Will the Real "Natural Trading Partner" Please Stand Up?

Maurice Schiff

Adherents of the natural trading partner hypothesis argue that preferential trade agreements are more likely to improve welfare if participating countries already trade disproportionately with each other. Opponents argue the opposite. Neither side is right. The hypothesis holds up only if two countries are natural trading partners in the sense that one country tends to import what the other exports.
Summary findings

Adherents of the "natural trading partner" hypothesis argue that preferential trade agreements (PTAs) are more likely to improve welfare if participating countries already trade disproportionately with each other.

Opponents of the hypothesis claim that the opposite is true: welfare gains are likely to be greater if participating countries trade less with each other.

Schiff shows that neither analysis is correct. The "natural trading partner" hypothesis can be rescued if it is redefined in terms of complementarity or substitutability in the trade relations of countries, rather than in terms of their volume of trade.

Schiff asks not whether a country should form or join a trading bloc but which partner or partners it should select if it does join such a bloc.

He shows that the pre-PTA volume of trade is not a useful criterion for selecting a partner. The pre-PTA volume is equal to zero if the partner is an importer of the good sold to the home country and it is indeterminate if the partner is an exporter of that good.

Among Schiff's conclusions:

- The home country is better off with a large partner country. First, a large partner is more likely to satisfy the home country's import demand at the world price. Second, the home country is likely to gain more on its exports to a large partner country, because that partner is likely to continue importing from the world market after formation of the trading bloc. And since the partner charges a tariff on imports from the world market, the home country is more likely to improve its terms of trade by selling to the partner at the higher tariff-inclusive price if the partner is large.

- The PTA as a whole is likely to be better off if each country imports what the other exports (rather than each country importing what the other imports). Losses are similar but less likely, while gains are both more likely and the same or larger.
Will the Real "Natural Trading Partner" Please Stand Up?

Maurice Schiff *

Development Research Department

World Bank

* The author would like to thank Alan Winters and participants to the World Bank International Trade Seminar for their comments.
Will the Real “Natural Trading Partner” Please Stand Up?

The “natural trading partner” hypothesis has recently become popular in the regional integration literature. Two versions of the hypothesis exist, referring either to the volume of trade between potential partners or to the distance and transport costs between them. Authors who adhere to the hypothesis argue that integration with “natural trading partners” is likely to raise welfare because the likelihood and extent of trade diversion is minimized when the volume of trade between prospective partners is large. Others argue the opposite. And though it is true that the “natural trading partner” hypothesis does not hold in general, the studies aiming to refute it have some analytical problems of their own which have so far been ignored in the literature.

This paper shows that the analysis requires a more careful examination of the link between the partner country and the rest of the world, and that such an examination leads to different results. It is shown that commercial opportunities do exist which have not been fully exploited in the traditional analysis. One of the implications of the analysis presented here is that an alternative definition of “natural trading partner” exists under which the hypothesis is likely to hold.

The paper is organized as follows. Section 1 presents the “natural trading partner” hypothesis as found in the literature and Section 2 shows the analysis aimed at refuting it. Section 3 lists the main implications of that analysis. Section 4 points out its limitations and presents a new analysis. Section 5 concludes and provides new policy recommendations. The “natural trading partner” hypothesis is rescued once appropriate changes in the definition are made.
1. The “Natural Trading Partner” Hypothesis

A number of studies claim that if two countries or regions are “natural trading partners”, they are more likely to gain from a preferential trade agreement (PTA) between them. The claim---based on the version of the hypothesis referring to the volume of trade---apparently originates with Lipsey (1960). He argues in his famous survey that “… a customs union is more likely to raise welfare the higher is the proportion of trade with the country’s union partner and the lower the proportion with the outside world.” In a similar vein, Summers (1991) states: “Are trading blocs likely to divert large amounts of trade? In answering this question, the issue of natural trading blocs is crucial because to the extent that blocs are created between countries that already trade disproportionately, the risk of large amounts of trade diversion is reduced”. Also, Wonnacott and Lutz (1989) state that if the prospective members are already major trading partners, integration “…will be reinforcing natural trading patterns, not artificially diverting them” (p. 69). The same point is made in a 1995 communication from the EU Commission to the EU Council entitled “Free Trade Areas: An Appraisal” which states that PTAs between “natural trading partners” are less likely to generate trade diversion effects.

What about the version of the hypothesis associated with location and transport costs? Wonnacott and Lutz (1989) argue that, ceteris paribus, since proximity between PTA members increases trade between them (due to lower transport costs), it reduces the extent of trade diversion and increases the benefits of PTAs, a point also made by Deardorff and Stern (1994). Krugman (1993, pp. 63, 64) argues that due to transportation and communication costs, there is a strong tendency for countries to trade with their neighbors. And if free trade agreements (FTAs) are formed with neighbors, the gains
from freeing intra-regional trade will be larger and the losses of reducing interregional trade will be smaller than if these costs are ignored. Similarly, Krugman (1991) states that "If a disproportionate share of world trade would take place within trading blocs even in the absence of any preferential trading arrangement, then the gains from trade creation within blocs are likely to outweigh any possible losses from external trade diversion."

Though being the most popular, the definition of "natural trading partners" based on the volume of trade criterion is difficult to justify. The volume of trade does not necessarily provide an objective measure of the extent to which trading partners are "natural". The reason is that the volume of trade is itself affected by trade policy. Ideally, we would like to have a "natural trading partners" criterion that is independent of trade policy. Such a criterion is proposed in this paper.

Note also that if losses to a PTA depend on the extent of trade diversion, this is not necessarily true for individual members who may lose or gain from the redistribution of tariff revenues within the PTA even in the absence of trade diversion. This is the heart of the challenge of the traditional analysis to the "natural trading partner" hypothesis.

2. Traditional Analysis

1 The term "traditional" for this type of analysis is also found in the title of Panagariya (1999).
use a partial equilibrium approach, while Michaeli (1998) uses a diagrammatic general
equilibrium framework to obtain the same results. As stated in Bhagwati and Panagariya
(p. 35), Michaeli (p. 74) and Schiff (p. 363), the studies of PTAs focus on FTAs. This
paper examines customs unions (CUs) as well. The standard analysis typically assumes
three countries, the home country A, the partner country B and the rest of the world C, as
well as perfect competition and homogeneity. In the pre-PTA situation, A imposes an
MFN tariff on imports of B and C. The same assumptions are made in our analysis in
Section 4.

Under homogeneity, an absolute gain from forming a PTA for small countries can
only occur if they stop trading with the rest of the world. A welfare gain can be obtained
without having to assume such corner solutions if one assumes product differentiation,
for instance—following Armington—by country of origin. Though this assumption
provides additional flexibility, it does so at a cost. With product differentiation, each
country has monopoly power in the good it produces and free trade is no longer optimal
for the country or region. Homogeneity is assumed in the remainder of the paper.

2.1. Small in all markets.

The first case considered is the Vinerian constant cost model, where the home
country A is small relative to both B and C and takes their prices as given. As is well

2 Bhagwati and Panagariya (1996) and Panagariya (1997) also examine the case of heterogeneous
products. The latter one is based on the Meade model, where each of the three countries produces one
good and imports the other two, with similar results about the impact of the volume of trade on the effect
of a PTA. The paper concludes (p. 487): “It may be asked whether the results remain valid in models of
product differentiation and economies of scale. The broad answer is in the affirmative.” In Meade’s
model, the partner exports to the home country and to the rest of the world. This paper examines, under
known, if B has lower costs than C, B is the only supplier to A in the pre-PTA situation and a PTA with B is equivalent to unilateral liberalization, with A benefiting from the traditional gains from trade. This is a case of pure trade creation. Given B’s constant cost, its welfare is not affected, and the welfare gain of the PTA as a whole equals that of A. Since C’s welfare is also unaffected, the world’s welfare gain equals that of A as well.

If B has higher costs than C (but not higher costs than C inclusive of A’s tariff), then C is the only supplier to A in the pre-PTA situation. With a PTA between A and B, imports from B displace imports from C in A’s market. A’s terms of trade deteriorate and it loses a (large) rectangular area from trade diversion whose size depends on the cost difference between B and C and on the initial level of imports. A also gains a (typically smaller) triangular area because the lower market price results in some trade creation. The net effect is (presumably) negative. The same holds for the PTA’s and the world’s welfare.

We now examine the case where B has an upward-sloping supply curve of exports to A, denoted by S_B in Figure 1.\(^3\) C’s supply to A is horizontal as before. Thus, A is large in B’s market but is small in the world market C. We examine first the case where A forms a PTA with B and then the alternative case where A forms a PTA with C.

\(^3\) I show in Section 4 that this supply curve does not exist.
2.2. Large (small) in partner’s (outside) market.

Before the PTA is formed, A applies a non-discriminatory (MFN) specific tariff \(T \), and faces the supply curves \(S'_c \) from C and \(S'_b \) from B (see Figure 1). A imports \(M_1 \) from B and \(M_3 - M_1 \) from C. The price in A, \(P_A \), is: \(P_A = P_C + T \). A’s welfare is the difference \(HKVE \) between the value of imports and the world price paid for them. This equals the consumer surplus \(HKF + \) tariff revenues \(KVEF \). B’s welfare is \(FQW = EJP \).

With a PTA between A and B, \(S'_b \) increases to \(S_b \) while \(S'_c \) is unchanged. A’s imports from B increase to \(M_2 \) and those from C fall to \(M_3 - M_2 \). Since A no longer charges the tariff \(T \) on imports from B, it loses rectangle \(EFGI \). And this loss increases with the volume of trade. On the other hand, B’s producer surplus increases by \(EFGJ \). And B’s gain increases with the volume of trade as well. Note that \(EFGJ < EFGI \). Thus, the loss to A is larger than the gain to B. The reason is trade diversion: \(M_1 M_2 \) was previously imported from C and is now imported from B at a higher cost (along \(JG \) rather than \(JI \)). And there is no trade creation: the marginal unit is still imported from C at the same cost \(P_A = P_C + T \) so that total imports remain unchanged.

2.3. Small (large) in partner’s (outside) market.

Finally, with a PTA between A and C, A faces \(S_C \) from C rather than \(S'_C \). Then, \(P_A = P_C \) and A gains area \(KLV + EFRN \) (tariff revenue collected on imports from outsider B). Welfare of C is unchanged so that the PTA as a whole (A plus C) gains \(KLV + EFRN \). And B loses \(EFQN \). Note that here too, the larger the imports from the partner (country C), the smaller the tariff revenues obtained from outsider B and the smaller A’s gains and the PTA’s gains. Though A and the PTA gain in this case, the gains fall as A’s
imports from the partner increase. The impact on world welfare is \(KLV + EFRN - EFQN = KLV \) (trade creation) – \(RQN \) (trade diversion), and may be positive or negative.

This case is examined in detail in Bhagwati and Panagariya (1996, pp. 46-47) and in Schiff (1997, pp. 366-367). These studies have several shortcomings, one of which is examined here (and the others in Section 4). They assume that country B continues to export to A after A forms a PTA with C. Since the domestic price in A falls to \(P_C \), B obtains \(P_C - T \) in A’s market but obtains \(P_C \) in C’s market.\(^4\) Thus, B will switch its exports from A to C, and the above results do not hold. In fact, A gains \(KLV \) but not \(EFRN \), B’s welfare is unchanged, the world gains \(KLV \), and A’s and the PTA’s gains are \emph{invariant} with respect to A’s pre-PTA imports from the partner.

3. **Main Implications from the Traditional Analysis**

Four main implications that have been drawn from the traditional analysis are:

i) The losses to A from a PTA with B do not depend only on the degree of trade diversion \(M_1M_2 \). They are also affected by the revenue loss (or worsening of the terms of trade) on the initial import level \(M_1 \). In fact, A loses tariff revenue even in the total absence of trade diversion, with \(S_B \) vertical at level \(M_1 \).

ii) A PTA between two small price-taking countries must result in a welfare loss for the PTA as a whole as long as trade with the rest of the world C continues to take place.

There is no trade creation in this case and the only effect is trade diversion.

\(^4\) The results do hold if C imposes an import tariff larger than or equal to \(T \). Wonnacott and Wonnacott (1981) assume such a tariff in their analysis of regional integration. In this paper, I assume C imposes no tariff on imports and the good can be bought or sold at price \(P_C \) on the world market C.
iii) The loss to A is proportional to the post-PTA imports from B. Thus, the greater the imports from B, the greater A’s losses. This is the basis for the challenge to the “natural trading partner” hypothesis. Of course, this only deals with the import side. Clearly, the gains to A rise with the volume of A’s exports to B. There are thus two contradictory effects and the impact of the volume of trade on the effect of a PTA on A’s welfare is ambiguous a priori.

Bhagwati and Panagariya (1996, pp. 47-48) argue that in the case of North-South PTAs (e.g., NAFTA), since the North typically has lower trade barriers than the South, the South gives more to the North than it receives from it, and thus loses from the PTA. According to this argument, ceteris paribus, the South (e.g., Mexico) is better off forming a PTA with a distant Northern region (e.g., the EU or Japan) than with one nearby (e.g., the US) because the welfare loss for the South is smaller if trade with the partner country is lower. In general, a country gains more from a PTA if its tariffs are low while those of the partner are high, and if it imports little from the partner and exports a lot to it (Schiff 1997).

iv) We have seen that for a PTA made up of countries A and B, the loss for the PTA as a whole is JIG. As long as the slope of S_B is constant, this loss is independent of its location. Thus, a higher volume of trade does not reduce the PTA’s loss from trade diversion. Assuming that the elasticity rather than the slope of B’s supply curve is constant, the extent of trade diversion rises with the volume of trade. Then, the losses to the PTA as a whole increase with the volume of trade (Schiff 1997). This is precisely the opposite of the prediction from the “natural trading partner” hypothesis.
Implications i), iii) and iv) also hold when A is large in both B and C, i.e., when both \(S_B \) and \(S_C \) are upward-sloping (Schiff 1997).

4. The Reality of Commercial Opportunity

The standard analysis carefully examines the trade relationship between A and B and between A and C. The same cannot be said of the trade relationship between B and C. This lacuna has a fundamental impact on the results. An alternative analysis is provided in this section. 5

4.1. Small in all markets.

We start with the constant cost model where A takes prices in both B and C as given. A question that arises is how the two prices of B and C can coexist. If, say, \(P_C < P_B \), C can sell to B. If C is large relative to B, the equilibrium price is \(P_C \); if B is large relative to C, the equilibrium price is \(P_B \); and otherwise it is between \(P_B \) and \(P_C \). The main point is that A will face a single price on the world market and is then indifferent whether it forms a PTA with B or C. Such a PTA is equivalent to unilateral liberalization.

To maintain the standard results, one needs to assume that there is no such arbitrage between countries B and C. This is obtained if the country with the higher cost applies a tariff that is larger than or equal to the difference in costs between B and C. In

5 We maintain the assumption of the traditional analysis that tariff rates are given exogenously. For an analysis of endogenous determination of tariff rates, see Grossman and Helpman (1994, 1995), Cadot, de Melo, Olarreaga (1996) and Olarreaga and Soloaga (1998).
this particular case, the correction is simple and all the standard results continue to hold. This is not the case below.

4.2. Large (Small) in partner's (outside) market.

Assume now, as done in Section 2, that A is small in world market C but is large in B's market. B is small in C's market as well. We now need to specify the trade relationship between B and C. The good is either exported from B to C (Section 4.2.1) or imported from C to B (Section 4.2.2).

4.2.1. B exports to C.

There are three destinations for B's output: A's market, C's market, and B's domestic consumers. What is the nature of B's export supply curve to A? Since B can export to C at price P_C, its export supply to A is zero for any price $P_A < P_C$. At $P_A = P_C$, B is indifferent between exporting to C or to A. For $P_A > P_C$, B sells all its exports in A and none in C. There are thus three segments to B's export supply curve. In Figure 1, the first segment starts at the origin and is equal to zero up to point E. The second segment is horizontal at price P_C from point E to (say) point Z. The third segment is upward sloping, from (say) point Z to point U and continuing up as shown by the curve X_B. Thus, B's export supply curve is not S_B in Figure 1.

As long as B exports to C, whether A and B form a CU or a FTA has no impact on the analysis since B's tariff does not apply. Before B forms a PTA with A, B receives the world price P_C on its exports to C and on its exports to A as well (the price in A is $P_A = P_C + T$ and B pays a tariff T on exports to A). B is therefore indifferent between
exporting to C or to A. Consequently, the volume of exports from B to A is indeterminate (and not volume M_1 in Figure 1 as obtained in the standard analysis). This indeterminacy is of no consequence for the analysis of the welfare impact of the PTA.

Assume now that A and B form a PTA. The standard analysis assumes a move along B’s export supply curve S_B from point J to point G in Figure 1, with an increase in B’s exports to A from M_1 to M_2. In fact, since B is exporting to C at price P_C, and can now obtain a price $P_C + T$ in A’s market, B’s exporters simply switch exports from C’s market to A’s market. B’s export supply curve to A following integration is thus identical to S_C---at least up to the point where all exports are sold in A’s market and none in C’s market or exports equal M_4.

From the viewpoint of A and B’s welfare, where the export supply curve starts sloping upwards is crucial. First, if that happens at or beyond volume M_4 (point L), A gains KLV as in the case of unilateral liberalization, B’s welfare is unchanged, and the PTA gains KLV. Note that the likelihood of reaching that point is higher under our analysis than under the standard one given that B can switch exports from C to A.

Second, assume B’s export supply curve intersects A’s import demand curve between K and L (as shown by the curve X_B in Figure 1). Then, B gains from the higher export price while the impact on A is ambiguous: it loses from a worsening of its terms of trade but gains from the lower price and increased trade (trade creation). For instance, if the export supply curve X_B intersects the import demand curve in point U in Figure 1, A’s gain is FKUX (increase in consumer surplus) and the loss is EFKV (loss in tariff revenue), or a net gain of KUO and a net loss of EXOV. The net loss EXOV is likely to be larger than the net gain KUO because the net loss applies to the entire pre-PTA
volume of imports while the net gain only applies to the increase in imports. However, whether A gains or loses also depends on where U is located on the segment KL. If U is close to L, A is likely to gain; otherwise it will lose. B gains EXUZ.

Third, assume the export supply curve X_B intersects the horizontal section FK to the left of K. Then, A’s domestic price continues to be $P_c + T$. A loses tariff revenue to B (i.e., A’s terms of trade worsen). Such an outcome is less likely than in the standard analysis because of the larger export supply from B to A in our analysis (X_B is located further to the right than S_B due to B’s ability to shift its exports from C to A). However, for the same reason, A loses more in this case than in the standard analysis and B gains more.

What about the impact on the PTA as a whole? In the first case where X_B intersects A’s demand curve at point L, the bloc gains KLV. In the second case where X_B intersects A’s demand curve at point U, the bloc gains KUYV from trade creation but loses UYZ from trade diversion. The net impact KUZV is thus likely to be positive (see Figure 1), though if Z is located to the left of V, the cost of trade diversion may be larger than the gain from trade creation. In the third case where the export supply curve X_B intersects the horizontal section FK to the left of K, the bloc loses from trade diversion, with B inefficiently expanding output and reducing consumption because of selling in a protected market. If S_B is parallel to X_B, then the bloc loss is the same in both analyses: it is equal to JIG.

6 If B is able to satisfy A’s pre-PTA import demand M, at price P_c (i.e., Z is equal to or to the right of V), then the bloc gains from the PTA. The likelihood of a net gain is higher as U is closer to L, and for a given U it increases as X_B is less elastic and D_A is more elastic. For instance, assume $KU = UL$. Then, if X_B and D_A are equally elastic, the export supply curve goes through point V, and the net gain equals KUV.
In conclusion, the effect on the bloc is negative if post-PTA imports from B are less than M_3, they are likely to be positive between M_3 and M_4, and become increasingly positive as imports approach M_4, and they are equal to KLV at M_4. Given the possibility of shifting B’s exports from C to A, there is a greater likelihood that the equilibrium will not be in the negative zone in our analysis than in the standard one. The likelihood of higher imports is further increased in the analysis below (Section 4.2.1.1) when considering indirect trade deflection.

Let us return to the “natural trading partner” hypothesis. Note that the impact of the PTA on A’s welfare is ambiguous. It is negative for $X_B < M_3$, ambiguous for $M_3 < X_B < M_4$, and positive for $X_B = M_4$. Note also that, as (post-PTA) X_B increases, the PTA’s impact on A’s welfare worsens for $X_B < M_3$, and improves for $M_3 < X_B < M_4$. However, the “natural trading partner” hypothesis is specified in terms of pre-PTA trade volumes, and we have shown that B’s pre-PTA volume of trade with A is indeterminate. Its volume is thus unrelated to the PTA’s impact on A’s welfare or on the bloc’s welfare.

Our results so far differ in several ways from the traditional analysis. First, we find no relation between initial trade flows (indeterminate) and a PTA’s welfare effect, while the standard analysis concludes to a negative relation. Second, if $X_B < M_3$ in the post-PTA situation, then the losses to A are larger in our analysis because X_B is larger than S_B by the amount of pre-PTA exports from B to C which are shifted to B’s market.

7 The conclusion in some of the standard studies is in terms of post-PTA trade flows, but there is an implicit monotonic relationship between pre- and post-PTA trade volumes; a rightward shift in B’s export supply curve in those studies raises both the pre-PTA and post-PTA trade volumes.
after the formation of the PTA. The losses to the bloc are the same in both analyses (assuming that S_B is parallel to X_B) and do not vary with the level of post-PTA imports. The likelihood that B is able to satisfy A's import demand at price P_c is greater in our analysis than in the standard one. Thus, the likelihood that A and the bloc will benefit from the PTA is larger as well. And the likelihood is smaller that the export supply curve X_B intersects the horizontal section FK to the left of K where the bloc loses. Thus, from the bloc's viewpoint, such a PTA is more likely to be beneficial than in standard analysis. And as examined below in Section 4.2.1.1, indirect trade deflection further increase the likelihood that the PTA will be beneficial.

Assume now that B is larger than A. Then, A's gains are larger. First, A is likely to gain more on its exports to B. Being larger, B is likely to continue to import from C after the PTA with A is formed. Since B continues to charge a tariff on imports from C, A obtains an improvement in its terms of trade by selling to B at the higher tariff-inclusive price. Second, a larger B is more likely to satisfy A's import demand at the world price.

4.2.1.1. B switches from exporter to C to importer from C.

Rules of origin (ROO's) in FTAs are established to prevent "trade deflection," that is, to prevent goods from the rest of the world imported by member countries with the lowest tariff rates from being resold to partner countries with higher tariff rates. Trade deflection would render protection in high-tariff countries ineffective, with the effective tariff equal to the lowest one in the bloc. It would be equivalent to a CU with the CET set
equal to the lowest tariff in the union. ROOs were designed to prevent this. However, Richardson (1994, 1995) notes that there is a way around ROOs, a mechanism he termed “indirect trade deflection.” This is examined below.

Assume that B can import the good from C, sell these imports to its own consumers, and export to A the output that was previously consumed domestically in B (assuming B does consume the good). This only takes place if B’s import tariff is lower than A’s, and not if the PTA formed between A and B is a CU rather than a FTA, or if the PTA is an FTA and B imposes a tariff equal to or higher than A’s tariff T.

How likely is it for the legal tariff rate to be lower on exports than on imports? The relation between the tariff rate and an index $Z = \frac{X-M}{X+M}$ was examined for both Argentina and Brazil in 1992 by tariff line. Note that Z increases with X and decreases with M, varying from 1 for $M = 0$ to -1 for $X = 0$. We found a significantly negative correlation between the tariff rate and Z in both countries. Thus, the tariff rate was lower where exports tended to be relatively more important.

Based on these limited findings, the possibility that $T_B < T$ (where T_B is B’s tariff on its imports of the good) and that B might import the good from C for domestic consumption and increase its exports to A is a realistic possibility. This possibility of arbitrage between producers in A and B once the PTA is formed increases the likelihood that equilibrium will be on the horizontal segment of B’s export supply curve. The height of the horizontal segment depends on the level of tariffs, if any, applied by B on its imports.

8 This outcome is equivalent to a proposal made by Bhagwati to strengthen GATT’s Article XXIV. One difference is that high tariff countries lose all tariff revenues under indirect trade deflection.
How does B's export supply curve to A look in this case? As shown in Figure 2, by X_{BB}, it has five segments. As examined before, it is equal to zero up to point E, and horizontal at level P_c up to point Z where all exports (volume X_z) forthcoming at that price are sold in A (and none in C). Beyond point Z, a higher price is needed to elicit a larger volume of exports from B to A. This is represented by the segment ZY between prices P_c and $P_c + T_B$. At price $P_c + T_B$, B will import from C for domestic consumption and sell the output that was consumed domestically to A. This is shown by the segment YV, where X_v is B's total output at price $P_c + T_B$. Finally, beyond X_v, B's export supply curve is upward sloping again and equals B's output supply.

What difference does the possibility of indirect trade deflection make in this case? It makes no difference if $T_B = T$ or if A's import demand intersects B’s export supply curve at point Y or to its left in Figure 2. If A's demand curve intersects B's supply curve to the right of point Y, then indirect trade deflection makes a difference. For instance, in Figure 2, B’s export supply curve in the absence of indirect trade deflection, X_B, intersects A’s demand curve in point U—which corresponds to point U in Figure 1—while B’s export supply curve in the presence of indirect trade deflection, X_{BB}, intersects A’s demand curve in point S. Thus, with indirect trade deflection, A gains area USFG. B gains ABSY (the tariff revenues on its additional imports) and loses UYFG. The PTA as a whole gains ABSUY. Thus, indirect trade deflection by the partner country is beneficial for the home country and for the PTA as a whole, though not necessarily for the partner

9 Indirect trade deflection may matter even when $T_B = T$ if smuggling takes place between A and B. This is examined in Schiff (1997) and is abstracted from here.
country. Note that if X_{bb} intersects D_A between U and S, gains are smaller but the qualitative results remain unchanged.

On the other hand, if X_{bb} intersects the horizontal segment FK to the left of K in Figure 1, then A loses more, B gains more, and bloc losses are unchanged (with X_B parallel with X_{bb}). Thus the impact on bloc welfare of forming a bloc is more likely to be positive and less likely to be negative once both export switching and indirect trade deflection are taken into account. Also, the gains are likely to be larger, while the losses are likely to be unchanged.

4.2.2. B imports from C.

Assume an FTA with $T_B < T$. This case is the one typically considered in the regional integration literature with homogeneous goods. Bhagwati and Panagariya (1996, pp. 48-51) argue that, with indirect trade deflection, B’s export supply curve to A (S_B in Figure 1) shifts to the right, coinciding now with B’s output supply curve. This holds for prices higher than $P_C + T_B$, though not for prices lower than or equal to $P_C + T_B$.

Let us examine B’s export supply at prices lower than or equal to $P_C + T_B$. Since B imports from C, B’s producer price is $P_C + T_B$. On the other hand, the price it can obtain in A before formation of the PTA is P_C. Hence, no producer in B will sell in A and B sells all its output in its own market. In fact, B’s export supply to A is zero for prices below $P_C + T_B$ (up to point F in Figure 2). It is horizontal at the price $P_C + T_B$ because B can sell its entire output to A and import its consumption needs. After that point, B’s export supply

See the references at the start of Section 2.

10. See the references at the start of Section 2.
curve becomes upward sloping and equals its output supply curve. As in the previous case, equilibrium and welfare depend on where A's import demand curve and B's export supply curve intersect. However, there is no link between the pre-PTA trade volume and post-PTA welfare since the pre-PTA trade volume between A and B is equal to zero.

The difference with the previous case where B is an exporter of the good is that there is no export switching in this case, and B exports to A only at a price \(P_A > P_C + T_B \) rather than at \(P_A > P_C \). There are two possible outcomes. Either the price is unchanged, and is the same whether B is an exporter or an importer of the good (i.e., \(P_A = P_C + T \)), with A continuing to import from C and with the welfare effect being the same whether B is exporter or importer; or the price in A is lower when B is an exporter, with larger gains from trade creation and smaller losses from trade diversion. Note also that the latter situation is more likely to prevail when B is an exporter rather than an importer. The bloc is thus likely to do better in the case where B is an exporter.

4.3. **Small (Large) in partner's (outside) market.**

A forms a PTA with C. If B exports to C, B's exports to A are indeterminate before the PTA is formed. Once it is formed, B only sells to C at \(P_C \) (rather than at \(P_C - T \) in A). B and C are unaffected and A gains KLV. If B imports from C, it does not sell to A either before or after the PTA. Once again, B and C are unaffected and A gains KLV.
5. Conclusions and Policy Recommendations

This paper does not ask whether a country should form or join a trading bloc. Rather, it asks: If a country has decided to form or join a trading bloc, what partner or partners should it select? As the paper has shown, the pre-PTA volume of trade is not a useful criterion for selecting a partner. The reason is that the pre-PTA volume is equal to zero if the partner is an importer of the good sold to the home country and it is indeterminate if the partner is an exporter of that good.

Thus, one cannot conclusively argue, as done by adherents of the "natural trading partner" hypothesis, that the welfare impact of a PTA is higher if member countries trade disproportionately with each other before the PTA is formed. However, neither can one conclusively argue the opposite (as done by opponents of the hypothesis), namely that the welfare impact is worse if member countries already trade disproportionately with each other before the PTA is formed.

Some of the conclusions from our analysis are as follows:

For given tariff rates, the home country is better off if the partner country is large. First, a large partner is more likely to satisfy the home country's import demand at the world price. Second, the home country is likely to gain more on its exports to the partner. The reason is that if the partner is large, it is likely to continue to import from the world market after the PTA is formed. And since the partner charges a tariff on imports from the world market, the home country is more likely to obtain an improvement in its terms of trade by selling to the partner at the higher tariff-inclusive price if the partner is large.

11 Neither does it examine the issue of whether a country should liberalize regionally or multilaterally. On the systemic issue of regionalism versus multilateralism, see Winters (1996).
Second, the PTA as a whole is likely to be better off if each country imports what the other exports (rather than each country importing what the other imports). Losses are similar but less likely, while gains are both more likely and the same or larger.

Based on these conclusions, I propose to define the term “natural trading partners” as a situation characterized by complementarity in trade rather than by substitutability. In other words, countries are defined as “natural trading partners” if they tend to import what the prospective partner exports. Under that definition, the “natural trading partner” hypothesis is likely to hold.\footnote{Wonnacott and Lutz (1989) consider whether members are competitive or complementary (p. 70), though their definition differs from ours. For instance, they consider the possibility of an industry being protected in both member countries, with both import-substitutes being complementary to each other. Panagariya (1997, p. 473) notes Wonnacott and Lutz’s definition and their statement that this definition is “much more difficult to evaluate.” He chooses not to examine it because the definition has not been a part of the subsequent literature.}
References

Figure 1.
Figure 2.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Contact for paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPS2138 Multilateral Disciplines for Investment-Related Policies</td>
<td>Bernard Hoekman, Kamal Saggi</td>
<td>June 1999</td>
<td>L. Tabada 36896</td>
</tr>
<tr>
<td>WPS2140 Gender Bias in China, the Republic Of Korea, and India 1920–90: Effects of War, Famine, and Fertility Decline</td>
<td>Monica Das Gupta, Li Shuzhuo</td>
<td>June 1999</td>
<td>M. Das Gupta 31983</td>
</tr>
<tr>
<td>WPS2142 Adjusting to Trade Policy Reform</td>
<td>Steven J. Matusz, David Tarr</td>
<td>July 1999</td>
<td>L. Tabada 36896</td>
</tr>
<tr>
<td>WPS2144 Aid Dependence Reconsidered</td>
<td>Jean-Paul Azam, Shantayanan Devarajan, Stephen A. O'Connell</td>
<td>July 1999</td>
<td>H. Sladovich 37698</td>
</tr>
<tr>
<td>WPS2145 Assessing the Impact of Micro-credit on Poverty and Vulnerability in Bangladesh</td>
<td>Hassan Zaman</td>
<td>July 1999</td>
<td>B. Mekuria 82756</td>
</tr>
<tr>
<td>WPS2147 Developing Country Goals and Strategies for the Millennium Round</td>
<td>Constantine Michalopoulos</td>
<td>July 1999</td>
<td>L. Tabada 36896</td>
</tr>
<tr>
<td>WPS2148 Social Capital, Household Welfare, And Poverty in Indonesia</td>
<td>Christiaan Grootaert</td>
<td>July 1999</td>
<td>G. Ochieng 31123</td>
</tr>
<tr>
<td>Title</td>
<td>Author</td>
<td>Date</td>
<td>Contact for paper</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>WPS2149 Income Gains to the Poor from Workfare: Estimates for Argentina's Trabajar Program</td>
<td>Jyotsna Jalan, Martin Ravallion</td>
<td>July 1999</td>
<td>P. Sader 33902</td>
</tr>
<tr>
<td>WPS2151 A Few Things Transport Regulators Should Know about Risk and the Cost of Capital</td>
<td>Ian Alexander, Antonio Estache, Adele Oliveri</td>
<td>July 1999</td>
<td>G. Chenet-Smith 36370</td>
</tr>
<tr>
<td>WPS2153 The Mystery of the Vanishing Benefits: Ms. Speedy Analyst's Introduction to Evaluation</td>
<td>Martin Ravallion</td>
<td>July 1999</td>
<td>P. Sader 33902</td>
</tr>
<tr>
<td>WPS2154 Inter-Industry Labor Mobility in Taiwan, China</td>
<td>Howard Pack, Christina Paxson</td>
<td>August 1999</td>
<td>H. Sladovich 37698</td>
</tr>
<tr>
<td>WPS2155 Lending Booms, Reserves, and the Sustainability of Short-Term Debt: Inferences from the Pricing of Syndicated Bank Loans</td>
<td>Barry Eichengreen, Ashoka Mody</td>
<td>August 1999</td>
<td>S. Kpundeh 39591</td>
</tr>
<tr>
<td>WPS2156 How Has Regionalism in the 1990s Affected Trade?</td>
<td>Isidro Soloaga, L. Alan Winters</td>
<td>August 1999</td>
<td>L. Tabada 36896</td>
</tr>
<tr>
<td>WPS2157 How Regional Blocs Affect Excluded Countries: The Price Effects of MERCOSUR</td>
<td>Won Chang, L. Alan Winters</td>
<td>August 1999</td>
<td>L. Tabada 36896</td>
</tr>
<tr>
<td>WPS2158 The Effect of Foreign Entry on Argentina's Domestic Banking Sector</td>
<td>George R. G. Clarke, Robert Cull, Laura D'Amato, Andrea Molinari</td>
<td>August 1999</td>
<td>P. Sintim-Aboagye 38526</td>
</tr>
<tr>
<td>WPS2160 Protecting the Poor from Macroeconomic Shocks</td>
<td>Francisco Ferreira, Giovanna Prennushi, Martin Ravallion</td>
<td>August 1999</td>
<td>PREM 87736</td>
</tr>
</tbody>
</table>