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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10990

Understanding global food production and productivity 
patterns is crucial for policy and in-vestment decisions 
aimed at addressing poverty, food insecurity, and climate 
change. This pa-per develops comprehensive calorific-based 
production and yield indexes for 144 crops, covering 98 
percent of global agricultural land and food output. These 
indexes provide standardized measures across various 
crops and varieties, facilitating comparison of agricultural 
productivity and consolidating country and regional con-
tributions to global food production. Utilizing a Box-Cox 
transformation, the analysis finds that a linear model best 
approximates yield growth. The findings reveal that, at an 
aggregate level, there has been no discernable slowdown in 
global yield growth over the past six decades. This translates 

into an average annual yield increase equivalent to nearly 33 
kilograms of wheat per hectare. These results suggest that 
any observed deceleration in specific commodities, regions, 
or countries has been offset by gains in others. While these 
findings are reassuring from a global food supply perspective, 
caution is warranted about the sustainability of production 
and the affordability of food. These concerns are particularly 
relevant as global food demand increases due to popula-
tion and income growth, and as the pressures from climate 
change intensify. The study underscores the importance 
of adopting strategic and sustainable agricultural practices 
to ensure continued food security in the face of evolving 
global challenges.

This paper is a product of the Office of the Chief Economist, Development Economics Vice Presidency. It is part of a larger 
effort by the World Bank to provide open access to its research and make a contribution to development policy discussions 
around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The 
authors may be contacted at jbaffes@worldbank.org.  
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1. Introduction 

As the global population approaches 10 billion by mid-century, agricultural productivity 
will become increasingly critical in feeding the world (Ray et al. 2013). Over the past six 
decades, productivity improvements have accounted for much of the growth in food pro-
duction. However, the rate of yield growth for food commodities, a key measure of 
productivity, has been perceived to have stagnated in recent decades (Alston et al. 2009; 
FAO 2009; Grassini et al. 2013; Ray et al. 2012). This assessment has led to concerns re-
garding food availability, especially in low- and middle-income countries where popula-
tion growth rates are the highest, including Sub-Saharan Africa (Van Ittersum et al. 2016). 
The slowdown has also been cited as a cause of commodity price spikes and price vola-
tility (Helbling and Roache 2011). 

Traditionally, yield growth patterns have been analyzed using single-commodity, 
weight-based data (e.g., kilograms or metric tons per unit of land) at country, regional, 
and global levels. While the bulk of the empirical studies finds widespread yield growth 
deceleration or stagnation (Grassini et al. 2013; Li et al. 2016; Ray et al. 2013), closer ex-
amination reveals considerable heterogeneity across crops and regions. Notably, high-
income countries that experienced large yield gains in response to the Green Revolution 
earlier in the 20th century appeared to have experienced stagnation or even deceleration. 
Certain low-income countries, especially in Sub-Saharan Africa, also faced similar prob-
lems due to limited access to high-yielding varieties and production inputs. However, 
contrary to the stagnation and deceleration narrative, yield growth acceleration has been 
observed for various commodities and regions (Finger 2010). 

This heterogeneity in yield growth patterns across crops and regions raises two 
crucial research questions: Firstly, has aggregate global crop yield experienced a slow-
down or stagnation? Secondly, how similar or dissimilar are yield growth patterns across 
commodities, countries, or regions? Although single-commodity models are useful for 
identifying supply-driven issues such as the effects of weather patterns, climate change, 
or technological improvements for a specific crop, they do not provide a comprehensive 
assessment of aggregate yield dynamics across diverse crops and regions. Indeed, ana-
lyzing sustainability issues and addressing food security concerns requires a modeling 
framework that allows us to evaluate the aggregate growth patterns not only across the 
entire food crop spectrum, but also accounts for changing crop patterns that may be 
driven by input costs, domestic and trade policies, as well as demand-side considerations, 
including changes in tastes and preferences. 

Against this background, the present paper addresses the two research questions 
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by introducing a calorific-based approach to tackle the limitations of the existing litera-
ture. Instead of traditional weight-based measures such as metric tons or kilograms, we 
convert annual crop production into calorific content and subsequently aggregate the 
production and yield of all food commodities into single metrics. This aggregation ac-
counts for heterogenous yield patterns due to changes in production composition, the 
transition from low-yield to high-yield crops and varieties as well as shifts in country and 
regional significance. Additionally, this approach provides an easy-to-implement, yet 
standardized and universal framework for analyzing and comparing yield growth at any 
level, from individual crops to commodity groups to global aggregates. 

Using these calorific-based indices, we apply statistical methods to select the most 
appropriate model for charting the yield paths of commodities at global, regional, and 
crop-group levels. Production and calorific content data for 144 major crops covering the 
1961-2021 period from the Food and Agriculture Organization (FAO) are included in the 
analysis. These crops combined account for approximately 98 percent of the world’s ag-
ricultural land area. The evidence suggests that the aggregate global yield index has not 
been subjected to growth deceleration over the past six decades. Thus, slow growth in 
certain commodities, regions, or countries, documented in the literature has been offset 
by accelerated growth in others. 

The remainder of the paper proceeds as follows. The next section summarizes the 
literature on yield growth. Section 3 discusses the aggregate yield index, the modeling 
framework for evaluating yield growth, and the data. Section 4 presents the results. The 
last section concludes and discusses avenues for further research. 

2. A Brief Review of Literature 

The literature assessing yield growth performance can be broadly delineated into three 
principal strands. One strand delves into yield growth from experimental data, serving 
as a tool for plant scientists to discern performance nuances and facilitate the selection of 
crop varieties (Crow 1998; Kiær et al. 2009; Reiss and Drinkwater 2018). The second strand 
focuses on evaluating the statistical distribution of yields, with the explicit objective of 
assisting farmers to make informed selection of crop varieties, while also aiding the in-
surance industry in determining premia for potential crop losses. Pioneering contribu-
tions to this strand include an early study by Day (1965), subsequently expanded upon 
by Just and Weninger (1999), Atwood et al. (2003), Norwood et al. (2004), and Sherrick et 
al. (2004). The third strand, particularly pertinent in the present context and the subject 
of this section, examines yield growth through the lens of sustainability and food security 
considerations. 
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Under this strand of literature, determining whether yield growth has encoun-
tered deceleration or stagnation has been a topic of substantial debate with most studies 
focusing on grain and oilseed crops. At the global level, Alston et al. (2009) conducted a 
comprehensive study documenting a discernible slowdown in the growth of grain yields. 
Their findings underscored the potentially far-reaching implications for food price trends 
should this deceleration persist. Cassman (1999) contributed to this discourse by high-
lighting that the rate of yield increase for cereal crops potentially fell significantly short 
of the anticipated rise in food demand. Examining the trends in yields for the Big-4 com-
modities (maize, soybeans, wheat, and rice), Ray et al. (2012) concluded that, while yields 
continue to ascend in many regions, a noteworthy proportion—ranging from 24% to 39% 
of the Big-4 growing areas—exhibits a concerning pattern of either negligible improve-
ment, stagnation, or outright collapse. Subsequent research by Ray et al. (2013) revealed 
that the growth rates of yields in these commodities fall considerably short of the levels 
required to meet the projected demand for food commodities by 2050. 

At the regional level, Van Ittersum et al. (2016) asserted that the stagnation of 
yields in Sub-Saharan Africa presents a formidable food security risk, particularly as the 
population of the region is anticipated to reach 2.1 billion by 2050 (from 1.4 billion in 
2020). Using grid-level data, Iizumi et al. (2014) found increased yield instability for the 
Big-4 commodities across a broad region of the Southern Hemisphere, corroborating pre-
vious findings of yield stagnation and collapses in these regions. Lin and Huybers (2012) 
examined wheat yield data across 47 regions, finding that approximately half of the pro-
duction within their sample continued with a linear growth trend, while the remainder 
exhibited yield stagnation. Michel and Makowski (2013) estimated that wheat yield 
growth exceeded 0.06 ton per hectare per year in 1961-2010 in various countries across 
Europe, Asia, Africa, and the Americas, but it experienced stagnation in many other coun-
tries. Focusing on 24 African countries from 1960 to 2012, Saito et al. (2015) found that 15 
countries experienced accelerating yield growth, while the rest saw stagnation or decline. 

Numerous studies examined country-level crop yield growth as well. In a focused 
analysis of China’s yield performance spanning 1980-2010, Li et al. (2016) observed yield 
stagnation in 50% of rice-producing areas, 54% of maize-producing areas, and nearly 16% 
of wheat-producing areas. In the context of analyzing food security in China, Wei et al. 
(2015) determined that rice yields face pronounced stagnation in 53.9% of the regions 
examined, followed by 42.4% in maize and 41.9% in wheat. Finger (2010) found that while 
the yield growth of maize, barley, and rye remained at a linear trend in Switzerland from 
1961 to 2006, other commodities, including wheat, experienced yield growth decelera-
tion. Examining yields in 29 Indian states for the 1967-2017 period, Madhukar et al. (2020) 
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found that 76%, 47%, and 18% of the harvested areas did not show yield improvement in 
the recent decade for wheat, rice, and maize, respectively. 

Notwithstanding the prevailing, somewhat pessimistic, outlook in the studies re-
viewed above, it is essential to note that not all research aligns with such a perspective. 
In an influential work, Alexandratos (1999) contended that global agricultural production 
is poised to meet, or potentially exceed, the demands of food requirements. Alexandratos 
also emphasized that the critical concern lies in the persistent challenges of poverty in 
low-income countries. Similarly, an editorial in the journal Nature (2020) offered a nu-
anced perspective on productivity growth and food security, noting that depending on 
research advancements in the sector, it is feasible to meet the 2050 global food demand at 
an acceptable cost. Ausubel et al. (2013) echoed similar views, highlighting the substantial 
increase in crop yields over the past 50 years, alongside a marked decline in caloric re-
quirements relative to GDP. 

To summarize, the literature provides mixed evidence on yield growth trends, 
with findings varying based on the specific commodities, countries, regions, and time 
periods analyzed. While some studies indicate a decline or stagnation for certain crops 
and regions, others report an acceleration or consistency with a linear growth trend. This 
raises a critical question: from a global perspective, has aggregate crop yield experienced 
stagnation or deceleration? Most studies have predominately employed weight-based 
yield to analyze productivity growth for single commodities. However, this approach 
does not adequately capture the rate of productivity change across all combined com-
modities, which is crucial for analyzing food security and sustainability challenges. In 
this study, we propose constructing global yield growth indices based on the calorific 
content of crops to assess aggregate yield growth patterns at the global, regional, and 
commodity levels. These patterns are discussed in the following sections. 

3. Methods and Data 

Indices have been used in several contexts within commodity markets, such as the aggre-
gation of various commodity prices into a single index and the construction of aggregate 
agricultural productivity indices. A critical issue in the aggregation process is the selec-
tion of appropriate weights. For instance, the weights used in the World Bank’s commod-
ity price indices are based on the export values of emerging markets and developing 
economies (World Bank 2024). For agricultural productivity studies, weights are typically 
based on values derived from FAO international crop prices, measured in Geary-Khamis 
dollars per ton, also known as “international dollars” (Prasada Rao 1993). Numerous 
studies have employed FAO-based aggregation, including Adamopoulos and Restuccia 
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(2022) who studied cross-country agricultural productivity based on micro-plot level 
data; Gollin et al. (2014) who examined agricultural productivity differences across coun-
tries for maize, rice, and wheat; Mekonnen et al. (2015) who investigated technical effi-
ciency in developing countries; and Nin-Pratt et al. (2010) who compared agricultural 
productivity growth in China and India. 

However, using weights based on values derived from commodity prices for spe-
cific years can introduce bias for several reasons. Firstly, while there are established in-
ternational price sequences for key agricultural commodities such as the Big-4, most other 
commodities, which are less frequently traded, lack benchmark prices. Second, in many 
low-income countries, geographical isolation and high transportation costs render many 
agricultural commodities non-tradable (Delgado, Minot, and Tiongco 2005; Delgado 
1995). Third, trade distortions often cause domestic prices to diverge from international 
benchmarks (Baffes and Gardner 2003). Additionally, many commodity prices are subject 
to long-term trends, medium-term cyclicality, and short-term variability, implying that 
selecting different sub-periods can yield varying results (Baffes and Etienne 2016; Baffes 
and Kabundi 2023). Therefore, yield aggregation based on value terms, even when ad-
justed for inflation or purchasing power, can suffer from rapidly changing weights due 
to price volatility. To address these issues, we employ calorific-based weights in our con-
struction of global and regional production and yield indices. 

Calorific-based indices have been widely used on the consumption side in various 
contexts, such as calculating food requirements for balanced diets and estimating budg-
etary needs to ensure healthy nutrition (Bekaert 1991; Sibhatu and Qaim 2017). However, 
their application on the production side has been less frequent, though they have been 
utilized in a range of contexts. Dating back to 1942, Williamson and Williamson (1942) 
used calorific content of food commodities to discern patterns in food consumption. Rob-
erts and Schlenker (2009) extended this approach by converting the production of the Big-
4 commodities to identify supply and demand elasticities in the context of the 2007-08 
price spike. In a similar vein, Bobenrieth et al. (2013) calculated stocks-to-use ratios for 
major grains and an index of total calories from these grains, serving as indicators of vul-
nerability to food shortages and price spikes. D'Odorico et al. (2014) contributed to this 
line of inquiry by calculating the water intensity of internationally traded food commod-
ities, employing a calorific aggregation. Additionally, Cassidy et al. (2013) leveraged the 
calorific content of food commodities to assess area requirements for human food con-
sumption. 

Our study extends this strand of literature to evaluate aggregate crop yield 
growth. The remainder of this section details the construction of an aggregate yield index 
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and discusses the key assumptions underlying common yield growth estimation ap-
proaches. It also examines the modeling framework used to select the appropriate speci-
fication for growth rate estimation, addressing how to manage structural breaks and non-
linearities. Additionally, it provides a brief overview of the data used in the analysis. 

3.1 The aggregate yield index 

The aggregate calorie-based yield index, 𝑦𝑦𝑡𝑡, is computed as: 

𝑦𝑦𝑡𝑡 = �𝑤𝑤𝑖𝑖𝑄𝑄𝑖𝑖𝑡𝑡

𝑁𝑁

𝑖𝑖=1

�𝐿𝐿𝑖𝑖𝑡𝑡

𝑁𝑁

𝑖𝑖=1

�                                                                                   (1) 

where 𝑄𝑄𝑖𝑖𝑡𝑡 denotes the total output of commodity 𝑖𝑖 at year 𝑡𝑡 in weight unit; 𝑤𝑤𝑖𝑖 represents 
the calorific content of commodity 𝑖𝑖 per weight unit; and 𝐿𝐿𝑖𝑖𝑡𝑡 is land allocated to commod-
ity 𝑖𝑖 at year 𝑡𝑡. Thus, 𝑦𝑦𝑡𝑡 represents the number of calories produced per land area (in hec-
tare). In addition to a given country, the index can be constructed for the entire world or 
any region or aggregate commodity group of interest. 

Common calorific units used include cal (small calorie) and Cal (large calorie). A 
small calorie is defined as “…the amount of heat required to raise the temperature of 1 g of 
water by 1°C with a temperature change from 14.5 to 15.5°C. The current US Dietary Reference 
Intakes define 1 cal as 4.186 J [joules]” (Hargrove 2007). One large calorie is equivalent to 
1,000 small calories, or 1 Cal = 1,000 cal. Often Cal is denoted as kcal, a notation used in 
food labeling. For notational convenience, the present paper uses KCal and MCal, which 
equal 1,000 large calories and 1,000,000 large calories, respectively. In other words, we 
define 1 KCal = 1,000 Cal = 1,000 kcal, and 1 MCal = 1,000 KCal = 1,000,000 Cal. 

The benefits of the calorific-based approach over traditional weight-based meth-
ods can be illustrated with an example of two commodities that followed different pro-
duction and yield paths. Millet experienced a modest increase in global production from 
25.7 MMT (million metric tons) in 1961 to 30.1 MMT in 2021. The area allocated to millet 
during this period declined by almost a third, leading to an annual yield growth of 6.3 
kg/ha. During this same period, maize production increased sixfold while the area dou-
bled, giving an annual yield growth of 65.6 kg/ha. To assess the combined yield growth 
performance for these two crops, production is converted from metric tons to calories 
(3,400 kcal/kg for millet and 3,560 kcal/kg for maize) and aggregated into a single metric by 
adding their global calorific production. The annual calorific-based yield growth for the 
two commodities combined is 219 KCal/ha. This calorific approach allows us to assess the 
aggregate yield growth of two crops with different growth paths in a way that the tradi-
tional weight-based approach cannot. 
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3.2 Assumptions under traditional methods of estimating yield growth patterns 

The growth rate between periods 1 and 2, denoted by 𝜌𝜌, typically reported as percent 
change, is calculated as 𝜌𝜌 = (𝑦𝑦1 − 𝑦𝑦0)/𝑦𝑦0, where 𝑦𝑦1 and 𝑦𝑦0 denote yield in the current and 
previous periods. The growth rate equation can also be written as 𝑦𝑦1 = (1 + 𝜌𝜌)𝑦𝑦0. In a 
multiperiod case, if yield grows at rate 𝜌𝜌, on average, while in each period it is subjected 
to a stochastic shock 𝜂𝜂𝑡𝑡, yield at time t can be rewritten as 𝑦𝑦𝑡𝑡 = (1 + 𝜌𝜌)𝑦𝑦𝑡𝑡−1𝜂𝜂𝑡𝑡. 

Taking a one-period lag results in 𝑦𝑦𝑡𝑡−1 = (1 + 𝜌𝜌)𝑦𝑦𝑡𝑡−2𝜂𝜂𝑡𝑡−1, which upon substitution 
and working backward to period 0 results in 𝑦𝑦𝑡𝑡 = (1 + 𝜌𝜌)𝑡𝑡𝑦𝑦0𝜂𝜂𝑡𝑡𝜂𝜂𝑡𝑡−1. . . 𝜂𝜂0. Taking natural 
logarithms of both sides and setting 𝛽𝛽0 = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦0), 𝛽𝛽1 = 𝑙𝑙𝑙𝑙𝑙𝑙( 1 + 𝜌𝜌), and 𝜀𝜀𝑡𝑡 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙( 𝜂𝜂𝑖𝑖)𝑖𝑖=𝑡𝑡

𝑖𝑖=0  
gives: 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑡𝑡) = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝜀𝜀𝑡𝑡. Such logarithmic transformation is a frequently used re-
gression where the parameters 𝛽𝛽0 and 𝛽𝛽1 are estimated with ordinary least squares and 
the growth rate is calculated as 𝜌𝜌 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽1) − 1. The growth rate is often reported as the 
estimate of 𝛽𝛽1  rather than 𝜌𝜌 , since for small growth rates 𝛽𝛽1  and 𝜌𝜌  are approximately 
equal. Estimating growth rates by using logarithmic transformations rests on the assump-
tion that 𝑦𝑦𝑡𝑡 grows at approximately the same rate (in percent terms) throughout the sam-
ple period, in order to render the error term white noise (𝜂𝜂𝑡𝑡 is log-normally distributed 
with mean 1). This model essentially assumes that yield follows an exponential growth 
pattern. 

While the proportionality assumption may be a reasonable approximation for 
short periods (e.g., less than a decade) and relatively small growth rates, it may be unre-
alistic when long periods are considered, such as a 60-year sample in the current context, 
due to the change in the base. An alternative and, perhaps, more realistic, assumption 
could be that 𝑦𝑦𝑡𝑡 grows by a constant amount in each period, say 𝜇𝜇, in which case the two-
period yield growth would be 𝑦𝑦1 = 𝜇𝜇 + 𝑦𝑦0 or, in the general case, 𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝑦𝑦𝑡𝑡−1. For the 
multi-period case, backward substitution gives 𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝑦𝑦0. Letting 𝛽𝛽0 = 𝑦𝑦0 and 𝛽𝛽1 = 𝜇𝜇, 
and appending an additive error term gives 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝜀𝜀𝑡𝑡. This linear growth speci-
fication implies that yield grows at an average rate of 𝛽𝛽1 units. 

The fundamentally different nature of these specifications, i.e., exponential vs. lin-
ear growth models, has important implications for assessing whether growth has decel-
erated or accelerated. To illustrate, consider that maize yield grew at 2.6 and 1.7 percent 
per annum during 1961-71 and 2011-21, respectively, the first and the last decades of the 
sample. However, maize yields grew at 203 KCal and 324 KCal annually during the same 
periods. In other words, yield growth for maize has dropped by more than one-third 
(based on the logarithmic specification that assumes a constant percentage growth) but 
has increased by more than 50 percent (based on the linear specification that assumes a 
constant amount of growth). 
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3.3 Choosing the appropriate specification 

The discussion above suggests that yield growth should be modeled under a more gen-
eral framework. We begin with the following specification: 

𝑦𝑦(𝜆𝜆) = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝜀𝜀,                                                                                         (2) 

where 𝛽𝛽0 is constant, 𝛽𝛽1 indicates the rate of yield growth, 𝜀𝜀 is iid (independent and identi-
cally distributed) error term, and 𝜆𝜆 is a transformation parameter, such that 𝑦𝑦(𝜆𝜆) is either 
𝑙𝑙𝑙𝑙𝑙𝑙 (𝑦𝑦) (for logarithmic specification) or 𝑦𝑦 (for linear specification). In this paper we em-
ploy the Box-Cox model to determine which specification best represents the data gener-
ation process. This approach selects the transformation of the dependent variable such 
that the residuals approximate a normal distribution and exhibit reduced heteroskedas-
ticity (Box and Cox 1964). Sakia (1992) provides a comprehensive review of the Box-Cox 
transformation technique. Notable advancements to the Box-Cox transformation include 
Yeo and Johnson (2000) transformation, which accommodates both positive and negative 
observations, and the extension by Atkinson et al. (2021), which allows for transfor-
mations on both sides of the equation. 

The Box-Cox model relies on estimating the transformation parameter 𝜆𝜆 such that: 

𝑦𝑦(𝜆𝜆) = �(𝑦𝑦
𝜆𝜆 − 1)/𝜆𝜆 𝜆𝜆 ≠ 0
𝑙𝑙𝑙𝑙𝑙𝑙 (𝑦𝑦) 𝜆𝜆 = 0  .                                                                          (3) 

All notations are the same as defined previously. Equation (3) embeds linear (𝜆𝜆 = 1) and 
logarithmic (𝜆𝜆 = 0) transformation of the dependent variable. Under the assumption that 
there exists a 𝜆𝜆 that makes the error term in the model approximately normal, Box and 
Cox (1964) derived the likelihood function for a set of observations {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑡𝑡} and sug-
gested using the maximum likelihood estimation (MLE) to determine 𝜆𝜆. Further details 
on the MLE and alternative estimation procedures are discussed in Spitzer (1982). 

Regardless of the value of 𝜆𝜆, equation (2) assumes that the underlying parameter 
estimate of the growth rate is constant over time. However, yield paths may exhibit non-
linearities, with growth rates gradually accelerating, decelerating, or even taking sharp 
turns. We consider two ways to account for such non-linearities. First, following earlier 
studies (e.g., Finger 2010), a squared time trend is added to equation (4): 

𝑦𝑦(𝜆𝜆) = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝑡𝑡2 + 𝜀𝜀𝑡𝑡,                                                                            (4) 

where 𝛽𝛽1 approximates the growth rate and 𝛽𝛽2 denotes the rate at which growth deceler-
ates (when negative) or accelerates (when positive). Higher-order polynomials could be 
included to capture more complex non-linearities. In equation (4), 𝜀𝜀𝑡𝑡 again is assumed to 
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be iid and other notations are defined as previously. 
A second way to account for non-linearities is to impose one or more structural 

breaks and estimate separate growth rates for each subperiod. In the case of one structural 
break at year 𝜏𝜏, a piecewise linear regression model can be utilized to estimate the pre- 
and post-break growth rates, while ensuring continuity at the break date (Boyce 1986): 

𝑦𝑦(𝜆𝜆) = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2�𝑡𝑡 − 𝜏𝜏
~
�𝐷𝐷 + 𝜀𝜀𝑡𝑡,                                                               (5) 

where 𝜏𝜏
~
 is the estimated break year, 𝐷𝐷 is a dummy variable taking the value of one for 

the years after the break and zero otherwise, 𝜀𝜀𝑡𝑡 is iid error, and other notations are defined 
as previously. 

Since we have no a priori knowledge of the existence of a structural break, we use 
the Quandt Likelihood Ratio (QLR) procedure to determine if (and when) the data-gen-
erating process has been subjected to breaks (Quandt 1960). Specifically, a sample Wald 
test statistic is computed for every possible break date (τ) to determine the stability of 
parameters before and after the break. The QLR statistic is defined as the supremum 
Wald test statistic, allowing the break date τ to vary during the sample period. For im-
proved performance, we use a symmetric trimming of 15%, where the first and last 15% 
of the observations are excluded from the estimation (Andrews 1993). Additionally, we 
use both average and exponential Wald tests, where the former is defined as the average 
of the sample test statistic and the latter is the natural log of the average of the exponential 
of the sample test (Andrews and Ploberger 1994). The break date is defined as the date 
when the maximum test statistic is reached. 

3.4 Estimation issues 

As with many time series analyses, autocorrelation and the appropriate selection of good-
ness-of-fit statistics can pose challenges. In the presence of autocorrelation, although the 
Ordinary Least Squares (OLS) estimator remains unbiased and consistent, statistical in-
ferences may be affected due to unreliable standard errors, thus compromising the effi-
ciency of the estimators (Wooldridge 2016). A common diagnostic tool for detecting au-
tocorrelation is the Durbin-Watson (1950, 1951) test. To address autocorrelation, two pri-
mary strategies are employed in the literature. The first involves adjusting the standard 
errors of the estimated parameters using the Newey-West (1986) variance estimator. Al-
ternatively, feasible generalized least squares (FGLS) can be applied to obtain more effi-
cient estimators, with the Prais-Winsten and Cochrane-Orcutt techniques being notable 
procedures. 

An additional concern is the presence of autocorrelation when utilizing the Box-
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Cox transformation. As previously discussed, the primary goal of this transformation is 
to normalize regression residuals and mitigate heteroskedasticity. However, as Savin and 
White (1978) highlight, neglecting autocorrelation in the context of a Box-Cox transfor-
mation could result in misleading conclusions due to the potential presence of functional 
form misspecification. To ensure robustness, we implement the method proposed by 
Savin and White (1978), which was later extended by Seaks and Layson (1983). 

Another important consideration is the assessment of model goodness-of-fit. 
When applying the FGLS method to correct for autocorrelation, the 𝑅𝑅2 statistic—which 
measures the proportion of variance in the dependent variable explained by the regres-
sors—may not be directly comparable across models, as the dependent variable is trans-
formed based on the autocorrelation coefficient estimated with different sets of regressors 
(Wooldridge 2016). Similarly, when using the OLS coefficients with Newey-West errors, 
the traditional 𝑅𝑅2 maybe biased, since the variance formula for the dependent variable is 
no longer valid in the presence of a trend. Instead of the 𝑅𝑅2, we report stationarity statis-
tics to evaluate whether the residuals exhibit stable statistical properties over time—a 
crucial assumption for ensuring that the error terms are iid. For this purpose, the Phillips-
Perron test is employed to evaluate stationarity. Additionally, we report the Akaike In-
formation Criteria, a model selection metric that estimates the relative amount of infor-
mation loss by a given model, as described in Banks and Joyner (2017) for least-squared 
analyses. 

3.5 Data 

Area and production data for 144 food commodities—including grains, oilseeds, fruits, 
fibers, and other crops—were collected FAOSTAT for the period 1961-2021. Together, 
these commodities represent over 98 percent of the global agricultural land use during 
the sample period. Calorific data for most commodities are sourced from the FAO’s Food 
Balance Sheets. Figures 1 and 2 present the calories per kilogram and global production 
shares of the 15 most significant commodities in 2021, which collectively represented 
nearly 90% of global food production in terms of calorific output. 

While various data sources are available for commodity production and nutri-
tional values, considerable variation exists in data collection methods (e.g., dry vs. raw 
weight). To ensure consistency, all data used in the analysis are sourced from the FAO. 
In addition to the crop-level data, we also collect the regional-level data for each crop. 
Important to note that the FAO Food Balance Sheets provide the calorific content of a 
specific commodity per 100 grams of edible portion in terms of the retail weight ("as pur-
chased"). As such, it does not consider the calories from the non-edible portion of the crop 
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that can indirectly affect the food supply. For instance, some of the non-edible compo-
nents, upon further processing, may be used as feed for livestock, which is an important 
source of calories for human consumption. Meanwhile, the FAOSTAT production data 
reports the total production quantity of the crop, which includes both edible and non-
edible components of the crop. In the present study, we assume that the relative ratio of 
edible and non-edible components for a given crop remains similar over the years. As 
such, the indirect contribution of calorific content from non-edible components should 
not severely bias the results. 

4. Results 

4.1 Production and yield patterns 

Figure 3 plots the global area, calorific production, and calorific yield across the 144 crops 
over the sample period, indexed to 100 in 1961. Global crop production nearly quadru-
pled over the past six decades on a calorific basis. Most of the increase reflects yield ad-
vancements, with cropland expansion experiencing much smaller growth. Figure 3 
shows that the aggregate global yield has risen from approximately 4,330 KCal/ha in 1961 
to almost 11,000 KCal/ha in 2021. Such growth, amounting to a 158% increase, closely mir-
rors the 152% increase in the global population over the same period. 

Figure 4 further shows that much of the yield growth was driven by the Big-4 
commodities (maize, wheat, rice, and soybeans), whose yields almost tripled from 4,826 
KCal/ha in 1961 to 14,323 KCal/ha to 2021. In contrast, the yield of the “other” category 
(which includes the remaining 140 crops) grew by less than 100% over the sample period, 
with their 2021 calorific yield only half that of the Big-4. 

Table 1 provides a more detailed decomposition of the area, yield, and production 
growth of the Big-4 versus other crops. We compute the average area, yield, and produc-
tion for the first (1961-63, Panel A) and last (2019-21, Panel B) three years of the data, 
along with their respective shares. The middle panel shows their growth rates (calculated 
as logarithmic change) between the two periods, while the lower two panels present the 
contribution of area and yield to the total production growth. Figure 5 summarizes the 
decomposition analysis based on Table 1. 

Three key findings emerge from the decomposition analysis. Firstly, more than 
two-thirds of global food production growth over the past six decades came from yield 
increases, while the remainder reflects area expansion. Secondly, the Big-4 commodities 
contributed nearly 60 percent to production growth with the rest of the growth attribut-
able to all other crops. Thirdly, about two-thirds of the 60 percent production growth of 
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the Big-4 is associated with yield increases. 
Figure 6 shows a similar decomposition based on income and regional classifica-

tion. First, it separates the country sample into (i) AEs (Advanced Economies) consisting 
primarily of countries in North America, Northern Europe, Western Europe, and South-
ern Europe and (ii) EMDEs (Emerging Markets and Developing Economies). Second, the 
EMDEs group is decomposed into five regional aggregates: LAC (Latin America and the 
Caribbean), SEAO (South-East Asia and Oceania), EECA (Eastern Europe and Central 
Asia), MENA (Middle East and North Africa), SSA (Sub-Saharan Africa). EMDEs have 
consistently reported lower aggregate yield than AEs. For example, the aggregate yield 
of EMDEs for 2021 was 60 percent lower than the corresponding yield of AEs. However, 
EMDEs’ yield growth slightly outpaced that of AEs—the former increased by 167% while 
the latter increased by 150% during the sample period. 

Table 2 presents a detailed decomposition analysis of yield, area, and production 
for regional aggregates, which is further summarized in Figure 5 (right panel). Several 
results emerge from the regional decomposition analysis. First, during the past six dec-
ades, EMDEs contributed more than 70 percent to global production growth. Second, 
SEAO contributed nearly 40 percent of production growth, likely due to the Green Rev-
olution (mostly in rice and less so wheat) which significantly enhanced productivity. Ad-
ditionally, yield growth in EMDEs contributed to over 50% of global calorific production 
growth. In contrast, AEs contributed approximately a quarter of global calorific produc-
tion growth through yield advancements. It is important to note that the latter witnessed 
substantial yield growth earlier in the 20th century, particularly following the introduc-
tion of hybrid crop varieties in the United States during the early 1930s (Griliches 1957). 

4.2 Yield growth patterns 

Our empirical analysis unfolds in the following steps. First, we test for structural breaks 
in the aggregate calorific yield indexes, applying both linear and exponential growth 
models. We then employ the Box-Cox transformation to identify which specification—
linear or logarithmic yield indexes—best captures the yield growth patterns, considering 
models with and without a structural break or quadratic term. Based on the preferred 
transformation parameter we estimate the aggregate, commodity- and region-specific 
yield trajectories using equations (2), (4), and (5). 

Results of the structural break analysis for the aggregate yield index are reported 
in Table 3. Under the linear transformation, the aggregate yield index appears to be sub-
jected to a structural break in 1993, as suggested by the supremum, average, and expo-
nential Wald tests, all of which are significant at the 1% level. For the logarithmic 



— 14 — 
 

transformation, although the supremum Wald test suggests the presence of a structural 
break in 1978, the other two tests fail to reject the null hypothesis of no parameter shifts. 

The results also confirm that the optimal transformation parameter is close to one 
for the linear model, with quadratic trend and break year of 1993. Indeed, statistics re-
ported in Table 4 (last two columns) favor rejection of the null hypothesis that the optimal 
transformation parameter is equal to zero (logarithmic transformation) but fails to reject 
the null hypothesis that the parameter equals one (linear transformation). Overall, the 
results suggest that a linear specification best captures global aggregate yield growth, 
which is consistent with some previous single-commodity studies (Grassini et al., 2013; 
Hafner, 2003). 

Based on the findings reported in Tables 3 and 4, we conduct regression analyses 
using the linear specification for the global aggregate as well as income and regional ag-
gregates, with the results summarized in Tables 5 to 7. In each table, panel A reports 
parameter estimates of the base model, panel B shows the corresponding estimates which 
include a time-squared term, and panel C presents the results allowing for a structural 
break using piecewise linear regression. Before discussing the results, several key points 
should be noted. First, we test for residual autocorrelation in each regression using the 
Durbin-Watson test where the results suggest the presence of residual autocorrelation in 
almost all models (detailed results can be found in Baffes and Etienne 2024, Appendix A). 
To address this, we use the Newey-West standard errors instead of the conventional 
standard errors in Tables 5 to 7. 

Second, we re-estimated the models using the Prais-Winsten FGLS estimator, 
which directly accounts for autocorrelation, rather than simply adjusting the standard 
errors as in the Newey-West approach. The results (reported in Baffes and Etienne 2024, 
Appendix A) indicate that most of the statistical significance remains consistent and the 
estimated coefficients are closely aligned with those in Tables 5 to 7. Third, as the Phillips-
Perron stationarity statistics confirm, most of the residuals do not contain a unit root, 
suggesting that the statistical properties of the residuals generally do not change over 
time. 

Lastly, the results from AIC vary depending on the yield indices analyzed. For 
example, the base model with a linear trend exhibits the lowest AIC for the aggregate, 
Big-4, and AE yield indices (Table 5). In contrast, for Other and EMDE yield indices, the 
models with a structural break and a quadratic trend, respectively, give lower AIC val-
ues. The model with a quadratic trend is preferred for cereals & grains and other crop 
group, the linear trend model for MENA and SEAO, and the structural break model for 
all other commodity and regional groupings (Tables 6 and 7). 
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The first column of Table 5, which focuses on the aggregate global yield index, 
confirms that the parameter estimate for the post-1993 term is non-significant. Similarly, 
the parameter estimate for the quadratic trend was positive but non-significant. Com-
bined, these findings suggest that aggregate global calorific yield has exhibited steady 
growth at approximately 109 KCal/ha per year with no evidence of deceleration or accel-
eration The annual growth along with the 1961-2021 average are shown in Figure 7. 

At a more granular level, the second and third columns of Table 5 show that the 
yield growth of the Big-4 outpaced other crops by a considerable margin, with the gap 
between the two groups widening over time, consistent with Figure 3. The average yield 
of Big-4 commodities grew at 158 KCal per year during the sample period, with no evi-
dence of yield growth acceleration or deceleration. By contrast, the yield of ‘Other’ grew 
only at 59 KCal per year over the period of analysis. While the parameter estimate of the 
quadratic term is non-significant, the model with structural break suggests that the yield 
of the “other” crop aggregates accelerated from 55 KCal before 1993 to 64 KCal per year 
after 1993. 

The last two columns in Table 5 show the estimation results for AE and EMDE 
country groupings. On average, the aggregate yield in the AEs grew by 76 KCal/ha per 
year, while in EMDEs it grew by 95 and 109 KCal/ha before and after 1993, respectively. 
The acceleration in EMDEs was likely driven by productivity growth in Latin America 
(following the uptake of soybean production), efficiency gains in Eastern Europe and 
Central Asia (following the collapse of centrally planned economies), and Asia (following 
the adoption of the green revolution). In contrast, Sub-Saharan Africa did not contribute 
much to the acceleration due to its low crop intensity, inadequate irrigation systems, and 
limited use of commercial inputs during the sample period (Van Ittersum et al. 2016). 

Further disaggregation at commodity and regional levels is reported in Tables 6 
and 7. Specifically, Table 6 reports yield growth estimates for four commodity groups: 
cereals and grains, oil crops, fruits and vegetables, and other crops. Non-linearities are 
present in all four groups, as demonstrated by the significant quadratic and post-1993 
coefficient estimates. Consistent with the studies on individual commodities discussed 
earlier, regression analyses by commodity groups gave a mixed picture: yield growth 
accelerated in cereals, oil crops, and fruits/vegetables, and decelerated in the remainder 
crop aggregates (the “others” category in the table). Cereals and grains present the high-
est yield growth during the sample period, as illustrated by the large magnitude of the 
coefficient associated with the linear trend. However, the magnitude of the quadratic 
term, as well as the estimated parameter after the structural break in 1993, are considera-
bly larger for oil crops, suggesting that the yield growth for these crops may eventually 
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catch up with cereals and grains. 
Table 7 reports parameter estimates for regional aggregates. Results show that 

yield growth acceleration, although with a somewhat small magnitude, is present in 
EMDEs, mainly reflecting the growth in LAC and EECA. For SEAO, MENA, and SSA, 
neither the quadratic term nor the post-structural break parameter is statistically signifi-
cant, suggesting linear yield growth in these regions. However, yield growth in SEAO 
has been the fastest across all EMDEs (although without acceleration) during the sample 
period. 

5. Discussion and Conclusion 

Understanding yield growth patterns is crucial for the discussion of food security and 
sustainable development. However, the frameworks employed by existing studies are 
inadequate for assessing yield growth aggregated across all food commodities and coun-
tries. In this study, we introduce a calorific-based approach to examine aggregate global 
crop yield growth. Our analyses indicate that, contrary to the widely accepted view, the 
global aggregate crop yield has grown at a consistent rate of 109 KCal/ha per year from 
1961 to 2021 (equivalent to adding 32.6 kilograms of wheat every year in each hectare of 
land), with no evidence of deceleration or acceleration. This suggests that yield stagnation 
or growth deceleration for specific commodities, regions, or countries discussed in the 
literature has been offset by acceleration elsewhere, resulting in a broadly stable aggre-
gate yield growth pattern. 

This calorific-based approach further allows us to examine the yield growth at var-
ious commodity groups or regional levels in a consistent manner. We show that, while 
the yield of the Big-4 commodities exhibited no acceleration or deceleration, the aggre-
gates of the remaining crops showed a slight acceleration after 1993. Similarly, while yield 
growth in AEs has been fairly constant, EMDEs experienced some acceleration, driven 
primarily by three regions (LAC, EECA, and SSA). Combined, these findings highlight 
the importance of analyzing aggregate trends based on the single metrics developed in 
this paper alongside the performance of specific commodities, countries, or regions re-
ported in the literature.  

Yield growth during the past six decades has supported adequate food supplies at 
a global level. However, several challenges must be addressed to ensure that future yield 
growth patterns meet global food requirements, which are expected to grow by one-third 
over the next three decades due to population and income growth as well as changing 
consumption patterns (Alexandratos and Bruinsma 2012; United Nations 2019). 

The first challenge is the increasing frequency and intensity of adverse weather 
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patterns, exacerbated by the ongoing climate change, which is expected to alter the re-
gional composition of commodity production and increase yield volatility (Wing et al. 
2021). Public investment in developing new cultivars resilient to temperature and precip-
itation variations will be crucial for maintaining historical yield growth trajectories. The 
significance of such cultivars will only grow, as most global food supplies rely heavily on 
a few crops, with the Big-4 accounting for nearly half of the global calorie supplies (Zabel 
et al. 2019). Additionally, climate change is likely to increase yield volatility. Indeed, yield 
growth in advanced economies has been more volatile compared to emerging markets 
and developing economies, primarily due to weather-induced factors such as the La Niña 
episodes of 2010-11 and 2011-12 (Rippey 2015). Addressing these challenges will require 
substantial investment, research and development, and diffusion efforts, similar to those 
that led to the development and use of hybrid maize varieties in the United States and 
the grain varieties promoted by the Consultative Group on International Agricultural Re-
search, which spearheaded the Green Revolution in East Asia (Crow 1998; Evenson and 
Gollin 2003; Renkow and Byerlee 2010). 

Another challenge is removing distorting trade policies, which restrict food avail-
ability in regions experiencing food deficits (Baffes and de Gorter 2005; Rutten et al. 2013; 
Smith and Glauber 2020). Despite agricultural policy reforms undertaken in recent dec-
ades, global agricultural trade is still subjected to trade barriers and domestic policies 
(OECD 2021). Policies diverting food commodities to biofuels should balance environ-
mental and energy security concerns and food availability (Graham-Rowe 2011). Like-
wise, policies to reduce greenhouse gas emissions should not compromise productivity. 
This is especially important since agriculture accounts for a quarter of global emissions 
(Laborde et al. 2021). 

Finally, even if adequate food supplies can be ensured globally, access to food re-
mains a concern, especially in low-income countries where food insecurity is associated 
with conflict and extreme weather events (FAO 2021). The number of people subjected to 
acute food insecurity worldwide has more than doubled during the past five years, ex-
ceeding an estimated 280 million in 2023 (Food Security Information Network 2024). 
Achieving equitable access to food across income groups will entail financial assistance, 
food delivery through aid, as well as investments and policies aimed at increasing 
productivity but also reducing food waste at the production level (Nature 2020). 

The calorific-based indices along with the estimation procedure presented in this 
paper not only deepen our comprehension at both aggregate and regional levels, but also 
pave the way for multifaceted avenues of future research. For instance, by incorporating 
additional factors, like water usage or chemical input use, the aggregation of production 
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and yields could facilitate an assessment of environmental strain. Moreover, exploring 
alternative aggregation methods could elucidate the susceptibility of various commodi-
ties and regions to changes in weather patterns and intensification of climatic phenomena 
like El Niño. Lastly, our proposed index methodology holds promise in scrutinizing pat-
terns of production or yield volatility, thereby offering valuable insights into the resili-
ence of food production systems. 
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Table 1 
Decomposition of area, yield, and production growth by crop 

 Maize Wheat Rice Soybeans Big-4 Other All 
A. 1961-63 average        
Area (million hectares) 105.8 206.0 118.3 24.0 454.1 517.5 971.6 
Yield (MCal/ha) 7.1 3.8 5.4 3.8 5.0 3.9 4.4 
Production (million MCal) 747.8 786.0 643.3 91.8 2,268.9 2,039.1 4,308.0 
Area (share, percent) 10.9 21.2 12.2 2.5 46.7 53.3 100 
Production (share, percent) 17.4 18.2 14.9 2.1 52.7 47.3 100 

B. 2019-21 average       
Area (million hectares) 200.1 218.1 163.0 126.0 707.2 715.6 1,422.7 
Yield (MCal/ha) 20.8 11.7 13.2 9.4 14.2 7.6 10.9 
Production (million MCal) 4,166.2 2,551.6 2,155.8 1,187.0 10,060.6 5,427.5 15,488.2 
Area (share, percent) 14.1 15.3 11.5 8.9 49.7 50.3 100.0 
Production (share, percent) 26.9 16.5 13.9 7.7 65.0 35.0 100.0 

C. Growth from 1961-63 to 2019-21 
Area (log change) 63.7 5.7 32.0 165.7 44.3 32.4 38.1 
Yield (log change) 108.1 112.0 89.0 90.2 104.7 65.5 89.8 
Production (log change) 171.8 117.7 120.9 256.0 148.9 97.9 128.0 

D. Contribution to growth from 1961-63 to 2019-21    
Area (percent) 37.1 4.9 26.5 64.7 29.7 33.1 29.8 
Yield (percent) 62.9 95.2 73.6 35.2 70.3 66.9 70.2 
Production (percent) 100 100 100 100 100 100 100 

E. Contribution to growth from 1961-63 to 2019-21 (production-adjusted share)  
Area (percent) 8.2 0.8 3.8 3.2 17.5 13.6 29.8 
Yield (percent) 13.9 16.5 10.6 1.7 41.3 27.6 70.2 
Production (percent) 22.1 17.4 14.4 4.9 58.8 41.2 100 

Notes: “All” includes 144 commodities. “Big-4” is the sum of maize, wheat, rice, and soybeans. “Other 
includes” the remaining 140 commodities. Yield is measured as Mcal/hectare. The changes from 1961-63 to 
2019-21 are calculated as logarithmic changes. The contribution of growth in panel E is evaluated at the 
average production shares of the two sub-periods. For example, the contribution of maize area is calculated 
as (all numbers are taken from the first column): 8.2 = 0.221*37.1, where 0.221 = 0.5*(0.174 + 0.269). Numbers 
may not add up due to rounding. 
Source: Authors’ calculations based on FAO data. 
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Table 2 
Decomposition of area, yield, and production growth by region 

 EECA SEAO SSA MENA LAC EMDE AE All 
A. 1961-63 average         

Area (million hectares) 188.4 397.5 88.8 43.4 73.3 791.3 180.2 971.6 
Yield (MCal/ha) 3.9 3.7 3.0 3.4 4.5 3.7 7.5 4.4 
Production (million MCal) 726.4 1,484.4 264.6 148.5 326.7 2,950.6 1,357.3 4,308.0 
Area (share, percent) 19.4 40.9 9.1 4.5 7.5 81.4 18.6 100 
Production (share, percent) 16.9 34.5 6.1 3.4 7.6 68.5 31.5 100 

B. 2019-21 average         
Area (million hectares) 149.5 592.1 245.5 71.9 171.2 1,230.2 192.6 1,422.7 
Yield (MCal/ha) 10.1 11.3 5.1 6.7 12.5 9.8 17.8 10.9 
Production (million MCal) 1,513.9 6,688.4 1,241.1 482.7 2,143.3 12,069.4 3,418.8 15,488.2 
Area (share, percent) 10.5 41.6 17.3 5.1 12.0 86.5 13.5 100.0 
Production (share, percent) 9.8 43.2 8.0 3.1 13.8 77.9 22.1 100.0 

C. Growth from 1961-63 to 2019-21      
Area (log change) -23.2 39.9 101.8 50.5 84.8 44.1 6.6 38.1 
Yield (log change) 96.5 110.7 52.8 67.6 103.3 96.8 85.7 89.8 
Production (log change) 73.4 150.5 154.5 117.9 188.1 140.9 92.4 128.0 

D. Contribution to growth from 1961-63 to 2019-21      
Area (percent) -31.5 26.5 65.8 42.9 45.1 31.3 7.2 29.8 
Yield (percent) 131.4 73.5 34.1 57.3 54.9 68.7 92.8 70.2 
Production (percent) 100 100 100 100 100 100 100 100 

E. Contribution to growth from 1961-63 to 2019-21 (production-adjusted share) 
Area (percent) -4.2 10.3 4.7 1.4 4.8 22.9 1.9 29.8 
Yield (percent) 17.5 28.5 2.4 1.9 5.9 50.3 24.9 70.2 
Production (percent) 13.3 38.8 7.1 3.3 10.7 73.2 26.8 100 

Notes: Yield is measured as MCal per hectare. The changes from 1961-63 to 2019-21 are calculated as loga-
rithmic changes. Some numbers may not add up due to rounding. Acronyms denote regions according to 
the FAO classification: LAC (Latin America and the Caribbean), SEAO (South and East Asia, and Oceania), 
EECA (Eastern Europe and Central Asia), MENA (Middle East and North Africa), SSA (Sub-Saharan Af-
rica). EMDE (Emerging Markets and Developing Economies) denotes the sum of the five preceding regions. 
AE (Advanced Economies) includes North America, Northern Europe, Western Europe, and Southern Eu-
rope. All refers to all regions. 

Source: Authors’ calculations based on FAO data. 
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Table 3 
Identification of structural break, aggregate yield index 

Wald test statistics   𝒚𝒚 𝐥𝐥𝐥𝐥𝐥𝐥 (𝒚𝒚) 
Supremum 18.85*** 162.39*** 
Average 8.38*** 92.07 
Exponential 6.94*** 78.49 
Break year 1993 1978 

Note: Null hypothesis is that no structural break exists in yield (𝑦𝑦) and logarithmic yield (log (𝑦𝑦)) index. 

 
 
 
 

Table 4 
Box-Cox transformation 

Regressors 𝝀𝝀 
Null hypothesis 

 𝝀𝝀 = 0 𝝀𝝀 = 1 
Trend 0.93 [0.77, 1.11]  68.29*** 0.49 
Trend, trend2 0.95 [0.39, 1.51]  12.60*** 0.03 
Trend_before_1993, trend_after_1993 1.07 [0.65, 1.48]  25.35*** 0.10 
Trend_before_1978, trend_after_1978 0.33 [-0.20, 0.68]  3.18* 13.73*** 

Notes: All regressions include a constant term. Square brackets (second column) denote confidence inter-
vals of the optimal transformation parameter, 𝜆𝜆, at a 95% significance level. The last three columns report 
test statistics of the null hypothesis of the logarithmic (𝜆𝜆 = 0) and linear (𝜆𝜆 = 1) transformations. Asterisks 
denote significance at 10 (*), 5 (**), and 1 (***) percent levels. 
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Table 5 
Parameter estimates for aggregate yield indices 

 All Big-4 Other AE EMDE 

A. Base model 
Constant 4332.75*** 

(41.08) 
4691.98*** 
(47.48) 

4020.06*** 
(50.27) 

7401.90*** 
(131.02) 

3526.23*** 
(34.60) 

Trend 108.98*** 
(1.33) 

158.05*** 
(1.62) 

59.12*** 
(1.41) 

175.71*** 
(4.20) 

102.05*** 
(1.43) 

PP test -5.47*** -6.14*** -3.81*** -7.33*** -4.28*** 
AIC 803.07 836.07 795.83 955.25 796.18 

B. With 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝟐𝟐 
Constant 4367.41*** 

(68.35) 
4705.00*** 
(55.38) 

4077.56*** 
(97.15) 

7548.26*** 
(196.21) 

3688.04*** 
(59.54) 

Trend 105.67*** 
(5.65) 

156.81*** 
(5.85) 

53.64*** 
(6.85) 

161.77*** 
(16.22) 

86.64*** 
(5.00) 

𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇2 0.05 
(0.09) 

0.02 
(0.10) 

0.09 
(0.10) 

0.22 
(0.27) 

0.25*** 
(0.08) 

PP test -5.52*** -6.15*** -3.93*** -7.49*** -5.01*** 
AIC 804.60 838.03 796.37 956.56 785.64 

C. With a structural break in 1993 
Constant 4366.77*** 

(55.31) 
4679.28*** 
(45.70) 

4091.72*** 
(82.58) 

7574.11*** 
(166.17) 

3640.02*** 
(41.18) 

Trend_before 106.85*** 
(2.80) 

158.84*** 
(2.82) 

54.64*** 
(3.60) 

164.95*** 
(8.07) 

94.94*** 
(2.41) 

Trend_after 4.47 
(5.40) 

-1.67 
(6.47) 

9.42 
(5.85) 

22.64 
(16.58) 

14.96*** 
(4.77) 

PP test -5.54*** -6.15*** -4.07*** -7.67*** -4.93*** 
AIC 804.24 838.00 793.57 955.48 786.86 

Notes: Yield is measured as KCal per hectare. “All” includes 144 commodities. “Big-4” is the sum of maize, 
wheat, rice, and soybeans. “Other” includes the remaining 140 commodities. AE (Advanced Economies) 
includes North America, Northern Europe, Western Europe, and Southern Europe; EMDE (Emerging Mar-
kets and Developing Economies) includes LAC, SEAO, EECA, and MENA regions based on FAO classifi-
cations. Numbers in parenthesis refer to Newey-West standard errors that account for heteroskedasticity 
and autocorrelation. PP test refers to the Philips-Perron stationarity test, with the null hypothesis that the 
series under consideration contains a unit root. AIC refers to Akaike Information Criteria. Asterisks denote 
significance at 10 (*), 5 (**), and 1 (***) percent levels. 
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Table 6 
Parameter estimates for commodity group-based yield indices 

 Cereals & grains Oil crops Fruits & vegetables “Other” crops 
A. Base model    
Constant 4209.09*** 

(58.13) 

2367.97*** 
(113.48) 

2949.48*** 
(45.57) 

5738.48*** 
(137.43) 

Trend 151.98*** 
(2.39) 

105.78*** 
(3.24) 

37.12*** 
(1.43) 

49.20*** 
(3.74) 

PP test -4.74*** -2.70** -1.34 -2.01 
AIC 854.71 868.55 801.37 862.69 

B. With 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝟐𝟐    
Constant 4496.18*** 

(73.31) 
2964.65*** 
(42.00) 

3204.01*** 
(83.77) 

5229.09*** 
(120.48) 

Trend 124.64*** 
(6.73) 

48.96*** 
(4.85) 

12.88** 
(5.98) 

97.71*** 
(7.73) 

𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇2 0.44*** 
(0.11) 

0.92*** 
(0.10) 

0.39*** 
(0.09) 

-0.78*** 
(0.11) 

PP test -5.78*** -6.61*** -2.86** -3.98*** 
AIC 841.24 780.66 769.92 805.91 

C. With a structural break in 1993 
Constant 4412.13*** 

(49.79) 
2809.76*** 
(40.33) 

3170.69*** 
(62.62) 

5418.00*** 
(134.00) 

Trend_before 139.29*** 
(3.14) 

78.17*** 
(1.87) 

23.29*** 
(2.62) 

69.23*** 
(5.51) 

Trend_after 26.69*** 
(6.91) 

58.08*** 
(4.82) 

29.08*** 
(4.10) 

-42.13*** 
(8.89) 

PP test -5.67*** -6.94*** -3.29** -3.12** 
AIC 842.61 778.50 749.35 828.09 

Notes: Yield indices for each group of commodities are measured in KCal per hectare. “Other” crops in-
clude pulses, roots and tubers, and treenuts; in other words, this category includes all other crops excluding 
cereals & grains, oil crops, and fruits & vegetables. Numbers in parenthesis refer to Newey-West standard 
errors that account for heteroskedasticity and autocorrelation. PP test refers to the Philips-Perron station-
arity test, with the null hypothesis that the series under consideration contains a unit root. AIC refers to 
Akaike Information Criteria. Asterisks denote significance at 10 (*), 5 (**), and 1 (***) percent levels. 
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Table 7 
Parameter estimates for region-based yield indices 

 EMDE LAC SEAO EECA MENA SSA 
A. Base model      
Constant 3526.23*** 

(34.60) 
3383.13*** 
(201.58) 

3359.53*** 
(42.17) 

4097.24*** 
(183.06) 

3138.13*** 
(67.30) 

2807.17*** 
(43.00) 

Trend 102.05*** 
(1.43) 

139.38*** 
(6.00) 

131.20*** 
(1.36) 

84.97*** 
(6.43) 

65.13*** 
(2.36) 

35.61*** 
(1.08) 

PP test -4.28*** -2.85** -3.45** -4.27*** -7.77*** -5.34*** 
AIC 796.18 945.92 803.07 977.69 867.87 786.63 

B. With 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝟐𝟐      
Constant 3688.04*** 

(59.54) 
4511.85*** 
(68.38) 

3420.02*** 
(48.75) 

4713.93*** 
(371.94) 

3177.91*** 
(99.75) 

2886.82*** 
(51.63) 

Trend 86.64*** 
(5.00) 

31.88*** 
(7.23) 

125.44*** 
(5.13) 

26.24 
(27.00) 

61.34*** 
(8.66) 

28.02*** 
(4.12) 

𝑇𝑇𝑇𝑇𝑒𝑒𝑇𝑇𝑇𝑇2 0.25*** 
(0.08) 

1.73*** 
(0.13) 

0.09 
(0.08) 

0.95** 
(0.40) 

0.06 
(0.15) 

0.12* 
(0.07) 

PP test -5.01*** -8.52*** -3.46** -4.92*** -7.82*** -5.53*** 
AIC 785.64 856.65 803.64 970.65 869.66 785.33 

C. With a structural break in 1993 
Constant 3640.02*** 

(41.18) 
4221.02*** 
(51.03) 

3363.30*** 
(49.43) 

4571.64*** 
(283.60) 

3188.07*** 
(77.70) 

2873.56*** 
(51.04) 

Trend_before 94.94*** 
(2.41) 

87.01*** 
(2.91) 

130.96*** 
(2.78) 

55.32*** 
(13.67) 

62.01*** 
(3.90) 

31.46*** 
(2.26) 

Trend_after 14.96*** 
(4.77) 

110.15*** 
(6.55) 

0.50 
(5.32) 

62.37** 
(24.70) 

6.56 
(9.21) 

8.73** 
(4.22) 

PP test -4.93*** -9.04*** -3.45** -4.95*** -7.87*** -5.59*** 
AIC 786.86 853.27 805.06 969.77 869.25 784.37 

Notes: Yield is measured as KCal per hectare. Definitions of regional classification can be found in Table 2. 
Numbers in parenthesis refer to Newey-West standard errors that account for heteroskedasticity and au-
tocorrelation. PP test refers to the Philips-Perron stationarity test, with the null hypothesis that the series 
under consideration contains a unit root. AIC refers to Akaike Information Criteria. Asterisks denote sig-
nificance at 10 (*), 5 (**), and 1 (***) percent levels. 
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Figure 1 
Calorific content for selected commodities 

 
 
 

Figure 2 
Global food production shares for selected commodities, 2019-21 
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Figure 3 
Global production, yield, and area 

 
 
 

Figure 4 
Yield by commodity grouping 
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Figure 5 
Area and yield contribution to production growth 

 
 
 

Figure 6 
Yield by country grouping 
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Figure 7 
Yield growth 
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