SUBGRADE CLASS FOR CONCRETE PAVEMENT STRUCTURES

CBR (%)	Subgrade classes
40	Type 1
10	Type 2

TABLE B11 TRAFFIC CLASSES FOR ALL PAVEMENT STRUCTURES EXCEPT CONCRETE

ESA (8.16) (x106)	Traffic classes (ORN 31)
0.3	T1
0.7	T2
1.5	T3
3	T4
6	T5
10	T6
17	Τ7
30	Т8

Quantities of each layer are then converted into quantities of basic materials as per table B14.

For both asphalt and concrete, quantities of basic materials are then calculated on the basis of the percentages in table B15:

In rehabilitations, it is considered that the only works conducted consist of the application of an overlay on the

existing pavement (see section 1.2.2 Overlay). Hence, quantities of new pavement are nil. Similarly, for a widening, an overlay is applied on the existing cross-section, and the calculated pavement structure is applied only on the new pavement area. That is why the factor (1-POA) is applied to all of the formulas in the aforementioned table B14.

For both types of work (rehabilitation and widening), the quantities of overlay are calculated as follows.

Overlay

Three types of overlay have been considered: bituminous, surface dressing, and gravel. These are addressed by the parameter OST, overlay structure type.

VBO = POA x 0.12 if OST = bituminous

Where

VBO: Volume of bituminous concrete for overlay (in m³)POA: Area of pavement overlay (in m²)

Assumed thickness is 12 cm for material type 2 of new pavement catalogue.

TABLE B12 SUBGRADE CLASS FOR ALL PAVEMENT STRUCTURES EXCEPT CONCRETE

CBR (%)	Subgrade classes (ORN 31)	Comments
2	S1	Poor soil: Contains appreciable amounts of clay and fine silt. (50 percent or more passing -200)
5	S2	Pl. over .20
8	S3	Normal soil: Retains a moderate degree of firmness under adverse moisture conditions.
15	S4	Loams, salty sands, sand gravels with moderate amounts of clay, and fine silt. Pl. 15–20
30	S5	Good soil: Retains a substantial amount of load bearing capacity when wet. Sands, sand gravels, materials free of detrimental amounts of plastic material. P.I. less than 15
>30	S6	

TABLE B13 SUBGRADE STRENGTH CLASSES USED WHEN CALIFORNIA BEARING RATIO DATA ARE UNAVAILABLE

	Subgrade strength class					
Depth of water table from formation level (meters)	Non-plastic	Sandy clay PI*=10	Sandy clay PI*=20	Silty clay PI*=30	Heavy clay PI*>40	
0.5	S4	S4	S2	S2	S1	
1	S5	S4	S3	S2	S1	
2	S5	S5	S4	S3	S2	
3	S6	S5	S4	S3	S2	

*PI=Plasticity Index

Note: Overseas Road Notes are prepared principally for road and transport authorities in countries receiving technical assistance from the British government.

L PAVEMENT LAYERS
OR TYPICAL P
MATERIALS F
I QUANTITIES OF MATERIALS FOR TYPICAL
TABLE B14

			Cal	Calculation
	Layer definitions	Unit	New alignment	Widening
-	Double surface dressing	m²	(NBL*LW)*L*T1 (1)	((NBL*LW)-POA)*L*T1
2	Flexible bituminous surface	m3	(NBL*LW+2*0.8*A8+A9+0.30)*L*T2/1000	((NBL*LW+2*0.8*A8+A9+0.30) - POA)*L*T2/1000
ო	Bituminous surface (usually a wearing course WC and a base course BC)	щ	(NBL*LW+2*0.8*A8+A9+0.30)*L*T3/1000	((NBL*LW+2*0.8*A8+A9+0.30) - POA)*L*T3/1000
4	Bituminous road base, RB	щ	(NBL*LW+SW*2+MW+0.50)*L*T4/1000	((NBL*LW+SW*2+MW+0.50)-POA)*L*T4/1000
വ	Granular road base, GB1 - GB6	m³	(NBL*LW+SW*2+MW+0.50)*L*T5/1000	((NBL*LW+SW*2+MW+0.50)-POA)*L*T5/1000
9	Granular subbase, GS	т	(NBL*LW+SW*2+MW+0.50)*L*T6/1000	((NBL*LW+SW*2+MW+0.50)-POA)*L*T6/1000
7	Granular capping layer or selected subgrade fill, GC	щ	(NBL*LW+SW*2+MW+0.50)*L*T7/1000	((NBL*LW+SW*2+MW+0.50-POA)*L*T7/1000
ω	Cement- or lime-stabilized road base 1, CB4	щ	(NBL*LW+SW*2+MW+0.50)*L*T8/1000	((NBL*LW+SW*2+MW+0.50)-POA)*L*T8/1000
თ	Cement- or lime-stabilized road base 2, CB5	щ	(NBL*LW+SW*2+MW+0.50)*L*T9/1000	((NBL*LW+SW*2+MW+0.50)-POA)*L*T9/1000
10	Cement- or lime-stabilized subbase, CS	m3	(NBL*LW+SW*2+MW+0.50)*L*T10/1000	((NBL*LW+SW*2+MW+0.50)-POA)*L*T10/1000
11	Concrete with dowels, JPCP	щ	(NBL*LW+2*0.8*A8+A9+0.30)*L*T11/1000	((NBL*LW+2*0.8*A8+A9+0.30)-POA)*L*T11/1000
12	Concrete (lean concrete), LCB	m3	(NBL*LW+SW*2*+MW+0.50)*L*T12/1000	((NBL*LW+SW*2*+MW+0.50)-POA)*L*T12/1000
Notes: (1): The	<i>Notes:</i> (1): The double surface-dressing value from the catalogue has no thickness and is just equal to 1 when it is present, and 0 otherwise.	ckness ar	id is just equal to 1 when it is present. and 0 otherwise.	

(1): the double surrace-dressing value from the catalogue (2): Thicknesses are expressed in mm in the catalogue

Where:

A8=Shoulder width if shoulders are paved, and 0 other wise; A9=Median width if the median lane is paved, and 0 other wise; and POA=Pavement Overlay Area (m²).

Layer	Bituminous emulsion	Quarried aggregate	Asphalt general	Soil general (rammed soil)	Cement general (typical)	Concrete road & pavement	Steel
Layer 1	9	91	0	0	0	0	0
Layer 2	0	0	100	0	0	0	0
Layer 3	0	0	100	0	0	0	0
Layer 4	0	0	100	0	0	0	0
Layer 5	0	100	0	0	0	0	0
Layer 6	0	0	0	100	0	0	0
Layer 7	0	0	0	100	0	0	0
Layer 8	0	94	0	0	6	0	0
Layer 9	0	96	0	0	4	0	0
Layer 10	0	0	0	98	2	0	0
Layer 11	0	0	0	0	0	92	8
Layer 12	0	0	0	0	0	100	0

TABLE B15 COMPOSITION OF PAVEMENT LAYERS (percent in volume)

TABLE B16 COMPOSITION OF ASPHALT AND CONCRETE (percent)

Layer	Bitumen	Cement general (typical)	Quarried aggregate	Sand
Concrete		7.10	31.75	45.70
Asphalt concrete	5	0	95.00	0

ASO = POA if OST = surface dressing

Where

AST: Area of surface dressing for overlay (in m²)

POA: Area of pavement overlay (in m²)

for material type 1 of new pavement catalogue.

Where

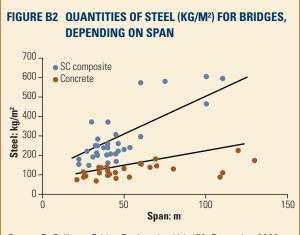
- VGO: Volume of gravel for re-gravelling (in m³)
- POA: Area of pavement overlay (in m²)

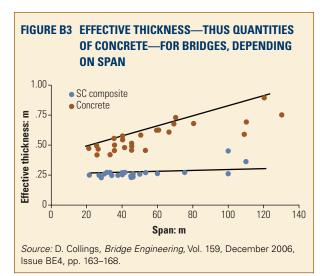
for material type 5 of new pavement catalogue.

Other Roads

For other roads, the calculation for new pavement is used, based on 30 percent of the ESAL of the main road, the same pavement structure type, and the same CBR.

The quantities of materials can be calculated by multiplying by the values of OPR resulting from Stage 1.


Drainage


For drainage, the main GHG contribution results from the use of reinforced concrete or masonry for the construction of drains and culverts.

The quantities of materials (represented in tons of steel or m³ of concrete per linear meter of drainage type) can be directly calculated by multiplying the above ratios by LPC, LBC, and LLD resulting from Stage 1.

TABLE B17 QUANTITIES OF MATERIALS FOR DRAINAGE WORKS

Material structure	Steel	Concrete
Lined drains	0.019 t/m	0.27 m³/m
Pipe culverts	0.018 t/m	0.22 m³/m
Box culverts	0.145 t/m	1.4 m³/m

Source: D. Collings, Bridge Engineering, Vol. 159, December 2006, Issue BE4, pp. 163–168.

TABLE B18 QUANTITIES OF MATERIALS FOR WALLS

Quantity of material Type of wall	Steel	Concrete	Rammed soil
Steel	0.108 t/m²		
Reinforced concrete	0.045 t/m²	0.40 m³/m²	
Reinforced earth	0.012 kg/m ²	0.07 m³/m²	1.5 m³/m²

Note: Quantities provided in mass of steel or volume of concrete or rammed soil per area of wall.

Structures

The main materials considered for structures are steel and concrete.

The following charts have been used for bridges, extracted from "An environmental comparison of bridge forms." D. Collings, *Bridge Engineering*, Vol.159, December 2006, Issue BE4, Pg 163–168.

Three parameters are required for this stage.

- 1. TSW: Type of structure (wall), which can be
 - steel (sheetpile),
 - reinforced concrete, or
 - reinforced earth.
- 2. TSB: type of structure (standard bridges), which can be
 - · composite (steel/concrete), or
 - concrete (reinforced/prestressed).
- 3. TSM: type of structure (major bridges), which can be
 - composite (steel/concrete),
 - concrete (reinforced/prestressed), or
 - steel.

It has been assumed that tunnels are constructed with a concrete lining.

Walls

The quantities of materials can be directly calculated by multiplying the above ratios by WAL after the selection of TSW.

Quantity of concrete is then divided into basic material as indicated in table B17.

Standard bridges

The quantities of materials can be directly calculated by multiplying the above ratios by the sum of SBA and IBA after the selection of TSB.

TABLE B19 QUANTITIES OF MATERIALS FOR STANDARD BRIDGES

Quantity of material Type of structure	Steel	Concrete
Composite	0.220 t/m ²	0.30 m ³ /m ²
Concrete	0.115 t/m ²	0.5 m³/m²

TABLE B20 QUANTITIES OF MATERIALS FOR MAJOR BRIDGES

Quantity of material Type of structure	Steel	Concrete
Steel	0.650 t/m²	0.15 m³/m²
Composite	0.518 t/m²	0.35 m³/m²
Concrete	0.225 t/m²	0.85 m³/m²

Note: Quantities provided in tons of steel or cubic meters of concrete per area of bridge deck.

Quantity of concrete is then divided into basic material as indicated in table B17.

Major bridges

An average span of 125 m has been considered.

The quantities of materials can be directly calculated by multiplying the above ratios by MBA after the selection of TSM.

Quantity of concrete is then divided into basic material as indicated in table B17.

Tunnel

The temporary and permanent lining of the tunnel have been assumed to be of concrete, with reinforcement or steel arches.

The quantities of materials can be directly calculated by multiplying the above ratios by TLV.

Quantity of concrete is then divided into basic material as indicated in table B17.

Equipment and Road Furniture

Barriers

For barriers, the parameter TBM (type of barrier material) is considered, which can be steel or timber (except on national roads and expressways).

TABLE B21 QUANTITIES OF MATERIALS FOR TUNNELS

Material	Quantity
Steel	0.14 t/m ³
Concrete	1 m³/m³

Note: Quantities provided in tons of steel or cubic meters of concrete per volume of tunnel.

TABLE B22 QUANTITIES OF MATERIALS FOR BARRIERS

Quantity of material Type of structure	Timber	Steel	Concrete
Steel		0.012 t/m	
Concrete		0.002 t/m	0.25 m³/m
Timber	0.019 t/m	0.008 t/m	

Note: Quantities provided in tons of timber or steel or cubic meters of concrete per linear metre of barrier.

The quantities of materials can be directly calculated by multiplying the above ratios by LBR once TBM has been selected.

Quantity of concrete (if any) is then divided into basic material as indicated in table B17.

Signs

Police signs and their supports are assumed to be in galvanized steel. Signs are supposed to be 0.8 m², 3mm thick, with a 2.5m high support of 6 kg/m.

The quantity of galvanized steel for police signs is therefore assumed as 35 kg/unit, and can be directly calculated from the value of NPS resulting from Stage 1.

Directional signs are supposed to be supported by steel (steel pole, except for expressways, where they are gantries). The quantities in table B23 are given for 1 m² of directional sign.

TABLE B23 QUANTITIES OF MATERIALS FOR DIRECTIONAL SIGNS

Type of road	Quantity of steel for support	Quantity of steel for sign	Total quantity of steel	Quantity of concrete
Expressway	0.070 t/m²	0.025 t/m²	0.095 t/m²	0.3 m³/m²
National/provincial/rural	0.018 t/m²		0.043 t/m²	0.2 m³/m²

Note: Quantities provided in tons of timber or steel or cubic meters of concrete per square metre of sign.

Concrete for foundation is not taken into account. Aluminum has not been taken into account, although it is used in several countries for supports and sign panels.

The quantities of materials can be calculated directly by multiplying the above ratios by DSA resulting from Stage 1, based on road type (RTP).

Quantity of concrete is then divided into basic material as indicated in table B17.

Lighting

Materials are calculated for 15m-high steel supports and for the power cable (50m for one pole).

The quantities of materials can be calculated directly by multiplying the above ratios by NSL resulting from Stage 1.

Quantity of concrete is then divided into basic material as indicated in table B17.

Wayside Amenities

Materials are concrete (for pavement and buildings), steel (for buildings) and bituminous materials (for pavement).

For pavement, the calculation is made for the same structure as for the pavement of the main section for the WPA area.

For buildings, materials have been assumed to be steel and concrete (reinforced concrete).

The quantities of materials can be calculated directly

TABLE B24 QUANTITIES OF MATERIALS FOR LIGHTING WORKS

Quantity of steel for support	Quantity of concrete	Copper
0.420 t/u	0.6 m³/u	0.0225 t/u
Note: Quantities provided	in cubic meters of cor	acrete or tons of

copper per number of lights.

by multiplying the above ratios by WBA resulting from Stage 1.

Quantity of concrete is then divided into basic material as indicated in table B17.

Works Equipment

The following characteristics have been considered for works equipment.

The information in table B27 (pp. 61–64) has been used to derive the following ratios/default values.

Transport

Distances

The distances in table B27 (p. 61) have been considered.

Fleet Vehicles

Road transport has been assumed by default.

A suboptimal use of transport fleet has also been assumed, involving the use of some medium trucks (15 percent) for long distance transport (over 25 km).

Although they are believed to reflect general actual conditions, these are important assumptions. They are not optimal and may trigger suggestions to use alternatives. Therefore, the user may have to check and adjust them.

In the 25–50 km range, only 11–19 ton diesel trucks were considered.

TABLE B25 QUANTITIES OF MATERIALS FOR WAYSIDE AMENITIES

Quantity of steel	Quantity of concrete
0.08 t/m²	0.55 m³/m²

Note: Quantities provided in tons of steel or cubic meters of concrete per square meter of wayside amenity.

F Emission factor (kg CO ₂ eq./Hr)	426.89	256.07	170.52	85.26	depending on	country			depending on	country		64.68	58.80	47.04	8.82	8.82	73.50	52.92	35.28	52.92	19.70	30.61 kg CO ₂ eq./m ²	(continued)
Data source for consumption	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	Caterpillar	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	
Consumption unit	Liters/hr	Liters/hr	Liters/hr	Liters/hr	KW	KW	KW	KW	KW	KW	KW	Liters/hr	Liters/hr	Liters/hr	Liters/hr	Liters/hr	Liters/hr	Liters/hr	Liters/hr	Liters/hr	Liters/hr	Liters/m ²	
Consumption/ hour	145	87	58	29	11,454	6,872	4,582	2,291	10,480	7,336	4,192	22	20	16	3	3	25	18	12	18	7	ത	
Data source for capacity	Shanghai	Zenith Company			Shanghai	Zenith Company						IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	Caterpillar	IVL Report	IVL Report	IVL Report	IVL Report	IVL Report	
Capacity unit	m³/hr	m³/hr	m³/hr	m³/hr	m³/hr	m³/hr	m³/hr	m³/hr	m³/hr	m³/hr	m³/hr	m²/hr	m²/hr	m³/hr	m²/hr	m²/hr	m³/hr	m²/hr	m²/hr	m²/hr	m²/hr	m²/hr	
Capacity	115	70	46	23	115	70	46	23	50	35	20	1,300	1,200	520	22,800	19,125	500	1,006	791	791	460	N/A	
Type of road	Expressway	National road	Provincial road	Rural road	Expressway	National road	Provincial road	Rural road	Expressway	National road	Provincial road	Expressway; National road	Provincial road	All roads	Expressway; National road	Provincial road; Rural road	Expressway; National road, Provincial road	Expressway; National road	Provincial road; Rural road	Expressway; National road	Provincial road; Rural road	Expressway; National road	
Works components	Pavement;	Structures; Drainage)		Pavement;	Structures; Drainage)		Pavement			Pavement		Pavement	Pavement	Pavement	Earthworks	Earthworks;	Pavement	Pavement		Structures	
Equipment	Aggregate crushing	plant			Aggregate crushing	plant (electricity)			Asphalt mixing plant			Asphalt paver		Backhoe loader	Bitumen sprayer		Bulldozer	Soil compactor		Asphalt compactor		Tower Crane (small)	

TABLE B26 CHARACTERISTICS OF CONSTRUCTION EQUIPMENT

TABLE B26 CONTINUE	
TABLE B26 CONTINUI	ш
TABLE B26 CONTINU	=
TABLE B26 CONTIN	_
TABLE B26 CONTI	2
TABLE B26 CONT	
TABLE B26 CON	⊢
TABLE B26 CON	-
TABLE B26 C0	~
TABLE B26 C	0
TABLE B26 (ō
TABLE B26	-
TABLE B26	
TABLE B2	
TABLE B	ى
TABLE	26
TABLE	B26
TABL	B26
TAB	E B26
T	LE B26
F	BLE B26
	ABLE B26
	FABLE B26

(continued)									
52.92	IVL Report	Liters/hr	18	IVL Report	m³/hr	40	All roads	Earthworks	Hydraulic hammer
102.90	Caterpillar	Liters/hr	35	Caterpillar	m²/hr	14,240	Provincial road; Rural road	Pavement	
123.48	Caterpillar	Liters/hr	42	Caterpillar	m²/hr	15,385	Expressway; National road	Earthworks;	Motor grader
132.30	IVL Report	Liters/hr	45	IVL Report	m³/hr	360	All roads	Pavement; Structures; Drainage	Excavator (hydraulic)
99.96	IVL Report	Liters/hr	34	IVL Report	m³/hr	300	All roads	Earthworks	Excavator (> 50% stones)
96.96	IVL Report	Liters/hr	34	IVL Report	m³/hr	360	All roads	Earthworks	Excavator (< 50% stones)
99.96	IVL Report	Liters/hr	34	IVL Report	m³/hr	430	All roads	Earthworks	Excavator (< 25% stones)
96.96	IVL Report	Liters/hr	34	IVL Report	m³/hr	450	All roads	Earthworks	Excavator (< 5% stones)
102.90	IVL Report	Liters/hr	35	IVL Report	m³/h*km	hilly 140	All roads	Earthworks; Pavement	Dumper
80.85	IVL Report	Liters/hr	28	IVL Report	m³/h*km	broken 140	All roads	Earthworks; Pavement	Dumper
58.80	IVL Report	Liters/hr	20	IVL Report	m³/h*km	flat 140	All roads	Earthworks; Pavement	Dumper
8.35 kg CO ₂ eq./m³	IVL Report	Liters/m ³	2,434	IVL Report	m³	N/A	Provincial road; Rural road	Structures	Drilling machine
4.59 kg CO ₂ eq./m ³	IVL Report	Liters/m ³	1,339	IVL Report	m³	N/A	Expressway; National road	Structures	Drilling machine
27.83 kg CO ₂ eq./m²	IVL Report	Liters/m ²	Ø	IVL Report	m²/hr	N/A	Provincial road; Rural road	Structures	Tower Crane (big)
15.30 kg CO ₂ eq./m²	IVL Report	Liters/m ²	4	IVL Report	m²/hr	N/A	Expressway; National road	Structures	Tower Crane (small)
55.66 kg CO ₂ eq./m²	IVL Report	Liters/m ²	16	IVL Report	m²/hr	N/A	Provincial road; Rural road	Structures	Tower Crane (big)

Ē
-
5
1
E
-
2
0
9
26
B2 6
E B 26
LE B26
3LE B26
NBLE B26
TABLE B26
TABLE B26

Wheeled loader (< 5% stones)	Earthworks	All roads	520	m³/hr	IVL Report	23	Liters/hr	IVL Report	67.62
Wheeled loader (< 25% stones)	Earthworks	All roads	470	m³/hr	IVL Report	23	Liters/hr	IVL Report	67.62
Wheeled loader (< 50% stones)	Earthworks	All roads	410	m³/hr	IVL Report	35	Liters/hr	IVL Report	102.90
Wheeled loader (> 50% stones)	Earthworks	All roads	370	m³/hr	IVL Report	35	Liters/hr	IVL Report	102.90
Pile driver	Structures	Expressway; National road	N/A	m²/hr	IVL Report	1.339	Liters/m ²	IVL Report	4.59 kg CO ₂ eq./m²
Pile driver	Structures	Provincial road; Rural road	N/A	m²/hr	IVL Report	1.607	Liters/m ²	IVL Report	5.51 kg CO ₂ eq./m²
Pulvimixer	Earthworks	Expressway; National road	9,173	m² /hr	Caterpillar	46	Liters/hr	Caterpillar	135.24
Aggregate spreader	Pavement	Rural road (Surface treatment)	19,125	m²/hr	IVL Report	20	Liters/hr	IVL Report	58.80
Slipform paver	Pavement; Structures; Drainage	Expressway; National road; Provincial road	N/A	m³/hr	IVL Report	0.025	Liters/m ³	IVL Report	0.086 kg CO ₂ eq./m³
Slipform for Barrier	Equipment (barriers)	Expressway; National road	N/A	m/hr	IVL Report	600.0	Liters/m	IVL Report	0.031 kg CO ₂ eq./m
Water sprayer	Earthworks; Pavement	All roads	40,000	m²/hr	IVL Report	27	Liters/hr	IVL Report	79.38

TABLE B27 EMISSIONS DUE TO EQUIPMENT FOR VARIOUS WORKS TYPES

Unit m ² m ³ m ³ m ³ m ³	Equipment Bulldozer Excavator (< 5% stones) Excavator (< 25% stones)	Exp/Nat 0.083 0.076	Prov/Rural
m ³ m ³ m ³	Excavator (< 5% stones)		0.083
m ³ m ³ m ³	Excavator (< 5% stones)		0.083
m ³ m ³		0.076	
m ³	Excavator (< 25% stones)		0.076
		0.079	0.079
m ³	Excavator (< 50% stones)	0.094	0.094
	Excavator (> 50% stones)	0.113	0.113
m³	Aggregate crushing plant	0.652	0.652
m ³	Aggregate crushing plant	0.652	0.652
m ³	Dumper	0.143	0.071
m³	Backhoe loader (*2)	0.062	0.062
m³	Excavator (< 5% stones)	0.076	0.076
m³	Backhoe loader	0.031	0.031
m ³	Backhoe loader	0.031	0.031
m²	Motor grader	0.003	0.002
m²	Water sprayer	0.001	0.001
m²	Soil compactor	0.030	0.030
m ³	Pulvimixer	0.005	0.005
m ³	Water sprayer	0.001	0.001
m ³	Binder spreader	0.000	0.000
m³	Pulvimixer	0.005	0.005
m ³	Water sprayer	0.001	0.001
m ³	Binder spreader	0.000	0.000
m³	Bitumen sprayer	0.030	0.030
m³	Aggregate spreader	0.030	0.030
m ³	Soil compactor	2.865	2.865
m³	Asphalt mixing plant	5.989	5.989
m³	Asphalt paver	0.340	0.340
m³	Asphalt compactor	0.460	0.300
m³	Asphalt mixing plant	5.989	5.989
m ³	Asphalt paver	0.142	0.142
m³	Asphalt compactor	0.192	0.125
m³	Asphalt mixing plant	5.989	5.989
m ³	Motor grader	0.020	0.013
m ³	Asphalt compactor	0.153	0.100
	m³ m³ m³ m² m² m² m² m² m³ m³	m³Backhoe loader (*2)m³Excavator (< 5% stones)	m³Backhoe loader (*2)0.062m³Excavator (< 5% stones)

TABLE B27 CONTINUED

			Unit consu	mption (l/qty)
Works item	Unit	Equipment	Exp/Nat	Prov/Rural
Granular road base, GB1–GB6	m ³	Motor grader	0.017	0.011
	m ³	Water sprayer	0.004	0.004
	m ³	Soil compactor	0.171	0.171
Granular subbase, GS	m ³	Motor grader	0.013	0.009
	m ³	Water sprayer	0.003	0.003
	m ³	Soil compactor	0.133	0.133
Granular capping layer or selected	m ³	Motor grader	0.015	0.010
subgrade fill, GC	m ³	Soil compactor	0.150	0.150
Cement- or lime-stabilized road base 1,	m ³	Pulvimixer	0.040	0.040
CB4	m ³	Water sprayer	0.006	0.006
	m ³	Motor grader	0.024	0.016
	m ³	Soil compactor	0.240	0.240
Cement- or lime-stabilized road base 2,	m ³	Pulvimixer	0.033	0.033
CB5	m ³	Water sprayer	0.005	0.005
	m ³	Motor grader	0.020	0.013
	m ³	Soil compactor	0.200	0.200
Cement- or lime-stabilized subbase, CS	m ³	Pulvimixer	0.000	0.000
	m ³	Water sprayer	0.000	0.000
	m ³	Motor grader	0.000	0.000
	m ³	Soil compactor	0.000	0.000
Concrete with dowels, JPCP	m ³	Concrete batching plant	1.682	1.682
	m ³	Slipform paver	0.101	0.101
Concrete (lean concrete), LCB	m ³	Concrete batching plant	1.682	1.682
	m ³	Slipform paver	0.153	0.153
Excavation of soil general	m ³	Excavator (< 5% stones)	0.030	0.030
(rammed soil) for subbase layers	m ³	Backhoe loader	0.030	0.030
Surface dressing overlay	m ³	Bitumen sprayer	0.030	0.030
	m ³	Aggregate spreader	0.030	0.030
	m ³	Soil compactor	2.865	2.865
Asphalt concrete overlay	m ³	Asphalt mixing plant	5.989	5.989
	m ³	Asphalt paver	0.142	0.142
	m ³	Asphalt compactor	0.192	0.125
Re-gravelling	m ³	Motor grader	0.015	0.010
	m ³	Soil compactor	0.150	0.150
Bituminous coating	m ²	Emulsion applier	0.000	0.000

TABLE B27 CONTINUED

			Unit consu	nption (I/qty)
Works item	Unit	Equipment	Exp/Nat	Prov/Rural
Drainage				
Lined/earth/pipe longitudinal drain	m	Excavator	0.045	0.011
Box culverts	m	Excavator	2.267	1.133
Concrete for lined drains/box culverts	m³	Concrete batching plant	1.682	1.682
Structures				
Walls	m²	Pile driver	1.339	1.607
Concrete for walls (reinforced concrete)	m³	Concrete batching plant	1.682	1.682
	m³	Concrete pump—small	0.800	0.800
Excavation of rammed soil for wall	m³	Excavator (< 5% stones)	0.030	0.030
(reinforced earth)	m³	Backhoe loader	0.030	0.030
Standard/interchange bridges on main section	m²	Tower crane—small	8.925	16.227
Concrete for standard/interchanges bridges	m³	Concrete batching plant	1.682	1.682
	m³	Concrete pump—small	0.800	0.800
Major bridges on main section	m²	Tower crane—big	4.463	8.114
	m²	Drilling machine	1.339	2.434
Concrete for major bridges	m³	Concrete batching plant	1.682	1.682
	m³	Concrete pump—big	0.400	0.400
Excavation of tunnels	m³	Hydraulic hammer	0.450	0.450
	m³	Excavator	0.045	0.011
Concrete for tunnels	m³	Concrete pump—big	0.400	0.400
	m³	Concrete batching plant	1.682	1.682
	m³	Tower crane—big	0.400	0.400
Road furniture				
Barriers	m	Concrete barrier slipform	0.009	0.009
Directional sign area	m²	Crane (mobile)	4.460	4.460
Streetlights	u	Crane (mobile)	11.156	11.156
Wayside amenities	m²	Tower crane—small	4.463	0.000
Concrete for all road furniture	m ³	Concrete batching plant	1.682	1.682

TABLE B28 DEFAULT TRANSPORT DISTANCES

From	То	Value	Comment/material transported
Cut on site	Fill on site	Expressway: 2.5 km National road: 2 km Provincial road: 15 km Rural road: 1 km	Used for earthworks and tunnel
Borrow Pit	Site	Expressway: 25 km National road: 20 km Provincial road: 15 km Rural road: 10 km	Used for earthworks (fill from borrow pit)
Site	Disposal site	Expressway: 25 km National road: 20 km Provincial road: 15 km Rural road: 10 km	Used for earthworks (evacuated cut)
Quarry	Batching plant	Expressway: 30 km National road: 20 km Provincial road: 10 km Rural road: 7 km	Aggregates
Quarry	Site	Expressway: 30 km National road: 20 km Provincial road: 10 km Rural road: 7 km	Aggregates
Quarry	Asphalt plant	Expressway: 30 km National road: 20 km Provincial road: 10 km Rural road: 7 km	Aggregates
Asphalt plant	Site	Expressway: 20 km National road: 10 km Provincial road: 7 km Rural road: 3 km	Bituminous bound materials
Batching plant	Site	Expressway: 20 km National road: 10 km Provincial road: 7 km Rural road: 3 km	Cement bound materials
Cement plant	Batching plant	250 km	Cement
Borrow Pit	Batching plant	Expressway: 25 km National road: 20 km Provincial road: 15 km Rural road: 10 km	Sand for concrete
Refinery	Asphalt plant	250 km	Bitumen
Cement plant	Site	250 km	To be used for soil treatment Cement Lime
Refinery	Site	250 km	To be used for surface treatment Bitumen
Steel plant	Site	250 km	Steel No workshop assumed
Prefabrication Plant	Site	150 km	Concrete prefabricated elements
Sawmill	Site	150 km	Barriers in timber
Copper plant	Site	500 km	Electric cables for lighting and other road facilities

TABLE B29 DEFAULT TRANSPORT FLEET CHARACTERISTICS

Distance	< 25 km	25–50 km	>50 km
Transport	30%: Truck 6.1–10.9 t—diesel 70%: Truck 11–19 t—diesel	Truck 11–19 t—diesel	Truck 21.1—32.6 t—diesel

Land-Use Changes

ROADEO takes into account GHG emissions due to landuse changes and subsequent removal of above-ground biomass resulting from the implementation of road construction and rehabilitation projects.

The assessment of these emissions is made on the basis of the following data:

- Initial land cover type reflecting the typical landuse observed along the project alignment before its implementation (two types of vegetation can be selected by users from a pre-defined list);
- Area affected by land-use change (to be entered by users as a percentage of the project alignment for each initial land cover type);

- Above-ground biomass quantities (in dry metric tons/hectare) depending on land cover types found in Continental Asia (these values, shown in table B30, are based on data from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories); and
- Average density of CO₂ per dry metric ton of aboveground biomass (set to a commonly used value of 1.72 tons of CO₂ per dry metric ton).

The resulting values of GHG emissions, which may be significant—especially for greenfield projects in tropical and/or mountainous areas—are reported in the results tab of ROADEO and on the graph showing the distribution of project emissions according to the type of work component (in tCO₂).

Dry metric tons/ha Land cover type Average High Low Tropical rainforest 120 280 680 Tropical moist deciduous forest 10 180 560 Tropical dry forest 100 130 160 Tropical shrubland 60 60 60 Tropical mountain system 50 135 220 Subtropical humid forest 10 180 560 Subtropical dry forest 100 130 160 Subtropical steppe 60 60 60 220 Subtropical mountain system 50 135 20 20 20 Temperate continental forest (<20 years) 120 320 Temperate continental forest (>20 years) 20 Temperate mountain system (<20 years) 20 100 180 Temperate mountain system (>20 years) 20 130 600 Boreal coniferous forest 10 50 90 Boreal tundra woodland (< 20 years) 3 3.5 4 Boreal tundra woodland (> 20 years) 15 17.5 20 Boreal mountain systems (< 20 years) 12 13.5 15 Boreal mountain systems (> 20 years) 40 45 50

TABLE B30 ABOVE-GROUND BIOMASS DEPENDING ON LAND COVER TYPES IN CONTINENTAL ASIA

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

The World Bank Group Asia Sustainable and Alternative Energy Program 1818 H Street, NW Washington, DC 20433 USA

www.worldbank.org/astae