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Globally, more than 130 million people are estimated to be 
in food crisis. These humanitarian disasters are associated 
with severe impacts on livelihoods that can reverse years 
of development gains. The existing outlooks of crisis-af-
fected populations rely on expert assessment of evidence 
and are limited in their temporal frequency and ability to 
look beyond several months. This paper presents a statistical 
forecasting approach to predict the outbreak of food crises 
with sufficient lead time for preventive action. Different 

use cases are explored related to possible alternative tar-
geting policies and the levels at which finance is typically 
unlocked. The results indicate that, particularly at longer 
forecasting horizons, the statistical predictions compare 
favorably to expert-based outlooks. The paper concludes 
that statistical models demonstrate good ability to detect 
future outbreaks of food crises and that using statistical fore-
casting approaches may help increase lead time for action.

This paper is a product of the Fragility, Conflict and Violence Global Theme and the Development Economics Vice 
Presidency. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to 
development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://
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1 Introduction

Despite progress in reducing poverty in recent decades (World Bank Group, 2018), one in

nine people in the world faces hunger (FAO et al., 2019). More than 130 million people

are currently estimated to be in food crisis (Food Security Information Network, 2020),

meaning that they are able to meet minimum dietary needs only through irreversible coping

strategies such as liquidating livelihood assets.

Food crises reflect the complex interactions of conflict, poverty, extreme weather, climate,

and food price shocks (Misselhorn, 2005; Headey, 2011; Singh, 2012; D’Souza and Jolliffe,

2013), that compound in the presence of long-standing structural factors (Maxwell and

Fitzpatrick, 2012). These humanitarian disasters are characterized by high levels of acute

malnutrition that lead to mortality in vulnerable populations.1 Beyond immediate loss of life,

food crises have long-lasting consequences for survivors as well, including inter-generational

health and education effects (Galler and Barrett, 2001; Veenendaal et al., 2013; Galler and

Rabinowitz, 2014; Asfaw, 2016; Li et al., 2017). Recognizing these costs, the international

community has long responded to food crises with humanitarian aid. In recent years, this

has been complemented with a growing emphasis on investment in prevention, since in

many cases it is more cost effective to prevent crises than to respond to them (Meerkatt

et al., 2015; Mechler, 2016).

Targeted prevention policies require a capacity to predict when, where and how food

crises will emerge, ideally well in advance (Kleinberg et al., 2015). To contribute to this

capacity, this paper explores statistical approaches to predicting food crisis. Statistical

models can offer systematized insight into the timing and location of possible future events,

using readily-observable and verifiable data. Moreover, model-based forecasts can assign

meaningful probabilities to future events, allowing expected costs, expected benefits and

uncertainty to be quantified.

In the context of food crisis prediction, balancing false positives (predicting food crises

when they do not occur) and false negatives (failing to predict food crises that do occur) is

particularly important. Outbreaks of food crises are relatively rare events, but when they

occur they are persistent. Failing to act early and prevent these protracted humanitarian

disasters comes at a high human cost. On the other hand, scarce humanitarian resources

limit the scope for responding to false positives, and hard choices must be made between

investing in competing options for prevention, including saving funds to address future

crises. These difficulties are compounded by the fact that in order to be useful, preventive

measures must be taken well before all relevant information is available.

In this paper, we explore how formal statistical forecasting models can help to address

these challenges. First, we generate monthly predictions at the sub-national level, optimizing

for alternative targeting policies that assume different costs of false negatives relative to

false positives. Second, because finance is often unlocked at a country level, predictions are

developed for the total number of people in crisis-affected districts in a country. The two

predictions can be derived from the same model and work in tandem: first highlighting the

1Black et al. (2013) conclude that almost half of child deaths globally are associated with undernutrition
and Devereux (2000) estimates that deaths due to famines in the 20th century equal those of World Wars I
and II combined.
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countries that are in need; then helping to allocate finance toward the districts that face

the highest risks. The empirical application uses 10 years of sub-annual assessments on

district-level food insecurity outcomes in 21 developing countries together with monthly

covariates that capture known drivers of food insecurity. The predictions are generated using

a Random Forest and a novel approach is deployed to adjust probabilistic predictions to

optimize the forecasting objectives of the paper. The forecasts are validated, up to a full year

ahead, against holdout data and the accuracy is compared to historical non-model-based

outlooks. The results indicate that, particularly at longer forecasting horizons, model-based

predictions compare favorably. The paper concludes that statistical models demonstrate

good ability to detect future crisis outbreaks for a set level of tolerance to false alarms and

that using them may help increase lead time for action.

This research contributes to understanding the ability of statistical models to anticipate

future food crisis in the particular context supporting early interventions. The paper builds

on several earlier efforts.2 Mellor (1986) discussed prevention strategies with an emphasis

on economic weakness, crop failure, and subsequent price signals as leading indicators of

famine. Price signals have been discussed further in particular by Seaman and Holt (1980),

and their statistical significance has been investigated empirically in the context of the

Ethiopian famine of 1972-1974 (Cutler, 1984) and the famine of 1984-1985 in Niger (Khan,

1994). Seaman (2000) explored a dynamic modeling approach to assess risks based on

rapid household survey data and simulations of coping strategies under income and food

supply shocks. More recently, researchers have begun to use machine learning techniques for

prediction. For example, Mwebaze et al. (2010); Okori and Obua (2011) presented attempts

at predicting household famine in Uganda between 2004 and 2005 using household data.

The importance of using systematic approaches to predicting food crises and allocating

humanitarian resources effectively is likely to increase in coming years as key drivers of

food insecurity are expected to worsen into the 21st century. Historical achievements in

eradicating poverty have largely coincided with substantial degradation of environments

(Stern et al., 1996; Andrée et al., 2019). Degrading environments, climatic extremes, and

growing populations will continue to put pressure on future agricultural systems (Grainger,

1990; Ingram et al., 2010; Myers et al., 2017; Diogo et al., 2017). These developments

place obstacles in the path to zero hunger, specifically for the rural poor that rely on local

natural assets for income and food consumption (Duraiappah, 1998; Barrett and Bevis,

2015; Barbier and Hochard, 2018). A further benefit of model-based predictions of food

insecurity is that they offer an alternative to the allocating of scarce resources based on

qualitative assessments, instead relying on readily-verifiable and openly available data in a

systematic way to predict the deterioration in food security when action is delayed.

The paper is structured as follows. Section 2 introduces the data, section 3 develops a

framework for the validation and calibration of probabilistic predictions, paying particular

focus to balancing false positives and false negatives. It then details an application using a

Random Forest algorithm. Section 4 presents key results, and section 5 concludes. Additional

results are found in the supplementary appendices.

2Apart from the food insecurity literature mentioned here, the paper also relates to the work of Celiku
and Kraay (2017) who explore predicting conflict outbreaks in the similar context of weighted prediction
loss functions.
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2 Data

2.1 Target variable: food crisis outbreaks

The aim of this paper is to forecast transitions into critical states of food insecurity with

enough lead time to take action. We obtain historical data on food insecurity from periodic

assessments performed across 1,162 districts in 21 developing countries over the period

from 2009 to 2020, obtained from FEWS NET.3 Food insecurity is measured using the

Integrated Phase Classification (IPC) system, an analytical framework that follows evidence-

based guidelines to qualitatively classify the severity of food insecurity and prescribe

policies to mitigate risk (Hillbruner and Moloney (2012) review the process). The IPC

scale distinguishes five phases of food insecurity: (1) minimal, (2) stressed, (3) crisis, (4)

emergency and (5) famine. Our predictions are focused on a binary “crisis indicator” defined

as IPC ratings of crisis or worse, i.e. phases (3), (4), and (5). This choice is motivated by

the fact that the IPC scale recommends a significant shift in policies in order to mitigate,

rather than manage the risk of, severe malnutrition outcomes and death once a district

enters crisis. In particular, during stressed (2) conditions and below the recommended focus

is on risk management, while at crisis levels (3) and above this turns into urgent action to

mitigate outcomes.

The FEWS NET data are reported at a sub-national level that follows a combination of

administrative boundaries (admin2) and “livelihood zones”.4 A one-on-one mapping from

livelihood zones to administrative districts does not necessarily exist and the former may

change over time based on expert opinions. To obtain a consistent time series, we map all

the data to standard admin2 districts using a spatial overlay, assigning values to districts

by majority coverage. The FEWS NET data are reported at quarterly frequency from 2009

to 2016, and then every four months afterwards. Our sample of food crisis observations

used for estimation and cross-validation purposes extends through February 2019. Data for

June and October 2019, and February 2020, are considered purely for temporal holdout

validation. We develop predictions up to a full year ahead, through February 2020, using

covariates that run through February 2019. Some of the district assessments are missing.

However, our approach allows us to generate predictions for all districts where covariates

are available, even if food crisis outcomes were not.

The IPC rating scale is intended to reflect the actual on-the-ground conditions inclusive

of any humanitarian assistance. Since we are interested in predicting food crises themselves

and not the impacts of associated humanitarian response, we need to net out the latter. Since

2012, the FEWS NET data marks locations where humanitarian assistance was significant

enough to have reduced the IPC phase by one. These markers are used to reconstruct the

relevant minimum IPC phases that would have been issued absent humanitarian presence.

Figure A.1 in supplementary Appendix A contains the resulting data and Table 1 summarizes.

3FEWS NET is a leading food insecurity information provider funded by USAID that regularly publishes
analysis and data on current and future food insecurity outcomes.

4Admin2 districts are defined by Global Administrative Unit Layers (GAUL); livelihood zones are available
from FEWS NET and define sub-national geographic areas of a country, that may cut through administrative
borders, in which people are assessed to share similar options for obtaining food and income and have similar
access to markets.
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The summary statistics reveal several important basic insights. Population-weighted

average IPC ratings across districts generally are lower than simple averages, indicating

that food insecurity is more common in sparsely-populated districts. The minima and

maxima highlight that most countries have at some point experienced crisis or worse, but

famine declarations (IPC rating of 5) are extremely rare occurrences. Zambia is the only

country in our sample that has not experienced food crisis in this period. The number of

observations available in each country is listed, with “Crisis+” denoting the number of food

crisis observations. “Outbreaks” correspond to the subset of food crisis observations that

were preceded by a phase 1 or phase 2 observation. Predicting these transitions into food

crisis is the primary goal of this paper. While approximately 16% of observations correspond

to food crises, only a small share of these classify as transitions into new outbreaks of food

crisis (1,723/6,143 ∼ 28%). This highlights why the issuance of timely warnings is important:

over two-third of classified transitions into crisis are followed by extended periods of crisis,

at which point it is too late for prevention.

Table 1: Descriptives of FEWS NET ratings aggregated to admin2, netted of humanitarian
assistance effects, used for estimation and cross-validation.

IPC Rating Crisis Indicator Observations Coverage

Country Mean Pop. Mean Min Max Mean Pop. Mean Total Crisis+ Outbreaks Districts Time Periods

Afghanistan 1.41 1.40 1 4 0.08 0.07 1,224 94 59 34 36
Burkina Faso 1.08 1.08 1 3 0.00 0.00 1,440 5 5 45 32c

Chad 1.45 1.41 1 4 0.10 0.09 2,448 251 129 68 36
Congo, Dem. Rep. 1.91 2.00 1 4 0.21 0.26 218 46 11 50a 8d

Ethiopia 1.83 1.74 1 4 0.26 0.22 2,664 681 174 74 36
Guatemala 1.43 1.30 1 3 0.08 0.05 792 62 28 22 36
Haiti 1.51 1.38 1 3 0.07 0.04 1,512 103 64 42 36
Kenya 1.46 1.42 1 4 0.08 0.08 2,556 213 60 71 36
Malawi 1.48 1.48 1 4 0.16 0.16 972 152 87 27 36
Mali 1.19 1.10 1 4 0.04 0.01 1,800 68 48 50 36
Mauritania 1.43 1.44 1 4 0.07 0.09 442 32 16 13 34c

Mozambique 1.18 1.13 1 3 0.05 0.04 396 21 7 11 36
Niger 1.36 1.27 1 4 0.07 0.05 2,412 173 94 67 36
Nigeria 1.78 1.20 1 4 0.20 0.02 3,564 710 231 99 36
Somalia 2.48 2.44 1 5 0.40 0.37 2,590 1,040 188 74 35d

South Sudan 2.13 2.16 1 5 0.33 0.35 2,808 937 232 78 36
Sudan 1.41 1.34 1 4 0.10 0.07 2,640 265 107 80 33d

Uganda 1.10 1.06 1 3 0.02 0.01 2,016 33 12 56 36
Yemen, Rep. 3.42 3.26 2 4 0.93 0.89 960 892 35 69b 14b,d

Zambia 1.02 1.01 1 2 0.00 0.00 2,304 0 0 72 32c

Zimbabwe 1.54 1.44 1 4 0.17 0.13 2,160 365 136 60 36

Total 1.60 1.41 1 5 0.16 0.10 37,918 6,143 1,723 1,162 116 monthse

The descriptive statistics are calculated using FEWS NET ratings, netted of humanitarian assistance effects,
taking admin2 districts as the level of observation. “IPC Rating” refers to the netted data on the original 1-5
scale, while “Crisis Indicator” refers to the binary indicators of phases (3) and above. The data dimensions
under “Coverage” refer to the number of admin2 districts in the country, disregard of whether all of these
districts cover livelihood zones that receive ratings from FEWS NET, and the number of assessment periods
from the first assessment to the last (February 2019). The June/October 2019 and February 2020 assessments
are used only for validation and not included in this table. Further guidance on data coverage is as follows:
a partially covered, b missing at random, c latest assessment periods missing, d earliest assessment periods
missing, e from first to last assessment: July 2009 - February 2019.

2.2 Covariates of food crisis events

We forecast transitions into food crisis using only readily-observable covariates, available

monthly at the admin2 district level prior to outcomes. We deliberately do not use lagged
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values of the IPC ratings as predictors.5 This allows us to generate predictions that can be

updated monthly based on available data, independently of whether recent IPC ratings are

available. We distinguish four key groups of covariates:

Structural factors

Structural factors capture time-invariant vulnerability to food insecurity. We proxy these at

the district level with spatial trends, population counts, land area, terrain ruggedness and

land use shares (cropland and pasture). In addition, we include fixed effects to capture basic

country-specific seasonal variation. Nonlinear prediction models like the Random Forest we

deploy can exploit interactions between any (combination) of structural factors and other

time-varying covariates to capture heterogeneity.

Environmental factors

We rely on remote sensing data to track environmental factors relating to food production.

Food production depends on soil moisture content, which can be monitored through the

inputs (rainfall) and outputs (evapo-transpiration) of the water balance equation. We also

proxy for food plant health directly using the normalized difference vegetation index (NDVI),

which is a commonly-used satellite-imagery-based measure of vegetation coverage (Ross

et al., 2009; Brown, 2010).

Violent conflict

Violent conflict is an important factor that can impact food insecurity, by disrupting social

systems and blocking access, or may signal other factors that contribute to food insecurity.

For example, riots and protests may be the sign of an ailing economy, while violent attacks on

civilians by non-state actors can cause displacement of people and disrupt food production

and distribution (Brück and D’Errico, 2019; Maxwell et al., 2020). We use the count of

conflict events and the number of fatalities in order to capture events of differing intensity,

ranging from protests and riots to lethal attacks.

Food price inflation

Food price inflation can directly cause food insecurity by raising the cost of living for

vulnerable households (Baffes et al., 2008; Conceição and Mendoza, 2009). Rising prices

can also signal whether fiscal space is adequate or tightened, for example due to episodes

of conflict (Adam et al., 2008). Over longer time horizons, price uncertainty may lead

businesses to postpone investments, see (Koomen et al., 2015; Andrée et al., 2017) for the

specific case of agricultural investments. We use monthly sub-national food price inflation

estimates developed by Andrée (2020a) to capture these important dynamics.6

5The impact on the forecasting performance is insignificant but the choice results in larger models. Note
that, under suitable conditions, a finite-order moving average approximation of a lower-order autoregressive
process remains reasonably accurate. Since innovations can be substituted by exogenous variables by defining
a process for lower-level constituents, stable autoregressive processes may also be approximated using a
sufficient number of lags of relevant exogenous variables.

6The paper assembles sporadically available food price data collected by the World Food Programme, and
uses a stochastic imputation that leverages unobserved cross-correlations between intermittent market-level
price time series of individual food items to impute price data for up to six staple foods for all markets and
months in a given country. These are aggregated into a simple equally-weighted geometric price index and
interpolated geographically using inverse distance weighting.
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2.3 Data processing

Table A.1 summarizes the basic covariates and their sources. To better serve decision-

making, a more transparent feature set is preferred over a highly processed one. For this

reason, we perform only minimal additional data processing. Running maxima of conflict

counts and intensity are calculated to capture the worst events that have occurred in the

recent past. Second, food price inflation and changes therein are calculated over alternative

time windows.7 After adding these features, spatial averages using 4-nearest-neighbors

are calculated for all predictors to capture regional dynamics. The entire feature set is

then lagged temporally, thus including temporal lags of spatial lags, to capture dependence

on the recent and more distant past. Up to the 12-th lag is included of all time-varying

predictors, always ensuring that only information prior to an outcome enters the models.

For example, the 4-month ahead predictions use the 4-th to 12-th lag, while the 12-month

ahead predictions only use the 12-th lag.

To keep the number of predictors at a modest level, we restrict the maximum linear

correlation between any two predictors in the covariate space. In particular, we calculate

pair-wise correlations and select predictors that have correlations greater than 0.75, and, from

this subset of highly correlated predictors, drop the one with the highest overall correlation.

We repeat this process iteratively until the 0.75 threshold is no longer breached. The result

is a set of processed features that is similar in dimension to the original unprocessed feature

set (including temporal lags), while capturing more diverse signals, see Appendix Table A.2.

To assess the benefit of these processing steps, we also evaluate the predictive performance

of simply using the original unprocessed features of Table A.1 and their temporal lags.8 We

refer to this as the “basic” feature set, and the more processed feature set as the “wide”

feature set. Results show that the “wide” feature set provides important benefits, hence

it is the main focus of the paper. Additional detail on the comparison of the “wide” and

“basic” feature sets is available in supplementary Appendix B.

3 Prediction and Validation Framework

3.1 Loss functions

We calibrate our predictive model to minimize prediction loss functions that penalize false

positives (incorrectly predicting food crises that do not occur) and false negatives (failing

to predict food crises that do occur). We allow for a range of relative weights on these two

types of errors. To specify these prediction loss functions, the following notation is helpful.

Recall that our target variable is a binary variable taking the value 1 if a food crisis (defined

7Specifically: a 3-month running maximum of the 3-month simple moving average of both conflict counts
and death intensity, a 6-month running maximum of the 6-month simple moving average of both conflict
variables, a 3-month and 6-month difference of the log food price index, and a 3-month, 6-month and
12-month difference of monthly year-to-year food price inflation.

8Allowing for pair-wise correlation up to 0.95 to stay as close to the “unprocessed” situation but avoiding
possible numerical problems with some of the other, linear, prediction algorithms that were tried. The
Random Forest leads to nearly unchanged results if this step were to be dropped as it performs feature
selection. Note, however, that variable importance scores may not provide a realistic estimate as two highly
correlated variables can both be used to split a decision tree without concrete preference for any one variable.
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as IPC categories, 3, 4, or 5) is observed, and 0 otherwise. For convenience we sometimes

refer to 0 and 1 generically as “class labels” and the observations corresponding to food

crises as the “positive class”. Define Y ∗ as a column vector containing the class labels,

stacking all countries/districts/months where an IPC rating is observed. Define Ŷ ∗ as the

corresponding column vector of binary predictions, and P̂ ∗ ∈ [0, 1] as a column vector of

predicted probabilities of the positive class.

The binary outcomes and corresponding predictions are defined for all entries in the

data where an IPC rating is observed. However, since our primary focus is on predicting

transitions into food crisis, we focus on a subset of observations when evaluating predictions.

This subset consists of all country/district/month observations containing an IPC rating, and

for which the previous IPC rating is 1 or 2, i.e. not a food crisis. That is, this subset consists

of all non-crisis observations that either are followed by another non-crisis observation,

or by a transition into food crisis. In this way, we eliminate from the validation set all

observations that correspond to ongoing food crises and focus our validation exclusively on

predictions of outbreaks of new food crises – before they occur. More specifically, define Y ,

Ŷ and P̂ as the sub-vectors of Y ∗, Ŷ ∗ and P̂ ∗ containing the entries that were preceded

by non-crises, let I denote a conformable vector of ones, and let w ∈ [0, 1] denote a scalar

weight. We evaluate predictive performance using these two prediction loss functions:

LA(Y, Ŷ ; w) = w
Y ′(I− Ŷ )

Y ′Y
+ (1− w)

(I− Y )′Ŷ

(I− Y )′(I− Y )
, (1)

and

LB(Y, P̂ ; w) = w
−Y ′ ln(P̂ )

Y ′Y
+ (1− w)

−(I− Y )′ ln(I− P̂ )

(I− Y )′(I− Y )
. (2)

Note that in LB, the natural log operator ln(·) is understood to apply element-wise. These

loss functions are oriented so that lower values of LA and LB correspond to better predictions.

Both loss functions are weighted averages of two terms corresponding to prediction errors

made when the true state is 1 versus 0. LA is a weighted average of the false negative rate

and false positive rate while LB is a similarly weighted Log Loss function.

The difference between Equation 1 and Equation 2 is that LB simply replaces binary

entries used to count the false positives and false negatives, with a continuous penalty that

scales with the logarithm of the predicted probability. This means that, when a transition

into food crisis occurs, models that fail to predict these transitions with a high probability

are penalized exponentially-heavily for predicting values closer to 0. Vice-versa, if the

model predicts a high probability of a transition into food crisis and it does not occur, the

penalty again increases exponentially, only now for predictions closer to 1. Calibrating a

prediction algorithm to minimize LB will thus result in probabilities that are close to 1 (0)

when transitions into food crises do (do not) occur. We calibrate our prediction models to

minimize LB, and we also report false negative and false positive rates together with LA

because of its more intuitive interpretation.9

9The motivation behind this approach is that LB is a proper scoring rule (Gneiting and Raftery, 2007)
that ranks models according to their distance to the optimal model (Andrée, 2020b). Minimizing LB can be
understood as maximizing the expected utility of a predictive distribution such that w determines utility
trade-off. Propriety encourages the model to make careful predictions and to be honest about the level of
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In both loss functions, the scalar parameter w governs the relative weight assigned to

prediction errors made when the actual outcome is or is not a transition into food crisis.

The paper considers three values with a clear policy interpretation. For identical rates,

• w = 1
3 : failing to anticipate a crisis is half as costly as raising a false alarm,

• w = 1
2 : failing to anticipate a crisis is as costly as raising a false alarm,

• w = 2
3 : failing to anticipate a crisis is twice as costly as raising a false alarm.

In our context, this weighting of prediction errors is important since transitions into food

crisis are rare but costly. Minimizing unweighted loss would result in a prediction model

that emphasizes correct prediction of non-food crisis observations and neglects transitions

into food crisis simply because they are rare. As an example, with our data, a model that

predicts none of the transitions can score an overall Accuracy on all data of over 95%. In

the weighted loss functions, model performance is instead quantified based on a pre-specified

policy interpretable parameter rather than the data frequencies.

To calibrate predictions effectively for the different weightings, we follow the strategy

proposed by Andrée and Kraay (2020). The idea here is simple. Predicted class probabilities

that strongly discriminate between outcomes are more useful for policy purposes than ones

that do not. For example, a prediction model that assigns probabilities of 0.49 to the 0 class

and 0.51 to the 1 class is less useful to discriminate between risks than one that assigns

a low (high) probability to the former (latter). Moreover, the weight in the loss function

determines whether the preference for prediction bias is upward or downward. LB(w) can

often be improved by adjusting both the level of confidence and the general direction of

probabilities toward the high-cost outcome. We make use of a simple transformation of the

predicted probabilities. The predicted class labels are generated according to:

Ŷ =

1, {P̂ = g(P̄ ;α, β)} > .5

0, {P̂ = g(P̄ ;α, β)} ≤ .5
. (3)

where the predicted probability P̂ = g(P̄ ;α, β) is a transformation that depends on two

tuning parameters α and β and an input probability P̄ generated by a model of interest as

follows:

P̂ = g(P̄ ;α, β) =

P̄αβ(1−α) P̄ ≤ β

1− (1− P̄ )α(1− β)1−α P̄ > β
. (4)

The parameter β ∈ [0, 1] plays the role of a cutoff probability above which the predicted

probability for the positive class should be increased. The parameter α ∈ R>0 controls the

confidence of the transformed probabilities, with higher values of α bringing P̄ closer to

certainty. In particular, LB encourages confidence in probabilistic predictions but punishes over-confident
predictions. This means that when the LA of the optimal model is low, then minimizing LB results in
probabilities close to actual outcomes. If, on the other hand, LA of the optimal model is high due to a
high degree of randomness in the data, then minimizing LB results in probabilities that do not strongly
discriminate between outcomes. Note that when the outcome is fully random, LB is minimized by predicting
a probability equal to w. This is easily verified. This shows a straightforward connection between the two
loss functions. Drawing class labels randomly with the probability that minimized LB(w) on a random data
set results in a ratio between the false positive rate and false negative rate that is equal to their relative
weight in LA(w).
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zero (one) when the input probabilities are below (above) the cutoff value. In this paper we

work with a finite number of values α ∈ [0.2, 2].10

The optimization and validation is thus summarized as follows. We generate predicted

probabilities P̄ from a statistical model, which may depend on classical tuning parameters.

We then generate transformed probabilities P̂ using Equation 4 and choose values for

α and β that minimize LB. The optimized probability predictions are used to generate

class labels using Equation 3 which are finally used to evaluate LA. Note that, if P̄ is

already appropriately balanced and of the preferred level of confidence, then hyper-tuning

Equation 4 will lead to minimal re-scaling as the untransformed probabilities are nested

by the function. Hence, the strategy can effectively be combined with other techniques for

unbalanced learning tasks (including up-sampling).

3.2 Cross-validation setup

We perform 5 repetitions of 10-fold cross-validation.11 The full sample Y ∗ consists of

37,198 country/district/month observations containing an IPC rating. The sub-vector

of validation cases Y contains 30,948 cases, eliminating all cases in which a food crisis

observation is preceded by another food crisis observation. We train the model using the

full sample, since a prediction model that uses a larger and more diverse sample of crisis

cases achieves lower LB even when it is evaluated only on the transition sample Y . The

folds are mutually-exclusive and exhaustive equally-sized partitions of the full allowable

validation sample Y , defined as Ytest,1, Ytest,2, ...Ytest,k=10. These partitions are generated

by stratified random sampling to preserve the overall class distribution of Y ∗ within each

fold.12 The 10 training sets are generated by removing the validation cases from the full

sample according to Ytrain,k = Y ∗ \ Ytest,k.
Given the relatively small and unbalanced data set, we create additional synthetic cases

followed by standard up-sampling. In particular, while predictors are defined for each month,

Ytrain,k is only defined for the rows in the data for which IPC assessments are available. We

create additional training cases by assigning each binary IPC outcome to the previous and

following months. The synthetic training examples are added within folds, only to training

cases and not validation samples. Standard up-sampling is then applied to the result.13

10The paper considers only values of α up to 2 although higher values are possible and would result in
even stronger transformation of predictions. The reason to investigate only up to a value of 2, implicitly
confining our search only to reasonably smooth transformations, is to avoid over-fitting the relatively scarce
number of validation samples.

11Standard cross-validation can be applied in the context of spatially and temporally dependent observations
if the model is flexible enough to over-fit the data, see Bergmeir et al. (2018). If the model over-fits the
data strongly, it will score badly in the cross-validation. If the model under-fits the data, and residuals are
still correlated, then the independence assumption is invalidated. If the level of mis-specification is mild,
and residual dependence is sufficiently weak, then corrections can still be made to the LLN (Pötscher and
Prucha, 1997; Andrée, 2020b). Note that Random Forest is a method that eagerly fits correlations in a data
set of modest dimensions.

12Stratified sampling ensures folds always contain observations in both classes. Note that Equations 1
and 2 average two components, hence consistent estimation requires consistent estimation of two lower level
components. Thus, the validation strategy requires a sufficient number of validation cases in both classes, but
the exact class distribution in the validation sample does not matter for our loss criteria as w is pre-defined.

13This is important, adding synthetic training cases based on a 1 month window around the test cases
would invalidate the weak dependence assumption, needed for consistent validation, that is imposed at the 3-
to 4-month interval. The approximate size of each resulting training set is ∼ 105, 428 samples.
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3.3 Application using Random Forest

The prediction and validation framework is applicable to any binary classification algorithm

that generates predicted probabilities for the positive class. In this paper we use a Random

Forest classifier.14 We focus on this particular approach in light of the additional results

provided in supplementary Appendix B which show that in this same data set, the Random

Forest offers a substantial improvement in predictive performance over simple linear models,

but that little further is gained by moving to more complex learners such as neural networks.

Implementing the algorithm requires specifying several tuning parameters that control

the structure of the forest or its trees. We select these to optimize predictive performance

using the cross-validation procedures described above. This is implemented by searching

over a practical grid of values.

First, since we require predicted probabilities, we implement a probability forest in

which trees are grown as regression trees following Malley et al. (2012). An important

tuning parameter is minimum node size that regulates tree depth by setting the minimum

number of cases at the terminal nodes of the decision trees. We use the original value of 1,

as well as the default value of 10 in the implementation of Wright and Ziegler (2017).15

The out-of-sample performance is heavily dependent on the predictive power of individual

trees and the correlation between them.16 The relationship between the two is mainly

one of trade-offs and can to a certain degree be regulated by optimizing over the number

of variables that are used to grow individual decision trees.17 This number is controlled

by mtry, and its default value is
√

(D) where D is the number of predictors in the data

set. Performing a grid search for mtry is computationally challenging and in this paper is

made feasible by focusing on particular combinations of tuning-parameters.18 In particular,

the grid search is performed only when the minimum node size is 10, and makes use of a

14The algorithm was introduced by Breiman (2001) as a generalization of the tree bagging by combining it
with the random subspace method of Ho (1998). It has quickly become a popular non-parametric classification
tool due to its ability to generate good results using standard tuning parameter values and its robustness to
noise. It constructs prediction rules without imposing strong prior assumptions on the functional form of the
relationship between predictors and the target variable. Good review articles include those of Biau (2012);
Biau and Scornet (2016). Random Forest generates results that are accurate while relatively straightforward
to interpret (Banerjee et al., 2012; Petkovic et al., 2018).

15Breiman’s original algorithm grows trees to purity, that is, until each terminal node contains only
observations from one class. When nodes are pure, the probability estimate at each terminal node is thus
always either 0 or 1. This means that, apart from a low correlation between trees, a large number of them is
needed to obtain precise estimates of probabilities by the forest. Increasing minimum node size allows the
frequency of class occurrence at the terminal nodes itself to be a reasonable probability estimate.

16The generalization error converges almost surely to a limit as the number of trees in the forest grows.
We use 500 trees, corresponding to the default value in the implementation by Wright and Ziegler (2017).
The magnitude of expected out-of-sample error in the limit in turn depends on the predictive strength of the
individual trees and the correlation between them. See also (Scornet, 2017).

17The predictive strength of individual trees can to a degree be improved by allowing more variables to
enter individual base learners. However, while larger values for mtry may result in stronger base learners,
it also leads to a higher correlation between them. In particular, as mtry → D, the probability that two
base trees contain the same variables approaches 1. If many individual trees contain a highly similar set
of variables, then their predictions become more correlated. Smaller values for mtry may instead increase
diversity of base learners, at the cost of lower individual predictive power.

18Larger values of mtry significantly increase computational cost as it becomes more complex to process
the individual trees. A grid search for mtry is more manageable in combination with tuning values that lead
to simplifications elsewhere in the calculations; higher minimum node size that leads to faster individual
tree-building, and randomized splitting does not require calculating Gini coefficients.
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faster splitting rule introduced by Geurts et al. (2006).19 Table 2 lists the full combination

of tuning parameters. Overall, tuning the parameters of the probability transformation

in Equation 4 (α, β), had by far the biggest impact on performance with respect to our

balanced evaluation criterion.

Table 2: Random Forest tuning parameter combinations.

splitrule mtry min.node.size α (probability scaling) β (probability constant)

Gini
√
D 1, 10 (1:10)/5 (1:100)/100

ExtraTrees
√
D 1, 10 (1:10)/5 (1:100)/100

ExtraTrees (0.5, 0.75, 1.25, 1.5)×
√
D 10 (1:10)/5 (1:100)/100

The column names correspond to the tuning-parameters considered in the tuning grid. Row entries list combinations
of values that result in unique model specifications. Thus (bottom row), when splitrule equals ExtraTrees and
min.node.size equals 10, a range of different values for mtry is considered. Moreover, for each possible combination
of splitrule, min.node.size and mtry, 10× 100 unique combinations of (α, β) are tried.

4 Results

In this section we report on the prediction performance of our main model. Section 4.1

investigates the prediction of food crisis outbreaks sub-nationally, using the prediction

and validation framework of the previous section. Section 4.2 investigates forecast results

aggregated to a country level, again relying on cross-validation procedures. We also validated

the models in a temporal holdout exercise. Overall, we find that this additional validation

exercise corroborates the main findings presented below, the additional results are contained

in supplementary Appendix B, section B.2. Finally, section 4.3 describes procedures to

interpret the relative importance of different factors for model predictions.

4.1 Validation of district-level predictions

To set a performance baseline, we begin by summarizing the predictive performance of a

simple binary crisis indicator derived from the existing future outlooks produced by FEWS

NET. These follow the identical definition as our target variable, only now applied to the

future outlooks.20 These expert-based outlooks are closely watched by policy makers, and

so their near-term and medium-term binary equivalents provide a natural benchmark with

19The original approach splits trees based on a measure of node purity. This increases the probability that
the same variables ends up at the majority of root nodes when mtry increases, leading to high similarity
between trees. Countering the correlation through randomization can produce stronger and more diverse
trees that improve forest accuracy. This paper implements randomization of splits using the extraTrees
algorithm introduced by (Geurts et al., 2006). This selects cut-points at random, i.e., independently of the
target variable. Key advantages are potentially increased forest accuracy due to lower tree correlation and
faster runtime which makes tuning mtry more practical and more interesting.

20In addition to its categorical ratings of actual food insecurity conditions, FEWS NET also reports a
“near-term outlook” and a “medium-term outlook”. These outlooks represent preliminary assessments of the
most likely food security ratings one and two reporting cycles ahead. The near-term outlook corresponds
to either 3 or 4 months ahead while the medium-term outlook corresponds to either 6 or 8 months ahead,
depending on the frequency of the reporting cycle which increased to 4 months in 2016. Recall that these
outlooks may also follow livelihood zones, in which case we aggregated them to the district level. In an
identical treatment to the outcomes, we also net the outlooks from the projected humanitarian assistance
effects, and thus validate the binarized indicators purely on their ability to signal the need for action,
disregard of whether that action was already anticipated. This is in line with the use case explored for
model-based forecasts.
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which to compare the model-based forecasts. Because FEWS NET data do not assign a

probability to future outcomes, we only focus on the LA loss function of Equation 1. Table

3 contains the results.

The most striking feature of Table 3 is the extreme imbalance between false alarms – an

FPR of around 2% – and failure to predict – an FNR of over 74%. This clearly indicates

that the historical performance baseline is characterized by a strong aversion to predicting

transitions into food crises that subsequently do not occur. In the context of our evaluation

framework, this can be interpreted as evidence of a very high implicit weight on false

positives and a low weight on false negatives, i.e. a low value of w.21 The low false alarm

rate does not mean that those warnings that were raised, did also most likely predict a

transition correctly. To the contrary, only 35% of the projected transitions into crisis were

followed by actual transitions. Comparing the frequency of transitions into crisis in both

the historical assessments and outlooks also highlights the conservative nature. Although

transitions into crisis account for 5.3% of the historical assessment sample, only 3.2% of the

binarized outlooks projected a transition, see Table B.1 in supplementary Appendix B.

Table 3: Historical performance baseline calculated from binarized FEWS NET outlooks.

Error Types LA

FNR FPR w=1/3 w=1/2 w=2/3

Near-term 74.3% 1.4% 25.7% 37.8% 50.0%
Medium-term 79.4% 2.2% 27.9% 40.8% 53.7%

FNR and FPR of binarized historical FEWS NET outlooks in the near-term (3-4 months, validated against outcomes
one reporting cycle later) and medium-term (6-8 months, validated against outcomes two reporting cycles later) and
three weighted averages (LA) with weights w and (1-w) for prediction errors in the positive (negative) class. Both
the binary outcomes and outlooks are netted of humanitarian assistance effects. The validation was performed at the
admin2 level, and only for observations that were preceded by non-crisis levels of food insecurity. This specifically
describes prediction performance for new outbreaks of food crisis before they occur. The validation sample spans all
available projection-outcome pairs from July 2009 - February 2019.

Table 4: Cross-validated performance of predictions from the wide Random Forest.

Error Type Balanced Metrics

FNR FPR LA LB

w 1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3

h=4 19.7% 16.5% 16.0% 6.8% 8.2% 8.4% 11.1% 12.3% 13.5% 0.25 0.29 0.31

h=8 19.1% 16.6% 16.6% 7.3% 8.5% 8.5% 11.2% 12.5% 13.9% 0.27 0.30 0.33

h=12 20.9% 20.9% 9.9% 10.0% 10.0% 19.0% 13.6% 15.5% 13.0% 0.30 0.34 0.35

The first six columns report false negative rates and false positive rates for models optimized for the indicated value of
w. The next six columns report weighted averages and weighted Log Loss values (LB) with weights w and (1-w) for
prediction errors in the positive (negative) class. The statistics have been cross-validated for h=4-, 8- and 12-month
ahead forecasts of crisis outbreaks. The validation was performed at the admin2 level, and only for observations
that were preceded by non-crisis levels of food insecurity. This specifically describes prediction performance for new
outbreaks of food crisis before they occur. The validation sample spans from July 2009 - February 2019.

21Recall that unbiased Log Loss sets w to the frequency of the positive class in the validation sample,
5.3% on average in random draws, hence an unbiased model that assumes both the false positive rate and
false negative rate carry the same cost, would assume a value of around w∼ 0.05. The binarized outlooks
produce even fewer alarms, at a rate of 3.2%, meaning that implicitly w< 0.05. At, w= 0.03 the rate of
false alarms is weighted 30 times as much as the rate with which anticipating crises fails in a weighted cost
function like LA.
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The statistical model-based predictions we develop have the potential to improve on

this baseline in several ways. We explore this using Table 4, which provides cross-validation

results for 4-, 8- and 12-month ahead forecasts. Note that the 4- and 8-month forecast

horizons are roughly comparable to the near- and medium-term outlooks considered by

FEWS NET.

First, when we set a conservative value of w= 1
3 to impose a heavier penalty on false

alarms, the FPR increases slightly relative to the performance baseline produced with

binarized FEWS NET outlooks, to around 7% for the 4- and 8-month forecast horizon.

However, this comes with a very large reduction in the FNR to below 20% which is

substantially down from the baseline rates of 74% and 79%. Taken together, the slightly

higher FPR and much lower FNR results in an improvement in LA from the baseline value of

around 26% using binarized FEWS NET outlooks, to around 11% for the model predictions.

Second, the model-based approach allow us to fine-tune predictions for different use cases

corresponding to different weights in the prediction loss function. As we have discussed, the

severe costs of food crises suggest that for some policy purposes, a greater penalty should be

imposed on failure to predict crises, i.e. that a higher value of w would be warranted. The

FEWS NET outlooks offer just one fixed set of forward-looking ratings, and increasing the

weight on FNR in the prediction loss function in Table 3 sharply increases LA, indicating

a sharp decline in predictive performance with regard to the less conservative forecasting

objectives. For example, for the medium-term outlook, LA increases from 28% to 54% when

w increases from 1
3 to 2

3 . In contrast, the model predictions maintain comparable predictive

performance across the range of weights, as evidenced by minimal changes in the weighted

performance metrics.

Third, models can learn different predictive associations depending on the forecast

horizon and tailor predictions to the lead-time that is required. The complexity associated

with unlocking funds and investing in prevention implies that near-term forecasts have

lower utility than medium-term forecasts when equally accurate and so it would be helpful

to predict further into the future with similar accuracy. The FEWS NET outlooks offer

projections that run roughly 8 months into the future which, when binarized, score an LA of

28% for the conservative weight of w=1
3 . We assessed the ability to predict 12 months ahead,

and find that the model maintains an LA below 14%, still roughly half of the medium-term

performance baseline.

Fourth, models have the ability to predict the probability of an event which means they

can rank districts according to risk. LB measures how well the predicted probabilities align

with the outcomes and rewards predictions that trend in the right direction. The minimum

value of LB depends on the degree of noise in the target variable but it is well-known that

an uninformative model, that predicts only the correct average probability, attains a Log

Loss of .69.22 Hence, any value below .69 for any value of w implies that the model not only

22As a reference, it can be shown that in a system, where you would know all the possible information
about its future state other than some unknown internal level of randomness, so that, given that all model
parameters are at their correct values, an outcome can still be different than predicted. Say for example
that in this system the best one can do is predict 0.1 when the outcome is 0, and .9 when the outcome is 1,
and that for one out of ten predictions the outcome falls into the other category. Then, Log Loss attains a
minimum of approximately .33.
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learned to predict the preferred average risk level but that, on average, the probabilities

also trend in the right direction. The LB values thus indicate that the models predict good

probabilities.

Note that standard tuning parameters do not explicitly re-distribute predictions toward

a high-cost outcome. The ability to tune predictions for the differential in costs instead

relies on the transformation of the predicted probabilities controlled by tuning parameters

(α, β).23 For example, the untransformed “Vanilla” model at h = 4, tuning only over default

parameters – and not (α, β) – benefits from up-sampling but has no explicit flexibility to deal

with the unbalanced prediction problem and reaches an LB
(
w = (1

3 ,
1
2 ,

2
3)
)

of (.31, .41, .51).

The associated values of LA are (15.3%, 21.9%, 28.5%). Finally, it is also possible to tune

(α, β) to obtain an extremely conservative model. For example, when minimizing FNR

under the constraint that FPR may not increase over the 1.4% set by the performance

baseline, the model produces an FNR of 49% and an LA of 17.3% at w=1
3 , down from the

baseline value of 26%.

Table 5: Country-specific validation results of binarized FEWS NET outlooks and predictions
from the wide Random Forest.

Binarized Outlooks Random Forest

Near-term Med.-term h=4 h=8

w 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3

Afghanistan 27% 53% 24% 46% 17% 28% 17% 27%
Chad 30% 59% 33% 63% 7% 9% 7% 8%
Ethiopia 30% 57% 29% 55% 20% 19% 19% 18%
Haiti 25% 50% 31% 59% 27% 49% 28% 49%
Kenya 25% 47% 26% 50% 16% 26% 20% 35%
Malawi 27% 52% 30% 58% 11% 14% 11% 13%
Mali 24% 47% 28% 55% 11% 16% 8% 14%
Niger 22% 41% 32% 60% 9% 14% 10% 16%
Nigeria 31% 62% 31% 60% 5% 4% 5% 4%
Somalia 25% 47% 33% 59% 30% 21% 33% 21%
South Sudan 24% 41% 28% 50% 17% 13% 17% 13%
Sudan 25% 50% 30% 60% 16% 22% 15% 21%
Zimbabwe 27% 53% 23% 44% 11% 11% 10% 10%

Balanced average 26% 51% 29% 55% 15% 19% 15% 19%

Burkina Faso 0% 0% 33% 67% 28% 45% 33% 67%
Congo, Dem. Rep. 34% 67% 33% 67% 19% 28% 17% 21%
Guatemala 30% 59% 30% 59% 23% 41% 23% 41%
Mauritania 35% 67% 35% 67% 22% 40% 23% 40%
Mozambique 29% 57% 24% 48% 21% 31% 26% 44%
Uganda 33% 67% 34% 67% 21% 37% 21% 36%
Yemen, Rep. 6% 9% 24% 16% 36% 20% 28% 15%

The first four columns report weighted averages of false negative rates and false positive rates (LA) for binarized
FEWS NET outlooks in the near-term (3-4 months, validated against outcomes one reporting cycle later) and medium-
term (6-8 months, validated against outcomes two reporting cycles later), for the indicated value of w. Both the
binary outcomes and outlooks are netted of humanitarian assistance effects. The next four columns report cross-
validated statistics for the wide Random Forest optimized for the indicated value of w, for h=4- and 8-month ahead
forecasts of crisis outbreaks. The validation was performed at the admin2 level, and only for observations that were
preceded by non-crisis levels of food insecurity. This specifically describes prediction performance for new outbreaks
of food crisis before they occur. Statistics for countries with approximately fewer than 50 historical transitions into
crisis are in the bottom part. Zambia is not included in the validation sample due to an absence of positive class
values. The validation sample spans from July 2009 - February 2019.

23For w= 1
2

and w= 2
3

we find α = 2, our maximum considered value, and β close to 0, indicating that
nearly the entire range of predicted probabilities are skewed upward. Recall that the natural frequency of the
data favors a w value around 0.05 and so our predictions need a strong transformation to do well on a loss
function that penalizes FNR heavily. Future work with more validation samples could consider higher values
for α. For now, we simply note that the results are already extremely competitive for high values of w.
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It is also interesting to analyze how the error rates vary by country. Table 5 provides a

country-level comparison between the previous baseline results and cross-validated model

predictions. Recall from Table 1 that the number of historical transitions is low in some

countries. This means that LA and LB are easily influenced by a few errors. Countries

with approximately 50 or more outbreaks are indicated in the top half of the table. The LA

values in these countries vary from 23% in Zimbabwe to 33% in Chad and Somalia at w= 1
3 .

The conservative bias in the performance baseline is a feature that persists at the individual

country level. When w= 2
3 , the balanced error rates in multiple countries reach over 50%,

in some countries reaching around 60%. These validation results could in expectation be

beaten by randomly guessing at the desired frequency.24 Overall, model-based predictions

improve a simple cross-country average of balanced error rates (w=1
3) from 26% in the

near-term and 29% in the medium-term, to respectively 15% and 19%.

4.2 Validation of national-level predictions

Our modeling approach thus far has focused on generating predictions of food crisis at

the sub-national level, focusing particularly on calibrating the predictions to minimize the

prediction loss function with varying weights of prediction errors in the positive class. Since

finance is often unlocked at a country level, we also explore the properties of the predictions

when they are aggregated to form country-level predictions. Specifically, for each country in

our sample, we construct the share of the country’s population living in districts that are in

food crisis, as measured by an IPC rating of 3, 4 or 5. We then investigate how well the

country-level aggregate of our district-level predictions forecasts this aggregate country-level

food crisis indicator. This exercise is of interest because scarce global humanitarian resources

typically are prioritized between regions of the world and countries first, while the allocations

to communities and beneficiaries at sub-national level occurs with a separate targeting

process. For example, the World Bank’s base allocation is predetermined at country-level.

Having a good forecast of country-level food crisis affected populations can therefore help

move resources to the appropriate countries, potentially early enough to finance preventive

measures.25

We construct the country-level aggregate food crisis-affected population prediction as

a weighted average of the district-level probabilities in the country, with weights equal to

populations living in each district, i.e.

∑N
i=1

(
P̂ijt · popijt

)
∑N

i=1 popijt
, (5)

where i, j, and t index districts, countries and time periods and popijt represents population.

Since the scale of the aggregated country-level predictions depends on the bias introduced

24Recall that the uninformative value of LA(w) equals 50% when labels are generated randomly with
frequency w. LA(w) will only go above 50% if w (preference for error types) moves in the opposite direction
of the model’s bias. For example, it will reach 100% if w=1 while the frequency of positive predictions is 0
(and all the class labels are thus in the negative class, e.g. FPR equals 0 and FNR equals 100%, the latter
being fully weighted in LA).

25For an alternative approach to modeling country-level food insecurity over long horizons, up to three
years, see Wang et al. (2020) who utilize panel vector auto-regression techniques.
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by the chosen value of w, the scale of the prediction result may differ from the scale of the

actual outcomes. To adjust for this simple bias, we regress the country-level result on the

available country-level historical outcomes and use the fitted values as final forecasts.26 We

validate the forecasts by calculating Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE), reported in Table 6.27

Table 6: Country-specific validation results of crisis-affected population forecasts from
binarized FEWS NET outlooks and predictions from the wide Random Forest.

Binarized Outlooks Random Forest
Near-term Medium-term h=4 h=8

Country RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Afghanistan 7.9 3.9 15.5 9.8 5.4 3.2 5.9 3.9
Burkina Faso 1.9 0.4 2.7 0.8 0.8 0.3 1.1 0.5
Chad 5.2 2.2 13.2 9.0 6.0 4.5 6.4 4.8
Congo, Dem. Rep. 5.6 2.5 3.2 1.5 16.9 12.5 18.9 14.6
Ethiopia 3.8 2.4 16.5 12.8 8.8 7.4 9.5 7.9
Guatemala 1.1 0.4 6.3 3.5 3.9 3.0 4.0 3.3
Haiti 3.4 2.1 6.6 4.7 3.8 3.3 4.8 4.4
Kenya 5.0 2.7 4.2 2.5 6.2 5.2 7.2 6.6
Malawi 11.6 4.9 31.5 20.7 10.0 7.4 11.1 9.4
Mali 3.4 1.6 5.4 2.8 1.9 1.1 2.1 1.2
Mauritania 9.0 3.7 15.5 7.2 10.5 7.7 11.9 9.7
Mozambique 2.1 0.4 8.0 2.8 4.3 3.5 5.3 4.3
Niger 10.2 4.1 15.0 6.5 3.8 2.7 4.3 3.4
Nigeria 0.2 0.0 1.9 1.1 1.1 1.0 1.0 0.9
Somalia 18.7 8.6 26.5 16.2 21.5 18.2 22.2 18.8
South Sudan 14.4 8.6 17.4 14.5 11.8 10.7 11.9 10.8
Sudan 4.8 2.1 9.3 6.5 4.1 3.5 4.3 3.7
Uganda 0.0 0.0 1.0 0.5 0.9 0.7 1.2 1.0
Yemen, Rep. 12.4 4.8 16.1 7.1 14.5 8.5 14.3 8.4
Zambia 0.5 0.1 0.5 0.1 0.0 0.0 0.0 0.0
Zimbabwe 6.4 3.1 20.6 11.3 7.9 6.2 9.3 7.9

Balanced average 6.4 2.9 11.8 7.1 7.2 5.5 7.8 6.3
Balanced average∗ 5.6 2.7 11.9 7.3 5.6 4.4 6.2 5.2

The first four columns report Root Mean Squared Error and Mean Absolute Error for forecasts of country-level
populations in crisis-affected districts, constructed from near-term and medium-term binarized FEWS NET outlooks.
Both the binary outcomes and outlooks are netted of humanitarian assistance effects. The second set of four columns
report cross-validated statistics of for the wide Random Forest, for 4- and 8-month-ahead forecast horizons. ∗Zambia,
Uganda, the Republic of Yemen, Somalia and the Democratic Republic of Congo are excluded for reasons described
in the text. The validation sample spans from July 2009 - February 2019.

The results suggest that aggregated district-level predictions are reasonable predictors of

country-level outcomes. At both 4- and 8-month forecast horizons, the model produces error

rates that are broadly comparable to those obtained with binarized near-term outlooks.28

26A simple equation that involves only one scalar, e.g. of the form Y = βX + ε. The district-level
predictions used here, P̂ijt, are generated setting w= 1

3
in the prediction loss function and are optimized as

before to minimize loss at the district level.
27Specifically, we generate holdout predictions for all observations in the data set under optimized hyper-

parameters, and using 5 repetitions of 10-fold cross validation, as described in the previous section. It is
important to note that the model hyper-parameters have been optimized to forecast crisis outbreaks, not
total crisis-populations. Future efforts could test possible forecast gains when designing a prediction model
specifically for the latter purpose.

28The balanced average of the model is heavily impacted by Somalia and the Democratic Republic of
Congo. Inspection of the predictions in Somalia revealed that a considerable share of the errors was due
to over-predicting in the period between 2014-2017 when outcomes briefly hit historical lows of 0%, and
under-predicting when the outcomes hit 100%. Generally, we found that the modeled results were actually
good leading indicators. For example, in a holdout (June and October 2019), the binarized near- and
medium-term outlooks from FEWS NET had an absolute error of 13.4 and 47.0 points respectively, while
the model errors were 1.2 and 2.0 points on the 4 and 8 month horizons. In Democratic Republic of Congo,
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Importantly, the error of model increases only slightly as we move to the 8-month forecast

horizon, while errors made with binarized outlooks nearly double when moving from the

near-term to the medium-term horizon. This means that the model-based predictions are

better suited for forecasting further into the future, which may help increase lead time for

preventive action.

4.3 Model interpretability

The previous sections showed that the Random Forest model provides good predictive

capabilities. While predictive performance is important, the modeling structure of the

transformed classifier may be difficult to interpret. Out-of-the-box diagnostics may be used

to help determine which variables are important in the forest, but do not inform about

the signs and magnitude of (local) relationships. Parametric models are more transparent

in that regard, but while it can be argued that these models are more interpretable, they

might not be comprehensible given the number of predictors involved. Moreover, standard

methods do not account for effects induced by the transformation of probabilities. To

overcome these issues, this section develops a prediction decomposition strategy that relies

on assessing the change in prediction values when the model is confronted with observed

values compared to reference input data. This provides comprehensible interpretation at an

observational level and takes the following algorithmic strategy.

1. Partition the spatio-temporally covariates into a fully exhaustive set of non-overlapping groups.

We use the groups defined in section 2.2 but split rainfall variables from the other environmental

factors.29

2. Construct a country data set by leaving all time-invariant district-level data at local values

and setting all spatio-temporally varying covariates at a reference value. We use country

means.30 Make reference predictions with this data set.

3. For each group of covariates defined in step 1, set the levels of the data to the observed values

while keeping all the other covariates at reference values as defined in the previous step, then

generate a new set of predictions.

4. For each set of predictions generated in the previous step, subtract the reference predictions

generated in step 2. Then, from this prediction difference, calculate the lowest value in each

district across all time periods and subtract these.

5. Standardize the prediction differences generated in the previous step to [0,1] by dividing them

by their sum, then multiply by probabilities predicted when all data are set to observed levels.

only 8 assessment cycles are available for cross-validation and errors are heavily driven by the first two
periods. Again, good performance was established in a holdout, binarized outlooks scoring respectively 9.3
and 16.3 points while the model-based predictions missed the outcome by only 1.6 and 3.2 points. Finally,
few assessments are available for the Republic of Yemen which has stayed near 100% crisis in all but the first
period, no difference was ever recorded between near-term preliminary assessments and final outcomes in
Uganda, and Zambia never experienced crisis. When focusing on the remaining 16 countries for validation,
RMSE in the near-term was identical for model-based predictions and binarized outlooks, while on the
8-month target the model reduced RMSE by 48% increasing only 0.6 points compared to the binarized
near-term outlook.

29“Markets” includes all features calculated from food prices and “Conflict” all features derived from the
conflict data. The Environmental Factors are divided in two groups: “Rainfall” and “Agricultural Stress”,
the latter combining all the features derived from NDVI and evapo-transpiration.

30It would also be possible to construct specific alternatives with which to compare observed values such
as conflict counts of 0 rather than a non-zero average.
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The approach seeks to calculate the increase in crisis probability from 0, attributed

to observing current values of variables within a related group when other variables are

kept at means, then standardizes the relative prediction contributions and rescales the

result by the final prediction results. Naturally, the results can be scaled to align with the

percentages of population in crisis districts. The exercise is performed by country because

the country indicators are defined uniquely at this level of observation. Figure 1 shows two

example countries, while results for the other countries are covered by Figure B.1 in the

supplementary Appendix.

Figure 1: Prediction decompositions of population share in crisis districts in two key food
crisis countries.

Prediction decompositions, aggregated to the country-level by taking a population weighted average of
the district-level results. The normalized prediction decompositions are scaled by the predicted share of
crisis-effected populations. A 3-month centered moving average has been applied to smoothen the results.
Historical outcomes and measures of fit are added for reference. The height of each bar indicates the predicted
share of the country population living in crisis-affected districts, the colors indicate the share of the modeled
value that attributed to variables covering four key groups of food insecurity drivers.

The results in Figure 1 highlight that this strategy is able to clearly illustrate the groups

of variables that are used to predict certain outcomes at the specified forecasting interval.

For example, all features derived from NDVI and evapo-transpiration together drive the

largest share of predictions in Somalia. Over time, a change in this pattern is visible as

well. Whereas predictions in the first few years that cover the complexities of the famine

period are driven by a combination of environmental variables and food price inflation, the

2017-2018 drought-induced crises is modeled almost exclusively by drought indicators. Stark

differences between the results in Somalia and South Sudan are also highlighted. While

both countries have experienced extremely severe situations, the crisis predictions in South

Sudan are mainly traced back to price inflation. Note that while these narratives fit the

countries, the results are approximations, and not exact prediction contributions. They

should also not be interpreted in a causal sense.

5 Discussion and Conclusion

Food crises impose heavy human costs that are likely to increase in light of worsening

climatic drivers and growing populations. Outbreaks of food crises are relatively rare events,

accounting for just 4.5% of our historical data. But when they occur, they are prolonged

events, leading to widespread suffering, loss of human capital, household asset depletion,

and death. In this context, the capacity to predict new outbreaks of food crisis events well
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in advance opens important opportunities to mitigate and avoid the worst. In this paper,

we have explored the benefits of using formal statistical models to forecast food crises, using

sub-national data provided by FEWS NET for 21 countries since 2009.

As a baseline, it is instructive to compare model-based forecasts with existing early

warning systems. In our validation framework, these historical outlooks turn out as quite

conservative, with extremely low false positive rates and relatively few warnings when

compared with the actual incidence of food crisis outbreaks. As a consequence, existing

outlooks have high false negative rates, i.e. many food crisis outbreaks were not anticipated.

In addition, the overall forecast performance of existing outlooks deteriorates with longer

forecast horizons.

Using standard cross- and temporal holdout validation methods, we have shown that

relatively simple statistical models provide good predictive performance up to 12 months in

advance. We used verifiable monthly data capturing environmental factors, conflict, and

food price shocks as key predictors for this. We find that the model-based forecasts can

deliver much lower false negative rates at the cost of only modest increases in false positive

rates. Moreover, our metrics of forecast performance are fairly stable as the forecast horizon

increases from 4 to 12 months, suggesting good predictive performance over longer forecast

horizons.

A key benefit of statistical forecasts is that they can be optimized relative to an explicit

trade-off between false positives and false negatives. This trade-off may be different for

different policy purposes. When the costs of full-blown food crises are large and preventive

measures have high returns, a forecasting framework with a high tolerance for false positives

might be appropriate. Conversely, when resources for prevention are scarce, a greater

tolerance for false negatives is more suitable. Our validation framework made this trade-off

explicit, by tuning the parameters of our models to minimize prediction loss functions

that balance false positives and false negatives. Depending on the use case, calibrated

predictions can be generated that strike the appropriate balance between false positives

and false negatives dictated by the application at hand. We acknowledge, however, that

putting this principle into practice is a difficult task. While specifying a loss function that

trades off false positives and false negatives is mathematically straightforward, setting the

appropriate weights requires careful deliberation of the human and economic implications

of competing errors, both of which are subject to considerable uncertainty.

Combined, the results show that statistical models can provide new and attractive

forecasting capabilities in various ways, including an improved ability to detect new crisis

outbreaks for a specified tolerance for raising (false) alarms; calibrating error types to take the

costs and benefits of specific interventions into account; increasing lead time for preventive

action by forecasting further into the future, and updating predictions continuously using

readily-available, verifiable and open high-frequency data. Realizing these benefits will

require close coordination between statistical modeling work and policy dialog, to ensure

that the design of warning systems is tailored to the policies they are intended to inform.
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Supplementary Appendix

A Data

Table A.1: Covariates of food crisis.

Covariates d
Time-
varying

Description Source

Dummies 23 No Quarterly and by country, one left out. Generated.
Spatial trends 2 No Coordinates of center points. Admin2 boundaries (FEWS NET).a

District size 1 No
Area in square kilometers calculated
using Mollweide projection.

Admin2 boundaries.

Population 1 No Areal sum of grids within districts.
GPWv4, adjusted (SEDAC and
CIESIN, 2015).

Terrain
Ruggedness

1 No Areal means of 100m grids.
Index introduced by Shawn J. et al.
(1999), data from Nunn and Puga
(2012).

Cropland and
pastures area
shares.

2 No Areal means.

Cropland estimates (1km×1km, 2010)
taken from the GCADb, produced with
methods described by Teluguntla et al.
(2015). Pasture estimates (5 arc-
minute ∼ 10km×10km, 2000) taken
from FAOc, produced with methods
described by van Velthuizen et al.
(2007).

NDVI 2 Yes
Monthly means and anomalies (devia-
tions from average seasonal values).

Calculated from 16-day 250m×250m
MODIS / Aqua Vegetation Indices,
v.6.d

Rainfall 2 Yes
Monthly means and anomalies (devia-
tions from average seasonal values).

Rainfall estimates (0.05◦) from rain
gauge and satellite observations
(CHIRPS).e

Evapo-
Transpiration

1 Yes Monthly means.
From MOD16A2, v.6 (8-day compos-
ite, 500m resolution).f

Conflict
events

2 Yes

Monthly counts of violent conflict
events within districts and the average
number of fatalities per event. The
district-level data are spatially interpo-
lated using inverse distance weighting
to capture cross-border exposure.

Daily conflict event data taken from
ACLED, aggregated to the monthly in-
terval by sum.g

Food prices 2 Yes
Monthly log nominal food price index
and monthly year-on-year differences.

Methods following Andrée (2020a),
raw market prices from WFP.h

Covariates used to predict food crisis: d marks the number of covariates excluding lags. Sources as follows:
ahttps://fews.net/fews-data/334
bhttps://lpdaac.usgs.gov/products/gfsad1kcmv001/
c“Occurrence of pasture and browse (FGGD)” obtained at http://www.fao.org/geonetwork
dhttps://doi.org/10.5067/MODIS/MYD13Q1.006
ehttps://chc.ucsb.edu/data/chirps
fhttps://lpdaac.usgs.gov/products/mod16a2v006/
ghttps://www.acleddata.com/
hhttps://dataviz.vam.wfp.org/economic explorer/prices

Table A.2: Number of predictors of the un-processed versus processed data set.

Basic Wide

h=4 104 112
h=8 72 80
h=12 39 47

Number of predictors after calculating lags and dropping features until pair-wise correlations are below .95 (Basic);
number of predictors after calculating additional features, spatial averages and temporal lags, and dropping features
until pair-wise correlations are below .75 (Wide).

i
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https://lpdaac.usgs.gov/products/gfsad1kcmv001/
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https://chc.ucsb.edu/data/chirps
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Figure A.1: Share of districts in different IPC phases netted of humanitarian assistance.
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B Additional Results

B.1 Additional validation metrics

Several metrics other than FPR and FNR are commonly used to validate classification
accuracy. These are commonly derived from the confusion matrix, provided in Table B.1,
which in turn can be calculated from the FPR and FNR that the paper focuses on.

Table B.1: Confusion matrix for binarized FEWS NET outlooks and predictions from the
wide Random Forest.

Near-term / h=4 Medium-term / h=8

Binarized Outlooks Random Forest Binarized Outlooks Random Forest
w=1/3 w=2/3 w=1/3 w=2/3

TP 443 1384 1447 354 1394 1437
FP 435 2104 2600 675 2259 2631
FN 1280 339 276 1369 329 286
TN 30513 28844 28348 30273 28689 28317

Accuracy 0.948 0.925 0.912 0.937 0.921 0.911
Kappa 0.316 0.496 0.462 0.227 0.481 0.456
Specificity 0.986 0.932 0.916 0.978 0.927 0.915
Pos Pred Value 0.505 0.397 0.358 0.344 0.382 0.353
Neg Pred Value 0.960 0.988 0.990 0.957 0.989 0.990
Precision 0.505 0.397 0.358 0.344 0.382 0.353
Recall 0.257 0.803 0.840 0.206 0.809 0.834
F1 0.341 0.531 0.502 0.257 0.519 0.496
Prevalence 0.053 0.053 0.053 0.053 0.053 0.053
Detection rate 0.014 0.042 0.044 0.011 0.043 0.044
Detection Prevalence 0.027 0.107 0.124 0.032 0.112 0.125
Balanced Accuracy 0.622 0.868 0.878 0.592 0.868 0.875

Historical validation results for binarized near- and medium-term FEWS NET outlooks and cross-validated predictions
of crisis outbreaks from the wide Random Forest. Both the binary outcomes and outlooks are netted of humanitarian
assistance effects, the validation only considers observations preceded by a phase rating below crisis. The validation
sample spans from July 2009 - February 2019. Model validation is based on 5 repetitions of 10-fold cross-validation
for models calibrated respectively for balanced Log Loss with weights w, indicated in the columns, and w-1 for
prediction errors in the positive and negative classes.

B.2 Temporal holdout validation

The model validation results have so far relied on “pseudo-out-of-sample” methods that
repeatedly partition the data randomly into training and test data sets. Here we also
investigate the predictive performance of the model fully out-of-sample using data for
June 2019, October 2019, and February 2020, that were reserved exclusively for validation
purposes. We perform a final temporal holdout validation by estimating and optimizing our
prediction model using data through February 2019, then generate 4-, 8-, and 12-month
ahead forecasts to compare against the assessments published respectively 4, 8 and 12
months later.

Temporal holdout validation is a method that is heavily dependent on the composition
of the holdout sample and the local behavior of the data generating process (Diebold,
2015; Andrée, 2020b). This means that single holdout results may deviate from average
accuracy. For this reason it is important to first consider the frequency of food crisis events
in the validation periods. Historically, only 16% of the data consisted of crises while the
share of crises in the June validation sample is more than double, around 34%. Of all the
cases in which a transition into food crisis could occur, it occurred in more than 11% from
February to June, double the historical frequency. This indicates that the validation sample
constitutes a period of severe crisis, and the predictive performance of the model in this
holdout may be quite different from that in average periods.
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Table B.2: Validation of February 2019 near/medium-term binarized FEWS NET outlooks
and 4- and 8-month ahead model-based forecasts, compared to June/October 2019 outcomes.

Error Type LA

FNR FPR w=1/3 w=2/3

Binarized Outlooks
Near-term 63% 1% 30% 55%
Medium-term 80% 4% 30% 55%

Random Forest
w=1/3, h=4 49% 8% 22% -
w=2/3, h=4 32% 14% - 26%
w=1/3, h=8 68% 3% 25% -
w=2/3, h=8 54% 7% - 39%

The first two columns report on FNR and FPR of binarized FEWS NET outlooks and out-of-sample forecasts
from the wide Random Forest calibrated for the specified value of w. The near-term (h=4) validation is based on
620 non-crisis samples and 79 crisis samples, the medium-term (h=8) validation is based on 614 non-crisis samples
and 85 crisis samples. The final two columns contain weighted averages, LA. Entries are intentionally left blank.
Both the binary outcomes and outlooks are netted of humanitarian assistance effects, the validation only considers
observations with a February phase rating below crisis.

As in previous sections, Table B.2 sets a baseline by reporting the performance of the
binarized FEWS NET near- and medium-term outlooks. The predictive performance in
this holdout sample is broadly similar to the historical results reported earlier, with very
high false negative rates and extremely low false positive rates. With a weight of w=1

3 , the
LA is around 30% for both near- and medium-term binarized outlooks, which is slightly
worse than in the historical validation. The wide Random Forest (w=1

3) also performs
somewhat worse but, nevertheless, provides a modest improvement in predictive power over
these baseline results. For example, in the near-term, LA is down to 22%, while in the
medium-term, the model-based forecast performance improved the weighted error rate by
5% points.

Since FEWS NET does not provide 12-month ahead predictions, a comparison against
a baseline result is not possible as it is not possible to compare single holdout validation
results across different validation samples. Nevertheless, for observations that were non-crisis
in respectively February, June or October 2019, but were in crisis in February 2020, the
12-month ahead forecast made in February 2019 scored an LA(w = 1

3) of 32%, 26% and 19%,
which are in range of the model’s 4- and 8-month ahead holdout results. The accuracy of
crisis-affected populations also show that the 12-month forecast improved over medium-term
forecasts constructed from binarized FEWS NET outlooks, see Table B.3. Country-specific
validation results are available in Tables B.4 and B.5.

Table B.3: Holdout validation of forecasts for crisis-affected population percentages.

MAE MAE∗

Random Forest
h=4 7.9 4.2
h=8 9.0 5.8
h=12 12.4 10.0

Binarized Outlooks
Near-term 8.7 7.9
Medium-term 16.0 18.3

Mean Absolute Error for forecasts of crisis-affected population percentages (0-100), made with binarized near- and
medium-term outlooks from FEWS NET and model-based predictions from the wide Random Forest produced in
February, validated against June, October and February 2020 outcomes. Both the binary outcomes and outlooks are
netted of humanitarian assistance effects. ∗Afghanistan, Uganda, the Republic of Yemen and Zimbabwe excluded in
this calculation as possible outliers.
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Table B.4: Country-specific holdout validation of forecasts for crisis-affected population
percentages constructed from binarized FEWS NET outlooks.

Outcomes Forecasts Errors
Country Feb’19 Jun’19 Oct’19 Feb’20 Jun’19 (h4) Oct’19 (h8) Feb’20 (h12) h4 error h8 error h12 error

Afghanistan 51.3 3.9 16.1 47.8 41.4 4 - 37.5 12.1 -
Burkina Faso - - - - - - - - - -
Chad 4 7.6 3.8 3.8 4 4 - 3.6 0.2 -
Congo, Dem. Rep. 37.3 39.7 47.1 32.3 49 30.8 - 9.3 16.3 -
Ethiopia 11.1 20 16.1 16.1 15.5 13.3 - 4.5 2.8 -
Guatemala 1.9 7.8 1.9 1.9 5.3 13.1 - 2.5 11.2 -
Haiti 11 12.1 30.1 38.7 12.7 9.4 - 0.6 20.7 -
Kenya 0 9 22.7 0 0 0 - 9 22.7 -
Malawi 40.2 0 27 26.9 40.2 0 - 40.2 27 -
Mali 0 4.8 0 0 0 4.8 - 4.8 4.8 -
Mauritania - - - - - - - - - -
Mozambique 5 10 17.6 17.6 5 0 - 5 17.6 -
Niger 3.3 6.3 9.6 3.9 8.2 8.2 - 1.9 1.4 -
Nigeria 2 3.2 2 2.12 2 3 - 1.2 1 -
Somalia 24.9 46.2 49.5 10.4 32.8 2.5 - 13.4 47 -
South Sudan 92.3 92.8 76.8 96.4 92.3 94 - 0.5 17.2 -
Sudan 4.4 22.9 8 5.6 18 21.7 - 4.9 13.7 -
Uganda 2 2 1.2 0 2 0 - 0 1.2 -
Yemen, Rep. 99.5 99.5 99.5 99.5 99.5 99.5 - 0 0 -
Zambia - - - - - - - - - -
Zimbabwe 73.6 56 79.9 100 73.6 9.4 - 17.6 70.5 -

The first four columns report outcomes of crisis-affected population percentages in each country. The next two
columns report the forecasts made with binarized near- and medium-term outlooks from FEWS NET. The 12-month
ahead forecasts for February 2020 are intentionally left blank as FEWS NET does not provide full-year ahead outlooks.
Both the binary outcomes and outlooks are netted of humanitarian assistance effects. The final three columns report
on absolute errors of the near- and medium-term forecasts. The outcomes and errors for Burkina Faso, Mauritania
and Zambia are left blank as new outcomes were not available for validation in these countries.

Table B.5: Country-specific holdout validation of forecasts for crisis-affected population
percentages constructed from predictions from the wide Random Forest.

Outcomes Forecasts Errors
Country Feb’19 Jun’19 Oct’19 Feb’20 Jun’19 (h4) Oct’19 (h8) Feb’20 (h12) h4 error h8 error h12 error

Afghanistan 51.3 3.9 16.1 47.8 35.9 39.7 43.6 32.0 23.6 4.2
Burkina Faso - - - - 1.0 0.5 1 - - -
Chad 4 7.6 3.8 3.8 22.2 10.2 16 14.6 6.4 12.2
Congo, Dem. Rep. 37.3 39.7 47.1 32.3 41.3 43.9 40 1.6 3.2 7.7
Ethiopia 11.1 20 16.1 16.1 24.6 15.8 14.7 4.6 0.3 1.4
Guatemala 1.9 7.8 1.9 1.9 8.0 1.0 3.9 0.2 0.9 2
Haiti 11 12.1 30.1 38.7 9.6 4.7 6.3 2.5 25.4 32.4
Kenya 0 9 22.7 0 6.9 9.5 7.9 2.1 13.2 7.9
Malawi 40.2 0 27 26.9 2.4 28.4 33.3 2.4 1.4 6.4
Mali 0 4.8 0 0 4.9 0.2 1.3 0.1 0.2 1.3
Mauritania - - - - 25.3 6.9 12.9 - - -
Mozambique 5 10 17.6 17.6 1.2 7.5 13.9 8.8 10.1 3.7
Niger 3.3 6.3 9.6 3.9 10.2 4.2 3.2 3.9 5.4 0.7
Nigeria 2 3.2 2 2.12 4.1 1.9 2.6 0.9 0.1 0.48
Somalia 24.9 46.2 49.5 10.4 47.4 47.4 49.5 1.2 2.1 39.1
South Sudan 92.3 92.8 76.8 96.4 82.6 78.6 84.4 10.2 1.8 12
Sudan 4.4 22.9 8 5.6 29.0 18.4 18.8 6.1 10.4 13.2
Uganda 2 2 1.2 0 1.5 0.4 1.7 0.5 0.8 1.7
Yemen, Rep. 99.5 99.5 99.5 99.5 95.9 95.8 96 3.6 3.7 3.5
Zambia - - - - 0.1 0.1 0.1 - - -
Zimbabwe 73.6 56 79.9 100 8.9 26.1 27.1 47.1 53.8 72.9

The first four columns report outcomes of crisis-affected population percentages in each country. The next three
columns report the forecasts made by aggregating the 4-, 8- and 12-month ahead predictions from the wide Random
Forest using the methods described in the paper. The outcomes and predictions are netted of humanitarian assistance
effects. The final three columns report on absolute errors of the three forecasts. Burkina Faso, Mauritania and Zambia
are left blank as outlooks and outcomes were not available for validation in these countries.

B.3 Alternative models

The sections below detail two alternative algorithms and their application to our data. Table
B.6 contains results of a simple linear classifier and a more complex nonlinear approach.
The results highlight the attractive properties of the Random Forest application.
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Table B.6: Cross-validation results for all models.

Error Type Balanced Metrics

FNR FPR LA LB

w 1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3 1/3 1/2 2/3

Basic Random Forest
h=4 19.7% 16.1% 16.1% 7.7% 9.3% 9.3% 11.7% 12.7% 13.8% 0.27 0.30 0.32
h=8 19.2% 16.7% 16.0% 8.5% 9.7% 10.6% 12.1% 13.2% 14.2% 0.28 0.31 0.33
h=12 24.7% 23.1% 10.6% 11.7% 12.6% 23.6% 16.1% 17.9% 14.9% 0.34 0.37 0.38

Wide Random Forest
h=4 19.7% 16.5% 16.0% 6.8% 8.2% 8.4% 11.1% 12.3% 13.5% 0.25 0.29 0.31
h=8 19.1% 16.6% 16.6% 7.3% 8.5% 8.5% 11.2% 12.5% 13.9% 0.27 0.30 0.33
h=12 20.9% 20.9% 9.9% 10.0% 10.0% 19.0% 13.6% 15.5% 13.0% 0.30 0.34 0.35

Basic Logit
h=4 49.3% 30.7% 5.1% 13.7% 24.4% 52.5% 25.6% 27.6% 20.9% 0.48 0.51 0.47
h=8 54.9% 27.7% 4.4% 14.7% 32.7% 58.3% 28.1% 30.2% 22.3% 0.52 0.55 0.51
h=12 53.8% 31.2% 4.3% 15.2% 28.0% 60.6% 28.0% 29.6% 23.1% 0.51 0.55 0.51

Wide Logit
h=4 49.4% 21.6% 4.6% 13.5% 29.8% 52.2% 25.5% 25.7% 20.5% 0.48 0.51 0.47
h=8 57.2% 28.4% 4.8% 14.2% 32.6% 59.1% 28.5% 30.5% 22.9% 0.52 0.56 0.51
h=12 54.8% 31.5% 3.9% 15.1% 27.9% 60.0% 28.3% 29.7% 22.6% 0.51 0.55 0.50

Basic Multi-layer Perceptron
h=4 26.9% 16.4% 9.2% 11.9% 18.2% 26.1% 16.9% 17.3% 14.8% 0.37 0.39 0.36
h=8 28.4% 16.4% 9.3% 12.7% 20.9% 29.9% 17.9% 18.6% 16.2% 0.39 0.41 0.38
h=12 28.6% 15.5% 8.6% 17.5% 26.4% 36.1% 21.2% 21.0% 17.8% 0.43 0.46 0.42

Wide Multi-layer Perceptron
h=4 26.0% 12.6% 10.5% 11.6% 21.3% 23.9% 16.4% 17.0% 15.0% 0.37 0.39 0.35
h=8 27.1% 17.4% 11.1% 12.2% 18.9% 26.2% 17.2% 18.2% 16.1% 0.39 0.41 0.38
h=12 30.0% 17.6% 8.9% 15.2% 23.2% 35.8% 20.1% 20.4% 17.8% 0.42 0.45 0.41

The first six columns report false negative rates and false positive rates when the model is optimized for the indicated
value of w. The next six columns report three weighted averages (LA) of FNR and FPR and weighted Log Loss
(LB) with weights w and (1-w) for predictions in the positive (negative) class. The results have been produced using
identical methods as described in the main text.

B.3.1 Logistic Regression with Lasso Penalty

The logistic regression framework shows what can be achieved with simple and interpretable
tools. We apply the LASSO, or L1 norm, following Tibshirani (1996); Zou (2006) to
penalize the Maximum Likelihood Estimator by the absolute sum of the coefficients, thereby
discouraging high parameter values. The training data was balanced with up-sampling, and
for computational efficiency duplicate cases are converted into case weights. This means
that the estimation problem is of the following form.

min
β0,β

1

N

N∑
i=1

wil(y
∗
i , β0 + β′x∗i ) + λ||β||1, (6)

in which wi are case weights generated under the up-sampling scheme, and l(ε) is the
negative log-likelihood contribution for observation i. The term λ||β||1 applies absolute
shrinkage and can set parameters of noise predictors to zero. The strength of the penalty is
controlled by λ, which is a tuning parameter. To find the right level of penalization, λ is set
through cross-validation. The ridge, or L2 penalty following Park and Hastie (2008) and
the elasticnet of Friedman et al. (2010), that combines both by using a penalty of the form
λ[(1−α)||β||22/2 +α||β||1], were explored and led to near identical results as obtained using
equation 6. Because this model is a linear method, we do not use the Food Price Index
levels; instead we only use Food Price Inflation.

B.3.2 Multi-Layer Perceptron Neural Network

Neural networks came into active development as a classification tool after the mid-1980s
when their relation to statistical pattern recognition was studied (Ripley, 1993, 1994). The
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basic architecture upon which neural networks are built is the perceptron of (Rosenblatt,
1958) which consists of artificial neurons that take inputs, process by taking a weighted sum,
and pass the result through a transformation to return an output. In a directed graph, the
perceptron consists of three layers that: (1) represent the inputs to the model, (2) define the
computational operations on the inputs, and (3) define model outputs. In its simplest form,
one computational neuron, this model could be represented as an equation encountered
frequently in econometrics:

ŷ = f(xω̂) (7)

where ŷ is a predicted value using a vector of observations x multiplied by some esti-
mated linear weights ω̂, possibly adding also a scalar bias component. The product xω̂
is transformed through an activation function f to obtain the final prediction. Indeed,
this is essentially a Generalized Linear Model in which f would be referred to as the link
function: if f is chosen to be a logistic function, equation 7 is simply a logistic regression
model. Because the non-linear transformation always occurs after the linear operation, it is
trivial to see that regardless of the shape of f , a single computational neuron can perform
classification only on linearly separable patterns. It is possible to increase the number of
units to create more dividing lines, but those lines must somehow be combined to form
more complex classifications. This is the novelty of multi-layer perceptron. The neural
network for k ∈ [0, 1] class output, with output function fo, multiple computational units
and an activation function for hidden units fh, can be written as

ŷk = fo

α̂k +
∑
j

ω̂jkfh

(
α̂j +

∑
i

ω̂ijxij

) . (8)

This is often referred to as the multi-layer perceptron with one hidden layer. The weights
in this model can be estimated using a standard back-propagation algorithm (Rumelhart
et al., 1986). The input units distribute the inputs to the ‘hidden’ units in the second layer.
The hidden units then sum their inputs, add a constant and take a function fh of the result.
The output units apply the same procedure using an output function fo. In this paper,
both fo and fh are parameterized with logistic functions hence the model can be simply
understood as a nonlinear logistic regression model.

By increasing the network complexity, deep neural networks can learn increasingly
complex types of non-linearity. A random grid search was performed across 20 randomly
generated architectures keeping other learning parameters at their recommended values
of Bergmeir and Beńıtez (2012), whose implementation has been used here. The number
of hidden units in the first hidden layer is randomly assigned taking a number from 2 to
one-third of the number of predictors, and the number of hidden units in the second and
third layers is any number from zero to one-third of the number of predictors. A hidden
layer of 0 units is removed. The best configuration was picked by cross-validation and
compared against a systematic search across single hidden layer networks to confirm that
the preferred model was deep.

B.4 Forecast decompositions

The paper suggested a prediction decomposition strategy. Figure B.1 contains the results for
all countries in the data set. The variety in results highlights that predictions for different
major crisis events are traced back to different input variables, highlighting the heterogeneity
in fitted relationships.
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Figure B.1: National-level 1-month ahead prediction decompositions from the final wide Random Forest.
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