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Abstract
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This paper estimates an urban carbon dioxide emissions 
model using satellite-measured carbon dioxide concentra-
tions from 2014 to 2020, for 1,236 cities in 138 countries. 
The model incorporates the global trend in carbon dioxide 
concentration, seasonal fluctuations by hemisphere, and a 
large set of georeferenced variables that incorporate carbon 
dioxide–intensive industry structure, emissions from agri-
cultural and forest fires in neighboring areas, demography, 
the component of income that is uncorrelated with industry 
structure, and relevant geographic conditions. The income 
results provide the first test of an Environmental Kuznets 
Curve relationship for carbon dioxide based on actual 
observations. They suggest an environmental Kuznets curve 

that reaches a peak near or above $40,000 per capita, which 
is at the 90th percentile internationally. The research also 
finds that economic development has a significant effect 
on the direction of the relationship between population 
density and carbon dioxide emissions. The relationship 
is positive at very low incomes but becomes negative at 
higher incomes. The paper also uses cities’ mean regression 
residuals to index their carbon dioxide emissions perfor-
mance within and across regions, decomposes model carbon 
dioxide predictions into broad source categories for each 
city, and uses the regression residuals to explore the impact 
of subway systems. The findings show significantly lower 
carbon dioxide emissions for subway cities.

This paper is a product of the Urban, Disaster Risk Management, Resilience and Land Global Practice. It is part of a larger 
effort by the World Bank to provide open access to its research and make a contribution to development policy discussions 
around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The 
authors may be contacted at sdasgupta@worldbank.org, slall1@worldbank.org, and wheelrdr@gmail.com.   



Urban CO2 Emissions: 
A Global Analysis with New Satellite Data 

Susmita Dasgupta* 
Somik Lall 

David Wheeler 

World Bank 

Keywords: CO2 emissions, Environment Kuznets Curve, City CO2 performance metrics 
JEL classification: Q54; Q58; R40; R11 

Acknowledgments: The authors thank Richard Damania, Sam Fankhauser, Stephane Hallegatte, Matt Kahn, 
Joanna Masic, Rick Van der Ploeg, Tony Venables, Sameh Wahba, and seminar participants at the World 
Bank and FCDO for helpful discussions. The authors acknowledge the generous financial support from the 
UK FCDO. The findings, interpretations, and conclusions expressed in this paper are entirely those of the 
authors. They do not necessarily represent the views of the International Bank for Reconstruction and 
Development/World Bank and its  affiliated  organizations,  or  those  of  the  Executive  Directors  of  the  
World  Bank  or  the  governments  they represent. 

* Authors’ names in alphabetical order.



2 
 

Summary  

This paper estimates an urban CO2 emissions model using satellite-measured CO2 concentrations 
from 2014 to 2020, for 1,236 cities in 138 countries. The model incorporates the global trend in 
CO2 concentration, seasonal fluctuations by hemisphere, and a large set of georeferenced variables 
that incorporate CO2-intensive industry structure, emissions from agricultural and forest fires in 
neighboring areas, demography, the component of income that is uncorrelated with industry 
structure, and relevant geographic conditions.  The income results provide the first test of an 
Environmental Kuznets Curve relationship for CO2 based on actual observations.  We find 
evidence for an EKC that reaches a peak near or above $40,000 per capita, which is at the 90th 
percentile internationally.  We also find that economic development has a significant effect on the 
direction of the relationship between population density and CO2 emissions.  The relationship is 
positive at very low incomes, but becomes negative at higher incomes. 

We explore other implications of our estimates in a series of exercises.  Using cities’ mean regression 
residuals to index their CO2 emissions performance, we find wide variation within and across 
regions.  Overall performance exceeds model-based expectations in India, Western Europe and the 
former Comecon countries, while it falls short in China, the rest of East Asia & Pacific, Middle East 
& North Africa and Sub-Saharan Africa.  We also decompose model CO2 predictions into five 
broad source categories for each city.  We find particularly important roles for CO2-intensive 
industry structure in India, China and other East Asia & Pacific countries; agricultural and forest-
clearing fires in Sub-Saharan Africa; the component of income per capita that is uncorrelated with 
industry structure in Latin America & Caribbean, North America and Western Europe; population 
and population density in Sub-Saharan Africa, India and other South Asian countries; and climate in 
the former Comecon countries. 

Our results can also inform the discussion of policy instruments for CO2 emissions reduction.  
Many policy analysts who support Pigouvian pricing also argue for a non-Pigouvian supplement:  
coordinated public investment in low-carbon land development, energy and transport that will 
accelerate the transition to low-carbon economies.  We explore the non-Pigouvian proposition for 
subway investments, drawing on a recent global survey of subway systems.  We divide our 1,236 
regression residuals into deciles, with the largest negative residuals in the first decile, and identify the 
subset of 132 global subway cities in each decile.  We find that subway cities are four times more 
numerous among first-decile cities than among tenth-decile cities.  We also find that representation 
of subway cities declines steadily across deciles.  While these results provide strong suggestive 
support for the non-Pigouvian view, they are subject to potential endogeneity that should be 
considered in future research.     

This research is only one of many potential applications for our global CO2 database, which covers 
all terrestrial areas at 10 km resolution.  The same CO2 emissions model could be used to track 
progress for large and small cities within subregions or countries, subregions within countries, or 
project areas.   
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1.  Introduction 

The World Meteorological Organization forecasts that the current greenhouse gas (GHG) emissions 
trend will increase global temperature by 3-5 degrees C by 2100 (Reuters 2018).  This would far 
overshoot the 2-degree limit pledged by the 2015 Paris climate accord (COP 21) and might have a 
catastrophic impact (Steffen et al. 2018; World Bank 2012).  In response, several industrial nations 
pledged very steep emissions reductions at the recent Leaders’ Summit on Climate (April 22-23, 
2021). 

On April 2, 2021, the President of the World Bank responded with a new Climate Change Action 
Plan (World Bank 2021) that expands participation in large-scale climate finance and commits the 
World Bank to align all new World Bank operations with the objectives of the Paris Agreement by 
July 1, 2023.  IFC and MIGA will align 85% of new operations by July 1, 2023 and 100% by July 1, 
2025.  The announcement highlights the need for new metrics to achieve impact by measuring 
GHG emissions reductions. In this context, this paper makes four contributions to the knowledge 
base on GHG emissions and underlying drivers.  

First, the Climate Change Action Plan confronts a striking information shortfall at the outset: near-
total absence of directly-measured local and regional GHG data for problem diagnosis, program 
design and performance assessment.  In the global arena, consistently-measured GHG estimates are 
only available for about 80 urban areas, and over half of those are in developed countries (C40 
2021).  In addition, few of the available estimates incorporate actual GHG emissions.  Most rely on 
emissions parameters from engineering studies, which are applied to survey-based activity measures 
for transport, energy production and manufacturing.  Standard engineering estimates are particularly 
suspect for developing countries, because many of the parameters have been calibrated using 
databases and models developed for high-income economies.   

Recently, the advent of satellite-based GHG measurement has greatly expanded the potential for 
empirical assessment.  High-resolution observations of atmospheric GHG concentrations are now 
available from several platforms, including NASA’s OCO-2 and OCO-3 instruments, the European 
Space Agency’s METOP-A and TROPOMI (Sentinel-5P) platforms, and the Japan Space 
Exploration Agency’s GOSAT and GOSAT-2.  Detailed technical assessments of measures from 
these platforms have verified that they provide useful and comprehensive information for global 
carbon emissions analysis (Pan et al. 2021; Wu et al. 2020; Labzovskii et al. 2019).  Along with 
research verification, the first global satellite-based GHG studies have begun to emerge for small 
samples of cities (e.g., Wu et al. 2020). 

In this paper, we extend the domain for analysis with a panel of satellite-measured CO2 
concentrations for 1,236 urban areas with populations greater than 500,000.  The database covers 
the period 2014-2020 and includes cities in 138 countries in Africa (41), the Americas (22), Asia (44), 
Europe (29) and Oceania (2).   
 
Second, we provide the first test of an Environmental Kuznets Curve (EKC) relationship for CO2 
based on actual observations.  We specify an econometric model of cities’ atmospheric CO2 
concentrations that incorporates a large set of georeferenced determinants.  We find evidence for an 
EKC that reaches a peak near or above $40,000 per capita, which is at the 90th percentile 
internationally.  We also explore the relationship between population density and urban CO2 
emissions at different levels of economic development.   
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Third, we use the results to estimate the expected CO2 concentration for each city, given its 
geographic, demographic and economic characteristics. We explore the implications using regression 
residuals as performance indicators that identify cities whose CO2 emissions are less than or greater 
than model-based expectations. This provides the first empirical scorecard of city performance in 
CO2 emissions management.  
 
Fourth, we use the econometric results to address a critical policy question on the role of public 
investment as a supplement to Pigouvian policy in mitigating CO2 emissions.   Economists generally 
support emissions reduction via emissions taxation or permit trading (Stiglitz and Stern 2021; Jacobs 
and van der Ploeg 2019; King et al. 2019; Klenert et al. 2018).  Many policy analysts who support 
Pigouvian pricing also argue for a non-Pigouvian supplement:  coordinated public investment in 
low-carbon land development, energy and transport that will accelerate the transition to low-carbon 
economies (van der Ploeg and Venables 2020).  Investments in subway systems provide an 
interesting test case for the non-Pigouvian approach.  Reduced motor vehicle emissions and energy 
efficiencies associated with higher-density development are frequently cited as carbon-saving 
advantages of mass transit systems.  By implication, cities with subways should have followed lower-
carbon development paths, other things equal.  We explore this proposition with our regression 
residuals, drawing on a recent global survey of subway systems (Turner and Gonzalez-Navarro 
2018).   
 
The remainder of the paper is organized as follows.  Section 2 introduces the econometric model, 
while Section 3 describes the data.  Section 4 performs an exploratory analysis of the data and the 
econometric results are presented in Section 5.  Section 6 explores the implications, Section 7 offers 
a prospectus for future research, and Section 8 summarizes and concludes the paper. 
 
 
2.  Modeling Urban CO2 Concentrations 
 
An extensive empirical literature has explored the determinants of CO2 emissions growth.  Most of 
the attention has focused on drivers of CO2 emissions from fossil fuel combustion and cement 
production (e.g. Raupach et al., 2007; Jotzo et al., 2012).  Land-use change also produces large CO2 
emissions, which have been estimated more precisely by recent research (Gasser et al. 2020; Winkler 
et al. 2021).  However, emissions drivers in this sector have received less attention than work on 
industrial determinants (Sanchez and Stern 2016).  For both industrial and non-industrial sectors, 
previous studies have relied almost exclusively on estimates from CO2 emissions inventories that 
apply engineering parameters to measures of activity in industry, transport, land-clearing, residential 
heating and other sectors.  Standard engineering estimates are particularly suspect for developing 
countries, because many of the parameters have been calibrated using databases and models 
developed for high-income economies.   
 
This study takes a completely different approach, employing only direct CO2 observations from 
satellites.  The dependent variable in our model is the atmospheric CO2 concentration above an 
urban area.  For climate change analysis, the dominant concentration component is the global 
cumulative stock of long-duration CO2 molecules that have been emitted by human activity since 
the Industrial Revolution.  Another global component is seasonal, reflecting differential CO2 
absorption and respiration by vegetation over the annual cycle. The seasonal CO2 component is 
more pronounced in the Northern Hemispheric because it has more plant life than the Southern 
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Hemisphere.  The third component is local, reflecting the time lag between local emissions of CO2 
molecules and their full dispersion into the global mix.  In this paper, we use the term 
“concentration anomaly” for the local component because it measures the deviation from the global 
background CO2 concentration.       
 
Our model incorporates the two global components in a global time trend and controls for 
seasonality and hemisphere location.  The local component comprises variables in three broad 
categories.  The first includes activities in the most critical CO2-emitting sectors.  The 
Intergovernmental Panel on Climate Change (IPCC) (Gale et al. 2005) has identified four dominant 
industrial sources of CO2 emissions:  power plants, steel mills, cement plants, and oil refineries.  
Another potentially-important factor is atmospheric “spillover” from agricultural and forest burning 
in neighboring areas. Traffic emissions are also important, but we do not have reliable measures of 
motor vehicle operation for most of the cities in our sample.1  The model therefore absorbs motor 
vehicle operations into the non-industrial income effects that are described below. 
 
The second category includes demographic and economic variables.  CO2 emissions should increase 
with urban population, ceteris paribus, because each resident accounts for some emissions.  The 
spatial distribution of population may also play a significant role.  In high-income areas that rely 
heavily on mechanized transport, increased population density may lower aggregate emissions by 
reducing travel requirements.  On the other hand, higher population density in low-income areas 
may translate to higher CO2 emissions because small reductions in sparse mechanized transport do 
not offset increased CO2 emissions from factors like more concentrated household cooking and 
heating.   
 
Economic development also has countervailing effects on CO2 emissions intensity.  Higher-income 
urbanites use more goods and services, some of which are CO2-intensive (e.g., home heating, motor 
vehicles).  However, locational economics inhibit CO2-intensive industrial activities in higher-
income urban areas with higher land costs, fewer active resource mining sites, and stricter control of 
local air pollutants that are emitted along with CO2.  In consequence, higher-income cities tend to 
import CO2-intensive goods and services from areas where the converse conditions hold.  The net 
effect of urban economic development on CO2 emissions depends on the relative strength of direct 
income effects and indirect displacement and pollution control effects.  Empirical research on the 
relationship between CO2 emissions and income has relied almost entirely on country-level 
emissions inventories.  The results are mixed; some studies find a linear relationship, while others 
identify an inverse U-shaped relationship, or Environmental Kuznets Curve (EKC) (Ben Youssef, 
Hammoudeh and Omri 2016; Dasgupta et al. 2002).  Where the EKC holds, domination passes 
from direct effects to displacement and pollution control effects as income rises.  With satellite-
based CO2 measures, the EKC investigation in this paper departs from conventional practice by 
avoiding emissions inventories and focusing on local rather than national CO2 emissions.  
 
Climate comprises the third category.  Other things equal, we would expect greater annual heating-
related CO2 emissions from cities in cold climates.   
 
We specify a linear estimation model because the atmospheric CO2 load should be additive in CO2 
emissions from different sources.  Spatially-referenced variables in the model are translated to 

 
1 Recent research has used Google Traffic to produce high-resolution traffic congestion data for individual cities 
(Dasgupta et al. 2021; Heger et al. 2018).  Future research could extend this approach to all global cities. 
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consistent measures by resampling to centroids for grid cells with a resolution of 10 km.  We allow 
for measurement “spillover” as emissions diffuse from source cells to neighboring grid cells.   
 
We incorporate all of the previously-mentioned factors in our estimation model: 
  

 𝐶𝐶𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1 𝑡𝑡 + �𝛾𝛾𝑚𝑚𝐷𝐷𝑚𝑚

12

1

 + �𝜃𝜃𝑚𝑚𝐷𝐷𝑚𝑚

12

1

𝐿𝐿 + 𝛽𝛽2 𝑃𝑃𝐶𝐶𝑖𝑖 + 𝛽𝛽3 𝑃𝑃𝐺𝐺𝑖𝑖 + 𝛽𝛽4 𝑃𝑃𝑂𝑂𝑖𝑖  + 𝛽𝛽5 𝑆𝑆𝑖𝑖 + 𝛽𝛽6 𝑅𝑅𝑖𝑖

+ 𝛽𝛽7 𝐵𝐵𝑖𝑖 + 𝛽𝛽8 𝐹𝐹𝑖𝑖𝑖𝑖 + 𝛽𝛽9 𝑁𝑁𝑖𝑖𝑖𝑖 + 𝛽𝛽10 𝑛𝑛𝑖𝑖𝑖𝑖 + 𝛽𝛽11 𝑛𝑛𝑖𝑖𝑖𝑖/log(𝑦𝑦𝑖𝑖𝑖𝑖) + 𝛽𝛽12 𝑦𝑦𝑖𝑖𝑖𝑖 + 𝛽𝛽13 𝑦𝑦𝑖𝑖𝑖𝑖2

+ 𝛽𝛽14 𝐻𝐻𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖 
 
Expected signs:  β1, β2, … β9 > 0, β10 < 0, β11, β12 > 0, β13 ≤ 0, β14 > 0. 
 
For city i on date t: 
 
C = Satellite-measured CO2 concentration 
t  =  Elapsed days in the panel 
Dm = Month dummy variable 
L = Hemisphere dummy variable (0 = Southern; 1 = Northern) 
 
Emissions from sectoral sources 
 

PC = Coal-fired power plants   
PG = Gas-fired power plants 
PO = Oil-fired power plants   
S = Non-electric steel and iron plants   
R = Oil refineries  
B = Cement plants 
F = Agricultural and forest fires 
 
Demographic and income determinants 
 

N = Population 
n    = Population density 
y = Income per capita 
 
Climate  
 

H = Heating degree days 
 
ε = Random error term 
 
Our prior expectations for parameter signs are positive for elapsed time (β1), sectoral activity (β2, … 
β8) and population (β9).  Our population density specification has two terms, density (β10) and 
density interacted with inverse log income (β11).  Sign-switching can occur for the case [β10 < 0, β11 > 
0], where the first (negative) term dominates for high incomes and the second (positive) term 
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dominates for low incomes.  We use inverse log income because the log transformation increases 
our ability to differentiate effects at very low income levels.   
 
For the relationship between CO2 concentration and income per capita, we expect (β12 > 0).  In the 
income-squared term, we expect β13 < 0 (the EKC case) or β13 = 0 (a linear relationship).  Heating 
requirements are greater in colder climates, so we expect the effect of heating degree days on CO2 
emissions (β14) to be positive.  
 
Clearly-exogenous variables in the model include fires in neighboring areas and the demographic and 
climate factors.  We include georeferenced data on CO2-intensive industrial facilities because they 
should have important effects on observed CO2 concentrations above their locations.  Their 
inclusion serves our principal objective, a relatively complete econometric accounting of city-level 
CO2 emissions that can be used for comparative performance benchmarking and exploration of 
residuals.  However, we recognize the possibility of some estimation bias from interactions with 
income and local air pollutants.  Industrial facilities emit locally-significant air pollutants (e.g., NO2, 
SO2, fine particulates) along with CO2.  Technical measures to reduce local air pollutants (e.g., stack 
scrubbers for SO2 emissions) do not reduce CO2 emissions directly, but the associated costs may 
have significant indirect effects by altering facility location decisions.  Stricter environmental 
regulation in higher-income cities may enhance this effect.  In principle, we could treat the potential 
bias problem by using measures for input costs to instrument the facility-level variables.  In practice, 
however, we have no prospect of measuring the relevant variables at the requisite spatial resolution.   
Joint determination of income and CO2 emissions could also be a significant problem for the EKC 
component of the model.  Our results discussion will include some estimation exercises that shed 
further light on these issues.  
 
 
3.  Data 
 

3.1 Sources 
 
Several satellite platforms provide CO2 measures (Pan et al. 2021, Table 1).  Data from these 
platforms have been collected by different instruments, over different periods, with different 
resolutions, observation repeat cycles and widths of area coverage along orbital paths.  The data are 
also accessible in varying degrees.  Combining observations from multiple sources could present 
difficulties that are as yet little-explored.  For this exercise, prudence has dictated the choice of one 
platform, NASA’s OCO (Orbiting Carbon Observatory)-2.  We have chosen OCO-2 because it 
offers open access (JPL/NASA 2021); a long panel of consistently-measured daily observations 
(Sept. 6, 2014 – Dec. 31, 2020); and the highest spatial resolution among the available sources (1.29 
× 2.25 km).   
 
The design of OCO-2 supports comparative exercises like our analysis.  It follows a sun-
synchronous near-polar orbit, crossing the equator in ascending mode around 1330 hours local time.  
In practice, this means that the OCO-2 observations for our study are collected between 1200 and 
1500 local time for all cities in the sample.  This provides a consistent mid-day activity benchmark 
for comparing CO2 concentration anomalies across cities.2  OCO-2 has an observation repeat time 

 
2  CO2 measurement during the full daily activity cycle will improve as systems like OCO-3 observe each area at more 
widely-varying times. 
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of 16 days   We have downloaded georeferenced measures of XCO2 (the column-averaged dry air 
mole fraction of CO2) and computed daily mean values for each 10 km grid cell in our global 
database.   
 
We use georeferenced facility-level global databases to obtain capacity measures and technology 
specifications for power plants (Byers et al. 2021), steel mills (GEM 2021), cement plants 
(McCaffrey et al. 2021), and oil refineries (Auch 2017).  We use capacity estimates in the regressions 
because production estimates are both scanty and assigned low confidence by the database 
producers.  Van der Werf et al. (2017) provide monthly estimates of carbon emissions from 
agricultural and forest burning at 25 km resolution.   
 
The World Cities Database (2021) provides data on urban centroid locations and populations.  
Population density data are provided at 5 km resolution by CIESIN (2018). We use two sources to 
construct our georeferenced measure of income per capita.  From the G-Econ database (Nordhaus 
et al. 2006), we obtain GDP per capita in 2005 purchasing power parity for a global grid with 100 
km resolution.  Each grid cell is assigned to its geographically-dominant country by G-Econ.  For 
each cell in a country, we compute the ratio of cell GDP per capita to the national mean for all cells.  
We merge the results with annual World Bank estimates of GDP per capita in constant $US 2015, 
and use the cell ratios to estimate annual GDP per capita for each cell.  We introduce another proxy 
for economic activity by incorporating monthly observations for VIIRS global nighttime lights 
(EOG 2021) at 500 m resolution.  Mistry (2019) has provided global estimates of monthly heating 
degree days at 25 km resolution.   

 
3.2 CO2 Diffusion Effects 

 
Space-based observations detect higher CO2 concentrations over significant emissions sources 
because atmospheric diffusion is not instantaneous.  As emissions diffuse from their sources, 
deviations from background concentrations will persist for some distance.  By implication, the 
effects of emissions sources in the model should not be constrained by arbitrarily-scaled grid 
structures.  To allow for diffusion, we incorporate the assumption that deviations from background 
CO2 concentrations are inversely related to distances from emissions points.  We search for best-fit 
inverse-distance functions in regression experiments with distance exponent values from 0.1 to 3.0.  
We obtain the best results with an exponent that is effectively 1.0.  It does not differ significantly 
across model variables, which simply confirms that CO2 molecules behave identically in the 
atmosphere, whatever their source.  For estimation, the effect of an emissions source on satellite-
measured CO2 concentration has unitary weight at its location and inverse-distance weights at the 
centroids of neighboring cells.  For tractability, we bound the weighting radius at 100 km (where the 
weight is .01).   
 

3.3 Wind Effects 
 

Our modeling approach uses grid search experiments to determine distance decay functions for 
CO2 emissions from all geolocated sources (power plants, steel mills, cement plants, refineries, 
agricultural and forest burning).  To illustrate the consequence, a capacity observation for coal-fired 
power plants at each 10-km grid centroid is the sum of inverse-distance-weighted capacities of coal-
fired plants within a 100-km radius.  At each point in time, the trajectory of emissions from each 
plant is potentially influenced by the wind direction at its location.  However, we aggregate 
information from plants that may be widely separated, with a different wind direction at each plant.   
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In many urban areas (particularly in developing countries), the prevailing wind direction is regularly 
recorded at only one location (typically the airport).  Taken together, the scarcity of wind direction 
information and aggregation of capacity measures across dispersed facilities in different micro-
climates eliminate any chance of incorporating meaningful wind effects.  Of course, all locations in 
some urban areas may be subject to identical wind-direction effects during some periods, in which 
case radially-symmetric inverse-distance weighting would generate errors for some observations.  
However, our study calculates daily averages from hourly data, with consequent summation over 
random changes in wind directions for multiple, widely-scattered points over five annual cycles.  
Some measurement error probably remains, but we believe that it compares favorably with 
measurement errors for other variables in our model (e.g., facility capacities, local heating degree 
days, neighboring fire locations).  
 

3.4 Urban Scale 
 

How many grid cells should be assigned to each city in our sample?  Comparative analysis must 
confront the difference between arbitrary administrative boundaries and the actual extent of urban 
economic regions.  Any attempt to define the latter will also include an arbitrary element.  For all 
cities in this exercise, we standardize by including grid cells that lie within the same radial distance 
from their centroids.  Then we test the robustness of the model by varying the radial distance.  
Another possible approach involves identification of a functional urban area (FUA) for each city 
region, as in Schiavina et al. (2019).  FUAs are identified from urban mobility data for the OECD 
and Colombia, and estimated for other cities using a machine learning algorithm trained from 
estimated travel times, population distributions and incomes. We provide a further robustness test 
by estimating the model for FUAs as well. 
 
 

4.  CO2 Measures across Cities and over Time  

 
4.1 Annual CO2 Concentrations 
 

The global reference standard is provided by CO2 measurement at Mauna Loa Observatory, Hawaii 
(Keeling et al. 1976; Thoning et al. 1989).  Table 1 compares mean annual December measures from 
Mauna Loa and our global OCO-2 database.3 The results correspond closely, showing an increase 
from 399 ppm in 2014 to 414 in 2020.   

 

Table 1:  Annual global CO2 concentrations (ppm) 
    (December) 

 
Year 

 
OCO-2 

 
Mauna Loa 

2014 399 399 
2015 401 402 

 
3 Mauna Loa is in the Northern Hemisphere, so we compare its measures with Northern Hemisphere values from 
OCO-2. 
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2016 405 405 
2017 406 407 
2018 409 409 
2019 411 412 
2020 414 414 

 
4.2 Hemispheric Seasonal Cycles 

As previously noted, global CO2 concentrations fluctuate seasonally with CO2 absorption and 
respiration by vegetation over the annual cycle. Seasonal fluctuations are more pronounced in the 
Northern Hemispheric because it has more plant life.  To measure the amplitude of CO2 cycles in 
the OCO-2 data, we regress measured CO2 on a time trend and compute monthly mean residuals 
for the Northern and Southern Hemispheres. Figure 1 displays mean residuals by month.  The cycle 
is pronounced in the Northern Hemisphere, with the peak in April, the trough in August, and an 
annual amplitude of 7.5 ppm.  The Southern Hemisphere cycle is much flatter, with the peak in July, 
the trough in March, and an annual amplitude of 1.5 ppm.  
 

4.3 City Concentration Anomalies 
 
In our model, differences in cities’ economic, demographic and geographic conditions affect residual 
variations in measured CO2 once global trend growth and seasonal fluctuations are accounted for.  
We assess the scale of these concentration anomalies by computing residuals from a regression of 
CO2 on a time trend and hemispheric dummy variables for months.  Figure 2 displays the 
distribution of mean anomalies for the cities in our sample, with a standard deviation of 1.0 ppm,  
94.8% of cities in the range [-2,2] ppm and 98.5% in the range [-3,3] ppm.  For comparison, human 
activity currently generates about 40 gigatons of CO2 emissions each year, increasing the 
atmospheric CO2 concentration by about 2 ppm.  The city concentration anomalies in Figure 2 have 
the same order of magnitude, thus highlighting the global significance of inter-city variation.   
 
Methods for direct conversion of city residuals to CO2 emissions are still in the research phase.  
Several recent studies (e.g. Ye et al. 2020; Wu et al. 2020) compare OCO-2-based city concentration 
anomalies (∆CO2OCO2) with anomalies (∆CO2E) estimated by combining atmospheric transport 
models with city-level data from global emissions inventories (principally ODIAC (Oda, Maksyutov 
and Andres 2018)).  For the scaling factor [R=∆CO2OCO2/∆CO2E], Ye et al. (2020) find values of 
1.6-1.9 for Riyadh, 2.4-2.9 for Cairo, and 2.9-3.2 for Los Angeles.  In all three cases, city 
concentration anomalies calculated from standard emissions inventories significantly underestimate 
the anomalies in OCO-2 observations.  These discrepancies may incorporate errors in sector-level 
activity data or emissions parameters employed by emissions inventories, as well as exclusion of 
some sectors from the inventories.  For each city studied, a mid-range R-factor could be used to 
adjust its inventory-based emissions estimate. 
 
Over time, accurate estimation of R-factors for more cities may permit larger-scale adjustment of 
urban CO2 emissions inventory estimates.  The research reported in this paper contributes by 
quantifying the incremental contributions of multiple sectors to city-level OCO-2 concentration 
anomalies.  Follow-on research could construct sector-level R-factors for adjusting emissions 
inventories at the sector level.  Longer-term, R-factor research may succeed in dropping its current 
dependence on emissions inventories and produce methods for direct estimation of CO2 emissions 
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from satellite-measured CO2 concentration anomalies.  At present, however, this domain remains 
largely unexplored. 
 
 Figure 1: Seasonal CO2 cycles in the Northern and Southern Hemispheres, 
                  Monthly deviations from trend (ppm) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Distribution of mean residuals for cities  
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4.4 Sources of CO2 Emissions Variation across Cities 

Before the formal econometric analysis, we explore descriptive evidence on three potential sources 
of variation in urban CO2 emissions.   

Population 

As previously noted, CO2 emissions should increase with urban population because each resident 
accounts for some emissions.  We divide our sample cities into three size ranges with lower bounds 
at 500,000, 2,000,000 and 5,000,000 and compute mean CO2 concentration anomalies for the cities 
in each range.  As Figure 3 indicates, mean anomalies increase with population size range. 
Population variation is associated with city anomaly variation over a range of 0.7 ppm, which is 0.7 
standard deviation for the overall urban CO2 anomalies displayed in Figure 2.   

 

Figure 3:  Mean CO2 anomaly by city population size range 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Industry Structure 

For this exploration, we combine information on capacity in each city for industrial facilities in six 
categories:  power plants fired by coal, gas and oil; non-electric steel mills; refineries; and cement 
plants.  We normalize capacity in each category to the range [0 – 100]4 and compute total normalized 
capacity for the six sectors in each city.  We compute mean CO2 anomalies for cities in five capacity 

 
4 For each sector, we identify the maximum capacity across sample cities.  We divide capacity in each city by the sector 
maximum and multiply by 100. 
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ranges.  Figure 4 shows a positive relationship between CO2 anomaly and aggregate capacity in 
CO2-intensive facilities, with capacity variation associated with anomaly variation over a range of 1.0 
ppm, which is 1 standard deviation for the overall urban CO2 anomalies displayed in Figure 2. 

 

Figure 4:  Mean CO2 anomaly by CO2-intensive plant capacity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Economic Development 

We divide cities into five ranges of income per capita ($US 2015) with upper bounds at $US [4,000 
11,000 25,000 50,000 100,000].  Figure 5 shows that the association between mean CO2 anomaly 
and income per capita is consistent with an Environmental Kuznets Curve in which CO2 emissions 
increase to an upper bound in the range [$US 40,000-50,000] and then decrease.  In Figure 5, sample 
variation in city per capita income is associated with variation of 1.6 ppm, or 1.6 standard deviation 
for the overall urban CO2 anomalies displayed in Figure 2. 
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Figure 5:  Mean CO2 anomaly by city income per capita 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To summarize, our explorations suggest that sample variations in population, CO2-intensive 
industry scale and income per capita are associated with variations in mean urban CO2 anomalies of 
0.8, 1.0 and 1.6 standard deviations.  Taken together, these associations suggest that the three factors 
account for a significant component of variation among the sample cities.  Strong inferences cannot 
be drawn because the three factors are not statistically independent (sample correlations: 
[population/plant capacity 0.22]; [population/income 0.02]; [income/plant capacity 0.51].  In 
addition, our aggregative measure of plant capacity imposes an implicit assumption of equal sectoral 
impact that may not be warranted.  For more systematic evidence, we turn to the results of our 
econometric estimation.   

 
5.  Model Estimation Results 
 
Table 2 reports our regression results for radial distances of 20, 40 and 60 kilometers, as well as cells 
within 60-km radii that also lie within Functional Urban Areas.  We present results for OLS and 
HAC5 panel estimation, which adjusts standard errors for spatial autocorrelation.  We have scaled 
the variables to yield easily-reportable parameter estimates (i.e., estimates with limited leading zeros 
after the decimal place); units are included for each variable.   
 
Overall, we find that the model provides a good fit to the data.  The results are highly robust to 
variations in radial distance and cell restriction to Functional Urban Areas, with the expected signs 

 
5  Heteroscedasticity and autocorrelation consistent. 
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and generally-high levels of statistical significance for all model variables. At the same time, the cities 
in our sample display broad variation in regression residuals after the model variables are taken into 
account.  This suggests a potentially-important domain for climate-related policies, and Section 6 
explores one policy dimension with an analysis of the relationship between urban mass transit 
investments and the regression residuals. 
 

Our comparative results for power facilities are consistent with prior expectations:  Coal-fired power 
has the greatest impact on atmospheric CO2 concentration, followed successively by oil-and gas-
fired power.  Non-electric steel/iron complexes, cement plants and refineries have generally-high 
significance, along with agricultural and forest burning in neighboring areas.  We have incorporated 
the VIIRS nighttime light illumination index as an additional proxy for economic development; all 
results have similar parameter estimates, the expected signs, and high significance.  Heating degree 
days also has the expected sign and high significance in all cases.  

 
5.1 Population Effects 

 
Population has the expected positive, highly-significant effect on CO2 concentration.  The results 
for population density and its interaction with inverse log population are consistent with sign-
switching as income rises.  Figure 6 displays the estimated relationship between income per capita 
and the composite density parameter [β10 + β11/log(y)].  It suggests that sign-switching occurs 
around $US 1000, where the composite density parameter is equal to 0. 

Figure 6:  Regression population density parameter vs. income per capita 
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Figure 7 illustrates the implications by displaying the density/CO2 relationship as income increases.  
The relationship is strongly positive at $US 400 per capita and mildly so at $US 800.  Then it 
switches sign and becomes progressively more negative for $US 1200, 2000 and 5000. 
 
These population density results may be of interest for the discussion of optimal timing in urban 
development strategy.  In our interpretation, they do not imply that low-income cities should not 
exploit opportunities for higher-density development, because pursuing such opportunities may help 
them avoid locking into carbon-intensive residential and infrastructure patterns that are difficult to 
reverse as income increases.  However, our results do imply that CO2 increases may accompany the 
first phase of densification for some low-income cities.   

Figure 7:  CO2 anomaly (ppm) vs population density at different income levels  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Income Effects 
 
Our results for income per capita are highly significant and consistent with an Environmental 
Kuznets Curve (EKC) for urban CO2 emissions (β12 > 0, β13 < 0).  In supplementary exercises, we 
have addressed issues related to (1) potential biases associated with inclusion of emissions-intensive 
facilities; (2) inclusion of an income-interactive term in the population density component; and (3) 
simultaneity in the relationship between CO2 emissions and non-industrial income factors.  For case 

 



17 
 

(1), we have estimated regressions that exclude either industrial emissions sources or income. When 
we exclude the income terms, we find a very small effect (median change of 3%) on parameter 
estimates for power plants, steel mills, cement plants and refineries.  When we exclude the industrial 
facilities, we find that the income parameters change slightly.  For case (2), we have estimated 
regressions that exclude all righthand variables except income, time trend and seasonal controls (by 
hemisphere). As expected, with all collinear variables dropped, we find an increase in the significance 
and size of the EKC parameters. 
 
Figure 8 displays the estimated EKC with industrial emissions sources, without them (case 1), and 
without any righthand variables except the EKC terms (and the trend and seasonal controls) (case 
2).  With industrial sources excluded, the EKC peaks sooner and declines more sharply at higher 
incomes.  At present, we cannot say how much of this change reflects estimation bias and how 
much reflects the collinearity-related upward bias that would accompany exclusion of properly-
instrumented facility variables.  In any case, all three estimates carry the same basic message:  The 
EKC reaches a peak in the range [$40,000 - $50,000] which is above the 90th percentile 
internationally. 
 

Case (3) warrants more detailed attention because of potential simultaneity bias in the relationship 
between income and CO2 emissions.  A substantial literature has used inventory-based emissions 
estimates to study this relationship at the country level (e.g., Apergis and Payne 2014).  Results have 
differed substantially by country and time period (Ben Youssef et al. 2016).  The research presented 
in this paper is different from previous work in at least three relevant ways.  First, it uses direct, 
satellite-based observations of CO2 rather than estimated emissions inventories.  Previous studies 
have risked introducing some technical element of simultaneity by construction, because their emissions 
inventories derive entirely from measures of activities that provide components of income.  Second, 
the present study uses local, spatially-referenced data rather than national or regional aggregates.  
Third, we take a different approach to energy as a link between income and CO2 emissions.  Most 
previous studies of the simultaneity issue have focused on the energy sector as the key determinant 
of simultaneity between income and CO2 emissions, because CO2 emissions increase with energy 
use and energy use contributes to economic growth.  Researchers’ views have differed substantially 
on the potential importance of this problem.  Csereklyei and Stern (2015) argue that the bias is fairly 
small, so estimated emissions-income elasticities will be close to effects for exogenous changes in 
income.  In any case, the modeling exercise in this paper takes an entirely different approach to the 
energy sector, incorporating georeferenced data for the coal-, gas- and oil-fired power plants that 
create sectoral CO2 emissions while excluding other power facilities (e.g., nuclear, solar, wind, 
hydro) that do not.  In the previous subsection, we have discussed and illustrated the implications of 
our approach to energy facilities. 
 
As previously noted, the EKC component of our model relates to non-industrial, income-related 
activities (e.g., motor transport) that cannot be observed directly.  The relationship between income 
and CO2 emissions from these activities may also include elements of simultaneity, such as the joint 
emission by some activities of CO2 and local air pollutants (NO2, SO2, CO) that affect health, 
productivity, and therefore income (Van Ewijk and Van Wijnbergen 1995).   
 

For econometric estimation, instrumental variables (IV) provide the standard correction for such 
simultaneity problems.  In recent work on EKC estimation for local pollutants, Lawell and Liscow 
(2013) have identified the age dependency ratio as a plausibly-exogenous instrument that affects 
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economic growth via the savings rate and overall labor productivity.  We have adopted this approach 
for a first-stage regression that relates national income growth since 2010 to the age-dependency 
ratio.  We substitute the regression prediction for income per capita in our EKC model that excludes 
all other righthand variables except the time trend and seasonal variations by hemisphere.  The 
resulting EKC estimate is included in Figure 8 (labeled “IV”).  Its peak occurs at a lower CO2 
anomaly than its OLS counterpart, and at an income that is substantially higher. We should 
emphasize that this IV result is far from the last word, and future research should use satellite-
measured CO2 data to address the simultaneity issue in more depth. 

We should also note that the income-related results in this study are only intended to provide a 
benchmark for judging urban performance in reducing CO2 emissions.  The same would be true if 
our results had rejected the EKC (β12 > 0, β13 = 0), yielding a relationship in which CO2 emissions 
increase continuously with income per capita.  To avoid any misunderstanding, we should 
emphasize that our EKC results have no normative or policy implications in themselves.  They do not imply 
that additional public resources are not needed for reducing CO2 emissions because “the problem 
will take care of itself” with continued economic growth.  In fact, the opposite is true.  The most 
recent IPCC report (IPCC (2021), Figure SPM.10) affirms a near-linear relationship between 
cumulative CO2 emissions and the increase in global surface temperature.  Our EKC results (Figure 
8) show that even high-income countries have not approached zero CO2 emissions, and growing 
industrial giants like India and China are still on the rising portion of the curve.  The clear 
implication is that waiting for the EKC to reduce emissions from all countries would produce an 
enormous increase in cumulative CO2 and a potentially-catastrophic global temperature increase.  
This conclusion will simply be compounded if future research finds insignificance for the EKC 
regression parameter (β13 = 0). 

Finally, we should note that our EKC results only provide a descriptive “snapshot” of the 
income/emissions relationship for our sample urban areas during the period 2014-2019.  Even if the 
EKC specification survives future econometric tests, policy changes and technology improvements 
may lower the EKC peak significantly while shifting it to a much lower income level.  Indeed, it is 
possible that recent changes in policy and technology in wealthier economies have already steepened 
the post-peak decline in CO2 emissions at higher incomes.  Tracking changes in the 
emissions/income relationship and its determinants should be an important topic for future 
research.    
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Figure 8:  Alternative EKC estimates  
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Table 2:  Determinants of measured CO2 concentration (OCO-2 satellite platform): 
                Cities with populations greater than 500,000 

         

Urban Radius (km)                20              40              60            60 

           (FUA Only) 

Estimation  OLS 
  Spatial  
    HAC OLS 

Spatial  
HAC OLS 

Spatial 
HAC OLS 

Spatial  
HAC 

Power Capacity (Coal) 137.2***        134.1***     142.0*** 137.7*** 138.6*** 133.2*** 126.0*** 118.1*** 

  [Megawatts (`00,000)] (28.75) (20.74) (45.24) (32.28) (51.49) (35.88) (35.50) (25.48) 

         
Power Capacity (Gas) 54.27*** 48.02*** 51.48*** 41.96*** 56.56*** 48.56*** 58.14*** 53.58*** 

  [Megawatts (`00,000)] (8.58) (5.55) (11.74) (7.00) (15.71) (9.84) (13.81) (9.66) 

         
Power Capacity (Oil) 67.20*** 110.9*** 94.31*** 128.2*** 99.39*** 125.6*** 54.67*** 82.82*** 

  [Megawatts (`00,000)] (4.45) (4.86) (9.70) (9.52) (12.08) (11.05) (6.06) (6.86) 

         
Non-Electric Steel and Iron Capacity 10.52*** 9.900*** 14.65*** 13.86*** 17.19*** 16.33*** 13.72*** 13.24*** 

  [Tonnes (‘00,000)] (10.92) (7.95) (21.87) (15.12) (28.10) (19.47) (18.35) (13.38) 

         
Refinery Capacity 0.0857 0.0337 0.144** 0.105 0.218*** 0.187*** 28077.2*** 26375.6*** 

  [Barrels Per Day (’00,000)] (1.19) (0.36) (3.23) (1.69) (5.81) (3.52) (6.97) (4.72) 

         
Cement Capacity 0.323*** 0.332*** 0.373*** 0.400*** 0.443*** 0.476*** 0.376*** 0.384*** 

  [Tonnes (‘000,000)] (15.97) (12.36) (27.67) (21.91) (37.45) (29.25) (23.92) (18.73) 

         
Carbon Emissions, Ag and Forest Burning 1258.0*** 1444.1*** 435.9*** 286.3*** 499.9*** 353.9*** 167.3** 63.51 

  [ [Grams Carbon/m2]/Month  (’00,000)]  (4.63) (5.36) (6.27) (4.19) (10.44) (7.49) (2.64) (1.04) 

         
Population 0.0103*** 0.0133** 0.0169*** 0.0189*** 0.0194*** 0.0234*** 0.0141*** 0.0156*** 

  [‘000,000] (3.42) (3.15) (10.89) (8.84) (19.21) (16.36) (11.54) (9.33) 

         
Population Density [$US 0 – 300] -32.42** -47.45** -33.35** -49.77*** -32.68*** -53.35*** -10.09 -22.19 

  [‘000,000/sq. km] (-2.72) (-2.86) (-3.19) (-3.40) (-3.32) (-3.81) (-0.99) (-1.58) 
 

        
Population Density  / 245.6** 328.7* 228.3** 351.0** 248.9** 425.6*** 76.26 158.4 
   Log (Income Per Capita) (2.68) (2.56) (2.83) (3.08) (3.24) (3.87) (0.96) (1.44) 
 

        
Income Per Capita 0.216*** 0.174*** 0.175*** 0.145*** 0.143*** 0.121*** 0.146*** 0.111*** 

  [Constant 2015 $US ‘000] (14.42) (8.73) (22.21) (13.76) (25.59) (15.91) (17.69) (10.34) 

         
[Income Per Capita]2 -0.0228*** -0.0209*** -0.0176*** -0.0166*** -0.0136*** -0.0124*** -0.0156*** -0.0137*** 

 (-10.54) (-7.34) (-15.07) (-10.76) (-16.19) (-11.06) (-13.63) (-9.26) 
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VIIRS Night Illumination Index 0.00263*** 0.00397*** 0.00426*** 0.00518*** 0.00457*** 0.00447*** 0.00435*** 0.00403*** 

  [Nanowatts/steradian]/cm2 (4.63) (5.30) (9.64) (8.82) (13.41) (10.97) (11.56) (9.20) 
 

        
Heating degree days 190.1*** 272.7*** 179.1*** 258.2*** 174.2*** 253.2*** 202.5*** 278.1*** 

  [’00,000] (31.94) (40.74) (59.07) (74.99) (81.30) (103.52) (49.81) (61.48) 
 

        
Observation Date 0.00705*** 0.00705*** 0.00703*** 0.00702*** 0.00701*** 0.00700*** 0.00700*** 0.00700*** 

 (463.19) (488.78) (869.58) (919.02) (1217.74) (1288.54) (725.05) (761.01) 

         
February -0.00877 -0.00946 -0.124 -0.112 -0.0347 -0.0636 -0.266* -0.229* 

 (-0.05) (-0.05) (-1.26) (-1.22) (-0.52) (-1.01) (-2.55) (-2.34) 

         
March -0.115 -0.168 -0.119 -0.130 -0.0188 -0.0275 -0.0991 -0.102 

 (-0.63) (-0.99) (-1.23) (-1.46) (-0.28) (-0.45) (-0.94) (-1.03) 

         
April 0.154 -0.0697 0.0878 -0.0749 0.100 -0.0171 -0.00432 -0.112 

 (0.90) (-0.43) (0.97) (-0.87) (1.62) (-0.29) (-0.04) (-1.17) 

         
May 0.546** 0.301 0.461*** 0.221** 0.555*** 0.308*** 0.194 0.0215 

 (3.15) (1.84) (5.28) (2.68) (9.35) (5.52) (1.95) (0.23) 

         
June 1.225*** 0.972*** 1.141*** 0.842*** 1.154*** 0.865*** 0.747*** 0.559*** 

 (7.31) (6.13) (13.57) (10.53) (20.23) (15.99) (7.60) (5.98) 

         
July 1.098*** 0.888*** 1.075*** 0.835*** 1.209*** 0.963*** 0.735*** 0.550*** 

 (6.63) (5.64) (13.08) (10.70) (21.71) (18.24) (7.83) (6.12) 

         
August 0.862*** 0.679*** 0.796*** 0.577*** 0.856*** 0.642*** 0.564*** 0.397*** 

 (5.11) (4.24) (9.44) (7.22) (14.95) (11.86) (5.89) (4.35) 

         
September 0.791*** 0.600*** 0.625*** 0.478*** 0.634*** 0.504*** 0.504*** 0.388*** 

 (5.04) (3.99) (7.62) (6.10) (11.18) (9.35) (5.51) (4.41) 

         
October 1.194*** 0.915*** 0.894*** 0.657*** 0.899*** 0.699*** 0.688*** 0.535*** 

 (7.42) (5.89) (10.53) (8.08) (15.31) (12.47) (7.22) (5.80) 

         
November 0.948*** 0.714*** 0.736*** 0.546*** 0.747*** 0.618*** 0.508*** 0.408*** 

 (5.86) (4.54) (8.49) (6.50) (12.31) (10.57) (5.19) (4.28) 
 

        
December 0.419* 0.307* 0.175* 0.108 0.204*** 0.173** 0.0823 0.0820 

 (2.55) (1.96) (1.98) (1.27) (3.30) (2.95) (0.84) (0.88) 
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January x [Northern Hemisphere] 3.408*** 2.853*** 3.124*** 2.628*** 3.039*** 2.599*** 3.040*** 2.647*** 

 (24.37) (20.76) (43.28) (37.06) (61.01) (53.14) (38.12) (33.57) 

         
February x [Northern Hemisphere] 4.142*** 3.643*** 3.979*** 3.514*** 3.780*** 3.419*** 4.076*** 3.717*** 

 (31.51) (27.13) (55.37) (48.71) (77.40) (69.91) (54.78) (49.31) 

         
March x [Northern Hemisphere] 4.896*** 4.549*** 4.658*** 4.312*** 4.483*** 4.180*** 4.533*** 4.266*** 

 (38.10) (35.92) (67.55) (63.49) (93.78) (88.77) (59.31) (56.25) 

         
April x [Northern Hemisphere] 5.108*** 5.027*** 5.043*** 4.938*** 4.996*** 4.878*** 5.045*** 4.962*** 

 (45.33) (44.50) (81.92) (80.37) (120.60) (117.67) (73.04) (71.50) 

         
May x [Northern Hemisphere] 4.407*** 4.368*** 4.241*** 4.250*** 4.088*** 4.149*** 4.367*** 4.376*** 

 (38.67) (38.26) (75.88) (75.36) (109.52) (109.59) (65.27) (65.09) 

         
June x [Northern Hemisphere] 1.709*** 1.680*** 1.547*** 1.610*** 1.475*** 1.571*** 1.956*** 1.982*** 

 (16.23) (15.66) (30.44) (30.64) (43.85) (44.88) (29.64) (29.71) 

         
July x [Northern Hemisphere] -0.591*** -0.616*** -0.866*** -0.842*** -1.016*** -0.956*** -0.548*** -0.506*** 

 (-5.84) (-5.93) (-18.41) (-17.18) (-32.81) (-29.32) (-9.35) (-8.38) 

         
August x [Northern Hemisphere] -2.337*** -2.370*** -2.434*** -2.398*** -2.424*** -2.357*** -2.313*** -2.251*** 

 (-21.76) (-21.84) (-47.44) (-45.88) (-70.77) (-67.31) (-37.12) (-35.71) 

         
September x [Northern Hemisphere] -1.811*** -1.844*** -1.830*** -1.873*** -1.860*** -1.874*** -1.806*** -1.798*** 

 (-21.12) (-20.96) (-39.44) (-39.57) (-57.51) (-56.81) (-33.35) (-32.65) 

         
October x [Northern Hemisphere] -0.567*** -0.695*** -0.525*** -0.646*** -0.622*** -0.733*** -0.415*** -0.531*** 

 (-6.16) (-7.39) (-10.31) (-12.57) (-17.50) (-20.46) (-6.91) (-8.70) 

         
November x [Northern Hemisphere] 0.917*** 0.662*** 0.919*** 0.666*** 0.822*** 0.556*** 1.164*** 0.925*** 

 (9.73) (6.76) (17.00) (11.95) (21.14) (13.98) (18.08) (13.97) 

         
December x [Northern Hemisphere] 2.442*** 1.918*** 2.432*** 1.946*** 2.319*** 1.858*** 2.529*** 2.092*** 

 (24.75) (19.10) (42.34) (33.63) (56.87) (45.38) (39.49) (32.35) 

         
Constant 254.3*** 254.7*** 255.0*** 255.3*** 255.4*** 255.7*** 255.5*** 255.7*** 

 (736.01) (775.48) (1395.77) (1472.50) (1971.11) (2080.00) (1181.10) (1235.86) 

         
Observations 37,788 37,788 129,851 129,851 247,592 247,592 89,157 89,157 

         

         
Absolute value of t statistics in parentheses    
* significant at 5%; ** significant at 1% *** significant at 0.1% 
 



 
 

 
5.3 Influence of Regression Variables on CO2 Emissions 

 

We use standardized (beta) coefficients6 to provide measures of relative importance for model 
variables.  Table 3 presents results from our 40-km radial estimates, standardized to weights that add 
to 100.  Overall, we find influence weights of 34.3 for industrial sources, 34.5 for measures of 
economic development, 10.6 for population-related factors, and 20.8 for environmental variables.7  
Among industrial sources, the top three by influence are coal-fired power (13.2), cement (7.3) and 
steel (6.2).  For economic development, population factors and environmental variables, the top 
variables are income per capita, population density and heating degree days, respectively.   

 

Table 3:  Influence of variables on CO2 emissions 

 

 

  

 
6 A beta coefficient transforms a regression coefficient to measure the change in the dependent variable, measured in 
standard deviations, for a standard deviation increase in the independent variable. 
7 The four subtotals have a total of 100.2 because of rounding to the first decimal point. 

  
Industry Influence (%) 
Coal Power    13.2 
Cement 7.3 
Steel 6.2 
Gas Power 3.9 
Oil Power 2.8 
Refineries 0.9 
Subtotal 34.3 
  
Economic Development  
Income Per Capita 31.5 
Nighttime Lights 3.0 
Subtotal 34.5 
  
Population Factors  
Population Density 7.1 
Population 3.5 
Subtotal 10.6 
  
Environment Factors  
Heating 19.0 
Fires 1.8 
Subtotal 20.8 
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6.  Discussion 
 

6.1 Global Comparisons 

Our regression model incorporates a host of determinants, including the annual global trend, 
seasonal changes by hemisphere, industry structure, fires in neighboring areas, demography, the 
income component that is uncorrelated with industry structure, and climate.   

Regression Predictions and Residuals 

Figure 9 maps regression-predicted mean CO2 anomalies for the 1,236 cities in the sample.  The 
predictions vary widely in all major regions.  China is distinguished, both by the number of cities and 
the high proportion of CO2-intensive cities in its eastern coastal region.  Overall, however, Chinese 
cities display the same broad variation as cities in other regions.  

The fitted model can provide a pilot template for judging cities’ emissions performance.  However, 
we should emphasize some particular features of model structure.  First, it includes heavily-emitting 
industrial facilities but does not include clean power sources and electric arc steel production.  Urban 
areas where industry has switched to these less-CO-intensive technologies will have lower actual and 
predicted emissions than cities with CO2-intensive technologies.  In a related vein, although some 
urban areas may not have pollution-intensive power plants within the radial distances used for this 
study, they may import power from more distant pollution-intensive facilities.  From a consumption 
perspective, such areas are not “cleaner” than areas with local power production.  We provide these 
cautionary notes because our model is explicitly intended to “level the playing field” by treating 
facilities like pollution-intensive power plants as historical legacies that provide benchmarks for 
judging future performance.  Our model estimates for industrial facilities establish fixed initial 
conditions, while automatically adjusting for the continuing global trend, seasonal fluctuations, 
changes in nearby fires, temperature changes, and changes in population and income.  
 
Some insight into cities’ current status can be gained by examining their mean regression residuals, 
which provide a measure of their deviations from regression predictions during the sample period.   
Figure 10 maps regression residuals for the 1,236 cities in the sample, while Figure 11 displays 
boxplots of residual distributions by region.8  The map displays wide variation in all regions, but 
certain regional patterns suggest deviations from collective global experience.  The number of large 
positive residuals in China is apparent, while large negative residuals are strongly evident in the 
former Comecon countries.9  Figure 11 confirms the impression for China.  Despite a wide 
dispersion of positive and negative residuals, China’s median is about .5 ppm (or .5 standard 
deviation for cities’ local component) above the global norm (a residual of 0).  Distributions lying 
above the global norm are also evident for the other countries in East Asia & Pacific, Sub-Saharan 
Africa, and Middle East & North Africa.  North America, Latin America & Caribbean, and South 
Asia (excluding India) have wide distributions that are roughly centered around 0.  The medians for  

 
8 The upper and lower box boundaries are quartile values; interior lines are medians.  A few extreme values in each 
region have been excluded for ease of interpretation. 
9 The countries of the former Soviet Union and associated countries in Eastern Europe. 
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India and Western Europe are about 0.5 standard deviation below the global norm, while the 
median for the former Comecon countries is more than 1 standard deviation below the norm. 
 
More detailed information about city distributions by region is provided in Appendix tables A1-A10, 
which tabulate the cities in each region that have 15 negative and 15 positive residuals with the 
largest absolute values.  These are the cities whose measured CO2 emissions are notably smaller or 
larger than expectation, as measured by the regression predictions.  For each city, the tables present 
measured CO2 for the sample period, model-predicted CO2, and the residual.   
 

Source Decomposition of Predicted CO2 
 
The Appendix tables also use the regression results to decompose predicted CO2 emissions into five 
source categories:  Industry (power plants, steel mills, refineries, cement plants); Fires (carbon 
emissions from agricultural and forest burning); Income (non-industrial CO2 sources that are 
correlated with income); Population (population and population density); and Climate (heating 
degree days).  Figure 12 maps illustrative decompositions for the sample cities.  Particularly 
important roles are suggested for Fires in Sub-Saharan Africa and Climate in northern Asia, the 
Russian Federation and Eastern Europe. 
 
Table 4 tabulates mean shares by region for each source sector.  Cities in India, China and other 
East Asia & Pacific countries have mean Industry shares above 40%; Sub-Saharan Africa has the 
largest share for Fires; Latin America & Caribbean, North America and Western Europe have 
dominant shares for Income (the income component that is uncorrelated with Industry); Sub-
Saharan Africa, India and other South Asian countries have dominant shares for Population, while 
the former Comecon countries have by far the largest mean share for Climate. 
  



 
 

Figure 9:  Regression-Predicted CO2 concentration anomalies (ppm) 
                  Global cities with populations > 500,000  
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Figure 10:  Residuals from Regression-Predicted CO2 concentrations (ppm) 
                    Global cities with populations > 500,000  
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Figure 11:  Distribution of city residuals by region* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*  CHN China;  AFR Sub-Saharan Africa;  EAP East Asia & Pacific (excluding China);  MENA Middle East & North Africa 

LAC Latin America & Caribbean;  SAS South Asia (excluding India);  NAM North America;  IND India;   

WEU Western Europe;  CEC Former Comecon countries (Soviet Union, Eastern Europe) 

 

 



 
 

Table 4:  Mean decomposition share by region and source sector 

Region Cities  Region    Industry  Region       Fires 
China 462  India 48.6  Sub-Saharan Africa 11.1 
Former Comecon 67  Other East Asia & Pacific 44.5  Other East Asia & Pacific 2.3 
India 91  China 42.4  Latin America & Caribbean 1.9 
Latin America & Caribbean 159  Middle East & North Africa 35.0  Other South Asia 0.9 
Middle East & North Africa 103  Other South Asia 32.8  India 0.7 
North America 101  North America 22.0  Former Comecon 0.5 
Other East Asia & Pacific 146  Sub-Saharan Africa 20.8  China 0.2 
Other South Asia 22  Western Europe 20.8  Middle East & North Africa 0.1 
Sub-Saharan Africa 92  Former Comecon 19.4  North America 0.1 
Western Europe 91  Latin America & Caribbean 19.0  Western Europe 0.1 

 

Region  Income  Region Population Region   Climate 
Latin America & Caribbean 66.0  Sub-Saharan Africa 35.8  Former Comecon 54.9 
North America 51.1  Other South Asia 22.5  China 29.2 
Western Europe 49.8  India 17.0  Western Europe 27.4 
Other East Asia & Pacific 35.7  Middle East & North Africa 9.6  North America 23.8 
Middle East & North Africa 32.8  Latin America & Caribbean 9.0  Middle East & North Africa 22.6 
Sub-Saharan Africa 32.0  Other East Asia & Pacific 7.0  Other South Asia 22.1 
India 30.2  China 5.4  Other East Asia & Pacific 10.6 
China 22.8  Former Comecon 3.6  Latin America & Caribbean 4.1 
Other South Asia 21.7  North America 3.0  India 3.5 
Former Comecon 21.5  Western Europe 2.0  Sub-Saharan Africa 0.3 

 

 

 



 
 

Figure 12:  CO2 Sources for a sample of cities  
                   Global cities with populations > 500,000  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 



 
 

      
6.2 Implications for Non-Pigouvian Policies 

Our results can also contribute to the discussion of strategies for achieving steep reductions in CO2 
emissions.  Most climate economists have argued for Pigouvian carbon pricing via emissions 
taxation or permit trading (Stiglitz and Stern 2021; Jacobs and van der Ploeg 2019; King et al. 2019; 
Klenert et al. 2018).  Many policy analysts who support Pigouvian pricing also argue for a non-
Pigouvian supplement: coordinated public investment in low-carbon land development, energy and 
transport that will accelerate the transition to low-carbon economies, particularly in lower-income 
countries that are not yet locked into high-carbon growth paths (van der Ploeg and Venables 2020).  
Economic growth is accompanied by urban development, which should avoid carbon-intensive land 
development, infrastructure and energy systems that are difficult to retrofit once they are locked in 
(Seto et al. 2014).  The empirical literature suggests that lower-carbon residential, energy and 
transport development can have self-reinforcing effects on residents’ preferences for low-carbon 
energy services (Carattini et al. 2018; Allcott and Rogers 2014) and transport modes (Weinberger and 
Goetzke 2010; Grinblatt et al. 2008; Bamberg et al. 2003). 
 
While the non-Pigouvian argument is certainly plausible, the global resource implications of 
adopting it are huge and rigorous empirical support would be highly desirable.  An attempt at 
rigorous testing would be premature for the current exercise, but an analysis of the residuals from 
our econometric model can provide suggestive evidence.  Empirical leverage is provided by the 
diverse urban development paths followed by cities within and across countries.  This is particularly 
true for investments in subway systems, undertaken by some cities but not by many others (Pasquale 
et al. 2016; Costa and Fernandes 2012; Jones 2008; Post 2007; Cudahy 1990).  Subway installation 
has been motivated by the belief that it will shorten commuting times, reduce traffic congestion and 
vehicular emissions, and promote higher-density residential development near subway stations.  
Reduced vehicle emissions and energy efficiencies associated with higher-density development are 
frequently cited as carbon-saving advantages of mass transit systems.   
 
From this perspective, subway cities should have had lower-carbon development paths, other things 
equal.  We explore this proposition with our regression residuals, drawing on a recent global survey 
of subway systems by Turner and Gonzalez-Navarro (2018).  Subways provide an excellent test of 
the non-Pigouvian supplement to carbon pricing for several reasons:  They exemplify massive 
directed infrastructure investment; they are numerous but far from universal in most world regions; 
and their histories vary from over a century to less than a decade.  If directed public investments can 
make a significant contribution to low-carbon development, the effect should register in a large 
sample that includes cities that have installed subway systems and cities that have not. 
 
Our econometric results in Table 2 are very similar for all three urban radii, so we present the 
median case (40 km).  We have residuals for 1,236 cities with populations greater than 500,000.  The 
Turner/Gonzalez-Navarro survey identifies 132 of these as cities with subway systems.  We divide 
the residuals into deciles, with the largest negative outliers in Decile 1.  These are the cities whose 
measured CO2 concentrations are far lower than their predicted concentrations.  In counterpoint, 
the cities in Decile 10 have measured concentrations far higher than their predictions.  We count the 
number of cities with subways in each decile and present the results in Table 5.  Figure 13 graphs the 
results with a regression line for easier interpretation.  The results provide striking evidence of a 
negative relationship, with a decline of about 2 subway cities per decile.  There are 23 subway cities 
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among the negative outliers in Decile 1, and only 6 subway cities among the positive outliers in 
Decile 10. 
 

Table 5:  Regression residuals:  cities with subways by decile 
 

Residual 
Decile 

 
Cities 

Subway 
Cities 

1 123 23 
2 124 19 
3 123 19 
4 124 16 
5 124 13 
6 123 11 
7 124 9 
8 123 7 
9 124 9 

10 124 6 
   

Total 1,236 132 
 

Figure 13:  Cities with subways by residuals decile   
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Our results certainly offer suggestive support for the view that large, directed public investments can 
make a significant contribution to low-carbon development.  However, we cannot discount the 
potential role of endogeneity in this exercise.  The implied relationship between mass transit 
investment and CO2 emissions has no explicit endogeneity, because reducing CO2 emissions has 
not been a goal of mass transit investments until very recently.  However, traffic congestion has 
been a target, with local air pollution as a correlate.  Some element of endogeneity may therefore be 
present, because CO2 emissions and local air pollutants have common sources in vehicle traffic, 
heavy industry, power generation, and residential heating.  At the same time, the heterogeneity of 
global cities makes it unclear whether simultaneity is an important consideration in this case.  Our 
database includes cities with and without subways in 138 countries, with some subway installations 
dating back more than a century, in political and economic regimes as varied as the former Soviet 
Union, other COMECON countries, social democratic regimes in Western Europe, military and 
populist authoritarian regimes in Latin America, relatively laissez-faire regimes in the United States 
and Australia, and regimes in Asia that range from authoritarian in the Democratic People’s 
Republic of Korea and mainland China to relatively laissez-faire in Thailand and Taiwan, China.  In 
light of these multiple, disparate factors, we believe that the exploratory results in Table 5 and Figure 
13 offer reasonably strong evidence in favor of the public investment hypothesis.  In future research, 
we hope to revisit this question in an econometric exercise with an explicit treatment of potential 
simultaneity.  
 
 
 7.  Future Research10 
 
The advent of satellite-based CO2 data has opened many research lines that could not be explored 
until the requisite information became available.  In this section, we summarize some of the topics 
that have been identified in the course of our own research.   
 

7.1 Quantifying CO2 Emissions 
 
Although satellite-based measures of CO2 concentration anomalies are extremely useful for 
comparative analyses, the policy community would undoubtedly benefit from conversion of 
concentration anomalies to physical estimates of CO2 emissions.  As we note in the paper, recent 
research for a few cities has used OCO-2 observations to produce scaling factors (R) for rough 
adjustment of ODIAC-type emissions estimates (Oda et al. 2018).  Future extensions of our 
econometric work could include the construction of sectoral R-factors that could be used to 
improve emissions inventories by identifying the sources of their discrepancies from satellite-
measured concentration anomalies.  Hopefully, empirical research will ultimately depart from its 
continued dependence on emissions inventories by developing methods for direct conversion of 
satellite-measured CO2 anomalies to physical emissions estimates.    
 

7.2 Potential Endogeneity Problems  
 

 
10 Our thinks to the reviewers of this paper for their useful thoughts about future research directions. 
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Two potentially-important problems with our current specification should be addressed in future 
work.  The first relates to possible endogeneity in the relationship between CO2 emissions and mass 
transit investments.  The second concerns joint determination of CO2 emissions and income per 
capita.  Our results are consistent with the EKC hypothesis, but we recognize the need for more 
work on the problem.  In a related vein, future research should explore the directions and sources of 
change in the emissions/income relationship.  For example, the recent priority given to CO2 
reduction in wealthier countries may already be changing the position or shape of the relationship at 
high income levels.  Research on this issue should also investigate the intervening relationship 
between income and climate policies, which are now being registered in sources like the LSE’s 
climate policy database (LSE/Grantham 2021).    
 

7.3 Non-Pigouvian Policies 
 

This paper has focused on subways because we have been able to use a large subway data set 
constructed by Turner and Gonzalez-Navarro (2018).  However, we readily acknowledge that other 
mass transit systems may also have important effects on CO2 emissions (e.g., regional rail and bus 
rapid transit systems).  As global data sets expand to include these systems, they should be 
incorporated into the analysis.   
 
Explicit incorporation of mass transit investments into the econometric model will provide another 
avenue for future research.  As previously noted, the possible joint determinacy of subway 
investments and CO2 emissions may warrant the use of instrumental variables in the expanded 
model.  In addition, future research should investigate the contribution of subways and other mass 
transit investments to synergies between Pigouvian and non-Pigouvian policies.  For example, a 
dynamic modeling exercise for the Paris urban area by Avner, Rentschler and Hallegatte (2014) 
suggests that the fuel price elasticity of carbon emissions can be much higher in cities with robust 
public transport options.  An extension of the current econometric research would incorporate 
relevant price variables (e.g., fuel prices), as well as their interactions with transit investment 
variables to test the effects on price elasticities. 
 
8.  Summary and Conclusions 
 
In this paper, we have estimated an urban CO2 emissions model using satellite-measured CO2 
concentrations from 2014 to 2020, for 1,236 cities in 138 countries.  The model incorporates the 
global trend in CO2 concentration, seasonal fluctuations by hemisphere, and a large set of 
georeferenced variables that incorporate CO2-intensive industry structure, emissions from 
agricultural and forest fires in neighboring areas, demography, the component of income that is 
uncorrelated with industry structure, and relevant geographic conditions.  We resample all model 
variables to a 10 km global grid, and capture CO2 diffusion from discrete emissions sources via 
inverse-distance weighting to a grid cell centroid distance of 100 km.   
 
In four econometric estimation exercises, we assign grid cells to cities if they lie within 20, 40 and 60 
km of city centroids, or within the boundaries of UN-defined Functional Urban Areas. The results 
are very similar and robust in all four cases, with the expected signs and generally high levels of 
significance.  We find that economic development has a significant effect on the direction of the 
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relationship between population density and CO2 emissions.  The relationship is positive at very low 
incomes, but becomes negative at higher incomes.  Our income results provide the first test of an 
Environmental Kuznets Curve relationship based on actual CO2 observations.  With caveats about 
potential simultaneity problems, we find evidence for an EKC that reaches a peak in the range 
[$40,000 - $50,000] per capita, which is above the 90th percentile internationally.   

We should note that our EKC results are only intended to provide a benchmark for judging future 
urban performance in reducing CO2 emissions. The same would be true if we had found a linear 
emissions/income relationship.  We should also emphasize that our EKC results have no normative 
or policy implications in themselves.  They do not imply that additional public resources are not 
needed for reducing CO2 emissions because “the problem will take care of itself” with continued 
economic growth.  In fact, the opposite is true.  Waiting for the EKC to reduce emissions from all 
countries would produce an enormous increase in cumulative CO2 and a potentially-catastrophic 
global temperature increase.    

We explore other implications of our estimates in a series of exercises.  Model-based predictions 
provide expected CO2 concentration anomalies for cities, given their sectoral, demographic, 
economic and geographic characteristics.  We map the expected concentration anomalies and 
regression residuals for the 1,236 sample cities, using the residuals to index CO2 emissions 
performance that exceeds or falls short of model-based expectations.  Among cities, we find wide 
variation in performance among cities within regions, as well as significant differences across 
regions.  Overall city performance exceeds expectations in India, Western Europe and the former 
Comecon countries, while it falls short in China, the rest of East Asia & Pacific, Middle East & 
North Africa and Sub-Saharan Africa.  We also decompose model CO2 predictions into five broad 
source categories for each city:  Industry, Fires, Income (the component that is uncorrelated with 
Industry), Population and Climate.  We find particularly important roles for Industry in India, China 
and other East Asia & Pacific countries; Fires in Sub-Saharan Africa; Income (the component 
uncorrelated with Industry) in Latin America & Caribbean, North America and Western Europe; 
Population in Sub-Saharan Africa, India and other South Asia countries; and Climate in the former 
Comecon countries. 

Our results can also inform the discussion of policy instruments for CO2 emissions reduction.  
Many policy analysts who support Pigouvian pricing also argue for a non-Pigouvian supplement:  
coordinated public investment in low-carbon land development, energy and transport that will 
accelerate the transition to low-carbon economies.  We explore this proposition for subway 
investments, drawing on a recent global survey of subway systems.  We divide our 1,236 regression 
residuals into deciles, with the largest negative residuals in the first decile, and identify the subset of 
132 global subway cities in each decile.  We find that subway cities are four times more numerous 
among first-decile cities than among tenth-decile cities.  We also find that representation of subway 
cities declines steadily across deciles.  While these results provide strong suggestive support for the 
non-Pigouvian view, they are subject to potential endogeneity that should be explored in future 
research.    
 
To conclude, this paper offers a response to the World Bank’s new climate change mandate, which 
requires new metrics for judging progress in CO2 emissions reduction. We demonstrate that 
satellite-based CO2 measures can contribute by enabling rigorous analysis and performance 
assessment for all global cities and regions.  We have estimated a CO2 emissions model for 1,236 
cities with populations greater than 500,000, but our 10 km grid covers all terrestrial areas of the 
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globe.  The same model could be used in other geographic domains, such as large and small cities 
within regions or countries, regions within countries, or specific project areas.  In light of the World 
Bank’s mandate for new metrics to track progress in greenhouse gas reduction, we hope to extend 
this pilot initiative to an open-source, regularly-updated CO2 database that will inform all global 
stakeholders. 
 

  



 
 

Table A1:  City CO2 results, top and bottom 15 residuals, China 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
China Shulan 400.556 403.28 -2.72 18.5 0 32 2.8 46.7 
China Qamdo 403.515 405.423 -1.91 0 0 11.2 1 87.9 
China Xiping 407.311 409.198 -1.89 30.8 0.1 10.6 1.6 56.9 
China Harbin 401.381 403.139 -1.76 50.3 0.3 13.5 7.5 28.4 
China Zhaotong 403.676 405.149 -1.47 2.7 0.2 15.5 17 64.6 
China Foshan 403.947 405.414 -1.47 62.2 0.4 27.9 6.4 3 
China Hegang 403.503 404.945 -1.44 15.5 0.1 11.7 1.9 70.8 
China Xuanzhou 408.48 409.908 -1.43 71.1 0 13.6 1.8 13.5 
China Rongcheng 402.877 404.254 -1.38 32 0.1 9.8 3.4 54.7 
China Wuhu 405.106 406.421 -1.31 82.8 0.1 7.5 1.7 7.9 
China Taihecun 405.507 406.752 -1.25 26 0.5 12.5 1.2 59.8 
China Beijing 403.994 405.227 -1.23 42.6 0.2 23.2 19.1 14.9 
China Qinzhou 402.828 404.036 -1.21 70.8 0.2 13.9 5.6 9.6 
China Hailun 404.325 405.53 -1.2 0.2 0.6 15 1.7 82.5 
China Yingkou 403.697 404.904 -1.21 43.6 0.1 24.6 2.6 29.1 

          
China Zhaoqing 407.384 405.751 1.63 63.2 0.4 20.6 10 5.8 
China Xiantao 406.765 405.107 1.66 39.9 0.5 26.4 2.4 30.8 
China Taishan 407.133 405.457 1.68 66 0.2 27.3 2.2 4.2 
China Zhongba 407.533 405.853 1.68 46.3 0.2 33.4 4 16.1 
China Jingling 407.182 405.463 1.72 39.7 0.4 20 4.2 35.8 
China Zhangshu 406.974 405.251 1.72 34.8 0.1 30.5 1.3 33.4 
China Chuzhou 406.705 404.954 1.75 65.6 0 21.2 4.8 8.4 
China Wutong 412.241 410.428 1.81 37 0 23.5 0.3 39.2 
China Mianyang 409.456 407.596 1.86 37.2 0.2 33.7 26.6 2.4 
China Anlu 403.241 401.371 1.87 29.3 0.1 20 2 48.6 
China Sihui 409.649 407.511 2.14 35 0.1 33.9 1 30 
China Fuqing 406.64 404.397 2.24 50.8 0 38.6 1.5 9.1 
China Jianshe 408.734 406.36 2.37 33.1 0 14 0.6 52.2 
China Lianyuan 407.585 404.918 2.67 67 0 28.4 4.6 0 
China Zhuzhou 404.562 400.799 3.76 40.2 0 18.4 4.2 37.2 
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Table A2:  City CO2 results, top and bottom 15 residuals, East Asia & Pacific (excluding China) 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
Indonesia Patam 409.217 411.971 -2.75 81.1 0.4 16.8 1.8 0 
Malaysia Kuantan 409.781 411.841 -2.06 15.1 0 82.7 2.2 0 
Japan Sapporo 400.934 402.403 -1.47 12.3 0.2 67.3 4.9 15.3 
Malaysia Klang 403.12 404.45 -1.33 48.4 0 49.7 1.9 0 
Philippines Muntinlupa City 409.788 410.919 -1.13 63.6 0 36.4 0 0 
Philippines Cebu City 403.138 404.205 -1.07 65.9 0.1 34 0 0 
Mongolia Ulaanbaatar 403.622 404.676 -1.05 4.7 0 7.1 2.6 85.7 
Philippines San Jose del Monte 408.386 409.349 -0.96 80.9 0.3 16.8 2 0 
Myanmar Mandalay 403.21 404.121 -0.91 53.3 8.6 22 16.1 0 
Vietnam Hanoi 407.006 407.893 -0.89 58.5 0.3 19.2 16.7 5.3 
Vietnam Hai Duong 401.917 402.773 -0.86 86.6 0.1 12.5 0.8 0 
Japan Sagamihara 403.129 403.982 -0.85 45.5 0 53.1 1.4 0 
Vietnam Ho Chi Minh City 405.81 406.636 -0.83 40.3 0.9 15.7 43.2 0 
Malaysia Butterworth 406.493 407.309 -0.82 28 4.2 63.7 4 0 
Korea, Dem. People’s Rep. Ch'ongjin 404.455 405.2 -0.75 53.9 0 25.5 2 18.6 

          
Philippines Dasmarinas 406.767 405.78 0.99 66 0 32.2 1.8 0 
Korea, Rep. Jeonju 407.353 406.346 1.01 17.2 0 41.5 1.1 40.2 
Korea, Dem. People’s Rep. Pyongyang 405.689 404.644 1.05 43.8 0 2.8 11.8 41.6 
Lao PDR Vientiane 406.622 405.542 1.08 3.4 3.5 75.1 17.9 0 
Japan Kobe 405.061 403.852 1.21 59.4 0 31.7 0.8 8.1 
Japan Hiroshima 405.628 404.397 1.23 32 0.2 55.3 1.8 10.7 
Korea, Rep. Cheongju 406.278 405.006 1.27 39.3 0.1 29.3 0.5 30.7 
Taiwan, China Tainan 406.237 404.748 1.49 61.8 0 34.8 3.4 0 
Korea, Rep. Gwangju 407.532 406.014 1.52 21.2 0 38.8 2.2 37.8 
Indonesia Samarinda 405.265 403.623 1.64 2.9 3.6 86.7 6.7 0 
Indonesia Pontianak 407.145 405.472 1.67 0 9.2 77.3 13.4 0 
Korea, Rep. Yanggok 405.208 403.176 2.03 43.1 0.1 2.9 1.9 52 
Taiwan, China Pingtung 408.493 406.328 2.17 43.2 0 55.1 1.5 0.2 
Indonesia Jambi 407.93 405.721 2.21 0 1.3 90.7 8 0 
Indonesia Padang 405.221 402.487 2.73 78.2 0 17.8 4 0 
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Table A3:  City CO2 results, top and bottom 15 residuals, Former Comecon Countries 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
Russian Federation Voronezh 402.071 404.758 -2.69 14 0.4 16.9 4.2 64.5 
Russian Federation Moscow 402.892 405.193 -2.3 37.4 0.1 9.1 25.4 28 
Russian Federation  Kemerovo 400.798 403.004 -2.21 41.9 0.3 20.9 1.8 35.1 
Russian Federation Naberezhnyye Chelny 403.65 405.819 -2.17 20.1 0.1 16.7 1.5 61.7 
Russian Federation Kazan 401.291 403.448 -2.16 4.7 0.3 18.2 4.6 72.2 
Russian Federation Ulyanovsk 401.971 404.011 -2.04 21.2 0.5 17.5 2.1 58.7 
Russian Federation Yekaterinburg 403.193 405.231 -2.04 29.6 0.6 20.6 3.8 45.4 
Russian Federation Tyumen 402.94 404.971 -2.03 4.4 0 36.2 2 57.3 
Russian Federation Saint Petersburg 401.789 403.752 -1.96 35.8 0.3 18.9 15.9 29.2 
Russian Federation Samara 400.683 402.544 -1.86 15.5 0.4 18.5 2.6 63 
Russian Federation Kirov 402.584 404.435 -1.85 13.4 0 11.7 1.7 73.2 
Russian Federation Chelyabinsk 403.245 405.047 -1.8 35.6 1.3 12 2.3 48.8 
Russian Federation Tomsk 401.856 403.6 -1.74 13 0 26.7 2.4 57.8 
Russian Federation Lipetsk 402.26 404.001 -1.74 40.7 0.4 14.1 1.6 43.2 
Kazakhstan Qaraghandy 401.207 402.93 -1.72 38.6 0.8 27.1 1.1 32.5 

          
Russian Federation Irkutsk 404.205 404.965 -0.76 19.7 0.8 15.5 1.5 62.5 
Ukraine Kryvyy Rih 403.773 404.519 -0.75 39.3 0.7 9.3 2 48.6 
Moldova Chisinau 400.846 401.566 -0.72 11 0.3 9.3 2.6 76.6 
Ukraine Odesa 402.927 403.493 -0.57 23.2 0.9 13.5 4.7 57.7 
Czech Republic Prague 403.304 403.861 -0.56 27.3 0 41.9 1.9 29 
Turkmenistan Ashgabat 402.961 403.454 -0.49 18.4 0.1 52.2 6.4 22.9 
Uzbekistan Tashkent 404.312 404.77 -0.46 31.5 0.1 24.8 7.3 36.2 
Russian Federation Vladivostok 402.642 403.092 -0.45 11.1 0.4 16.2 1.6 70.8 
Poland Krakow 403.044 403.422 -0.38 32.2 0.6 28.4 1.5 37.3 
Russian Federation Penza 402.833 403.116 -0.28 1.8 0.3 9.7 2 86.2 
Bulgaria Sofia 404.006 404.228 -0.22 5.7 0.5 26 3.2 64.6 
Hungary Budapest 402.91 403.119 -0.21 16.1 0 46.1 4.1 33.7 
Uzbekistan Samarkand 404.936 404.947 -0.01 1.2 0.2 27 4.7 67 
Russian Federation Krasnodar 403.529 403.433 0.1 21.1 2.2 19.5 3.5 53.6 
Tajikistan Dushanbe 406.082 405.617 0.46 37.4 0 11.1 6.1 45.3 
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Table A4:  City CO2 results, top and bottom 15 residuals, India 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
India Mysore 401.858 403.648 -1.79 41.4 0.3 45.5 12.7 0 
India Bezwada 403.359 404.719 -1.36 83.4 0.4 11 5.2 0 
India Coimbatore 402.459 403.775 -1.32 34.2 0 53.3 12.5 0 
India Indore 404.192 405.46 -1.27 13.9 0.3 39.1 46.8 0 
India Chanda 404.227 405.487 -1.26 93.4 0 5.6 1 0 
India Delhi 404.379 405.594 -1.21 26.9 0 8.8 63.5 0.8 
India Kolkata 405.52 406.701 -1.18 27.7 0 10.3 62 0 
India Hyderabad 403.29 404.4 -1.11 20.5 0.1 27.9 51.5 0 
India Trichinopoly 401.424 402.516 -1.09 84.2 0 12.1 3.7 0 
India Ahmadabad 403.447 404.498 -1.05 22 0 25.9 52.1 0 
India Amravati 403.41 404.448 -1.04 63.9 0.1 29.9 6.1 0 
India Tinnevelly 403.161 404.188 -1.03 81.1 0.1 16.1 2.7 0 
India Bangalore 404.118 405.13 -1.01 7.3 0.4 23.3 69 0 
India Gwalior 404.826 405.821 -1 19.1 0.3 39.5 31.9 9.3 
India Nagpur 403.679 404.652 -0.97 83.7 0.1 9.1 7.1 0 

          
India Bareilly 406.001 405.888 0.11 32 1.9 33.8 21.1 11.2 
India Jammu 406.704 406.577 0.13 3.9 0.2 29.8 6.4 59.7 
India Nanded 404.777 404.636 0.14 11.7 1.3 72.1 14.9 0 
India Hubli 405.402 405.206 0.2 21.1 0.2 59 19.7 0 
India Thiruvananthapuram 403.557 403.302 0.25 12.2 0.3 79.5 7.9 0 
India Saharanpur 407.181 406.879 0.3 31.4 0.4 35.1 6.6 26.5 
India Kota 405.35 405.044 0.31 75.7 0.7 15 8.3 0.3 
India Patna 405.053 404.688 0.37 50.6 0.1 16.9 31.3 1 
India Bhilai 406.48 406.091 0.39 87.4 0.3 8.8 3.5 0 
India Ghaziabad 403.689 403.295 0.39 72.6 0.2 10.6 16.6 0 
India Meerut 407.359 406.937 0.42 55.9 0.2 18.8 14.6 10.4 
India Ludhiana 405.98 405.548 0.43 47.1 6.4 23.5 11.5 11.4 
India Aligarh 408.265 407.735 0.53 56.7 0 22.1 16.5 4.7 
India Jalandhar 405.789 405.236 0.55 25.8 2.5 36 8 27.7 
India Bhavnagar 408.676 407.659 1.02 63.3 0 32 4.7 0 
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Table A5:  City CO2 results, top and bottom 15 residuals, Latin America & the Caribbean 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
Argentina Salta 401.75 403.861 -2.11 13.2 0.7 43.8 3.1 39.1 
Peru Lima 400.334 402.265 -1.93 32.9 0 42.3 24.8 0 
Colombia Bucaramanga 402.612 404.319 -1.71 8.4 0.5 80.5 10.6 0 
Colombia Bogota 403.564 405.133 -1.57 5.5 0.4 43.1 50.9 0 
Venezuela, RB San Cristobal 407.595 409.028 -1.43 36.5 0.6 56.2 6.7 0 
Brazil Sao Jose dos Pinhais 400.664 402.059 -1.4 12.8 0.1 80.4 3.2 3.6 
Argentina Cordoba 401.807 403.188 -1.38 7.3 0.2 61.3 5.9 25.4 
Argentina San Miguel de Tucuman 402.074 403.403 -1.33 14.2 7.5 52 2.4 23.9 
Argentina Buenos Aires 402.297 403.552 -1.25 31.5 0.1 40 21.7 6.6 
Guatemala Guatemala City 404.016 405.191 -1.17 37.1 2.4 43.2 17.3 0 
Colombia Pereira 401.986 403.14 -1.15 13.5 0.6 80.4 5.5 0 
Mexico Xalapa 405.009 406.138 -1.13 22.7 1 60.8 4.5 11.1 
Brazil Santo Andre 402.715 403.831 -1.12 18.8 0.6 77.9 2.7 0 
Brazil Sao Paulo 404.738 405.706 -0.97 15.5 0 50.7 33.7 0 
Brazil Vila Velha 402.615 403.577 -0.96 0.1 9.1 80.2 10.6 0 

          
Brazil Joao Pessoa 404.136 403.246 0.89 26.1 3.2 69.7 1 0 
Brazil Fortaleza 404.421 403.5 0.92 25.8 1.1 61.3 11.9 0 
Brazil Salvador 406.089 405.167 0.92 33.2 0.1 52.9 13.8 0 
Jamaica Kingston 404.628 403.668 0.96 50.2 0.7 45.2 3.9 0 
Brazil Jaboatao 402.296 401.246 1.05 24.3 0.4 70.5 4.8 0 
Brazil Belem 405.766 404.706 1.06 6.6 1.4 65.6 26.4 0 
Mexico Zapopan 407.004 405.925 1.08 4 4.2 80.3 11.3 0.1 
Brazil Teresina 404.981 403.843 1.14 3 25.7 60.9 10.4 0 
Ecuador Guayaquil 404.224 403.074 1.15 21.7 1.3 58.4 18.6 0 
Mexico Guadalupe 405.268 404.046 1.22 25.1 0.7 63.1 3.2 8 
Brazil Cuiaba 403.263 402 1.26 8.9 0.7 87.6 2.8 0 
Brazil Manaus 404.834 403.52 1.31 14.7 0.6 76.3 8.4 0 
Brazil Sao Luis 402.829 401.357 1.47 31 0.4 52.3 16.3 0 
Brazil Natal 404.83 403.279 1.55 0.1 11.2 69.8 19 0 
Honduras San Pedro Sula 405.651 404.025 1.63 32.1 4.6 50.2 13.2 0 
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Table A6:  City CO2 results, top and bottom 15 residuals, Middle East & North Africa 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
Yemen, Rep. Ta`izz 404.519 405.741 -1.22 52.1 0 25.3 22.6 0 
Turkey Trabzon 402.871 403.75 -0.88 5.5 0 87.8 6.7 0 
Saudi Arabia At Ta'if 403.871 404.702 -0.83 23.7 0 73.3 2.6 0.4 
Turkey Mersin 403.863 404.648 -0.79 23 0 38 4.8 34.2 
Sudan Khartoum North 403.19 403.823 -0.63 15 0 74 11 0 
Turkey Bursa 403.717 404.327 -0.61 19.2 0 46.2 5.8 28.8 
Morocco Meknes 404.612 405.201 -0.59 28.3 0 29.5 3.5 38.7 
Sudan Omdurman 403.419 403.994 -0.58 12.7 0 61.2 26.1 0 
Sudan Khartoum 404.523 405.081 -0.56 13 0 43.7 43.3 0 
Turkey Ankara 405.73 406.283 -0.55 15.8 0 36.1 11.5 36.6 
Turkey Eskisehir 403.859 404.365 -0.51 12.3 0 42.3 2.3 43 
Turkey Istanbul 404.82 405.248 -0.43 22.3 0 39.2 24.2 14.3 
Turkey Kayseri 403.073 403.452 -0.38 3.3 0 30.2 5.1 61.4 
Egypt, Arab Rep. Madinat as Sadis min Uktubar 402.389 402.737 -0.35 92.6 0 2.4 2.5 2.6 
Turkey Adana 404.459 404.769 -0.31 37.8 0.5 36.6 6 19.2 

          
United Arab Emirates Sharjah 405.231 404.457 0.77 76.7 0 18.6 4.7 0 
Iran, Islamic Rep. Esfahan 404.733 403.946 0.79 44.1 0 4.5 6.2 45.2 
Iran, Islamic Rep. Ahvaz 403.391 402.599 0.79 52.1 0.4 9.9 14.8 22.8 
Armenia Yerevan 404.676 403.881 0.8 14.8 0.1 18 4.6 62.5 
Iran, Islamic Rep. Qom 405.009 404.178 0.83 18 0 2.4 6.5 73.2 
Morocco Sale 406.084 405.245 0.84 21.1 0 48.5 5.4 25 
Egypt, Arab Rep. Port Said 406.746 405.904 0.84 48.7 0.1 20.4 19.3 11.6 
Iraq An Najaf 405.265 404.396 0.87 30.8 0 42.4 4.8 22 
Iran, Islamic Rep. Kermanshah 405.547 404.663 0.88 35 0.1 2.9 5.2 56.8 
Iraq Al Hillah 405.349 404.362 0.99 39.1 0 21.8 4.4 34.6 
Kuwait Kuwait City 404.642 403.646 1 72 0 19.8 5.8 2.4 
Iraq Baghdad 405.21 404.211 1 34.2 0 19.8 28.7 17.3 
Iraq Mosul 404.906 403.809 1.1 38 0.2 19.3 7.4 35.2 
Iraq Al Basrah 405.641 404.47 1.17 63.9 0.1 25.5 10.1 0.4 
Iraq An Nasiriyah 405.694 404.446 1.25 0.5 0.1 61.2 7.6 30.6 
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Table A7:  City CO2 results, top and bottom 15 residuals, North America 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
Canada Edmonton 401.274 403.03 -1.76 20.5 0 43.4 1.5 34.5 
Canada Brampton 408.966 410.51 -1.54 7.3 0 49.6 1.1 42 
Canada Calgary 403.423 404.892 -1.47 5.5 0 51.7 2.2 40.6 
United States Indianapolis 402.515 403.968 -1.45 8.6 0 63.5 3.1 24.7 
United States Louisville 401.953 403.407 -1.45 38 0 44.7 1.3 15.9 
United States Baltimore 403.929 405.107 -1.18 42.1 0 48.6 3.5 5.8 
United States Grand Rapids 403.882 405.012 -1.13 14.1 0.1 65.9 1.3 18.6 
Canada Winnipeg 405.968 407.082 -1.11 0.4 0.1 41.4 1 57 
United States Providence 401.877 402.987 -1.11 20.5 0.1 39.9 1.6 37.9 
United States St. Louis 405.674 406.575 -0.9 36.4 0 40.5 2.6 20.5 
United States Rochester 402.94 403.837 -0.9 5.6 0 51.3 1.1 42 
United States Minneapolis 403.431 404.303 -0.87 15.5 0.1 39 3.5 41.9 
United States Columbus 402.556 403.369 -0.81 5 0 66 3.5 25.5 
United States Allentown 402.969 403.757 -0.79 32.3 0.2 35.9 0.8 30.8 
United States Detroit 405.081 405.776 -0.69 36 0 32.2 3.2 28.5 

          
United States Provo 403.88 403.261 0.62 11.6 0 52.5 0.8 35 
United States Ogden 404.48 403.853 0.63 3.5 0 58.1 1.2 37.3 
United States Hempstead 402.663 401.97 0.69 30.4 0 37.6 0 32 
United States Concord 405.39 404.673 0.72 27.2 0.1 59.8 0.6 12.3 
United States Virginia Beach 405.193 404.344 0.85 6 0 68 3.2 22.7 
United States Mesa 405.652 404.775 0.88 13 0 76.7 1.3 9 
United States San Francisco 406.174 405.29 0.88 26.5 0 62.8 6.5 4.2 
United States Sacramento 405.666 404.769 0.9 14.4 0.2 73.5 4.8 7.1 
United States Riverside 405.154 404.207 0.95 29.4 0.2 60.5 3 6.9 
United States Fresno 405.074 404.084 0.99 2.8 0.2 80.4 2 14.7 
United States Honolulu 405.739 404.667 1.07 22.4 0 77.4 0.2 0 
United States Mission Viejo 405.22 404.104 1.12 27.2 0.4 66.4 0 6 
United States San Jose 405.629 404.438 1.19 28.1 0 65 4.6 2.4 
United States Los Angeles 405.856 404.318 1.54 30.6 0.5 48.5 17 3.4 
United States Bakersfield 404.891 403.088 1.8 17 0.1 70 1.2 11.7 

 



44 
 

Table A8:  City CO2 results, top and bottom 15 residuals, South Asia (excluding India) 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
Nepal Kathmandu 400.294 402.544 -2.25 5.1 0.1 47.2 0.2 47.5 
Sri Lanka Colombo 404.602 405.941 -1.34 52.6 0 47.4 0 0 
Bangladesh Khulna 402.286 403.075 -0.79 36.4 0.7 32.8 30 0 
Bangladesh Dhaka 403.924 404.518 -0.59 41.5 0 8.5 50 0 
Bangladesh Chattogram 404.823 405.325 -0.5 34.9 0.4 31.4 33.3 0 
Pakistan New Mirpur 405.325 405.812 -0.49 42.3 1.6 17.1 4.9 34.1 
Pakistan Saidu Sharif 403.427 403.867 -0.44 9.1 0 9.8 13.5 67.6 
Pakistan Islamabad 403.865 404.304 -0.44 65.5 0 7.7 6.2 20.6 
Pakistan Faisalabad 405.107 405.262 -0.15 23.7 0.4 30.9 37.8 7.2 
Pakistan Rawalpindi 404.443 404.561 -0.12 69.3 0 8.7 8.3 13.6 
Pakistan Karachi 405.054 405.017 0.04 55.8 0 12.2 31.9 0 
Pakistan Sargodha 405.043 404.871 0.17 53.2 0.5 28.6 7.9 9.7 
Afghanistan Kabul 404.21 403.959 0.25 0.4 0 4.6 16.9 78.1 
Pakistan Lahore 406.619 406.368 0.25 21 3.4 12.3 56 7.3 
Pakistan Bahawalpur 404.446 404.155 0.29 6.2 0.5 59.8 22 11.4 

          
Pakistan New Mirpur 405.325 405.812 -0.49 42.3 1.6 17.1 4.9 34.1 
Pakistan Saidu Sharif 403.427 403.867 -0.44 9.1 0 9.8 13.5 67.6 
Pakistan Islamabad 403.865 404.304 -0.44 65.5 0 7.7 6.2 20.6 
Pakistan Faisalabad 405.107 405.262 -0.15 23.7 0.4 30.9 37.8 7.2 
Pakistan Rawalpindi 404.443 404.561 -0.12 69.3 0 8.7 8.3 13.6 
Pakistan Karachi 405.054 405.017 0.04 55.8 0 12.2 31.9 0 
Pakistan Sargodha 405.043 404.871 0.17 53.2 0.5 28.6 7.9 9.7 
Afghanistan Kabul 404.21 403.959 0.25 0.4 0 4.6 16.9 78.1 
Pakistan Lahore 406.619 406.368 0.25 21 3.4 12.3 56 7.3 
Pakistan Bahawalpur 404.446 404.155 0.29 6.2 0.5 59.8 22 11.4 
Pakistan Quetta 404.548 404.075 0.47 2.2 0 12.7 12.7 72.4 
Pakistan Multan 404.513 404.022 0.49 34.2 0.7 32.3 25.8 6.9 
Pakistan Sialkot City 405.225 404.733 0.49 25.7 1.6 12.1 43.5 17.1 
Pakistan Peshawar 404.224 403.576 0.65 45.6 0 11 18.8 24.5 
Pakistan Gujranwala 407.156 406.384 0.77 31.4 8.1 6.9 30.3 23.3 
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Table A9:  City CO2 results, top and bottom 15 residuals, Sub-Saharan Africa 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
Nigeria Warri 401.452 403.977 -2.52 31.2 15.3 34.7 18.8 0 
Ghana Kumasi 403.325 404.552 -1.23 0 1.7 61.1 37.1 0 
Benin Cotonou 403.496 404.64 -1.14 72.7 0.1 18.1 9.1 0 
Cameroon Yaounde 396.979 398.012 -1.03 0 0.4 56.1 43.4 0 
Eritrea Asmara 402.043 402.925 -0.88 15.4 0 34.6 50 0 
Ethiopia Addis Ababa 404.425 405.214 -0.79 41.1 0.6 17 41.3 0 
Nigeria Kano 402.197 402.747 -0.55 0 0.7 18.1 81.2 0 
Nigeria Maiduguri 402.068 402.567 -0.5 0 30 24.3 45.7 0 
Nigeria Sokoto 402.701 403.157 -0.46 56.7 0.3 14 29.1 0 
Congo, Dem. Rep. Mbuji-Mayi 396.933 397.324 -0.39 0 16.6 1 82.4 0 
Kenya Meru 402.768 403.149 -0.38 0.1 0.3 49.1 50.6 0 
Nigeria Abuja 404.341 404.719 -0.38 0 7.9 42.6 49.5 0 
Togo Lome 400.306 400.676 -0.37 44.6 0.9 33.3 21.2 0 
Djibouti Djibouti 404.991 405.356 -0.37 7.7 0 80.4 12 0 
Nigeria Enugu 406.115 406.478 -0.36 80.6 3.8 7.4 8.2 0 

          
Nigeria Ibadan 402.103 401.051 1.05 37.6 7 14.5 40.9 0 
Kenya Mombasa 403.213 402.16 1.05 50.1 0.7 33.8 15.4 0 
Congo, Dem. Rep. Lubumbashi 403.219 402.165 1.05 0.1 79.7 0.2 20 0 
South Africa Vereeniging 405.055 403.968 1.09 60.6 0.2 30.8 3.5 4.9 
Angola Huambo 406.121 404.965 1.16 1.4 0 78.2 20.4 0 
Congo, Dem. Rep. Kisangani 404.372 403.15 1.22 0 8.8 2.4 88.8 0 
Guinea Conakry 404.388 403.165 1.22 3.1 11.8 32 53 0 
Nigeria Benin City 398.832 397.596 1.24 31.5 0 25 43.4 0 
Central African Republic Bangui 403.819 402.484 1.34 0.4 89.8 3.9 5.9 0 
Côte d'Ivoire Bouake 405.226 403.852 1.37 0 60.4 30.7 8.9 0 
Malawi Blantyre 404.033 402.648 1.38 0.9 4.7 18.3 76.2 0 
Nigeria Aba 401.414 400.013 1.4 55 0 32.6 12.3 0 
Angola Cabinda 402.997 401.291 1.71 1.6 0 94.6 3.8 0 
Kenya Nairobi 403.964 402.172 1.79 12.6 0.3 24.1 63 0 
Burundi Bujumbura 405.087 402.727 2.36 9.3 0 20.1 70.6 0 
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Table A10:  City CO2 results, top and bottom 15 residuals, Western Europe 

Country City CO2 CO2_Predicted CO2_Residual Industry% Fires% Income% Population% Climate% 
United Kingdom Leicester 403.948 405.836 -1.89 14.7 0 48.4 0 36.9 
United Kingdom Sheffield 403.063 404.819 -1.76 44.9 0 30.1 0.5 24.4 
United Kingdom Liverpool 401.752 403.502 -1.75 15.3 0 50.6 1 33.1 
United Kingdom Bristol 404.729 406.446 -1.72 19.5 0 54 0.2 26.2 
United Kingdom Nottingham 403.123 404.664 -1.54 47.7 0 30 0.7 21.6 
Sweden Stockholm 400.801 402.333 -1.53 4.8 0 73.9 3.1 18.2 
Germany Essen 406.455 407.911 -1.46 56.9 0 24.3 0.5 18.4 
Lithuania Vilnius 400.302 401.541 -1.24 7.3 0.1 25.8 1.9 65 
United Kingdom Manchester 403.882 405.114 -1.23 18.1 0 48 3.6 30.2 
Latvia Riga 402.151 403.383 -1.23 4.4 0 36.6 1.2 57.8 
United Kingdom Birstall 404.298 405.488 -1.19 29.6 0 38.7 1.9 29.8 
Germany Dortmund 404.689 405.752 -1.06 51.8 0 27.9 0.1 20.3 
Germany Cologne 403.488 404.464 -0.98 59.8 0 29.4 0.4 10.3 
United Kingdom London 404.351 405.274 -0.92 7.9 0 48.8 15.1 28.2 
United Kingdom Kingston upon Hull 407.151 408.068 -0.92 44.2 0.1 44.8 0.6 10.4 

          
Germany Stuttgart 405.707 405.732 -0.03 22.3 0 45.5 0.4 31.8 
Germany Frankfurt 405.261 405.282 -0.02 24.7 0 49.7 0.2 25.4 
Spain Valencia 404.661 404.601 0.06 16.5 0.2 79.1 0 4.2 
Netherlands Amsterdam 405.657 405.595 0.06 30.5 0.2 45 0.4 24 
Italy Genoa 403.918 403.747 0.17 12.1 0 65.7 0.4 21.9 
Germany Nuremberg 403.274 402.994 0.28 5.7 0 53.7 1 39.6 
Greece Athens 405.426 405.129 0.3 18.1 0 59.9 0 22 
Italy Palermo 404.721 404.422 0.3 13.3 0.8 84.5 1.4 0 
Netherlands The Hague 405.297 404.956 0.34 35.7 0.2 62.4 0.5 1.2 
France Marseille 403.574 403.215 0.36 27.2 0.2 67.5 0.7 4.5 
Netherlands Rotterdam 405.605 405.243 0.36 28.5 0 59.6 1.7 10.1 
Spain Malaga 404.417 404.034 0.38 9.6 0 65.6 1.1 23.7 
Portugal Lisbon 404.412 404.007 0.4 14.8 0.1 59.1 0 25.9 
Spain Barcelona 405.573 405.118 0.45 29.9 0 59.6 3.9 6.6 
Ireland Dublin 409.363 407.877 1.49 86.6 0 0 13.4 0 
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