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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 9002

The long-term effects of Mexico’s conditional cash transfer 
program, PROSPERA, on poor households are of great 
interest to policy makers and academics alike. This paper 
analyzes the long-term effects on the welfare of the original 
participant households and their offspring, about 20 years 
after the inception of the program. To complement other 
studies that look into the effects on schooling and health, 
the analysis focuses on a utilitarian definition of welfare and 
employs two empirical strategies. The first uses the 1997–
2000 experiment as the cleanest, albeit limited, source of 
variation. The analysis finds that by 2017–18, the offspring 
of original beneficiary households are more likely to have 
formed their own households, to have migrated to differ-
ent localities, and to have more durable assets and larger 
consumption expenditures than their control counterpart. 

The second strategy confirms and expands those findings 
using a difference-in-difference methodology based on the 
localities’ rollout of the program and the age of the individ-
uals, as a proxy of exposure. This second approach covers a 
much larger and representative sample, while also directly 
observing self-reported vulnerability in food consumption. 
The findings confirm the generally positive outlook in terms 
of durable assets and lower food vulnerability. Perhaps more 
interestingly and relevant for evaluating the success of the 
program is that it improved intergenerational mobility. 
Using the 1997–2000 experiment, the analysis finds that 
the young adults who benefited from the program improved 
with respect to their parents in education, assets holding, 
and income. They appear to be climbing the ladder of assets 
and income.

This paper is a product of the Social Protection and Jobs Global Practice. It is part of a larger effort by the World Bank to 
provide open access to its research and make a contribution to development policy discussions around the world. Policy 
Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may be contacted 
at giacomo.degiorgi@unige.ch and the coordinators of the studies may be contacted at cavilaparra@worldbank.org.     
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I Introduction

The long-term analysis of Mexico’s conditional cash transfer program (CCT), PROSPERA,
constitutes a substantial resource for policy makers, and researchers alike. Mexico’s world
famous CCT PROSPERA (previously named PROGRESA and Oportunidades), with its focus
on human capital investment in terms of health and education, has already inspired several
programs around the globe and has shaped the way researchers, policy makers, and politicians
interact on the implementation and evaluation of large policies.1

Moving beyond the short-term analysis will give the opportunity to understand whether the
short-term impacts translate into benefits in the long run, and not only for original beneficiary
households but also, and most importantly, for their offspring. This analysis is crucial since
one of the main goals of the program is to break the intergenerational cycle of poverty in which
parents’ conditions worked as a key barrier to their children’s success in life. This would be a
tremendous accomplishment of any policy and as such deserving of the greatest attention.

In this work, we study the long-term effects of the program by providing answers to the
following questions:

1. Did the program improve the long-term welfare of participants?

2. Did the program contributed to break the cycle of poverty of participants and their off-
spring (intergenerational mobility)?

Answering these questions is not a simple task. To begin with, the concept of welfare is far
from being unequivocally determined.2 Atkinson (2011) and Deaton (2018) recently reignited
a decades-long discussion about the proper way to define and measure such an elusive con-
cept. Sen (1970, 1973, 1986, 2006) has played a leading role in this debate by challenging
an utilitarian approach to welfare and rather promoting a capabilities approach based on the
idea that outcomes or decisions (observable to the researcher) portray an incomplete picture of
the actual well-being of the individual. The ample literature studying PROSPERA’s benefits
has looked into many different dimensions of an individual and household’s life covering wel-

fare from different perspectives. This paper is limited in that sense. We chose to focus on a
consumption-based approach of welfare, which is more in line with the utilitarian view. The
utilitarian perspective of welfare is justified by the fact that from an economics theory perspec-
tive, consumption is usually the main input in utility functions.3 While we strive to employ
a more comprehensive definition of welfare than one based only on consumption and labor

1Appendix A gives a general description of the program.
2The references to the conceptual definition of welfare do not intend to be exhaustive. They are just intended

to give a small flavor of these remarkable authors’ extensive work on the topic.
3For example, in the motivation for the Nobel prize awarded to Angus Deaton in 2015: ...The consumption of

goods and services is a fundamental determinant of human welfare.... https://www.nobelprize.org/nobel prizes/
economic-sciences/laureates/2015/advanced-economicsciences2015.pdf.
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supply, our analysis is complementary to other papers that are being produced as part of this
set of studies, which look into education, health and occupational mobility. Also, at the time
of writing, we are constrained by the data availability, while future work could include several
other indicators as data become more available.

The consumption-based approach to welfare used in this paper will focus mainly on owner-
ship of durable goods, while also proposing a measure of (imputed) non-durable consumption
(food, personal products, and clothing). This is justified by the fact that consumption reflects
a household’s permanent income level and its resilience to shocks (Deaton and Zaidi 2002).
It also reflects better than income the household’s life conditions. In fact, this explains why
PROSPERA’s targeting used a proxy-means test index based on household durables and house-
hold members characteristics to identify vulnerable households to be served (Skoufias et al.
2001). Secondly, we will look into measures of success by looking into labor market outcomes
of those individuals that as children were encouraged by the program to stay enrolled in school.
Finally, to look into the intergenerational transmission of poverty we look into measures of mo-
bility in the percentile rankings, as in Chetty et al. (2014) of selected outcomes. Our definition
of mobility is now fairly standard in the literature and focuses on the relative position in the
outcome distribution of individuals with respect to their parents. In practice this means that
we order our data in ascending order on the magnitudes of the outcome of interest for parents
and offspring separately, this ordering would give us a relative position in the relevant distribu-
tion. We then compare the relative position of the parents to that of the offspring. If they have
exactly the same position there is no mobility across generations; if those at the bottom see
their offspring climb up the ladder, we have upward mobility; and the largest mobility would
be found if the position of the parents were to be unrelated to that of the offspring.

In the best case scenario, we would find that by (i) allowing families to insure against tem-
porary shocks, (ii) lifting incomes to higher and more stable levels, and (iii) through the in-
vestment in both physical and human capital (education, and health) the program can generate
a virtuous cycle. This could be reflected in the investment and improvements of outcomes for
beneficiaries and their offspring, potentially lifting future generations out of poverty. We de-
fer to future work the extensions to other aspects and approaches to welfare analysis, while
we already directly speak to a multifaceted strategy that includes multiple indicators (see for
example Ravallion (2011)), and measures of social deprivation, as the ones suggested by the
National Council for the Evaluation of Social Development Policy (CONEVAL).4

The second challenge we face is methodological. We should note here that a large part of
the analysis focuses on the long-term effects of the original experimental design, which is the
cleanest identification strategy and source of variation in this context, but comes at a high cost.
Essentially, the experimental variation gives an early versus late treatment difference. This

4See https://goo.gl/aQ8MPt
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early-late dichotomy is just a little more than a year of extra transfers for the treated group, or
about 9% additional resources available during the first period of the experiment as the control
group began receiving transfers just after the initial experiment. This design therefore is more
an intensive margin of treatment rather than an extensive one.5 In a way, the estimated effects
could be understood as lower bounds for the true effects out of an extensive treatment and
therefore any positive effect should be taken as a success of the program given the limited
variation in the available data. Importantly, we also implement an alternative research design
which allows us to get closer to the treatment versus pure control exercise; in that approach we
use the program sequential roll-out and individual ages to identify the effect of several years of
treatment versus never directly treated status as those children older than 16 at the time of the
introduction of the policy would not be directly exposed to it (or in any case to a much lesser
extent as they would be unlikely to satisfy the age requirement for the conditional components).

The main effects of PROSPERA can be summarized as follows: (i) newly formed house-
holds, those of the offspring of the initial and original beneficiary households, see a substantial
increase in their durable purchases in particular for entertainment and kitchen goods as well as
for (imputed) non-durable consumption expenditures; (ii) original households do not appear to
have a large increase in durables; and (iii) new households tend to locate in different localities
than those where they lived in 1997 (usually where they were born). These results are consis-
tent with the fact that the offspring of the original households are the direct recipients of the
additional human capital both in health and education due to the program, therefore they appear
to be on a different long-term development path than their control counterpart. In particular,
we see that the largest effects are concentrated among those with the largest initial effects on
human capital accumulation in the sample: those who were at the verge of dropping out of sec-
ondary school in 1997/98, i.e. those who were aged 11-16. We need to remind the reader that
the experiment used for this part of the analysis lasted between 1998 and 1999. Hence, while
it is possible that there could be large improvements in the very young children (e.g. aged 0-5
in our analysis), this would become evident in terms of assets by the time their human capital
accumulation ends, which is not possible to observe in our exercise. In fact, when we look
at a different data source and provide a complementary research design, in Section V.B, we
find that the effects of PROSPERA are generally largest for beneficiaries affected since their
developmental stages.

In terms of intergenerational and lifecycle mobility, we find that young adults who formed
their own households fare substantially better than their parents in terms of schooling, assets,

5The intensive margin refers to a comparison of receiving more with respect to receiving less. In contrast,
the extensive margin refers to a comparison of receiving an intervention with respect to not receiving it. In our
context, the group that was initially defined as the control, began to receive the benefits of the program in 1999.
Hence, the treatment versus control comparison should be interpreted as one in which the treatment received more
resources (9% more transfers in total) since their enrollment to the program was earlier (a little more than one
year). This explains why we assume our comparison to be in the intensive margin.
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and income when compared to their control counterparts. These latter results are very encour-
aging, as exactly that was the aim of the policy. A program like PROSPERA should ultimately
allow the next generation to thrive and climb the ladder of society, thus breaking the cycle of
poverty. Finally, to estimate the benefits of PROSPERA throughout its existence, we provide
a back-of-the-envelope exercise that draws upon Gertler et al. (2012). We compute the effects
on non-durable consumption expenditure for the 1997-1999 treated households compared to
a control group that does not receive any transfer. Such exercise estimates an effect of about
25%, per adult equivalent, over the baseline consumption in 1997 (at 2017 prices).

The remainder of the paper includes a selected review of the literature (Section II); a descrip-
tion of the potential mechanisms through which the program can have long-term consequences
on the lives of the original households as well as their offspring (Section III); a thorough de-
scription of the data employed (Section IV), and the empirical strategies adopted (Section V).
We will then move on to the results in Section VI, and finally conclude in Section VII.

II Literature Review

In order to locate the contribution of our work in the now vast literature on PROSPERA we will
mention below the more relevant papers on which we build upon. It is important to mention
that there are several papers analyzing the short and medium term effects of the program on
different outcomes of interest for our work. It would be beyond the scope of the current paper to
have a fully exhaustive list of all the publications that over the past two decades have analyzed
the program, we will just focus on a selection of studies closely related to our own. Despite
the large literature, very few papers have looked into the specific aspects of long-term success
that we focus on, in this sense we see our work as complementary to the amount of knowledge
accumulated over the years for two main aspects: i. our main focus is on welfare through a
standard definition of purchasing/consumption behavior; ii. needless to say we are interested
in the long-term implications of the policy not solely in terms of looking at the 20 years of
outcomes, but, perhaps more important, is our interest on the next generation or the offspring
of original households involved in the program since its inception.

For example, there are a number of studies on the impact of the policy on the consumption
profiles of beneficiaries (Hoddinott and Skoufias 2004) and non-beneficiaries (Angelucci and
De Giorgi 2009 and Angelucci et al. 2017). These studies find robust evidence of increase in
consumption of non-durables (food mostly) and to a lesser extent of durables for both recipient
households and other family members residing in the same locality as the direct transfer recip-
ients. Importantly, Angelucci et al. 2017 look at whether such positive impacts persist in the
medium term, defined there as six years since the initial transfers.

A more limited literature on longer term impacts of PROSPERA is available, and, in general,
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of long-term effects studies of CCT programs. Millan et al. (2018) give a recent summary of
papers investigating long-term effects of these policies. Relevant examples include: analysis on
long-term effects on human capital (Barham et al. (2017) study a CCT in Nicaragua); similarly,
Baez and Camacho (2011) study the long-term effects of the Colombian CCT (Familias en Ac-

cion) on human capital; similar analyses are presented in Barrera-Osorio et al. (2017) and Aizer
et al. (2016) on children’s longevity, educational attainment, nutritional status, and income in
adulthood in the U.S. There is also a literature looking into different aspects of the transfers:
conditional versus unconditional (Baird et al., 2011; Bursztyn and Coffman, 2012), targeted
versus universal (Niehaus et al., 2013), as well as other aspects of the transfers (Haushofer
and Shapiro, 2016). However, determining aspects of the transfers is beyond the focus of our
analysis.

For the case of Progresa/Oportunidades/PROSPERA, Behrman et al. (2011), Gertler et al.
(2012) and Angelucci et al. (2017) look at the medium-term effects on consumption, human
capital, and investment behavior. Later, Kugler and Rojas (2018) investigate the long-term ef-
fects on human capital and labor market outcomes for the original experimental population.
Also recently Parker and Vogl (2018) focus on the children of original beneficiary households
and find positive effects on human capital, assets, housing and labor market outcomes. Fi-
nally, Adhvaryu et al. (2018) study how PROSPERA protected children from early life shocks,
helping them escape from potentially long-term adverse shocks.

III Potential Mechanisms

There are potentially many channels through which PROSPERA might change the lives of
beneficiaries, and non-beneficiaries alike. This section is meant to present a stylized theory of
change rather than a detailed account of the possible mechanisms through which PROSPERA
might have long-term effects. There are potentially many such channels, which depend on
whether one looks at the original beneficiary households or their offspring, so that a detailed
account would be beyond the scope of this paper. However, we will build upon other authors’
work to motivate our own approach and analyze our results.

As is well known, the program was designed to tackle multiple aspects of poverty and how
to escape it. In particular, the program targeted education, health, and nutrition through trans-
fers and conditionalities. It is therefore immediate to think that for the children of the original
households a direct virtuous channel going through the accumulation of human capital should
exist. A larger human capital would then improve the livelihoods for the treated in a stable man-
ner. The children of the original beneficiaries are by 2017/8 adults themselves, and given the
higher schooling and better health they can be more productive and earn higher incomes. Such
higher permanent incomes, and human capital, would then translate into better living standards.
We will confirm here that indeed PROSPERA increased the human capital, in terms of school-
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ing, and health of the children of the original households. There are, however, other important
potential channels from i. asset accumulation, to ii. occupation, and iii. entrepreneurship.
There is by now plenty of evidence on the positive effects on educational and health outcomes
(Todd and Wolpin 2006; Angelucci et al. 2010; Bobonis 2009; Lalive and Cattaneo 2009; At-
tanasio et al. 2012; Parker and Vogl 2018) for both beneficiaries and non-beneficiaries. Also,
evidence has been shown about occupational choices and investment behavior (Bianchi and
Bobba 2010; Gertler et al. 2012; Angelucci et al. 2017). In addition, the program has proven
effects on occupational mobility (Yaschine 2012), and female empowerment and household
decision processes (Attanasio and Lechene 2002, Attanasio and Lechene 2014, Bobonis et al.
2015). All this literature asserts that the original households’ members are more educated, and
appear to have accumulated more productive assets, as well as initiated productive business
activities. The general consensus emerging from the literature is that PROSPERA has achieved
substantial improvements in the short to medium term as a result of higher human capital, more
stable income flows, and profitable investment into assets and occupations.

We build on all this existing evidence to make the case for the long-term and intergenera-
tional effects on our main measures of well being. In general, savings and therefore investment
can rise due to a larger disposable income and reduced general uncertainty for beneficiary
households. Higher incomes can afford previously unattainable investments, while lower un-
certainty in terms of future income streams lowers the need for precautionary or unproductive
savings, while allowing households to take more risk into business ventures (Banerjee and
Duflo, 2011). Similarly, better educated individuals might be making better long-term con-
sumption decisions. Previously severely credit constrained beneficiary households can now
start saving and investing for the long-term and their offspring.

We acknowledge that all these channels, or more, could be in operation at once. Even though
we will discuss some channels when relevant, attempting to decompose the overall effects on
each channel is not the purpose of the present study. Rather, we focus on estimating the overall
policy effect of the program on different measures that reflect higher wellbeing. Doing so is
empirically challenging given that original experiment variation provides only a small window
of differential exposure. Two aspects of such differential exposure will be exploited in our
analysis: first, the fact that households in experimental localities receive a larger aggregate
amount and time exposure to resources. Second, in parts of the analysis we will pair this with
cohort variation, which gives differential exposure at critical stages. Two meaningful examples
are: educational stages in which high levels of dropouts are frequent (especially among poor
recipients) and critical early developmental stages. For both cases, the literature on the program
has already provided favorable evidence.
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IV Data

We employ two data sources for the analysis presented here: (1) the PROSPERA panel data
gathered, since 1997 all the way to 2017-2018 (on a subset of localities and individuals), for the
evaluation of the initial experiment and (ii) the 2015 intercensus data collected by the National
Institute of Statistics and Geography (INEGI).

IV.A PROSPERA ENCEL panel

As it is widely known, in 1997 a sample of 24,077 households in 506 rural localities was
selected to implement a randomized controlled trial (RCT) in order to give robust evidence
about the effects of PROSPERA (known as Progresa at that time).6 This set of localities,
chosen according to the administration of the program guidelines, where then allocated to a
treatment (320 localities) and a control group (186 localities) where the eligible households
in treatment group received PROSPERA’s support, transfers were distributed to those eligible
households who complied with the stated rules of the program, starting in the fall of 1998
while the control localities started to receive the same treatment at the very end of 1999. Such
sample was followed up with a survey instrument called ENCEL in 1998, 1999, 2000, 2003
and 2007 to give evidence of short and medium-run impacts of the program. In an effort to
provide relevant data to evaluate the effects of PROSPERA in the long-run, the World Bank,
PROSPERA and the National Institute of Public Health (INSP) partnered to gather information
in 2017-2018 on a subset of that sample of participants.

ENCEL 2017-2018 sampling framework. Given the budgetary restrictions and the com-
plexity of tracking back the original participants, which was the strategy of the previous rounds
of the panel, a sub-sample of 334 localities of the 506 original localities was selected.7 As
Panel A in Table 1 shows, this first filter meant that richer eligible households in less marginal-
ized localities would become the sample target. Each of the selected localities was visited and
the surveyors looked for the 18,564 households included in the 1997 sample that inhabited that
locality. The targeting strategy employed at the beginning of the program to select beneficiaries
defined 12,519 of these households as eligible. We will focus our analysis in this set of house-
holds, since they provide the variation that would be relevant for the analysis.8 Priority was
given to households that had young members at the start of the data collection (1997-2000).
In total, 7,824 eligible households were located in the 2017-18 data collection. Hereon, we

6At the beginning of the program, priority was given to rural localities. In Mexico, rural localities are defined
as those with fewer than 2,500 inhabitants.

7Localities that were more accessible and as a result richer within the 506 original full sample were selected
for the ENCEL 2017-18. A set of localities that were added in the 2003 round are not included in the sampling
framework for the 2017-18 round.

8Non-eligible households could have enrolled later to the program. However, comparing non-eligible house-
holds from treatment and control communities would involve selecting households that initially did not receive
the program and were not affected by the random allocation of treatment.
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will refer to them as the original households, since their sampling took place back in 1997.
Panel B in Table 1, shows the attrition resulting from the inability to locate some of the original
households in the 334 selected localities. Larger households with more assets are more likely
to be surveyed in 2017. Importantly, and central for the internal validity of the estimated ef-
fects, we show that the overall attrition described appears orthogonal to treatment (see Table

2). This latter result is reassuring in terms of causal identification of the treatments effects,
however we should mention that those effects might not be applicable to the entire population
of interest. Despite that concern we conjecture that the sampling framework adopted is likely
to produce underestimates or conservative estimates of the effects as the sample, includes better
off households to start with, and it is plausible that the program effects would be smaller for
those households.

Next, using a list of all the individuals in the 1997 original households, surveyors asked for
socio-demographic information about each of them, as well as for the new members living in
the household (these would be offspring or other individuals entering the household after the
1997 survey round). Among the original set of individuals, a separate survey was designed for
members that were in critical age groups at the time in which the program started. Three age
groups of interest were then defined: (i) newborns in 1997-2000, since they were in a critical
stage of development when the RCT took place; (ii) children 6 to 8 years old in 1997-2000,
since they were about to enroll in school grades where the program’s conditionalities are most
relevant; and (iii) children in sixth grade in 1997-2000, since the program’s positive effects in
terms of later school enrollment appear to be concentrated in this critical grade.

Importantly, these individuals could be still living in the original households, but they could
have also moved out to form a new household (or joined an existing one). Contact information
was recorded to track these individuals. This search process had a geographic limitation: in-
terviews with individuals that moved out of the original household were only attempted if they
settled in the same locality as the original household, within a short range of the original house-
hold’s locality9 or in the three main metropolitan areas in Mexico (Mexico City, Monterrey and
Guadalajara). As mentioned above, the households where these individuals were located could
be either newly formed households (e.g. the individuals married or just decided to move out by
themselves) or could be households that already existed and the individual decided to move in
(e.g. moving with relatives). For the purpose of our analysis we define all these households as
new households in the sense that they did not exist in the 1997 sample.

Surveyors were able to locate and interview 4,987 individuals in the relevant group ages:
2,105 of them were still in their original households and the remaining 2,882 were in new
households. Of the individuals living in a new household, 4,207 interviews were not success-
fully completed, either because they moved to a household not accessible given the survey

9Given budgetary restrictions, households were searched in localities located within a 30 minute driving dis-
tance at most.
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Table 2: Balance table.
Mean

1997 Variables Control Treatment Diff p-value

Household head characteristics
Female* 0.0571 0.0583 0.0012 0.8868
Age 40.5610 40.1865 -0.3745 0.4146
Years of schooling 2.8088 3.0293 0.2205 0.1457

Income and productive activities
Num. productive ha of land 1.7492 1.7708 0.0215 0.9048
log (HH monthly income PC) 4.8815 4.8130 -0.0685 0.1003

HH. Characteristics and assets
Dirt floor* 0.7271 0.6945 -0.0326 0.2831
Electricity* 0.6679 0.6572 -0.0106 0.8239
Refrigerator* 0.0463 0.0452 -0.0011 0.9262
Television* 0.3751 0.3359 -0.0392 0.2528
Draft animals* 0.3518 0.3818 0.0301 0.3222

Household demographics
Household size 6.8539 6.8566 0.0027 0.9770
Num children 0-7 2.1263 2.0936 -0.0327 0.5062
Num children 8-17 2.1323 2.1558 0.0235 0.6716
Num adults > 70 0.0692 0.0706 0.0015 0.8689

Localities characteristics
Marginalization index 1995 0.6748 0.5296 -0.1452 0.1352
Num. observations 1,663 2,831

* Dummy variable

This table tests balance in observable characteristics between the PROSPERA RCT original treat-
ment and control with our sample. Observations are restricted to those households that were found in
ENCEL 2017-18 and employed in our main estimations. Balance of variables shown are calculated
with the 1997 ENCASEH data. Standard errors clustered at the locality level. Asterisks indicate
significance at the ***1%, **5%, and *10% level.
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geographical coverage, individuals were not found in the address given to surveyors or they did
not respond. In addition, a sub-sample of 1,994 individuals outside the relevant age groups was
mistakenly surveyed.10 In our analysis we use all the individuals sampled.

Table 3 gives further detail about the different possibilities of sample attrition. In this table
we use a logit model to relate household baseline characteristics with the probability of attrition.
Even columns add the interaction of the baseline characteristics with the treatment dummy to
further explore the possibility of selective attrition. In columns (1) to (4) we present evidence
about the attrition of the original households, which are the foundation of the sampling design.
Columns (1) and (2) give evidence of the locality selection (similarly as in Table 1 Panel A)
while columns (3) and (4) give evidence of the possibility to find respondents in the selected
334 localities. As these columns show, older head members of smaller households are more
likely to be missing. This is consistent with the evidence presented in Table 1, where we
found no evidence of selective attrition. Finally, columns (5) and (6) include newly formed
household attrition. Given that these households did not exist in 1997, its attrition is based on
the possibility to find members in the relevant ages that moved out of the original household. In
this sense, the attrition results from the 4,207 members who were searched for and not found.
Section VI.A.3 does a robustness exercise where inverse probability weights are employed to
adjust for attrition.

Available information. Both for original and new households, dwelling’s characteristics and
information on durable assets were gathered at the household level, we use such information
to explore PROSPERA’s long-term impacts on welfare. Individuals in the critical age groups
described were asked several additional questions on income and work-related topics. An im-
portant limitation of the ENCEL 2017 data is that non-durable consumption (crucially including
food consumption) is not available. This somewhat constrains our welfare analysis, especially
for a poor population context, where food expenditure represents a high proportion of total ex-
penditures. However, as an additional exercise, we propose an imputed measure on non-durable
consumption expenditure, which includes food, personal products, and clothing, adapting the
methodology of Blundell et al. (2005) and Attanasio and Pistaferri (2016) to the available data
and context (see Appendix Section C). It is important to remind the reader that while durable
consumption items are typically bigger ticket items, their purchase is infrequent, and for poor
households the total expenditure on durables is typically about 20% of total expenditure, so that
providing evidence on non-durable expenditure seems rather important.

Table 4 gives descriptive statistics for the original and new households employed in our
analysis using 1997 and 2017 data. For new households, the 1997 information corresponds to
that of their respective household of origin. The comparison between 1997 and 2017 shows an

10These individuals added by mistake are not a random sub-sample of all the individuals out of the group of
interest, but correspond to those for whom age was not available in 1997-2000 and were mistaken for newborns.
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Table 3: Attrition table.
Original Households New Households

1997 distribution 2017 distribution 2017 distribution
(1) (2) (3) (4) (5) (6)

Loc. marg index 0.099 -0.052 -0.001 0.053 -0.021 0.155
(0.071) (0.126) (0.076) (0.141) (0.061) (0.123)

Female head† 0.033 0.017 0.083 0.030 0.179 0.521***
(0.085) (0.144) (0.092) (0.164) (0.112) (0.192)

Head’s age 0.020*** 0.023*** 0.022*** 0.025*** 0.008*** 0.015***
(0.002) (0.003) (0.002) (0.003) (0.003) (0.004)

Head’s yrs of school -0.006 0.007 -0.005 0.005 0.002 0.001
(0.011) (0.017) (0.010) (0.016) (0.012) (0.021)

Head indigenous† -0.085 0.041 0.206** 0.120 0.125 -0.206
(0.087) (0.158) (0.086) (0.157) (0.084) (0.169)

Household size -0.31*** -0.31*** -0.37*** -0.37*** -0.02 -0.01
(0.016) (0.027) (0.020) (0.035) (0.017) (0.026)

Assets PCA -0.044* -0.054 -0.011 0.020 0.015 -0.001
(0.024) (0.042) (0.022) (0.039) (0.022) (0.038)

Dirt floor† 0.061 0.078 0.035 0.184 0.092 0.012
(0.070) (0.126) (0.068) (0.118) (0.070) (0.120)

Owns Productive land† 0.032 -0.121 0.013 -0.165 0.109 0.011
(0.064) (0.110) (0.057) (0.104) (0.069) (0.125)

Num children 8-17 0.056*** 0.084*** 0.068*** 0.100*** 0.042* 0.039
(0.019) (0.030) (0.022) (0.036) (0.024) (0.038)

Treatment† 0.005 0.138 -0.032 0.422 0.021 0.348
(0.098) (0.284) (0.089) (0.298) (0.080) (0.340)

T x Loc. marg index 0.236 -0.078 -0.245*
(0.156) (0.164) (0.141)

T x Female head 0.017 0.084 -0.534**
(0.179) (0.198) (0.234)

T x Head’s age -0.005 -0.006 -0.010*
(0.004) (0.004) (0.006)

T x Head’s yrs of school -0.020 -0.016 -0.000
(0.022) (0.021) (0.025)

T x Head indigenous -0.180 0.122 0.468**
(0.192) (0.186) (0.192)

T x Household size -0.001 -0.013 -0.012
(0.034) (0.042) (0.034)

T x Assets PCA 0.015 -0.050 0.019
(0.052) (0.047) (0.046)

T x Dirt floor -0.025 -0.221 0.116
(0.152) (0.143) (0.147)

T x Owns productive land 0.250* 0.281** 0.144
(0.134) (0.123) (0.149)

T x Num children 8-17 -0.042 -0.051 0.011
(0.039) (0.045) (0.048)

Constant 1.408*** 1.329*** 1.268*** 0.976*** -0.101 -0.286
(0.150) (0.223) (0.139) (0.240) (0.173) (0.270)

T x interactions (p-value) 0.678 0.331 0.075
Observations 12,163 12,163 9,635 9,635 6,905 6,905
Mean 0.641 0.641 0.541 0.541 0.607 0.607

This table shows the relationship between attrition, based on the capability to find the original households
from the 1997 ENCASEH sample, and household and locality characteristics measured at baseline with 1997
ENCASEH data (columns 1 to 4). Columns 3 and 4 only include households in localities sampled in 2017
ENCEL. In columns 5 and 6 attrition is defined based on the capability to find young members who formed
their own household. Standard errors clustered at the locality level. † indicates a dummy variable. Asterisks
indicate significance at the ***1%, **5%, and *10% level.
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increase in levels of education, greater income levels, more asset accumulation; original house-
holds aged and became more adult-based; new households are younger in general (both in
terms of head age and members composition). Interestingly the proportion of female heads im-
portantly increases.11 Several reasons explain this change: females are the transfer recipients,
this means that single-parent households would tend to be female, but also that when asked
for the head 20-years after the program the likelihood of appointing the female (at least to the
surveyor) is greater; overtime, female widows are more likely than male widowers; and finally
upon households split it is more likely for the female to keep the children and the resources of
the program.

Table 4: Descriptive Statistics.
Original HH New HH

1997 2017 1997 2017
Household head characteristics

Female* 0.06 0.26 0.06 0.13
Age 40.33 56.82 41.00 31.25
Years of schooling 2.95 3.33 2.88 7.76
Income
log(HH monthly income PC) 4.84 7.35 4.85 7.14
HH characteristics and assets

Dirt floor* 0.71 0.14 0.69 0.13
Electricity* 0.66 0.98 0.66 0.97
Refrigerator* 0.05 0.66 0.04 0.56
Television* 0.35 0.83 0.36 0.82
HH demographics

Household size 6.86 2.47 7.34 3.84
Num children 0-7 yrs 2.11 0 2.26 1.08
Num children 8-17 yrs 2.15 0 2.38 0.66
Num children 18-34 yrs 1.35 0.73 1.46 1.62
Num children 35-54 yrs 0.967 0.86 1.01 0.39
Num children 55-69 yrs 0.194 0.67 0.20 0.04
Num adults 70+ yrs 0.070 0.17 0.07 0.02
Localities characteristics

Marginality index (1995) 0.58 0.58
Observations 4,494 2,265

* Dummy variables
This table shows descriptive statistics of household and individual level variables that we will use to build our
main dependent variables, as well as controls that we will use in our main specifications. Data comes from:
(i) 1997 ENCASEH, which corresponds to the baseline data for the Progresa experiment and (ii) 2017-18
ENCEL, which is the latest round of the experiment’s panel.

11It is important to indicate that these proportions of female headship are among eligible households.
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IV.B INEGI’s 2015 Intercensus

A second part of the analysis that will be detailed in the next section uses the 2015 intercensal
survey, which is collected by INEGI.12 This survey is gathered at the midpoint between cen-
suses and contains information on individual’s income, education, dwelling’s characteristics,
durable asset ownership, and consumption vulnerability measures (among other things). The
survey includes information from individuals in more than 6 million households from all Mexi-
can municipalities. The access to this data with restricted geographical identifiers was obtained
through INEGI’s microdata lab.13 Our analysis focuses on individuals aged 0 to 21 in 1997-
2000 as those individuals had the highest potential exposure to PROSPERA. In total, we use
1,875,039 individuals in all the localities (urban and rural) from 24 Mexican states in our anal-
ysis.14 Importantly, the use of this ulterior data source allows to look directly into measures
of food consumption insecurity and resilience, while also allowing for a sharper definition of
treatment status as we will explain later. At the same time with this much larger sample, we are
also able to validate the results obtained from the previous data sources, in a fully representative
sample of the Mexican population.15

V Empirical Strategy

V.A Analysis Using the PROSPERA ENCEL Panel

Long-Term Effects. For identification of the long-term effects of PROSPERA, we first rely
on the 1997-2000 RCT experiment, which gives the cleanest source of variation available.
However, since the control localities became treated about two years after the start of Progresa
(i.e. by the end of 1999), this strategy should be interpreted as an early versus late treatment or
as a treatment intensity deriving from the extra months of transfers the original treated received.
Table 5 convincingly shows that original households in early treatment localities receive 8.8%

larger transfers, during 6.6 additional two-month installments. However, these additional re-
sources are not evenly distributed during the 20 year period between the start of the program
and 2017, rather they are concentrated in 1998-99.

12Available at https://goo.gl/5EMD7e
13For confidentiality reasons, INEGI does not disclose the geographical identifiers for localities with fewer than

15,000 inhabitants. The researchers filled up a request to gain access to this information which is critical for the
identification used.

14The selection of Mexican states for the analysis was based on the fact that a discontinuous jump was visu-
ally identified in the selection of localities. The states left out include Aguascalientes, Baja California, Colima,
Chihuahua, Mexico City, Morelos, Nayarit, and Yucatan.

15Even though the exclusion of Mexico City might strike as harmful for the representativeness of the sample,
it is important to remember that the urban extension of the program did not occur until 2004. At that time little
variation of inclusion was left geographically, which is our main identification strategy here.

15
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Table 5: Total Cash Transfers.
(1) (2) (3)

log(Tot Transfers) log(Pot Transfers) Tot Payments
Panel A: Original Households

Treatment 0.088** 0.062*** 6.60***
(0.0358) (0.0053) (0.971)

Constant 11.17*** 11.37*** 92.11***
(0.0958) (0.0170) (2.728)

Observations 4,494 4,494 4,494
R-squared 0.105 0.794 0.039
Mean T 2017 12.29 12.66 106.92
Mean C 2017 12.20 12.60 100.59
Panel B: New Households

Treatment 0.091** 0.055*** 5.83***
(0.0449) (0.00730) (1.198)

Constant 11.34*** 11.42*** 100.20***
(0.131) (0.0250) (3.606)

Observations 2,265 2,265 2,265
R-squared 0.118 0.807 0.037
Mean T 2017 12.36 12.71 107.65
Mean C 2017 12.28 12.67 102.03

This table shows the direct implications of the randomized treatment variable in terms of the cash transfers
received at the beginning of the program (1998-99). The outcomes employed are: (i) Total transfers, which
correspond to the accumulated amount of transfers received by the households (in real Mexican pesos); (ii)
Potential transfers, which refers to the amount of transfers that, given the program rules, a household would
accumulate if there is perfect compliance; and (iii) Total Payments, which indicates the total amount of in-
stallments that a household received since they were enrolled into the program. This information comes from
administrative records from the program. Treatment is a dummy variable that identifies if the observation be-
longs to one of the 320 original Progresa RCT treatment localities. Controls include (from ENCASEH 1997):
HH head age, education, speaking a dialect, HH size, % members under 15, dummies for home, productive
land and draft animals ownership, and locality marginalization index. Standard errors clustered at the locality
level. Asterisks indicate significance at the ***1%, **5%, and *10% level.

As we use the initial RCT design for the analysis, the estimation of the effects of interest is
rather simple and consists of the following specifications:

Yij = τ0 + τ1 Tj +X ′ij(1997)β + Uij (1)

Yijt = α0 + α1 Tj + α2 1{2017t}+ α3 1{2017t} ∗ Tj +X ′ij(1997)α4 +Dijt (2)

Yij(2017) = β0 + β1 Tj + β2Yij(1997) +X ′ij(1997)β3 + Eij (3)

where Tj is a dummy identifying those households living in an early treatment locality j (ran-
domly determined), Xij is a set of controls at the household (i) and locality level (j).16 As
standard in the literature we presents results on the three specifications above to provide ev-
idence on the robustness of the results. In equation (1) we employ a simple cross-sectional
difference approach, where the parameter of interest is τ1 in particular this approach is useful

16Even though we have a smaller sample than the 506 original localities, as explained in further detail in section
IV, we made sure that attrition across localities is not differential by treatment status and redid a balance test using
our available sample. Table 2 in the appendix shows that treatment and control households are still balanced.
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as certain outcomes (specific durable categories IT items and services) are not collected at base-
line. However, even if specific outcomes are not recorded at baseline we could still implement
both other approaches by replacing the baseline missing information with durable items that
are correlated with the missing ones (e.g. the full set of durables). In equation (2) we use a
standard difference-in-differences approach, where the parameter of interest is α3 describing
the excess variation in the outcomes between treated and controls with 1{2017t} an indicator
dummy for the 2017 wave. Equation (3) is commonly referred to as an ANCOVA specification
which allows for some extra flexibility with respect to the DiD and is more appropriate from an
inferential viewpoint. In the latter specification the parameter of interest is β1, while Yij(1997)
indicates the outcome value at baseline (1997) (see McKenzie 2012).

Lifecycle and Intergenerational Effects. For the analysis of the lifecycle and intergenera-
tional effects of PROSPERA, we employ a modification of equation 3, as is standard in this
literature, by relating baseline outcomes (for the original household when appropriate) to cur-
rent ENCEL 2017-18 outcomes. We explore the effects on mobility over generations and across
treatment status using:

∆ Yij = η0 + η1 Tj + η2 Y (G1)ij(1997) + η3 Y (G1)ij(1997) Tj +X ′ij(1997)η4 +Qij (4)

where ∆ Yij = Y (G2)ij(2017)−Y (G1)ij(1997) gives the change in the outcome through time for
the children with respect to their parents. Y (G2)ij(2017) is the outcome of the next generation
or new households (denoted with G2) observed in 2017, while Y (G1)ij(1997) is the outcome
of their parents (G1) observed at the time the program was about to start: the baseline (EN-
CASEH 1997). The coefficient η2, is essentially one-minus-the coefficient of intergenerational
persistence as it indicates the stability of outcomes across generations. In this formulation we
are also interested in both η1 and η3, as the first is the baseline effect of the policy with respect
to control individuals or households while η1 + η3 is the corresponding parameter for the early
treated. If we take equation (4) and replace Y (G2)ij(2017) with Y (G1)ij(2017) (parents’ outcome
observed in 2017), η1 and η3 would give information about lifecycle effects for the treatment
group. Following Chetty et al. (2014), in this analysis we employ as outcomes the relative
position of the household using the percentile of three different measures: schooling, a durable
asset index and income. Each percentile is calculated within groups formed by 10-year window
age ranges.

V.B Analysis Using the Intercensus

To avoid the small window provided by the early versus late treatment identification, we com-
plement the previous analysis with a difference-in-difference (DiD) strategy that employs the
program’s roll-out and different age groups. For this purpose, we create four groups of locali-
ties based on their enrollment year into PROSPERA: (i) E1, which indicates localities enrolling
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in 1997-98; (ii) E2, corresponding to entering in 1999-2001; (iii) E3, which relates to localities
entering in 2002-2005; and (iv) E4, which identifies those localities entering after 2006. Early
versus late enrollment comparison implies receiving more transfers, but if paired with an indi-
vidual’s age it might also give different incentives based on the schooling conditionality, further
for those individuals whose age is above the threshold for receiving PROSPERA’s transfers at
the time their locality enters the program this also means that they will never be directly treated.

As poorer localities were in general treated first, we need to deal with the selection bias.
Following Duflo (2001) and Parker and Vogl (2018), we begin by taking care of the selection
problem by using different cohorts, which proxy an individual’s exposure to the program when
interacted with the roll-out. Four cohorts are formed using individuals’ ages in 2001:

(C1) 0-5 years, which corresponds to individuals who had not begun primary school when
their locality enrolled, but if enrolled in 1997-98 they possibly benefited in early stages
of their development.

(C2) 6-10 years, which corresponds to individuals more sensitive to their locality’s date of
enrollment because of the program’s conditionalities. For instance, if enrolled in the early
groups (before 2002) they would still be in primary school when their locality entered
the program. However, if enrolled later (e.g. 2006) they are likely to be in secondary.

(C3) 11-16 years, which corresponds to individuals in critical schooling stages: if enrolled
early (before 2002) they are likely in late primary or early secondary school years, but if
enrolled late they are likely past this stage. Also this age range has a high likelihood of
being employed by 2017-2018.

(C4) 17-22 years, which is taken as a control group since regardless of year of enrollment
they are past critical stages of schooling in terms of the conditionalities, as such they will
never be directly treated.

The specification for the DiD estimation is:

Yij = θ0 +
3∑

k=1

θk Cki +
4∑

q=2

γq Eqj +
3∑

k=1

4∑
q=2

τk,q Cki ∗ Eqj + Uij (5)

where Yij is the 2015 outcomes for individual i of locality j, Cki are the cohorts defined above,
and Eqj are the localities’ groups based on their year of enrollment (as defined above). Our
parameters of interest are the τ ’s, which correspond to the DiD estimates. For instance, in
our results we will compare τk,1, τk,2, and τk,3, which give the effects of different levels of
program exposure for a given cohort (k). In this case, keeping as reference cohort C4 means
that these τ ’s control for selection bias using the reference cohort C4, which is not benefited by
the program regardless of the enrollment date.
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In future work, our aim is to use an explicit regression discontinuity design to further relax
the identifying assumptions in the program’s roll-out. At the moment we use a strategy that is
similar in spirit in the sense of using contiguous age groups and overtime variation in enroll-
ment, but not exactly a full RDD based on a continuous running variable. The RDD strategy
would be based on the fact that a locality marginality index was employed in the early stages of
the program to determine the geographic locations where the program should be extended. Fig-

ure 1 gives evidence of how the marginality index was an important determinant of localities’
program enrollment and as such can be used for an RDD strategy.

Figure 1: RD First Stage using locality marginality index.

(a) 1999 (b) 2001

(c) 2004 (d) 2006

These graphs show how the rollout of the program at the locality level used as reference the 1995
marginality index. The program rules established as first step towards being enrolled in the program to
live in a poor rural locality. The poverty level was established using the 1995 marginality index. Each dot
represents the proportion of localities with a given level of the marginality index (grouped in intervals
of 0.05) that had been enrolled in the program by the specified year. The cutoff value changes on a
geographical basis. Not every geographical region displays a discontinuous change in the proportion
of localities enrolled. The authors did an analysis for each region (available upon request) and selected
the localities in the geographical regions that seem to follow an inclusion rule based on the marginality
index. These graphs restrict the observations to those selected localities.
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VI Results

VI.A Original Experiment

As described above, we begin by analyzing the effects of the early versus late treatment using
the 1997 original experimental design that assigned 320 of 506 localities to receive government
transfers as early as 1998 and all the way to the end of 1999. We estimate equations (1), (2), (3)
and present the results in the corresponding panels A to C of Tables 6 and 7. We look at durable
assets, imputed non-durable (food, personal products, and clothing) expenditures, further to
income and schooling, as outcomes of interest and to original and new households, respectively,
as were defined in section IV. Our interest here is to analyze the durable expenditure behavior
in line with the long-term perspective of the overall report and the original spirit of the program.

VI.A.1 Original Households

Table 6 displays no significant differences for treated vs. control original households in most
cases. The outcomes employed in the analysis are an aggregation (counting) of different
durable goods, a different aggregation through prices for example would be problematic given
the large variation in quality and vintage for durable goods. We therefore present a counting
exercise on the following assets: (i) transportation, which refers to number of vehicles (cars,
vans, motorcycles); (ii) entertainment, which includes TV, radio and sound equipment; (iii)
kitchen supplies, which adds number of blenders, refrigerators, microwaves, gas stove or elec-
tric grills; (iv) basic housing services, which identifies having firms floor, electricity, drainage
and water connection in the property; (v) IT assets, which refers to computers and cellphones;
and (vi) IT and entertainment services, which include home phone, internet and pay-TV.17

We note that as some of the IT and IT and Entertainment goods are not available in the
baseline wave (1997) when we produce the analysis for such goods in the DiD and ANCOVA
specifications we use as baseline measures the full aggregation of durables.

In Panel B of Table 6 we perform a testing strategy based on the excess growth of the durable
goods in treated vs. control households; while in Panel C we present a standard ANCOVA
specification, i.e. where we regress follow-up outcomes on treatment and control for baseline
outcomes. The results suggest that in general there are no baseline differences, confirming
that the initial randomization is still valid and that the random selection of households for the
last follow-up or non-differential attrition rates for the most part, see the coefficients attached
to the Treatment dummy. However, in some of the cases, the treatment dummy (outcome in
1997) displays significant, yet negative, differences. The differences resulting from the passing
of time (2017 dummy) shows that access to the assets has greatly improved for all items, not
surprisingly given that the two waves are 20 years apart, this signals a general improvement in

17A good-by-good analysis is also available upon request.
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Table 6: Effects on durable good’s accumulation. Original households.
(1) (2) (3) (4) (5) (6) (7)

Transport Entert eq Kitchen sup Basic serv IT items IT serv ln(imp cons)
Panel A: Cross-section

Treatment -0.023 0.011 -0.054 -0.002 -0.019 0.020 -0.011
(0.023) (0.044) (0.050) (0.048) (0.027) (0.036) (0.011)

Constant 0.289*** 1.380*** 1.804*** 2.709*** 0.738*** 0.236*** 8.713***
(0.057) (0.099) (0.121) (0.088) (0.071) (0.075) (0.026)

Observations 4,494 4,494 4,494 4,494 4,494 4,494 4,182

Panel B: DiD 1997-2017

Treatment X 2017 0.006 0.098** 0.066 -0.068 0.082 0.127 0.014
(0.027) (0.049) (0.058) (0.077) (0.102) (0.107) (0.011)

Treatment -0.017 -0.103** -0.106** 0.034 -0.158** -0.162** -0.023**
(0.012) (0.040) (0.043) (0.063) (0.080) (0.079) (0.009)

2017 0.217*** 0.444*** 1.443*** 1.279*** -0.801*** -1.077*** 0.090***
(0.022) (0.038) (0.046) (0.061) (0.078) (0.081) (0.008)

Constant 0.030 0.786*** 0.311*** 1.361*** 1.212*** 1.099*** 8.639***
(0.030) (0.079) (0.091) (0.085) (0.104) (0.105) (0.020)

Observations 8,988 8,988 8,988 8,988 8,988 8,988 8,656

Panel C: ANCOVA

Treatment -0.020 0.028 -0.029 -0.002 -0.011 0.026 -0.002
(0.022) (0.042) (0.047) (0.046) (0.027) (0.036) (0.010)

Y(97) 0.522*** 0.146*** 0.279*** 0.158*** 0.038*** 0.029** 0.383***
(0.077) (0.017) (0.019) (0.018) (0.008) (0.011) (0.032)

Constant 0.295*** 1.287*** 1.731*** 2.504*** 0.704*** 0.210*** 5.401***
(0.057) (0.098) (0.116) (0.088) (0.071) (0.075) (0.279)

Observations 4,494 4,494 4,494 4,494 4,494 4,494 4,169
Mean T 2017 0.247 1.473 1.928 2.532 0.656 0.426 9.052
Mean C 2017 0.241 1.435 1.891 2.497 0.662 0.386 9.041

This table shows the long-term effects of the program on a set of variables that result from aggregating groups of durable assets and
household characteristics. Observations are restricted to households from 1997 that were successfully found again in 2017 (original
households). The outcomes constructed are: (1) Transportation, which adds the number of cars and vans; (2) Entertainment equipment,
which gathers under entertainment equipment number of TV, radio and sound equipment; (3) Kitchen supplies, which sums the following
appliances: blender, refrigerator, electric grill, gas stove or microwave oven; (4) Basic services, which consists of the availability of the
following services: firm floor, electricity, drainage and water access in the property; (5) IT items, which refer to the number of computers
and cellphones; and (6) IT services, which sums the home phone, internet and pay-TV; (7) ln(imp cons), is the imputed measure of non-
durable expenditure on food personal products, and clothing. Data employed comes from 1997 ENCASEH and 2017-18 ENCEL. Panel
A shows the result from a cross-section estimate which only uses data from 2017. Treatment is a dummy variable that identifies if the
observation belongs to one of the 320 original Progresa RCT treatment localities. Panel B does a DiD estimation with 1997 and 2017 as
the two periods considered. Panel C estimates an ANCOVA, which controls for the pre-existing level of the dependent variable (denoted as
Y(97)). Controls include (from ENCASEH 1997): HH head age, education, speaking a dialect, HH size, % members under 15, dummies
for home, productive land and draft animals ownership, and locality marginalization index. Standard errors clustered at the locality level.
Asterisks indicate significance at the ***1%, **5%, and *10% level.
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the lives of the original households. Finally, we find a significant but small difference in the
entertainment variable. On non-durable expenditure we find no effects.

Several possible explanations could justify these results. First, as already described, our
treatment definition means having additional transfers in the first year of the program, which
by now was 20 years ago. These additional resources might have had an effect in the short
and medium term, as several papers and reports have shown. However, such effect might not
have carried through 2017. Second, we are looking at households that also existed in 1997,
which means that they are predominately composed of older members and increasingly headed
by females. Being mostly focused towards benefiting the next generations, PROSPERA might
yield lower impacts in this older-aged group. Third, the sample might not be large enough to
enable researchers to detect statistically significant differences. Fourth, we are using durable
assets that in the past have been used to identify eligible (poor) households. This might motivate
respondents not to respond truthfully if they believe that the survey could be used as part of
the assignment process.18 Fifth, it is notoriously complex to look at durables expenditures
as these are infrequent purchases of wide quality variation, the data available so far do not
include the prices of such purchases; further the available data at this stage do not include
non-durable or food consumption directly, so that we resort to an imputation method which
has clear advantages but also a number of disadvantages as any imputation. The imputation
procedure is described, as mentioned, in Appendix C. Sixth, the original households might
have passed on to their offspring some of their assets or savings and therefore we might not see
a positive difference with the control households. One should bear in mind that PROSPERA by
design targets children and therefore it is plausible that the main long-run positive effects are
found among those who were the primary target of the policy in terms of health, nutrition, and
schooling. While the original households might have had an initial bump in their incomes, that
was fairly limited in the original experiment, so that eventually the original control household
might have caught up. The same does not need to be true for the treated children as some of the
control children, given their age and school grades, might not be affected at all by the late roll
out of the program in control localities. For example, those children at the margin of dropping
out of school who were in the control villages would have dropped our while their counterparts
in treatment villages would have stayed in school.

VI.A.2 New Households

In this section we analyze the effects for durable goods purchase, and imputed consumption
expenditures, by the new households as previously defined: these are mostly the offspring of
the original households, potentially those children in 1997 that were the target of the policy. As
these new households are composed by the direct beneficiaries of the program transfers, they

18With certain regularity PROSPERA gathers a similar survey called ENCASEH, whose purpose is to determine
if the households are still in poverty and should stay in the program or not.
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are perhaps the most interesting group to look at. Importantly, as we describe in Table 4 the
new households are younger (as expected), on average the head of household is 31 years old,
and, on average, has about 5 more years of education than their parental households. Further
the household size is smaller than that of the original households in 1997 with a size of about
4 members compared to 7 members for their parental household. These are in practice young
households with fewer, more educated members. We also note that being an early entrant in
PROSPERA is not predictive of receiving PROSPERA transfers in 2017, i.e. both offspring of
early and late treated households are equally likely to receive PROSPERA in 2017. In Table

7 we present the results for these new households. An important motivation for conducting a
separate analysis for these households, comes from the fact that the program has as one of its
main purposes breaking the cycle of poverty transmitted from parents to sons and daughters.
New households will be mostly composed of members that were children in 1997. For these
households, the results are more encouraging: in the case of entertainment equipment, kitchen
supplies and IT and entertainment services, the effects are positive and significant. Also, the
size of the effect is non-negligible, it represents an increase in durable goods of between 7% and
16% of the “control” households. Further, on imputed consumption the effects are positive and
significant at about a 5% increase in non-durable expenditure, a non-trivial effect considering
the margin of treatment used here.

Given that we are looking into new households, i.e. households composed by individuals
who have moved out of their original households, we need to consider that the household for-
mation process might not be purely random. For this reason, in Table 8 we provide evidence
on the strength of such selection mechanism, and we show that the program does not produce
strong evidence of motivating young individuals moving out of the parental household on av-
erage (column 1 Table 8). In both, treatment and control, the proportion of individuals moving
out from home and creating their own new household is 60%. However this average effect
masks a more nuanced behavior when looking at different age groups as we do in column 2,
it turns out that very young children (0-5 years old in 1997) tend to remain with the original
household longer, while the older children (11-16 years old in 1997) move out earlier to form
their own household. Similarly, and importantly for the program, these same older children
are more likely to migrate outside the locality of birth, in fact given the magnitude of the co-
efficients on new household formation and migration it seems that a large fraction of the new
households are formed in different locations than those of the parents. The migration behavior
is once more consistent with the human capital accumulation channel, migration being part
of it or simply a way to reap the benefits of higher human capital. For these reasons, we test
whether those who migrated chose a large city (Mexico City, Guadalajara, or Monterrey) as
typically larger cities provide more opportunities for growth (Moretti 2012; De La Roca and
Puga 2017). While this latter test is tentative in nature as it relies upon a selected sample of
migrants, it would have provided some interesting thoughts, however it appears that there is no

23



specific large correlation between being treated and moving to a big city for any of the groups.
We note that the results for the new households are robust to controlling for the new household
being itself a PROSPERA recipient.

Table 7: Effects on durable good’s accumulation. New households.
(1) (2) (3) (4) (5) (6) (7)

Transport Entert eq Kitchen sup Basic serv IT items IT serv ln(imp cons)
Panel A: Cross-section

Treatment -0.001 0.092** 0.158** 0.067 0.035 0.059* 0.036**
(0.024) (0.045) (0.062) (0.042) (0.034) (0.035) (0.014)

Constant 0.223*** 1.529*** 1.847*** 2.456*** 0.779*** 0.337*** 8.826***
(0.080) (0.153) (0.170) (0.109) (0.093) (0.114) (0.037)

Observations 2,265 2,265 2,265 2,265 2,265 2,265 2,152

Panel B: DiD 1997-2017

Treatment X 2017 0.014 0.194*** 0.244*** 0.025 0.197* 0.217* 0.054***
(0.028) (0.067) (0.070) (0.087) (0.118) (0.125) (0.014)

Treatment -0.011 -0.115** -0.080 0.032 -0.186* -0.184* -0.017
(0.014) (0.052) (0.052) (0.069) (0.102) (0.102) (0.011)

2017 0.170*** 0.312*** 1.338*** 1.232*** -0.735*** -1.166*** 0.208***
(0.023) (0.051) (0.052) (0.063) (0.090) (0.099) (0.009)

Constant 0.016 1.013*** 0.422*** 1.345*** 1.318*** 1.313*** 8.644***
(0.043) (0.125) (0.123) (0.104) (0.143) (0.146) (0.027)

Observations 4,530 4,530 4,530 4,530 4,530 4,530 4,407

Panel C: ANCOVA

Treatment 0.001 0.096** 0.173*** 0.066 0.045 0.060* 0.042***
(0.024) (0.045) (0.060) (0.041) (0.034) (0.035) (0.013)

Y(97) 0.195** 0.035 0.209*** 0.039** 0.047*** 0.006 0.310***
(0.081) (0.027) (0.034) (0.018) (0.010) (0.014) (0.045)

Constant 0.227*** 1.501*** 1.776*** 2.399*** 0.726*** 0.330*** 6.139***
(0.080) (0.155) (0.168) (0.111) (0.095) (0.117) (0.398)

Observations 2,265 2,265 2,265 2,265 2,265 2,265 2,149
Mean T 2017 0.208 1.450 1.992 2.605 0.840 0.428 9.241
Mean C 2017 0.200 1.354 1.793 2.522 0.793 0.361 9.203

This table shows the long-term effects of the program on a set of variables that result from aggregating groups of durable assets and
household characteristics. Observations are restricted to newly formed households in 2017 (new households) that were identified by
searching for members no longer present in their original 1997 households. The outcomes constructed are: (1) Transportation, which adds
the number of cars and vans; (2) Entertainment equipment, which gathers under entertainment equipment number of TV, radio and sound
equipment; (3) Kitchen supplies, which sums the following appliances: blender, refrigerator, electric grill, gas stove or microwave oven; (4)
Basic services, which consists of the availability of the following services: firm floor, electricity, drainage and water access in the property;
(5) IT items, which refer to the number of computers and cellphones; and (6) IT services, which sums the home phone, internet and pay-TV;
(7) ln(imp cons), is the imputed measure of non-durable expenditure on food personal products, and clothing. Data employed comes from
1997 ENCASEH and 2017-18 ENCEL. Panel A shows the result from a cross-section estimate which only uses data from 2017. Treatment
is a dummy variable that identifies if the observation belongs to one of the 320 original Progresa RCT treatment localities. Panel B does
a DiD estimation with 1997 and 2017 as the two periods considered. Panel C estimates an ANCOVA, which controls for the pre-existing
level of the dependent variable (denoted as Y(97)). Controls include (from ENCASEH 1997): HH head age, education, speaking a dialect,
HH size, % members under 15, dummies for home, productive land and draft animals ownership, and locality marginalization index.
Standard errors clustered at the locality level. Asterisks indicate significance at the ***1%, **5%, and *10% level.
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Table 8: New household formation and migration.
(1) (2) (3) (4) (5) (6)

New HH New HH Migrated Migrated Metropolis Metropolis

Treatment -0.009 0.015 0.022 -0.033 0.005 -0.004
(0.0216) (0.0415) (0.0234) (0.0398) (0.0308) (0.0577)

T x (0-5) -0.122*** 0.026 0.030
(0.0403) (0.0358) (0.0543)

T x (6-10) 0.062 0.095** 0.004
(0.0443) (0.0402) (0.0572)

T x (11-16) 0.117** 0.114*** -0.031
(0.0454) (0.0418) (0.0600)

Constant 0.351*** 0.379*** -0.001 0.019 -0.061 -0.060
(0.0642) (0.0657) (0.0608) (0.0619) (0.105) (0.106)

Observations 3,351 3,351 3,351 3,351 969 969
R-squared 0.017 0.041 0.011 0.016 0.044 0.046
Mean C 0.573 0.273 0.127
Mean C (0-5) 0.261 0.261 0.133
Mean C 6-10 0.603 0.272 0.104
Mean C 11-16 0.788 0.370 0.176
Mean C 16+ 0.731 0.172 0.000

This table consists of LPMs where the purpose is to identify if the treatment might have induced new household
formation or migration out of the original household. The unit of observation are individuals in relevant
age groups, as described in section IV. The outcomes are dummies that correspond to: (i) New Household,
which identifies if the individual inhabits in a new household (as opposed to an original household); (ii)
Migrated, which identifies if the individual migrated to a different locality from which the original household
was located; and (iii) Metropolis indicates if such migration had as destination either Mexico City, Guadalajara
or Monterrey, which are the main urban Mexican cities. Controls include (from ENCASEH 1997): HH head
age, education, speaking a dialect, HH size, % members under 15, dummies for home, productive land and
draft animals ownership, and locality marginalization index. Standard errors clustered at the locality level.
Asterisks indicate significance at the ***1%, **5%, and *10% level.
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VI.A.3 Re-weighted Estimates

Table 9 shows the results from re-weighting the observations in the sample in order to replicate
the results that would have been obtained without attrition. Given that attrition occurred in
different forms, we produce three different comparisons. The method employed for the re-
weighting is the inverse probability weighting (DiNardo et al., 1996). As a first step, a logit
model of attrition with respect to a group of variables is estimated. All the observations are
employed at this stage since baseline explanatory variables from the 1997 ENCASEH are used
to predict attrition. Based on the results of this logit, a weighting factor is calculated to be used
with the analysis sample from the previous estimations.

Table 9: Re-weighted estimates of long-term effects on durable good’s accumulation.
(1) (2) (3) (4) (5) (6) (7)

Transport Entert eq Kitchen sup Basic serv IT items IT serv ln(imp cons)
Panel A: Original Households

1. Analysis Sample
Treatment -0.020 0.028 -0.029 -0.002 -0.011 0.026 -0.002

(0.022) (0.042) (0.047) (0.046) (0.027) (0.036) (0.010)
Observations 4,494 4,494 4,494 4,494 4,494 4,494 4,169

2. Original Distribution
Treatment -0.016 -0.002 -0.025 -0.004 -0.011 0.029 -0.005

(0.021) (0.043) (0.047) (0.049) (0.028) (0.033) (0.010)
Observations 4,471 4,471 4,471 4,471 4,471 4,471 4,150

3. Localities 2017 distribution
Treatment -0.016 -0.001 -0.027 -0.004 -0.014 0.033 -0.005

(0.021) (0.043) (0.047) (0.048) (0.028) (0.033) (0.010)
Observations 4,471 4,471 4,471 4,471 4,471 4,471 4,150
Mean T 2017 0.247 1.473 1.928 2.532 0.656 0.426 9.052
Mean C 2017 0.241 1.435 1.891 2.497 0.662 0.386 9.041

Panel B: New Households

1. Analysis Sample
Treatment 0.001 0.096** 0.173*** 0.066 0.045 0.060* 0.042***

(0.024) (0.045) (0.060) (0.041) (0.034) (0.035) (0.013)
Observations 2,265 2,265 2,265 2,265 2,265 2,265 2,149

2. Localities 2017 distribution
Treatment -0.005 0.076 0.144** 0.052 0.041 0.054 0.040***

(0.026) (0.049) (0.065) (0.043) (0.036) (0.037) (0.013)
Observations 1,912 1,912 1,912 1,912 1,912 1,912 1,822
Mean T 2017 0.208 1.450 1.992 2.605 0.840 0.428 9.241
Mean C 2017 0.200 1.354 1.793 2.522 0.793 0.361 9.203

This table shows the long-term effects of the program on a set of variables that result from aggregating groups of durable assets and
household characteristics. The reweighting strategy employed is the inverse probability weight (DiNardo et al., 1996). In Panel A ob-
servations are restricted to households included in 1997 ENCASEH (original households), while in Panel B observations are restricted
to newly formed households in 2017 (new households) that were identified by searching for members no longer present in their original
1997 households. The reweighting strategy seeks to reproduce the original sample distribution. Two different target distributions are set
following the attrition analysis done in Table 3. Original Distribution means the 1997 sample, which corresponds to the original house-
holds in the 506 localities. The purpose is to make our results comparable to the vast literature that focuses on this group. Localities
2017 distribution is based on the 334 localities chosen for the sample and assumes that all the original 1997 households in those localities
would have been found. The outcomes employed are: (1) Transportation, which adds the number of cars and vans; (2) Entertainment
equipment, which gathers under entertainment equipment number of TV, radio and sound equipment; (3) Kitchen supplies, which sums the
following appliances: blender, refrigerator, electric grill, gas stove or microwave oven; (4) Basic services, which consists of the availability
of the following services: firm floor, electricity, drainage and water access in the property; (5) IT items, which refer to the number of
computers and cellphones; and (6) IT services, which sums the home phone, internet and pay-TV; (7) ln(imp cons), is the imputed measure
of non-durable expenditure on food personal products, and clothing. Data employed comes from 1997 ENCASEH and 2017-18 ENCEL.
The table shows the results from an ANCOVA estimate, which controls for the pre-existing level of the dependent variable (denoted as
Y(97)). Controls include (from ENCASEH 1997): HH head age, education, speaking a dialect, HH size, % members under 15, dummies
for home, productive land and draft animals ownership, and locality marginalization index. Standard errors clustered at the locality level.
Asterisks indicate significance at the ***1%, **5%, and *10% level.
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Panel A refers to original households. Two sources of attrition are considered, as described
in section IV.A: (i) localities composition, which means that just a sub-sample of the 506 orig-
inal localities was surveyed; and (ii) response attrition, which means that some households in
the selected localities were not found. In the first part of Panel A (Analysis sample) we show
the main results estimated with the ANCOVA for original households for comparative reasons.
Next, we show the results if no attrition happened (Original distribution). This results corre-
spond to the household distribution in 506 and we add it for comparative reasons with respect
to the original literature about the program. The reweighting factor employed for this result
is the one included in column (1) of Table 3. As can be seen, no significant effects on asset
accumulation are obtained for this reweighted sample. Afterwards, in the third part of Panel A,
we show the results that would be obtained if we only control for the response attrition. That
is, the purpose is to replicate the distribution of all the households in the selected 334 localities.
The reweighting factor in this case corresponds to column (3) of Table 3. Again, no significant
effects in asset accumulation are found. These results were expected since the attrition analysis
suggested that no differential attrition between treatment groups was found.

Panel B refers to the new households. For this group attrition seems to be more relevant.
Attrition here refers to the impossibility of finding all the individuals in the relevant age groups
that exited their households to form a new one (or joined another household). Columns (5)
and (6) in Table 3 show the attrition analysis for this group. To start with, a small proportion
of individuals was found (40%). Second, the attrition analysis shows some slight significant
differences between treatment and control (the joint test with the interaction terms has a p-
value of 0.075). For this reason, we perform the reweighting strategy using the results from
column (6) where the interaction terms were included. This reweighting factor would replicate
the household distribution that would result if all the individuals in the relevant age groups
that moved out of their original household were found in their new household. The results are
shown in comparison to the main ANCOVA results (Analysis sample). As can be seen in the
table, the results in asset accumulation are very similar to the resulting analysis with the sample
found.

VI.B Youths and Intergenerational Transmission

It is paramount when looking at long-term effects of such an important program to look at the
life-cycle as well as at the intergenerational effects, ultimately the long-term success of the
policy will be based on the success of the offspring of the originally treated households or the
children who directly benefited from the government transfers as well as the other components
of the program.
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VI.B.1 Effects in the Relevant Age Group

To better explore the effects on the sample of individuals that form the “next generation”, we
take the individuals classified in the group of interest, given their age. Recall, that this includes
individuals who in 1997 were newborn, just beginning school or at sixth grade. For example, if
we look at the effects of PROSPERA for those who benefit from the policy over their life, we are
looking at the effect of exposure to the policy on their lifecycle outcomes. Relatedly, we could
be interested in understanding whether the offspring of original households who are themselves
beneficiaries of the transfers are faring better than their parents. This latter would be looking at
intergenerational mobility and transmission of income, human capital, and consumption. Both
dimensions are rather important as the lifecycle view will investigate whether being treated at
an earlier stage of life could have long-lasting consequences (as in Hoddinott et al. 2008 and
Martorell 2017); in the intergenerational view that is addressing the link between parents and
offspring and how PROSPERA can foster upward mobility in society by improving the lives of
the next generation with respect to those of their parents.

Table 10 suggests that it is this group of individuals driving the positive results for the new
households, since entertainment equipment, kitchen supplies, and non-durable expenditure dis-
play significant effects in this analysis with similar magnitudes to those previously found. Panel
B explores the heterogeneity of the effects distinguishing between young members still living
in the original household and those that formed their household. This analysis confirms our
previous hypothesis: it is the case that the young members that formed their own households
significantly benefit from the program. Panel C also indicates that age-wise, the individuals
driving the positive results correspond to those who were 11 to 16 in 1997 (i.e. those in their
critical stages of schooling, where dropout rates were more common).

Importantly, this latter analysis confirms that those children at risk of dropping out of sec-
ondary schooling were in fact retained because of the program, those are the individuals aged
11-16 in 1997, and we find sustained positive effects in durable purchases and all other out-
comes exactly for this group. However, we should stress that there is also redistribution of
resources within the household as also older children in 1997 those older than 16, who for the
large part were excluded from the direct schooling transfers as too old, seem to have bene-
fited with respect to their control counterpart, certainly in terms of kitchen durables but also
(albeit not significant) in the other durable categories. Here we note that, as evidence of the
direct channel through improved human capital, the schooling results and partly the effect on
income (not significantly different from zero) build a direct connection between the policy and
its long-term effects. In Panel D, we investigate whether PROSPERA provided some insurance
against health shocks of the head of household, we find that the positive effects of PROSPERA
on durables and non-durables are somewhat also present for those households who suffered a
health shock (albeit insignificant and less robust), one should point out here that health shocks
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Table 10: Heterogeneous effects of PROSPERA on young members.
(1) (2) (3) (4) (5) (6) (7) (8)

Transport Entert
eq

Kitchen
sup

Basic
serv

Y.
school

Inc > 0 log(income)ln(imp
cons)

Panel A: Overall

Treatment X 2017 0.0275 0.119* 0.142** -0.0119 0.0269 -0.0194 -0.0736 0.0311***
(0.0272) (0.0609) (0.0593) (0.0820) (0.209) (0.0273) (0.0848) (0.0119)

Panel B: Household status

Original HH 0.050 0.043 -0.007 -0.042 0.221 -0.062* -0.113 0.001
(0.039) (0.072) (0.072) (0.090) (0.261) (0.038) (0.094) (0.014)

New HH 0.009 0.174** 0.253*** 0.011 -0.130 0.028 -0.046 0.054***
(0.029) (0.069) (0.072) (0.088) (0.237) (0.027) (0.100) (0.014)

Panel C: Age (in 1997) groups

0-5 0.025 0.072 0.148** -0.035 0.200 -0.009 -0.043 0.022
(0.032) (0.075) (0.072) (0.089) (0.220) (0.035) (0.065) (0.015)

6-10 -0.001 0.108 0.019 -0.001 0.167 -0.013 -0.070 0.031*
(0.036) (0.091) (0.085) (0.100) (0.258) (0.036) (0.058) (0.018)

11-16 0.057 0.329*** 0.262** -0.017 0.711*** -0.016 0.097 0.050**
(0.048) (0.101) (0.112) (0.131) (0.252) (0.052) (0.166) (0.021)

Over 16 0.097 0.051 0.307** 0.130 -0.043 -0.023 0.187 0.045
(0.060) (0.147) (0.154) (0.137) (0.293) (0.087) (0.171) (0.034)

Panel D: Health shocks

No health shocks 0.026 0.178*** 0.148** 0.002 0.041 -0.047 -0.122 0.033***
(0.030) (0.068) (0.066) (0.086) (0.228) (0.031) (0.092) (0.013)

Health shocks 0.031 -0.038 0.127 -0.103 -0.010 0.047 0.052 0.027
(0.038) (0.078) (0.081) (0.100) (0.293) (0.039) (0.110) (0.018)

Panel E: Migration

Same locality 0.043 0.061 0.074 -0.056 -0.086 -0.035 -0.057 0.013
(0.031) (0.068) (0.068) (0.087) (0.232) (0.032) (0.102) (0.012)

Mig: Metropolis 0.047 0.477** -0.043 0.225 0.603 0.031 -0.176 0.047
(0.063) (0.225) (0.2142) (0.239) (0.986) (0.045) (0.224) (0.043)

Mig: Other -0.017 0.227** 0.314*** 0.055 0.226 0.007 -0.184 0.061
(0.042) (0.092) (0.098) (0.112) (0.311) (0.032) (0.110) (0.020)

Observations 6,702 6,702 6,702 6,702 6,702 5,484 4,794 6,527
Mean C 1997 0.020 0.985 0.412 1.218 1.392 0.036 0.237 8.971
Mean C 2017 0.220 1.420 1.814 2.483 8.009 0.799 8.118 9.139

This table shows the possible heterogeneity of the long-term effect for individuals by specific groups of inter-
est. The unit of observation is an individual, who could be in an original or new household. The outcomes
constructed are: (1) Transportation, which adds the number of cars and vans; (2) Entertainment equipment,
which gathers under entertainment equipment number of TV, radio and sound equipment; (3) Kitchen sup-
plies, which sums the following appliances: blender, refrigerator, electric grill, gas stove or microwave oven;
(4) Basic services, which consists of the availability of the following services: firm floor, electricity, drainage
and water access in the property; (5) Years of completed formal schooling; (6) Pos income indicates house-
hold per capita income greater than zero; (7) log(income), is total individual income; and (8) log(imp cons),
is the imputed measure of non-durable expenditure on food personal products, and clothing. Data employed
comes from 1997 ENCASEH and 2017-18 ENCEL. Panel A shows a DiD estimation. Panel B estimates the
treatment effect for different HH types: original and new. Panel C explores differences in the treatment effect
by groups of age formed based on the ages associated to critical schooling stages. Panel D shows differences
by health shocks status (health shocks are defined as having at least one household member sick or injured
during the two weeks before the survey). Panel E looks into the treatment effect by migration status (Metropo-
lis includes Mexico City, Guadalajara and Monterrey). Controls include (from ENCASEH 1997): HH head
age, education, speaking a dialect, HH size, % members under 15, dummies for home, productive land and
draft animals ownership, and locality marginalization index. Standard errors clustered at the locality level.
Asterisks indicate significance at the ***1%, **5%, and *10% level.
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are seldom fully exogenous so that this is just a tentative correlation analysis. Finally, as shown
in Panel E, the positive effects are driven mostly by migrants (but migrants not to the big cities).
Interestingly, it seems to be the case that these individuals are doing better in terms of durable
assets, but not in income.

VI.B.2 Intergenerational Transmission

In Table 11 we show the effects of PROSPERA on intergenerational mobility in terms of di-
vergence of children’s outcomes from their parents, perhaps one of the most relevant aspect
of a long-term evaluation. For the new generation, the offspring, still living at home we find
relatively little aside from a closing of the gap more pronounced for treated households in terms
of income percentile. More interestingly for the newly formed households in Panel B, we find
substantial evidence of improvement in the rankings of education, asset holding and income
distribution; in fact the results suggest that PROSPERA also improved the general mobility so
that not only the children of the better off original households appear to do better but particu-
larly those who started lower in the distribution seem to do better (see the negative sign on the
Treat *Y (G1) coefficient). These effects are economically relevant and quite encouraging as
they show an upward mobility for the beneficiaries, exactly what the program aimed to achieve.
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Table 11: Intergenerational transmission. Convergence / Divergence.
Years school Asset index Pctile Income Pctile

(1) (2) (3) (4) (5) (6)
∆Y ∆Y ∆Y ∆Y ∆Y ∆Y

Panel A: Original households

Treat -0.282 -0.0788 1.892 -3.000 0.889 -7.220*
(0.219) (0.337) (1.858) (2.521) (2.965) (3.830)

Y (G1)1997 -0.657*** -0.681*** -0.997***
(0.0636) (0.0457) (0.0564)

Treat ∗ Y (G1)1997 -0.031 0.092* 0.113
(0.0723) (0.0520) (0.0746)

Constant 1.270* 6.942*** 2.515 38.73*** 59.71*** 93.42***
(0.679) (0.717) (6.794) (5.755) (8.744) (7.655)

Observations 1,442 1,442 1,432 1,432 939 939
R-squared 0.056 0.266 0.027 0.275 0.081 0.486
Mean C Y (G1)1997 2.86 2.86 37.00 37.00 44.24 44.24
Mean C Y (G2)2017 8.32 8.32 45.04 45.04 56.08 56.08

Panel B: New households

Treat 0.298 0.833*** 6.918*** 4.035 5.950** 6.579*
(0.192) (0.270) (2.269) (2.860) (2.549) (3.629)

Y (G1)1997 -0.657*** -0.862*** -0.833***
(0.0469) (0.0436) (0.0524)

Treat ∗ Y (G1)1997 -0.139** 0.014 -0.078
(0.0555) (0.0572) (0.0644)

Constant 4.061*** 8.173*** -16.51** 30.07*** 11.61 55.85***
(0.705) (0.625) (6.932) (5.891) (9.296) (7.894)

Observations 1,891 1,891 1,880 1,880 1,354 1,354
R-squared 0.089 0.391 0.054 0.357 0.069 0.423
Mean C Y (G1)1997 2.71 2.71 38.89 38.89 42.46 42.46
Mean C Y (G2)2017 7.76 7.76 40.51 40.51 42.36 42.36

This table analyzes the inter-generational mobility relation to the parent’s (Generation 1, G1) distributional
position to understand how poorer or richer households manage to change their distributional position for
specific outcomes and how Treatment affects this relation. Inter-generational mobility is defined as ∆ Y =
Y (G2)2017 − Y (G1)1997, where Y (G2)2017 and Y (G1)1997 are defined as the outcome of the offspring (G2)
or parents (G1) observed in 2017 or 1997, respectively. The outcomes of interest considered are: (1) years
of schooling; (2) a durable asset index formed with a principal component that considers ownership of cars,
vans, TV, radio, sound equipment, blender, refrigerator, electric grill, gas stove, microwave oven, firm floor,
electricity, drainage and water access in the property; and (3) monthly income. For column (1) the level
of years of schooling is used by itself. For columns (2) and (3), the percentile of each outcome is calculated
relative to all the individuals inside the same 10-year window age range. The unit of observation are individuals
in relevant age groups, as described in section IV and their parents. Controls include (from ENCASEH 1997):
HH head age, education, speaking a dialect, HH size, % members under 15, dummies for home, productive
land and draft animals ownership, and locality marginalization index. Standard errors clustered at the locality
level. Asterisks indicate significance at the ***1%, **5%, and *10% level.
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VI.C DiD Estimates of Program Roll-out

Our second identification strategy, based on the sequential roll-out of the policy, provides ad-
ditional evidence and on larger differences in exposure to the program than the experimental
variation discussed so far. At the same time, the data employed in this part contain direct
measures of food security and vulnerability which add another layer to our welfare analysis.
Further to that, we can also test for the effect of PROSPERA on later dependency on govern-
mental programs, this would be a test of a successful policy able to graduate its beneficiaries
out of social programs. Our approach here is to produce DiD estimates similarly to Parker and
Vogl (2018), but with INEGI’s 2015 intercensus data.19 Figure 2 contains the main estimates
of this strategy. Each sub-graph shows the τ estimates from equation (5), which correspond to
difference-in-difference estimates. As one moves to the right through the X-axis you increase
the exposure to PROSPERA (calculated by comparing 1998 to different delays to enroll) for a
given cohort with respect to the cohort that should not be benefited by the program (17-22 year
old individuals in 2001).

The results show positive effects on education, particularly for the cohort with the youngest
members, which increases their schooling attainment between 0.5 and 1.5 additional years. For
the other cohorts, the program involves an increase around 0.5 years of schooling. Regard-
ing income, positive and significant effects are found: household per capita income increases
between 2% and 8%, with largest effects for the cohort of those aged 6-10 in 2001. Positive
effects are also found for a composite index of house characteristics and durable assets. When
analyzing asset by asset, the largest effects are found for type of floor, washer, and cellphone.
The largest effects are again found for the youngest cohort. To test for dependency on govern-
ment aid, or graduation from social programs, we use, as dependent variable, a dummy equal
to 1 if the household receives transfers from the government. In this case, overall the evidence
suggests that longer exposure to PROSPERA decreases the dependency on government aid.
Unfortunately, this measure does not distinguish PROSPERA from other type of government
aid. Finally, we look at proxies for vulnerability and food security: two different measures
directly addressing food consumption. One question asks whether any adult, in the household,
went hungry at least once during the last month. The second question asks whether not enough
money was available to purchase enough food variety. We take these two questions as prox-
ies for food security, vulnerability, and quality of the diet. For the younger cohorts we have
positive effects on this measure of food security, as those exposed longer are less likely to go
hungry (although the estimates are not precise). As for food variety, larger effects are found for
the youngest cohort. For them, the likelihood of not being able to buy enough variety decreases
between 1 and 2 percentage points for those with longer exposure.20 These latter two effects on

19As explained in section V.B, these estimates are part of our current research where we seek to use an RDD
design with the original rule that established that participating localities would be enrolled to the program based
on a marginality index.

20The food scarcity variables are separately asked for children and adults in the household. Similar estimates
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Figure 2: DiD estimates using program’s rollout by age cohorts.

These graphs show DiD estimates of the rollout of the program for the different cohorts. The coefficients
plotted correspond to the τ ’s in equation (5). Each dot in the graph should be interpreted as the effect of
additional years of exposure to the program for a specific cohort. To form the X-axis, years of exposure
are calculated by comparing entering in 1998 with respect to entering in different years. Therefore,
additional 1-3 years implies that the comparison localities in this classification entered between 1999
and 2001; additional 4-7 years compares with respect to entering between 2002 and 2005; and finally,
8+ years of additional exposure means comparing with the localities that enrolled after 2006. Cohort C4,
which corresponds to individuals aged 17-22 in 2001 is taken as a reference to control for the selection
into early versus late treatment. The outcomes used are: (1) years of schooling, (2) log of household’s
per capita income, (3) a PCA index using durable household assets, (4) dummy indicating if household
receives government transfers, (5) dummy indicating if any adult in the household went hungry someday
last month, and (6) dummy indicating if adults in the household were not able to eat enough food variety.
The cohorts used in the graphs were constructed using individual’s age in 2001: (C1) ages 0-5, which
corresponds to the gray line, (C2) ages 6-10, which corresponds to the green line and (C3) ages 11-16,
which corresponds to the blue line. Filled dots • are significant at the 5% level, unfilled dots ◦ are
significant at the 10% level and unfilled triangles4 are non-significant estimates. Standard errors were
clustered at the locality level. Data used for these estimations comes from the 2015 INEGI intercensus.
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food security, coupled with the results on aid dependency, suggest that a higher exposure for
those most likely to benefit from PROSPERA, with respect to their control counterpart, moved
beneficiaries on a higher welfare path. There are clearly some limitations to this approach, not
differently from other studies employing DiD strategies. For instance, if more capable individ-
uals from younger cohorts migrate out of poorer locations to a larger extent, our results might
reflect a self-selection problem. Parker and Vogl (2018) provide some robustness checks for the
selective migration by using each individual’s previous location and noting that PROSPERA
does not seem to promote migration in large numbers.21

VII Conclusions

We provide an analysis of PROSPERA’s ability to improve the social and economic lives of
original households and their offspring. We do so through the lens of the long-term effects
of the program on the welfare of its recipients. While the study has some limitations due
to the available data, as well as the limited extent of variation in treatment intensity (for the
cleanest identification strategy), the long-term effects of PROSPERA are particularly encour-
aging for the offspring of the originally treated households. These new households, formed
by young adults who were themselves direct beneficiaries of the program (when children),
present higher ownership of durable assets, and larger non-durable consumption expenditure,
suggesting higher welfare. These results are fully consistent with the improved human capital,
through the schooling and health effects well documented by the literature on PROSPERA’s
short and medium-term effects. Even more importantly, these new households are climbing
the economic and social ladder faster than their control counterpart. Their rank, in the relevant
distribution, is certainly higher than their parents’ in terms of asset holdings and income, and
differentially so for the offspring of the early entrants in PROSPERA. We take this latter result
as very exciting evidence of PROSPERA’s ability to put beneficiaries on a positive trajectory
and permanently out of poverty. Our results are fully consistent with the existing literature,
given the improvements in human capital (health and education), accompanied by higher, and
less volatile, income streams through savings and investment in higher returns activities. Ul-
timately, the success of PROSPERA should be judged upon its long-term (and permanent)
effects and on its ability to lift beneficiaries, and their offspring, out of poverty, facilitating
their upward mobility on the social and economic ladder. The future direction for these studies
is that of acquiring larger and more detailed data to be able to augment the current evidence
with other indicators, including directly measuring non-durable consumption, and providing
a better understanding of the exact mechanisms behind our findings with the aid of a formal
theoretical framework.

as the ones presented for adults are found for children.
21Further work is being done by the authors at the time of writing to tackle these concerns.
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Appendix

A PROSPERA program in a nutshell

Mexico’s Progresa-Oportunidades-PROSPERA (POP) program is a basic reference among
conditional cash transfer (CCT) programs. PROSPERA was created with the purpose of “strength-
ening the compliance of social rights that would foster the capacities of individuals in poverty
through actions that increase their education, health and nutrition22 (Diario Oficial de la Fed-
eración, 2018).” Its strength lies in a solid institutional foundation and a rigorous evaluation
design that makes it possible to objectively assess its results under high standards. 23

Progresa started in August 1997. Nowadays, it is the most comprehensive poverty reduction
program in Mexico. By 2018, it reached a coverage of 6.9 million households (20% of the
Mexican households). For 2018, the approved budget for the program amounts 46, 396 million
Mexican pesos (44% of Mexico’s government expenditure on social programs) (Diario Oficial
de la Federación, 2017).

Between 1997 and 2000, while the program was being expanded at a national level, a ran-
domized evaluation design was implemented in a subsample of 506 localities that were initially
determined as eligible to receive the program. Of the 506 localities, 320 were randomly de-
signed as treatment and 186 as control. Control localities delayed their entry until late 1999.
The purpose of the experiment was to rigorously estimate the impact of the program on several
dimensions (Fizbein and Schady, 2009).

At the time Progresa began, it consisted of three main components: (i) education, that
was promoted by providing cash transfers to households for each child enrolled and regularly
attending school; (ii) nutrition, that consisted on lump-sum cash transfers and delivery of
food supplements (targeted to children and breastfeeding or pregnant women) given to house-
holds complying with the health conditionality and attendance to information sessions; and (iii)
health, that consists of regular check-ups required to all household members, but with higher
attendance frequency on children under 5 years old and pregnant or breastfeeding women.
Also, the female household head is required to attend regular sessions that distribute informa-
tion about good health care practices (Hernández et al., 1999). Recently, a fourth component
was added, named the linking components, which seeks to establish links between beneficiaries
and productive activities. This fourth component includes counseling, complementary training,
financial education, access to credit and savings, etc.

22Author’s translation of PROSPERA’s main objective.
23Further details about the program’s history and design can be found in Levy (2006).
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Cash transfers (educational and nutritional) are delivered to the female head member of the
household every two months. Families receive information suggesting how to use the transfers
in order to improve the conditions of their members. However, in practice, households can
freely decide how to spend the resources.

B Calibrated Long-Term Effects of a 20-Year Treatment

The evidence presented so far estimates scenarios with differential exposure to the program.
However, these strategies do not provide a way to assess two versions of Mexico: one with and
another without PROSPERA. To do so we borrow heavily here from previous work by Gertler
et al. (2012) and propose the following thought exercise: we hypothesize that the treated house-
holds receive PROSPERA transfers according to their evolving household structure from 1998
all the way to 2017, and compare them to virtual control households, with similar characteris-
tics, aside from the fact that they do not receive any transfer at all. In practice, the idea is to try
to extend the original randomized experiment all the way to 2017. In order to do so, one needs
to impose some extra structure: such as a consumption function and the evolution of assets and
their returns over time.

We start from a standard consumption model where total consumption expenditure is a func-
tion of income:

CND
hvt = α0 + α1Yhvt (6)

CND stands for non-durable household consumption, including food, personal products and
clothing, as in Gertler et al. (2012). Here, α1 represents the Marginal Propensity to Consume
(MPC) out of income. Given that we do not observe non-durable consumption in the ENCEL
2017-18, we rely on Gertler et al.’s (2012) estimated parameters in this section. We then define
the law of motion for assets and earned income:

Ahvt = (1− α1)
(
Yhv(t−1) + TRhv(t−1)

)
+ (1− δ)Ahv(t−1) (7)

Yhvt = β0 + β1Ahvt + β2Wht. (8)

where A are assets, Y is earned income, TR are government transfers (PROSPERA), W
are local level wages, δ is the assets depreciation parameter. Finally, by solving the asset
accumulation equation recursively, we can write our consumption function as:
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CND
hvt = γ0 + α1TRhvt +

t−1∑
s=0

γ1sTRhvs + γ2Ahv0 +
t∑

s=0

γ3sWvs. (9)

So that contemporaneous consumption is a function of contemporaneous transfers, the previous
transfers (as in the original article we will split the past periods in 3 long segments), the initial
level of assets Ahv0, and wages W .

We employ the estimated parameters in Gertler et al. (2012) for the MPC out contempora-
neous income/transfers α1 = 0.74, for the past 12, 13-24, and over 24 months γ1 = 0.003,
γ2 = 0.018, and γ3 = 0.016 respectively. We then apply those estimates to actual transfers to
compute the long-term effects on non-durable consumption.

This simple exercise gives us a sense of what the long-term effects of PROSPERA would
be if we were to compare always versus never treated: the average non-durable consumption
would increase by about 1, 100MXN per adult equivalent on average (at 2017 prices) or about
25% with respect to their baseline yearly consumption expenditure in 1997.

C Consumption Imputation

We adapt a model developed by Blundell, Pistaferri, and Preston (2005, 2008, and (Attana-
sio and Pistaferri, 2016)) that imputes household consumptionexpenditures using, theoreti-
cally grounded, demand function estimates (or approximations) based on variables consistently
present across the different waves of the available ENCEL data.24

In essence, we use durables, socio-demographic information (age, education and marital
status of the head of the household, age structure and household size, locality marginality
index and rural status), and food price controls, at the yearly level as found in the INEGI CPI
construction series INEGI 2018, to estimate a standard demand equation for total non-durable
expenditure, comprised of food, personal products and clothing, when all these consumption
categories and expenses are recorded in the survey waves.

Thus, one first estimates the elasticities of demand, and applies the estimated parameters
to recover the missing expenditures for our definition of non-durables. As mentioned, a strict
requirement is that all the right hand side variables are present in all waves, as the imputation
relies upon those variables.25

24Related approaches, sometimes referred to as Consumption Correlates Methods, are employed in other con-
texts: Tanzania (Abeyasekera and Ward 2002), Indonesia (Sumarto et al. 2007). Further, alternative methods such
as the Multiple Imputation Methods (Rubin, 1987) as well as Vargas-Chanes and Lorenz (2015) could be used to
probe for robustness.

25In order to assuage the usual concern of endogeneity of expenditures (and potentially income), one can use
an IV strategy for durables and/or income (as a predictor of expenditure), such as (potential) government trans-
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Finally, we can internally validate our approach by comparing imputed to actual expendi-
tures when both are available (i.e. earlier waves) so to judge the correspondence between the
two measure of consumption expenditure. As we can see in Figure C.1 our imputed measure
seems to perform reasonably well as the scatterplot of imputed on actual measures are concen-
trated along the 45-degrees line, with similar masses below and above. Further, in Table C.1
we show that selected moments of the imputed consumption (1st, 2nd, 3rd quartiles and mean)
match the actual measure reasonably well and in particular for the mean and median.

More in detail. Since much consumption spending information is not available in the 2017
ENCEL, we use a model developed by Blundell et al. (2005) and its simplified version (Attana-
sio and Pistaferri (2016)) to impute (total) household consumption using a demand function de-
rived from those variables consistently present in the ENCEL waves. Specifically, the method
uses spending (or presence) of durables, socio-demographic information (age, education and
marital status of the head of the household, age structure and household size, locality marginal-
ity index and rural status), and price controls at the local level to predict food consumption
expenditure (or quantities) as well as other non-durable consumption (defined as total expen-
ditures on personal products and clothing ). The basic idea is to estimate the relationship be-
tween consumption variables and the consistently reported demographic variables and durable
purchases, and use this relationship to predict non-durable consumption expenditure in the EN-
CEL2017. The model consists of the following regression, using data from waves 1998-1999
(where all the necessary variables are recorded):

ln(ncit) = Zitβ + ptγ + g (fit; θ) + uit (10)

Here, ncit indicates our non-durable consumption measure, defined as total expenditures on
food, and other non-durables defined above.

Z represents an array of dummy variables for our demographic covariates: age, education
and marital status of the head of the household, rural status and age structure (at least one
family member under 18 years of age and over 70 years of age). We also include continuous
covariates for total number of family members and locality marginality index and interactions
of household demographics and durables. We add p for price controls: the yearly CPIs for food
(we can compute our CPI’s using available data or rely upon the official ones). The polynomial
function g(.), includes a counter of durables and the same term squared d (durables), and u is
an error term.

fers (as in previous work on the Mexican Program labeled Programa de Apoyo Alimentario (PAL) and demand
estimation (Cunha et al. 2018), also average wages by gender/location (Blundell et al. 2005, and Blundell et al.
2008; Attanasio et al. 2013) are candidates for instruments.) However, in order to keep the narrative tight, as we
consider this latter exercise just an extra check, we will stick with the simpler approach followed in the literature
relying upon OLS estimators.
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Once the demand function is estimated for years 1998-1999, we use the estimated coeffi-
cients (parameters of the demand system) to predict non-durable consumption in all waves,
including the last year.

Any imputation procedure is bound to be problematic at some level. However, the one we
chose is grounded on the theory of consumer behavior rather than being a mere statistical exer-
cise. The advantage of that approach is that it tries to explicitly account for the key factors that
should drive consumption profiles, such as demographics, income, and prices. The usefulness
of this procedure rests with the fact that we can provide a synthetic indicator for household
welfare rather than presenting evidence on the several variables we use for the imputation.

Figure C.1: Scatter plot of imputed on actual consumption expenditure.

This graph show the scatter plot of imputed on actual log-transformed consumption expenditure.
The measure for consumption includes expenditure on non-durables (food, tobacco and hygene
products) and semi-durables (clothing, toys and kitchen items). The Data used for these estimations
comes from the October 1998 and May 1999 ENCEL. Observations are restricted to households in
the 3-98th consumption expenditure percentiles.

Table C.1: Moments of actual and imputed consumption.

mean q1 q2 q3
ln(consumption expenditure) 8.899 8.551 8.925 9.278
predicted 8.899 8.736 8.895 9.076
Observations 40,763

The Data used for these estimations comes from the October 1998 and May 1999 ENCEL. Observa-
tions are restricted to households in the 2-99th consumption expenditure percentiles.

44


	Introduction
	Literature Review
	Potential Mechanisms
	Data
	PROSPERA ENCEL panel
	INEGI's 2015 Intercensus 

	Empirical Strategy
	Analysis Using the PROSPERA ENCEL Panel
	Analysis Using the Intercensus

	Results
	Original Experiment
	Original Households
	New Households
	Re-weighted Estimates

	Youths and Intergenerational Transmission
	Effects in the Relevant Age Group
	Intergenerational Transmission

	DiD Estimates of Program Roll-out

	Conclusions
	PROSPERA program in a nutshell
	Calibrated Long-Term Effects of a 20-Year Treatment
	Consumption Imputation

