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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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Randomized experiments are increasingly used in 
development economics, with researchers now facing 
the question of not just whether to randomize, but 
how to do so. Pure random assignment guarantees that 
the treatment and control groups will have identical 
characteristics on average, but in any particular random 
allocation, the two groups will differ along some 
dimensions. Methods used to pursue greater balance 
include stratification, pair-wise matching, and re-
randomization. This paper presents new evidence on 
the randomization methods used in existing randomized 
experiments, and carries out simulations in order to 
provide guidance for researchers. Three main results 

This paper—a product of the Finance and Private Sector Team, Development Research Group—is part of a larger effort in 
the department to develop rigourous methodology for field experiments. Policy Research Working Papers are also posted 
on the Web at http://econ.worldbank.org. The author may be contacted at mbruhn@worldbank.org.  

emerge. First, many researchers are not controlling for the 
method of randomization in their analysis. The authors 
show this leads to tests with incorrect size, and can result 
in lower power than if a pure random draw was used. 
Second, they find that in samples of 300 or more, the 
different randomization methods perform similarly in 
terms of achieving balance on many future outcomes of 
interest. However, for very persistent outcome variables 
and in smaller sample sizes, pair-wise matching and 
stratification perform best. Third, the analysis suggests 
that on balance the re-randomization methods common 
in practice are less desirable than other methods, such as 
matching.
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1. Introduction 
Randomized experiments are increasingly used in development economics. 

Historically, many randomized experiments were large-scale government-implemented 

social experiments, such as Moving to Opportunity in the U.S. or 

Progresa/Oportunidades in Mexico. These experiments allowed for little involvement of 

researchers in the actual randomization. In contrast, in recent years many experiments 

have been directly implemented by researchers themselves, or in partnership with NGOs 

and the private sector. These small-scale experiments, with sample sizes often comprising 

100 to 500 individuals, or 20 to 100 schools or health clinics, have greatly expanded the 

range of research questions that can be studied using experiments, and have provided 

important and credible evidence on a range of economic and policy issues. Nevertheless, 

this move towards smaller sample sizes means researchers increasingly face the question 

of not just whether to randomize, but how to do so. This paper provides the first 

comprehensive look at how researchers are actually carrying out randomizations in 

development field experiments, and then analyzes some of the consequences of these 

choices. 

Simple randomization ensures the allocation of treatment to individuals or 

institutions is left purely to chance, and is thus not systematically biased by deliberate 

selection of individuals or institutions into the treatment. Randomization thus ensures that 

the treatment and control samples are, in expectation, similar in average, both in terms of 

observed and unobserved characteristics. Furthermore, it is often argued that the 

simplicity of experiments offers considerable advantage in making the results convincing 

to other social scientists and policymakers and that, in some instances, random 

assignment is the fairest and most transparent way of choosing the recipients of a new 

pilot program (Burtless, 1995).  

 However, it has long been recognized that while pure random assignment 

guarantees that the treatment and control groups will have identical characteristics on 

average, in any particular random allocation, the two groups will differ along some 

dimensions, with the probability that such differences are large falling with sample size.1 

                                                 
1 For example, Kernan et al. (1999) consider a binary variable that is present in 30 percent of the sample. 
They show that the chance that the two treatment group proportions will differ by more than 10 percent is 
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Although ex-post adjustment can be made for such chance imbalances, this is less 

efficient than achieving ex-ante balance, and can not be used in cases where all 

individuals with a given characteristic are allocated to just the treatment group. 

The standard approach to avoiding imbalance on a few key variables is 

stratification (or blocking), originally proposed by R.A. Fisher. Under this approach, 

units are randomly assigned to treatment and control within strata (or blocks) defined by 

usually one or two observed baseline characteristics. However, in practice it is unlikely 

that one or two variables will explain a large share of the variation in the outcome of 

interest, leading to attempts to balance on multiple variables. One such method when 

baseline data are available is pair-wise matching (Greevy et al, 2004, Imai et al. 2007).  

The methods of implementing randomization have historically been poorly 

reported in medical journals, leading to the formulation of the CONSORT guidelines 

which set out standards for the reporting of clinical trials (Schulz, 1996). The recent 

explosion of field experiments in development economics has not yet met these same 

standards, with many papers omitting key details of the method in which randomization 

is implemented. For this reason, we conducted a survey of leading researchers carrying 

out randomized experiments in developing countries. This reveals common use of 

methods to improve baseline balance, including several re-randomization methods not 

discussed in print. These are (i) carrying out an allocation to treatment and control, and 

then using a statistical threshold or ad hoc procedure to decide whether or not to redraw 

the allocation; and (ii) drawing 100 or 1000 allocations to treatment and control, and 

choosing the one amongst them which shows best balance on a set of observable 

variables. 

This paper discusses the pros and cons of these different methods for striving 

towards balance on observables. Proponents of methods such as stratification, matching, 

and minimization claim that such methods can improve efficiency, increase power, and 

protect against type I errors (Kernan et al., 1999) and do not seem to have significant 

disadvantages, except in small samples (Imai et al. 2008, King et al. 2007, Greevy et al. 

                                                                                                                                                 
38% in an experiment with 50 individuals, 27% in an experiment with 100 individuals, 9% for an 
experiment with 200 individuals, and 2% for an experiment with 400 individuals. 
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2004, Aickin, 2001)2. However, it is precisely in small samples that the choice of 

randomization method becomes important, since in large samples all methods will 

achieve balance. We simulate different randomization methods in four panel data sets. 

We then compare balance in outcome variables at baseline and at follow-up. The 

simulations show that when methods other than pure randomization are used, the degree 

of balance achieved on baseline variables is much greater than that achieved on the 

outcome variable (in the absence of treatment) in the follow-up period. The simulations 

show further that in samples of 300 observations or more, the choice of method is not 

very important for the degree of balance in many outcomes at follow-up. In small 

samples, and with very persistent outcomes, however, matching or stratification on 

relevant baseline variables achieves more balance in follow-up outcomes than does pure 

randomization.  

We use our simulation results and theory to help answer many of the important 

practical questions facing researchers engaged in randomized experiments. The results 

allow us to provide guidance on how to conduct inference after stratification, matching or 

re-randomization. In practice it appears that many researchers ignore the method of 

randomization in inference. We show that this leads to hypothesis tests with incorrect 

size. On average, the standard errors are overly conservative when the method of 

randomization is not controlled for in the analysis, implying that researchers may not 

detect treatment effects that they would detect if the inference did take into account the 

randomization method. However, although this is the case on average, in a non-trivial 

proportion of draws, it will be the case that not controlling for the randomization method 

will be anti-conservative, potentially leading the researcher to find a significant effect 

that is no longer significant when stratum or pair dummies are included. Moreover, we 

show further that stratifying, matching, or re-randomizing and then analyzing the data 

without controlling for the method of randomization results in lower power than if a pure 

random draw was used to allocate treatments, except in cases where the variables that 

balance is sought for have no predictive power for the future outcome of interest (in 

which case there is no need to seek balance on them anyway). 

                                                 
2 One other arguments in favor of ex-ante balancing is that, if the treatment effect is heterogeneous and 
varies with observed covariates, ex-ante balancing increases the precision of subgroup analysis. 
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We therefore strongly recommend that inference account for the method of 

randomization. Moreover, the results suggest that the common use of re-randomization 

methods should be rethought, since the method often performs worse than pair-wise 

matching in terms of balance and power, and requires more complicated statistical 

analysis to account for the effect of re-randomizing.  

The paper also discusses the use and abuse of tests for baseline differences in 

means, the impact of balancing observables on achieving balance on unobservables, and 

the issue of how many (and which) variables to use for stratifying or matching. The 

downside of balancing on many variables or matching is a loss in the degrees of freedom 

available for averaging out the variation coming from unobservables when estimating the 

variance.   

This paper draws upon a large clinical trials literature, where many related issues 

have been under discussion for several decades, drawing out the lessons for development 

field experiments. It complements several recent papers in development on randomized 

experiments.3 The paper builds on the recent handbook chapter by Duflo, Glennerster and 

Kremer (2006), which aims to provide a “how to” of implementing experiments. Our 

focus differs, considering how the actual randomization is implemented in practice, and 

considering matching and re-randomization approaches not discussed in this recent work. 

Finally, we contribute to the existing literature through new simulations which illustrate 

the performance of the different methods in a variety of situations experienced in 

practice. 

Whilst our focus is on field experiments in development economics, to date the 

field with most active involvement of researchers in randomization, randomized 

experiments are also increasingly being used to investigate important policy questions in 

other fields (Levitt and List, 2008). In common with the development literature, the 

extant literature in these other fields has often not explained the precise mechanism used 

for randomizing. However, it does appear that re-randomization methods are also being 

employed in some of these studies. The ongoing New York public schools project being 

undertaken by the American Inequality Lab is one such high-profile example. The 

                                                 
3 Summaries of recent experiments and advocacy of the policy case are found in Kremer (2003), Duflo and 
Kremer (2004), Duflo (2005) and Banerjee (2007). 
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lessons of this paper will also be important in designing upcoming experiments in other 

fields of economics. 

The remainder of the paper is set out as follows. Section 2 provides a stocktaking 

of how randomization is currently being implemented in the field, drawing on a summary 

of papers and a survey of leading experts in development field experiments. Section 3 

describes the data sets used in our simulations, and outlines in more detail the different 

methods of randomization. Section 4 then provides simulation evidence on the relative 

performance of the different methods, and on answers to key questions faced in practice. 

Section 5 concludes. 

 

2. How is randomization being implemented? 

2.1. Randomization as described in papers 

We begin by reviewing a selection of research papers containing randomized 

experiments in development economics. We focus on relatively small-scale randomized 

experiments, typically implemented via NGOs or as pilot studies. Duflo et al. (2006) 

argue that such designs typically allow for more involvement by researchers, who can 

often influence program design (and in particular, have input into how randomization is 

implemented). The majority of such studies appear to have some baseline data available 

at the time of randomization. In cases where baseline data is not available, pure 

randomization seems to be used to assign units to treatment.  

  Table 1 summarizes a selection of randomized experiments which took place with 

baseline data. This listing is not comprehensive, but is intended to cover many of the 

most well-known published randomized experiments in development, and a selection of 

newer working papers, and to cover papers by many of the leading proponents of 

randomized evaluations.4 For each study we list the unit at which randomization occurs. 

Typical sample sizes are 100 to 300 units, with the smallest sample size being 10 

geographic areas used in Ashraf et al. (2006b). 

 Randomized experiments are often argued to provide a fair and transparent way of 

allocating scarce resources when piloting or rolling out a program. This transparency is 

                                                 
4 We do not include here experiments undertaken by the authors, such as de Mel et al. (2008), both for 
objectivity reasons, and because the final write-up of these papers has been influenced by the current paper. 
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greatest to the program participants when assignment to treatment is done in public. The 

column “done in public or private” therefore records whether the actual randomization 

was done publicly or privately. In between lies “semi-public”, where perhaps the NGO 

and/or Government officials witness the randomization draw, but not the recipients of the 

program. Only 2 out of the 18 papers reviewed note whether it was public or not – in both 

cases public lotteries (Field and Pande, 2008 and Bertrand et al. 2007). The majority of 

the other randomizations we believe are private or at most “semi-public”, but this is not 

stated explicitly in the papers. Thus, for the most part, the idea that random assignment to 

treatment provides a transparent way of allocating resources is not born out in the 

existing descriptions. 

  Next we examine which methods are being used to reduce the likelihood of 

imbalance on observable covariates. Thirteen studies use stratification, two use matched 

pairs, and only three appear to use pure randomization. Ashraf et al. (2007) is the only 

documented example we have found of one of the methods that the next section shows to 

be in common use in our survey of experts. They note “at the time of randomization, we 

verified that observable characteristics were balanced across treatments, and, in a few 

cases, re-randomized when this was not the case”. They do not explain the criteria used to 

decide whether or not the degree of imbalance was sufficient for re-randomization to take 

place. 

Few papers provide the details of the method used, presumably because there has 

not been a discussion of the potential importance of these details in the economics 

literature. For example, stratification is common, but few studies actually give the 

number of strata used in the study.5 As we will discuss, the choice of the number of strata 

to use involves a trade-off between reducing residual variation and losing degrees of 

freedom when estimating the standard error of the experimental estimator. Studies which 

do not report the number of strata therefore make it difficult to assess this trade-off. The 

number of strata can be substantial in some studies – for example, Olken (2007a) uses 

156 subdistricts as strata for his 608 villages.  In practice there appears to be 

                                                 
5 For example, Banerjee et al. (2007) write “assignment was stratified by language, pretest score, and 
gender”. In this case pre-test score is continuous, and it is not clear how it was discretized for stratification 
purposes. Likewise, Karlan and Valdivia (2006) note that “randomization was stratified by credit officer” 
without stating how many credit officers there were. 
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disagreement as to whether it is necessary to include strata dummies in the analysis after 

stratification – more than half the studies using stratification do not include strata 

dummies. 

Finally, we note that all but one of the papers in Table 1 present a table for 

comparing treatment and control groups, and carry out tests for imbalance.6 The number 

of variables used for checking for imbalance ranges from 4 to 39. We examine the 

purpose and usefulness of such tests in more detail in Section 4. 

 

2.2 Randomization in practice according to a survey of experts 

The long lag between inception of a randomized experiment and its appearance in 

at least working paper form means the results above do not necessarily represent how the 

most recent randomized evaluations are being implemented. We therefore decided to 

survey leading experts in randomized evaluations on their experience and approach to 

implementation. A short online survey was sent to 35 selected researchers in December 

2007. The list was selected from members of the Poverty Action Lab, BREAD, and the 

World Bank who were known to have conducted randomized experiments. We had 25 of 

these experts answer the survey, with 7 out of the 10 individuals who did not respond 

having worked with those who did respond, ensuring our survey also covers the methods 

used by those non-responders in at least some of their experiments. 

 The median researcher surveyed had participated in 5 randomized experiments, 

with a mean of 5.96.7 Three of those surveyed had only participated in one experiment, 

while three had participated in fifteen (or more). 71 percent of the experiments these 

researchers had been involved in had had baseline data (including administrative data) 

that could be used at the time when randomization to treatment was done, while in the 

remaining 29 percent no baseline data was available.  

 Preliminary discussions with several leading researchers established that in 

addition to stratified randomization and matched pairs, several other methods involving 

multiple random draws were being used in practice to increase the likelihood of balance 

                                                 
6 The exception is Field and Pande (2008), who are likely limited in space in the papers and proceedings 
format. They note that such a check was done and is available upon request. 
7 This is after top-coding the number of experiments at 15, in order to not have the responses dominated by 
one researcher who had conducted more experiments than this.  
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on observed characteristics. One such approach is to take a random draw of assignment to 

treatment, examine the difference in means for several key baseline characteristics, and 

then re-randomize if the difference looks too large. This decision as to what is too large 

could be done subjectively, or according to some statistical cutoff criteria. For example, 

one survey respondent noted that they “regressed variables like education on assignment 

to treatment, and then re-did the assignment if these coefficients were ‘too big’”.  

 The second approach takes many draws of assignment to treatment, and then 

chooses the one that gives best balance on a set of observable characteristics according to 

some algorithm or rule. For example, several researchers say they write a program to 

carry out 100 or 1000 randomizations, and then for each draw, regress individual 

variables against treatment. They then choose the draw with the minimum maximum t-

statistic. Some impose further criteria such as requiring the minimum maximum t-statistic 

for testing balance on observables to be below one. An alternative approach used by 

another researcher is to regress the treatment on the set of baseline covariates and choose 

the draw with the lowest R2. The number of variables used to check balance varies, but 

seems to typically range from 5 to 20, and includes if possible the baseline levels of the 

main study outcomes. The perceived advantage of this approach is to enable balance on 

many more variables than possible with stratification, and to provide balance in means on 

continuous variables. 

 Researchers were asked whether they had ever used a particular method, and the 

method used in their most recent randomized experiment. All of the methods are often 

combined with some stratification, so we examine that separately. Table 2 reports the 

results. Not surprisingly, most researchers have at some point used simple randomization 

(probably with some stratification) – 80 percent of the full sample and 94 percent of 

researchers who have carried out five or more experiments have done this. However, we 

also see much more use of other methods than is apparent from the existing literature. 56 

percent had used pair-wise matching, with 39 percent using it in their most recent 

experiment. 32 percent of all researchers and 46 percent of the 5 or more experiments 

group have subjectively decided whether to re-randomize based on an initial test of 

balance. The multiple draws process described above has also been used by 24 percent of 
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researchers, and is more common amongst the more experienced researchers with 38 

percent of the 5 or more experiment group using this method. 

 More detailed questions were asked about the most recent randomization, in an 

effort to obtain some of the information not provided in Table 1. 23 of the 25 respondents 

provided information on these, and none of the responses are duplicate answers for the 

same experiment. First, in terms of whether the randomization is done in public or 

private, 17 of the 23 were done privately, 3 were done in public (including one where 

participants simply chose their own assignment from a hat), and 3 were done with the 

implementing agency observing but not the participants. One of the researchers who had 

carried out the randomization in public noted “carrying out the randomizations in public 

with the participants in attendance is a good idea. It seems to remove most possible ill 

feelings when the individuals get to participate in a "game" that determines the outcome 

in terms of treatment assignment”. The potential downside of public drawing is that some 

of the methods used to ensure balance become more difficult, if not impossible, to 

implement8. 

 Stratification was used in 14 out of the 15 experiments that were not employing a 

matched pair design. The number of variables used in forming strata was small: 6 used 

only one variable, typically geographic location; 4 used two variables (e.g. location and 

gender), and 4 used four variables. Of particular note is that it appears rare to stratify on 

baseline values of the outcome value of interest (e.g. test scores, savings levels, or 

incomes) with only 2 of these 14 experiments including a baseline outcome as a 

stratifying factor. While the number of stratifying variables is small, there is much greater 

variation in the number of strata: ranging from 3 to 200, with a mean (median) of 47 

(18). The number of treated observations divided by the number of strata ranges from 1 to 

800, with a median of 36. Only one researcher said that stratification was controlled for 

when calculating standard errors for their treatment effect. 

                                                 
8 A further example of one of the potential downsides in public randomizations is seen in an example 
provided by one study in Indonesia, in which survey respondents picked one of three balls from an opaque 
bag to determine the size of a financial incentive they were to receive. Although there was one of each ball 
in the bag, 80 percent of the respondents ended up receiving the highest value of the incentive. As a result, 
the randomization had to be abandoned, and reassignment to treatment status was done privately, out of the 
interviewers control. 
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 A notable feature of the survey responses was a much greater number of 

researchers randomizing within matched pairs than is apparent from the existing 

literature. However, the vast majority of these matches were not done using optimal or 

greedy Mahalnobis matching, but were instead based on only a few variables and 

commonly done by hand. In most cases the researchers were matching on discrete 

variables and their interactions only, and thus, in effect, the matching reduced to 

stratification.  

In terms of the follow-up period for determining the treatment effect, the most 

common responses were one year and two years, followed by 6 months. Several studies 

aim to follow-up at six months and one year. Only one of the studies noted a plan to 

follow-up beyond two years, after taking initial results at 8 months and at 2 years. This 

information on the length of time commonly used for follow-ups will be used in the next 

section when discussing what we should seek balance on. 

 One explanation for the difference in randomization approaches used by different 

researchers is that they reflect differences in context, with sample size, question of 

interest, and organization one is working with potentially placing constraints on the 

method which can be used for randomization. We therefore asked researchers for advice 

on how to evaluate the same hypothetical intervention designed to raise the incomes of 

day laborers.9 The responses varied greatly across researchers, and include each of the 

methods given in Table 2. What is clear is that there appears to be no general agreement 

about how to go about randomizing in practice.  

 

3. Data, simulated methods, and variables for balancing 

This section provides an overview of the four panel data sets used in this paper. It 

then discusses the different randomization methods that we simulate in these data sets 

and the variables considered for achieving balance. 

 

3.1 Data 

To compare the performance of the different randomization methods in practice, 

we chose four panel data sets which allow us to examine a wide range of potential 

                                                 
9 See Appendix 1 for the exact question and the responses given. 
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outcomes of interest, including microenterprise profits, labor income, school attendance, 

household expenditure, test scores, and child anthropometrics.  

The first panel data set covers microenterprises in Sri Lanka and comes from de 

Mel et al. (2008). This data was collected as part of an actual randomized experiment, but 

we keep only data for firms that were in the control group during the first treatment 

round. The data set contains information on firms’ profits, assets and many other firm 

characteristics. It also includes detailed measures of the firm owners’ entrepreneurial 

ability, risk aversion, and other characteristics that are thought to be correlated with 

profits. The simulations we perform for this data set are meant to mimic a randomized 

experiment that administers a treatment aimed at increasing firms’ profits, such as a 

business training program. 

The second data set is a sub-sample of the Mexican employment survey (ENE). 

Our sub-sample includes heads of household between 20 and 65 years of age who were 

first interviewed in the second quarter of 2002 and who were re-interviewed in the 

following four quarters. We only keep individuals who were employed during the 

baseline survey and imagine a treatment that aims at increasing their income, such as a 

training program or a nutrition program. 

The third data set comes from the Indonesian Family Live Survey (IFLS).10 We 

use 1997 data as the baseline and 2000 data as the follow-up, and simulate two different 

interventions with the IFLS data. First, we keep only children aged 10-16 in 1997 that 

were in the 6th grade and in school. These children then receive a simulated treatment 

aimed at keeping them in school (in the actual data, about 26 percent have dropped out 3 

years later). Second, we create a sample of households and simulate a treatment that 

increases household expenditure per capita.  

The fourth data set comprises child and household data from the LEAPS project 

in Pakistan (Andrabi et al. 2008). We focus on children aged 8 to 12 at baseline and 

examine two child outcome variables: math test scores and height z-scores11. The 

simulated treatments increase test scores or z-scores of these children. There is a wide 

                                                 
10 See http://www.rand.org/labor/FLS/IFLS/. 
11 We also have data on English test scores and weight z-scores and performed all simulations with these 
outcomes. The results are very close to the results using math test scores and height z-scores and are 
available from the authors upon request. 
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range of policy experiments that have targeted these types of outcomes, from providing 

text books or school meals to giving conditional cash transfers or nutritional supplements.  

 

3.2 Simulated methods 

For all data sets, we draw three sub-samples of 30, 100, and 300 observations 

each to investigate how the performance of different methods varies with sample size. All 

results are based on 10,000 bootstrap iterations of each method. The simulations 

randomly split the sample into a treatment group and a control group, according to five 

different methods. The first method is a single random draw. 

3.2.1 Stratification 

The second method is stratification. Stratified randomization is the most well-

known, and as we have seen, commonly used method of preventing imbalance between 

treatment and control groups for the observed variables used in stratification. By 

eliminating particular sources of differences between groups, stratification (aka blocking) 

can increase the sensitivity of the experiment, allowing it to detect smaller treatment 

differences than would otherwise be possible (Box et al, 2005).  The most often perceived 

disadvantage of stratification compared to some alternative methods is that only a small 

number of variables can be used in forming strata.12 

In terms of which variables to stratify on, the literature emphasizes variables 

which are strongly related to the outcome of interest, and variables for which subgroup 

analysis is desired. Statistical efficiency is greatest when the variables chosen are 

strongly related to the outcome of interest (Imai et al., 2008).  Stratification is not able to 

remove all imbalance for continuous variables. For example, for two normal distributions 

with different means but the same variance, the means of the two distributions between 

any two fixed variables (i.e. within a stratum) will differ in the same direction as the 

overall mean (Altman, 1985). In the simulations, we always stratify on the baseline 

values of the outcome of interest and on one or two other variables, which either relate to 

the outcome of interest or constitute relevant subgroups for ex-post analysis. 

                                                 
12 This is particularly true in small samples. For example, considering only binary or dichotomized 
characteristics, with 5 variables there are 25 = 32 strata, while 10 variables would give 210 = 1024 strata. In 
our samples of 30 observations, we stratify on 2 variables, forming 8 strata. In the samples of 100 and 300 
observations, we also stratify on 3 variables (24 strata), and also on 4 variables (48 strata). 
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3.2.2 Pair-wise matching 

As a third method, we simulate pair-wise matching. As opposed to stratification, 

matching provides a method to improve covariate balance for many variables at the same 

time. Greevy et al. (2004) describe the use of optimal multivariate matching. However, 

we chose to use the less computationally intensive “optimal greedy algorithm” laid out in 

King et al. (2007)13. In both cases pairs are formed so as to minimize the Mahalanobis 

distance between the values of all the selected covariates within pairs, and then one unit 

in each pair is randomly assigned to treatment and the other to control. 

 As with stratification, matching on covariates can increase balance on these 

covariates, and increase the efficiency and power of hypothesis tests. King et al. (2007) 

emphasize one additional advantage in the context of social science experiments when 

the matched pairs occur at the level of a community or village or school, which is that it 

provides partial protection against political interference or drop-out. If a unit drops out of 

the study or suffers interference, its pair unit can also be dropped from the study, while 

the set of remaining pairs will still be as balanced as the original data set. However, the 

converse of this is that if units drop out at random, the matched pair design will throw out 

the corresponding pairs as well, leading to a reduction in power and smaller sample size 

than if an unmatched randomization was used.14  

 

3.2.3 Re-randomization methods 

Since our survey revealed that several researchers are using re-randomization 

methods, we simulate two of these methods. The first, which we dub the “big stick” 

method by analogy with Soares and Wu (1983), requires a re-draw if a draw shows any 

statistical difference in means between treatment and control group at the 5 percent level 

or lower. The second method picks the draw with the minimum maximum t-stat out of 

1000 draws.  
                                                 
13 The Stata code performing pair-wise Mahalanobis matching with an optimal greedy algorithm takes 
several days to run in the 300 observations sample. If there is little time in the field to perform the 
randomization this may thus not be an option. It is thus important to have ample time between receiving 
baseline data and having to perform the randomization to have the flexibility of using matching techniques 
if desired. Software packages other than Stata may be more suited for this algorithm and may speed up the 
process. 
14 See Greevy et al. (2004) for discussion of methods to retain broken pairs. 
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Although we are not aware of any papers which formally set out the re-

randomization methods used in practice in development, there are analogs in the 

sequential allocation methods used in clinical trials (Soares and Wu, 1983; Taves, 1974; 

Pocock and Simon, 1975). The use of these related methods remains somewhat 

controversial in the medical field. Proponents emphasize the ability of such methods to 

improve balance on up to 10 to 20 covariates, with Treasure and MacRae (1998) 

suggesting that if randomization is the gold standard, minimization may be the platinum 

standard. In contrast, the European Committee for Proprietary Medicinal Products 

(CPMP, 2003) recommends that applicants avoid such methods, and argues that 

minimization may result in more harm than good, bringing little statistical benefit in 

moderate sized trials. 

Why might researchers wish to use these methods instead of stratification? Imai, 

King and Stuart (2008) argue that the practice of re-randomizing when the first set of 

random draws is too imbalanced can be thought of as an inefficient form of blocking. 

However, as noted, in small samples, stratification is only possible on one or two 

variables. There may be many variables that the researcher would like to ensure are not 

“too unbalanced”, without requiring exact balance on each. Re-randomization methods 

may be viewed as a compromise solution by the researchers, preventing extreme 

imbalance on many variables, without forcing close balance on each. 

 

3.3 Variables for balancing 

In practice researchers will attempt to balance on variables they think are strongly 

correlated with the outcome of interest. The baseline level of the outcome variable is a 

special case of balancing on a variable believed to be correlated with the outcome. We 

always include the baseline outcome variable among the variables to stratify, match or 

balance on. Note that this is somewhat the exception in practice, where researchers have 

often not balanced on the baseline outcome. In the matching and re-randomization 

methods, we also use six additional baseline variables that are thought to affect the 

outcome of interest. Stratification takes a subset of these six additional variables.15 

                                                 
15 A list of the variables used for each dataset is in Appendix 2 (Table A2). 
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Among these balancing variables, we tried to pick variables that are likely to be 

correlated with the outcome based on economic theory and existing data. There is, 

however, a caveat. As we have seen, most economic interventions have impacts 

measured over periods of 6 months to 2 years. While our economic models and existing 

data sets often provide good information for deciding on a set of variables useful for 

explaining current levels, they are often much less useful in explaining future levels of 

the variable of interest. In practice over short time horizons, often we can not 

theoretically or empirically explain many changes well with observed variables – and 

believe that these changes are the result of shocks. As a result, it may be the case in 

practice that the covariates used to obtain balance on are not strong predictors of future 

values of the outcome of interest.   

The set of outcomes we have chosen spans a range of the ability of the baseline 

variables to predict future outcomes. At one end are microenterprise profits in Sri Lanka, 

where baseline profits and six baseline individual and firm characteristics explain only 

12.2 percent of the variation in profits six months later. Thus balancing on these common 

owner and firm characteristics will not control for very much of the variation in future 

realizations of the outcome of interest. School enrolment in the IFLS data is another 

example where baseline variables explain very little of future outcomes.  For a sample of 

300 students who were all in school at baseline, 7 baseline variables only explain 16.7 

percent of the variation in school enrollment for the same students 3 years later. The 

explanatory power is better for labor income in the Mexican ENE data and household 

expenditure in the IFLS, with the baseline outcome and six baseline variables explaining 

28-29 percent of the variation in the future outcome. The math test scores and height z-

scores in the LEAPS data have the most variation explained by baseline characteristics, 

with 43.6 percent of the variation in follow-up test scores explained by the baseline test 

score and six baseline characteristics. 

We expect to see more difference amongst randomization methods in terms of 

achieving balance on future outcomes for the variables that are either more persistent, or 

that have a larger share of their changes explained by baseline characteristics. We 

therefore expect to see least difference among methods for the Sri Lanka microenterprise 
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profits data and Indonesian school enrolment data, and most difference for the LEAPS 

math test score and height z-score data. 

 

4. Simulation results 

Appendix 316 reports the full set of simulation results for all four data sets for 30, 

100, and 300 observations. We summarize the results of these simulations in this section, 

organizing their discussion around several central questions that a researcher may have 

when performing a randomized assignment. We start by addressing the following core 

question: 

 

4.1 Which methods do better in terms of achieving balance and avoiding extremes? 

We first compare the relative performance of the different methods in achieving 

balance between the treatment and control groups in terms of baseline levels of the 

outcome variable. Table 3 shows the average difference in baseline means, the 95th 

percentile of the difference in means (a measure of the degree of imbalance possible at 

the extremes), and the percentage of simulations where a t-test for difference in means 

between the treatment and control has a p-value less than 0.10. We present these results 

for a sample size of 100, with results for the other sample sizes contained in Appendix 3. 

Figures 1a through 6c graphically summarize the results, plotting the densities of the 

differences in average outcome variables for all three sample sizes: 30, 100, and 300 

observations.  

Table 3 shows that the mean difference in baseline means is very close to zero for 

all methods – on average all methods of randomizing lead to balance. However, Table 3 

and the figures also show that stratification, matching, and especially the minmax t-stat 

method have much less extreme differences in baseline outcomes, while the big stick 

method only results in narrow improvements in balance over a single random draw. For 

example, in the Mexican labor income data with a sample of 100, the 95th percentile of 

the difference in baseline mean income between the treatment and control groups is 0.384 

standard deviations (s.d.) with a pure random draw, 0.332 s.d. under the big stick method, 

0.304 s.d. when stratifying on 4 variables, 0.099 s.d. with pair-wise greedy matching, and 

                                                 
16 Appendix 3 is available on the author’s website.  
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0.088 under the minmax t-stat method. The size of the difference in balance achieved 

with different methods shrinks as the sample size increases – asymptotically all methods 

will be balanced.  

The key question is then the extent to which achieving greater balance on baseline 

variables translates into better balance on future values of the outcome of interest in the 

absence of any treatment. The follow-up period is six months for the Sri Lankan 

microenterprise data and Mexican labor income data, one year for the Pakistan test-score 

and child height data, and three years for the Indonesian schooling and expenditure data. 

Figures 1 to 6 show the distribution of difference in means between treatment and control 

at follow-up for each method, while Table 4 summarizes how the different methods 

perform in obtaining balance in follow-up outcomes. 

Panel A of Table 4 shows that on average, all randomization methods give 

balance on the follow-up variable, even with a sample size as small as 30. This is the key 

virtue of randomization. Figures 1 to 6 and Panel B shows there are generally fewer 

differences across methods in terms of avoiding extreme imbalances than with the 

baseline data. This is particularly true of the Sri Lanka profit data and the Indonesian 

schooling data, for which baseline variables explained relatively little of future outcomes. 

With a sample size of 30, stratification and matching are reducing extreme differences 

between treatment and control, but with samples of 100 or 300, there is very little 

difference between the various methods in terms of how well they balance the future 

outcome. 

Baseline variables have more predictive power for the realizations at follow-up 

for the other outcomes we consider. The Mexican labor income and Indonesian 

expenditure data lie in an intermediate range of baseline predictive power, with the 

baseline outcomes plus six other variables explaining about 28 percent of the variation in 

follow-up outcomes. Figures 2a to 2c and 4a to 4c show that, in contrast to the Sri Lanka 

and IFLS schooling data, even with samples of 100 or 300 we find matching and 

stratification continue to perform better than a single random draw in reducing extreme 

imbalances. Table 4 shows that with a sample size of 300, the 95th percentile of the 

difference in means between treatment and control groups is 0.23 s.d. under a pure 

random draw for both expenditure and labor income. This difference falls to 0.20 s.d. for 
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expenditure and 0.15 s.d. for labor income when pair-wise matching is used, and to 0.20 

s.d. for both variables when stratifying or using the min-max re-randomization method.  

Our other two outcomes variables, math test scores and height z-scores lie in the 

higher end of baseline predictive power, with the baseline outcome and six other 

variables predicting 43.6 percent and 35.3 percent of the variation in follow-up outcomes, 

respectively. Figures 5a to 6c illustrate that the choice of method makes more of a 

difference for these highly predictable follow-up outcomes than for the less predictable 

ones. Stratifying, matching, and the minmax t-state method consistently lead to narrower 

distributions in the differences at follow-up when test scores or height z-scores are the 

outcomes. Nevertheless, even with these more persistent variables, the gains from 

pursuing balance on baseline are relatively modest when the sample size is 300 – using 

pair-wise matching rather than a pure random draw reduces the 95th percentile of the 

difference in means from 0.23 to 0.17 in the case of math test scores.  

 

4.2 What does balance on observables imply about balance on unobservables? 

In general, what does balancing on observables do in terms of balancing 

unobservables? Aickin (2001) notes that methods which balance on observables can do 

no worse than pure randomization with regard to balancing unobserved variables.17 We 

illustrate this point empirically in the Sri Lanka and ENE datasets by defining a separate 

group of variables from the data to be “unobservable” in the sense that we do not balance, 

stratify or match on them. The idea here is that, although we have these variables in these 

particular data sets, they may not be available in other data sets (such as measures of 

entrepreneurial ability). Moreover, these “unobservables” are meant to capture what 

balancing does to variables that are thought to have an effect on the outcome variable, but 

                                                 
17 To see this, consider balancing on variable X, and the consequences of this for balance on an unobserved 
variable W. W can be written as the sum of the fitted value from regressing W on X, and the residual from 
this regression: 
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Balancing on X will therefore also balance the part of W which is correlated with X, PXW. Then, since the 
remaining part of W, (I-PX)W is orthogonal to X, it will tend to balance at the same rate as under pure 
randomization.  
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are truly unobservable. Table 3 indicates that the balance on these unobservables is pretty 

much the same across all methods.  

Rosenbaum (2002, p. 21) notes that under pure randomization, if we look at a 

table of observed covariates and see balance “this gives us reason to hope and expect that 

other variables, not measured, are similarly balanced”. This holds true for pure random 

draws, but will not be the case with methods which enhance balance on certain observed 

covariates.  Presenting a table which shows only the variables used in matching or for re-

randomization checks, and showing balance on these covariates, will thus overstate the 

degree of balance attained on other variables that are not closely correlated with those for 

which balance was pursued. For example, the 95th percentile of the difference in means in 

Table 3 gives a similar level of imbalance for the unobservables as the balanced outcome 

under a pure random draw, whereas under the other methods the unobservables have 

higher imbalance than the outcome variable.18 We therefore recommend that if matching 

or re-randomization (or stratification on continuous variables) is used, researchers clearly 

separate these from other variables of interest when presenting a table to show balance. 

 

4.3 To dummy or not to dummy? 

We have seen that only a fraction of studies using stratification control for strata 

in the statistical analysis. Kernan et al. (1999) state that results should take account of 

stratification, by including strata as covariates in the analysis. Failure to do so results in 

overly conservative standard errors, which may lead a researcher to erroneously fail to 

reject the null hypothesis of no treatment effect. While the omission of balanced 

covariates will not change the point estimates of the effect in linear models, leaving out a 

balanced covariate can change the estimate of the treatment effect in non-linear models 

(Raab et al. 2000), so that analysis of binary outcomes makes this adjustment more 

important. The European Committee for Proprietary Medicinal Products (CPMP, 2003) 

also recommends that all stratification variables be included as covariates in the primary 

analysis, in order to “reflect the restriction on randomization implied by the 

                                                 
18 Note the imbalance on unobservables is similar to that of a single random draw, which concurs with the 
point that balancing on observables can do no worse than pure randomization when it comes to balancing 
unobservables.  
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stratification”. Similarly, for pair-wise matching, dummies for each pair should be 

included in the treatment regression.  

Furthermore, in practice, stratification is unlikely to achieve perfect balance for 

all of the variables used in stratification. Whenever there is an odd number of units within 

a stratum, there will be imbalance (Therneau, 1993). In addition, imbalance may arise 

from units having a baseline missing value on one of the variables used in forming strata. 

As a consequence, in practice, the point estimate of the treatment effect will also likely 

change if strata dummies are included compared to when they are not included. 

To examine whether or not controlling for stratification matters in practice, Panels 

C and D of Table 4 compare the size of a hypothesis test for the difference in means of 

the follow-up outcome when no treatment has been given. Panel C shows the proportion 

of p-values under 0.10 when no stratum or pair dummies are included, and Panel D 

shows the proportion of p-values under 0.10 when these dummies are included. Recall 

that this is a test of a null hypothesis which we know to be true, so to have correct size, 

10 percent of the p-values should be below 0.10. We see that this is the case for the pure 

random draw, whereas failure to control for the dummies leads the stratification and pair-

wise matching tests to be too conservative on average.19 For example, with a sample size 

of 30, less than 5 percent of the p-values are below 0.10 for all six outcomes when we 

don’t include pair dummies with pair-wise matching. For the math test score, only 0.6 

percent of the p-values under stratification and none of the p-values under pair-wise 

matching are under 0.10. Even with a sample size of 300, less than 5 percent of the p-

values are below 0.10 for the more persistent outcomes when stratification or matching is 

used but not accounted for by adding stratum or pair dummies. In contrast, Panel D 

shows that when we add stratum dummies or pair dummies, the hypothesis test has the 

correct size, with 10 percent of the p-values under 0.10, even in sample sizes as small as 

30. 

Thus, on average, it is overly conservative to not include the controls for stratum 

or pair in analysis. The resulting conservative standard errors imply that if researchers do 

not account for the method of randomization in analysis, they may not detect treatment 

                                                 
19 The child schooling in Indonesia is a binary outcome. The difference in means attending school can 
therefore be only a limited number of discrete differences, and this discreteness causes the test to not have 
the correct size even under a pure random draw when the sample is small. 
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effects that they would otherwise detect. However, although on average the p-values are 

lower when including these dummies, Table 5 shows that this is not necessarily the case 

in any particular random allocation to treatment and control. Including stratum dummies 

only lowers the p-value in 58 to 88 percent of the replications, depending on sample size 

and outcome variable.  Thus in practice, in a non-trivial proportion of draws, it will be the 

case that not including stratum dummies will be anti-conservative, potentially leading the 

researcher to find a significant effect that is no longer significant when stratum dummies 

are controlled for. Hence researchers can not argue that if they ignore the randomization 

method, and find significant effects treating their study as if they purely randomized, that 

these same treatment effects will necessarily remain significant if one were to account for 

the method of randomization. 

 

4.4 How should inference be done after re-randomizing? 

While including strata or pair dummies in the ex-post analysis for the 

stratification and matching methods is quite straight-forward, the methods of inference 

are not as clear for re-randomization methods. In fact, the correct statistical methods for 

covariate-dependent randomization schemes such as minimization are still a conundrum 

in the statistics literature, leading some to argue that the only analysis that we can be 

completely confident about is a permutation test or re-randomization test. Randomization 

inference can be used for analysis of the method of re-randomizing when the first draw 

exceeds some statistical threshold (although it requires additional programming work). 

Using the rule which determines when re-randomization will take place, the researcher 

can map out the set of random draws which would be allowed by the threshold rule, 

throwing out those with excessive imbalance, and then carry out permutation tests on the 

remaining draws20. Such a method is not possible when ad hoc criteria are used to decide 

whether to redraw.  

 Optimal model-based inference is less clear under re-randomization, since 

allocation to treatment is data-dependent. To see this, consider the data generating 

processes: 

                                                 
20 When multiple draws are used to select the allocation which gives best balance over a sequence of 100 or 
1000 draws, there may be a concern that the resulting assignment to treatment is mostly deterministic. This 
will be the case in very small samples (under 12 units), but is not a concern for all but the smallest trials.  
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Where Treati is a dummy variable for treatment status, and Zi are a set of 

covariates potentially correlated with the outcome Yi. Under pure randomization, (2a) is 

used for analysis, assignment to treatment is in expectation uncorrelated with εi, and the 

standard error will depend on Var(εi). Suppose instead that re-randomization methods are 

used, which force the difference in means of the covariates in Z to be less than some 

specified threshold δ<− CONTROLTREAT ZZ . If δ is invariant to sample size (e.g. difference 

in proportions less than 0.10), then this condition will occur almost surely as the sample 

size goes to infinity, and thus the conditioning will not affect the asymptotics. However, 

in practice δ is usually set by some statistical significance threshold. Then if (2a) is used 

for analysis (that is, the covariates are not controlled for), we will only have that εi, is 

independent of Treati conditional on δ<− CONTROLTREAT ZZ . The correct standard error 

should therefore account for this conditioning, using Var(εi|  δ<− CONTROLTREAT ZZ   ). 

In practice this will be difficult to do, so adapting the minimization inference 

recommendations of Scott et al. (2002), we recommend researchers instead include all the 

variables used to check balance as covariates in the regression. Estimation of the 

treatment effect in (2b) will then be conditional on the variables used for checking 

balance. Note this will require a loss of degrees of freedom compared to not controlling 

for these covariates, but still requires fewer degrees of freedom than pair-wise matching. 

The simulation results in Table 4 suggest that this approach works in practice. Treating 

the big stick or minmax t-statistic methods as if they were pure random draws results in 

less than ten percent of replications having p-values under 0.10 (Panel C), whereas 

including the variables used for checking balance before re-randomizing as controls 

results in the correct test size (Panel D). This correction is more important for the 

minmax method than the big stick method, since the minmax method achieves greater 

baseline balance. 
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4.5 How do the different methods compare in terms of power for detecting a given 

treatment effect? 

To compare the power of the different methods we simulate a treatment effect by 

adding a constant to the follow-up outcome variable for the treatment group. We simulate 

constant treatments which add 1000 Rupees (25 percent of average baseline profits) to 

the Sri Lankan microenterprise profits; add 920 pesos (20 percent of average baseline 

income) to the Mexican labor income; add 0.4 (0.5 standard deviations) to log 

expenditure in Indonesia, and add 0.25 standard deviations to the Pakistan math test 

scores and child height z-scores. For the schooling treatment, we randomly set one in 

three schooling drop-outs to stay in school. These treatments are all relatively small in 

magnitude for the sample sizes used, so that we can see differences in power across 

methods, rather than have all methods give power close to one. 

Table 6 then summarizes the power of a hypothesis test for detecting the 

treatment effect, taking as the t-test on the treatment coefficient in a linear regression of 

the outcome variable on a constant and a dummy variable for treatment status. We report 

the proportion of replications where this test would reject the null hypothesis of no effect 

at the 10 percent level. Panels A and C report results when the regression model does not 

include controls for the method of randomization, while Panels B and D report the power 

when stratum or pair dummies, or the variables used in checking balance for re-

randomization methods are included. The results for the pure random sample in panels B 

and D include these same set of seven baseline controls, to enable comparison of ex-post 

controls for baseline characteristics to ex-ante balancing. 

 Table 6 shows that if we do not adjust for the method of randomization, the 

different methods often perform similarly in terms of power, and in cases where they 

differ, it is because the methods which pursue balance have less power than pure 

randomization. For example, with a sample size of 30, the power for both the height and 

math test-scores is approximately 0.17 under a single random draw, but can be as low as 

0.018 for the math test score under pair-wise matching, and as low as 0.052 for the height 

z-score with the minmax method. Adding the stratum and pair dummies or baseline 

variables used for re-randomizing increases power in almost all cases. Some of the 

increases in power can be sizeable – the power increases from 0.018 to 0.304 for the math 
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test score with pair-wise matching when the pair dummies are added. This increase in 

power is another reason to take into account the method of randomization when 

conducting analysis. 

 Table 6 also allows us to see the gain in power from ex-ante balancing compared 

to ex-post balancing. The same set of variables used for forming the match and for the re-

randomization methods were added as ex-post controls when estimating the treatment 

effect for the single random draw in panels B and D. When the variables are not very 

persistent, such as the microenterprise profits and child schooling, the power is very 

similar whether ex-ante or ex-post balancing is done. However, we do observe some 

improvements in power from matching compared to ex-post controls for some, but not 

all, of the more persistent outcome variables. The power increases from 0.584 to 0.761 

for the Mexican labor income when ex-ante pair-wise matching on seven variables is 

done rather than a pure random draw followed by linear controls for these seven variables 

ex-post. However, there is no discernable change in power from balancing for child 

height, another persistent outcome variable. 

 

4.6 Can we go too far in pursuing balance? 

When using stratification, matching or re-randomization methods, one question is 

how many variables to balance on and whether balancing on too many variables could be 

counter-productive. 

The literature is not very definitive with respect to how many variables to use in 

stratification. Some call for using many variables. For example, Box et al. (2005) write 

“block what you can and randomize what you cannot”, while Duflo et al. (2006) state that 

“if several binary variables are available for stratification, it is a good idea to use all of 

them, even if some of them may not end up having large explanatory power for the final 

outcome.” In contrast, Kernan et al. (1999) argue that “fewer strata are better”, and raise 

the possibility of unbalanced treatment assignment within strata due to small cell sizes, 

recommending that an appropriate number of strata is between n/50 and n/100. Finally, 

Therneau (1993) shows in simulations with sample sizes of 100, that in terms of 

imbalance, with a sufficient number of factors used in stratifying (so that the number of 
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strata reaches n/2), performance can actually be worse than using unstratified 

randomization. 

We investigate how changing the number of strata affects balance and power in 

practice in our samples of 100 and 300 observations by simulating stratification with two, 

three and four stratifying variables, resulting in 8, 24, and 48 strata respectively. The 

results are shown in Table 7. Both the size of extreme imbalances and the power do not 

vary much with the number of strata for any of the six outcomes. In most cases there is 

neither much gain, nor much loss, from including more strata. However, we do note that 

for a sample size of 100, when strata dummies are included, power is always slightly 

lower when 4 stratifying variables (and 48 strata) are included than when 3 stratifying 

variables (and 24 strata) are used. For example, with the math test score, power falls from 

0.464 to 0.399 when the number of strata is doubled.  

A question related to the choice of how many variables to balance on is what 

happens when one balances on irrelevant covariates. Greevy et al. (2004, p. 264) claim 

that blocking or pairing on irrelevant covariates does not harm statistical efficiency or 

power relative to not-matching. We argue (and show), however that there is a cost of 

balancing on irrelevant variables. Since statistical analysis after balancing requires 

controlling for the covariates used in balancing, the potential cost is the loss of degrees of 

freedom from controlling for these variables. This can be offset by the reduction in 

variation in the outcome variable that is explained by the variables balanced on. To see 

this, compare the variance of the estimate of the treatment effect estimated using (2a) 

versus (2b), where Z is generalized to be a k-dimensional set of covariates which 

balancing was carried out on (including interactions between covariates used in forming 

strata): 
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Equation (3) shows the trade-off involved in balancing. Balancing on relevant variables 

means that the residual sum of squares  will (in expectation) be less than the ∑
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residual sum of squares , lowering the standard error. However, controlling for 

covariates involves losing k degrees of freedom.  

∑
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Consider then the worse case scenario, where none of the variables balanced on 

have any predictive power for the outcome of interest. In this case the two residual sum 

of squares in (3) will be equal, and the variance ratio reduces to (n-2)/(n-k-2).  Standard 

errors can then be much larger with these covariate controls when many covariates are 

used with a small sample. For example, using 5 covariates to balance on with 10 

observations leads to 63 percent greater standard errors if none of these covariates are 

correlated with the outcome of interest. However, by a sample size of 100, even 10 

irrelevant covariates could at most increase standard errors by 5.5 percent, equivalent to a 

reduction in sample size from 100 to 90. With 200 or 400 as the sample size, it is indeed 

the case that even in the most unlikely situation that all covariates are uncorrelated with 

the outcome of interest, balancing on 5 or 10 covariates will not increase standard errors 

by more than 3 percent.  

However, balancing on irrelevant variables will continue to have repercussions 

for standard errors if the number of variables balanced on increases at the same rate as the 

sample size. This is true in matching, and in some cases when geographical variables are 

used for forming strata. In pair-wise matching, the number of covariates used as controls 

in the treatment regression is n/2. If the variables used to form matches do not have any 

role in explaining the outcome of interest, we see that the ratio of standard errors will 

approach 2 , that is, can be 41 percent higher under pair-wise matching than pure 

randomization. 

In our simulations, we address the issue of balancing on irrelevant variables by 

stratifying and matching based on i.i.d. noise. The last two columns of Table 6 show the 

power of the stratified and matching estimators when pure noise is used. Once we control 

for stratum dummies, power is clearly less when irrelevant variables are used for 

stratifying or matching than when relevant variables are used. For example, the power 

with a sample size of 300 for household expenditure under pair-wise matching is 0.574 

when relevant baseline variables are used to form the match compared to 0.356 when 

 - 27 - 



i.i.d. noise is used in the matching. Thus the choice of variables used in stratifying or 

matching does play an important role in determining power.  

However, if we wish to compare the impact of matching or stratifying on 

irrelevant variables to a pure random draw, we should compare the power for a single 

random draw in panels A and C to the power for matching and stratifying on i.i.d. noise 

in panels B and D which contain controls for stratum or pair dummies. The power is very 

similar for all sample sizes. In practice, any given draw of i.i.d. noise is likely to have 

some small correlation with the outcome of interest, reducing the residual sum of squares 

when controlled for in a regression. It seems this small correlation is just enough to offset 

the fall in degrees of freedom, so that the worst-case scenarios discussed above don’t 

come to pass.21. Hence in practice, it seems that stratifying on i.i.d. noise does not do any 

worse than a simple random draw in terms of power when sample sizes are not very 

small. 

Finally, Table 6 shows that when stratification or matching is done purely on the 

basis of i.i.d. noise, treating the randomization as if it was a pure random draw does not 

lower power compared to the case when a single random draw is used. This is in contrast 

to the case when matching or stratification is done on variables with strong predictive 

power. Intuitively, when pure noise is used for stratification, it is as if a pure random 

draw was taken. However, this does not mean that ex-post one can check whether the 

variables used for matching or stratification have predictive power for the future 

outcome, and if not, ignore the method of randomization. Ignoring the matching or 

stratification is only correct if the baseline variables are truly pure noise – if there is any 

signal in these stratifying or matching variables then ignoring the randomization method 

will result in incorrect size for hypothesis tests. Since in practice it will almost surely not 

be the case that the correlation between the baseline variables and future outcome is 

exactly zero (even if it is not statistically different from zero), one should control for the 

method of randomization.22 

                                                 
21 Note though that even our smallest sample size of 30 is larger than the cases Martin et al. (1993) study 
where a loss of power can occur. 
22 Indeed, even in our simulations where we know the baseline variables are i.i.d. noise, any particular draw 
from an i.i.d. distribution has some small correlation with the future outcome variables, and in Appendix 2 
we see that controlling for the strata or pair dummies does tend to move the size of a hypothesis test of no 
difference in means closer to the true level – although the differences between controlling for strata or pair 
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4.7 What is the meaning of the standard Table 1 (if any)?  

Section 2 points out that most research papers containing randomized experiments 

feature a table (usually the first in the paper) that tests whether there are any statistically 

significant differences in the baseline means of a number of variables across treatment 

and control groups. The unanimous use of such tests is interesting in light of concern in 

the clinical trials literature about both the statistical basis for such tests, and their 

potential for abuse.23 Altman (1985, p. 26) writes that when “treatment allocation was 

properly randomized, a difference of any sort between the two groups…will necessarily 

be due to chance…performing a significance test to compare baseline variables is to 

assess the probability of something having occurred by chance when we know that it did 

occur by chance. Such a procedure is clearly absurd.” Altman (1985, p. 26) goes on to 

add that “statistical significance is immaterial when considering whether any imbalance 

between the groups may have affected the results”. In particular, it is wrong to infer from 

the lack of statistical significance that the variable in question did not affect the outcome 

of the trial, since a small imbalance in a variable highly correlated with the outcome of 

interest can be far more important than a large and significant imbalance for a variable 

uncorrelated with the variable of interest. 

A particular concern with the use of significance tests is that researchers may 

decide whether or not to control for a covariate in their treatment regression on the basis 

of whether it is significant. Permutt (1990) shows that the resulting test’s true 

significance level is lower than the nominal level. Instead greater power is achieved by 

always adjusting for a covariate that is highly correlated with the outcome of interest, 

regardless of its distribution between groups. There seem to be some instances in the 

literature where these balancing tests are being used to guide which variables to include 

in robustness tests of the results. For example, Olken (2007a) notes three variables are 

individually significant at the 10 percent level, but that the main results of the paper do 

not change substantially if these variables are included. 

                                                                                                                                                 
dummies and not doing so are much smaller than when the baseline variables used for stratification did 
predict future outcomes. 
23 See also Imai, King and Stuart (2008) for discussion on this issue in social science field experiments, and 
for their suggestions as to what should constitute a proper check of balance. 
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 A final concern with the use of significant tests for imbalance is their potential for 

abuse. For example, Schulz and Grimes (2002) report that in the clinical trials literature, 

researchers who use hypothesis tests to compare baseline characteristics report fewer 

significant results than expected by chance. They suggest one plausible explanation is 

that some investigators may not report some variables with significant differences, 

believing that doing so would reduce the credibility of their reports. We have no evidence 

to suggest this is occurring in the development literature, but one interpretation for the 

repeated randomization methods discussed earlier in this paper is a desire by researchers 

to show no significant differences between groups when such tests are used. 

 So how should we interpret such tables? The first question of interest in practice 

is, given that such a test shows a statistically significant difference in baseline means, 

does this make it more likely that there is also a statistically significant difference in 

follow-up means in the absence of treatment? The answer is yes, provided that the 

baseline data have predictive power for the follow-up outcomes. Figures 7 and 8 illustrate 

this for the cases of Sri Lankan microenterprise profits, which have little predictive power 

for future profits, and Mexican labor income which have more predictive power. 

Appendix 424 shows similar figures for the other variables. For each dataset, these graphs 

are based on the 10,000 simulations of a single random draw (without any balancing). 

The x-axis shows the p-value for a test of difference in baseline means for the outcome of 

interest. The y-axis shows the same p-value for a test of difference in follow-up means in 

the absence of treatment. We divided the values on the x-axis into 100 bins and 

calculated that 10th, 50th, and 90th percentile of the follow-up p-value within each bin.  

For the Sri Lanka data, the values of the percentiles are flat across the whole x-

axis, suggesting that there is no relationship between p-value at baseline and p-value at 

follow-up. For the other datasets, however, as illustrated by the Mexican labor income, 

where the outcome variables show more persistence over time, the percentiles display an 

upward-sloping pattern. That is, a statistically significant difference in baseline means 

makes it more likely to also see a statistically significant difference in follow-up means.  

The follow-up question of interest in practice is then: If we observe statistical 

imbalance at baseline, but control for baseline variables in our analysis, are we any more 

                                                 
24 Appendix 4 is available on the author’s website. 
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likely to observe imbalance at follow-up than if we had obtained a random draw which 

didn’t show baseline imbalance? To examine this question, we take the 10,000 

simulations of a single random draw and divide them into two sets. The first set includes 

all draws that had a statistically significant difference at the 5 percent level in at least one 

of our 7 baseline variables. We call this the “unbalanced” set. The second set is the 

“balanced” set and includes all other draws. The top panels of Figure 9a and 9b show the 

distribution of the differences in means between treatment and control for baseline labor 

income and baseline math test scores are more tightly concentrated around zero in the 

balanced set than the unbalanced set.25 The middle panels show that these differences are 

less pronounced, but still persist at follow-up, again showing that imbalance in baseline 

makes it more likely to have imbalance at follow-up. However, once we control for the 7 

baseline variables, the distributions of a test of no treatment effect in the follow-up 

outcome (when no treatment was given) is identical regardless of whether or not there 

was baseline imbalance. 

Intuitively, when randomization is used to allocate units into treatment and 

control groups, if we do find unbalanced baseline characteristics, once we control for 

them, the remaining unobservables are no more or less likely to be unbalanced than if we 

did not find unbalanced baseline characteristics. However, as recommended by Altman 

(1985), we should choose which baseline characteristics to control for not on the basis of 

statistical differences, but on the strength of their relationship to the outcome of interest. 

Overall, in most randomized settings, we therefore recommend reporting the point 

estimates of the differences across groups, but not reporting the p-values on these 

differences. If these differences are in variables thought to influence the outcome of 

interest, one should control for them, regardless of whether or not the difference is 

statistically significant. Note, however, that there are two exceptions where carrying out a 

test of statistical significance is meaningful. First, statistically testing the difference 

between treatment and control groups at baseline can be relevant if there was possible 

interference in the randomization. This may be relevant when random assignment is 

carried out in the field by survey enumerators, but should not be a concern when the 

                                                 
25 Appendix A3 presents the same figures for other outcome variables and sample sizes. They all show the 
same patterns as in Figure 9. 

 - 31 - 



researcher does the randomization by computer. Second, a related common use for these 

significant tests is seen in Ashraf et al. (2006a), who are only able to survey 1777 of the 

4000 microfinance clients allocated to treatment and control. They test whether there are 

differences between the treatment and control groups amongst those surveyed. 

 

5. Conclusions 

 Our surveys of the recent literature and of the most experienced researchers 

implementing randomized experiments in developing countries finds that most 

researchers are not relying on pure randomization, but are doing something to pursue 

balance on observables. In addition to stratification, we find pair-wise matching and re-

randomization methods to be used much more than is apparent from the existing 

literature. The paper draws out implications from the existing statistical, clinical, and 

social science literature on the pros and cons of these various methods of seeking 

balance, and compares the performance of the different methods in simulations. 

 Our simulation results show the method of randomization matters more in small 

sample sizes, such as 30 or 100 observations, and matters more for relatively persistent 

outcome variables such as health and test scores than for less persistent outcome 

variables such as microenterprise profits or household expenditure. Overall we find pair-

wise matching to perform best in achieving balance in small samples, provided that the 

variables used in forming pairs have good predictive power for the future outcomes. 

Stratification and re-randomization using a minmax method also lead to some 

improvements over a pure random draw, but in the majority of our simulations are 

dominated by pair-wise matching. With sample sizes of 300 we find that the method of 

randomization matters much less, although matching still leads to some improvement in 

balance for the persistent outcomes. 

 Our analysis of how randomization is being carried out in practice suggests 

several areas where the practice of randomization can be improved or better reported. 

This leads us to draw out the following recommendations: 

1) Better reporting of the method of random assignment is needed. Researchers need 

to describe clearly their choice of method, the reason for this choice, and whether 

or not the randomization was carried out in public or private. This is particularly 
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important for experiments done on small samples, where the choice of 

randomization method makes more difference. 

2)  “As ye randomize, so shall ye analyze” (Senn, 2004): Researchers should 

account for the method of randomization when performing statistical analysis. 

Since the majority of inference in economics is model-based, rather than 

randomization inference, this means adding controls for all covariates (and 

interactions between covariates) used in seeking balance. In particular, strata 

dummies should be included when analyzing the results of stratified 

randomization. Our simulations show that while on average failure to account for 

the method of randomization generally results in overly conservative standard 

errors, there are also a substantial number of draws in which standard errors 

which do not account for the method of randomization overstate the significance 

of the results. Moreover, failure to control for the method of randomization results 

in incorrect test size. 

3) Re-think the common use of re-randomization. Our simulations find pair-wise 

matching to generally perform better than re-randomization in terms of balance 

and power, and like re-randomization, matching allows balance to be sought on 

more variables than possible under stratification. Adjusting for the method of 

randomization is statistically cleaner with matching or stratification than with re-

randomization. 

4) Be cautious in seeking balance on too many variables, since generally our models 

and data have poor predictive power for changes. The baseline of the outcome 

variable and variables desired for subgroup analysis are obvious candidates for 

balancing on. However, seeking to balance on many other covariates involves a 

downside in terms of loss in degrees of freedom when estimating standard errors, 

possibly more cases of missing observations, a potentially weaker match in 

matching methods in terms of  the main covariates of interest, and odd-numbers 

within strata when stratification is used. Thus, contrary to some claims, it is 

possible to over-stratify or seek balance on too many variables. 

5) Statistical tests of imbalance between treatment and control groups should only 

be performed when there is reason to suspect interference, or when only a sample 
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of those in the experiment are surveyed, and such tests should not be used to 

decide which variables to control for in treatment regressions. The common 

practice of testing for significant differences between the two groups is otherwise 

testing whether something that we know was due to chance was due to chance. 

Researchers should control for variables believed to strongly influence the 

outcome of interest, regardless of whether the difference between treatment and 

control groups is significant or not.  

6) Acknowledge that the different goals of randomization can conflict with one 

another in small samples. The idea of randomization as a valid basis for inference 

(through permutation analysis), the desire for comparable groups, and the fairness 

and transparency involved in one-off public assignment present trade-offs for the 

researchers in terms of choice of randomization method. 
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Table 1: Summary of Selected Randomized Experiments in Developing Countries
Table for # variables Test 

Randomization Sample Number Public or Stratification Matched Number of Strata or pair assessing  used to of significance
Paper Unit Size Treated Private Used? pairs? Strata dummies used? balance? check balance for balance?
Published/forthcoming Papers
Ashraf et al. (2006a) Microfinance clients 1777 710 n.a. No No Yes 12 Yes
Ashraf et al. (2006b) Barangay (area) 10 5 n.a. No Yes Yes Yes 12 Yes
Banerjee et al. (2007) School 98 49/49 n.a. Yes No n.a. No Yes 4 Yes

School 111 55/56 n.a. Yes No n.a. No Yes 4 Yes
School 67 32/35 n.a. Yes No n.a. No Yes 4 Yes

Bertrand et al. (2007) Men wanting a 822 268/264 Public Yes (C). No 23 Yes Yes 22 Yes
Driver's license

Bobonis et al. (2006) Preschool cluster 155 59/51/45 n.a. No No Yes 24 Yes
Field and Pande (2008) Microfinance group 100 38/30 Public  No No No (A)
Glewwe et al. (2004) School 178 89 n.a. Yes No n.a. No Yes 8 Yes
Miguel and Kremer (2004) School 75 25*3 n.a. Yes No n.a. No Yes 21 Yes
Olken (2007a) Village 608 202/199 n.a. Yes No 156 Yes Yes 10 Yes

Subdistrict 156 n.a. n.a. Yes No 50 Yes Yes 10 Yes

Working Papers
Ashraf et al. (2007) Household 1260 6 groups n.a. Yes No 5 Yes Yes 14 Yes
Björkman and Svensson (2007) Community 50 25 n.a. Yes No n.a. Yes 39 Yes
Duflo et al. (2007) School 113 57 n.a. Yes No n.a. No (E) Yes 15 Yes
Dupas (2006) School 328 71 n.a. Yes No n.a. No Yes 17 Yes
Glewwe et al. (2006) Township 25 12 n.a. No Yes Yes 4 Yes
He et al. (2007) School division 194 97 n.a. Yes No n.a. No Yes 22 Yes
Karlan and Valdivia (2006) Microfinance group 239 104/84 n.a. Yes No n.a. No (D) Yes 14 Yes
Kremer et al. (2006) Spring 200 50/50/100 n.a. Yes No n.a. No Yes 28 Yes
Olken (2007b) Village 48 17 n.a. Yes No 2 Yes Yes 8 Yes
Notes:
n.a. denotes information not available in the paper.
A: Paper says check was done on a number of variables and is available upon request.
C: It appears randomization was done within recruitment session, but the paper was not clear on this.
D: Dummies for location are included, but not for credit officer which was the other stratifying variable.
E. Dummies for district are included, but not for the number of households in the area which were also used for stratifying within district. 



Table 2: Survey Evidence on Randomization Methods Used by Leading Researchers

% Using Method in% WHO HAVE EVER USED

  

 

5+ experiment Most Recent
Unweighted Weighted Group Experiment

Single Random Assignment to Treatment (possibly with stratification) 80 84 92 39.1
Subjectively deciding whether to redraw 32 52 46 4.3
Using a statistical rule to decide whether to redraw 12 15 15 0.0
Carrying out many random assignments, and choosing best balance 24 45 38 17.4
Explicitly matching pairs of observations on baseline characteristics 56 52 54 39.1
    Number of Researchers 25 25 13 23
Notes:
Methods described in more detail in the paper.
Weighted results weight by the number of experiments the researcher has participated in
5+ experiment group refers to researchers who have carried out 5 or more randomized experiments  
 
 
 
 
Table 3: How do the different methods compare in terms of Baseline Balance?
Simulation Results for 100 Observation Sample Size

Single Stratified Stratified Pairwise Big Draw with
Random on 2 on 4 Greedy Stick minmax t-stat

Draw variables variables Matching Rule out of 1000 draws
Panel A: Average difference in BASELINE between treatment and control means (in std. dev.)
Microenterprise profits (Sri Lanka) 0.001 0.000 -0.001 0.000 0.001 0.000
Household expenditure (Indonesia) -0.002 0.001 -0.001 0.000 -0.001 -0.002
Labor income (Mexico) 0.000 0.000 0.000 0.000 -0.001 0.000
Height z-score (Pakistan) 0.001 0.001 0.000 0.000 -0.001 0.000
Math test score (Pakistan) 0.003 0.000 -0.001 0.000 0.002 0.000
Baseline unobservables (Sri Lanka) 0.000 0.000 0.000 0.000 0.000 0.001
Baseline unobservables (Mexico) 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: 95th percentile of difference in BASELINE between treatment and control means (in std. dev.)
Microenterprise profits (Sri Lanka) 0.386 0.195 0.241 0.312 0.324 0.091
Household expenditure (Indonesia) 0.390 0.145 0.191 0.266 0.328 0.107
Labor income (Mexico) 0.384 0.280 0.304 0.099 0.332 0.088
Height z-score (Pakistan) 0.395 0.160 0.206 0.119 0.319 0.089
Math test score (Pakistan) 0.392 0.164 0.237 0.074 0.328 0.106
Baseline unobservables (Sri Lanka) 0.434 0.417 0.414 0.434 0.434 0.434
Baseline unobservables (Mexico) 0.457 0.448 0.439 0.457 0.457 0.457

Panel C: Proportion of p-values <0.1 for testing difference in BASELINE means
Microenterprise profits (Sri Lanka) 0.097 0.000 0.005 0.036 0.045 0.000
Household expenditure (Indonesia) 0.102 0.000 0.000 0.011 0.049 0.000
Labor income (Mexico) 0.100 0.015 0.029 0.000 0.053 0.000
Height z-score (Pakistan) 0.100 0.000 0.001 0.000 0.038 0.000
Math test score (Pakistan) 0.100 0.000 0.006 0.000 0.048 0.000
Baseline unobservables (Sri Lanka) 0.101 0.096 0.095 0.084 0.098 0.091
Baseline unobservables (Mexico) 0.108 0.095 0.093 0.103 0.102 0.110
Notes:
Statistics are based on 10,000 simulations of each method. Details on methods and variables are in Table A2.  
 
 
 



Table 4: How do the different methods compare in terms of Balance on Future Outcomes?

Sample Size of 30 Sample Size of 300
Single Stratified Pairwise Big Draw with Single Stratified Stratified Pairwise Big Draw with

Random on 2 Greedy Stick minmax Random on 2 on 4 Greedy Stick minmax
Draw variables Matching Rule t-stat Draw variables variables Matching Rule t-stat

Panel A: Average difference in FOLLOW-UP between treatment and control means (in std. dev.)
Microenterprise profits (Sri Lanka) 0.001 0.000 0.002 -0.003 0.002 0.000 0.001 0.001 0.000 0.000 0.000
Child schooling (Indonesia) -0.005 -0.010 -0.005 0.004 -0.006 0.002 0.003 -0.001 0.000 -0.002 -0.002
Household expenditure (Indonesia) 0.000 0.002 -0.001 0.000 -0.006 -0.001 -0.001 0.000 -0.001 -0.001 -0.001
Labor income (Mexico) -0.003 0.000 0.003 0.003 -0.002 0.001 0.000 0.001 -0.001 0.001 -0.002
Height z-score (Pakistan) 0.007 0.001 0.001 -0.003 0.001 -0.001 0.000 0.000 0.000 0.002 0.000
Math test score (Pakistan) 0.001 0.002 -0.001 -0.003 0.005 -0.001 0.000 0.000 -0.001 -0.001 0.001

Panel B: 95th percentile of difference in FOLLOW-UP between treatment and control means (in std. dev.)
Microenterprise profits (Sri Lanka) 0.713 0.627 0.592 0.705 0.708 0.220 0.210 0.209 0.211 0.216 0.224
Child schooling (Indonesia) 0.834 0.745 0.556 0.556 0.556 0.213 0.219 0.212 0.227 0.227 0.196
Household expenditure (Indonesia) 0.721 0.643 0.503 0.677 0.590 0.226 0.194 0.196 0.200 0.219 0.198
Labor income (Mexico) 0.755 0.546 0.642 0.705 0.529 0.227 0.196 0.198 0.149 0.213 0.195
Height z-score (Pakistan) 0.710 0.620 0.568 0.620 0.443 0.222 0.186 0.189 0.189 0.212 0.225
Math test score (Pakistan) 0.717 0.448 0.361 0.648 0.525 0.227 0.180 0.184 0.167 0.209 0.175

Panel C: Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference as if
pure randomization was used (e.g. no adjustment for strata or match dummies)
Microenterprise profits (Sri Lanka) 0.105 0.059 0.045 0.101 0.109 0.100 0.080 0.080 0.085 0.092 0.103
Child schooling (Indonesia) 0.052 0.113 0.033 0.041 0.010 0.121 0.087 0.082 0.098 0.111 0.096
Household expenditure (Indonesia) 0.102 0.069 0.011 0.083 0.046 0.101 0.056 0.052 0.064 0.092 0.059
Labor income (Mexico) 0.106 0.012 0.049 0.029 0.009 0.100 0.056 0.062 0.011 0.087 0.028
Height z-score (Pakistan) 0.097 0.056 0.031 0.059 0.007 0.097 0.044 0.049 0.049 0.081 0.097
Math test score (Pakistan) 0.101 0.006 0.000 0.072 0.022 0.101 0.038 0.042 0.028 0.076 0.032

Panel D: Proportion of p-values <0.1 for testing difference in FOLLOW-UP means with inference which
takes account of randomization method (i.e. controls for stratum, pair, or re-randomizing variables)
Microenterprise profits (Sri Lanka) 0.103 0.091 0.104 0.103 0.122 0.098 0.103 0.133 0.103 0.102 0.101
Child schooling (Indonesia) 0.103 0.117 0.033 0.098 0.108 0.098 0.102 0.104 0.098 0.104 0.104
Household expenditure (Indonesia) 0.102 0.098 0.102 0.101 0.094 0.099 0.100 0.099 0.101 0.105 0.100
Labor income (Mexico) 0.083 0.107 0.101 0.079 0.067 0.100 0.095 0.101 0.104 0.100 0.112
Height z-score (Pakistan) 0.100 0.097 0.104 0.100 0.103 0.094 0.097 0.097 0.098 0.095 0.102
Math test score (Pakistan) 0.099 0.102 0.106 0.098 0.098 0.101 0.097 0.099 0.097 0.100 0.102
Notes:
Panels A and B coefficients are for specifications without controls for stratum or pair dummies. 
Statistics are based on 10,000 simulations of each method. Details on methods and variables are in Table A2.

  



Table 5: Is it always conservative to ignore the method of randomization?
Proportion of replications where controlling for stratum or pair dummies lowers the 
p-value on a test of difference in means between treatment and control groups

Stratified Stratified Pairwise Big Draw with
on 2 on 4 Greedy Stick minmax

variables variables Matching Rule t-stat
Panel A: Sample Size 30
Microenterprise profits (Sri Lanka) 0.690 . 1.000 0.493 0.555
Child schooling (Indonesia) 0.373 . 0.699 0.567 0.854
Household expenditure (Indonesia) 0.622 . 1.000 0.523 0.657
Labor income (Mexico) 0.820 . 1.000 0.546 0.773
Height z-score (Pakistan) 0.579 . 1.000 0.537 0.825
Math test score (Pakistan) 0.684 . 1.000 0.522 0.740

Panel B: Sample Size 300
Microenterprise profits (Sri Lanka) 0.668 0.731 1.000 0.526 0.689
Child schooling (Indonesia) 0.705 0.634 1.000 0.506 0.674
Household expenditure (Indonesia) 0.869 0.733 1.000 0.522 0.738
Labor income (Mexico) 0.874 0.712 1.000 0.525 0.725
Height z-score (Pakistan) 0.860 0.655 1.000 0.522 0.754
Math test score (Pakistan) 0.882 0.735 1.000 0.533 0.776
Notes:
Statistics are based on 10,000 simulations of each method. Details on methods and variables are 
in Table A2.  
 
 

  



Table 6: How do the different methods compare in terms of Power in detecting a given treatment effect?

Single Stratified Pairwise Big Draw with Stratified Matching
Random on 2 Greedy Stick minmax on on

Draw variables Matching Rule t-stat i.i.d noise i.i.d. noise
Panel A: Proportion of p-values<0.10 when no adjustment is made for method of randomization
Microenterprise profits (Sri Lanka) 0.144 0.106 0.100 0.139 0.154 0.119 0.086
Child schooling (Indonesia) 0.123 0.146 0.106 0.115 0.066 0.133 0.144
Household expenditure (Indonesia) 0.390 0.382 0.340 0.382 0.360 0.396 0.387
Labor income (Mexico) 0.172 0.097 0.154 0.157 0.097 0.150 0.218
Height z-score (Pakistan) 0.174 0.134 0.127 0.134 0.052 0.213 0.194
Math test score (Pakistan) 0.167 0.051 0.018 0.139 0.087 0.176 0.131

Panel B: Proportion of p-values<0.10 when adjustment is made for randomization method
(and for the single random draw controls for the seven baseline variables are added to the regression)
Microenterprise profits (Sri Lanka) 0.130 0.135 0.158 0.131 0.167 0.158 0.164
Child schooling (Indonesia) 0.109 0.131 0.115 0.112 0.095 0.111 0.144
Household expenditure (Indonesia) 0.409 0.424 0.574 0.419 0.461 0.382 0.356
Labor income (Mexico) 0.204 0.226 0.190 0.220 0.243 0.175 0.151
Height z-score (Pakistan) 0.246 0.201 0.200 0.251 0.281 0.162 0.157
Math test score (Pakistan) 0.183 0.313 0.304 0.187 0.217 0.158 0.170

Single Stratified Stratified Pairwise Big Draw with Stratified Matching
Random on 2 on 4 Greedy Stick minmax on on

Draw variables variables Matching Rule t-stat i.i.d noise i.i.d. noise
Panel C: Proportion of p-values<0.10 when no adjustment is made for method of randomization
Microenterprise profits (Sri Lanka) 0.288 0.274 0.278 0.267 0.280 0.280 0.289 0.279
Child schooling (Indonesia) 0.606 0.585 0.562 0.607 0.597 0.600 0.563 0.610
Household expenditure (Indonesia) 0.999 0.999 1.000 1.000 0.999 1.000 0.998 0.999
Labor income (Mexico) 0.494 0.486 0.480 0.475 0.489 0.474 0.490 0.484
Height z-score (Pakistan) 0.728 0.757 0.756 0.766 0.743 0.767 0.757 0.728
Math test score (Pakistan) 0.615 0.654 0.650 0.655 0.619 0.657 0.631 0.624

Panel D: Proportion of p-values<0.10 when adjustment is made for randomization method
(and for the single random draw controls for the seven baseline variables are added to the regression)
Microenterprise profits (Sri Lanka) 0.301 0.305 0.343 0.290 0.302 0.309 0.283 0.338
Child schooling (Indonesia) 0.608 0.596 0.589 0.602 0.619 0.595 0.559 0.607
Household expenditure (Indonesia) 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998
Labor income (Mexico) 0.584 0.561 0.541 0.761 0.584 0.582 0.493 0.602
Height z-score (Pakistan) 0.863 0.849 0.854 0.853 0.867 0.866 0.741 0.721
Math test score (Pakistan) 0.812 0.792 0.781 0.829 0.816 0.826 0.630 0.603
Notes:
Statistics are based on 10,000 simulations of each method. Details on methods and variables are in Table A2.
Simulated treatment effects are as follows

Child schooling: One in three randomly selected children in the treatment group who would have dropped out don't

Labor income: A 920 Peso increase in income (about 20% of average baseline income)

Math test score: An increase of one quarter of a standard deviation in the test score

Height z-score: An increase of one quarter of a standard deviation in the z-score, where the z-score is defined as standard 
deviations from mean US height for age

Sample Size of 30

Sample Size of 300

Microenterprise profits: A 1,000 Sri Lankan Rupee increase in profits (about 25% of average baseline profits)

Household expenditure: An increase of 0.4 in ln household expenditure per capita, which corresponds to about one half a 
standard deviation or moving a household from the 25th to the 50th percentile.

  



Table 7: How does stratification vary with the number of Stratum?
Simulation results

Stratified Stratified Stratified Stratified Stratified Stratified
on 2 on 3 on 4 on 2 on 3 on 4

variables variables variables variables variables variables
(8 strata) (24 strata) (48 strata) (8 strata) (24 strata) (48 strata)

Panel A: Imbalance - 95th percentile of difference in follow-up means
Microenterprise profits (Sri Lanka) 0.322 0.338 0.338 0.210 0.213 0.209
Child schooling (Indonesia) 0.399 0.346 0.369 0.219 0.211 0.212
Household expenditure (Indonesia) 0.337 0.335 0.343 0.194 0.193 0.191
Labor income (Mexico) 0.335 0.327 0.344 0.196 0.198 0.198
Height z-score (Pakistan) 0.297 0.299 0.310 0.186 0.191 0.189
Math test score (Pakistan) 0.285 0.298 0.316 0.180 0.181 0.184

Panel B: Power: Proportion of p-values<0.10 when no strata dummies included
Microenterprise profits (Sri Lanka) 0.129 0.138 0.144 0.274 0.281 0.278
Child schooling (Indonesia) 0.303 0.267 0.273 0.585 0.574 0.562
Household expenditure (Indonesia) 0.852 0.850 0.845 0.999 1.000 1.000
Labor income (Mexico) 0.170 0.161 0.180 0.486 0.480 0.480
Height z-score (Pakistan) 0.286 0.295 0.297 0.757 0.757 0.756
Math test score (Pakistan) 0.236 0.245 0.254 0.654 0.649 0.650

Panel C: Power: Proportion of p-values<0.10 when strata dummies included
Microenterprise profits (Sri Lanka) 0.186 0.273 0.242 0.305 0.327 0.343
Child schooling (Indonesia) 0.278 0.301 0.255 0.596 0.596 0.589
Household expenditure (Indonesia) 0.904 0.914 0.876 1.000 1.000 1.000
Labor income (Mexico) 0.204 0.212 0.199 0.561 0.541 0.541
Height z-score (Pakistan) 0.487 0.463 0.457 0.849 0.843 0.854
Math test score (Pakistan) 0.464 0.464 0.399 0.792 0.790 0.781
Notes:
Statistics are based on 10,000 simulations of each method. Details on methods and variables are in Table A2.

Sample Size 100 Sample Size 300

 

  



Figures 1-6: Distribution of Differences in Means between the Treatment and Control Groups 
and Baseline and Follow-up 

  
 

 
Figure 1a: Sri Lanka Microenterprise profits – sample size 30 
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Figure 1b: Sri Lanka Microenterprise profits – sample size 100 
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Figure 1c: Sri Lanka Microenterprise profits – sample size 300 
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Figure 2a: ENE Labor Income Data – sample size 30 
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Figure 2b: ENE Labor Income Data – Sample Size 100 
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Figure 2c: ENE Labor Income Data – Sample size 300 
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 Figure 3a: IFLS School Data – Sample Size 30 
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Figure 3b: IFLS School Data – Sample Size 100 
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Figure 3c: IFLS School Data – Sample Size 300 
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Figure 4a: IFLS Expenditure Data – Sample Size 30 

2.
5

  
 

0
.5

1
1.

5
2

Ba
se

lin
e

0
.5

1
1.

5
3 

ye
ar

s 
la

te
r

-2 -1 0 1 2
Difference in average ln hh expenditure p cap (weighted by std dev)

1 Draw 8 Strata Matched Big Stick Minmax

 
 

Figure 4b: IFLS Expenditure Data – Sample Size 100 
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Figure 4c: IFLS Expenditure Data – Sample Size 300 
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Figure 5a: LEAPS Math Test Score Data – Sample Size 30 
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Figure 5b: LEAPS Math Test Score Data – Sample Size 100 
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Figure 5c: LEAPS Math Test Score Data – Sample Size 300 
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Figure 6a: LEAPS Height Z-Score Data – Sample Size 30 
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Figure 6b: LEAPS Height Z-Score Data – Sample Size 100 
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 Figure 6c: LEAPS Height Z-Score Data – Sample Size 300 
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Figure 7: Sri Lanka Data  Figure 8: ENE Data 
P-Values on Difference in Outcome Variable 

at Follow-up vs. Baseline 
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P-Values on Difference in Outcome Variable 
at Follow-up vs. Baseline 
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Figure 9: If we observe baseline imbalance, and control for baseline variables, is there any 
difference in follow-up balance?  
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9b: LEAPS Math Test Score Data 300 Observations 
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Appendix 1: How would leading field experiment experts approach randomization for the same 
intervention? 

  
intervention is well targeted I'd expect only little variation in current income and so there would be no 

 
Our survey of experts presented researchers with the following question: 
Consider the following (hypothetical) pilot experiment being carried out. An intervention is being carried out with the goal of raising 
the incomes of day laborers by helping them gain new interview and employment skills. The pilot group consists of 100 men and 100 
women aged 20 to 45, all in the same geographic area. Baseline data include age, current income, current weekly hours of work, 
education, age, marital status, and household size. A colleague asks for your advice on how to assign 100 of these 200 individuals to 
the treatment. Follow-ups will be at 6 months and 1 year. Please describe how you would recommend that they carry out this 
randomization. If your answer depends on other information not provided here, state the conditions under which you would do one 
method vs another. Please be specific in terms of what variables if any they should stratify on, what you recommend they should do to 
check for balance, and whether (and how) they should take multiple random draws if you recommend doing this to ensure balance on 
particular variables. 
 
The responses to these questions were as follows: 

• I would just randomize. Stratifying on such a small sample will cause weird things in the data. 
• Random assignment with multiple draws; pick the one where the R-squared of the baseline data has the 

least explanatory power. My thinking here is that 200 units seems "small", so the potential for covariate 
imbalance in a single random draw large 

• I would recommend that they choose the characteristics most likely to be correlated with the outcome of 
interest and then stratify based on those characteristics. Afterwards, they can check the balancedness of 
the sample if they have the available data. 

• I would stratify on gender, education and current income. Then take a random draw after stratification 
and then check balance. 

• Given the relatively small sample size, I would want to make sure to stratify on variables that might 
interact with the treatment. Thus, I'd certainly want to stratify on age categories, education categories 
and possibly gender. If there is reason to believe, as a result of previous work on the efficacy of 
interview and employment skills training (I am not familiar with this literature), that there are other 
strong factors that would lead to heterogenous treatment effects, then I would add those factors as well 
(that's why gender is a maybe for me here). After stratifying, I would make multiple random draws, 
checking for which draw yields the best balance across all the variables I have. 

• I would stratify on gender, current income and current weekly hours of work, since these would all have 
1st-order effects on the estimated program effect. I would do this by generating variables for an 
individual's place in the income and weekly hours of work distributions (say by quartile) and then 
stratifying by these variables. After performing the randomization, I would check differences between 
the treatment and control groups in the other variables, (as well as in income level and hours worked 
since the levels might be slightly off if randomization is by quartile). If these differences were very 
large, I would re-run the randomization. If I had a bigger sample, I would stratify by more variables. The 
baseline variables listed in the example are all "important," so I would use all or a large subset of them 
in the randomization. But with only 200 people, I would keep to the variables listed above and check the 
rest. 

• I would definitely create matched pairs and then randomly select treatment/control among each of the 
matched pairs. The single-most important variable to match upon is the lagged dependent variable 
(current income), but the other variables are important too. I would perform an "optimal matching" 
algorithm per Biostatistics (2004), 5, 2, pp. 263–275. 

• Think about the covariates that are likely to affect the treatment effect, and use them to stratify. For 
example, if in the context you study you have good reasons to think that the treatment effect will be 
different for women than for men, or if you have no prior on gender differences but you want to be able 
to check for heterogeneity in the treatment effect across gender groups, then you should really stratify by 
gender. My guess is that, given the intervention you describe, you should stratify by gender and 
education. Also by current income if there is a lot of heterogeneity in income at baseline, although if the 



need to stratify. After you've stratified by the covariates that might most interact with the treatment, take 
a random
groups is sm
for at least one variab

 draw and check, for each available baseline variable, that the difference between the two 
all and cannot be distinguished from zero. If the difference is significant (say at the 10%) 

le, take a new random draw and check again. Keep doing this until you find one 
with no significant differences. If that's not possible, then choose one where the difference is in 
household size and/or marital status (unless you think that in your context these variables are likely to 
affect the treatment effect). Since you have baseline outcome data, your difference-in-difference 
estimator will take care of that difference.  

• I'd stratify based on sex, education, and weekly hours of work at baseline and have one random draw. 
• I would divide each into above/below median. Then do block randomization within each unique cell. 

Then program a loop which did that repeatedly and check the average t-statistic and max t-statistic in a 
regression or series of mean comparisons of continuous variables. I would also check to see if there are 
any particularly large outliers in any of the variables such that it is going to cause imbalance any way I 
look at it (and with only 100 obs, that is plausible). If there are perhaps 2 or 4 outliers (hopefully not an 
odd number!), then I may block randomize on the outliers to ensure they are evenly distributed (i.e., 
instead of above/below median, do three blocks, below-median, outlier, and above-median-below-
outlier. 

• I would stratify on outcome and sex, ranking men and women by income and randomizing within those 
pairs. I would do a single draw. 

• Stratify: really depends on on (i) underlying variation in data/outcomes and (ii) whether one expects 
treatment to vary much by strata. If not much treatment heterogeneity and low underlying variation I 
wouldn't stratify (except maybe gender given that seems implied); if treat heterogeneity but not too 
much underlying variation within strata then I would stratify by ex-ante most salient such dimension of 
heterogenity (if lots of underlying variation may just want to change sample to increase observations in 
the strata of interest and just stick to that). I generally prefer a simple random draw (within strata) But 
there is lots of underlying variation then given power considerations would pair-wise match using 
baseline data and then pick one in each pair randomly to treat assuming this does not worsen spillovers.  

• Stratify on all baseline variables, and randomize within each cell without subsequently checking for 
balance. 

• Obviously if there is a single covariate across which the researchers require perfect balance, they should 
stratify on that. If there are multiple covariates, then they encounter a dimensionality problem which is 
analogous to that found in matching estimators; how to weight differences in one dimension versus 
another. With few discrete categories this problem can be overcome by blocking & sub-stratification, 
but with numerous continuous covariates this is harder to do. Hence the common practice of writing 
loops which re-run the randomization until balance on a pre-specified set of characteristics has been 
reached. This pre-specified balancing criterion then becomes analogous to a stratification criterion, 
except that the standard errors on a simple t-test of pre-treatment means is no longer the correct test 
statistic because it is the result of many draws rather than just one. However in a difference-in-
differences test, the two are very similar except that a pre-defined stratification criterion with a single 
draw is simpler and so probably preferable. 

• I would probably encourage them to find an additional dataset with the outcome of interest, run a 
regression of the outcome of interest on the characteristics in the baseline group, and then stratify the 
sample into roughly 20 bins of 10 people each based on the characteristics that predict the outcome of 
interest. Barring any pre-period data on the outcome, this is not feasible, so you need to make those 
judgements based a priori on what outcomes you expect to predict the outcome of interest. My guess 
would be to stratify on something like gender, 2 age bins, 3 income bins, 2 education bins, for a total of 
2*2*3*2 = 24 bins of about 9 people each. Note that one factor that severely can constrain this is the 
way in which they do randomization. In many cases the complex stratification is not feasible, in which 
case, I would not do it. 

 

  



Appendix 2: Variables and Methods used in the Simulations (Table A2)

Panel A: Variables

  

Draw with Minmax T-Stat: ...the method calculates t-stats on difference in seven baseline variables listed in Panel A.  

Microenterprise profits in Sri Lanka (de Mel et al, 2007)
Profits, hours worked, female dummy, sales, capital, asset index, and "saw tsunami" dummy

Stratification categories (2 variables): Gender and quartiles of baseline profits
Stratification categories (3 variables): Gender, quartiles of baseline profits, and three groups of hours worked (<=38, 39-58, >58)
Stratification categories (4 variables):

ENE (Mexican Labor Market Survey)

Stratification categories (2 variables): Gender and quartiles of baseline income
Stratification categories (3 variables): Gender, quartiles of baseline income, and three groups of hours worked (<=42, 43-48, >48)
Stratification categories (4 variables):

IFLS school data

Stratification categories (2 variables): Gender and quartiles of baseline ln household expenditure per capita
Stratification categories (3 variables):

Stratification categories (4 variables):

IFLS expenditure data

Stratification categories (2 variables): Urban vs. rural and quartiles of baseline ln household expenditure per capita
Stratification categories (3 variables):

Stratification categories (4 variables):

LEAPS math test score data

Stratification categories (2 variables): Gender and quartiles of baseline math test score
Stratification categories (3 variables):

Stratification categories (4 variables):

LEAPS height z-score data

Stratification categories (2 variables): Gender and quartiles of baseline height z-score
Stratification categories (3 variables): Gender, quartiles of baseline height z-score, and 3 districts
Stratification categories (4 variables):

Panel B: Methods For each dataset,…
Pairwise Greedy Matching: ...the algorithm matches on seven baseline control variables listed in Panel A.
Big Stick Rule: ...the method calculates p-values on difference in seven baseline variables listed in Panel A.

Baseline control variables:

Baseline control variables:

Baseline control variables:

Urrban vs. rural, quartiles of baseline ln household expenditure per capita, and three groups of head of 
household education years (0-2, 3-6, and 7+)
Urban vs. rural, quartiles of baseline ln household expenditure per capita,  three groups of mothers 
education years (0-2, 3-6, and 7+), and head of household age above or below median

Math test score, english test score, age, gender, private school dummy, mother educated beyond 
elementary dummy, PCA asset wealth index

Baseline control variables:

Gender, quartiles of baseline profits, three groups of hours worked (<=38, 39-58, >58), and asset 
index below and above median

Baseline control variables:

"Unobservable" baseline variables: Dirtfloor dummy, has phone at home dummy, owns home dummy, age, married dummy, more than 
one job dummy, social security dummy, 4 region dummies, 8 industry dummies, 4 education dummies

Income, hours worked, female dummy, rural dummy, number of rooms in home, business owner (or 
self-employed) dummy, and 1 to 5 employees dummy

Female dummy, age, government school dummy, mother education years, household size, ln 
household expenditure per capita, urban dummy

Gender, quartiles of baseline ln household expenditure per capita, and three groups of mothers 
education years (0-2, 3-6, and 7+)
Gender, quartiles of baseline ln household expenditure per capita,  three groups of mothers education 
years (0-2, 3-6, and 7+), and urban vs. rural

Ln household expenditure per capita, household size, number of kids below 5, household head 
education years, male household head dummy, household head age, urban dummy

Baseline control variables:
Household size, dirt floor dummy, age, married dummy, migrant dummy, internal migrant dummy, 
relative abroad dummy, years of education, Muslim dummy, Tamil speaker dummy, risk taking index, 
relative risk aversion, digit span recall index, time taken to solve a maze, entrepreneurial self-efficacy, 
financial literacy, father owned a business dummy, mother owned a business dummy, going into 
business to care for family members dummy, age of business, business run out of home dummy, 
registered with District Secretariat dummy, registered with local government dummy, bank loan 
dummy, keeps records dummy, 2 industry dummies

"Unobservable" baseline variables:

Gender, quartiles of baseline income, three groups of hours worked (<=42, 43-48, >48), and business 
owner (or self-employed) dummy

Gender, quartiles of baseline math test score, and 3 categories of the PCA assets wealth index (<=-
0.4, >-0.4 & <=0.8, >0.8)
Gender, quartiles of baseline math test score, 3 categories of the PCA assets wealth index (<=-0.4, >-
0.4 & <=0.8, >0.8), and mother educated beyond elementary or not

Height z-score, weight z-score, gender, mother educated beyond elementary dummy, PCA asset 
wealth index, 2 district dummies

Gender, quartiles of baseline math test score, 3 districts, and mother educated beyond elementary or 
not


