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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10224

Atmospheric methane is a potent greenhouse gas that 
has accounted for 23 percent of radiative forcing in the 
lower atmosphere since 1750. Since methane has a much 
shorter atmospheric duration than carbon dioxide and 
other greenhouse gases, it provides a critical opportunity 
for near-term atmospheric greenhouse gas reduction. Thus, 
122 countries have joined the recently launched Global 
Methane Pledge to reduce methane emissions at least 30 
percent from 2020 levels by 2030. Unfortunately, the 
Pledge confronts a serious information problem at the 
outset: the near-total absence of directly measured data 
for problem diagnosis, program design, and performance 
assessment. At present, priority areas for emissions reduc-
tion are identified with spatially formatted “bottom-up” 
emissions inventories, such as the Emissions Database for 
Global Atmospheric Research, which combines sectoral 
activity data with broadly calibrated emissions factors from 

engineering studies. This paper addresses the information 
problem by introducing a new World Bank database of 
monthly atmospheric methane concentrations, calculated 
for a high-resolution spatial grid from data provided by the 
European Space Agency’s Sentinel-5P satellite platform. It 
illustrates the potential utility of the database with a global 
study of methane emissions from irrigated rice produc-
tion, which accounts for about 10 percent of agricultural 
methane emissions. A comparative analysis suggests that the 
Sentinel-5P data supplement the Emissions Database for 
Global Atmospheric Research data with more fine-grained 
spatial information, which may support local programs to 
track, verify, and reward adoption of methane-reducing rice 
production techniques. If this approach proves valuable for 
irrigated rice production, it seems likely to work for other 
methane sources as well.

This paper is a product of the Development Research Group, Development Economics. It is part of a larger effort by the 
World Bank to provide open access to its research and make a contribution to development policy discussions around the 
world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may 
be contacted at sdasgupta@worldbank.org.  
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1.  Introduction 

The World Meteorological Organization forecasts that the current greenhouse gas (GHG) 
emissions trend will increase global temperature 3-5 degrees C by 2100 (Reuters 2018).  This 
would far overshoot the 2-degree limit pledged by the 2015 Paris Climate Accords (COP21) and 
might have a catastrophic impact (Steffen et al. 2018; World Bank 2012).  In response, several 
industrial nations pledged very steep emissions reductions at the Leaders’ Summit on Climate in 
April 2021.  The response deepened at COP26 in Glasgow with the introduction of the Global 
Methane Pledge, whose 122 current participating nations have joined a collective effort to 
reduce global methane emissions at least 30 percent from 2020 levels by 2030.  The Pledge 
highlights the particular importance of methane reduction: “Methane is a powerful but short-
lived climate pollutant that accounts for about half of the net rise in global average temperature 
since the pre-industrial era.  Rapidly reducing methane emissions from energy, agriculture and 
waste … is regarded as the single most effective strategy to keep the goal of limiting warming to 
1.5˚C within reach while yielding co-benefits including improving public health and agricultural 
productivity.”1   
 
Unfortunately, pledges to reduce methane and other GHGs confront a striking information 
problem at the outset:  National reporting has relied almost entirely on voluntary disclosure of 
emissions calculated by “bottom-up” methods that apply engineering parameters to estimated 
activity levels in emissions-generating sectors.  Recently, advances in satellite-based 
measurements have shown the potential to supplement voluntary national reporting with 
directly-observed, transparent measures of GHG emissions. High-resolution observations of 
atmospheric GHG concentrations are now available from several platforms, including NASA’s 
OCO-2 and OCO-3 instruments, the European Space Agency’s METOP-A and TROPOMI (Sentinel-
5P) platforms, China’s TANSAT and the Japan Space Exploration Agency’s GOSAT and GOSAT-2.  
Detailed technical assessments of measures from these platforms have verified that they provide 
useful and comprehensive information for global carbon emissions analysis (Sha et al. 2021; Weir 
et al. 2021; Nassar et al. 2021; Pan et al. 2021; Wu et al. 2020; Hakkarainen et al. 2019; Labzovskii 
et al. 2019).   
 
This paper focuses on satellite measurement to support implementation of the Global Methane 
Pledge.  The first requirement is an easily-updated template for tracking atmospheric CH4 
(methane) concentrations at local and regional scales.  Using observations from the Sentinel-5P 
(S5P) platform of the European Space Agency (ESA), we develop the template from data filtering 
techniques pioneered by Hakkarainen et al. (2019) and applied to satellite-based CO2 measures 
by Dasgupta, Lall and Wheeler (2022a,b).  

The second requirement is support for prioritizing actions to reduce methane emissions from 
energy, agricultural and waste subsectors whose spatial distributions are highly non-uniform 
across and within countries.  At present, priority-setting is guided by spatially-formatted 
“bottom-up” estimates from national or global emissions inventories such as the Emissions 
Database for Global Atmospheric Research (EDGAR). These inventories combine sectoral activity 

 
1 https://www.globalmethanepledge.org/#about 
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data with broadly-calibrated emissions factors (Crippa et al. 2020; Solazzo et al. 2021).  Policy 
analysts can use spatial inventory data to identify emissions-intensive areas, trace the emissions 
to specific subsectors, and perform benefit-cost assessments of alternative technologies for 
emissions reduction.   
 
Satellite-based methane measurements have the potential to inform priority-setting by 
supplementing “bottom-up” emissions estimates with direct observations. The value added by 
the satellite-based approach depends on the comparative accuracy of the estimated sectoral 
outputs and emissions intensities used by existing inventories. This paper initiates a round of 
empirical assessments with a comparative study for irrigated rice production.  It combines 
atmospheric CH4 concentrations from our Sentinel-5P database with georeferenced data on 
paddy areas, production yield and planting seasons from IFPRI (2019) and RiceAtlas (Laborte et 
al. 2017).  The results are compared with agricultural CH4 emissions estimates from the EDGAR 
database.  
 
The remainder of the paper is organized as follows.  Section 2 describes our global methane 
database, and Section 3 introduces the application to irrigated rice production.  Section 4 
describes the computation of CH4 concentrations over irrigated rice production areas.  Section 5 
incorporates IFPRI and RiceAtlas data to study the relationship between the scale of irrigated rice 
fields and local methane concentrations, and to identify outlier areas where methane 
concentrations deviate significantly from scale-based expectations. Section 6 incorporates 
EDGAR emissions estimates and analyzes their relationship to the scale of irrigated fields.  Section 
7 assesses the “value added” of S5P by identifying outlier areas where S5P methane 
concentrations deviate significantly from expectations based on field scale and EDGAR estimates.  
Section 8 integrates the S5P concentration data and IFPRI production data to develop an index 
of local methane intensity (methane emissions per ton of rice produced). Section 9 summarizes 
and concludes the paper.   

 
2.  The Atmospheric Concentration of Methane  
 

2.1 Global Warming Potential 
 
The concentration2  of atmospheric methane (CH4) was 1,857 ppb in 2018, about 2.6 times 
greater than its estimated level in 1750 (Saunois et al. 2020).  The primary sources of the increase 
are emissions from agriculture, fossil fuel production and use, and waste disposal (Ciais et al. 
2013). Atmospheric CH4 is a potent greenhouse gas, with a global warming potential 28 times 
the potential of CO23  (Myhre et al. 2013). Although current anthropogenic CH4 emissions are 
only 3% of anthropogenic CO2 emissions by volume, they are accountable for 23% of the radiative 
forcing in the lower atmosphere since 1750 (Etminan et al. 2016).  CH4’s average 9-year duration 
in the atmosphere (Prather et al. 2012) is dwarfed by the multi-century duration of CO2.  By 
implication, rapid CH4 emissions reduction should have high priority because it can reduce 

 
2 Technically, the surface dry air mole fraction. 
3 This ratio is calculated for a 100-year time horizon and without considering climate feedbacks. 
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radiative forcing significantly within a decade (Shindell et al. 2012).  To assist the stakeholder 
community, we have worked with the World Bank’s Development Data Hub to publish an online 
database that makes georeferenced CH4 atmospheric concentration data more accessible to 
non-specialists. 
 

2.2 Satellite Measurement Components 

 
We have constructed the atmospheric CH4 concentration database from observations by the 
ESA’s Sentinel-5P platform that typically number over 200,000 per day. We locate each 
observation in the 25-km global grid developed for CO2 analysis by Dasgupta, Lall and Wheeler 
(2022a,b).  The dominant component in each observation is the global stock of atmospheric CH4 
molecules that have accumulated during the past decade. The second component is seasonal, 
determined by natural processes over the annual cycle.  The third component is geographic:  
Emitted CH4 molecules tend to remain within their latitude bands of origin for significant periods 
before full global mixing.  
 
The fourth observation component is determined by local anthropogenic CH4 emissions, which 
remain near their point of origin long enough to be distinguished from the three “background” 
components.  We term this the “concentration anomaly” since it measures the local deviation 
from the global background CH4 concentration.  As previously noted, its primary sources are 
emissions from agriculture, fossil fuel production and use, and waste disposal. 
 

2.3 Data Collection and Processing 
 

The ESA’s Sentinel-5P (S5P) operates in a Sun-synchronous near-polar orbit with an equatorial 
crossing at 13:30 local solar time.  It completes 14 orbits of the Earth per day, with a site revisit 
time of one day and a current spatial resolution of 5.5 x 3.5 km.  We use the S5P L2 Offline 
georeferenced measures of XCH4 (the column average dry air mixing ratio of methane 4 ), 
corrected for bias associated with XCH4 dependence on surface albedo.5 
 
Recent global research by Sha et al. (2021) has shown that S5P CH4 measures correspond very 
closely to independent measures taken at ground stations maintained by TCCON (Total Carbon 
Column Observing Network).6  Sentinel-5P’s bias-corrected XCH4 data exhibit a difference of 
−0.26±0.56 % when compared with the corresponding TCCON data.  Per the ESA’s 
recommendation, we use only pixels with quality values greater than 0.5. The data have been 

 
4 the total atmospheric column between the surface and the top of the atmosphere normalized to the corresponding dry 
air column. 
5 For more technical details, see the documentation at https://sentinel.esa.int/documents/247904/3541451/Sentinel-
5P-Methane-Product-Readme-File 
6 Current TCCON sites are located in the United States, China, Canada, Germany, Poland, France, Japan, Australia, New 
Zealand, the Republic of Korea, Réunion, and Ascension Island. 
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downloaded from the ESA’s AWS repository managed by MEEO (Meteorological Environmental 
Earth Observation).7,8 
 
We filter the bias-corrected XCH4 data for local concentration anomalies, or differences between 
observed and background CH4 at each point. We calculate background CH4 using the 
methodology of Hakkarainen et al. (2019), which isolates local anomalies from the three 
background components described above.  We compute the daily median XCH4 for each 10-
degree latitude band and linearly interpolate the result to each S5P observation with 1-degree 
resolution.  Following Hakkarainen, we use the median as the representative value because it is 
not skewed by extreme observations. We subtract this background value to compute the local 
anomaly for each observation.  Then we compute monthly mean values of concentration 
anomalies for each 25-km grid cell in our database.  
 
Figures 1 and 2 display mean annual CH4 concentration anomalies for the terrestrial globe in 
2020 and 2021.  Country outline maps are superposed to aid interpretation.  Although there are 
some evident year-to-year differences, several common patterns emerge.  The first is the effect 
of pixel quality on coverage density.  In both years, exclusion of lower-quality pixels leads to 
coverage gaps in western China, parts of Siberia, Indonesia, Papua New Guinea, northwestern 
South America and western Canada.  The second common pattern is the widespread incidence 
of large positive anomalies in continental south, southeast and east Asia; the Persian Gulf region 
and the North African littoral; South Sudan and southern Nigeria; southern and western Brazil 
(with an extension into Bolivia); south-central and north-central United States; and numerous 
regions in the Arctic. In counterpoint, widespread negative anomalies are evident in the western 
United States and Mexico; southwest China; and a region that includes Mongolia and areas to its 
north and northeast in China and the Russian Federation. 
 

 
7 https://www.meeo.it/ 
8 The data are available in NetCDF format at the ESA’s AWS repository, https://meeo-
s5p.s3.amazonaws.com/OFFL/L2__CH4, with filenames catalogued at 
https://scihub.copernicus.eu/catalogueview/S5P/ 

https://meeo-s5p.s3.amazonaws.com/OFFL/L2__CH4
https://meeo-s5p.s3.amazonaws.com/OFFL/L2__CH4


 

 
 

Figure 1:  Local methane concentration anomalies, 2020 
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Figure 2:  Local methane concentration anomalies, 2021 

  

 



 

 
 

3.  An Application for Irrigated Rice Production 
 
The CH4 database has been designed to complement the CO2 database developed in Dasgupta, 
Lall and Wheeler (2022 a,b).  Both are intended to assist global stakeholders with readily-usable, 
internationally-comparable and objectively-verifiable information about greenhouse gas 
emissions. We believe that 25-km resolution strikes a reasonable balance between robust 
estimation of cell means, given the available data, and the resolution required for analysis at 
subregional scales.   
 
We illustrate with a global analysis of emissions from irrigated production of rice, the staple crop 
for the majority of the world’s population (Adhya et al. 2014).  In 2013, rice was harvested on 
165 million hectares of land in 100 countries, with 90 percent of global production in Asia.  
Lowland irrigated fields occupy about 80 million hectares and produce 75 percent of the global 
crop (FAO 2014; Fischer et al. 2014).   
 
Figures 3 and 4 display the global distribution of irrigated rice production by field extent and yield, 
respectively, estimated by a team affiliated with the International Food Policy Research Institute 
(IFPRI) (Yu et al. 2020).  Aside from the vast irrigated areas in South, Southeast and East Asia, 
Figure 3 reveals smaller areas under particularly intense cultivation in the United States 
(California and the Mississippi River Valley), southern Brazil and Uruguay, northern Italy, The 
Gambia, Mali, the Nile Delta and Madagascar.  Figure 4 displays a yield pattern that is somewhat 
different, with evident high-yield areas in the United States, southern Brazil and Uruguay, 
southern Spain, northern Italy, the Nile Delta, central and northeastern China, and eastern 
Australia.  South and Southeast Asia offer the most striking contrast, with widespread cultivation 
intensity in Figure 3 but relatively low yields in Figure 4. 
 
The georeferenced IFPRI data have higher spatial resolution (0.083 degrees) than our spatial grid 
for CH4 anomalies (0.25 degrees).  To incorporate them, we map each IFPRI pixel to a grid cell.  
Then we add IFPRI pixel information to obtain total production and irrigated rice land in each grid 
cell, and divide the former by the latter to calculate the yield. 
 
In this exercise, we use the CH4/IFPRI data to address four related questions about the irrigated 
rice production areas displayed in Figures 3 and 4.  First, do CH4 concentration anomalies from 
the database align with the scale of irrigated rice production areas?  Second, what is the 
alignment between the same area scale and EDGAR’s “bottom-up” emissions estimates that 
combine detailed sectoral activity data with regionally-tailored emission factors?  Third, what is 
the “value added” by the S5P CH4 data in identifying methane emissions from irrigated rice 
production that are not identified by area scale and EDGAR data in combination?  Finally, what 
can the S5P data tell us about the global distribution of CH4 intensities, or methane emissions 
per unit of irrigated rice production?  The following sections address these questions in turn. 
 
 
  



 

 
 

Figure 3:  Irrigated rice production, area harvested (hectares) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Source: IFPRI (2019) 



 

 
 

Figure 4:  Irrigated rice production, yield (kg/hectare) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Source: IFPRI (2019) 



 

 
 

4.  CH4 Concentration Anomalies over Irrigated Rice Production Areas 
 
The current version of our database provides monthly mean CH4 concentration anomalies in 
266,884 terrestrial grid cells at 25 km resolution for 2020, 2021, and the first half of 2022.  The 
means are calculated from daily observations that are pre-filtered to remove global background 
concentrations, trends, and latitudinal clustering.  We overlay the IFPRI shapefile on the global 
grid to extract cells with irrigated rice production.  For this exercise, CH4 observations in each cell 
are limited to the months in which fields are actually flooded.  We identify those months using 
RiceAtlas, a spatial database of global rice calendars developed by Laborte et al. (2017).  RiceAtlas 
distinguishes up to three rice cultivation seasons and identifies the first flooding and harvest days 
for each season by day-of-year.   
 
For each pixel in RiceAtlas, we use this information to identify months that lie fully within periods 
lasting from first field flooding to ten days before harvest (to account for pre-harvest drainage 
(IRRI, 2022)).  Then we intersect the RiceAtlas shapefile with our SP5/IFPRI spatial grid and assign 
each grid cell the cultivation calendar with the greatest representation in that cell.9  For grid cells 
with IFPRI irrigated rice areas but no RiceAtlas information, we assign the cultivation calendar in 
the nearest RiceAtlas cell.  We compute mean grid cell CH4 anomalies for all within-calendar 
monthly observations during the period 2020-2022.   
 

5.  Sources of Variation in Concentration Anomalies 
 

5.1 The Effect of Field Scale  
 
We posit a monotone increasing relationship between CH4 anomalies and the scale of IFPRI 
flooded fields in a grid cell and perform a linear regression using percentile values.10  To test for 
robustness, we use alternative estimators that incorporate different assumptions about the 
structure of the stochastic error term (εit) in the model. These techniques produce the same 
point estimates for model parameters, but their differing estimates of standard errors (and the 
accompanying t-statistics) may lead to very different inferences about the statistical significance 
of model variables. Table 1 reports our results; we replicate the point estimates in columns (1)–
(3) to aid interpretation of the t-statistics. We include standard linear regression results along 
with results for robust standard errors (SE), and standard errors adjusted for 1,149 clusters 
defined by level-1 administrative units (states, provinces, etc.) in the 99 countries in the 
regression database. 
 
The results in Table 1 are all highly robust, suggesting that an increase of one percentile in the 

extent of IFPRI-identified irrigated rice fields is associated with a percentile increase of 0.5 in the 

 
9 Most grid cells have only one cultivation calendar; this assignment rule applies to grid cells that straddle two or more 
RiceAtlas calendars. 
10 Percentile value regressions are robust to alternative specifications of functional forms, imposing only the assumption 
that dependent and independent variables have a monotone increasing relationship. Rank regressions also have these 
characteristics. 
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local CH4 anomaly.  Regression-predicted values and residuals are presented in Figures 5 and 6, 

respectively.  Figure 5 displays the expected percentile values of local CH4 concentration 

anomalies, given the extent of irrigated rice fields, during the months of field flooding. In Asia, 

the areas with highest expected values are in central and eastern China, western Korea (North 

and South), western Thailand, northern and southern Vietnam, northern and southern 

Philippines, Java (Indonesia), southern Myanmar, Sri Lanka, Bangladesh, northern and eastern 

India and central and southern Pakistan.  Other regions with particularly-high expected local CH4 

anomalies include the Iranian Caspian Sea littoral, the Russian Sea of Azov littoral, the Nile Delta, 

and California and the Mississippi River Valley in the United States.  

5.2 The Role of Agricultural Techniques  

After controlling for the scale of flooded fields, we would also expect concentration anomalies to 
vary with the methane intensity of production techniques.  Rice production in flooded fields 
produces methane because oxygen does not penetrate the soil when it is blocked by water.  This 
promotes the growth of methane-producing bacteria.  A variety of techniques can shorten the 
period of water blockage, including a single field drainage in the mid-season; alternate wetting 
and drying (AWD), dry seeding instead of transplanting rice into flooded fields, and “aerobic” 
systems that grow rice in well-drained soil (Adhya et al. 2014). 
 
While perfect water management under ideal water supply conditions could theoretically reduce 
water blockage and methane emissions by 90%, actual adoption of methane-reducing techniques 
is strongly affected by the reliability of control over irrigation water, as well as potential variations 
in water coverage related to field size and degree of leveling (Adhya et al. 2014).  Variation in 
these factors within and across regions can be expected to generate substantial differences in 
water blockage and methane intensity per hectare.  Research on the effects of local production 
techniques remains limited to some areas (e.g. Nguyen et al. 2022; Devkota et al. 2019; Stuart et 
al. 2018).  For rice production areas more generally, we would expect S5P CH4 observations to 
capture part of the interarea variation produced by different techniques.  

5.3 Identifying Outlier Areas from Regression Residuals 

Figure 6 displays residuals from the regression results reported in Table 1.  They have potential 

interest for policy analysis because they identify areas where variations in irrigation water use 

and field conditions may be associated with unusually high or low CH4 anomalies, after 

controlling for field scale.  In Asia the areas with much higher-than-expected values are in 

northeastern China and Western India, while areas with much lower-than-expected values are in 

western China, southwestern China, Hainan (China), central Vietnam, southern Thailand, 

southern Philippines, Sri Lanka and the entirety of Indonesia. Elsewhere, areas with higher-than-

expected values include northern Italy, southern Nigeria, southeastern Brazil, central Bolivia and 

northern Colombia.  Regions with notably lower-than-expected values include southeastern 

Australia, central Islamic Republic of Iran, the Nile Delta, northern Madagascar, southern Mali 

and eastern Guinea, northern Senegal, western Spain, Uruguay, western República Bolivariana 

de Venezuela, Costa Rica, Cuba, the Dominican Republic, western Mexico and California. 
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Table 1:  Local CH4 concentration anomalies (S5P) vs. irrigated rice field extents (IFPRI) 

               
               Dependent variable:  CH4 Anomaly Percentile 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 OLS Robust Cluster 
 
Field Extent 0.507*** 0.507*** 0.507*** 

Percentile (82.75) (84.93) (13.09) 

    

Const. 24.92*** 24.92*** 24.92*** 

 (69.94) (70.25) (11.01) 

    

R2 0.2574 0.2574 0.2574 

Obs. 19,755 19,755 19,755 
 
t statistics in parentheses: 
* p<0.05  ** p<0.01  *** p<0.001 



 

 
 

Figure 5:  Local CH4 anomalies: Regression-predicted percentiles 
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Figure 6:  Local CH4 anomalies: Regression residuals 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

6.  EDGAR Emissions versus The IFPRI Field Scale  
 
For comparison, we introduce the latest (2018) agricultural methane emissions estimates11 from 
the Emissions Database for Global Atmospheric Research (EDGAR (2022)), the global standard for 
“bottom-up” emissions estimation that combines detailed sectoral activity data with emissions 
factors that are adjusted for broad regional differences that may incorporate differences in water 
supply conditions and field configurations.   
 
Since sectoral activity data drive the EDGAR emissions estimates, we could expect them to exhibit 
a relatively close relationship.  Table 2 presents OLS, Robust and Cluster results for a percentile 
regression model that relates EDGAR emissions to the IFPRI estimates of irrigated rice field extent.  
The fit is excellent; the regression R2 is 0.5856, as compared with 0.2574 for the SP5 CH4 
anomalies in Table 1. 
 
Table 2:  EDGAR CH4 emissions estimates vs. irrigated rice field scale (IFPRI) 
               
               Dependent variable:  EDGAR Emissions Percentile 
 

 

 

 

 

 

  

 

 

 

Although the regression R2 is relatively high, substantial unexplained variance remains because 

EDGAR’s regional adjustments prevent a near-perfect global fit between the EDGAR estimates 

and field scale alone.  The EDGAR regional adjustments are intended to capture the broad effects 

of typical regional differences in water use and field configuration that affect methane emissions, 

given field scale.  For the current exercise, a critical question follows:  Do the SP5 CH4 measures 

 
11 Available online at https://cidportal.jrc.ec.europa.eu/ftp/jrc-
opendata/EDGAR/datasets/v60_GHG/N2O/AGS/v6.0_N2O_2018_AGS.0.1x0.1.zip 

 

 OLS Robust Cluster 
 
Field Extent 0.771*** 0.771*** 0.771*** 

Percentile (167.06) (182.20) (31.57) 

    

Const. 11.46*** 11.46*** 11.46*** 

 (42.70) (43.17) (7.84) 

    

R2 0.5856 0.5856 0.5856 

Obs. 19,755 19,755 19,755 
 
t statistics in parentheses: 
* p<0.05  ** p<0.01  *** p<0.001 
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identify spatial variations in methane emissions that are not already captured by the IFPRI and 

EDGAR data?  

 
7.  S5P CH4 Value Added 

 
We assess the “value added” of SP5 CH4 measures in a two-step exercise.  First, we regress those 
measures on IFPRI field extents and EDGAR CH4 emissions.  Table 3 shows that both variables 
contribute significantly to explaining SP5 CH4 variations. The regression residuals are the “value 
added” of S5P – the component of spatial variation in methane emissions not explained by field 
extents or EDGAR emissions.12   
 
Table 3:  Determinants of local SP5 CH4 anomalies 
               
               Dependent variable:  CH4 Anomaly Percentile 
 

 

 

 

 

 

  

 

 

 

 
 
Figure 7 displays the global distribution of the value-added component.  Large positive outliers 
(colored light and dark red) denote areas where S5P CH4 anomalies are much higher than would 
be predicted with knowledge of field extents and EDGAR emissions alone.  The converse is true 
for large negative outliers.   
 

 
12  It may also be useful to interpret this as a three-step process.  The first step performs separate regressions 
of S5P CH4 anomalies and EDGAR emissions on IFPRI field extents.  The second step computes residuals 
for both regressions.  The third step regresses the S5P residuals on the EDGAR residuals and computes the 
residuals from that exercise.  These residuals incorporate the S5P CH4 anomalies that are not explained by 
EDGAR residuals, after both variables have been purged of field scale effects. 

 OLS Robust Cluster 

Field Extent 0.199*** 0.199*** 0.199*** 

Percentile (21.92) (21.24) (4.96) 

    

EDGAR Emissions 0.400*** 0.400*** 0.400*** 

Percentile (44.36) (44.94) (10.74) 

    

Const. 20.34*** 20.34*** 20.34*** 

 (57.28) (58.31) (8.61) 

    

R2 0.3247 0.3247 0.3247 

Obs. 19,755 19,755 19,755 
 
t statistics in parentheses: 
* p<0.05  ** p<0.01  *** p<0.001 
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Among positive outliers, the most easily-identifiable clusters are in west-central India and 
northeastern China.  Smaller clusters are visible in western Zambia, southern Nigeria, 
southeastern Brazil, central Bolivia and northern Colombia.  Negative outlier clusters are visible 
in southeastern Australia, Indonesia, southern Philippines, southern Thailand, central Vietnam, 
southwestern and far western China, Sri Lanka, central Islamic Republic of Iran, the Nile Delta, 
northeastern Tanzania, northern Madagascar, central and southern Mali, western Spain, 
Uruguay, Cuba, the Dominican Republic, western República Bolivariana de Venezuela, the 
western coastal areas of Central America and Mexico, and California.  
 
Table 4 provides a summary view, aggregated by states and provinces for administrative units 
that have more than 10 observations (GADM 2022).  The table displays top-20 outliers in 
descending order.  Among the countries with positive outliers, India is represented by 6 areas; 
five countries have 2 areas (China, Myanmar, Nigeria, Brazil, Bolivia); and four countries have 1 
(Azerbaijan, Pakistan, Paraguay, Italy).  Among countries with negative outliers, Indonesia has 7 
areas; four countries have 2 areas (Mali, Portugal, Cuba, Uruguay); and five countries have 1 
(China, Japan, the Arab Republic of Egypt, Guinea, the República Bolivariana de Venezuela).  In 
summary, India and Indonesia dominate the extreme outlier countries at opposite ends of the 
outlier distribution and, with the exception of China, countries have states/provinces clustered 
by positive or negative status.  Of course, this is not true for the entire set of states/provinces, 
which number in the hundreds.  Full results are available from the authors on request. 
 
 
  



 

 
 

Figure 7:  Value-added component of S5P CH4 anomalies 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



 

 
 

Table  4:  Local S5P methane anomalies:  Outlier states/provinces  

  
ISO3 Country State/Province 

Mean 
Residual 

BOL Bolivia Cochabamba 45.8 

IND India Rajasthan 42.4 

BRA Brazil Rio de Janeiro 41.8 

CHN China Shandong 38.0 

BRA Brazil Espírito Santo 35.6 

IND India Madhya Pradesh 34.3 

CHN China Henan 32.6 

MMR Myanmar Kachin 31.5 

NGA Nigeria Cross River 29.4 

IND India Uttar Pradesh 27.1 

ITA Italy Veneto 25.6 

PAK Pakistan N.W.F.P. 25.4 

NGA Nigeria Edo 25.3 

IND India Gujarat 25.3 

PRY Paraguay Misiones 24.7 

AZE Azerbaijan Aran 24.5 

IND India Bihar 24.3 

MMR Myanmar Shan 23.3 

IND India Maharashtra 23.3 

BOL Bolivia Chuquisaca 23.0 

    

PRT Portugal Santarém -33.5 

URY Uruguay Lavalleja -33.8 

MLI Mali Timbuktu -33.9 

JPN Japan Fukushima -34.0 

GIN Guinea Kankan -34.8 

CUB Cuba Camagüey -35.6 

PRT Portugal Portalegre -35.7 

CUB Cuba Sancti Spíritus -35.7 

URY Uruguay Artigas -36.7 

IDN Indonesia Sulawesi Selatan -37.9 

EGY 
Egypt, Arab 
Rep. Al Buhayrah -38.0 

CHN China Yunnan -38.2 

VEN Venezuela, RB Portuguesa -38.3 

IDN Indonesia Riau -39.1 

IDN Indonesia Jawa Tengah -41.1 

IDN Indonesia Jawa Timur -41.9 

IDN Indonesia Sumatera Utara -42.4 

MLI Mali Mopti -42.9 

IDN Indonesia Sumatera Selatan -48.5 

IDN Indonesia Bengkulu -51.7 
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8.  The Spatial Distribution of S5P CH4 Intensities for Irrigated Rice Production 
 
Local S5P CH4 anomalies also provide new information about the spatial distribution of CH4 
intensity for irrigated rice production, which we index as the difference between the CH4 
percentile and the rice production percentile from IFPRI (2019).  This can be interpreted as an 
index of the methane produced per unit of food value.  Figure 8 displays the spatial distribution, 
which features an unbalanced incidence of positive and negative outlier clusters (with high and 
low methane intensities, respectively).  Large clusters of the former are concentrated almost 
entirely in northern Pakistan and northern India.  On the other hand, significant clusters of the 
latter are identifiable in southeastern Australia, southwestern and far western China, the Nile 
Delta and river valley, northeast Tanzania, northern Côte d’Ivoire, southwestern Spain, Uruguay, 
western coastal Peru, western Honduras and California.   
 
Table 5 provides a summary view for states/provinces that have more than 10 observations.  The 
table displays top-20 positive and negative outliers in descending order.  Among the countries 
with positive outliers, Brazil and Nigeria are represented by 4 areas; three countries by 2 areas 
(India, Myanmar, Bolivia); and six countries by 1 (China, Cambodia, Pakistan, the Islamic Republic 
of Iran, Zambia, Paraguay).  Among countries with negative outliers, Indonesia leads with 7 areas, 
followed by Mali (4), Uruguay (3), Thailand (2) and four countries with 1 area (China, Egypt, 
Senegal and the República Bolivariana de Venezuela).  In summary, Brazil and Nigeria dominate 
the positive outlier countries and Indonesia, Mali and Uruguay dominate among negative outliers.  
Full results are available from the authors on request.  
 
  



 

 
 

Figure 8:  S5P CH4 intensities of rice production 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



 

 
 

Table 5:  S5P CH4 intensity indices:  Outlier states/provinces  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISO3 Country State/Province Mean Index 

BOL Bolivia Cochabamba 72.2 

NGA Nigeria Cross River 58.8 

BRA Brazil Espírito Santo 53.1 

MMR Myanmar Tanintharyi 52.2 

NGA Nigeria Edo 51.5 

BRA Brazil Rio de Janeiro 50.8 

CHN China Shandong 46.0 

IND India Rajasthan 43.9 

BOL Bolivia Chuquisaca 43.8 

MMR Myanmar Kachin 42.7 

IND India Madhya Pradesh 41.4 

BRA Brazil Goiás 41.2 

NGA Nigeria Benue 40.9 

KHM Cambodia Preah Vihéar 39.1 

IRN Iran, Islamic Rep. Yazd 38.9 

PRY Paraguay San Pedro 38.6 

PAK Pakistan N.W.F.P. 38.2 

ZMB Zambia Lusaka 38.1 

NGA Nigeria Nassarawa 37.6 

BRA Brazil Mato Grosso 37.0 

URY Uruguay Lavalleja -39.8 

URY Uruguay Cerro Largo -39.9 

MLI Mali Ségou -42.3 

THA Thailand Lampang -43.4 

CHN China Yunnan -43.7 

IDN Indonesia Sumatera Utara -44.0 

URY Uruguay Artigas -44.1 

SEN Senegal Saint-Louis -46.5 

MLI Mali Mopti -46.6 

VEN Venezuela, RB Portuguesa -47.2 

IDN Indonesia Sulawesi Selatan -47.9 

MLI Mali Koulikoro -48.4 

IDN Indonesia Jawa Barat -51.0 

IDN Indonesia Bengkulu -52.9 

THA Thailand Chiang Mai -53.0 

IDN Indonesia Sumatera Selatan -53.1 

EGY Egypt, Arab Rep. Al Buhayrah -55.5 

MLI Mali Timbuktu -60.3 

IDN Indonesia Jawa Tengah -60.5 

IDN Indonesia Jawa Timur -62.5 
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9.  Summary and Conclusions 

The Global Methane Pledge joins 122 countries in a collective effort to reduce global methane 
emissions at least 30 percent from 2020 levels by 2030.  This paper is intended to support Pledge 
participants in a two-part exercise.  First, it introduces a new World Bank database that reports 
monthly atmospheric methane (CH4) concentrations for the terrestrial globe in a spatial grid with 
a resolution of 25 km.  Monthly means are calculated for “local anomalies” in bias-corrected XCH4 
data from the European Space Agency’s Sentinel-5P (TROPOMI) satellite platform.  The new 
database computes monthly mean values from daily time-stamped observations that have been 
pre-filtered for global, seasonal and latitudinal background effects.  We term these “local 
anomalies” because they register the local emissions component of the data.  Recent global 
research (Sha et al. 2021) has shown that the Sentinel-5P methane measures align closely with 
measures taken by ground stations in TCCON (the Total Carbon Column Observing Network).  The 
database will be maintained online by the Development Data Hub of the World Bank’s 
Development Economics Vice Presidency.   
 
The new database is intended to assist Pledge participants in reducing methane emissions from 
energy, agricultural and waste subsectors whose spatial distributions are highly non-uniform 
across and within countries.   At present, priority areas for emissions reduction are identified with 
spatially-formatted “bottom-up” estimates provided by national or global emissions inventories 
such as the Emissions Database for Global Atmospheric Research (EDGAR). These inventories 
combine sectoral activity data with broadly calibrated emissions factors. Using spatial inventories 
like EDGAR, policy analysts can identify emissions-intensive areas, trace the emissions to specific 
subsectors, and perform benefit-cost assessments of alternative technologies for emissions 
reduction.   
 
The second part of the paper explores the potential contribution of Sentinel-5P data to the 
selection of priority areas.  The value added of satellite-based methane observations can only be 
judged after a round of comparative empirical work.  In this paper, we contribute with a pilot 
study of CH4 emissions from irrigated rice production, which accounts for about 10% of 
agricultural CH4 emissions. Rice production in flooded fields produces methane because oxygen 
does not penetrate the soil when it is blocked by water.  This promotes the growth of methane-
producing bacteria.  A variety of techniques can shorten the period of water blockage, including 
a single field drainage in the mid-season; alternate wetting and drying (AWD), dry seeding instead 
of transplanting rice into flooded fields, and “aerobic” systems that grow rice in well-drained soil.  
Our study aims to use the Sentinel-5P (S5P) database to learn more about local variations in 
methane emissions created by differences in water use and the configuration of rice fields. 
 
We draw monthly CH4 anomaly observations from the database for areas and seasons identified 
by spatially-referenced data on irrigated rice production from IFPRI and seasonal production 
timing from RiceAtlas.  We compute mean values by grid cell for the period 2020-2022 and 
explore their relationship with three spatially-referenced data sets that are resampled to match 
the 25-km global grid:  (1) IFPRI estimates of irrigated rice field extents; (2) estimates of 
agricultural methane emissions from EDGAR, a “bottom-up” inventory that combines detailed 
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sectoral activity estimates with emissions factors that vary by region;  and (3) IFPRI estimates of 
rice production, which we combine with our CH4 anomaly observations to index relative methane 
intensities (emissions per unit of output) for different areas. 
 
Regression analysis reveals a highly significant relationship between IFPRI irrigated field extents 
and local SP5 CH4 anomalies.  We map expected values from the regression results, as well as 
regression residuals that identify areas where the CH4 anomalies identify methane 
concentrations that are higher and lower than expectations from field extents alone.  For 
comparison, we also perform a regression analysis of the relationship between methane 
emissions estimated by EDGAR and irrigated field extents.  As expected, we find a closer “fit” for 
EDGAR emissions because their “bottom-up” computation actually incorporates field extent.  In 
a follow-on exercise, we regress local CH4 anomalies on field extent and EDGAR emissions and 
use the residuals to identify outlier areas with unexpectedly high or low emissions.  These 
residuals represent the “value added” of the S5P data, because they identify local methane 
emissions variations that are not captured by IFPRI field extent or EDGAR estimates. The 
regression residuals identify a large number of positive and negative outlier clusters in all regions.  
We map these results and summarize them by identifying the states and provinces within 
countries that have the largest positive and negative outlier values. 
 
Finally, we compute a spatial measure of methane intensity that indexes CH4 emissions per unit 
of output. This information is particularly interesting from a development perspective, since it 
incorporates the food value of rice production as well as the associated methane emissions.  We 
find particularly high and low methane intensities among Indian states and Indonesian provinces, 
respectively, along with smaller clusters of positive and negative outlier states/provinces in Asia 
and other global regions. 
 
In summary, this first application of the new World Bank database suggests that CH4 atmospheric 
concentration measures from the ESA’s Sentinel-5P system can provide useful new information 
for identifying and assessing local variations in methane emissions from irrigated rice production.  
While more ground-truthing would undoubtedly be useful, we believe that recent research has 
already established the accuracy of space-based CH4 measures.  For irrigated rice production, 
future survey research could shed more light on the local sources of variation in measured 
emissions.  This could in turn support incentive-based programs that use the World Bank 
database to track, verify and reward adoption of methane-reducing techniques. If this approach 
proves valuable for irrigated rice production, we believe that it can work for other methane 
sources as well.  
  



 

25 
 

References 

Adhya, T. K. et al. 2014. “Wetting and Drying: Reducing Greenhouse Gas Emissions and Saving 
Water from Rice Production.” Working Paper, Installment 8 of Creating a Sustainable Food 
Future. Washington, DC: World Resources Institute.  

Ciais, P., et al. 2013. Carbon and Other Biogeochemical Cycles, in Climate Change 2013: The 
Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change, edited by: T. Stocker et al. Cambridge University 
Press, Cambridge, UK, New York, NY. 

Crippa, M., E. Solazzo, G. Huang, D. Guizzardi, et al. 2020. High resolution temporal profiles in 
the Emissions Database for Global Atmospheric Research. Sci Data 7: 121.  

Dasgupta, S., S. Lall and D. Wheeler. 2022a. Subways and CO2 Emissions: A Global Analysis with 
Satellite Data (under review for publication). 

Dasgupta, S., S. Lall and D. Wheeler. 2022b. Scalable Tracking of CO2 Emissions: A Global 
Analysis with Satellite Data (under review for publication). 

Devkota, K. et al. 2019. Economic and environmental indicators of sustainable rice cultivation: A 
comparison across intensive irrigated rice cropping systems in six Asian countries. Ecological 
Indicators 105: 199–214. 

EDGAR (Emissions Database for Global Atmospheric Research). 2022. Global Greenhouse Gas 
Emissions - EDGAR v6.0. Sector-Specific Gridmaps: N2O - IPCC 4C+4D - Agricultural soils. 
https://edgar.jrc.ec.europa.eu/gallery?release=v60ghg&substance=N2O&sector=AGS 

Etminan, M., G. Myhre, E. Highwood and K. Shine. 2016. Radiative forcing of carbon dioxide, 
methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical 
Research Letters 43: 12614–12623. 

FAO (Food and Agriculture Organization of the United Nations). 2014. FAOSTAT. Rome: FAO. 
http://faostat.fao.org 

Fischer, T., D. Byerlee, and G. Edmeades. 2014. “Crop Yields and Global Food Security: Will Yield 
Increases Continue to Feed the World?” ACIAR Monograph No. 58. Canberra, Australia: 
Australian Center for International Agricultural Research. 

GADM. 2022. Maps for the administrative areas of all countries.  
https://gadm.org/data.html 
 
Hakkarainen, J., I. Ialongo, S. Maksyutov and D. Crisp. 2019. Analysis of Four Years of Global 
XCO2 Anomalies as Seen by Orbiting Carbon Observatory-2. Remote Sensing 11, no. 7: 850.  
 



 

26 
 

IFPRI (International Food Policy Research Institute). 2019. “Global Spatially-Disaggregated Crop 
Production Statistics Data for 2010 Version 2.0”, https://doi.org/10.7910/DVN/PRFF8V, Harvard 
Dataverse, V4. 
 
IRRI (International Rice Research Institute). 2022. How to Manage Water.  Rice Knowledge 
Bank.  Available online at http://www.knowledgebank.irri.org/step-by-step-
production/growth/water-management. 

Laborte, A. et al. 2017. RiceAtlas, a spatial database of global rice calendars and production. 
Nature Scientific Data 4:170074. 

Labzovskii, L., S. Jeong and N. Parazoo. 2019. Working towards confident spaceborne 
monitoring of carbon emissions from cities using Orbiting Carbon Observatory-2. Remote Sens. 
Environ. 233: 111359. 

Myhre, G. et al. 2013. Anthropogenic and Natural Radiative Forcing, in Climate Change 2013: 
The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of 
the Intergovernmental Panel on Climate Change, edited by: T. Stocker et al. Cambridge 
University Press, Cambridge, UK, New York, NY, USA. 

Nassar, R., J. Mastrogiacomo, W. Bateman-Hemphill, et al. 2021.  Advances in quantifying 
power plant CO2 emissions with OCO-2.  Remote Sensing of Environment. 264: 112579. 

Nguyen, V. et al. 2022. An assessment of irrigated rice cultivation with different crop 
establishment practices in Vietnam. Nature Scientific Reports 12: 401. 

Pan, G., X. Yuan and M. Jieqi. 2021. The potential of CO2 satellite monitoring for climate 
governance: A review.  Journal of Environmental Management, 277: 111423. 

Prather, M., C. Holmes and J. Hsu. 2012. Reactive greenhouse gas scenarios: Systematic 
exploration of uncertainties and the role of atmospheric chemistry. Geophysical Research 
Letters 39:  L09803. 

Reuters. 2018. Global temperatures on track for 3-5 degree rise by 2100: U.N. 
https://www.reuters.com/article/us-climate-change-un/global-temperatures-on-track-for-3-5-
degree-rise-by-2100-u-n-idUKKCN1NY186?edition-redirect=uk 
 
Saunois, M. et al. 2020. The Global Methane Budget 2000–2017. Earth System Science Data 12: 
1561–1623. 

Sha, M., et al. 2021. Validation of methane and carbon monoxide from Sentinel-5 Precursor 
using TCCON and NDACC-IRWG stations, Atmospheric Measurement Techniques, 14: 6249–
6304. 

Shindell, D. et al. 2012. Simultaneously Mitigating Near-Term Climate Change and Improving 
Human Health and Food Security. Science 335: 183–189. 



 

27 
 

 

Solazzo, E., M. Crippa, D. Guizzardi, M. Muntean, M. Choulga and G. Janssens-Maenhout. 2021. 
Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission 
inventory of greenhouse gases. Atmospheric Chemistry and Physics, 21: 5655–5683. 

Steffen, W., J. Rockström and K. Richardson. 2018. Trajectories of the Earth System in the 
Anthropocene. PNAS 115(33): 8252-8259. 
 
Stuart, A. et al. 2018. On-farm assessment of different rice crop management practices in the 
Mekong Delta, Vietnam, using sustainability performance indicators. Field Crops Research 229: 
103–114. 
 
Weir, B., D. Crisp, C. O’Dell, et al. 2021.  Regional impacts of COVID-19 on carbon dioxide 
detected worldwide from space.  Science Advances, 7(45). 
 
World Bank. 2012. Turn Down the Heat ~ Why a 4°C warmer world must be avoided. World 
Bank: Washington, D.C. 
 
Wu, D., J. Lin, T. Oda and E. Kort. 2020. Space-based quantification of per capita CO2 emissions 
from cities. Environmental Research Letters, 15: 035004. 
 
Yu, Q., et al. 2020. A cultivated planet in 2010 – Part 2: The global gridded agricultural-
production maps, Earth System Science Data 12: 3545–3572. 

 


