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This paper presents evidence of inelastic demand in the 
market for risky sovereign bonds and examines its inter-
play with government policies. The methodology combines 
bond-level evidence with a structural model featuring 
endogenous bond issuances and default risk. Empirically, 
the paper exploits monthly changes in the composition 
of a major bond index to identify flow shocks that shift 
the available bond supply and are unrelated to country 
fundamentals. The paper finds that a 1 percentage point 

reduction in the available supply increases bond prices by 33 
basis points. Although exogenous, these shocks might influ-
ence government policies and expected bond payoffs. The 
paper identifies a structural demand elasticity by feeding the 
estimated price reactions into a sovereign debt model that 
isolates endogenous government responses. These responses 
account for a third of the estimated price reactions. By 
penalizing additional borrowing, inelastic demand acts as 
a commitment device that reduces default risk.
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1 Introduction

Governments in emerging economies heavily depend on bonds issued in liquid international

capital markets for their overall financing. The behavior of investors in these markets is

thus crucial to understanding governments’ borrowing costs, default risk, and optimal debt

management. Standard sovereign debt models often assume that investor demand is perfectly

elastic, implying that investors are willing to lend any amount governments request at the

risk-free rate plus a default risk premium. This assumption on investor behavior contrasts

with a body of recent work for other asset markets that allows for a richer investor demand

structure, typically involving an inelastic or downward-sloping demand (Koijen and Yogo,

2019; Gabaix and Koijen, 2021; Vayanos and Vila, 2021; Gourinchas et al., 2022; Greenwood

et al., 2023).

In this paper, we present novel evidence of downward-sloping demand curves in risky

sovereign bond markets and analyze their impact on governments’ optimal debt policies.

In the context of risky sovereign bonds, estimating a demand elasticity is challenging for

two main reasons. Ideally, one would like to identify shocks to the available bond supply

that are unrelated to country fundamentals, estimate price reactions around them, and map

those effects into an elasticity. However, such exogenous shocks are rare for sovereign bonds.

Moreover, even if one were able to identify those shocks, governments could respond to them

by adjusting future issuances or their default likelihood. Thus, the estimated price reaction

might not just capture a downward-sloping demand curve but also changes in bonds’ expected

payoffs.

We overcome these challenges by combining a novel identification strategy with a structural

model, which allows us to isolate the endogenous responses of governments. We first estimate

price reactions to well-identified shocks to the available bond supply, using monthly changes

in the composition of the largest index for emerging economies bonds. To avoid endogeneity

concerns, we exploit only the variation generated by the issuance or retirement of bonds from

other countries in the index. We find that bond prices significantly react to these shocks in

the high frequency, even when they are orthogonal to country fundamentals. Our estimates

imply an inverse price demand elasticity of −0.33, which we refer to as a reduced-form

elasticity, as it does not account for endogenous government responses to the identified shocks.

We identify the structural elasticity by indirect inference. We formulate a quantitative

sovereign debt model that characterizes governments’ optimal debt and default policies as a

function of observables, and we discipline it based on our reduced-form estimates. Through
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counterfactuals, we can isolate the endogenous responses of governments to shocks and identify

the structural elasticity. Our findings show that over one-third of our reduced-form elasticity

is explained by endogenous government responses that decrease default risk. Last, we use our

calibrated model to analyze the implications of facing an inelastic bond demand. We find

that downward-sloping demand curves act as a commitment device that limits governments’

debt issuances and reduces default risk.

We start our analysis with a simple framework to guide our identification strategy. This

setup features heterogeneous investors who differ in how they allocate their funds across risky

assets. Specifically, they exhibit differences in their levels of activism and passivism. We define

passive demand as the portion of investors’ holdings aimed at replicating the composition of

the index they follow. This demand is perfectly inelastic and shifts with changes in the index.

For any asset in fixed supply, an increase in the passive demand implies a leftward shift in the

“effective supply,” namely the quantity available to active investors. If this shift is exogenous,

and under the assumption that asset payoffs are fixed, one can use that variation to examine

whether demand curves for active investors slope downward (Pandolfi and Williams, 2019;

Pavlova and Sikorskaya, 2022). Nevertheless, if expected payoffs endogenously respond to

changes in the effective supply, any observed price variation resulting from the shift could

over or underestimate the demand elasticity.

On the empirical front, we identify exogenous shifts in a country’s effective supply of

sovereign bonds by using monthly rebalancings in the J.P. Morgan Emerging Markets Bond

Index Global Diversified (EMBIGD), the most widely tracked index by institutional investors

for U.S. dollar-denominated sovereign bonds issued by emerging economies. Changes in

the composition of this index affect the effective bond supply because they lead to similar

rebalancings in the portfolios of passive investors. Due to potential tracking error costs,

passive investors tend not to deviate from the index. Given the EMBIGD’s popularity, these

rebalancings can have market-wide effects.

We derive a measure of flows implied by rebalancings (FIR) by combining the assets

passively tracking the EMBIGD with the index’s monthly rebalancings. Qualifying new bond

issuances are incorporated into the EMBIGD each month, while maturing bonds are removed.

These frequent adjustments lead to changes in country weights within the index, generating

passive funds flows. To avoid endogeneity issues, we construct an instrument that exploits

changes in the FIR generated by the issuance or retirement of bonds from other countries

in the index. As such, these changes are orthogonal to a country’s own fundamentals. In

addition, we focus on changes in the face amount of the FIR (as opposed to market value) to
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exclude changes in index composition triggered by endogenous changes in bond prices.

Our analysis reveals that a higher FIR leads to higher bond prices. On average, a 1

percentage point (p.p.) increase in the FIR corresponds to a 33 basis point increase in bond

prices. These estimates imply a reduced-form inverse demand elasticity of −0.33. We find

that these price reactions vary across countries with different levels of default risk. Specifically,

for countries with higher default risk, a 1 p.p. FIR inflow can result in up to a 46 basis point

increase in bond prices. In contrast, for safer countries, the estimates are close to zero and

statistically not significant.

On the quantitative front, we formulate a sovereign debt model where the government

has limited commitment and can endogenously default on its debt obligations. Standard

models of this nature typically assume a perfectly elastic demand for sovereign bonds, with

changes in bond prices driven solely by variations in default risk (Arellano, 2008; Chatterjee

and Eyigungor, 2012). We extend these models using a richer demand structure that includes

both active and passive investors and a downward-sloping demand curve for active investors.

In our model, an exogenous increase in the passive demand that reduces the effective supply

affects the bond price through two interconnected mechanisms. First, because the active

demand is downward sloping, the implied reduction in the effective supply leads to a higher

bond price. Second, this higher bond price lowers financing costs, reducing the government’s

incentives to default. This, in turn, increases the expected bond repayment and further raises

the price investors are willing to pay for it.

We discipline the model using our empirical estimates. Introducing passive and active

investors allows us to replicate our empirical exercise, and we calibrate the model to match the

estimated reduced-form elasticity. We then use the model to back out a structural elasticity,

isolating changes in governments’ policies and default risk. To this end, we fix the expected

bond payoffs and examine how an exogenous shift in the effective supply affects the price that

active investors are willing to pay. Our findings reveal that endogenous changes in default risk

account for nearly a third of the reduced-form elasticity. Moreover, we find that the larger

the persistence of the supply-shifting shock, the greater the impact of changes in default risk

on the overall price response.

More broadly, these results underscore the importance of accounting for issuers’ endogenous

responses and the resulting changes in the expected repayment of assets. These factors must

be considered to avoid significant biases in estimating demand elasticities. Our supply-shifting

shock instrument is inherently more temporary than other instruments used in the literature,

such as index additions or deletions or index methodological recompositions. Still, we find
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that the bias can represent about one-third of the total price response.

Our model allows us to examine the impact of a downward-sloping demand on the

optimal debt and default policies of governments. In the presence of an inelastic demand, we

observe lower default risk and higher bond prices compared to a scenario with a perfectly

elastic demand and similar debt levels. This outcome is not driven by investors’ preferences

for holding the debt (which could lead to a convenience yield) but rather by the inelastic

demand serving as a commitment device for the government. The mechanism behind it is

as follows: With a downward-sloping demand, issuing an additional unit of debt decreases

bond prices even if the default risk remains fixed. As a result, the government finds issuing

large amounts of debt too costly and opts not to do so. An inelastic demand thus limits the

maximum amount of debt the government is willing to issue. We find that this limit leads to

a quantitative reduction in default risk and an increase in bond prices.

Our findings contribute to several strands of literature. First, we contribute to a long-

standing literature using index rebalancings to estimate asset price reactions, demand

elasticities, and changes in investors’ portfolios across different asset classes (Harris and

Gurel, 1986; Shleifer, 1986; Greenwood, 2005; Hau et al., 2010; Chang et al., 2014; Raddatz

et al., 2017; Pandolfi and Williams, 2019; Pavlova and Sikorskaya, 2022).1 Our contribution

lies in showing that demand curves slope downward in one of the most relevant markets for

government financing in emerging economies: the international U.S. dollar bond market.

Another key contribution of our work is showing that, even in response to exogenous

supply-shifting shocks, part of the price reaction is attributable to changes in the asset’s

expected repayment and the rest to the inelastic component of demand. Our analysis can be

applied to any asset, beyond sovereign bonds, whose future cash flows or payoffs are affected

by movements in the effective supply. As such, it can be extended to a vast literature that

uses exogenous shifts in the effective supply as an instrument to estimate demand elasticities.

Typical examples are sovereign and corporate bonds and equities from both developed and

emerging economies.

Second, a growing literature on inelastic financial markets emphasizes the role of the

demand side in explaining asset prices across various financial markets (Koijen and Yogo, 2019;

Gabaix and Koijen, 2021; Vayanos and Vila, 2021). Taking as given expected asset payoffs,

this literature analyzes how an inelastic demand affects the pricing of risk-free U.S. Treasuries

(Krishnamurthy and Vissing-Jorgensen, 2012; Greenwood et al., 2015; Mian et al., 2022; Jiang

1Beyond index rebalancings, Droste et al. (2023) use high-frequency U.S. Treasury auctions to estimate the
effect of demand shocks on Treasury yields.

4



et al., 2021b) and international financial assets (Koijen and Yogo, 2020; Gourinchas et al.,

2022; Greenwood et al., 2023).2 Similar to our study, Choi et al. (2022) analyze the effects of

a downward-sloping demand on the optimal issuance of safe government bonds. In contrast,

we focus on the interplay between a downward-sloping demand curve, default risk, and the

provision of risky bonds. We show that the demand elasticity interacts with default risk and

influences a government’s supply of risky bonds. Failing to account for this endogenous link

can lead to biases when estimating demand elasticities.

Third, our paper also connects to a body of work examining how changes in the investor

base of government debt impact bond yields (Warnock and Warnock, 2009; Dell’Erba et al.,

2013; Peiris, 2013; Arslanalp and Poghosyan, 2016; Ahmed and Rebucci, 2022). A closely

related paper (Fang et al., 2022) develops a demand system to quantify how changes in the

composition of investors (domestic versus foreign, banks versus non-banks) affect government

bond yields in international markets. In this paper, we exploit exogenous changes in the

composition of the investor base (passive versus active funds) to provide evidence of downward-

sloping demand curves for risky sovereign bonds.

Fourth, our paper relates to a large literature on quantitative sovereign debt models. Our

framework extends standard models (Aguiar and Gopinath, 2006; Arellano, 2008; Chatterjee

and Eyigungor, 2012) by incorporating two different investor types (active and passive) and

introducing a downward-sloping demand. This richer structure allows us to discipline the

model using our reduced-form estimates.3 We then use the model to isolate the role of default

risk behind those estimates and to back out the structural demand elasticity.

In our analysis, we are agnostic about the mechanisms behind the downward-sloping

demand. Previous work by Borri and Verdelhan (2010), Lizarazo (2013), Pouzo and Presno

(2016), and Arellano et al. (2017) analyze sovereign debt models with risk-averse investors.

In their models, investors’ downward-sloping demand is a by-product of their risk aversion.

In other words, investors are inelastic only because they must be compensated for each

additional unit of risky debt they hold. However, several different mechanisms can generate

a downward-sloping demand. For example, it can be explained by regulatory limitations,

such as a Value-at-Risk (VaR) constraint (as in Miranda-Agrippino and Rey, 2020), by

investors’ buy-and-hold strategies (which can be rationalized by a taste for simplicity or

2A related literature focuses on U.S. and international corporate bond markets (Dathan and Davydenko, 2020;
Bretscher et al., 2022; Calomiris et al., 2022; Kubitza, 2023).
3In this regard, our paper connects with recent work by Costain et al. (2022), who introduce endogenous
default risk into a Vayanos-Vila preferred habitat model to analyze the term structure of interest rates in the
European Monetary Union.
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agency frictions), or by fixed-share mandates specifying how investors should allocate their

funds across assets (as in Gabaix and Koijen, 2021). Our setup relies on a flexible demand

structure that can accommodate any of these potential drivers. Our aim is not to uncover

the causes of investors’ inelastic behavior but rather to examine its aggregate implications.

The rest of the paper is structured as follows. Section 2 introduces a simple framework

to guide our analysis. Section 3 presents the empirical analysis, including details on the

institutional setup of EMBI indexes, data sources, the identification strategy, and results.

Section 4 formulates a sovereign debt model with endogenous default and inelastic investors.

Section 5 presents the quantitative analysis, and Section 6 concludes.

2 Demand Elasticity for Risky Bonds

To guide our analysis, we introduce a simple framework featuring heterogeneous investors

who differ in how they allocate their funds across risky assets. This stylized framework

illustrates how, under some assumptions, exogenous shifts in the demand of certain investors

can be used to estimate a reduced-form price demand elasticity. In doing that, we show

how endogenous changes in assets’ expected repayment can influence the estimated elasticity.

Although we focus on the case of risky bonds, our framework can be applied to any risky

asset (e.g., equities).

2.1 Model

Investors are heterogeneous in how they allocate their funds across risky assets. Let

j = {1, ..., J} denote the investor. As in Gabaix and Koijen (2021), we assume that each

investor j has a mandate or rule that specifies how they should allocate their funds across

i = {1, ..., N} risky bonds. To tightly link the model with our empirical analysis, we further

assume that investors track the composition of a benchmark index I and differ in how actively

or passively they do so. Let wt =
{
w1
t , ..., w

N
t

}
denote the vector of time-varying index

weights for each constituent bond of index I. Markets are competitive, and investors take

asset prices as given.

We define xijt =
qitB

i
jt

Wjt
as the share of wealth that investor j invests in bond i at time

t. The term qit denotes the unit price of bond i, Bi
j,t denotes the end-of-period holdings of

investor j in bond i, and Wj,t denotes their wealth. The share xijt is given by the following

exogenous mandate:

xijt = θj

(
ξije

Λj π̂i,t(rit+1)
)
+ (1− θj)w

i
t. (1)
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The term θj parameterizes the degree of activeness or passiveness of investor j. Purely

passive investors can be characterized by θj = 0, indicating that their portfolio simply

replicates the benchmark index I. Conversely, active and semi-active investors are those with

θj ∈ (0, 1], which captures the fraction of their portfolio that is not linked to index I. Within

their active allocation, investors apportion a fixed fraction, ξij , of their wealth to bond i and

a varying component determined by Λj π̂i,t
(
rit+1

)
, where Λj > 0 parameterizes their demand

elasticity and π̂i,t is an arbitrary function of the next-period excess return of bond i, rit+1.

For instance, if π̂i,t
(
rit+1

)
= Et

(
rit+1

)
, investors allocate a higher share of their wealth to

bonds with higher expected excess returns.

As we show next, the reduced-form mandate in Equation (1) allows us to introduce

an aggregate demand elasticity that can be parameterized by Λ ≡ {Λ1, ..,ΛJ}. While this

mandate can have different microfoundations (as shown in Appendix ), we take it as given

for our analysis. Our goal is not to explain the reasons behind the inelastic demand for risky

bonds but rather to examine its implications.4

After adding up all the individual demands, we can write the market-clearing condition

as follows:

qitB
i
t = Ãi

t + T̃ i
t (w

i
t), (2)

where Bi
t is the bond supply, and Ãi

t ≡
∑

j Wj,tθj

(
ξije

Λj π̂i,t

)
and T̃ i

t (w
i
t) ≡

∑
j Wj,t (1− θj)w

i
t

denote the market-value active and passive demands, respectively. The passive demand,

T̃ i
t (w

i
t), is the portion of investors’ holdings aimed at replicating the index composition they

follow. It captures the holdings of both semi- and fully passive investors. We explicitly write

T̃ i
t (w

i
t) as a function of wi

t to emphasize its dependence on the index weights. For the rest

of the analysis, it is useful to rewrite this market-clearing condition as Bi
t = Ai

t + T i
t

(
wi
t

)
,

where Ai
t and T i

t

(
wi
t

)
denote the face-value active and passive demands.5

For any bond i in fixed supply, an increase in the passive demand implies a decrease

in the supply of bonds available to active investors (i.e., a leftward shift in the effective or

residual supply). If this increase is exogenous, one can use that variation to analyze whether

the demand curves for active investors slope downward. Figure 1 illustrates this point. If

the active demand is fully elastic, then an exogenous shift in T i
t (w

i
t) should not affect bond

prices (Panel (a)). Conversely, bond prices should react to this shift if the active demand

slopes downward (Panel (b)).

4As argued by Gabaix and Koijen (2021): “While identifying the exact reasons for low market elasticity
is interesting, this question has a large number of plausible answers. Fortunately, it is possible to write a
framework in a way that is relatively independent to the exact source of low elasticity [...].”
5In Section 2.2, we impose additional structure to obtain closed-form expressions for Ai

t and T i
t

(
wi

t

)
.
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Figure 1
Index rebalancing and the demand elasticity

qi0 = qi1

Price

QuantityBi − T i
1 Bi − T i

0

Effective
Supply

qi1

Price

QuantityBi − T i
1 Bi − T i

0

Effective
Supply

qi0
Ai

(a) Perfectly elastic demand (b) Inelastic demand

Ai

Note: The figure depicts a decrease in the effective supply driven by an increase in T i. Panel (a) considers the case
when the residual demand is fully elastic and Panel (b) when it is price sensitive.

Based on this graphical intuition, one could exploit exogenous changes in index weights

wi
t to compute an instrument for shifts in the passive demand, ∆T i

t ≡ T i
t+1(w

i
t+1)− T i

t (w
i
t),

and estimate high-frequency bond price responses around those shifts. For a given ∆T i
t , we

can then estimate the following reduced-form inverse demand elasticity:

η̂i = (−)
∆qit
∆T i

t

Bi
t − T i

t

qit
. (3)

Equation (3) and the use of changes in index composition as a supply-shifting instrument

is a standard practice in the literature to estimate demand elasticities in equity markets.

Shleifer (1986) was the first to use index additions to the S&P 500 as an exogenous instrument

for ∆T i
t to analyze whether demand curves for equities slope downward. More recently,

Pavlova and Sikorskaya (2022) employ a similar strategy and a regression discontinuity design

on Russell equity indexes. For the case of bonds (sovereign or corporate), exploiting index

changes to construct ∆T i
t has additional challenges. In many cases, changes in index weights

coincide with large bond issuances that tend to reflect information about the issuer’s own

fundamentals. We address this issue using a novel instrument in Section 3.

2.2 Endogenous Issuer Responses and Bond Payoffs

To directly map Equation (3) into a structural elasticity, ηi, we need to assume that the

intrinsic value of the asset is unaffected by ∆T i
t . However, exogenous shifts in the effective

supply might influence issuers’ policies and expected asset payoffs. For example, in the case

8



of risky bonds, a positive ∆T i
t that leads to a higher bond price implies a lower borrowing

cost, potentially affecting the issuer’s default likelihood or its (future) bond issuances. Even

if the current supply Bi
t remains fixed, these endogenous responses can affect the expected

payoff from holding the bond and, therefore, its price.

Price responses to exogenous shifts in the effective supply can thus capture both an

inelastic demand component and endogenous changes in expected payoffs. To decompose

these effects, we put more structure behind investor demand, allowing us to derive a closed-

form solution for the price. We assume that π̂i,t(r
i
t+1) =

Et(rit+1)
Vt(rit+1)

so that the active demand

is a function of the bond’s expected excess return and its variance (the Sharpe ratio).6 We

define Ri
t+1 as the next-period repayment per unit of the bond so that rit+1 ≡ Ri

t+1

qit
− rf ,

where rf denotes the risk-free rate.7 Based on these definitions and the market-clearing

condition in Equation (2), we can write the equilibrium bond price as

qit =
Et

(
Ri

t+1

)
rf

Ψi
t. (4)

The term
Et(Ri

t+1)
rf

captures the price under perfectly elastic investors, which is a function

of the expected next-period repayment. On the other hand, the Ψi
t function captures the

demand’s downward-sloping nature and is given by

Ψi
t ≡ 1− κit (Λ)

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t − Āi

t

)
. (5)

The term κit (Λ) ≡ 1∑
j ΛjWj,tθjξij

characterizes the degree of inelasticity in the market for

bond i. When κit (Λ) = 0, the demand is perfectly elastic and the price only depends on the

expected repayment. The Bi
t − T i

t component is what we have referred to as the residual

supply, and Āi
t captures the inelastic portion of the active demand, which depends on the

fixed component of investors’ mandates, ξij . See Appendix for the details and derivations.

From Equation (5), one can decompose the reduced-form elasticity into two components:

the structural elasticity, ηi, and endogenous changes in expected repayment, αi. In particular,

6This is a similar specification to the one in Gabaix and Koijen (2021), which is a function of expected excess
returns and a shock to tastes or perceptions of risk. As shown in our quantitative analysis, this specification
allows us to capture a demand elasticity that differs across countries with different levels of default risk, which
is consistent with our empirical findings.
7The repayment function depends on the expected default and next-period issuances. For a short-term
(one-period) risky bond, it is given by Ri

t+1 = 1− dit+1, where d = 1 denotes a default. For long-term bonds,
it also depends on next-period issuances as they affect the next-period bond price. In Section 4, we analyze
this function in detail.
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Figure 2
Endogenous changes in expected payoffs

Price

QuantityBi − T i
1 Bi − T i

0

Price

QuantityBi − T i
1 Bi − T i

0

Effective
Supply

Effective
Supply

qi0 qi0

qi1

qi1

(a) Higher expected payoffs (b) Lower expected payoffs

Ai
0

Ai
1

Ai
1

Ai
0

Note: The figure depicts a reduction in the effective supply driven by an increase in T i. Panel (a) considers a case in
which the expected asset payoffs increase after the effective supply decreases, while Panel (b) shows the opposite case.

we can extend Equation (3) as follows:

(−)
∆qit
∆T i

t

Bi
t − T i

t

qit︸ ︷︷ ︸
≡η̂i

= (−)
∆Ψi

t

∆T i
t

Bi
t − T i

t

Ψi
t︸ ︷︷ ︸

≡ηi

+ (−)
∆Et

(
Ri

t+1

)
∆T i

t

Bi
t − T i

t

Et

(
Ri

t+1

)︸ ︷︷ ︸
≡αi

. (6)

Figure 2 provides a graphical illustration. If a positive ∆T i
t raises the next-period expected

repayment (i.e., αi < 0), investors will be willing to pay a higher price for any given Bi
t,

leading to an upward shift in the active demand (Panel (a)). Failing to account for this effect

might lead to the conclusion that the demand curve is steeper (more inelastic) than it truly

is. Conversely, if a positive ∆T i
t lowers the next-period expected repayment (i.e., αi > 0), it

would cause the active demand to shift downward (Panel (b)). This shift might lead to the

demand curve being estimated as flatter (more elastic) than it truly is.

Since bond prices and payoffs are jointly determined, it is challenging to disentangle

the effects on bond prices due to the downward-sloping demand from those resulting from

changes in expected payoffs. To formally quantify each mechanism separately, one would

need a structural model in which bond prices, the supply of the bond, and its payoffs are

endogenous outcomes. Put differently, to quantify αi, we must first understand how ∆T i
t

affects issuers’ policies (debt issuances and default). One could argue that more persistent

changes in T i
t would likely have a larger impact on the issuers’ policies, potentially making

the absolute value of αi larger. Conversely, a more transitory shock could lead to a smaller

αi in absolute terms. In any case, one must consider both effects.

In the next section, we construct a novel instrument for ∆T i
t , based on monthly index
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rebalancings for a major sovereign bond index for emerging economies. We estimate bond

price reactions to these rebalancings and map the reactions into a reduced-form elasticity. In

Section 4, we formulate a structural model to back out the structural elasticity.

3 Empirical Analysis

3.1 Index Rebalancings as Passive Demand Shocks

In this section, we exploit monthly rebalancings in the EMBIGD to identify exogenous

shifts in the available bond supply for active investors (the effective supply). The EMBIGD

tracks the performance of emerging market sovereign and quasi-sovereign bonds in U.S.

dollars issued in international markets.8 Unlike other indexes that use a traditional market

capitalization-based weighting scheme, the EMBIGD restricts the weights of countries with

above-average debt outstanding by including only a fraction of their face amount of debt

outstanding.9 Among bond indexes for emerging economies, the EMBIGD is the most widely

tracked, followed by funds with combined assets under management (AUM) of around US$300

billion in 2018 (Appendix Figure 2).10

Rebalancings in the EMBIGD index, triggered by bond inclusions and exclusions, occur

on the last U.S. business day of each month. J.P. Morgan announces these updates through

a report detailing the updated index composition. Consequently, passive investors tracking

the index adjust their portfolios by buying or selling bonds to match the new index weights.

Following Pandolfi and Williams (2019), we construct the flows implied by the rebalancings

(FIR) measure for each country at each rebalancing date. The FIR quantitatively measures

the relative change in passive demand for a country’s sovereign bonds resulting from index

rebalancing. A 1% FIR can be interpreted as a 1% reduction in the available bond supply in

8The index includes bonds with a maturity of at least 2.5 years and a face amount outstanding of at least
US$500 million. To be classified as an emerging economy, a country’s gross national income (GNI) per capita
must be below an Index Income Ceiling (IIC) for three consecutive years. The IIC is defined by J.P. Morgan
and adjusted every year by the growth rate of the World GNI per capita, Atlas method (current US$), provided
by the World Bank. Bonds in the index must settle internationally and have accessible and verifiable bid
and ask prices. Once included, they can remain in the index until 12 months before maturity. Local law
instruments are not eligible.
9The J.P. Morgan Emerging Markets Bond Index Global (EMBIG) has the same bond inclusion criteria
as the EMBIGD. The only difference between them is that while the EMBIG uses a market capitalization
weighting scheme, the EMBIGD modifies this scheme to limit the weights of countries with above-average debt
outstanding. Appendix Figure 1 plots the EMBIG country weights of both the EMBIG (a more traditional
market-based index) and EMBIGD versions for December 2018. Appendix describes the rules that the
EMBIGD uses to compute the weights of the instruments included in the index.
10Appendix Figures 3 and 4 show the high preponderance of U.S. dollar-denominated sovereign debt issued by
emerging economies in international markets.
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the market. More precisely, the FIR measure is constructed as follows:

FIRc,t ≡
∆T̃c,t

qc,t−1Bc,t−1 − wc,t−1At−1
. (7)

The numerator captures the change in passive demand implied by the index rebalancing,

and is defined as ∆T̃c,t ≡ (wc,t − wBH
c,t )At. It measures the amount of funds that, on a given

rebalancing date, enter or leave a country due to the rebalancing in the portfolio of passive

investors tracking index I. For convenience, we normalize ∆T̃c,t by the market value of the

bonds available to active investors, qc,t−1Bc,t−1 − wc,t−1At−1.

The first term in the parentheses, wc,t, is the benchmark weight for country c, at time

t, in index I. It is defined as wc,t ≡ qc,tBc,tfc,t
qtIt

, where qc,tBc,t denotes the market value of

bonds from country c at time t. qc,t denotes the price and Bc,t denotes the face amount

outstanding. fc,t is the face amount share of country c’s bonds in the index, which depends on

the country’s amount of outstanding debt rather than on market values.11 The denominator

of wc,t denotes the market value of index I, calculated as qt times It, where qt is the unit price

of the index and It is the number of available index units. That is, it captures the relative

market capitalization of country c’s sovereign bonds included in I. The second term in the

parentheses, wBH
c,t , is defined as wBH

c,t ≡ wc,t−1
qc,t/qc,t−1

qt/qt−1
.12 It captures the “buy-and-hold

weight,” defined as the weight country c would have had at time t if the index composition

had remained unchanged.13 At in ∆T̃c,t represents the AUM of investors passively tracking

the EMBIGD.

Although index changes drive the FIR, this measure might not be entirely exogenous to a

country’s fundamentals, for two reasons. First, the FIR is affected by countries’ sovereign

bond issuances. When a country issues new bonds that become part of the index, its weight

increases, leading to a higher FIR. Second, even for countries whose Bc,t and share fc,t remain

constant, the FIR can be mechanically correlated to present or past bond price changes.

Note that, generally, ∂FIR
∂qc,t

̸= 0 and
∂FIRc,t

∂qc,t−1
̸= 0. This can be seen from Equation (7), where

the former derivative will not be equal to zero given the effect of current prices through the

numerator. In turn, the latter derivative might not be equal to zero due to the effects of past

11To preserve diversification, J.P. Morgan applies a scheme that entails a cap to the weight of countries with
greater-than-average sovereign bond markets, for whom the diversification coefficient is therefore smaller than
one, fc,t < 1. In contrast to the EMBIGD, for purely market capitalization-weighted indexes (such as the
EMBI Global), fc,t = 1, ∀c,t.
12This buy-and-hold weight is computed as if no bonds had entered or exited the index at time t.
13Note that wBH

c,t =
qc,tfc,t−1Bc,t−1

qtIt−1
. Absent any change in the index composition (i.e., inclusions or exclusions

of new bonds or countries), if the price of a country’s sovereign bonds increases more than that of other
countries in the index, the weight of that country in the index increases. Nevertheless, investors do not need
to rebalance their portfolios as the “buy-and-hold weight” coincides with the new weight in the index, wc,t.
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prices through the denominator. Given that we aim to isolate the impact of passive demand

shocks on bond prices, the potential endogeneity of the FIR could bias our estimates.

We address the potential challenge of the FIR endogeneity in two ways. First, for each

rebalancing event, we consider only countries whose amount outstanding of bonds, Bc,t, does

not change relative to the previous period. In other words, we focus only on countries that

experience no new issuances, bond repurchases, or the removal of bonds from the index

due to maturity on the given date. The rationale behind this approach is, for each country,

to isolate and examine the impact of index changes driven by changes in other countries’

standings within the index at each specific point in time. Second, we exploit the fact that

the EMBIGD’s weighting scheme is based on the face amount of outstanding bonds. This is

important as it allows us to net out the variation potentially correlated with current or past

bond price changes.

In particular, we construct an instrument for the FIR based on a synthetic index in

which country weights are only a function of the diversified face amount outstanding of

bonds included in the index, not on market values, wFA
c,t ≡ fc,tBc,t∑

c fc,tBc,t
. We then compute the

fractional change in the synthetic index:

∆wFA
c,t

wFA
c,t−1

=

(
fc,tBc,t∑
c fc,tBc,t

− fc,t−1Bc,t−1∑
c fc,t−1Bc,t−1

)
/

[
fc,t−1Bc,t−1∑
c fc,t−1Bc,t−1

]
. (8)

Focusing on countries whose debt outstanding in the index remains unchanged (Bc,t = Bc,t−1),

the instrument becomes

Zc,t ≡
(

fc,t∑
c fc,tBc,t

− fc,t−1∑
c fc,t−1Bc,t−1

)
/

[
fc,t−1∑

c fc,t−1Bc,t−1

]
. (9)

By instrumenting the FIR with Zc,t, we can isolate the variation in the FIR that is solely

attributable to changes in the outstanding amount of bonds from other countries. These

changes are a result of fluctuations in the relative size of other countries’ sovereign bond

markets or alterations in the diversification coefficient, fc,t. Because fc,t is not a function of

bond prices, and because we only consider countries where Bc,t is fixed,
∂Zc,t

∂qc,t
=

∂Zc,t

∂qc,t−1
= 0.

We then use the Zc,t instrument to estimate the effect of exogenous demand changes

induced by passive flows on sovereign bond prices. We take advantage of the specific timing

of the rebalancings: index changes always occur on the last business day of each month.

For each rebalancing date, we can therefore identify pre- and post-rebalancing periods and

estimate the FIR’s effect (instrumented by Zc,t) on bond prices.

We adopt an instrumented difference-in-differences (DDIV) design and estimate the
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following main specification using two-stage least squares (2SLS):

log(qi,t,h) = θc(i),t + θb(i),t + γ1h∈Post + β(F̂ IRc(i),t × 1h∈Post) +Xi,t + εi,t,h, (10)

where qi,t,h is the price of bond i at rebalancing date t, h trading days before or after the

rebalancing information is confirmed. For example, h = 1 indicates the first trading after J.P.

Morgan releases the EMBIGD’s new composition. This happens during the trading hours on

the last business day of each month, meaning that h = 1 falls on this day. For each rebalancing

date t, we consider a symmetric h-day window around it. θc(i),t are country-month fixed

effects, and θb(i),t are bond characteristics-month fixed effects, including maturity, rating,

and bond type (sovereign or quasi-sovereign). F̂ IRc(i),t represents the flows implied by the

rebalancing, instrumented with the percentage change in the theoretical index weights, Zc,t.

We obtain F̂ IRc(i),t by regressing FIRc,t on Zc,t (first stage). 1h∈Post is an indicator function

equal to 1 in the h days after the rebalancing and equal to 0 in the h days before. Xi,t is a

vector of monthly bond controls, including the bond’s face amount and (beginning-of-month)

spread. Our coefficient of interest is β, which captures the FIR’s effect on bond prices.

In particular, how much the average log price change (or percentage change) around the

rebalancing day varies with a 1 p.p. exogenous increase in FIRc(i),t. Our main specification

replaces the country-month fixed effects, bond characteristics-month fixed effects, and bond

controls with bond-month fixed effects.

We also estimate a leads and lags regression in which the instrumented FIR is interacted

with trading-day dummies. This analysis allows us to both explore the dynamic effect of the

FIR and test for parallel trends before the rebalancing.

3.2 Data and Summary Statistics

We collect data from different sources to compute the FIR and our instrument. Most of

the variables used in the analysis come directly from J.P. Morgan. However, one variable

is not straightforward to measure: the AUM of funds that passively track the EMBIGD,

At. While J.P. Morgan provides data on the amount of assets benchmarked against their

indexes, it does not distinguish between passive and active funds. Additionally, even if these

data were available, many active funds might passively manage a significant share of their

portfolios, as highlighted by Pavlova and Sikorskaya (2022).

To compute At, we start with J.P. Morgan data on assets tracking the EMBIGD, which

we then adjust based on an estimate of the share of passive funds. The estimation of this

share involves the following steps. We retrieve data from Morningstar on the asset holdings
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Table 1
Summary statistics

Variable Mean Std. dev. 25th pctl 75th pctl Min Max

Log(price) 4.64 0.13 4.59 4.68 3.07 5.19
Instrumented FIR (%) -0.16 0.22 -0.34 0.00 -0.70 0.25
Stripped spread (bps) 278 286 129 357 0 4,904
EIR duration (%) 6.35 3.91 3.48 7.71 -0.03 19.08
Average life (years) 9.6 8.9 4.0 9.9 1.0 99.8
Face amount (billion U.S. dollars) 1.3 0.8 0.7 1.6 0.5 7.0
CDS (bps) 298 694 104 285 42 6,171

Note: This table displays summary statistics for the main variables in the analysis. Stripped Spread is
the difference between a bond yield-to-maturity and the corresponding point on the U.S. Treasury spot
curve, where the value of collateralized flows are “stripped” from the bond. EIR Duration measures
the sensitivity of dirty prices to parallel shifts of the U.S. interest rates, expressed as the percentage
change of dirty price if all U.S. interest rates change by 100 basis points. Average Life is the weighted
average period until principal repayment, and CDS denotes the five-year credit default swap spread of
USD-denominated sovereign bonds. Sources: Bloomberg, Datastream, J.P. Morgan Markets, Morningstar
Direct, and authors’ calculations.

of funds benchmarked against the EMBIGD and EMBI Global Core for 2016–2017.14,15 For

each fund, we compute their Passive Share = 100−Active Share, where Active Share is

the measure developed by Cremers and Petajisto (2009). We first estimate this variable at

the country level, which is the level of the FIR measure.16 This allows us to separate, even

for active funds, the fraction of a fund’s portfolio that might be passive or active, consistent

with the model in Section 2. We then compute the average Passive Share weighted by each

fund’s AUM. With this strategy, we obtain an estimated passive fund share of 50%.17 We

calculate At by adjusting the AUM tracking the EMBIGD index, using a rescaling factor of

50%, thus obtaining the estimated passive funds tracking the index we use to compute the

FIR.18

We gather data on individual bond prices from Datastream and obtain several bond

characteristics (maturity and duration, among others) directly from J.P. Morgan Markets.

To clean our dataset, we drop extreme values of daily returns, stripped spreads, and Zc,t.
19

We drop stripped spreads below 0 or above 5, 000 basis points as well as observations below

14The EMBI Global Core uses the same diversification methodology as the EMBIGD to calculate the bond
weights, as described in Appendix . The criteria for including bonds in the EMBI Global Core is the same as
that for the EMBIGD (and the EMBI Global), except the minimum face amount of the bonds must be US$1
billion and the maturity required to be maintained in the index is of at least one year.
15The data sample periods utilized in the paper are determined by data access constraints.
16We compute the Active Share at the country level by using the country weights in the index and in the
funds’ portfolios rather than bond weights. For the portfolios, we only assign bonds to a given country if they
are included in the EMBIGD. Specifically, a country’s weight in a portfolio is determined by adding together
the weights of all bonds from that country that are included in the EMBIGD.
17Appendix Table 1 provides results using alternative shares of passive funds used to construct the FIR
measure. Although our quantitative estimates change slightly, the qualitative implications remain the same.
18For comparison, we construct Active Share at the bond level, obtaining a value-weighted average of 72%.
Cremers and Petajisto (2009) show an average value-weighted Active Share that fluctuates between 55% and
80%.
19Stripped spread is defined in the notes of Table 1.
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Figure 3
Flows implied by rebalancing (FIR)

(a) Relation between FIR and Z (b) Distribution of instrumented FIR values
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Notes: Panel (a) presents a scatter plot of the FIR and the Z instrument. Both variables are residualized based on
a regression with rebalancing-month and country fixed effects. The FIR is computed as in Equation (7) and Z as in
Equation (9). Panel (b) shows a histogram of the FIR instrumented with Z. For both panels, the sample period is
2016–2018.

the 5th or above the 95th percentiles in terms of the distribution of Zc,t. The reason for the

latter is that extreme values of Zc,t could be driven by large, pre-announced changes in the

EMBIGD and thus are not appropriate for our identification strategy, which relies on the

assumption that most information is known on the last business day of the month. Finally,

we exclude bond-month observations that experience daily returns below (above) the 1st

(99th) percentile in terms of the daily return distribution.

Our final dataset comprises 107,350 bond-time observations for 738 bonds in 68 countries.

Table 1 displays summary statistics for our main measure of the instrumented flows implied

by the rebalancing, F̂ IRc,t, as well as for the other key variables in our database. Bonds in

our sample have an average stripped spread of 278 basis points, an average maturity of 10

years, and an average face amount of US$1.3 billion.

Panel (a) of Figure 3 presents results regarding our first stage. It shows a scatter plot of

the FIR and the Zc,t instrument after both variables have been residualized with rebalancing-

month and country fixed effects. The two variables have a clear positive relationship, and the

R-squared is 86%. Panel (b) presents the distribution of our instrumented FIR measure. The

values range from −0.7% to around 0.25%, with more negative than positive observations.

This is consistent with the fact that over time, the number of bonds included in the EMBIGD

increased. Given that we restrict our analysis to countries whose face amount remains constant,

including bonds from other countries typically reduces the weight of sample countries (i.e., a

negative FIR).20

20When a bond is added to the index, it generally reduces the weight of other bonds in terms of their total face
amount. However, in certain situations, it could increase the weight of certain countries through a relaxation
of face amount caps, as the EMBIGD sets limits on the included face amount of countries to maintain a
diversified portfolio.
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3.3 Results

Table 2 reports the results of our baseline estimation using a five-day window around

each rebalancing event (i.e., h ∈ [−5, 5]).21 Our coefficient of interest, β, is always positive

and statistically significant in the different specifications. The estimate in our preferred

specification, with bond-rebalancing month fixed effects, implies that a 1 p.p. increase in the

FIR increases bond returns by 0.29 p.p.

One potential concern with these results is that bonds receiving a larger or smaller FIR

during the rebalancings are on different price trends even before the rebalancing date. To

show that this is not the case, we estimate a specification with leads and lags, where the

instrumented FIR is interacted with a dummy for each of the trading days around the

rebalancing event:

log(qi,t,h) = θc(i),t + θb(i),t +
∑
h/∈−2

γh1h +
∑
h/∈−2

βh(F̂ IRc(i),t × 1h) +Xi,t + εi,t,h, (11)

where 1h are dummy variables equal to 1 for the h trading day in our [−5 : +5] estimation

window and 0 otherwise.

The estimated βh coefficients are reported in Figure 4. On the initial four of the five

trading days before the index rebalancing, changes in the FIR are not associated with

systematic differences in bond prices. Instead, in the trading days after the event, the

coefficient increases, becomes positive and significant, and eventually stabilizes below 0.4 by

the end of our estimation window. We do observe a slight anticipation in the day before the

index rebalancing, which is not uncommon in these setups. For example, this is consistent

with the patterns of portfolio rebalancings by different institutional investors highlighted in

Escobar et al. (2021), who show that institutional investors could move in the day before the

actual index rebalancing event. In the last column of Table 2, we show the estimates based

on our main specification of Equation (10) but after excluding the trading day before the

index rebalancing. This leads to an estimate of 0.33, which we take as our baseline since it

does not contain any anticipation effect in the pre-period.

One related concern is the potential for increased anticipation throughout the month.

Between the middle and end of every month, J.P. Morgan releases preliminary estimates

about end-of-month face amounts, market values, and bond weights. While it is conceivable

that active investors traded on this information before the actual index rebalancing date,

our data do not support this behavior. Normally, if a significant number of investors were

21Appendix Table 2 shows that our results are robust to alternative windows around the rebalancing events.
The results are also robust to excluding quasi-sovereign bonds from the analysis (Appendix Table 3).
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Table 2
Log price and FIR

Dependent variable: log price

Symmetric window: [-5:+5] Excl. h=-1

FIR -4.014 *** -0.170 1.252 **

(0.583) (0.740) (0.572)

FIR X Post 0.286 *** 0.286 *** 0.286 *** 0.287 *** 0.286 *** 0.330 ***

(0.091) (0.091) (0.092) (0.092) (0.090) (0.098)

Post 0.001 ** 0.001 ** 0.001 ** 0.001 ** 0.001 ** 0.001 **

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Bond FE Yes Yes Yes Yes No No

Month FE No Yes No No No No

Bond char.-month FE No No Yes Yes No No

Country-month FE No No No Yes No No

Bond-month FE No No No No Yes Yes

Bond controls No No No Yes No No

Observations 107,138 107,138 107,138 107,098 107,138 96,424

N. of bonds 738 738 738 738 738 738

N. of countries 68 68 68 68 68 68

N. of clusters 1,618 1,618 1,618 1,617 1,618 1,618

F (first stage) 1,000 693 1,008 1,958 2,017 2,023

Note: This table presents 2SLS estimates of log bond prices on the FIR measure (Equation (7)),
instrumented by Z (Equation (9)), around rebalancing dates. The first- and second-stage equations
are described in Equation (10). The estimations use a symmetric five-trading-day window, with Post as
an indicator variable (equal to 1 for the five trading days after rebalancing, and 0 otherwise). Month fixed
effects are dummy variables equal to 1 for each rebalancing month (0 otherwise), and bond characteristics
are fixed effects that interact maturity, ratings, and bond type fixed effects. Maturity fixed effects are
constructed by dividing a bond’s time to maturity into four different categories: short (less than 5 years),
medium (5–10 years), long (10–20 years), and very long (20+ years). Ratings from each bond are from
Moody’s. Bond type differentiates sovereign from quasi-sovereign bonds. Bond controls indicate whether
the estimation includes the log face amount and log stripped spread of the bond. The last column’s analysis
drops the trading day before rebalancing. Standard errors are clustered at the country-month level, and
the sample period is 2016–2018. *, **, and *** denote statistically significant at the 10%, 5%, and 1%
level, respectively.

anticipating the index rebalancing, we would expect to observe pre-trends in bond prices

before the actual event. However, our analysis reveals no correlation between the FIR and

bond returns in the week leading up to the rebalancing (with the only exception being the

day before the event). Finally, if part of the rebalancing-driven inflows were to occur before

the event, our FIR measure would overestimate them at the index rebalancing date. This, in

18



turn, implies that our estimates can be understood as a lower bound.22

Figure 4
Leads and lags coefficients
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Note: This figure presents leads and lags coefficients from a 2SLS estimation of bond log prices on a set of
trading-day dummies around each rebalancing event, using the same 2SLS procedure as in Table 2. The
estimation includes bond characteristics-month fixed effects (maturity, rating, and bond type). The shaded
area indicates the rebalancing on the month’s last business day, with h = +1 for returns on that day and
h = −1 for returns on the preceding business day. The vertical red lines show a 95% confidence interval for
each horizon. Standard errors are clustered at the country-month level.

The documented effects are heterogeneous across bonds with varying levels of default risk.

To show this heterogeneity, we divide our sample into high- and low-spread bonds, those

above and below the median spread in our sample, respectively. We estimate Equation (10)

for each of these subsamples and report the results in Table 3. The table shows that the price

of high-spread bonds is more sensitive to rebalancing shocks, with a 1 p.p. increase in the

FIR associated with a 0.46 p.p. increase in bond returns. In contrast, for low-spread bonds,

the effect is quantitatively close to zero and not statistically significant.23

3.4 Reduced-Form Demand Elasticities

We can map the estimated reactions of bond prices to a reduced-form demand elasticity,

as shown by rewriting Equation (3) to reflect our FIR measure: η̂ = (−)
∆log(qit)
FIRc,t

. This aligns

22Appendix Table 1 shows how our estimates change as we proportionally decrease the FIR measure (due
to a lower share of passive funds). These results could serve as guidance for what might happen if the FIR
measure were lower due to some investors’ portfolio rebalancings being anticipated.
23Appendix Table 4 divides bonds into three groups according to their spreads. We find that bond prices
are positively associated with the FIR for both high (above 302 basis points) and medium (between 158 and
302 basis points) spread bonds. Instead, for low spread bonds (below 158 basis points), the relationship is
statistically insignificant. Additionally, the estimated coefficient increases with the risk profile of the bonds.
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Table 3
Log price and FIR: Spread heterogeneity

Dependent variable: log price

High spread Low spread

FIR X Post 0.461 *** 0.462 *** 0.100 0.100

(0.136) (0.135) (0.088) (0.088)

Bond FE Yes No Yes No

Month FE Yes No Yes No

Bond-month FE No Yes No Yes

Observations 53,364 53,364 53,774 53,774

N. of bonds 497 497 498 498

N. of countries 62 62 51 51

N. of clusters 1,249 1,249 895 895

F (first stage) 594 2,333 451 963

Note: This table presents 2SLS estimates of bond log prices on
the FIR measure, instrumented by Z, across rebalancing dates.
The sample is divided into high-spread bonds in Columns
1 and 2, above the median stripped spread, and low-spread
bonds in Columns 3 and 4, below the median. The sample
period, the construction of five-day window, and the 2SLS
procedure are identical to those described in Table 2. The
estimation includes coefficients for Post and FIR but are
not reported for brevity. Standard errors are clustered at
the country-month level. *, **, and *** denote statistically
significant at the 10%, 5%, and 1% level, respectively.

precisely with the role of our β coefficient in Equation (10). Based on the estimates in Table

2 (last column), the inverse demand elasticity is −0.33, implying a demand elasticity of −3.

These estimates are in the ballpark of other estimates in the literature for other financial

markets and assets (Appendix Figure 5).

As shown in Section 2, the previous estimates do not capture a structural elasticity

because the default risk and expected payoffs of bonds may be affected by the shocks. Thus,

part of the documented price reaction could be driven by these endogenous responses and

not by a downward-sloping demand curve (as shown in Equation (6)). One way to assess

the magnitude of these endogenous effects is to quantify how changes in the FIR affect a

country’s default risk. To this end, we use credit default swaps (CDS) as a proxy for default

risk. We find that increases in the FIR tend to decrease CDS spreads (see Appendix Table

5). The estimates imply that, for the median CDS spread in the sample (about 190 basis

points), a 1 p.p. increase in the FIR decreases CDS spreads by 1.5 basis points.
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Using this estimate, and based on a simple back-of-the-envelope calculation, we can

quantify the effects of changes in default risk on our reduced-form elasticity. For this, we

first convert changes in CDS spreads into changes in bond prices by calculating the median

duration of the bonds in our sample and then multiplying it by the estimated effect of the

FIR on CDS spreads. Given a median duration for bonds of 5.5 years, the estimated decrease

in CDS spreads increases bond prices by almost 1.5× 5.5 = 8.25 basis points. This analysis

thus suggests that changes in default risk could account for around 25% of our reduced-form

elasticity (i.e., 8.25/33).

Although informative, these estimates should be taken with caution as bond prices and

CDS spreads are determined jointly. Given that the FIR measure captures shocks to the

demand of passive investors, it is possible that shocks are correlated across both bond and

CDS markets. Thus, it might be the case that a fall in CDS spreads is not capturing a

lower default risk but rather an increase in CDS demand. In the next section, we build a

quantitative model that allows us to quantify the role of endogenous movements in default

risk behind the documented price responses.

4 Optimal Supply of Risky Sovereign Bonds

We next formulate a quantitative sovereign debt model to study the impact of a downward-

sloping demand on a government’s supply of risky bonds. We use the model to disentangle

the mechanisms behind our reduced-form demand elasticity and to back out a structural

elasticity that isolates the endogenous response of default risk. The model features a risk-

averse government that issues long-term debt in international debt markets. The government

has limited commitment and can endogenously default on its debt obligations. To tightly

link the model with our empirical analysis, we introduce two types of investors (active and

passive) and a rich demand structure, allowing us to capture a downward-sloping demand for

government bonds.

4.1 Issuer Problem

We consider a small open economy with incomplete markets and limited commitment.

Output is exogenous and follows a continuous Markov process with a transition function

fy (y
′ | y). Preferences of the representative consumer are given by

E0

∞∑
t=0

βtu (ct) , (12)
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where β is the discount factor, ct denotes consumption, and the function u (.) is strictly

increasing and concave.

An infinite-lived, risk-averse government issues long-term bonds in international markets

to smooth consumption. Let B denote the beginning-of-period stock of government debt.

Each unit of B matures in the next period with probability λ. If a bond does not mature (and

the government does not default), it pays a coupon ν. Let d = {0, 1} denote the default policy,

where d = 1 indicates a default. Default leads to a temporary exclusion from international

debt markets and an exogenous output loss, ϕ(y).

International markets are competitive and populated by heterogeneous investors who

differ in their degree of activeness and passiveness. Let A′(.) and T ′(.) denote the active and

passive demand functions, respectively. As in Section 2, we assume that the active demand

is a function of a bond’s expected return and volatility. The passive demand is perfectly

inelastic and given by T ′ = T (τ,B′). That is, it depends on the end-of-period stock of

bonds, B′, and on some time-varying index weight, τ . For tractability, we assume that τ

is exogenous and follows a continuous Markov process with a transition function fτ (τ
′ | τ).

Given an end-of-period bond supply B′, the market-clearing condition can we written as

B′ = A′ (τ,B′) + T (τ,B′).

The state space can be summarized by the n-tuple (h,B, s), where h captures the

government’s current default status and s = (y, τ) the exogenous states. Under these

assumptions, and for a given default status h and choice of B′, the resource constraint of the

economy can be written as

c(h = 0, B, y, τ ;B′) = y + q
(
y, τ, B′) (B′ − (1− λ)B

)
− (λ+ (1− λ)ν)B, (13)

c(h = 1) = y − ϕj(y),

where q (y, τ, B′) denotes the price of a unit of debt, B′ − (1− λ)B are new bond issuances,

and (λ+ (1− λ)ν)B are current debt services.

4.2 The Government’s Recursive Problem

The government is benevolent and chooses {d,B′} to maximize Equation (12), subject

to the resource constraint in Equation (13). If the government is not in default, its value

function is given by

V (y, τ, B) = Maxd={0,1}

{
V r (y, τ, B) , V d (y)

}
, (14)
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where V r(.) denotes the value function in case of repayment and V d(.) denotes the default

value. If the government chooses to repay, then its value function is given by the following

Bellman equation:

V r (y, τ, B) = MaxB′ u(c) + β Es′|sV
(
y′, τ ′, B′) , (15)

subject to c = y + q(y, τ, B′)
(
B′ − (1− λ)B

)
− (λ+ (1− λ)ν)B.

If the government defaults, it is excluded from debt markets and cannot issue new debt.

The government exits a default with probability θ, with no recovery value. We further assume

that the demand from passive investors is zero while the government is in default. Under

these assumptions, the value function in case of default is given by

V d (y) = u (y − ϕ(y)) + β Es′|s

[
θV

(
y′, τ ′, 0

)
+ (1− θ)V d

(
y′
)]

. (16)

4.3 Bond Pricing Kernel

Foreign lenders are competitive and discount payoffs at the risk-free rate. Based on the

analysis in Section 2, given an exogenous state {y, τ} and a choice of B′, the bond price

function faced by the government is given by

q
(
y, τ, B′) = β⋆ Es′|s

[
R

(
y′, τ ′, B′)] Ψ

(
y, τ, B′) , (17)

where β⋆ ≡ 1/(1+ rf ), R′(.) ≡ R (y′, τ ′, B′) denotes the next-period repayment function, and

Ψ(y, τ, B′) captures the downward-sloping component of the active demand.24 In turn, the

next-period repayment function is given by

R
(
y′, τ ′, B′) = [

1− d
(
y′, τ ′, B′)] [λ+ (1− λ)

(
ν + q(y′, τ ′, B′′)

)]
, (18)

where d(y′, τ ′, B′) is the next-period default choice and q(y′, τ ′, B′′) denotes the next-period

bond price, which is a function of next-period exogenous states, {y′, τ ′}, and the next-period

debt policy, B′′ ≡ B′ (y′, τ ′, B′).

From Equations (17) and (18), it is clear that the bond price decreases with the expected

default probability. Specifically, a larger B′ (weakly) increases the default risk (conditional

on a level of output), and thus q(y, τ, B′) (weakly) decreases in B′. As for Ψ (y, τ, B′), we

only assume for now that ∂Ψ(y,τ,B′)
∂A′(τ,B′) ≤ 0. Thus, this term introduces another mechanism for

the bond price to be decreasing in B′: the downward-sloping demand of active investors.

24The case where Ψ(y, τ, B′) = 1 for all {y, τ, B′} captures the perfectly elastic case. In this instance, the
bond price is only a function of the expected next-period repayment.
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4.4 Demand and Supply Elasticities

Introducing passive and active investors allows us to replicate our empirical exercise.

That is, we can exploit exogenous movements in τ , analyze their effects on bond prices, and

estimate a demand elasticity. This is straightforward to do in the model as we can directly

shock τ while keeping the country’s fundamentals fixed. Let ∆T ′ ≡ T (τ1, B
′) − T (τ0, B

′)

denote an exogenous shift in the passive demand.25 Given ∆T ′, and by means of simulations,

we can compute the same reduced-form elasticity within the model as in our empirical analysis.

We denote this elasticity as η̂ = (−)∆q(.)
∆T ′

B′−T ′

q(.) .

Through its effects on bond prices, changes in τ affect the government’s value function

V r(.) (as shown in Equation (15)) and thus influence its debt and default policies, B′(.) and

d(.), respectively. Changes in these policies in turn impact the bond’s expected payoff and its

price (as shown in Equations (17) and (18)). Therefore, part of the price reaction captured in

η̂ is reflecting these endogenous responses and not a downward-sloping demand component.

We use the model to decompose η̂ into a structural demand elasticity η and changes

in expected risk and repayment α. Using the model formulas, we can derive an analogous

expression to the one in Equation (6):

(−)
∆q(.)

∆T ′
B′ − T ′

q(.)︸ ︷︷ ︸
≡η̂

= (−)
∆Ψ (.)

∆T ′
B′ − T ′

Ψ(.)︸ ︷︷ ︸
≡η

+ (−)
∆Es′|sR′ (.)

∆T ′
B′ − T ′

Es′|sR′ (.)︸ ︷︷ ︸
≡α

. (19)

By keeping the repayment function R′(.) fixed, we can isolate the part of the reduced-form

elasticity that is explained by changes in default risk.

The model has important implications for the optimal supply of risky bonds. In our setup,

the government internalizes the effects of changes in B′ on q(y, τ, B′) through both changes

in its default probability and the downward-sloping demand component. More formally, let

ε ≡ ∂ log q(.)
∂ logB′ denote the (inverse) supply elasticity, which can be expressed as

ϵ =
∂ logEs′|sR′ (.)

∂ logB′ +
∂ logΨ (.)

∂ logB′ . (20)

The first term on the right-hand side captures the elasticity of the expected repayment

function with respect to the bond supply. This elasticity is typically negative because a larger

B′ increases default risk and reduces the expected bond payoff. The second term captures

the additional decline in the bond price due to the downward-sloping demand. Given that

the government internalizes both effects, a more inelastic demand affects its optimal bond

25Note that index weights change but the (end-of-period) bond supply remains fixed.
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supply. In the next section, we use a calibrated version of the model to quantify the effects of

inelastic demand on both a government’s bond supply and its default policy.

5 Quantitative Analysis

5.1 Calibration

We calibrate the model at a quarterly frequency using data on Argentina, a benchmark

case commonly studied in the quantitative sovereign debt literature. The calibration follows

a two-step procedure. We first fix a subset of parameters to standard values in the literature

or based on historical Argentine data. We then internally calibrate the remaining parameters

to match relevant moments for Argentine spreads and other business cycle statistics.

In terms of functional forms and stochastic processes, we assume that the government

has CRRA preferences: u (c) = c1−γ

1−γ , where γ denotes the risk aversion. Output follows an

AR(1) process given by log (y′) = ρy log (y) + ϵ′y, with ϵ′y ∼ N(0, σy). If the government

defaults, output costs are governed by a quadratic loss function ϕ (y) = max
{
d0y + d1y

2, 0
}
.

For d0 < 0 and d1 > 0, the output cost is zero whenever 0 ≤ y ≤ −d0
d1

and rises more

than proportionally with y when y > −d0
d1
. This loss function is identical to the one used

in Chatterjee and Eyigungor (2012) and allows us to closely match the sovereign spreads

observed in the data. As for the demand of passive investors, we assume that it is proportional

to the (end-of-period) amount of bonds outstanding. Specifically, T ′ = T (τ,B′) = τ × B′.

We let τ follow an AR(1) process given by log(τ ′) = (1− ρτ ) log(τ
⋆) + ρτ log(τ) + ϵ′τ , where

ϵ′τ ∼ N (0, στ ).

Based on the analysis in Section 2, we consider the following functional form for the

downward-slopping Ψ(.) term:

Ψ
(
y, τ, B′) = exp

{
−κ0

Vs′|s (R′(.))

Es′|s (R′(.))
×
(
B′ − T ′ − Ā

)}
, (21)

where κ0 ≥ 0 captures the “slope” of the demand function and Ā denotes the average

holdings of active investors (as determined by the fixed component of their mandates, ξij).

For tractability, we assume time-invariant values for both κ0 and Ā.26 This specification

introduces a wedge only for risky bonds (i.e., those with Vs′|s (R′(.)) > 0). As we show next,

it allows us to capture the two key features of our empirical analysis: a downward-sloping

demand for active investors and a demand elasticity that increases (in magnitude) with

26As shown in Section 2, these terms could be, in principle, time-varying functions. We also use an exponential
specification purely for computational reasons: to avoid having a negative price.
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Table 4
Calibration of the model

Panel a: Fixed parameters Panel b: Calibrated parameters

Param. Description Value Param. Description Value

γ Risk aversion 2.00 β Discount rate 0.949
r Risk-free interest rate 0.01 d̄0 Default cost—level −0.24
λ Debt maturity 0.05 d̄1 Default cost—curvature 0.29
z Debt services 0.03 κ0 Slope parameter 60.0
θ Reentry probability 0.0385 Ā Active investors demand 0.526
ρy Output, autocorrelation 0.93
σy Output, shock volatility 0.02
τ⋆ Share of passive demand 0.123
ρτ FIR, autocorrelation 0.66
ητ FIR, shock volatility 0.02

default risk (i.e., with a larger return variance). Note that when B′ − T ′ − Ā ≥ 0, Ψ(.) ≤ 1.

We thus view Ψ(.) as an “inconvenience” yield, that is, a premium demanded by investors as

compensation for holding the bond, in excess of its default risk.27

Table 4 lists the calibrated parameters. For the subset of fixed parameters (Panel a), we

set γ = 2, which is a standard value for risk aversion in the literature. We also set a quarterly

risk-free rate of rf = 0.01, in line with the average real risk-free rate observed in the United

States. The probability of re-entering international markets is set to θ = 0.0385, implying an

average exclusion duration of 6.5 years. We set λ = 0.05 to target a debt maturity of 5 years

and ν = 0.03 to match Argentina’s average debt services. The parameters for the endowment

process, ρy and σy, are based on log-linearly detrended quarterly real GDP data of Argentina.

All these parameters are taken from Morelli and Moretti (2023). Last, we set τ⋆ to match

the average share of Argentina’s external debt tracked by passive investors, and calibrate ρτ

and στ to match the persistence and volatility of our FIR measure.

We internally calibrate the remaining parameters (Table 4, Panel b). We jointly calibrate

the default cost level and curvature, {d0, d1}, together with the government’s discount factor

β, to target Argentina’s average ratio of (external) debt to GDP, average spread, and volatility

of spreads.28 Additionally, we calibrate κ0 to match the estimated (inverse) reduced-form

demand elasticity, η̂ = −0.33. Last, we set Ā to match the average holdings of active investors.

That is, Ā = B̄− T̄ , where B̄ denotes the average debt stock and T̄ denotes passive investors’

27For low values of B′, when B′ − T ′ − Ā < 0, Ψ(.) ≥ 1. However, when B′ is small, the variance of the
repayment function tends to be small (due to the low default risk), and hence Ψ(.) is typically close to one in
these cases.

28Annualized spreads are computed as SP =

(
1+i(y,τ,B′)

1+rf

)4

− 1, where i (y, τ, B′) is the internal quarterly

return rate, which is the value of i(.) that solves q (y, τ, B′) = [λ+(1−λ)ν]
λ+i(y,τ,B′) .
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Table 5
Targeted moments

Target Description Data Model

E[SP ] Bond spreads 472bp 466bp
σ(SP ) Volatility of spreads 200bp 148bp
E[D/Y ] Debt to output 55% 62%
E[Ψ] Inconvenience yield 1.0 1.006
η̂ Reduced-form elasticity −0.33 −0.31

Note: The table reports the moments targeted in the calibration and
their model counterpart.

Figure 5
Default set and bond prices

(a) Default set
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(b) Bond price
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Note: Panel (a) shows the default policy for different combinations of B′ and y. The black area depicts combinations of
B′ and y such that default probability is zero. Lighter colors indicate a higher default probability. In Panel (b), the
solid lines show the bond pricing kernel q(y, τ, B′) for different values of B′ and for two values of output. The dashed
lines show the bond price under a perfectly elastic demand, taking as given the same bond and repayment policies as in
our baseline model (i.e., q(.)/Ψ(.)).

average holdings. Given Equation (21), this is equivalent to targeting an average Ψ(.) of one.

The introduction of Ψ(.) thus only affects the sensitivity of the pricing kernel to changes in

B′ around the {B̄, T̄ , Ā} point.

Figure 5 depicts the default set and the bond price function q(.) for different values of B′

and y. Panel (a) shows that the government defaults in states with high debt and low output.

Panel (b) shows that, as a consequence, the bond price is decreasing in B′ and increasing in

y. The dashed lines in Panel (b) show the bond prices under a counterfactual in which we

take the baseline B′(.) policy but assume that the demand is perfectly elastic (i.e., it shows

the q(.)/Ψ(.) function). At lower B′ levels, where default risk is minimal, bond prices remain

largely unaffected by the downward-sloping demand. However, as B′ increases, increased

return volatility decreases Ψ, subsequently lowering the bond price q.
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Figure 6
Disentangling the demand elasticity

(a) As a function of B′
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(b) As a function of spreads
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Note: The figure shows the reduced-form inverse demand elasticity η̂ (black lines) and the structural one η (blue lines).
The vertical differences between the two lines (represented by the red lines) capture the endogenous changes in bonds’
expected repayment, α. Panel (a) shows the results as a function of B′, while Panel (b) shows the results as a function
of annualized bond spreads.

5.2 Decomposing the Reduced-form Demand Elasticity

We formally disentangle the different channels through which changes in T affect bond

prices. As shown in Equation (19), index rebalancing affects bond prices through two

mechanisms: (i) the (inverse) structural demand elasticity of active investors, η, and (ii)

changes in expected repayment, α. Using the calibrated model, we can isolate the effects

driven by changes in expected repayment to properly identify the structural demand elasticity.

Figure 6 decomposes the channels outlined in Equation (19). The black line shows the

reduced-form (inverse) demand elasticity η̂, while the blue line depicts the model-implied

structural elasticity, η. The vertical differences between these two curves (red lines) indicate

the portion of the reduced-form elasticity attributable to endogenous changes in the repayment

function, α. We find that the magnitude of η̂ is always higher than that of η. This is consistent

with our empirical analysis based on CDS spreads (described in Section 3). The difference

can be substantial, particularly for larger values of B′ and for higher bond spreads.

The first column of Table 6 shows the unconditional average for both the reduced-form

elasticity, η̂, and the structural elasticity, η. On average, the structural elasticity accounts

for less than two-thirds of the reduced-form elasticity. The rest is explained by endogenous

changes in the expected repayment, α. Despite the fundamentals (y,B′) being fixed and

the ∆T ′ shocks being exogenous, the reduced-form elasticity significantly differs from the

structural one.

The magnitudes of the documented biases critically depend on the persistence of the
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Table 6
Persistence of shocks and demand elasticity

Moment Baseline Lower persistence Higher persistence

Reduced-form elasticity, η̂ -0.31 -0.28 -0.33
Structural elasticity, η -0.19 -0.21 -0.17
Ratio, η/η̂ 61% 74% 50%

Note: The table compares the reduced-form inverse demand elasticity η̂ with the structural one η. The
“Baseline” column shows the elasticities under our baseline calibration. In the “Lower persistence” case,
we decrease the persistence of the {τ} process by setting ρτ = 0.50. The “Higher persistence” column
shows the results for ρτ = 0.80.

shock. The last two columns of Table 6 compare the reduced-form and structural elasticities

for different persistence values for the {τ} process (i.e., ρτ ). When the shock is more (less)

persistent, a smaller (larger) share of the total price response is explained by the inelastic

component of the investors’ demand. This is because more permanent shocks lead to larger

changes in government policies and thus in the bond’s expected repayment function.

Overall, our analysis highlights the importance of accounting for issuers’ endogenous

responses to an exogenous (supply-shifting) shock and the resulting changes in assets’ expected

repayment. Neglecting these factors can introduce significant biases into the estimated demand

elasticity, particularly if the shock is persistent. As argued in Section 3, our FIR measure

is inherently more temporary than other supply-shifting instruments used in the literature,

such as index additions or deletions. However, even in that case, the bias can represent over

one-third of the reduced-form elasticity.

5.3 Implications of a Downward-sloping Demand

As shown in Equation (20), in determining its optimal debt policy, the government

internalizes not only the effects of a higher B′ on q(.) through changes in its default probability

but also its effects through the inelastic demand. This section quantifies the implications of

a downward-sloping demand on government policies and their subsequent effects on bond

prices. To this end, we compare our baseline model with a downward-sloping demand with

an alternative scenario where investors are perfectly elastic.

Table 7 reports a set of targeted and untargeted moments for our baseline model (with

κ>) and for an alternative case with a perfectly elastic demand (κ0). All the other model

parameters remain the same. Despite similar values of debt, we find that the default frequency

and average spreads are lower relative to the perfectly elastic case when facing an inelastic

demand.

Two factors explain the lower default rate and bond spreads. First, the government debt
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Table 7
Comparison with perfectly elastic case

Moment Description Baseline Perfectly elastic

E (SP ) Bond spreads 466bp 831bp
σ (SP ) Volatility of spreads 148bp 446bp
E (B/y) Debt to output 62% 59%
E (d) Default frequency 3.9% 4.43%
σ(B)/σ(y) Standard deviation of debt, relative to output 1.88 2.32
ρ (SP, y) Correlation between spreads and output -0.71 -0.53

Note: The table compares a set of key moments between our baseline model with inelastic investors and a counterfactual
scenario in which investors are perfectly elastic (κ0 = 0).

policy is significantly affected by a downward-sloping demand. Panel (a) of Figure 7 shows

the optimal debt policy B′(y, τ, B) in our baseline model and in the perfectly elastic case.

For large values of B (in states where V (R′(.)) is high), an additional unit of B′ reduces

the bond price q(.) due to both higher default risk and investors’ inelastic behavior. As a

result, the government does not find it optimal to issue large amounts of debt because it is

too costly to do so. An inelastic demand thus introduces a limit to the maximum amount of

debt that a government is willing to issue.

Figure 7
Implications on policies and prices

(a) Bond policy
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Note: The figure presents bond policies and prices for our baseline model with inelastic investors (black solid lines) and
in an alternative model in which investors are perfectly elastic (blue dotted lines).

Second, these changes in the optimal bond policy have important effects on the pricing of

bonds (Figure 7, Panel (b)). For small values of B′ (low default risk), q(.) is actually higher

than under the perfectly elastic case. As shown in Figure 8 (Panel (a)), this larger bond price

is not driven by a convenience yield because, by construction, Ψ(.) is typically smaller than

one. Instead, the higher bond price is explained by a lower default risk (Panel (b)), which is
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Figure 8
Inconvenience yield and default risk

(a) Ψ(y, τ, B′)
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Note: Panel (a) depicts the Ψ(y, τ, B′) function for different values of B′. Panel (b) shows the annualized default risk in
our baseline model (black solid lines) and in a counterfactual in which investors are perfectly elastic (blue dotted lines).

a direct consequence of the government’s lower incentives to issue large values of B′.

To summarize, an inelastic demand diminishes a government’s incentives to issue additional

units of debt, acting as a commitment device that reduces default risk and increases bond

prices.

6 Conclusion

In this paper, we present evidence of downward-sloping demand curves in risky sovereign

debt markets and analyze their implications for the optimal supply of sovereign bonds. Our

approach combines evidence from high-frequency bond-level price reactions to well-identified

shocks with a structural model featuring endogenous debt issuances and default risk. This

methodology allows us to isolate endogenous changes in default risk behind the estimated

price reactions and to back out a structural demand elasticity. Empirically, we find that a

1 p.p. exogenous reduction in the effective bond supply leads to a 33 basis point increase

in bond prices. Our structural model reveals that over one-third of this response is due to

endogenous changes in the expected repayment of bonds. Moreover, we find that the inelastic

demand influences and shapes the governmental policies on optimal debt and default. By

diminishing the government’s incentives to issue additional units of debt, an inelastic demand

acts as a commitment device that reduces default risk and borrowing costs.

Our results highlight the importance of considering issuers’ endogenous responses and

the resulting changes in expected asset payoffs. Failing to account for these responses can

introduce significant biases when estimating demand elasticities, particularly for risky assets.
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Our paper can lead to further research along several dimensions. For example, given the

model predictions, it would be interesting to empirically study the impact of inelastic demand

on government debt issuances. More importantly, our framework can be extended to other

assets and markets, notably equity and corporate bonds. The endogenous responses that we

emphasize in this paper can be applied to other issuers’ of risky assets, which we leave for

future research.
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Appendix A: Model of Heterogeneous Inelastic Investors

In this appendix, we first provide additional material and derivations for the analysis in

Section 2. We then describe microfoundations for the assumed demand structure, analyzing

two related cases. In the first one, the inelasticity comes from investor risk aversion, while

the second case is rooted in a Value-at-Risk (VaR) constraint to which investors are subject.

A.1 Additional Derivations

From Equation (1) in the main text, and based on a first-order approximation for the

elastic component of the demand eκj π̂i,t around π̄i, we can write the market-value demand of

active investors as follows:

Ãi
t =

∑
j

(1− Λj π̄i)Wj,tθjξ
i
je

Λj π̄i + π̂i,t
∑
j

ΛjWj,tθjξ
i
je

Λj π̄i . (A1)

The first term captures investors’ average purchases of bond i, which are given by their

exogenous mandates ξij . The second term captures deviations from those purchases (i.e., the

elastic component of the demand), which is a function of π̂i,t.

For the remainder of the analysis, we focus on the case in which π̂i,t
(
rit+1

)
=

Et(rit+1)
Vt(rit+1)

.

Define Ri
t+1 as the next-period repayment per unit of the bond so that rit+1 ≡ Ri

t+1

qit
− rf ,

where rf denotes the risk-free rate. We can then write π̂i,t
(
rit+1

)
= qit

EtRi
t+1−qitrf

VtRi
t+1

. Without

loss of generality, consider a case where π̄i is close to zero. After substituting these expressions

into the equation, we can rewrite Equation (A1) as follows:

Ãi
t = qitĀi

t + qit

(
EtRi

t+1 − qitrf

VtRi
t+1

)∑
j

ΛjWj,tθjξ
i
j , (A2)

where Āi
t is defined such that qitĀi

t+1 =
∑

j Wj,tθjξ
i
j . We can interpret Āi

t as active investors’

holdings aimed at satisfying the fixed part of their mandates.

As for the demand of passive investors, let Mt denote the market value of the index I and

define Si
t as bond i’s face amount included in this index. For simplicity, assume that bond

i is only included in index I. Then, wi
t =

Si
tq

i
t

Mt
, and we can write the market-value passive

demand as

T̃ i
t = qit S

i
t

∑
j

Wj,t (1− θj)

Mt
= qitT i

t , (A3)

where T i
t ≡ Si

t

∑
j
Wj,t(1−θj)

Mt
denotes the face amount of bond i’s passive holdings.

After replacing Equations (A2) and (A3) in the market-clearing condition (Equation (2)

in the main text), we obtain a closed-form solution for the bond price:

qit =
Et

(
Ri

t+1

)
rf

[
1− κit

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t+1 − T i
t+1 − Āi

t

)]
, (A4)

where κit (Λ) ≡ 1∑
j ΛjWj,tθjξij

parameterizes the downward-slopping behavior of the demand.

It is a weighted average of investors’ {Λj} parameters, where the weights are given by the

amount that each investor allocates on bond i.
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Next, we show that we can obtain an analogous pricing kernel under risk-averse investors

or under risk-neutral investors subject to a standard VaR constraint.

A.2 Microfoundation Based on Risk-Averse Investors

Consider a case where investors are risk averse and have mean-var preferences. They care

about both the total return of their portfolio and their return relative to a benchmark index

I they track. Additionally, they are heterogeneous and differ in their degree of risk aversion

and how their compensation depends on their total and relative return. Following the same

notation as in the main text, let j = {1, ..., J} denote the investor type. Let i = {1, ..., N}
denote the set of bonds that are part of the I index, and let wt =

{
w1
t , ..., w

N
t

}
be the vector

of index weights for each constituent bond. The vector rt+1 =
{
r1t+1, ..., r

N
t+1

}
denotes the

next-period (gross) returns (i.e., the bond gross return in excess of the risk-free rate, rf ).

Last, let Bt =
{
B1

t , ..., B
N
t

}
denote the bond supply.

For an investor j, their total compensation is a convex combination between the return

of their portfolio and the relative return versus the index I. Let xj,t =
{
x1j,t, ..., x

N
j,t

}
be

investor j’s vector of portfolio weights. The investor’s compensation is

TCj,t = θj (xj,t)
′ · rt+1 + (1− θj) (xj,t −wt)

′ · rt+1

= [xj,t − (1− θj)wt]
′ · rt+1,

where θj captures the weight of relative returns on the compensation.

Each investor chooses a combination of portfolio weights xj,t to maximize Et (TCj,t)−
σj

2 Vt (TCj,t), where σj captures the investor’s risk aversion. In matrix form, we can write

this problem as follows:

Maxxj [xj,t − (1− θj)wt]
′µt −

σj
2

[xj,t − (1− θj)wt]
′ Σt [xj,t − (1− θj)wt] ,

where µt ≡ Et (rt+1) denotes the expected excess return of the portfolio and Σt ≡ Vt (rt+1)

denotes the variance-covariance matrix of excess returns. The optimal portfolio allocation for

investor j is given by

xj,t =
1

σj
Σ−1

t µt + (1− θj)wt. (A5)

The first term on the right-hand side of Equation (A5) captures the usual mean-variance

portfolio. An analogous expression can also be derived under CARA preferences (see, e.g.,

Pavlova and Sikorskaya, 2022). The second term reflects the reluctance of some investors to

deviate from the benchmark portfolio, w, indicating an inherently inelastic demand. It is not

a function of the expected return or riskiness of the bonds; rather, it depends only on how

much investors penalize deviations from the benchmark. Purely passive investors (i.e., those

with θj = 0 and σj → ∞) never deviate from the benchmark portfolio and exhibit a perfectly

inelastic demand.

Let Wj,t denote the wealth of each type of investor j. Then Bi
j,t =

Wj,tx
i
j,t

qit
are investor j’s

purchases of bond i, where qit denotes the bond price. For each bond i, its market-clearing

condition is qitB
i
t =

∑
j Wj,tx

i
j,t. After replacing these with the investors’ optimal portfolio
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weights, the market-clearing conditions are given by
q1tB

1
t

...

qNt BN
t

 =
∑
j

Wj,t

[
1

σj
Σ−1

t µt + (1− θj)wt

]
(A6)

= Ãt + T̃ t,

where Ãt ≡
∑

j Wj,t
1
σj
Σ−1

t µt denotes the active component of investors’ demand (at market

value). Since investors are risk averse, Ãi
t is downward sloping and is a function of the expected

return of bond i and its variance-covariance matrix. The term T̃ t ≡ wt
∑

j Wj,t (1− θj)

denotes the passive demand (at market value).

Take the market-clearing condition of Equation (A6), and assume for simplicity only two

assets. For ease of exposition, consider that bond i is risky and bond −i is not. Under these

assumptions, the price for bond i is given by

qit =
Et

(
Ri

t+1

)
rf

×Ψi
t, (A7)

where Ri
t+1 denotes the bond’s next-period repayment per unit and Ψi

t captures the downward-

sloping nature of the demand. Ψi
t is given by

Ψi
t ≡ 1− κRA

t

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t

)
, (A8)

where 1/κRA
t ≡

∑
j
Wj,t

σj
denotes the weighted-average risk aversion coefficient and T i

t ≡ T̃ i
t /q

i
t

denotes the (face amount) holdings of passive investors.

Note that the bond price in Equation (A8) is analogous to the one in Equation (A4).

The key difference is that with risk-averse lenders, the price elasticity is captured only by

investors’ risk aversion. In our main analysis, we do not specify the underlying mechanism

driving this elasticity.

A.3 Microfoundation Based on a VaR Constraint

An identical expression can also be derived for investors who are risk neutral and subject to

a VaR constraint. These constraints are common both in the literature and in the regulatory

sphere (e.g., Miranda-Agrippino and Rey, 2020).29

Consider an analogous setup to the one in the previous subsection. Investors are

heterogeneous and care about their absolute and relative return with respect to index

I. They are also risk neutral and subject to a VaR constraint that imposes an upper limit on

the amount of risk they can take. In particular, the problem for investor j can be written as

Max{x1
j,t+1,...x

N
j,t+1}

Et

(
[xj,t+1 − (1− αj) st+1]

′ · rt+1

)
subject to Φ2Vt

(
[xj,t+1 − (1− αj) st+1]

′ · rt+1

)
− 1 ≤ 0,

where the parameter Φ2 captures the intensity of the risk constraint. We view Φ2 as a

29Adrian and Shin (2014) provide a microfoundation for VaR constraints. Gabaix and Maggiori (2015) use a
similar constraint, in which a financier’s outside option is increasing in the size and variance of its balance
sheet.
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regulatory parameter that limits the amount of risk that an investor can take. Let ϱj denote

the Lagrange multiplier associated with the VaR constraint. It can be shown that the optimal

portfolio is given by

xj,t =
1

ϱjΦ2
Σ−1

t µt + (1− θj)wt. (A9)

The previous optimal portfolio is identical to that of Equation (A5), with the only

difference being that the risk-aversion parameter σ has been replaced by the product of the

Lagrange multiplier ϱj and the regulatory parameter Φ2. Following the same steps as before,

we can then derive an analogous pricing kernel to that of Equations (A7) and (A8). That is,

qit =
Et

(
Ri

t+1

)
rf

[
1− κVaRt

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t

) ]
, (A10)

where 1/κVaRt ≡
∑

j
Wj,t

λjΦ2 denotes the (weighted-average) intensity for which the VaR

constraint binds in the aggregate.
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Appendix B: Diversification Methodology

The diversification methodology produces a more even distribution of country weights within

the index relative to a market capitalization-weighted index. It does so by only partially

including the debt stock from countries with above-average debt levels. The methodology is

anchored on the average country face amount in the index (Index Country Average, ICA):

ICA =

∑
(Country Face Amount)

No. of Countries in the Index
.

Based on the ICA, the diversified face amount for any country in the index is derived

according to the following rules:

1. The country with the largest face amount (FAmax) will be capped at twice the average

country face amount in the index (ICA ∗ 2). This is the maximum threshold and sets

the scale to determine the diversified face amount of other countries in the index.

2. If a county’s face amount is below the ICA, the entire face amount will be eligible for

inclusion.

3. For countries with an face amount between the average (ICA) and twice the average

(ICA * 2), their face amount will be linearly interpolated.

The formula below summarizes the calculation of the diversified country face amount
(FA):

Diversified Country FA =


ICA ∗ 2 if Country FA = FAmax

ICA+ ICA
FAmax−ICA

∗ (Country FA − ICA) if Country FA > ICA

Country FA if Country FA ≤ ICA.

Subsequently, the same proportional decrease or increase applied to the country-level

face amount is also applied to each bond from that country. The diversified market value is

then computed by multiplying the diversified face amount by the bond price. The diversified

weight of each bond is determined by its share of the total diversified market capital in the

index. In addition, country weights will be capped at 10%. Any excess weight above this

cap will be redistributed pro rata to smaller countries below the cap, across all bonds from

countries not capped at 10%. Appendix Figure 6 compares the country-level diversified and

non-diversified face amount.
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Appendix Figures

Appendix Figure 1
EMBI Global country-level weights in December 2018
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Note: The figure illustrates the EMBI Global country-level diversified and non-diversified weights for December 2018.
Country-level weights are computed as the sum of the weights of all bonds from each country included in the index.
Sources: J.P. Morgan Markets, and authors’ calculations.
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Appendix Figure 2
Assets under management benchmarked to emerging economies bond indexes
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Note: The figure shows assets under management, in billions of U.S. dollars, benchmarked to emerging economies bond
indexes. Sources: J.P. Morgan Markets, and authors’ calculations.

Appendix Figure 3
Share of U.S. dollar-denominated emerging economies sovereign debt
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Note: The bars show the U.S. dollar-denominated sovereign debt in the EMBI Global index as a percentage of each
country’s general government debt securities issued in international markets. Averages are derived by calculating
this percentage for each country and year, and then averaging these values annually across countries. Each country’s
percentage is weighted by its debt amount outstanding included in the EMBI Global indexes. Sources: BIS, J.P. Morgan
Markets, and authors’ calculations.
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Appendix Figure 4
Share of U.S. dollar-denominated emerging economies sovereign debt

0 20 40 60 80 100
Percent

UKRAINE
TAJIKISTAN

PAPUA NEW GUINEA
GEORGIA
ETHIOPIA

CAMEROON
AZERBAIJAN

MOZAMBIQUE
KENYA

PARAGUAY
ECUADOR

NAMIBIA
PAKISTAN

SOUTH AFRICA
COSTA RICA

EL SALVADOR
SURINAME

ANGOLA
ARMENIA
PANAMA

OMAN
DOMINICAN REPUBLIC

GUATEMALA
TRINIDAD AND TOBAGO

SRI LANKA
COLOMBIA

HONDURAS
INDONESIA

TURKEY
IRAQ

BOLIVIA
NIGERIA
ZAMBIA

JAMAICA
PHILIPPINES

VIETNAM
SENEGAL

GABON
RUSSIA
BRAZIL

MEXICO
URUGUAY

ARGENTINA
MALAYSIA

EGYPT
GHANA

KAZAKHSTAN
JORDAN

BELARUS
MOROCCO
HUNGARY

MONGOLIA
LEBANON

SERBIA
PERU

COTE D'IVOIRE
CHILE

VENEZUELA
CROATIA

CHINA
TUNISIA

LITHUANIA
ROMANIA

SLOVAK REPUBLIC
POLAND

LATVIA

Note: The bars show the U.S. dollar-denominated sovereign debt in the EMBI Global index as a percentage of each
country’s general government debt securities issued in international markets. The averages are derived by calculating
this percentage for each country and year, and then averaging these values across the years 2016–2022. Sources: BIS,
J.P. Morgan Markets, and authors’ calculations.
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Appendix Figure 5
Estimated inverse demand elasticities for financial markets
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Note: EM IUSD Sovereign Bonds stands for emerging economies sovereign bonds issued internationally in U.S. dollars,
while EM LC Sovereign Bonds stands for those issued in local currency. The elasticities in Jiang et al. (2021a),
Krishnamurthy and Vissing-Jorgensen (2012), and Greenwood et al. (2015) are taken from the review Table 2 of Mian
et al. (2022) and are converted into an inverse demand price elasticity, assuming a duration of 7 for the average bond.
For Choi et al. (2022), we take the midpoint elasticity from the IV estimates, while for our paper, we compute the
midpoint in elasticity from Table 2. For the emerging economies local currency sovereign bonds, we take the estimated
number in Table 15, Panel D of Pandolfi and Williams (2019) for GBI bonds, which we adjust by the share of AUM
(23.6%) that behave de facto in a passive way. For that, we compute the asset share in EPFR tracking the GBI-EM
Global Diversified with an R2 exceeding that of ETFs tracking the same index. We determine the average R2 for ETFs
by using a weighted average (based on assets) of the R2 of the ETFs.
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Appendix Figure 6
Effect of the diversification methodology on the country face amount

0

50

100

D
iv

er
si

fie
d 

co
un

try
 fa

ce
 a

m
ou

nt
(B

illi
on

 U
.S

. d
ol

la
rs

)

0 ICA 50 100
Country face amount (Billion U.S. dollars)

Country face amount
45 degree line

Note: The figure illustrates the differences between the country-level face amount and their diversified versions, which
the EMBIGD uses to generate the diversified bond weights. The data used are from December 2018. Sources: J.P.
Morgan Markets, and authors’ calculations.
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Appendix Tables

Appendix Table 1
Log price and FIR: varying the share of passive funds

Dependent variable: log price

25% 30% 35% 40% 45%

FIR X Post 0.737 *** 0.596 *** 0.494 *** 0.418 *** 0.359 ***

(0.179) (0.168) (0.139) (0.118) (0.101)

Bond-month FE Yes Yes Yes Yes Yes

Observations 107,138 107,138 107,138 107,138 107,138

N. of bonds 738 738 738 738 738

N. of countries 68 68 68 68 68

N. of clusters 1,618 1,618 1,618 1,618 1,618

F (first stage) 511 2,261 2,201 2,141 2,082

Note: This table presents 2SLS estimates of log bond prices on the FIR measure
(defined in Equation (7)), instrumented by Z (defined in Equation (9)), around
rebalancing dates. The first- and second-stage equations are described in Equation
(10). The estimations use a symmetric five-trading-day window, with Post as an
indicator variable (equal to 1 for the five trading days after rebalancing, and 0
otherwise). Each different column indicates the share of passive funds used to
construct the FIR face amount measure. Month fixed effects are dummy variables
equal to 1 for each rebalancing month, and 0 otherwise. Standard errors are clustered
at the country-month level, and the sample period is 2016–2018. *, **, and *** denote
statistically significant at the 10%, 5%, and 1% level, respectively.
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Appendix Table 2
Log price and FIR: different windows

Panel A-Dependent variable: log price

[-2:+2] [-3:+3] [-4:+4] [-5:+5]

FIR X Post 0.200 *** 0.258 *** 0.280 *** 0.286 ***

(0.049) (0.066) (0.079) (0.090)

Post 0.000 ** 0.001 ** 0.001 ** 0.001 **

(0.000) (0.000) (0.000) (0.000)

Bond-month FE Yes Yes Yes Yes

Observations 42,853 64,281 85,707 107,138

N. of bonds 738 738 738 738

N. of countries 68 68 68 68

N. of clusters 1,618 1,618 1,618 1,618

F (first stage) 2,010 2,012 2,015 2,017

Panel B-Dependent variable: log price (excluding h=-1)

[-2:+2] [-3:+3] [-4:+4] [-5:+5]

FIR X Post 0.311 *** 0.337 *** 0.340 *** 0.330 ***

(0.060) (0.077) (0.088) (0.098)

Post 0.001 *** 0.001 *** 0.001 *** 0.001 **

(0.000) (0.000) (0.000) (0.000)

Bond-month FE Yes Yes Yes Yes

Observations 32,138 53,567 74,993 96,424

N. of bonds 738 738 738 738

N. of countries 68 68 68 68

N. of clusters 1,618 1,618 1,618 1,618

F (first stage) 2,018 2,019 2,021 2,023

Note: This table presents 2SLS estimates of bond log prices on the
FIR measure, with each column reporting estimates for different h-day
symmetric windows before and after a rebalancing event. The sample
period, the construction of h−day windows, and the 2SLS procedure are
identical to those described in Table 2. Standard errors are clustered at
the country-month level. *, **, and *** denote statistically significant
at the 10%, 5%, and 1% level, respectively.
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Appendix Table 3
Log price and FIR: dropping quasi-sovereign bonds

Dependent variable: log price

FIR -4.240 *** 0.703 1.311 *

(0.604) (0.846) (0.725)

FIR X Post 0.307 *** 0.307 *** 0.307 *** 0.307 *** 0.307 ***

(0.099) (0.099) (0.099) (0.099) (0.098)

Post 0.001 0.001 0.001 0.001 0.001

(0.000) (0.000) (0.000) (0.000) (0.000)

Bond FE Yes Yes Yes Yes No

Month FE No Yes No No No

Bond char.-month FE No No Yes Yes No

Country-month FE No No No Yes No

Bond-month FE No No No No Yes

Bond controls No No No Yes No

Observations 74,430 74,430 74,430 74,390 74,430

N. of Bonds 430 430 430 430 430

N. of countries 65 65 65 65 65

N. of clusters 1,553 1,553 1,553 1,552 1,553

F (first stage) 1,998 . . 3,922 4,019

Note: This table presents 2SLS estimates of log bond prices on the FIR measure (Equation
(7)), instrumented by Z (Equation (9)), around rebalancing dates. The first- and second-
stage equations are described in Equation (10). The estimations use a symmetric five-
trading-day window, with Post as an indicator variable (equal to 1 for the five trading
days after rebalancing, and 0 otherwise). Month fixed effects are dummy variables equal
to 1 for each rebalancing month (0 otherwise), and bond characteristics are fixed effects
that interact maturity and ratings fixed effects. Maturity fixed effects are constructed
by dividing a bond’s time to maturity into four different categories: short (less than 5
years), medium (5–10 years), long (10–20 years), and very long (20+ years). Ratings from
each bond are from Moody’s. Bond controls indicate whether the estimation includes
the log face amount and log stripped spread of the bond. Standard errors are clustered
at the country-month level, and the sample period is 2016–2018. *, **, and *** denote
statistically significant at the 10%, 5%, and 1% level, respectively.
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Appendix Table 4
Log price and FIR: spread heterogeneity (3 groups)

Dependent variable: log price

High spread Median spread Low spread

FIR 1.582 0.130 0.386

(1.619) (0.461) (0.332)

FIR X Post 0.457 *** 0.458 *** 0.313 ** 0.312 ** 0.072 0.072

(0.151) (0.150) (0.140) (0.139) (0.089) (0.088)

Post 0.001 ** 0.001 ** 0.001 ** 0.001 ** -0.000 -0.000

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Bond FE Yes No Yes No Yes No

Month FE Yes No Yes No Yes No

Bond-month FE No Yes No Yes No Yes

Observations 35,682 35,682 35,721 35,721 35,735 35,735

N. of bonds 381 381 453 453 375 375

N. of countries 58 58 51 51 43 43

N. of clusters 1,001 1,001 861 861 647 647

F (first stage) 560 2,953 482 865 . 1,022

Note: This table presents 2SLS estimates of log bond prices on the FIR measure
(Equation (7)), instrumented by Z (Equation (9)), around rebalancing dates. The
first- and second-stage equations are described in Equation (10). The estimations use
a symmetric five-trading-day window, with Post as an indicator variable (equal to 1
for the five trading days after rebalancing, and 0 otherwise). The sample is divided
into bonds with high spreads (Columns 1 and 2), median spreads (Columns 3 and
4), and low spread (Columns 5 and 6), with spreads divided according to their 33.3
and 66.6 percentile into the three different buckets. Month fixed effects are dummy
variables equal to 1 for each rebalancing month, and 0 otherwise. Standard errors
are clustered at the country-month level, and the sample period is 2016–2018. *, **,
and *** denote statistically significant at the 10%, 5%, and 1% level, respectively.
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Appendix Table 5
Log CDS and FIR

Dependent variable: log CDS

FIR 6.643 ** -7.013

(2.889) (5.453)

FIR X Post -0.796 * -0.796 * -0.796 *

(0.448) (0.449) (0.448)

Post -0.006 *** -0.006 *** -0.006 ***

(0.002) (0.002) (0.002)

Country FE Yes Yes No

Month FE No Yes No

Country-month FE No No Yes

Observations 10,160 10,160 10,160

N. of Countries 44 44 44

N. of Clusters 1,016 1,016 1,016

F (first stage) 1,398 . 2,797

Note: This table shows 2SLS estimates of five-year log CDS of
countries on the FIR measure (Equation (7)), instrumented
by Z (Equation (9)), around rebalancing dates. The first-
and second-stage equations are described in Equation (10).
The estimations use a symmetric five-trading-day window,
with Post as an indicator variable (equal to 1 for the five
trading days after rebalancing, and 0 otherwise). Month fixed
effects are dummy variables equal to 1 for each rebalancing
month, and 0 otherwise. Standard errors are clustered at the
country-month level, and the sample period is 2016–2018. *,
**, and *** denote statistically significant at the 10%, 5%,
and 1% level, respectively.
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