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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
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names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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Despite the multitude of measures of multidimensional 
inequality, none is regularly used in policymaking. This 
paper proposes multidimensional inequality measures that 
are easily implementable and transparent and overcome 
many deficiencies of existing measures. The measures follow 
a traditional two-stage format, which aggregates dimensions 
first and then applies a unidimensional measure like the 
Gini coefficient to the distribution of aggregates. A novel 
characterization result identifies the precise form of aggre-
gation needed to obtain axiomatically sound measures. The 
paper derives an additive decomposition formula—breaking 

down multidimensional inequality into terms reflecting the 
average specific inequalities (within dimensions) and the 
joint distribution (across dimensions)—for any measure 
created using a standard unidimensional measure or the 
Lorenz curve. The paper also provides an approach to cali-
brating the measure for use with data over time, replacing 
the usual ad hoc normalization of variables with one that 
accounts for a policymaker’s normative weights. The tech-
nology is illustrated first using synthetic data to understand 
how the measure varies as the components are changed and 
then using data from Azerbaijan.

This paper is a product of the Office of the Chief Economist, Europe and Central Asia Region. It is part of a larger effort 
by the World Bank to provide open access to its research and make a contribution to development policy discussions 
around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The 
authors may be contacted at mlokshin@worldbank.org and fosterje@email.gwu.edu.
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I. Introduction 

While global income inequality has declined since the 1990s, income inequality levels within 

countries have been rising for a wide range of developed and developing countries, capturing the 

attention of social activists and policymakers alike. More than half of all countries and close to 

90 percent of advanced economies have seen an increase in income inequality since 2000, with 

the income Gini increasing by more than two points in some instances (IMF 2023). Yet 

inequality is present not only in the space of incomes; it inhabits other key dimensions such as 

health, education, and social services, whose dimension-specific inequalities may reinforce or 

dampen the impact of income inequality. Empirical data on income inequality offers only a 

partial view of what Amartya Sen has termed “economic inequality” and can limit the scope and 

accuracy of a country’s policy responses (Sen 1997, 1999). 

Dashboards and weighted averages of dimension-specific inequalities can help paint a broader 

picture of economic inequality within a country, and its evolution through time. However, they 

completely ignore the joint distribution of dimensional variables, which conveys important 

information on how people in the country are experiencing inequality. For example, it could be 

the case that most people with lower levels of one variable have lower levels of the others, 

resulting in a rigid hierarchy of achievement vectors and, arguably, greater economic inequality. 

Alternatively, people could exhibit mixed levels of achievements, dampening positive 

association and its impact on inequality. Measurement tools sensitive to the joint distribution can 

distinguish between these situations, and better gauge the extent of economic inequality.1 

Following the pioneering work of Kolm (1977), Atkinson and Bourguignon (1982), and 

Maasoumi (1986), there have been significant advances in the range of tools available for 

measuring inequality when there are multiple dimensions, including new classes of measures, 

axioms for discerning among measures, and dominance methods for ensuring comparisons are 

robust.2 In their survey on multidimensional poverty and inequality, Aaberge and Brandolini 

(2015, p. 201) note a strong demand for multidimensional analyses by policymakers and other 

stakeholders, and indeed, empirical and policy applications of multidimensional poverty indices 

 
1 For Aaberge and Brandolini (2015, p. 146) this sensitivity is “the single feature that distinguishes multidimensional 
from unidimensional analysis.” Note that it also places additional requirements on the data that can be used. 
2 See the recent surveys of Aalberg and Brandolini (2015), Andreoli and Zoli (2020), Glassman (2019), and Seth and 
Santos (2018). 
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(MPIs) are numerous.3 However, for multidimensional inequality measures, the policy impact 

has been more muted.  

Why is this? One possibility might be the complexity of existing measures.4 To be effective in 

policy analysis, a measure needs to be easily understood and communicated. But this desirable 

characteristic is unlikely to be present unless it has been prioritized and intentionally built into 

the measure along with the traditional axiomatic requirements.5 In addition, the process of 

bringing a particular multidimensional measure to data can be daunting, requiring many 

consequential choices not addressed in most theoretical presentations (Alkire and Foster 2010). 

On what basis should a given cardinalization of a variable be selected? How can the variables be 

made comparable to one another? Where should the relative importance of variables be 

reflected? The structure of a measure might facilitate or hinder the answers to such questions, 

impacting its dependability and ease of use in policy analyses. 

The aim of this paper is to identify axiomatically-sound multidimensional inequality measures 

having attributes well-suited for policy.6 Our focus is the two-stage approach of Maasoumi 

(1986), which yields intuitive measures frequently used in empirical analyses.7 In this approach, 

a multidimensional inequality measure is constructed using two components: an aggregation 

function converting each person’s dimensional achievements into an aggregate indicator; and an 

inequality measure evaluating the resulting vector of indicators. His original presentation used 

general means and generalized entropy measures; ours considers a general set of aggregation 

functions based on Bosmans et al. (2015) and Lorenz-consistent inequality measures.8  

Two-stage measures inherit several of the standard axioms for multidimensional inequality 

measures from the properties of their components. However, Dardanoni (1995) has shown that at 

 
3 Google Scholar and the site www.mppn.org list hundreds of empirical studies using MPIs along with many policy 
applications. The relative infrequency for multidimensional inequality indices is noted in Hong (2009), Seth and 
Santos (2018) and IPSS (2018). 
4 For example, Lugo (2007) notes how the parameters of a measure can obscure its meaning, hampering 
applications.  
5 See Foster (2024) who discusses an approach to “intentional measurement”.  
6 As we shall see below, the required properties include anonymity, scale invariance and replication invariance, as 
well as the two generalizations of the transfer principle to multidimensional measures. 
7 According to Bosmans, Decancq, and Ooghe (2015 p. 95) the two-stage approach “dominates the empirical 
literature”. Recent applications include Nilson (2010), Justino (2012), Rhode and Guest (2013, 2018), Bartels and 
Stockhausen (2016).  
8 Aggregation functions are assumed to satisfy continuity, concavity, and linear homogeneity; Lorenz-consistent 
measures follow the Lorenz criterion when it applies.   
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least one property is not assured: Kolm’s (1977) weak majorization axiom, which requires the 

level of multidimensional inequality not to rise when each dimensional distribution is 

“smoothed” using the same bistochastic matrix. This is a fundamental axiom that generalizes the 

Pigou-Dalton transfer principle to the multidimensional context. Consequently, additional 

restrictions on the two components may be needed to ensure that the resulting measures are 

axiomatically sound. 

Our first results characterize the subset of measures satisfying the standard multidimensional 

axioms, including weak uniform majorization. We show that, while any Lorenz-consistent 

inequality measure can be used at the second stage, the only form of aggregation that can be used 

in the first is linear. Given this specification, we show that the two-stage measures satisfy all the 

basic axioms, including, perhaps surprisingly, the unfair rearrangement axiom, which ensures 

that a multidimensional inequality measure is appropriately sensitive to positive association 

among the variables. The Lorenz curve can also be applied in the second stage to obtain a 

graphical depiction of multidimensional inequality and a dominance criterion that indicates when 

all two-stage measures with the same aggregation would agree on a comparison. 

The next series of results explores the link between multidimensional inequality and the 

(dimension-)specific inequalities. Following Shorrocks (1978), we consider Lorenz consistent 

measures satisfying a basic convexity assumption.9 We show that multidimensional inequality 

can be expressed as a weighted average of specific inequalities minus a non-negative term 

reflecting the relevant aspects of the joint distribution across dimensions. In the case of the Gini 

coefficient (or the Lorenz curve) this final term is particularly intuitive: it is the extent to which 

multidimensional inequality would rise if achievements were completely aligned.  

To implement the measure, we provide a calibration approach based on data in an initial period 

and normative policy weights. An average Lorenz curve is constructed by weighting and 

summing up the specific Lorenz curves for the country in the initial period. Then, working back 

through the Lorenz formula, coefficients for the linear aggregation function are extracted to 

reflect the normative weights. In essence, dimensions are rendered comparable using the 

measuring rod of Lorenz (or Gini) inequality.10 Once the multidimensional inequality measure 

 
9 The property of constant-sum convexity is satisfied by virtually all traditional measures.  
10 This is analogous to the role of deprivations in multidimensional poverty (Alkire et al 2015, p. 50). 
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has been calibrated using the initial period’s data, it can then be used to gauge the country’s 

multidimensional inequality through time and, with additional assumptions, through space. 

We illustrate the methodology using simulated data to allow specific inequalities, distributional 

means, and correlation levels to vary freely. Examples show the impact of each factor on 

multidimensional inequality for measures based on the Lorenz curve, the Gini coefficient, and 

other Lorenz-consistent measures. A second illustration using data from Azerbaijan examines the 

evolution of multidimensional inequality during a period of rapid income growth. 

Previous studies have considered linear aggregation as one among several options, but to our 

knowledge this is the first paper that selects this structure based on the axiomatic properties of its 

associated measures. Likewise, a number of authors have linked multidimensional inequality to 

specific inequalities or to positive association, but none has the elegant simplicity of our 

decomposition, which highlights the fundamental role of Shorrocks mobility in representing a 

positive association in multidimensional inequality. In addition, the approach is unique in its use 

of normative weights and Lorenz curves to calibrate the measure in a base year, and then to 

judge subsequent changes accordingly. Finally, the paper is unusual in its focus on identifying 

multidimensional inequality measures that are especially useful in conducting policy. 

Section II introduces the definitions and notation used in the paper. Section III presents different 

approaches to multidimensional inequality measurement and then establishes our main 

characterization result, identifying the subset of measures from Maasoumi’s (1986) two-stage 

approach that are axiomatically sound. Section IV provides expressions linking members of this 

class of multidimensional inequality measures to specific inequalities and Shorrocks mobility. 

Our calibration method is described in Section V, selecting initial parameters of the measure 

based on normative weights and Lorenz curves. Section VI illustrates our methods, while the 

final section concludes.  

II. Notation, Axioms, and Other Fundamentals 

The data for measuring inequality are given in an array 𝑥𝑥 with 𝑛𝑛 rows and 𝑑𝑑 columns. The 𝑖𝑖th 

row 𝑥𝑥𝑖𝑖 lists data for person 𝑖𝑖 = 1, … ,𝑛𝑛; the 𝑗𝑗th column 𝑥𝑥∙𝑗𝑗 lists data for dimension 𝑗𝑗 = 1, … ,𝑑𝑑; 

and each entry 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0 is person 𝑖𝑖’s achievement in dimension 𝑗𝑗. The population size 𝑛𝑛 can vary, 

but 𝑑𝑑 is fixed in any given application; hence, the set 𝑋𝑋 of possible arrays is a subset of 
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∪𝑛𝑛=1∞ R+
𝑛𝑛𝑛𝑛. Two alternatives for 𝑋𝑋 will be considered: 𝑋𝑋 = 𝑋𝑋1 containing arrays that are strictly 

positive, and 𝑋𝑋 = 𝑋𝑋2 containing nonnegative arrays having at least one positive quantity in each 

column.11 A multidimensional inequality measure is a mapping 𝑀𝑀:𝑋𝑋 → 𝑅𝑅 associating a real 

number to each array, interpreted as its level of multidimensional inequality.  

When developing a measurement tool like 𝑀𝑀, it is important to be clear about its intended 

purpose, its desired characteristics, and the axioms it should satisfy (Foster 2024). The purpose 

of the measure we seek is to monitor multidimensional inequality in a country over time. A 

useful list of desired characteristics (or desiderata) can be found in Szekely (2006); of special 

relevance to the present paper is one that calls for a measure to be understandable and easy to 

describe.12 The list of axioms to be satisfied by a multidimensional inequality measure will be 

given below. 

We make use of unidimensional inequality measures in producing and understanding 

multidimensional measures. Let 𝑉𝑉⋮ denote the set of column vectors of arbitrary length 

associated with 𝑋𝑋. A unidimensional inequality measure is a mapping 𝐼𝐼:𝑉𝑉⋮ → 𝑅𝑅 associating a 

real number 𝐼𝐼(𝑣𝑣) to each vector 𝑣𝑣 in 𝑉𝑉⋮ interpreted as its inequality level. The Lorenz curve  

𝐿𝐿𝑣𝑣: [0,1] → [0,1] associated with 𝑣𝑣 depicts its level of equality (and inequality), where 𝐿𝐿𝑣𝑣(𝑝𝑝) is 

the share of the income received by the lowest 𝑝𝑝 share of the population. Distributions 𝑣𝑣, 𝑣𝑣′𝜖𝜖 𝑉𝑉⋮ 

have the same level of inequality by the Lorenz criterion if  𝐿𝐿𝑣𝑣′(𝑝𝑝) = 𝐿𝐿𝑣𝑣(𝑝𝑝) for all 𝑝𝑝; distribution 

𝑣𝑣′ has no less inequality than 𝑣𝑣 if 𝐿𝐿𝑣𝑣′(𝑝𝑝) ≤ 𝐿𝐿𝑣𝑣(𝑝𝑝) for all 𝑝𝑝, in which case we say that 𝑣𝑣 weakly 

Lorenz dominates 𝑣𝑣′; and 𝑣𝑣′ has greater inequality than 𝑣𝑣 if 𝐿𝐿𝑣𝑣′(𝑝𝑝) ≤ 𝐿𝐿𝑣𝑣(𝑝𝑝) for all 𝑝𝑝, and 𝐿𝐿𝑣𝑣′ ≠

𝐿𝐿𝑣𝑣, in which case we say that 𝑣𝑣 (strictly) Lorenz dominates 𝑣𝑣′. A measure 𝐼𝐼 is said to be Lorenz 

consistent if it renders the same judgment as the Lorenz criterion when the criterion applies; 

equivalently, 𝐼𝐼 satisfies the axioms of anonymity, scale invariance, replication invariance, and 

the (Pigou-Dalton) transfer principle (Foster 1985). A measure 𝐼𝐼 is said to be constant-sum 

convex if it is convex over slices of 𝑉𝑉⋮ having the same population size and the same total.13 

 
11 In symbols, 𝑋𝑋1 = ∪𝑛𝑛=1∞ R++

𝑛𝑛𝑛𝑛  while 𝑋𝑋2 = ∪𝑛𝑛=1∞ (R+
𝑛𝑛\0)𝑑𝑑, where R+

𝑛𝑛\0 denotes the nonnegative orthant in 𝑅𝑅𝑛𝑛 
excluding its origin. 
12 Other desiderata include: conforming to a common-sense notion of what is being measured; fitting the stated 
purpose; being technically solid; being operationally viable; and being easily replicable. See also Alkire et al (2015) 
and Foster (2024). Such “proto-axioms” are less precise than formal axioms but help ensure a measure is fit for 
purpose.  
13 See Kolm (1976, p. 93). Like decomposability, this property constrains the cardinal values of a measure. 
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Applying 𝐼𝐼 to column 𝑥𝑥∙𝑗𝑗 in 𝑥𝑥 yields the inequality level 𝐼𝐼(𝑥𝑥∙𝑗𝑗) for dimension 𝑗𝑗 = 1, … ,𝑑𝑑, which 

will be termed its specific inequality level; analogously 𝐿𝐿𝑥𝑥.𝑗𝑗  (or 𝐿𝐿𝑗𝑗 when 𝑥𝑥 is understood) 

graphically depicts its specific inequality level.  

Let 𝑣𝑣 be an element of 𝑉𝑉⋮. We denote the mean of 𝑣𝑣 by 𝜇𝜇(𝑣𝑣) = ∑ 𝑣𝑣𝑖𝑖
𝑛𝑛

 𝑛𝑛
𝑖𝑖=1  or, more succinctly, by 

𝜇𝜇𝑗𝑗 if 𝑣𝑣 = 𝑥𝑥.𝑗𝑗. The ordered vector 𝑣𝑣� of 𝑣𝑣 is the permutation of 𝑣𝑣 for which 𝑣𝑣�1 ≤ 𝑣𝑣�2 ≤ ⋯ ≤ 𝑣𝑣�𝑛𝑛. 

Given array 𝑥𝑥 𝜖𝜖 𝑋𝑋, the completely aligned array 𝑥̿𝑥 of 𝑥𝑥 is the array whose columns are 𝑥̿𝑥.𝑗𝑗 = 𝑥𝑥�.𝑗𝑗; 

it takes the same dimensional achievements and reorders them so that person 1 has the lowest 

entry for each dimension, person 2 has the next lowest, and so forth. An array is said to be 

aligned if it has the same rows as its completely aligned version, but potentially in a different 

order.  

Some measurement approaches use a function to tally up the dimensional achievements of a 

given person. Let 𝑉𝑉⋯ denote the set of row vectors of length 𝑑𝑑 associated with 𝑋𝑋. An 

aggregation function is a mapping ℎ:𝑉𝑉⋯ → 𝑅𝑅 associating a real number to each vector in 𝑉𝑉⋯; 

applying ℎ to 𝑥𝑥𝑖𝑖 in 𝑥𝑥 yields person i’s aggregate level ℎ(𝑥𝑥𝑖𝑖). Given vectors 𝑣𝑣, 𝑣𝑣′𝜖𝜖 𝑉𝑉⋯, we define 

the vector dominance relations as follows: 𝑣𝑣 ≫ 𝑣𝑣′ iff 𝑣𝑣𝑗𝑗 > 𝑣𝑣𝑗𝑗′ for all 𝑗𝑗; 𝑣𝑣 ≥ 𝑣𝑣′ iff 𝑣𝑣𝑗𝑗 ≥ 𝑣𝑣𝑗𝑗′ for all 

𝑗𝑗; and 𝑣𝑣 > 𝑣𝑣′ iff 𝑣𝑣 ≥ 𝑣𝑣′ and not 𝑣𝑣′ ≥ 𝑣𝑣. The rows of an aligned array can be ranked by vector 

dominance; and in the completely aligned array the later rows vector dominate earlier rows, so 

that 𝑥̿𝑥𝑖𝑖′ ≥ 𝑥̿𝑥𝑖𝑖 for 𝑖𝑖′ > 𝑖𝑖. 

We consider two categories of axioms for multidimensional inequality measures – invariance 

axioms and dominance axioms. Invariance axioms specify the transformations of an array that 

leave the measure unchanged. They include anonymity, scale invariance, and replication 

invariance and are entirely analogous to the unidimensional versions. Dominance axioms specify 

transformations that cause multidimensional inequality to move in a certain direction. They 

include the two multidimensional generalizations of the Pigou-Dalton transfer principle 

associated with Kolm (1977) and Atkinson and Bourguignon (1982), respectively.  

Intuitively, Kolm’s (1977) weak uniform majorization axiom requires multidimensional 

inequality not to increase when each dimension is “smoothed” in the same way. More precisely, 

we say that 𝑥𝑥′ is obtained from 𝑥𝑥 by a uniform smoothing if  𝑥𝑥′ = Β𝑥𝑥 for some bistochastic 
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matrix Β.14 Under a uniform smoothing, person i’s vector in 𝑥𝑥′ is a weighted average of all 

persons’ initial vectors in 𝑥𝑥, where the weights are the elements of the ith row of Β. This creates a 

new array whose columns weakly Lorenz dominate the respective columns of the original array. 

The first dominance axiom for 𝑀𝑀 is given by the following. 

Weak Uniform Majorization Axiom. If 𝑥𝑥′ is obtained from 𝑥𝑥 by a uniform smoothing, then 

𝑀𝑀(𝑥𝑥′) ≤ 𝑀𝑀(𝑥𝑥). 

This axiom specifies that multidimensional inequality should not increase as a result of uniform 

smoothing.   

When might we expect multidimensional inequality to strictly fall as a result of a uniform 

smoothing? When will it stay the same? We say that 𝑥𝑥′ is obtained from 𝑥𝑥 by a permutation if  

𝑥𝑥′ = Π𝑥𝑥 for some permutation matrix Π.15 Note that a given uniform smoothing could also be a 

permutation if, say, Β were itself a permutation matrix or if the rows averaged by Β happened to 

be identical. Since anonymous multidimensional inequality measures are unchanged by a 

permutation (and anonymity is typically assumed), the strict version of the axiom accounts for 

this possibility.  

Uniform Majorization Axiom. If 𝑥𝑥′ is obtained from 𝑥𝑥 by a uniform smoothing, then 𝑀𝑀(𝑥𝑥′) ≤

𝑀𝑀(𝑥𝑥); if, in addition, 𝑥𝑥′ is not obtained from 𝑥𝑥 by a permutation, then 𝑀𝑀(𝑥𝑥′) < 𝑀𝑀(𝑥𝑥). 

Many multidimensional measures have two stages: the first employs an aggregation function 

ℎ(𝑥𝑥𝑖𝑖) = 𝑠𝑠𝑖𝑖 and a second applies some symmetric function to the aggregate distribution 𝑠𝑠 =

(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛).16 It could be argued that when dealing with this form of measure, the strict form of 

the uniform majorization axiom needs to be modified further. To be sure, if 𝑥𝑥′ is a permutation 

of 𝑥𝑥, then 𝑠𝑠′ will be a permutation of 𝑠𝑠. However, the converse need not be true. And if it were 

not, then the axiom would require 𝑀𝑀(𝑥𝑥′) < 𝑀𝑀(𝑥𝑥) (since 𝑥𝑥′ is not a permutation of 𝑥𝑥) at the same 

time that anonymity would be requiring 𝑀𝑀(𝑥𝑥′) = 𝑀𝑀(𝑥𝑥) (since 𝑠𝑠′ is a permutation of 𝑠𝑠). The 

following modification accounts for this issue. 

 
14 A bistochastic matrix is a square nonnegative matrix whose rows and columns sum to 1. 
15 A permutation matrix is a square matrix containing 0’s and 1’s whose rows and columns sum to 1. 
16 Examples of papers that aggregate rows first include Tsui (1995, 1999), Bourguignon (1999), Diez et al. (2007), 
Decanq and Lugo (2012), and Seth (2013). 
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Limited Uniform Majorization Axiom. If 𝑥𝑥′ is obtained from 𝑥𝑥 by a uniform smoothing, then 

𝑀𝑀(𝑥𝑥′) ≤ 𝑀𝑀(𝑥𝑥); if, in addition, 𝑠𝑠′ is not obtained from 𝑠𝑠 by a permutation, then 𝑀𝑀(𝑥𝑥′) < 𝑀𝑀(𝑥𝑥). 

This revised axiom only requires strict inequality to hold when the aggregate vectors are not 

permutations of one another. It should be noted that this axiom is tailor-made for two-stage 

multidimensional inequality measures, and it is a joint restriction on 𝑀𝑀 and ℎ.17 

The second type of dominance axiom, based on Atkinson and Bourguignon (1982), takes into 

account the association among variables.18 We say that 𝑥𝑥′ is obtained from 𝑥𝑥 by an unfair 

rearrangement if 𝑥𝑥′ = 𝑥̿𝑥, where 𝑥̿𝑥 is the completely aligned version of 𝑥𝑥. An unfair 

rearrangement reassigns achievement levels to people so that person 1 has the lowest level in 

each dimension, person 2 has the next lowest levels, and so forth, thereby maximizing positive 

association among variables. The following is a second multidimensional generalization of the 

transfer axiom. 

Weak Unfair Rearrangement Axiom. If 𝑥𝑥′ is obtained from 𝑥𝑥 by an unfair rearrangement, then 

𝑀𝑀(𝑥𝑥′) ≥ 𝑀𝑀(𝑥𝑥). 

According to this axiom, reallocating achievements so as to maximize positive association 

should not decrease multidimensional inequality.  

Note that as before, this transformation may yield an array that is a permutation of the original 

array, as would happen if 𝑥𝑥 had the same rows as 𝑥̿𝑥, but in a different order across people. The 

strict version of this axiom accounts for this possibility. 

Unfair Rearrangement Axiom. If 𝑥𝑥′ is obtained from 𝑥𝑥 by an unfair rearrangement, then 

𝑀𝑀(𝑥𝑥′) ≥ 𝑀𝑀(𝑥𝑥); if, in addition, 𝑥𝑥′ is not obtained from 𝑥𝑥 by a permutation, then 𝑀𝑀(𝑥𝑥′) > 𝑀𝑀(𝑥𝑥). 

This axiom goes beyond the weaker version by requiring multidimensional inequality to strictly 

increase when the unfair rearrangement is not a permutation of the original array.  

III. Multidimensional Inequality Measures 

 
17 Thus, its use is limited to the class of two-stage measures.  
18 Our presentation follows Dardanoni (1995). For other versions of the axiom see, for example, Tsui (1995). 
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We now present several intuitive approaches to measuring multidimensional inequality and the 

properties they satisfy. A dashboard 𝐷𝐷(𝑥𝑥) = �𝐼𝐼(𝑥𝑥∙1), … , 𝐼𝐼(𝑥𝑥∙𝑑𝑑)� is a vector of specific 

inequalities, which can be interpreted as a multidimensional inequality measure (or rather a 

quasiordering on 𝑋𝑋) when used with vector dominance.19 Multidimensional inequality is then 

judged to be higher when one specific inequality level is higher, and the rest are no lower. So 

long as 𝐼𝐼 is Lorenz-consistent, 𝐷𝐷 satisfies all but one of the general axioms required of a 

multidimensional inequality measure.20 The unfair rearrangement axiom fails, since 𝐷𝐷 ignores 

information on positive association and considers 𝑥̿𝑥 and 𝑥𝑥 to be identical. Of course, the practical 

utility of 𝐷𝐷 is also hampered by its inability to make comparisons when one specific inequality 

rises and another falls.21   

A simple way of moving from a dashboard to a multidimensional inequality measure is to take a 

weighted average of specific inequalities using positive weights 𝜔𝜔1, … ,𝜔𝜔𝑑𝑑 that sum to 1, 

resulting in an average specific inequality measure 

𝐴𝐴(𝑥𝑥) = 𝜔𝜔1𝐼𝐼(𝑥𝑥∙1) + ⋯+ 𝜔𝜔𝑑𝑑𝐼𝐼(𝑥𝑥∙𝑑𝑑)        (1) 

Gajdos and Weymark (2005, p. 489), for example, use the Gini coefficient and weights 𝜔𝜔𝑗𝑗 =

𝜇𝜇𝑗𝑗/∑ 𝜇𝜇𝑘𝑘𝑘𝑘  to obtain a measure of this form, which they contrast to Koshevoy and Mosler (1997) 

who consider fixed weights. Whether weights depend on means or are fixed, 𝐴𝐴 satisfies the same 

list of axioms as 𝐷𝐷 when 𝐼𝐼 is Lorenz-consistent.22 Unlike a dashboard, an average specific 

inequality measure can make comparisons between any two arrays, but it also ignores the 

association between dimensions. In particular, it views 𝑥̿𝑥 and 𝑥𝑥 as identical and violates the 

unfair rearrangement axiom.   

 
19 Dashboards can also be populated by distinct inequality measures or applied to unrelated sample populations. The 
above case fits best in the present context. A quasiordering is a reflexive and transitive relation, that is not 
necessarily complete (Sen 1997 Ch 3). 
20 In particular, dashboard inequality levels are unchanged by permutations, by a scalar multiple, by a population 
replication, and by an unfair rearrangement; they do not rise, and can fall, as a result of a uniform smoothing. 
Consequently, the quasiordering generated by 𝐷𝐷 satisfies the three invariance axioms, the uniform majorization 
axiom, and the weak unfair rearrangement axiom. 
21 Even when 𝐷𝐷 can compare two arrays, the comparison might go against judgments that take into account 
information on dimensional means (and dependence); the conclusions rendered by dashboards are partial and not 
unambiguous. 
22 In particular, 𝐴𝐴 satisfies the three invariance axioms, the weak unfair rearrangement axiom, and the uniform 
dominance axiom, where the latter property holds since a uniform smoothing leaves weights unchanged.  
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Maasoumi (1986) constructs a multidimensional inequality measure that reverses the order of 

aggregation by first combining a person’s dimensional achievements into a single aggregate 

indicator 𝑠𝑠𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖) and then applying a unidimensional inequality measure 𝐼𝐼 to the aggregate 

distribution 𝑠𝑠 = (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛)′𝜖𝜖 𝑉𝑉⋮. The resulting two-stage measure 𝑀𝑀(𝑥𝑥) = 𝐼𝐼(𝑠𝑠) is intuitive in 

structure, with components 𝐼𝐼 and ℎ that can be readily understood and applied.23 However, 

questions about the axiomatic suitability of the approach have been raised. Dardanoni (1995) 

shows how a two-stage measure can violate the weak uniform majorization axiom, which leads 

him to critique the axiom; Weymark (2006) reinterprets this finding as a critique of Maasoumi’s 

two-stage approach.  

Bosmans et al. (2015) provide a novel justification of two-stage measures in the context of 

normative inequality measurement, which views multidimensional inequality as the welfare loss 

from falling short of an optimal allocation.24 They divide each normative multidimensional 

inequality measure into two distinct terms: one that evaluates inefficiency and another that 

evaluates inequity and show that the latter term is, in fact, a two-stage inequality measure. The 

authors conclude: “If one would insist that inequality measures should be concerned with 

inequity alone, and not with inefficiency, then we arrive at the striking conclusion that the 

normative approach itself pushes two-stage measures to the forefront.” This is a remarkable 

observation, which sheds light on the structure of normative multidimensional inequality 

measures as well as the suitability of the two-stage class. Note, though, that it justifies the two-

stage measures not as independent multidimensional inequality measures but as useful “partial” 

indices that focus on one aspect of multidimensional inequality.25  

The broader suitability of the two-stage measures depends on the axioms they satisfy, which in 

turn depends on the range of components ℎ and 𝐼𝐼 being considered. For the first component, we 

consider all aggregation functions ℎ:𝑉𝑉⋯ → 𝑅𝑅 that are continuous, concave, linear homogenous, 

and strictly increasing (as in Bosmans et al., 2015), and denote the resulting set by ℋ. For the 

second, we consider all Lorenz-consistent unidimensional inequality measures  𝐼𝐼:𝑉𝑉⋮ → 𝑅𝑅, and 

 
23 While many, including Maasoumi (1986) and Bosemans et al (2015), interpret the aggregation function as utility, 
here we are “making no use of information on individual relative valuations” of dimensional variables, and instead 
are treating the function as “a subject for social decision” (Atkinson and Bourguignon 1982 p. 190).  
24 See also Kolm (1977), Tsui (1995), and Weymark (2006) for traditional derivations of a (relative) normative 
multidimensional inequality measure from a welfare function. 
25 On partial indices, see Foster and Sen (1997, p. 168-9). 
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denote the set by ℐ. The object of study is ℳ, the set of two-stage measures 𝑀𝑀:𝑋𝑋 → 𝑅𝑅 with 

components ℎ 𝜖𝜖 ℋ and 𝐼𝐼 𝜖𝜖 ℐ. Which axioms are satisfied by these measures? Can we identify a 

subclass of ℳ that is both intuitive and axiomatically sound?  

The properties defining ℋ and ℐ ensure that every measure in ℳ satisfies the axioms of 

anonymity, scale invariance, and replication invariance.26 Our first result takes up the weak 

uniform majorization axiom. 

Theorem 1. Let 𝑀𝑀 be a two-stage measure with components ℎ 𝜖𝜖 ℋ and 𝐼𝐼 𝜖𝜖 ℐ. If 𝑀𝑀 satisfies weak 

uniform majorization, then there exists 𝑐𝑐 = (𝑐𝑐1, … , 𝑐𝑐𝑑𝑑) ≫ 0 such that ℎ(𝑣𝑣) = 𝑐𝑐1𝑣𝑣1 + ⋯+ 𝑐𝑐𝑑𝑑𝑣𝑣𝑑𝑑 

for all 𝑣𝑣 𝜖𝜖 𝑉𝑉⋯. 

Proof. See the Appendix. 

The proof draws on Dardanoni (1995) and begins by showing that any convex combination of 

allocations in 𝑉𝑉⋯ having the same value under ℎ also has the same value under ℎ. Applying this 

to a certain set of allocations yields a simplex over which ℎ is linear, while the remaining 

argument expands the characterization to all of  𝑉𝑉⋯. Theorem 1 identifies the two-stage 

measures that are consistent with weak uniform majorization; the remaining measures in ℳ 

violate this basic axiom and hence are not axiomatically sound.27  

Let ℒ be the subclass of ℳ whose aggregation functions are linear with 𝑐𝑐 ≫ 0. The next result 

describes the axioms satisfied by the measures in ℒ.  

Theorem 2. Any two-stage measure 𝑀𝑀 𝜖𝜖 ℒ satisfies the anonymity, scale invariance, replication 

invariance, limited uniform majorization, and unfair rearrangement axioms.  

Proof. See the Appendix. 

The proof shows how each invariance property for 𝑀𝑀 follows immediately from the analogous 

property for 𝐼𝐼. For the limited uniform majorization axiom, when a bistochastic matrix is applied 

to array 𝑥𝑥, the new aggregate vector can be found by applying the same bistochastic matrix to the 

 
26 See Theorem 2, below. 
27 This includes two-stage measures using other CES-type aggregation functions suggested by Maasoumi (1986) and 
used in empirical applications. 
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aggregate vector 𝑠𝑠 of 𝑥𝑥, due to the linearity of ℎ. Consequently, both the weak and strict parts of 

the axiom follow directly from the transfer axiom and anonymity of 𝐼𝐼. As for the unfair 

rearrangement axiom, the linear structure of ℎ might lead one to think that the resulting measure 

would not be sensitive to the joint distribution and hence that 𝑀𝑀(𝑥̿𝑥) = 𝑀𝑀(𝑥𝑥). Yet the proof 

shows that 𝑀𝑀(𝑥̿𝑥) > 𝑀𝑀(𝑥𝑥) follows immediately from the Lorenz consistency of 𝐼𝐼 whenever 𝑥̿𝑥 is 

not a permutation of 𝑥𝑥.  

The intuition can be seen in an example with 𝑛𝑛 = 𝑑𝑑 = 2, where c = (2,3) are the coefficients in 

ℎ. Suppose, initially, person 1 has 𝑥𝑥1 = (2,1) while person 2 has 𝑥𝑥2 = (1,2), so that the initial 

aggregate distribution is 𝑠𝑠 = �7
8
�. As a result of the unfair rearrangement, we obtain 𝑥̿𝑥1 = (1,1) 

and 𝑥̿𝑥2 = (2,2) and hence 𝑠̿𝑠 = � 5
10
�. In other words, the unfair rearrangement of 𝑥𝑥 translates into 

a regressive transfer from 𝑠𝑠, and hence, strictly more inequality according to the Lorenz 

consistency of 𝐼𝐼. 

These results are summarized in the following corollary. 

Corollary. A two-stage measure 𝑀𝑀 𝜖𝜖 ℳ satisfies anonymity, scale invariance, population 

replication, limited uniform majorization, and unfair rearrangement if and only if 𝑀𝑀 𝜖𝜖 ℒ. 

Each measure in ℒ is determined by a vector 𝑐𝑐 ≫ 0 of coefficients and a unidimensional measure 

𝐼𝐼. An approach to selecting 𝑐𝑐 is given in Section V below. The choice of 𝐼𝐼 can be guided by a 

large literature on unidimensional inequality measures. The Lorenz curve, which plays a central 

role in that literature, also applies directly to the present environment for fixed 𝑐𝑐. First, it 

provides a useful graphical depiction of the inequality in 𝑥𝑥 as given by the aggregate Lorenz 

curve 𝐿𝐿𝑠𝑠, or the Lorenz curve applied to the aggregate vector 𝑠𝑠 associated with 𝑥𝑥. Second, the 

resulting weak and strict Lorenz criteria can be used to rank arrays. For example, 𝑥𝑥′ has strictly 

more multidimensional inequality than 𝑥𝑥 whenever  

𝐿𝐿𝑠𝑠′(𝑝𝑝) ≤ 𝐿𝐿𝑠𝑠(𝑝𝑝) for all 𝑝𝑝 𝜖𝜖 [0,1], with strict inequality for some 𝑝𝑝.    (2) 
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Indeed, when (2) holds, it follows that every 𝑀𝑀 𝜖𝜖 ℒ with the same 𝑐𝑐 would agree that 𝑀𝑀(𝑥𝑥′) >

𝑀𝑀(𝑥𝑥).28  

Given the purpose of the measure, and the desired characteristics initially posited for it, the 

simple, linear form of the aggregation function can be viewed as an advantage.29 It is clearly 

“neutral” in the ALEP sense discussed in Kannai (1980), so that dimensional variables are 

neither complements nor substitutes. At the same time, the choice of 𝑐𝑐 offers substantial scope 

for incorporating normative and practical considerations, as we shall see below. Linear 

aggregators often appear in empirical applications and theoretical discussions as part of a 

parametric family. 

Following Maasoumi (1986), ℎ typically has been interpreted as a utility function whose 

functional form often follows traditional examples from familiar classes. The empirical or 

normative bases for selecting from among the possibilities has been limited, and in any given 

application, several different choices for ℎ are usually applied without identifying one, say, as a 

headline indicator for policy analysis. In contrast, the present paper does not adopt a utility 

interpretation; instead, analogous to Atkinson (1970) or Atkinson and Bourguignon (1982), it 

simply views ℎ as a function employed in social evaluation. Its normative content will originate 

in public policy discussions of the relative importance of specific inequalities rather than from 

individual preference. 

Finally, we should note that the results differ slightly depending on which domain is being 

assumed. Recall that the domain 𝑋𝑋 can either be 𝑋𝑋1 containing positive arrays or 𝑋𝑋2 containing 

nonnegative arrays that have at least one positive entry per column. Domain 𝑋𝑋1 allows a broader 

range of components, including those not defined for vectors with zero entries (such as many 

generalized entropy measures and weighted general means), but consequentially yields 

multidimensional measures that can be used only with positive data. Domain 𝑋𝑋2 limits 

consideration to a narrower range of components defined for zero values, but then yields 

measures that apply more broadly.  

 
28 This follows directly from the Lorenz consistency of 𝐼𝐼 𝜖𝜖 ℐ. Arguments entirely analogous to the proof of Theorem 
2 show that for any given 𝑐𝑐 ≫ 0, the inequality quasiordering associated with the Lorenz criterion satisfies the 
multidimensional axioms of anonymity, scale invariance, replication invariance, limited uniform majorization and 
unfair rearrangement. 
29 See the discussion in Alkire and Foster (2011, p. 486). 
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IV. Multidimensional from Specific Inequalities 

As noted above, a key desirable characteristic of an inequality measure is for it to be easily 

understood and communicated to others. For multidimensional measures, this could be facilitated 

by a clear link with specific inequality levels. In this section we show that such a link exists for 

many two-stage measures in ℒ and for the aggregate Lorenz curve.  

The key intuition is found in Shorrocks (1978), who considers the impact of the accounting 

period on income inequality and measuring mobility as the extent to which inequality falls as the 

accounting period is extended. Consideration is restricted to measures 𝐼𝐼 𝜖𝜖 ℐ that are constant-sum 

convex, which includes the Gini coefficient, the generalized entropy measures, and Atkinson’s 

family, among others.30 Where 𝑦𝑦.1, … ,𝑦𝑦.𝑑𝑑 are (column) vectors listing the incomes of 𝑛𝑛 persons 

over 𝑑𝑑 periods, Shorrocks compares the inequality in the total income 𝐼𝐼(𝑦𝑦.1 + ⋯+ 𝑦𝑦.𝑑𝑑) to the 

income-share weighted average of the per period income inequalities 𝛼𝛼1𝐼𝐼(𝑦𝑦.1) + ⋯+ 𝛼𝛼𝑑𝑑𝐼𝐼(𝑦𝑦.𝑑𝑑), 

where 𝛼𝛼𝑗𝑗 = 𝜇𝜇�𝑦𝑦.𝑗𝑗�

∑ 𝜇𝜇�𝑦𝑦.𝑘𝑘�𝑘𝑘
 for 𝑗𝑗 = 1, … ,𝑑𝑑. He notes that the former never exceeds the latter, while the 

two coincide when 𝑦𝑦.𝑗𝑗 are scalar multiples of each other. Mobility can be defined as  

𝑚𝑚 =  𝛼𝛼1𝐼𝐼(𝑦𝑦.1) + ⋯+ 𝛼𝛼𝑑𝑑𝐼𝐼(𝑦𝑦.𝑑𝑑) − 𝐼𝐼(𝑦𝑦.1 + ⋯+ 𝑦𝑦.𝑑𝑑) ≥ 0     (3) 

or the extent to which total income inequality falls below the average per period income 

inequality due to the “smoothing” effect of aggregation across time periods. 

The same logic can be applied in the multidimensional context where the smoothing now occurs 

across dimensions. Pick any array 𝑥𝑥 𝜖𝜖 𝑋𝑋. Let ℒ′ denote the set of all measures in ℒ with 

inequality components that are constant sum convex and select a measure 𝑀𝑀 𝜖𝜖 ℒ′ with associated 

components 𝑐𝑐 and 𝐼𝐼. Substituting 𝑐𝑐𝑗𝑗𝑥𝑥∙𝑗𝑗 for 𝑦𝑦∙𝑗𝑗 in equation (3) converts the final term into 

𝐼𝐼(𝑐𝑐1𝑥𝑥.1 + ⋯+ 𝑐𝑐𝑑𝑑𝑥𝑥.𝑑𝑑) = 𝐼𝐼(𝑠𝑠) = 𝑀𝑀(𝑥𝑥), or the multidimensional inequality in array 𝑥𝑥, while the 

first terms become the average specific inequality 𝐴𝐴(𝑥𝑥) as defined in (1) using weights 

𝑤𝑤𝑗𝑗 = 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗
𝑐𝑐1𝜇𝜇1+⋯+𝑐𝑐𝑑𝑑𝜇𝜇𝑑𝑑

    for 𝑗𝑗 = 1, … ,𝑑𝑑       (4) 

We have the following result. 

 
30 His formal results apply to constant-sum strict convex measures; implications of the weaker convexity property 
are discussed informally (Shorrocks 1978 p. 382).  



 16 

Theorem 3. Select any 𝑀𝑀 𝜖𝜖 ℒ′ and define 𝐴𝐴(𝑥𝑥) using (1) and (4). Then for any 𝑥𝑥 𝜖𝜖 𝑋𝑋 we have 

𝑚𝑚(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) −𝑀𝑀(𝑥𝑥) ≥ 0, with 𝑚𝑚(𝑥𝑥) = 0 if the normalized vectors 𝑥𝑥∙𝑗𝑗/𝜇𝜇𝑗𝑗 of 𝑥𝑥 are identical 

for 𝑗𝑗 = 1, … ,𝑑𝑑.  

Proof. See the Appendix. 

The theorem shows that the average specific inequality level 𝐴𝐴(𝑥𝑥) is generally larger, and 

certainly no smaller, than the multidimensional inequality level 𝑀𝑀(𝑥𝑥), with their difference being 

the Shorrocks mobility measure 𝑚𝑚(𝑥𝑥), assessed here across dimensions rather than through time. 

In the special case where the column vectors of 𝑥𝑥 are multiples of one another (hence ordered in 

the same way and with identical shapes), the aggregate vector 𝑠𝑠 will also be a multiple, so that 

𝑀𝑀(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) and hence 𝑚𝑚(𝑥𝑥) = 0.  

Given any 𝑀𝑀 in ℒ′ the mobility term can be usefully broken down into two independent terms 

that respectively reflect the association among dimensional distributions and their relative 

shapes. The rearrangement term 𝑅𝑅(𝑥𝑥) = 𝑀𝑀(𝑥̿𝑥) −𝑀𝑀(𝑥𝑥) measures the pure effect of positive 

association on multidimensional inequality as one moves from 𝑥𝑥 to the completely aligned 

version 𝑥̿𝑥. By Theorem 2 and the unfair rearrangement axiom we know that 𝑅𝑅(𝑥𝑥) ≥ 0. The 

structural term 𝑆𝑆(𝑥𝑥) = 𝐴𝐴(𝑥̿𝑥) −𝑀𝑀(𝑥̿𝑥) measures the mobility associated with the completely 

aligned vector 𝑥̿𝑥. It is always nonnegative by Theorem 3 given weights 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 from (4). In 

addition, the anonymity of 𝐼𝐼 ensures that 𝐴𝐴(𝑥𝑥) = 𝐴𝐴(𝑥̿𝑥). With these observations, the next result 

follows immediately from Theorem 3. 

Theorem 4. Select any 𝑀𝑀 𝜖𝜖 ℒ′ and define 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 using (3). Then for any 𝑥𝑥 𝜖𝜖 𝑋𝑋 we have 

𝑀𝑀(𝑥𝑥) = 𝑤𝑤1𝐼𝐼(𝑥𝑥∙1) + ⋯+ 𝑤𝑤𝑑𝑑𝐼𝐼(𝑥𝑥∙𝑑𝑑) − 𝑅𝑅(𝑥𝑥) − 𝑆𝑆(𝑥𝑥)     (5) 

where R(𝑥𝑥),𝑆𝑆(𝑥𝑥) ≥ 0  

Equation (5) provides a general expression linking multidimensional to specific inequalities, with 

the nonnegative terms 𝑅𝑅(𝑥𝑥) and 𝑆𝑆(𝑥𝑥) accounting for the extent to which 𝑀𝑀(𝑥𝑥) falls below 𝐴𝐴(𝑥𝑥). 

If 𝑥̿𝑥 is not a permutation of 𝑥𝑥, we know that 𝑅𝑅(𝑥𝑥) > 0 by the unfair rearrangement axiom, in 

which case the rearrangement term is impacting measured inequality; if the columns of 𝑥̿𝑥 are not 

scalar multiples of each other, and inequality measure 𝐼𝐼 is sensitive to their different shapes, then 
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𝑆𝑆(𝑥𝑥) > 0 by Theorem 3 and so the structural term is impacting measured inequality.31 As an 

array 𝑥𝑥 evolves over time, changes in multidimensional inequality can be viewed in terms of four 

factors: (i) changes in the specific inequality levels, (ii) changes in the weights on the specific 

inequalities through dimensional means, (iii) changes in positive association across dimensions, 

and (iv) changes in the shapes of the dimensional distributions. 

The Gini coefficient 𝐺𝐺 is the most common Lorenz-consistent measures, due in part to its 

intuitive interpretations and its clear link to the Lorenz curve. When applied to ordered vectors, 

the Gini becomes a linear function, which simplifies its associated two-stage multidimensional 

measure and expression (5) above. Let 𝑀𝑀𝐺𝐺  𝜖𝜖 ℒ′ denote the two-stage measure based on the Gini 

coefficient 𝐺𝐺, and let 𝑅𝑅𝐺𝐺(𝑥𝑥) its associated rearrangement term. We have the following 

expression for 𝑀𝑀𝐺𝐺(𝑥𝑥). 

Theorem 5. Consider 𝑀𝑀𝐺𝐺  𝜖𝜖 ℒ′ and define 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 using (4). Then for any 𝑥𝑥 𝜖𝜖 𝑋𝑋, we have 

𝑀𝑀𝐺𝐺(𝑥𝑥) = 𝑤𝑤1𝐺𝐺(𝑥𝑥∙1) + ⋯+ 𝑤𝑤𝑑𝑑𝐺𝐺(𝑥𝑥∙𝑑𝑑) − 𝑅𝑅𝐺𝐺(𝑥𝑥)     (6) 

where 𝑅𝑅𝐺𝐺(𝑥𝑥) ≥ 0. 

Proof. See the Appendix. 

The key step of the proof uses the linear structure of 𝐺𝐺 over ordered vectors to show that 

𝑆𝑆𝐵𝐵(𝑥𝑥) = 𝐴𝐴𝐺𝐺(𝑥̿𝑥) −𝑀𝑀𝐺𝐺(𝑥̿𝑥) = 0, eliminating the structural term from (5).32 Theorem 5 offers a 

remarkably straightforward expression for multidimensional inequality when 𝐺𝐺 is used: 𝑀𝑀𝐺𝐺(𝑥𝑥) is 

the average specific Gini minus a term 𝑅𝑅𝐺𝐺(𝑥𝑥) = 𝑀𝑀𝐺𝐺(𝑥̿𝑥) −𝑀𝑀𝐺𝐺(𝑥𝑥) that is positive for any 𝑥𝑥 that is 

not a permutation of 𝑥̿𝑥, but falls to zero as a positive association in 𝑥𝑥 rises towards its maximum 

level in 𝑥̿𝑥.  

Suppose that a linear ℎ 𝜖𝜖 ℋ with 𝑐𝑐 ≫ 0 has been selected in the first stage. Rather than choosing 

a particular 𝐼𝐼 𝜖𝜖 ℐ in the second stage, the Lorenz curve can be used to depict multidimensional 

inequality and make comparisons. Given 𝑥𝑥 𝜖𝜖 𝑋𝑋 with aggregate vector 𝑠𝑠, the aggregate Lorenz 

curve 𝐿𝐿𝑠𝑠 for 𝑥𝑥 can be defined as 𝐿𝐿𝑠𝑠(𝑝𝑝) = 1
𝜇𝜇(𝑠𝑠)∫ 𝑄𝑄𝑠𝑠(𝑟𝑟)𝑑𝑑𝑑𝑑𝑝𝑝

0  for 𝑝𝑝 𝜖𝜖 [0,1], where 𝜇𝜇(𝑠𝑠) is the mean 

 
31 Measures with the needed sensitivity include those that are constant-sum strictly convex.  
32 The proof also applies to any 𝐼𝐼 𝜖𝜖 ℐ that is linear over ordered vectors, such as the generalized Gini measures 
(Weymark 1981). 
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of 𝑠𝑠 and 𝑄𝑄𝑠𝑠: [0,1] → 𝑅𝑅 is its quantile function.33 For 𝑗𝑗 = 1, … ,𝑑𝑑, let 𝑄𝑄𝑗𝑗(𝑟𝑟) and 𝐿𝐿𝑗𝑗(𝑝𝑝) respectively 

denote the quantile function and Lorenz curve of the 𝑗𝑗th variable 𝑥𝑥∙𝑗𝑗 in 𝑥𝑥. Multidimensional 

inequality in 𝑥𝑥 is evaluated using its aggregate Lorenz curve 𝐿𝐿𝑠𝑠 while specific inequalities are 

evaluated using the specific Lorenz curves 𝐿𝐿𝑗𝑗; in each case greater inequality is indicated by a 

lower Lorenz curve. 

Multidimensional and specific inequalities are linked for this case as well. Let 𝐿𝐿𝐴𝐴 denote the 

weighted average of the specific Lorenz curves for 𝑥𝑥 using the weights from (4) so that   

𝐿𝐿𝐴𝐴(𝑝𝑝) = 𝑤𝑤1𝐿𝐿1(𝑝𝑝) + ⋯+ 𝑤𝑤𝑑𝑑𝐿𝐿𝑑𝑑(𝑝𝑝)  for 𝑝𝑝 𝜖𝜖 [0,1].     (7) 

It can be shown that 𝐿𝐿𝐴𝐴(𝑝𝑝) is itself a Lorenz curve. Indeed, let 𝑥̿𝑥 be the completely aligned 

version of 𝑥𝑥 and denote its aggregate vector by 𝑠̿𝑠, the associated quantile function by 𝑄𝑄𝑠̿𝑠, and the 

aggregate Lorenz curve by 𝐿𝐿𝑠̿𝑠. Then 

𝐿𝐿𝐴𝐴(𝑝𝑝) = 1
∑ 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑗𝑗

∫ [𝑐𝑐1𝑄𝑄1(𝑟𝑟) + ⋯+ 𝑐𝑐𝑑𝑑𝑄𝑄𝑑𝑑(𝑟𝑟)]𝑑𝑑𝑑𝑑𝑝𝑝
0    

= 1
𝜇𝜇𝑠𝑠�
∫ 𝑄𝑄𝑠̿𝑠(𝑟𝑟)𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑠̿𝑠(𝑝𝑝)𝑝𝑝
0    for 𝑝𝑝 𝜖𝜖 [0,1]    (8) 

so that the average Lorenz curve 𝐿𝐿𝐴𝐴 is identical to 𝐿𝐿𝑠̿𝑠, the aggregate Lorenz curve of 𝑥̿𝑥. This is 

analogous to what was found above for 𝑀𝑀𝐺𝐺  and relies on the linearity of 𝐿𝐿 in the ordered incomes 

of 𝑄𝑄. Now define the rearrangement function 𝑅𝑅𝐿𝐿: [0,1] → 𝑅𝑅 by 𝑅𝑅𝐿𝐿(𝑝𝑝) = 𝐿𝐿𝑠𝑠(𝑝𝑝) − 𝐿𝐿𝑠̿𝑠(𝑝𝑝) for 

𝑝𝑝 𝜖𝜖 [0,1], and note that it graphically depicts the inequality-reducing impact of dampened 

association in moving from 𝑥̿𝑥 to 𝑥𝑥.34 We have the following result.  

Theorem 6. Consider any linear ℎ 𝜖𝜖 ℋ with 𝑐𝑐 ≫ 0 and define 𝑤𝑤1, … ,𝑤𝑤𝑑𝑑 using (3). Then for any 

𝑥𝑥 𝜖𝜖 𝑋𝑋, we have 

𝐿𝐿𝑠𝑠(𝑝𝑝) = 𝑤𝑤1𝐿𝐿1(𝑝𝑝) + ⋯+ 𝑤𝑤𝑑𝑑𝐿𝐿𝑑𝑑(𝑝𝑝) + 𝑅𝑅𝐿𝐿(𝑝𝑝)      for 𝑝𝑝 𝜖𝜖 [0,1]    (9)  

where 𝑅𝑅𝐿𝐿(𝑝𝑝) ≥ 0. 

 
33 A quantile function is a generalized inverse of the cdf of a distribution; it lists the income of each person against 
the percentile of the person, ranging from lowest to highest. 
34 Integrating 𝑅𝑅𝐿𝐿(𝑝𝑝) measures the average distance or the area between the two Lorenz curves, and hence is half of 
the rearrangement term for the Gini coefficient.  
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Proof. See the Appendix. 

A Lorenz curve can be used in place of a numerical inequality measure in the two-stage 

approach, with 𝐿𝐿𝑠𝑠 representing multidimensional inequality in 𝑥𝑥. Expression (9) shows how 

multidimensional inequality 𝐿𝐿𝑠𝑠 can be additively decomposed into a weighted average 𝐿𝐿𝐴𝐴 of 

specific Lorenz curves plus a nonnegative rearrangement function 𝑅𝑅𝐿𝐿 reflecting the extent to 

which 𝑥𝑥 dampens positive association in 𝑥̿𝑥.  The final term vanishes for all 𝑝𝑝 when 𝑥̿𝑥 is a 

permutation of 𝑥𝑥, but otherwise is strictly positive for some 𝑝𝑝.  

V. Calibration 

The above results have established the properties of these multidimensional inequality measures 

and explored their links with specific inequalities. We now turn to the task of implementing the 

measures with data. As with other measures using the joint distribution, data need to be drawn 

from a single source to construct the vector of achievements for each person. Dimensional 

variables must be viewed as cardinal variables that are comparable across people so that 

meaningful specific inequalities and Lorenz curves can be constructed.35 In keeping with the 

stated purpose of the measure, data should be available in a base period and over time. We 

assume the existence of an initial array 𝑥𝑥 = 𝑥𝑥1 and several subsequent arrays 𝑥𝑥2, … , 𝑥𝑥𝑇𝑇 for some 

𝑇𝑇 ≥ 2. 

Taking positive multiples of variables leaves specific inequalities unchanged but can directly 

impact multidimensional inequality. In empirical applications, attention is often paid to rescaling 

variables to make them “comparable” in some sense. For example, variables might be rescaled to 

a common range such as [0,1]; or normalized by dividing by the mean or another indicator of 

size. The resulting variables are then posited to be comparable even though no measuring rod 

related to inequality has been invoked. In addition, the very rescaling process that asserts 

comparability across dimensions can, if reapplied to each round of data, reduce comparability 

across time.   

 
35 More precisely, dimensional variables must be ratio scales; note that this fixes a natural zero value for each 
variable, which in the present context also has implications for comparability across variables. Related issues are 
discussed in Alkire and Foster (2010). 
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Our approach leaves variables in their original forms and accounts for the relative importance of 

variables, and their comparability, through the calibration of 𝑐𝑐 from the aggregation function. 

The calibration assumes that policymakers can express the relative importance of specific 

inequalities using positive normative weights 𝜈𝜈1, … , 𝜈𝜈𝑑𝑑 summing to 1. The weights are then 

applied to data in the base period to obtain a normative average Lorenz curve, namely  

𝐿𝐿𝑁𝑁(𝑝𝑝) = 𝜈𝜈1𝐿𝐿1(𝑝𝑝) + ⋯+ 𝜈𝜈𝑑𝑑𝐿𝐿𝑑𝑑(𝑝𝑝)         (10) 

where 𝐿𝐿𝑗𝑗 for 𝑗𝑗 = 1, … ,𝑑𝑑 are the specific Lorenz curves from period 1. For example, if weights 

are equal, 𝐿𝐿𝑁𝑁 will be the simple average of the specific Lorenz curves; while if a weight of 0.5 is 

placed on income and the remaining 0.5 is equally split among the rest, the resulting 𝐿𝐿𝑁𝑁 will 

more closely resemble the income Lorenz curve. The normative Lorenz curve provides a 

snapshot of average specific inequality in the base year using weights that reflect policy 

priorities.  

Expression (9) linking multidimensional and specific inequalities contains a second average 

Lorenz curve 𝐿𝐿𝐴𝐴 which depends on the choice of coefficients 𝑐𝑐1, … , 𝑐𝑐𝑑𝑑 through its weights. The 

calibration approach selects these coefficients to ensure that the latter curve is the same as the 

former. Given the associated quantile functions 𝑄𝑄𝑗𝑗(𝑟𝑟) and means 𝜇𝜇𝑗𝑗 for 𝑗𝑗 = 1, … ,𝑑𝑑, we can 

rewrite expression (10) as 

𝐿𝐿𝑁𝑁(𝑝𝑝) = ∫ 𝜈𝜈1
𝜇𝜇1

 𝑄𝑄1(𝑟𝑟)𝑑𝑑𝑑𝑑 + ⋯+ ∫ 𝜈𝜈𝑑𝑑
𝜇𝜇𝑑𝑑

 𝑄𝑄𝑑𝑑(𝑟𝑟)𝑑𝑑𝑑𝑑𝑝𝑝
0

𝑝𝑝
0     (11) 

which through (8) suggests the use of coefficients 𝑐𝑐𝑗𝑗 = 𝜈𝜈𝑗𝑗
𝜇𝜇𝑗𝑗

  for 𝑗𝑗 = 1, … ,𝑑𝑑. Indeed, applying these 

coefficients to equation (7) yields 𝐿𝐿𝐴𝐴(𝑝𝑝) = 𝐿𝐿𝑁𝑁(𝑝𝑝) for the base period. In this way, the baseline 

for evaluating the evolution of inequality can reflect the policy priorities embodied in the 

normative weights 𝜈𝜈1, … , 𝜈𝜈𝑑𝑑. An analogous relationship holds for the measure 𝑀𝑀𝐺𝐺  associated 

with the Gini coefficient. Substituting 𝑐𝑐𝑗𝑗 = 𝜈𝜈𝑗𝑗
𝜇𝜇𝑗𝑗

  into the weights 𝑤𝑤𝑗𝑗 = 𝑐𝑐1𝜇𝜇1
∑ 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑗𝑗

 used in 𝐴𝐴𝐺𝐺(𝑥𝑥) 

immediately yields 𝐴𝐴𝐺𝐺(𝑥𝑥) = 𝜈𝜈1𝐼𝐼(𝑥𝑥.1) + ⋯+ 𝜈𝜈𝑑𝑑𝐼𝐼(𝑥𝑥.𝑑𝑑). So, for example, if the measure had two 

dimensions (say health and income) with equal normative weights, each Gini point in health 

would have the same value in 𝐴𝐴𝐺𝐺(𝑥𝑥) as a Gini point in income. Through the calibration, which 

accounts for both the weights and the base year means, the effective measuring rod becomes 

units of specific inequalities.  
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Once the coefficient vector 𝑐𝑐 has been fixed, the measure 𝑀𝑀 𝜖𝜖 ℒ′ (and 𝐿𝐿𝑠𝑠) can be applied to 

distributions 𝑥𝑥𝑡𝑡 for 𝑡𝑡 = 1, … ,𝑇𝑇 for the purpose of evaluating multidimensional inequality 

through time. The analysis it provides is consistent with the core axioms of multidimensional 

inequality, while its intuitive aggregation structure helps interpret results. The link with specific 

inequalities likewise helps in understanding the evolution of multidimensional inequality via 

changes in specific inequalities, dimensional means, and joint distribution. Depending on the 

unidimensional inequality measure used, further analysis is possible. For example, 𝐿𝐿𝑠𝑠 can help 

evaluate the robustness of trends to the choice of unidimensional measure; while the use of a 

decomposable 𝐼𝐼 allows multidimensional inequality to be decomposed into traditional within-

group and between-group terms. 

VI. Illustrations. 

We begin with a series of simulated results to illustrate the properties of the approach. The data 

generation process for our simulation is based on multivariate log-normal distributions, a class of 

distributions that approximates well many policy-relevant variables. We generate data for 𝑑𝑑 = 2 

outcome variables over 𝑇𝑇 = 2 time periods by populating samples for each period with 

𝑛𝑛 =100,000 random draws of outcome pairs from the bivariate log-normal distribution with 

given means and covariance matrix.36 In the resulting arrays 𝑥𝑥𝑡𝑡 for 𝑡𝑡 = 1, 2, the distribution of 

the first outcome is more unequal than the distribution of the second outcome. Outcomes have 

equal normative weights so that 𝑐𝑐𝑗𝑗 = 1
2𝜇𝜇𝑗𝑗

 for 𝑗𝑗 = 1, 2, where 𝜇𝜇𝑗𝑗 is the mean of 𝑥𝑥.𝑗𝑗 = 𝑥𝑥.𝑗𝑗
1 . The 

resulting 𝑐𝑐 is applied to 𝑥𝑥𝑡𝑡 for 𝑡𝑡 = 1, 2 to obtain aggregate vector 𝑠𝑠𝑡𝑡, while 𝑠̿𝑠𝑡𝑡 corresponds to the 

completely aligned version 𝑥̿𝑥𝑡𝑡 of 𝑥𝑥𝑡𝑡.  

In Figure 1, the solid line depicts the “actual” aggregate Lorenz curve 𝐿𝐿𝑠𝑠𝑡𝑡(𝑝𝑝), while the dashed 

line depicts the completely aligned aggregate (or average) Lorenz curve 𝐿𝐿𝑠̿𝑠𝑡𝑡(𝑝𝑝) for each time 

period t = 1, 2. Figure 1 shows the simulated effect of the proportional increase (growth) in the 

mean of the first outcome in period 2, namely, both 𝐿𝐿𝑠𝑠2(𝑝𝑝) and 𝐿𝐿𝑠̿𝑠2(𝑝𝑝) shift downwards, 

indicating an increase in multidimensional (and average) inequality between the two periods. 

 
36 We use Stata command drawnorm to generate a bivariate normal distribution of two variables with the given 
parameters. We then exponentiate these variables to obtain the bivariate log-normal distribution (Stata 2023). 
 



 22 

This increase is driven in part by the higher effective weight on the more unequal outcome in 

period 2 (via equation 7). This change also makes the array 𝑥𝑥2 more “aligned” compared to 𝑥𝑥1 as 

reflected in a lower rearrangement term in period 2, which could be seen by comparing average 

vertical differences between 𝐿𝐿𝑠𝑠2(𝑝𝑝) and 𝐿𝐿𝑠̿𝑠2(𝑝𝑝) (0.037) and 𝐿𝐿𝑠𝑠1(𝑝𝑝) and 𝐿𝐿𝑠̿𝑠1(𝑝𝑝) (0.045). 

Figure 1: Uncorrelated outcomes, increase in the mean of the first outcome in period 2. 

 
Figure 2 presents the simulation scenario where the distribution of the second outcome becomes 

more unequal in period 2. This change increases overall multidimensional inequality, which 

again is manifested by the south-east shift of 𝐿𝐿𝑠𝑠2(𝑝𝑝) (and 𝐿𝐿𝑠̿𝑠2(𝑝𝑝)) compared to the curves in 

period 1. The average vertical difference between the Lorenz curves associated with the actual 

and the fully aligned array increases from 0.045 in period 1 to 0.051 in period 2.  
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Figure 2: Uncorrelated outcomes, higher inequality in the second outcome in period 2. 

 
Figure 3 depicts the simulation where the two outcomes become more correlated in period 2. The 

higher correlation of the outcomes clearly has no effect on two fully aligned curves as 

𝐿𝐿𝑠̿𝑠1(𝑝𝑝) = 𝐿𝐿𝑠̿𝑠2(𝑝𝑝). But it increases the multidimensional inequality in period 2 by lowering the 

mobility term and pushing 𝐿𝐿𝑠𝑠2(𝑝𝑝) towards 𝐿𝐿𝑠̿𝑠2(𝑝𝑝), so that the average vertical difference 

between the actual and aligned curves decreases from 0.045 in period 1 to 0.027 in period 2. 
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Figure 3: Outcomes are uncorrelated in period 1 and correlated in period 2. 

 
We now illustrate equation (5), which breaks down multidimensional inequality into average 

specific inequalities, and the rearrangement and structural terms, for various measures in ℒ′. 

Subtracting the structural term 𝑆𝑆(𝑥𝑥) from the average specific inequality 𝐴𝐴(𝑥𝑥) yields 𝑀𝑀(𝑥̿𝑥), the 

multidimensional inequality of the fully aligned array. Subtracting the rearrangement term 𝑅𝑅(𝑥𝑥) 

from 𝑀𝑀(𝑥̿𝑥) yields multidimensional inequality 𝑀𝑀(𝑥𝑥). Table 1 lists these components for the 

multidimensional measures generated by the Mean Log Deviation (MLD), the (first) Theil, and 

the Gini inequality measures for three simulation scenarios. As noted above, 𝑆𝑆(𝑥𝑥) = 0 in the 

case of Gini, but it is positive for the other measures. For example, when the mean of the first 

outcome doubles, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 increases from 0.158 to 0.212 and 𝑀𝑀𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 from 0.170 to 0.235, with 

much of the change being reflected in a rising 𝐴𝐴(𝑥𝑥) term and 𝑅𝑅(𝑥𝑥) and 𝑆𝑆(𝑥𝑥) falling slightly. 

𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 likewise increases from 0.311 to 0.360 with 𝐴𝐴(𝑥𝑥) = 𝑀𝑀(𝑥̿𝑥) rising and 𝑅𝑅(𝑥𝑥) falling by less 

and 𝑆𝑆(𝑥𝑥) obviously remaining unchanged. 
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Table 1: Changes in multidimensional inequality and components for three scenarios.*  
 MLD Theil Gini 
 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 
Scenario 1 Mean income of the first outcome increases from 100 in Period 1 to 200 in Period 2 

𝑀𝑀(𝑥𝑥�) 0.270 0.323 0.281 0.335 0.400 0.434 
𝑀𝑀(𝑥𝑥) 0.158 0.212 0.170 0.235 0.311 0.360 
𝐴𝐴(𝑥𝑥) 0.302 0.353 0.302 0.354 0.400 0.434 
𝑅𝑅(𝑥𝑥) 0.112 0.111 0.111 0.100 0.089 0.074 
𝑆𝑆(𝑥𝑥) 0.032 0.030 0.021 0.019 0.000 0.000 

Scenario 2 Inequality of the second outcome increases from Gini 0.3 in Period 1 to Gini 0.4 in Period 2 
𝑀𝑀(𝑥𝑥�) 0.270 0.356 0.281 0.360 0.400 0.450 
𝑀𝑀(𝑥𝑥) 0.158 0.204 0.170 0.211 0.311 0.349 
𝐴𝐴(𝑥𝑥) 0.302 0.365 0.302 0.366 0.400 0.450 
𝑅𝑅(𝑥𝑥) 0.112 0.152 0.111 0.149 0.089 0.101 
𝑆𝑆(𝑥𝑥) 0.032 0.009 0.021 0.006 0.000 0.000 

Scenario 3 Correlation between outcomes increases from 0 in Period 1 to ≈0.3 in Period 2 
𝑀𝑀(𝑥𝑥�) 0.270 0.270 0.281 0.282 0.400 0.400 
𝑀𝑀(𝑥𝑥) 0.158 0.200 0.170 0.211 0.311 0.347 
𝐴𝐴(𝑥𝑥) 0.302 0.302 0.302 0.303 0.400 0.400 
𝑅𝑅(𝑥𝑥) 0.112 0.070 0.111 0.071 0.089 0.053 
𝑆𝑆(𝑥𝑥) 0.032 0.032 0.021 0.021 0.000 0.000 

*) The simulated distributions have the following parameters: First outcome: mean 100, Gini 0.5; Second outcome: 
mean 30, Gini 0.3; Correlation: period 1: 0; period 2: ≈ 0.3. 
 
Table 2 presents results for the three inequality measures when the outcome variables in period 2 

are based on a simple transformation of the period 1 data: namely, the second variable is 

unchanged from period 1 while the first is obtained from its period 1 value by an additive or a 

proportional increase. A uniform increment of 20 units lowers multidimensional inequality, as is 

seen in the top panel of Table 2: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 declines from 0.160 to 0.130, 𝑀𝑀𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 declines from 0.173 

to 0.144, and 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 from 0.312 to 0.284. That increment also results in a drop in the 

rearrangement component for all three indexes, and the structural component declines for MLD 

and Theil, and remains at 0 for Gini. In contrast, a proportional increase in the first outcome by 

20% increases multidimensional inequality as seen in the bottom panel of Table 2.  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 grows 

from 0.158 to 0.171, 𝑀𝑀𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 grows from 0.170 to 0.185, and 𝑀𝑀𝐺𝐺  grows from 0.311 to 0.323, 

while both the rearrangement and structural mobility components change only slightly.  
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Table 2: Changes in multidimensional inequality from additive or proportional changes in the 
first outcome.* 

 MLD Theil Gini 
 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 
Scenario 1 The first outcome variable additively increases from 100 in Period 1 to 120 in Period 2 

𝑀𝑀(𝑥𝑥�) 0.270 0.216 0.281 0.234 0.400 0.364 
𝑀𝑀(𝑥𝑥) 0.158 0.129 0.170 0.142 0.311 0.283 
𝐴𝐴(𝑥𝑥) 0.302 0.222 0.302 0.242 0.400 0.364 
𝑅𝑅(𝑥𝑥) 0.112 0.087 0.111 0.092 0.089 0.081 
𝑆𝑆(𝑥𝑥) 0.032 0.006 0.021 0.008 0.000 0.000 

Scenario 2 The first outcome variable proportionally increases from 100 in Period 1 to 120 in Period 2 
𝑀𝑀(𝑥𝑥�) 0.270 0.284 0.281 0.296 0.400 0.409 
𝑀𝑀(𝑥𝑥) 0.158 0.171 0.170 0.185 0.311 0.323 
𝐴𝐴(𝑥𝑥) 0.302 0.316 0.302 0.316 0.400 0.409 
𝑅𝑅(𝑥𝑥) 0.112 0.113 0.111 0.111 0.089 0.086 
𝑆𝑆(𝑥𝑥) 0.032 0.032 0.021 0.020 0.000 0.000 

*) The simulated distributions have the following parameters: First outcome: mean 100, Gini 0.5; Second outcome: 
mean 30, Gini 0.3; Correlation: period 1: 0; period 2: ≈ 0.3. 
 
We now apply the methods to analyze changes in multidimensional inequality in Azerbaijan 

from 2016 to 2018. We use data from the second (2016) and the fourth (2023) rounds of the Life 

in Transition Survey (LITS). The LITS is a survey run by the European Bank of Reconstruction 

and Development and the World Bank covering the so-called “transition countries” of Europe 

and Central Asia and several comparator countries of Western Europe, the Middle East, and 

North Africa (EBRD 2023). The survey included a nationally representative sample of around 

1,000 households in Azerbaijan in the second and fourth rounds. Azerbaijan experienced rapid 

growth in per capita GDP between 2016 and 2023, which makes the example of this country 

helpful in illustrating the properties of the methods.   

We construct the multidimensional inequality index 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 for three dimensions captured by the 

monthly per capita income (in 2017 PPP terms), years of education, and respondent’s health 

assessment. The measure is calibrated for 2016 using normative weights of ½ for the income 

dimension and ¼ for the education and health dimensions. Table 3 presents the specific and 

multidimensional inequality levels for Azerbaijan in 2016 and 2023. The mean monthly per 

capita income increased by almost 59 percent from about 852 PPP dollars in 2016 to 1350 PPP 

dollars in 2023. The average years of education and health self-assessment remained relatively 

stable. Income growth was accompanied by an increase in income inequality, from a Gini of 

0.253 in 2016 to 0.339 in 2023. The inequality in years of education grew while the inequality in 

health assessment slightly declined.  
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Table 3: Specific and multidimensional inequalities in Azerbaijan, 2016-2023. 
 2016 2023 
 
Specific Inequalities 
Income 

  

     Mean 852.46 1384.44 
     Gini 0.253 0.339 
Education (years)   
     Mean 10.304 11.091 
     Gini 0.094 0.115 
Health   
     Mean 3.448 3.511 
     Gini 0.166 0.159 
   
Multidimensional Inequality   
     𝐴𝐴(𝑥𝑥) = 𝑀𝑀(𝑥̿𝑥)  0.181 0.260 
     𝑀𝑀(𝑥𝑥) 0.144 0.230 
     𝑚𝑚(𝑥𝑥) = 𝑅𝑅(𝑥𝑥) 0.037 0.029 
   

 

Multidimensional inequality as measured by 𝑀𝑀𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 increased significantly between 2016 and 

2023, from 0.144 to 0.230. This increase is due to (i) changes in the specific inequalities, (ii) 

changes in the effective weights as dimensional means change, and (iii) changes in the 

rearrangement term. Holding (ii) and (iii) fixed and altering specific inequalities from the 2016 

to the 2023 levels raises the average specific inequality from 0.181 to 0.238. Incorporating the 

2023 means alters the effective weights from 0.50, 0.25, and 0.25, respectively, to 0.61, 0.20, and 

0.19, thus increasing the average further to 0.260. Finally, the rearrangement term fell slightly 

from 0.037 to 0.029, reflecting greater alignment of dimensions and ensuring that the increase in 

multidimensional inequality (namely, from 0.144 in 2016 to 0.230 in 2023) is more pronounced 

than the increase in average specific inequality. 

Figure 4 depicts the associated Lorenz curves for 2016 and 2023. The solid curves represent 

𝐿𝐿𝑠𝑠𝑡𝑡(𝑝𝑝), the Lorenz curve of the aggregate distribution 𝑠𝑠𝑡𝑡 from the actual data array. The dashed 

curve is 𝐿𝐿𝑠̿𝑠𝑡𝑡(𝑝𝑝) associated with the aligned aggregate distribution 𝑠̿𝑠𝑡𝑡 or, equivalently, the 

weighted average of the specific Lorenz curves. The vertical difference between the solid and 

dashed curve is the Lorenz rearrangement function for the year, while the average vertical 

difference is clearly linked to the Gini rearrangement term. Each 2023 curve is below its 

respective 2016 curve, indicating that multidimensional inequality is unambiguously higher in 

2023 than in 2016. Replacing the Gini with any Lorenz-consistent inequality index 𝐼𝐼 would 

preserve the conclusion that multidimensional inequality rose from 2016 to 2023.  
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Figure 4: Multidimensional inequality in Azerbaijan. 

 
VII. Conclusions. 

The goal of this paper was to identify a technology for measuring multidimensional inequality 

that is axiomatically sound and can be easily understood by policymakers. The latter concern 

suggests the intuitive two-stage approach of Maasoumi (1986), which aggregates achievements 

for each person in the first stage and applies a traditional inequality measure to the distribution of 

aggregates in the second. Our first series of results showed that the aggregation function must 

take on a linear form if the measure is to satisfy the basic axioms for multidimensional inequality 

measures. The next set of results showed how multidimensional inequality can be expressed as a 

weighted average of specific inequalities minus a “mobility” term that measures the inequality-

reducing impact of dimensional mixing. The mobility term can be further divided into terms 

reflecting the effect of rearranging achievements and combining distributions with different 

shapes, with the latter term disappearing when the Gini coefficient or the Lorenz curve is used in 

the second stage. We noted how the technology might be calibrated to incorporate the normative 

priorities of policymakers over the specific inequalities. A series of examples with simulated data 

showed how the specific inequalities, dimensional means, rearrangement term and structural 
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term together shape multidimensional inequality, while an empirical example from Azerbaijan 

illustrates how multidimensional inequality evolved during a period of rapid economic growth.  

There are several concepts related to multidimensional inequality that the paper does not address. 

We have not relied on a prior notion of welfare in our approach, and the functional form is not 

reliant on traditional representations of welfare, utility functions, or even preferences. While 

there is significant ongoing work in these areas, our paper is not intended to contribute to the 

associated lines of research. The capability approach provides a natural guide for expanding 

consideration to other evaluation spaces. As there are multiple capabilities, our multidimensional 

approach to inequality might be seen as moving toward the same general goal. But our approach 

does not account for individual variations in conversion factors between resources and outcomes, 

nor the value of having many choices, both of which are central to the capability approach 

(Foster and Sen 1997, Basu and Lopez-Calva, 2011). In addition, there is a burgeoning literature 

on inequality with ordinal variables.37 In contrast, the methods presented in this paper require 

cardinal variables, while the link with specific inequalities also requires inequality values to have 

cardinal significance. Consequently, they are not applicable to the many cases where cardinality 

assumptions are unable to be maintained.  

  

 
37 See Allison and Foster (2004), for example.  
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Appendix 
 
Proof of Theorem 1. Let 𝑀𝑀 𝜖𝜖 ℳ have components ℎ and 𝐼𝐼. Suppose that 𝑀𝑀 satisfies weak 

uniform majorization. We begin with the following lemma. 

Lemma: Suppose that ℎ(𝑥𝑥1) = ⋯ = ℎ(𝑥𝑥𝑘𝑘) = 𝛼𝛼 > 0 for a given set 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘  𝜖𝜖 𝑉𝑉⋯ of 𝑘𝑘 ≥ 2 

vectors. Then ℎ(𝜆𝜆1𝑥𝑥1 + ⋯+ 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘) = 𝛼𝛼 for any 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘 > 0 with 𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘 = 1. 

∎ Let 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 𝜖𝜖 𝑉𝑉⋯ satisfy ℎ(𝑥𝑥1) = ⋯ = ℎ(𝑥𝑥𝑘𝑘) = 𝛼𝛼 > 0, and suppose that 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘 > 0 with 

𝜆𝜆1 + ⋯+ 𝜆𝜆𝑘𝑘 = 1. By linear homogeneity of ℎ we can find 𝑣𝑣 𝜖𝜖 𝑉𝑉⋯ for which ℎ(𝑣𝑣) = 𝛽𝛽 is strictly 

below 𝛼𝛼. Consider the 𝑘𝑘 × 𝑑𝑑 arrays 𝑥𝑥 = �
𝑥𝑥1
⋮
𝑥𝑥𝑘𝑘
�  𝜖𝜖 𝑋𝑋 and 𝑥𝑥′ = �

𝑣𝑣
⋮
𝑣𝑣
�  𝜖𝜖 𝑋𝑋 and define the associated 

2𝑘𝑘 × 𝑑𝑑 array 𝑦𝑦 = � 𝑥𝑥𝑥𝑥′�  𝜖𝜖 𝑋𝑋. Now define a 2𝑘𝑘 × 2𝑘𝑘 bistochastic matrix 𝑄𝑄 = �B 0
0 I �, where Β is a 

𝑘𝑘 × 𝑘𝑘 bistochastic matrix having (𝑏𝑏11, … , 𝑏𝑏1𝑘𝑘) = (𝜆𝜆1, … , 𝜆𝜆𝑘𝑘) as its first row, 𝐼𝐼 is a 𝑘𝑘 × 𝑘𝑘 identity 

matrix, and 0 is a 𝑘𝑘 × 𝑘𝑘 matrix of zeros. Since 𝑀𝑀 satisfies the weak uniform majorization axiom, 

it follows that 𝑀𝑀(𝑦𝑦) ≥ 𝑀𝑀(𝑦𝑦′) for 𝑦𝑦′ = 𝑄𝑄𝑄𝑄. Let 𝑠𝑠 be the vector defined by 𝑠𝑠𝑖𝑖 = ℎ(𝑦𝑦𝑖𝑖) for 𝑖𝑖 =

1, … ,2𝑘𝑘 and note that 𝑠𝑠𝑖𝑖 = ℎ(𝑥𝑥𝑖𝑖) = 𝛼𝛼 for 𝑖𝑖 = 1, … ,𝑘𝑘 and 𝑠𝑠𝑖𝑖 = ℎ(𝑣𝑣) = 𝛽𝛽 for 𝑖𝑖 = 𝑘𝑘 + 1, … ,2𝑘𝑘. 

By replication invariance of 𝐼𝐼, it follows that 𝑀𝑀(𝑦𝑦) = 𝐼𝐼(𝑠𝑠) = 𝐼𝐼 �
𝛼𝛼
𝛽𝛽�. As for the vector 𝑠𝑠′ 

associated with 𝑦𝑦′, we note that 𝑦𝑦′ = �𝐵𝐵𝐵𝐵𝑥𝑥′ �, so it is immediate that 𝑠𝑠𝑖𝑖′ = 𝛽𝛽 for 𝑖𝑖 = 𝑘𝑘 + 1, … ,2𝑘𝑘, 

while each entry 𝑠𝑠𝑖𝑖′ for 𝑖𝑖 = 1, … ,𝑘𝑘 is found by applying ℎ to a weighted average of the rows in 𝑥𝑥, 

namely 𝑠𝑠𝑖𝑖′ = ℎ(𝑏𝑏𝑖𝑖1𝑥𝑥1 + ⋯+ 𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑘𝑘). By the concavity of ℎ we have 𝑠𝑠𝑖𝑖′ ≥ 𝑏𝑏𝑖𝑖1ℎ(𝑥𝑥1) + ⋯+

𝑏𝑏𝑖𝑖𝑖𝑖ℎ(𝑥𝑥𝑘𝑘) = 𝛼𝛼 for all 𝑖𝑖. Now consider the vector 𝑠𝑠′′ having the same last 𝑘𝑘 entries as 𝑠𝑠′, but with 

the first 𝑘𝑘 entries in 𝑠𝑠′ replaced by their mean 𝛾𝛾 = 1
𝑘𝑘
∑ 𝑠𝑠𝑖𝑖′𝑘𝑘
𝑖𝑖=1 . By the transfer axiom and 

replication invariance for 𝐼𝐼 we have 𝐼𝐼(𝑠𝑠′) ≥ 𝐼𝐼(𝑠𝑠′′) = 𝐼𝐼 �
𝛾𝛾
𝛽𝛽�. Summing up, we conclude that 

𝐼𝐼 �
𝛼𝛼
𝛽𝛽� ≥ 𝐼𝐼 �

𝛾𝛾
𝛽𝛽� for the Lorenz consistent measure 𝐼𝐼. By construction, we know that the 

inequalities 𝛾𝛾 ≥ 𝛼𝛼 > 𝛽𝛽 must hold; but 𝛾𝛾 > 𝛼𝛼 is surely not possible, since then �
𝛼𝛼
𝛽𝛽� would strictly 

Lorenz dominate �
𝛾𝛾
𝛽𝛽� leading to 𝐼𝐼 �

𝛼𝛼
𝛽𝛽� < 𝐼𝐼 �

𝛾𝛾
𝛽𝛽�. Consequently, 𝛾𝛾 = 𝛼𝛼, and since 𝛼𝛼 = 1

𝑘𝑘
∑ 𝑠𝑠𝑖𝑖′𝑘𝑘
𝑖𝑖=1  

with 𝑠𝑠𝑖𝑖′ ≥ 𝛼𝛼 for all 𝑖𝑖, it follows that 𝑠𝑠𝑖𝑖′ = 𝛼𝛼 for all 𝑖𝑖. In particular, setting 𝑖𝑖 = 1 yields 

ℎ(𝜆𝜆1𝑥𝑥1 + ⋯+ 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘) = ℎ(𝑏𝑏11𝑥𝑥1 + ⋯+ 𝑏𝑏1𝑘𝑘𝑥𝑥𝑘𝑘) = 𝑠𝑠𝑖𝑖′ = 𝛼𝛼, as desired. ∎ 
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Now consider the collection of vectors 𝑓𝑓1, … ,𝑓𝑓𝑑𝑑  𝜖𝜖 𝑉𝑉⋯ defined by 𝑓𝑓𝑗𝑗 = 𝑣𝑣𝑗𝑗
ℎ�𝑣𝑣𝑗𝑗�

 , where 

𝑣𝑣1, … , 𝑣𝑣𝑑𝑑  𝜖𝜖 𝑉𝑉⋯ are constructed from the usual basis vectors 𝑒𝑒1, … , 𝑒𝑒𝑑𝑑 and the midpoint 𝑚𝑚 =

�1
𝑑𝑑

, … , 1
𝑑𝑑
� as follows: 𝑣𝑣𝑗𝑗 = 1

2
𝑒𝑒𝑗𝑗 + 1

2
𝑚𝑚 for 𝑗𝑗 = 1, … ,𝑑𝑑. It can be shown that 𝑓𝑓1, … ,𝑓𝑓𝑑𝑑 are linearly 

independent, and hence that the 𝑑𝑑 × 𝑑𝑑 matrix 𝐹𝐹 = �
𝑓𝑓1
⋮
𝑓𝑓𝑑𝑑
� is invertible. Define 𝑐𝑐 = (𝑐𝑐1, … , 𝑐𝑐𝑑𝑑) 𝜖𝜖 𝑅𝑅𝑑𝑑 

by 𝑐𝑐 = 𝐹𝐹−1 �
1
⋮
1
� and note that 𝑐𝑐𝑓𝑓𝑗𝑗 = ℎ�𝑓𝑓𝑗𝑗� = 1 for all j. The vectors 𝑓𝑓1, … ,𝑓𝑓𝑑𝑑 generate a simplex  

𝑆𝑆 = {𝑣𝑣 𝜖𝜖 𝑉𝑉⋯: 𝑣𝑣 = 𝛼𝛼1𝑓𝑓1 + ⋯+ 𝛼𝛼𝑑𝑑𝑓𝑓𝑑𝑑  for 𝛼𝛼1, … ,𝛼𝛼𝑑𝑑 > 0 with 𝛼𝛼1 + ⋯+ 𝛼𝛼𝑑𝑑 = 1}  

and a cone  

𝐶𝐶 = {𝑣𝑣 𝜖𝜖 𝑉𝑉⋯: 𝑣𝑣 = 𝛽𝛽1𝑓𝑓1 + ⋯+ 𝛽𝛽𝑑𝑑𝑓𝑓𝑑𝑑  for 𝛽𝛽1, … ,𝛽𝛽𝑑𝑑 > 0}.  

We will show that ℎ(𝑣𝑣) = 𝑐𝑐𝑐𝑐 for all 𝑣𝑣 𝜖𝜖 𝐶𝐶. First, pick any 𝑣𝑣 𝜖𝜖 𝑆𝑆. By the definition of 𝑣𝑣 as a point 

in 𝑆𝑆, it follows that 𝑐𝑐𝑐𝑐 = 𝛼𝛼1𝑐𝑐𝑐𝑐1 + ⋯+ 𝛼𝛼𝑑𝑑𝑐𝑐𝑐𝑐𝑑𝑑 = 1; applying the lemma ensures that ℎ(𝑣𝑣) = 1. 

Consequently ℎ(𝑣𝑣) = 𝑐𝑐𝑐𝑐 for all 𝑣𝑣 𝜖𝜖 𝑆𝑆. Now pick any 𝑣𝑣 𝜖𝜖 𝐶𝐶. By the definition of 𝑣𝑣 as a point in 𝐶𝐶, 

it follows that 𝑐𝑐𝑐𝑐 = 𝛽𝛽1𝑐𝑐𝑐𝑐1 + ⋯+ 𝛽𝛽𝑑𝑑𝑐𝑐𝑐𝑐𝑑𝑑 = 𝛽𝛽1 + ⋯+ 𝛽𝛽𝑑𝑑, so that 𝑣𝑣′ = 𝑣𝑣/(𝛽𝛽1 + ⋯+ 𝛽𝛽𝑑𝑑) 𝜖𝜖 𝑆𝑆. 

Consequently, by the linear homogeneity of ℎ we have ℎ(𝑣𝑣) = (𝛽𝛽1 + ⋯+ 𝛽𝛽𝑑𝑑)ℎ(𝑣𝑣′) =

(𝛽𝛽1 + ⋯+ 𝛽𝛽𝑑𝑑) = 𝑐𝑐𝑐𝑐, which shows that ℎ(𝑣𝑣) = 𝑐𝑐𝑐𝑐 for all 𝑣𝑣 𝜖𝜖 𝐶𝐶.  

We now show that ℎ(𝑣𝑣) = 𝑐𝑐𝑐𝑐 for any 𝑣𝑣 𝜖𝜖 𝑉𝑉⋯ that is not in 𝐶𝐶. Pick any such 𝑣𝑣 and define 𝑣𝑣′ =

𝑣𝑣/ℎ(𝑣𝑣) so that by linear homogeneity ℎ(𝑣𝑣′) = 1. Define 𝑚𝑚𝑓𝑓 = (𝑓𝑓1 + ⋯+ 𝑓𝑓𝑑𝑑)/𝑑𝑑 𝜖𝜖 𝑆𝑆 and note 

that ℎ�𝑚𝑚𝑓𝑓� = 𝑐𝑐𝑚𝑚𝑓𝑓 = 1. Since 𝑚𝑚𝑓𝑓 is interior to 𝐶𝐶, we can find a small enough weight 0 < 𝜆𝜆 < 1 

so that 𝑣𝑣′′ = 𝜆𝜆𝑣𝑣′ + (1 − 𝜆𝜆)𝑚𝑚𝑓𝑓 𝜖𝜖 𝐶𝐶. By the lemma, ℎ(𝑣𝑣′′) = 1 and hence 𝑐𝑐𝑣𝑣′′ = 1 since 𝑣𝑣′′𝜖𝜖 𝐶𝐶. 

Clearly, 𝑐𝑐𝑐𝑐′′ = 𝜆𝜆𝑐𝑐𝑐𝑐′ + (1 − 𝜆𝜆)𝑐𝑐𝑚𝑚𝑓𝑓, or equivalently 1 = 𝜆𝜆𝜆𝜆𝑣𝑣′ + (1 − 𝜆𝜆), which yields 𝜆𝜆 = 𝜆𝜆𝜆𝜆𝑣𝑣′ 

and so 1 = 𝑐𝑐𝑣𝑣′ = 𝑐𝑐𝑐𝑐/ℎ(𝑣𝑣). It follows, then, that ℎ(𝑣𝑣) = 𝑐𝑐𝑐𝑐 for 𝑣𝑣 𝜖𝜖 𝑉𝑉⋯. Finally, since ℎ is 

increasing, it we know that 𝑐𝑐 ≫ 0. 

Proof of Theorem 2. Let 𝑀𝑀 𝜖𝜖 ℒ be any two-stage measure with components ℎ 𝜖𝜖 ℋ and 𝐼𝐼 𝜖𝜖 ℐ. To 

show that 𝑀𝑀 satisfies anonymity, let 𝑥𝑥′ be obtained from 𝑥𝑥 by a permutation, so that 𝑥𝑥′ = Π𝑥𝑥 for 

some permutation matrix Π. Clearly 𝑠𝑠′ = Π𝑠𝑠, and hence 𝐼𝐼(𝑠𝑠′) = 𝐼𝐼(𝑠𝑠) by anonymity of  𝐼𝐼, which 

yields 𝑀𝑀(𝑥𝑥′) = 𝑀𝑀(𝑥𝑥), as required. To show that 𝑀𝑀 satisfies scale invariance, let 𝑥𝑥′ be obtained 
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from 𝑥𝑥 by a scalar multiple, so that 𝑥𝑥𝑖𝑖𝑖𝑖′ = 𝛼𝛼𝑥𝑥𝑖𝑖𝑖𝑖 for some 𝛼𝛼 > 0, for all 𝑖𝑖 = 1, … ,𝑛𝑛 and 𝑗𝑗 =

1, … , 𝑑𝑑. Clearly 𝑠𝑠′ = 𝛼𝛼𝛼𝛼 by linear homogeneity of ℎ, and hence 𝐼𝐼(𝑠𝑠′) = 𝐼𝐼(𝑠𝑠) by the scale 

invariance of 𝐼𝐼, which yields 𝑀𝑀(𝑥𝑥′) = 𝑀𝑀(𝑥𝑥), as required. To show replication invariance, let 𝑥𝑥′ 

be obtained from 𝑥𝑥 by a replication. Clearly 𝑠𝑠′ is obtained from 𝑠𝑠 by a replication, and hence 

𝐼𝐼(𝑠𝑠′) = 𝐼𝐼(𝑠𝑠) by the replication invariance of 𝐼𝐼, which yields 𝑀𝑀(𝑥𝑥′) = 𝑀𝑀(𝑥𝑥), as required.  

Now to show that that 𝑀𝑀 satisfies limited uniform majorization, let 𝑥𝑥′ be obtained from 𝑥𝑥 by a 

uniform majorization, so that 𝑥𝑥′ = B𝑥𝑥 for some bistochastic matrix 𝐵𝐵. Clearly 𝑠𝑠𝑖𝑖′ =

ℎ(𝑏𝑏𝑖𝑖1𝑥𝑥1 + ⋯+ 𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑛𝑛) = 𝑏𝑏𝑖𝑖1ℎ(𝑥𝑥1) + ⋯+ 𝑏𝑏𝑖𝑖𝑖𝑖ℎ(𝑥𝑥𝑛𝑛) = 𝑏𝑏𝑖𝑖1𝑠𝑠1 + ⋯+ 𝑏𝑏𝑖𝑖𝑖𝑖𝑠𝑠𝑛𝑛 and so 𝑠𝑠′ = 𝐵𝐵𝐵𝐵. Hence 

𝐼𝐼(𝑠𝑠′) ≤ 𝐼𝐼(𝑠𝑠) by the transfer axiom for 𝐼𝐼, which yields 𝑀𝑀(𝑥𝑥′) ≤ 𝑀𝑀(𝑥𝑥), as required by the first 

part of the axiom. Now suppose that 𝑥𝑥′ is obtained from 𝑥𝑥 by a uniform smoothing, and that in 

addition, 𝑠𝑠′ is not obtained from 𝑠𝑠 by a permutation. By the above we know that 𝑠𝑠′ = 𝐵𝐵𝐵𝐵, and 

given that 𝑠𝑠′ is not obtained from 𝑠𝑠 by a permutation, it follows from the transfer axiom that 

𝐼𝐼(𝑠𝑠′) < 𝐼𝐼(𝑠𝑠), and hence 𝑀𝑀(𝑥𝑥′) < 𝑀𝑀(𝑥𝑥), as required by the second part of the axiom.   

Finally, to show that that 𝑀𝑀 satisfies the unfair rearrangement axiom, let 𝑥𝑥′ be obtained from 𝑥𝑥 

by an unfair rearrangement, so that 𝑥𝑥′ = 𝑥̿𝑥. We first show that 𝑀𝑀(𝑥̿𝑥) ≥ 𝑀𝑀(𝑥𝑥), or equivalently 

𝐼𝐼(𝑠̿𝑠) ≥ 𝐼𝐼(𝑠𝑠). Consider the ordered vector 𝑠̂𝑠 of s and similarly permute the rows of 𝑥𝑥 to obtain an 

array 𝑥𝑥′′ whose aggregate vector is 𝑠̂𝑠. Note that 𝑥̿𝑥 is also an unfair rearrangement of 𝑥𝑥′′, which 

implies for each 𝑗𝑗 = 1, … ,𝑑𝑑 that the column vector 𝑥𝑥�∙𝑗𝑗 of 𝑥̿𝑥 contains the same entries as the 

column vector 𝑥𝑥.𝑗𝑗
′′ of 𝑥𝑥′′. And since 𝑥𝑥�∙𝑗𝑗  is ordered from lowest to highest, it follows that  

∑ 𝑥𝑥�𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1 ≤ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖′′𝑘𝑘

𝑖𝑖=1  for 𝑘𝑘 = 1, … ,𝑛𝑛, with equality holding for 𝑘𝑘 = 𝑛𝑛   (A1) 

Multiplying through by 𝑐𝑐𝑗𝑗 and summing across all 𝑗𝑗 yields 

∑ ∑ 𝑐𝑐𝑗𝑗𝑥𝑥�𝑖𝑖𝑖𝑖𝑑𝑑
𝑗𝑗=1

𝑘𝑘
𝑖𝑖=1 ≤ ∑ ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖′′𝑑𝑑

𝑗𝑗=1
𝑘𝑘
𝑖𝑖=1  for 𝑘𝑘 = 1, … ,𝑛𝑛, with equality holding for 𝑘𝑘 = 𝑛𝑛.  

Note that 𝑠̿𝑠𝑖𝑖 = ∑ 𝑐𝑐𝑗𝑗𝑥𝑥�𝑖𝑖𝑖𝑖𝑑𝑑
𝑗𝑗=1  while 𝑠̂𝑠𝑖𝑖 = ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖′′𝑑𝑑

𝑗𝑗=1  and hence 

                 ∑ 𝑠̿𝑠𝑖𝑖𝑘𝑘
𝑖𝑖=1 ≤ ∑ 𝑠̂𝑠𝑖𝑖𝑘𝑘

𝑖𝑖=1   𝑘𝑘 = 1, … ,𝑛𝑛, with equality holding for 𝑘𝑘 = 𝑛𝑛.  (A2) 

Since each column vector 𝑥𝑥�∙𝑗𝑗 of 𝑥̿𝑥 is ordered, the aggregate vector 𝑠̿𝑠 is ordered. Consequently, 

(A2) is equivalent to the statement that 𝑠𝑠 weakly Lorenz dominates 𝑠̿𝑠. It follows that 𝐼𝐼(𝑠̿𝑠)  ≥ 𝐼𝐼(𝑠𝑠) 

for any Lorenz consistent 𝐼𝐼, and so 𝑀𝑀(𝑥̿𝑥) ≥ 𝑀𝑀(𝑥𝑥). 
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Now suppose that, in addition, 𝑥̿𝑥 is not a permutation of 𝑥𝑥. We need to verify that 𝑀𝑀(𝑥̿𝑥) > 𝑀𝑀(𝑥𝑥). 

To do this we will show that at least one of the inequalities in (A2) is strict, in which case 𝑠𝑠 

would strictly Lorenz dominate 𝑠̿𝑠, implying 𝐼𝐼(𝑠̿𝑠) > 𝐼𝐼(𝑠𝑠) for Lorenz consistent 𝐼𝐼 and yielding the 

desired conclusion. So suppose, by way of contradiction, that all the inequalities in (A2) hold 

with equality. Since 𝑠̿𝑠 and 𝑠̂𝑠 are ordered vectors, this would imply that that 𝑠̿𝑠 = 𝑠̂𝑠. Inequality 

(A1) applied to 𝑘𝑘 = 1 for 𝑗𝑗 = 1, …𝑑𝑑 implies that 𝑥̿𝑥1 ≤ 𝑥𝑥1′′. Since 𝑠̿𝑠1 = 𝑠𝑠1′′, the vector dominance 

cannot be strict, and so 𝑥̿𝑥1 = 𝑥𝑥1′′; both 𝑥̿𝑥 and 𝑥𝑥′′ have the same first row. Now suppose that the 

first 𝑘𝑘′ − 1 rows in 𝑥̿𝑥 are the same as the first 𝑘𝑘′ − 1 rows in 𝑥𝑥′′, where 𝑘𝑘′ = 2, … , 𝑛𝑛. We want to 

show that row 𝑘𝑘′ is the same for both. By (A1) applied to 𝑘𝑘′ for 𝑗𝑗 = 1, … ,𝑑𝑑 we know that 𝑥̿𝑥𝑘𝑘′ ≤

𝑥𝑥𝑘𝑘′′′ , since the first 𝑘𝑘′ − 1 terms in each summation are identical. And since 𝑠̿𝑠𝑘𝑘′ = 𝑠𝑠𝑘𝑘′′′ , the vector 

dominance cannot be strict, and so 𝑥̿𝑥𝑘𝑘′ = 𝑥𝑥𝑘𝑘′′′ ; both 𝑥̿𝑥 and 𝑥𝑥′′ have the same first 𝑘𝑘′ rows. This 

leads to the conclusion that 𝑥̿𝑥 = 𝑥𝑥′′ must be a permutation of 𝑥𝑥, contrary to assumption. Thus, 

there must be a strict inequality in (A2) for some 𝑘𝑘 = 1, … ,𝑛𝑛 − 1, from which it follows that 

𝑀𝑀(𝑥̿𝑥) > 𝑀𝑀(𝑥𝑥). 

Proof of Theorem 3. Let 𝑀𝑀 𝜖𝜖 ℒ′ and pick any 𝑥𝑥 𝜖𝜖 𝑋𝑋. Let 𝑠𝑠 be the aggregate vector associated 

with 𝑥𝑥, and notice that 𝜇𝜇(𝑠𝑠) = 𝑐𝑐1𝜇𝜇1 + ⋯+ 𝑐𝑐𝑑𝑑𝜇𝜇𝑑𝑑. Define 𝑠𝑠′ = 𝑠𝑠/𝜇𝜇(𝑠𝑠) and 𝑥𝑥∙𝑗𝑗′ = 𝑥𝑥∙𝑗𝑗/𝜇𝜇𝑗𝑗 for 𝑗𝑗 =

1, … , 𝑑𝑑, which share the same population size and same total (or mean). By constant-sum 

convexity, 𝐼𝐼(𝑠𝑠′) ≤ 𝑤𝑤1𝐼𝐼(𝑥𝑥∙1′ ) + ⋯+ 𝑤𝑤𝑑𝑑𝐼𝐼(𝑥𝑥∙𝑑𝑑′ ), where 𝑤𝑤1, …𝑤𝑤𝑑𝑑 defined by 𝑤𝑤𝑗𝑗 = 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗/𝜇𝜇(𝑠𝑠) are 

nonnegative and sum to 1. By anonymity of 𝐼𝐼 we then have 𝐼𝐼(𝑠𝑠) ≤ 𝑤𝑤1𝐼𝐼(𝑥𝑥∙1) + ⋯+ 𝑤𝑤𝑑𝑑𝐼𝐼(𝑥𝑥∙𝑑𝑑) 

and hence 𝑚𝑚(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) −𝑀𝑀(𝑥𝑥) ≥ 0. If 𝑥𝑥∙𝑗𝑗′  are all identical, then so is their convex combination 

𝑠𝑠′ and hence 𝑚𝑚(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) −𝑀𝑀(𝑥𝑥) = 0 in this case.  

Proof of Theorem 5. Pick any 𝑥𝑥 𝜖𝜖 𝑋𝑋. It will be shown that  𝑆𝑆(𝑥𝑥) = 𝐴𝐴𝐺𝐺(𝑥̿𝑥) −𝑀𝑀𝐺𝐺(𝑥̿𝑥) = 0 which 

along with Theorem 4 will establish the result. Note that the Gini coefficient 𝐺𝐺:𝑉𝑉⋮ → 𝑅𝑅 can be 

defined for vector 𝑣𝑣 𝜖𝜖 𝑉𝑉⋮ by 𝐺𝐺(𝑣𝑣) =  1
𝜇𝜇(𝑣𝑣)

∑ 𝑎𝑎𝑖𝑖𝑣𝑣�𝑖𝑖𝑛𝑛
𝑖𝑖=1  where 𝑎𝑎𝑖𝑖 = �2𝑖𝑖−𝑛𝑛−1

𝑛𝑛2
�. Consequently, 

  𝐴𝐴𝐺𝐺(𝑥̿𝑥) =  𝑐𝑐1𝜇𝜇1
∑ 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑗𝑗

 𝐺𝐺(𝑥𝑥�.1) + ⋯+ 𝑐𝑐𝑑𝑑𝜇𝜇𝑑𝑑
∑ 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑗𝑗

 𝐺𝐺(𝑥𝑥�.𝑑𝑑) =  𝑐𝑐1
∑ 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑗𝑗

 ∑ 𝑎𝑎𝑖𝑖𝑥𝑥�𝑖𝑖1𝑛𝑛
𝑖𝑖=1 + ⋯+ 𝑐𝑐𝑑𝑑

∑ 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑗𝑗
 ∑ 𝑎𝑎𝑖𝑖𝑥𝑥�𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1 . 

Let 𝑠̿𝑠 𝜖𝜖 𝑉𝑉⋮ be the aggregate vector associated with 𝑥̿𝑥. Then 𝑠̿𝑠𝑖𝑖 = 𝑐𝑐1𝑥𝑥�𝑖𝑖1 + ⋯+ 𝑐𝑐𝑑𝑑𝑥𝑥�𝑖𝑖𝑑𝑑, and 𝜇𝜇(𝑠̿𝑠) =

∑ 𝑐𝑐𝑗𝑗𝜇𝜇𝑗𝑗𝑗𝑗  so that 𝐴𝐴𝐺𝐺(𝑥̿𝑥) = 1
𝜇𝜇(𝑠𝑠�)  ∑ 𝑎𝑎𝑖𝑖𝑠̿𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 . Since 𝑠̿𝑠 is the aggregate vector for 𝑥̿𝑥, it follows that 
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𝑀𝑀𝐺𝐺(𝑥̿𝑥) = 𝐺𝐺(𝑠̿𝑠); and since the rows of 𝑥̿𝑥 are ordered by vector dominance, 𝑠̿𝑠 itself is an ordered 

vector, and hence 𝐺𝐺(𝑠̿𝑠) = 1
𝜇𝜇(𝑠𝑠�)  ∑ 𝑎𝑎𝑖𝑖𝑠̿𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 . It follows that 𝑀𝑀𝐺𝐺(𝑥̿𝑥) = 𝐴𝐴𝐺𝐺(𝑥̿𝑥), as desired. 

Proof of Theorem 6. Let ℎ 𝜖𝜖 ℋ be linear with 𝑐𝑐 ≫ 0, and let 𝐿𝐿𝑠𝑠 be the aggregate Lorenz curve 

for 𝑥𝑥 𝜖𝜖 𝑋𝑋. Equation (8) showed that 𝐿𝐿𝐴𝐴(𝑝𝑝) = 𝐿𝐿𝑠̿𝑠(𝑝𝑝) and so 𝐿𝐿𝐴𝐴(𝑝𝑝) + 𝑅𝑅𝐿𝐿(𝑝𝑝) = 𝐿𝐿𝑠𝑠(𝑝𝑝) for 𝑝𝑝 𝜖𝜖 [0,1] 

as required by (9). By expression (A1) in the proof of Theorem 2, we know that 𝑅𝑅𝐿𝐿(𝑝𝑝) =

𝐿𝐿𝑠𝑠(𝑝𝑝) − 𝐿𝐿𝑠̿𝑠(𝑝𝑝) ≥ 0 for 𝑝𝑝 𝜖𝜖 [0,1]. If in addition 𝑥̿𝑥 is a permutation of 𝑥𝑥, then 𝑠̿𝑠 is a permutation of 

𝑠𝑠 and hence their quantile functions and Lorenz curves are identical, which implies 𝑚𝑚𝐿𝐿(𝑝𝑝) = 0 

for all 𝑝𝑝 𝜖𝜖 [0,1]. If 𝑥̿𝑥 is a not permutation of 𝑥𝑥, then the proof of Theorem 2 shows that 𝑠𝑠 Lorenz 

dominates 𝑠̿𝑠 and hence 𝑚𝑚𝐿𝐿(𝑝𝑝) ≠ 0 for some 𝑝𝑝 𝜖𝜖 [0,1].  

 


