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This paper uses data from 2003–19 on 2.47 million test 
takers of a national high stakes university entrance exam 
in Ethiopia to study the impacts of temperature on learn-
ing outcomes. It finds that high temperatures during the 
school year leading up to the exam reduce test scores, con-
trolling for temperatures when the exam is taken. The 
results suggest that the scores of female students are less 
impacted by higher temperatures compared to their male 

counterparts. Additionally, the analysis finds that the scores 
of students from schools located in hotter regions are less 
impacted by higher temperatures compared to their coun-
terparts from cooler regions. The evidence suggests that the 
adverse effects of temperature are driven by impacts from 
within-classroom temperatures, rather than from indirect 
impacts on agriculture.
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World Bank to provide open access to its research and make a contribution to development policy discussions around the 
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1 Introduction

There is now abundant evidence from rich counties that heat reduces the formation and
utilization of human capital in academic settings.1 This evidence demonstrates that heat
has acute negative impacts, reducing performance on exams on hot days, and longer-term
negative effects, reducing the amount that students learn during hotter years. However,
how these impacts translate to developing country contexts remains under-investigated.
This is especially crucial in low income countries where introducing adaptation measures
may be challenging due to generally lower average incomes. The lack of evidence for Sub-
Saharan Africa is particularly acute. In this study, we examine the relationship between
high temperatures and learning outcomes in Ethiopia in a high stakes exam setting.

While there exists a large literature documenting the negative impacts of extreme am-
bient temperatures on human capital formation, there remain gaps. Park et al. (2021) find
that heat exposure is associated with reduced rate of skill formation or cumulative learn-
ing in both the U.S. and internationally. But their sample includes almost no Sub-Saharan
African countries. Graff Zivin et al. (2018) find that short-run changes in temperatures
in the US beyond 26 degrees Celsius are associated with lower cognitive performance on
math, but not on reading. Cho (2017) and Garg, Jagnani, and Taraz (2020) find similar
results in the contexts of the Republic of Korea and India, respectively. Park et al. (2020)
use data on students who retook the Practice Scholastic Assessment Test (PSAT) in the US
to find that high temperatures during school days inhibit learning and thereby reduce test
scores. Further, their findings suggest that air conditioning in classrooms can mitigate the
adverse effects of high temperatures.

In the developing country context, there is an evidence gap for high-stakes academic
settings among older students. Garg et al. (2020) identify that hot days during the agricul-
tural growing season are associated with both lower agricultural yields as well as lower
test scores for younger students in rural India. They provide suggestive evidence of the
introduction of a workfare program weakening the effects of high temperatures on test
scores. Zhang, Chen, and Zhang (in press) find that the prevalence of high temperatures
at the time of a low stakes cognitive test evaluated during household surveys in China
is associated with reduced cognitive performance, especially for older and less educated
respondents. In high stakes settings, evidence from China suggests that that high temper-
atures during the day of the exam are negatively associated with test performance (Graff
Zivin, Song, Tang, & Zhang, 2020).

Existing studies either provide evidence on the impacts of heat on cognitive perfor-
mance in high-stakes settings in rich countries or in lower-stakes settings in middle in-
come countries.2 Our paper fills a gap in the literature examining the direct impact of heat

1See, for example, Graff Zivin, Hsiang, and Neidell (2018); Park, Behrer, and Goodman (2021); Park, Good-
man, Hurwitz, and Smith (2020). For a broad overview of this literature see Park and Heal (2016).

2On the separate, but related, question of school attendance, Randell and Gray (2019) study 29 tropical
countries, which include 11 African countries (excluding Ethiopia), and find negative impacts of prenatal
exposure to higher-than-average temperatures on years of schooling completed. Furthermore, they find that
these effects are pervasive across all income groups; especially in the case of West and Central Africa. They
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on students using data from a high-stakes exam in a low-income country. More specifi-
cally, we examine the relationship between high temperatures and learning outcomes in
Ethiopia, with a focus on the national high stakes university entrance exam, the Ethiopian
Higher Education Entrance Certificate Examination (EHEECE).

The EHEECE is a critical exam that determines access to higher education and can have
important long-term implications for individuals’ educational attainment and future labor
market outcomes. It determines whether or not students can enroll in undergraduate uni-
versities, as well as the undergraduate university in which they enroll. Students who fail
the exam usually take up vocational jobs, informal jobs, or work in agriculture; those who
pass the exam have the opportunity to take up blue-collar and white-collar jobs, which
generally offer higher wages and benefits. The stakes of these exams are high.

We investigate the impact of high temperatures over the school year leading up to the
exam, which we will henceforth refer to as the exam year, on the exam performance of 12th

grade students in Ethiopia. We present three main findings.
First, exposure to high temperatures during the exam year is associated with poorer

performance on exams. These impacts are weakly driven by hot days during the school
year as compared to hot days during the winter and summer breaks. On the other hand,
unlike the findings from India (Garg et al., 2020), in our setting, we do not find the predom-
inant channel to be hot days that fall during the agricultural growing season. We discuss
this result further in the mechanisms section of this paper.

Second, we find evidence of heterogeneity by gender in impacts of heat on exam per-
formance. While, at baseline, women in our sample have significantly lower test scores
relative to men, we present suggestive evidence that high temperatures have a smaller ad-
verse impact on women’s scores. The current body of literature has not revealed consistent
differential effects of temperature on test performance based on gender (Cho, 2017; Park
et al., 2020). In contrast to the existing research, our study demonstrates heterogeneous
effects based on gender.3

Third, we find that students from schools located in hotter regions are better able to
cope with higher temperatures compared to their peers who are located in relatively cooler
regions. The negative relationship between heat and learning that we find in our study is
primarily driven by students in cooler regions. This disparity in impact could be attributed
to either physiological adaption or acclimatization to higher temperatures by students in
hotter regions (Sexton, Wang, & Mullins, 2022) or due to greater use of climate adaption
technologies in hotter regions. Negligible adoption of cooling technologies in Ethiopian
schools makes us believe that this is suggestive evidence of heat acclimatization.

The rest of the paper is structured as follows. The next section describes the context for

find that the negative impacts are highest for children whose household heads have attained at least secondary
school education. These results are similar to Randell and Gray (2016) who find that early childhood exposure
to high temperatures is negatively associated with the likelihood of completing an additional year of schooling
in rural Ethiopia.

3Graff Zivin et al. (2020) find that heat has more significant impacts in social science (or the arts track),
characterized by a relatively higher proportion of women. They suggest that the effects they document might
be driven by changes in women’s scores due to their propensity to feel more stressed.

3



our study, section 3 describes the data in detail, section 4 lays out our empirical strategy,
section 5 reports our main results, section 6 presents results on potential mechanisms, and
section 7 reports robustness checks. Section 8 concludes.

2 Background

2.1 Ethiopian Education System

The Ethiopian education system is structured in three tiers: primary, secondary, and ter-
tiary education. Primary education is mandatory and free for all children aged between
seven and fourteen. It consists of two cycles of four years: grades 1-4 and grades 5-8. Sec-
ondary education is divided into two cycles of two years each: grades 9-10 and grades
11-12. At the end of grade 10, students take the Ethiopian General Secondary Educa-
tion Certificate Examination (EGSECE), which grants access to upper secondary education
(grades 11 and 12). Those who pass the EGSECE are routed into either natural science or
social science streams. Upon completion of upper secondary education, students sit for
the EHEECE after grade 12. Those who fail the EGSECE are assigned to a vocational track
lasting 2-3 years, depending on the field of study. Tertiary education, which encompasses
universities and colleges, is provided to students who complete their secondary education
and pass the EHEECE. Depending on the field of study, institutions of tertiary education
grant 3-6 years bachelor’s degrees and various graduate degrees.

Eligibility for tertiary education in Ethiopia - and in many cases outside of Ethiopia
for emigrants - is thus determined by a two step process.4 First, students must pass the
EGSECE and attend upper secondary education in either natural sciences or social sciences
stream. Upon completion of upper secondary education students must also take and pass
the EHEECE. We study performance on the EHEECE, the exam that directly determines
eligibility for college or university.

In recent years, Ethiopia has embarked on a rapid expansion of access to education
across all tiers through construction of primary and secondary schools as well as universi-
ties. The Ministry of Education reports that from 2000 to 2021-22, the number of primary
schools increased from 11,780 to 36,492 and secondary schools from 424 to 3,636.5 These
expansions have also led to a gradual increase in the education access rate of female stu-
dents from 20% in 2003/04 to 34% in 2017/18. The scale up of tertiary education is equally
impressive, with the number of public universities increasing from 2 to 42 in the last two
decades. Besides expanding access, the construction of new schools is also aimed at recti-
fying regional inequities in access to higher education institutions. Despite these efforts to
expand access to education by building new schools, little attention is paid to equipping
existing and new schools with air conditioning (AC) systems to regulate classroom tem-
peratures. Fewer than 8% schools have any kind of climate control (World Bank Group,

4Many U.S. colleges, for example, require applicants from Ethiopia to submit scores on the EHEECE as part
of their application.

5We refer to reports ESAA 2014 EC (2021-22 G.C) Final and ESSA 2003 EC retrieved from: https://
moe.gov.et/EduStat.
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2018).

2.2 Ethiopian Climate

Ethiopia’s climate is diverse and varies across regions, largely due to differences in topog-
raphy. It is broadly divided into three main zones: 1) the alpine vegetated cool zone, which
covers areas over 2,600 meters above sea level, with temperatures ranging from near freez-
ing to 16◦C; 2) the temperate zones covering areas between 1,500 and 2,500 meters above
sea level, with temperatures ranging between 16◦C and 30◦C; and 3) the hot zone, which
encompasses both tropical and arid regions. The temperatures in this zone range from
27◦C to 50◦C.6

Since the mid-20th century, the mean annual temperature in Ethiopia has increased
by more than 1◦C (MEF, 2015). Climate model projections indicate warming across all
Ethiopian seasons, with mean annual temperature rising by 1-2◦C. By 2060, there is pro-
jected to be a significant increase in the number of days with temperatures 2◦C above the
1981-2000 baseline, with hot days comprising between 15 and 29 percent of the year (Niang
et al., 2014)7. This will have serious ramifications for ecosystems, agricultural production,
food security, health, and learning outcomes (Trisos et al., 2022).

In Figure 1, we plot the distribution of daily maximum temperatures experienced by
schools in our data. We sum the number of days with a maximum temperature in each
of 5 three degree Celsius bins between 18◦C and 33◦C across all schools and all years in
our sample (2003-2019). We group days below 18◦C and above 33◦C into separate bins. In
our sample the majority of days fall between 21◦C and 30◦C. Days in our top bin, above
33◦C, are relatively rare in the data. While Ethiopia predominantly experiences moderate
temperatures, there exists substantial regional variation in temperatures (refer to Figure
A2) resulting from the geographic differences within and between regions in Ethiopia. We
will explore these differences in the subsequent sections of this paper.

3 Data

3.1 Educational Outcomes

In the Ethiopian education system, students choose a stream of study between natural sci-
ences and social sciences in the 11th grade. This choice determines the subjects that they
will be tested on in the 12th grade. While the total number of subjects is the same between
streams, the specific subjects have evolved over the years, particularly following the 2010
secondary school curriculum reform. Before the reform, all students sitting for the grade
12 school leaving/ university entrance exam were required to take english, mathematics,
civics, and aptitude. Additionally, they were also required to take stream specific subject

6Climate Risk Profile: Ethiopia (2021): The World Bank Group.
7See Figure A1 for a visual representation of the rising trend in the average number of days with tempera-

tures surpassing 33 degrees Celsius within the schools in our sample, using 2003 as the baseline year. There is
a marked increase in the frequency of hot days starting in 2011.
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tests: general science for natural sciences students and social science for those in the social
science stream. After the reform, the structure of the stream specific tests changed signif-
icantly, with general science split into physics, chemistry, and biology and social science
split into geography, history, and economics. Consequently, students in the natural science
stream now take physics, chemistry, and biology, while those in the social science stream
are tested in history, geography, and economics. Students from both streams continue to
take english, mathematics, civics, and an aptitude exam. Each of these exams is scored out
of 100 points.

We utilize data from the Ministry of Education, spanning 17 years between 2003 and
2019. The dataset comprises 2.47 million individuals who took the national high stakes
exam, the Ethiopian Higher Education Entrance Certificate Examination (EHEECE).8 The
EHEECE tests are highly standardized and administered in a relatively controlled envi-
ronment. Typically, the exams are administered in June or July at students’ schools of
enrollment. They follow a uniform schedule across Ethiopia, with tests for each subject ad-
ministered simultaneously on the same date and time. The exams’ timetable is arranged
over consecutive days with two testing slots on each day – one in the morning and an-
other in the afternoon. On some days, students from different streams take stream specific
subject exams in a single slot. To minimize the possibility of cheating, test invigilators are
assigned to schools other than their own.

The passing cut-off for public universities varies by gender, region, and stream. For
example, in the 2021/22 academic year, the passing grade for natural science students was
363 for males and 351 for females. For students from rural areas, the cut-off grades were
slightly lower, at 351 for males and 339 for females. Additionally, private universities gen-
erally have lower cut-offs compared to public universities.9 Students who fail the exams
are allowed to retake them once, but the passing mark for retakes is set higher.

Our sample is restricted to school-going students below the age of 21 and those who
have completed the required number of exams. We do not include those students who
are re-taking the exams. This results in a sample of 2.13 million test-takers. To account
for changes in exam structure and passing requirement over time, we standardize the test
scores at the year and stream level10. The standardisation is done at the stream level be-
cause the distribution of scores differs based on stream, as does the passing score. The
exam questions are multiple choice and require students to fill out their answers in an
Optical Mark Recognition (OMR) sheet. Anonymity of students is maintained through
roll numbers, which reduces the chances of manipulation of grades. Further, the passing

8The EHEECE was previously called the Ethiopian School Leaving Certificate Examination (ESLCE) until
2003 before it was replaced by the Ethiopian Higher Education Entrance Certificate Examination (EHEECE),
which has since been renamed Ethiopian University Entrance Exam (EUEE) in 2021.

9Private higher education in Ethiopia is a relatively recent development, with the enrollment of students
in private universities and colleges beginning at the turn of the century. As a result, there is a prevailing
perception that the quality of education offered by these private institutions is somewhat inferior. There is,
thus, greater competition to join public universities, which may explain the disparity in the passing grades
required for entry into public versus private higher education institutions.

10To understand the distribution of average scores by region, refer to Figure A3 in the Online Appendix. It
provides a map of the average score by geographic location.
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cut-off grade is set ex-post based on the distribution of grades, which mitigates the risk of
score bunching around the cut-off.

To address potential spatial correlation in learning outcomes within schools, we cluster
standard errors of regressions that use test scores as the outcome at the school level.

3.2 Weather Data

We utilize the ERA5-Land dataset to obtain weather information at a spatial resolution of
9 km grid spacing. This dataset, which is available from 1950 onwards, provides hourly
information on surface variables such as daily maximum temperature and daily total pre-
cipitation for each school in our sample.

To ensure the accuracy of our weather data in relation to the experiences of students,
we construct a 10 km buffer around the school’s geographic location11. We base this on the
assumption that students typically reside close to their schools. This assumption is sup-
ported by findings from the Living Standard Measurement Study (LSMS) surveys, which
indicate that about 90% of students in Ethiopia walk to school, and take less than one
hour to reach their school from their homes. Additionally, we re-weight the climate data
by population size (from Center for International Earth Science Information Network -
CIESIN (2018)) within the buffer, to account for variations in population density.

Overall, our use of the ERA5-Land dataset and the construction of geographic buffers
allows us to accurately capture the relationship between extreme temperatures and learn-
ing in our study. Our results are robust to variations in buffer size (of 5 km and 20 km) and
population density.

3.3 Other Data

3.3.1 Household Survey

We use the Living Standards Measurement Study - Integrated Surveys on Agriculture
(LSMS-ISA) data for Ethiopia (also known as the Ethiopia Socioeconomic Survey (ERSS))
in order to investigate the time-use patterns of household members as well as the im-
pacts of shocks to agriculture on food consumption within the household (CSA, 2012, 2014,
2016). The LSMS-ISA is a household survey conducted in eight countries in Sub-Saharan
Africa (SSA), focusing predominantly on rural households and their agricultural activities.
There have been four waves/ survey rounds conducted for Ethiopia in 2011-12, 2013-14,
2015-16, and 2018-19. For our analysis, we specifically concentrate on the second and third
waves of data. This selection is based on the sampling consistencies across these waves,
ensuring the reliability of the collected data.

The LSMS-ISA surveys employ a two-stage random sampling design. First, enumera-
tion areas (EAs) are selected at random, followed by a random selection of households

11To understand the distribution of hot days within these 10 km buffers, refer to Figure A4 in the Online
Appendix. It provides a map of the variation in temperatures that is not explained by school, year, and stream
fixed effects.
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within these EAs. An important feature of these surveys is that households are geo-
referenced, which facilitates the mapping of each household’s geographic location to its
respective agricultural zone. This enables the integration of information on zonal agricul-
tural season cycles with households’ self-reported agricultural cycle data.

For our individual level analysis, we further restrict the sample to keep middle and
high school students who are currently enrolled in school. That is, our sample consists of
students enrolled in 5th through 12th grades. To account for potential spatial correlation
within EAs, we cluster the standard errors of all our regressions at the EA level.

4 Empirical Framework

We estimate the effects of temperature during the exam year on standardized total test
scores of each student using the following regression specification.

Yisjt = ΣM−1
m=1 β

mTm
jt +ΣN−1

n=1 δ
nPrecnjt + θFemalei + µs + γj + αt + ϵisjt (1)

where the outcome variable Yisjt is the standardized test score for student i, in stream s,
in school j, and in year t. The variables Tm

jt denote the number of days in school j and
year t where the daily maximum temperature was in the mth of the seven bins used in
our analysis.12 Following the literature, we set 18-21◦C to be the reference bin. Similarly,
variables Precnjt denote the number of days in school j and year t where the daily total
precipitation was in the nth of the four bins used in our analysis.13 We estimate several
versions of this specification, dividing the year into school days and non-school days as
well as growing season and non-growing season days.

The variable Female is a dummy which takes the value of 1 if the student is female, and
0 otherwise. We include a female control because the level of female students’ performance
is lower than that of male students, on average. µs, γj and αt are the stream, school, and
year fixed effects, respectively. We include stream fixed effects as the subjects that students
are tested on differ by stream and as do the distribution of scores and the passing cut-
off scores. School fixed effects are added to control for school infrastructure and other
unobservables which might be location specific. Year fixed effects help to control for year
specific shocks as well as curriculum changes or changes in the exams over the years.

We are interested in the semi-elasticity or the βm coefficients which capture the marginal
effect of an additional day during the year in which the temperature is in bin m instead of
being in the reference temperature bin. The key assumption in this approach is that daily
temperature variation is orthogonal to the unobserved determinants of learning outcomes
(Deschenes, Greenstone, & Guryan, 2009).

12We use the following set of temperature bins in our analysis {≤18◦C, (18-21]◦C, (21-24]◦C, (24-27]◦C,
(27-30]◦C, (30-33]◦C, >33◦C}.

13We use the following set of precipitation bins in our analysis {0 m, (0-0.01] m, (0.01-0.02] m, >0.02 m }.
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5 Results

5.1 Primary Results

Table 1 reports the impact of heat on students’ overall test performance measured in stan-
dardized total scores of all subjects taken (we also plot the coefficients in Figure 2). We
find that heat exposure during the year of the exam has a significant negative impact on
students’ test performance. An additional day of temperatures above 33◦C is associated
with ≈ one-hundredth of a standard deviation drop in average test scores; thus, our results
suggest that 10 additional hot days in a year could reduce test scores by approximately a
tenth of a standard deviation. In terms of average performance on the exam over our sam-
ple period that represents a decline in performance by 2.28 percent. While temperature
deviations from the optimal temperature for learning, measured by the number of days in
the temperature bins below and above 18-21◦C, negatively affects performance, the impact
is 3-4 times higher for extreme temperatures (> 33◦C).

Our estimates are robust to inclusion of additional controls such as gender and age of
the student, and average temperature in the first half of June which approximately coin-
cides with the week of the exam.14 Further, our results remain consistent when running
the analysis using different buffers around schools (Table A2), when we include annual
temperature lags (Table A3), when we divide the sample by stream of study (Table A4),
and when we control for the exact week of the exam (Table A1).

Our results align with other papers examining the impact of heat on student perfor-
mance in terms of average effects. Our estimates are three times larger than the average
effects found by Garg et al. (2020) in India and ∼ 1.7 times the average effects found by Cho
(2017) in the Republic of Korea15. In the US, Park et al. (2020) find much larger effect sizes
of hot days on test scores; an additional day between 90-100◦F (comparable with our T>
33◦C bin) is associated with a reduction in scores by 0.061 standard deviations. However,
our estimates are well within the range in the existing literature.

In contrast, our effects compared to those for more targeted education interventions are
relatively small. Interventions that promoted mother tongue instruction in Ethiopia are
associated with gains in math and literacy scores by 0.269 and 0.089 standard deviations,
respectively (Seid, 2016). In a similar context Duflo, Dupas, and Kremer (2015) found that
hiring an additional local contract teacher in Kenyan schools increased the test scores of
students taught by the contract teachers by 0.24 standard deviations, however they found
no effect of reduced class size (by half) on test scores. In contrast, Altinok and Kingdon
(2012) conduct a meta analysis where they find that a 1 standard deviation increase in class
size in developing countries is associated with a reduction in student achievement by 0.03
standard deviations.

14Results from our preferred empirical specification are presented in column (2) of Table 1.
15Note that these studies presented subject-wise results, and we are comparing our total standardized score

results with the average of the results they found for math and reading scores. Additionally, we are comparing
our results for the highest temperature bin with the highest temperature bin of these studies, even though
these bins are not exactly the same.
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5.2 Results by Subject

We present results of our analysis by subject of exam, with a particular focus on english,
math, civics, and aptitude, as they are administered to students in both natural science
and social science streams. Table 2 reveals that high temperatures have a negative effect
on math scores, but this result is not statistically significant. The results for english scores,
however, are negative and significant at the 10% significance level. Likewise, the results
for civics and aptitude are consistent with our primary findings on the total score, and
statistically significant at the 1% significance level.

To understand the difference in results across subjects, we considered the distribution
of these subject scores. The distributions of raw scores for civics and aptitude systemati-
cally lie to the right of the distributions of english and math (Figure 3). This suggests that
civics and aptitude exams are easier than english and math exams. We hypothesize, that
students are putting in more effort into learning english and math as a consequence of their
greater difficulty. As a result, students (or teachers) may be offsetting some of the nega-
tive impacts of high temperature via increased effort. This is consistent with the evidence
from the education literature that indicates teachers disproportionately focus instructional
effort on more difficult and high stakes subjects like english and math (Jacob, 2005).16

We provide the results for other (stream-specific) subjects in Section 8. In Table A5 we
report our findings for natural sciences subjects (physics, chemistry, biology, and general
science) and in Table A6 we provide results for social sciences (economics, history, geog-
raphy, and social science). The findings are consistent across these subjects, and similar to
our main results in Table 2. We find a negative and significant impact of the highest tem-
perature bin on the test scores for all the core subjects in both natural sciences and social
sciences.

Our effect sizes by subject are consistent with other papers examining the impact of
heat on student performance for english but not for math. In contrast to other studies, our
results for math yield insignificant effects. For instance, Garg et al. (2020) report that the
effects of an additional hot day (defined as temperatures above 29◦C) decrease math and
reading test performance by 0.003 and 0.002 standard deviations, respectively. These effect
sizes are slightly smaller than ours for english (0.003) but larger than ours for math (0.001),
when comparing the highest temperature bins. Cho (2017) finds that an additional day
with a temperature above 34◦C in the Republic of Korea decreases the scores of math and
english tests by 0.0042 and 0.0064 standard deviations, respectively. These effect sizes are
larger than what we observe.

16Recall we are measuring temperature in the year leading up to the exam so the negative effects reflect
reductions in knowledge accumulated over this time period. If students know that math and english are
harder exams they may be applying more effort to learn this material in ways that offset the negative impacts
of heat during instructional periods.
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6 Mechanisms

In this section we examine the mechanisms that might be driving our results on the nega-
tive relationship between heat exposure and test scores.

6.1 Do high temperatures in the agricultural season drive the temperature-test
score relationship?

The existing literature provides evidence of heat exposure impacting cognitive perfor-
mance through the channel of reduced agricultural income in India (Garg et al., 2020).
That is, hot days during the agricultural season reduce agricultural yields which reduce
parents’ investments in children’s human capital. To test this mechanism in our data, we
construct the temperature bins in our main specification separately for the agricultural
growing season and non-growing season. The growing season comprises the main grow-
ing season, meher, and a shorter minor season called belg, which we pool in our analysis.17

We identify the typical months for these seasons for each administrative zone in Ethiopia.
We do not find strong evidence to support the hypothesis that this mechanism is at

play in our setting. When we compare the impacts of hot days during the growing seasons
with those in the non-growing season we find slightly larger effects in the non-growing
season (column 1 of Table 3). This is consistent with the effects of high temperature being
driven by consequences in the classroom as the non-growing season largely overlaps with
the school year.18 To further explore this, we construct the same set of temperature bins for
the school year (covering the academic year) and non-school year separately. The results
show that the impact of hot days is more pronounced during the school year compared
to the non-school year (column 2 of Table 3). This supports the thesis that the effects of
heat on test scores we find are primarily associated with conditions within the classroom
environment.

Further, we also tested the differences in results by dividing the data into two subsam-
ples: urban and rural (Table 4). We find that the effect sizes for urban areas are larger than
those for rural areas (although they are not statistically different), helping us rule out the
hypothesis that hot days during the agricultural season are driving our results.

6.2 Do temperature shocks reduce nutrition?

To answer this question, we utilized data from rounds 2 and 3 of the LSMS-ISA surveys
for Ethiopia. We identified household food shocks at the month-year level and aggregated
the number of negative food shocks experienced by a household in a calendar year.19 We

17Meher is the main growing season and lasts from May to September, while the minor growing season, belg,
starts in February and ends in April. Around 90% of crop production occurs during the main growing season
(meher).

18See Figure 4 for results for all temperature bins in our data.
19The LSMS-ISA surveys collect detailed information on food security status of households. Households

were asked if they faced a situation where they did not have enough food to feed all members of the household
in the past 12 months, and in which months they faced this food insecurity. We added the number of months
where the household faced food insecurity to construct an aggregate measure of the number of food shocks
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estimate the number of food shocks experienced in a year as a function of temperature
shocks in the previous year to account for timing of harvest and storage. We conduct
this analysis for a full year as well as by agricultural growing season. We do not find
evidence that the previous year temperature shocks we document in our data are leading
to significant increase in current year food insecurity (Table 5). These results suggest that
our results are unlikely to be driven by a nutrition channel.

6.3 Heterogeneity in Effects by Gender

In our test score data, female students perform relatively poorly compared to male stu-
dents, on average. Given these baseline differences, we explore whether the effects of
temperature on test performance vary by gender. To do this, we add an interaction term
between temperature bins and a female dummy to our main empirical specification.

Table 6 shows that coefficient of the interaction term between temperature and female
dummy is predominantly positive. Moreover, these effects are positive and statistically
significant for temperature bins above 30◦C across english, math, and the Total score. This
indicates that the effects of heat matter less for female students compared to their male
peers. Notably, female students appear able to fully offset the negative effects of temper-
ature on their performance in math. This resilience displayed by female students, despite
prevailing societal norms that place them at a disadvantage during weather shocks, is re-
markable (Björkman-Nyqvist, 2013).

There are many potential explanations for this including physiological differences in
resilience to heat between females and males, and changes in societal norms that benefit
females. However, we have limited data to rule out many of these possibilities. One hy-
pothesis that we find particularly interesting is that these exams may be higher stakes for
women as the consequence of going to college versus not may be greater for them. As
a result, women may put in more effort relative to men, which may compensate for the
negative impact of heat exposure.

While we cannot test for gendered differences in effort directly, we check whether fe-
male students were absent from school less compared to their male peers. Our data con-
tains information on extended absences from school, but not the number of days of ab-
sence. That is, we know if a student was absent during the last semester for more than a
week. We also have information on travel time to school, which may reflect the amount
of effort that students are putting into attending school. We interact the travel time with
female dummy to indirectly isolate gendered differences in effort.

Our results (Table 7) show that there are heterogeneous effects by gender on the prob-
ability of extended absence from school. Female students have a lower likelihood of ex-
tended absence from school compared to their male counterparts. There are also differen-
tial effects of travel time on absenteeism; female students have no effect of an additional
minute of travel time to school on absence from school, whereas for male students, an
additional minute of travel time increases the likelihood of extended school absence by

experienced in the calendar year.
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0.2 percentage points. This provides suggestive evidence that female students exert more
effort to attend school as compared to their male counterparts.

Our overall findings are consistent with the education literature which has found some
evidence for female students taking high stakes exams more seriously compared to their
male peers (Brunello & Kiss, 2022). More specifically, evidence suggests that female stu-
dents put in more time on homework compared to male students (Wagner, Schober, &
Spiel, 2008), and that these results did not differ by grade among the sample of high school
students (Xu, 2006).

6.4 Does school location affect students’ adaptation to higher temperatures?

Response to temperature may vary based on region as humans adapt to their physical en-
vironment (or heat) and these adaptations reduce the performance losses associated with
heat exposure. Medical research suggests that the “effect of heat acclimation on submaxi-
mal exercise performance can be quite dramatic, such that acclimated individuals can eas-
ily complete tasks in the heat that earlier were difficult or impossible” (Périard, Racinais, &
Sawka, 2015). Students from schools located in hotter areas might be better at adapting to
higher temperatures as compared to the students who live in relatively colder areas. There
is abundant evidence from high-income settings that hotter places have more physical in-
frastructure adaptations to high temperatures, such that the adverse effects of temperature
on a variety of measures of human performance are reduced in these locations relative
to their colder counterparts (Carleton et al., 2022; Heutel, Miller, & Molitor, 2021; Park &
Behrer, 2017).

We test this adaptation hypothesis in Table 8 by dividing schools into quartiles depend-
ing on the mean number of days across years when their temperature exposure exceeds
30◦C. We find that heat has larger effects on test scores for students in schools located in
colder regions (Column 1 of Table 8). The impact is smaller and/or statistically insignifi-
cant for the upper (hotter) quartiles.

Since the locations in the first three quartiles experience relatively low mean number
of days where the temperature exceeds 30◦C, we divide the sample into two groups: the
first three quartiles, and the fourth quartile. We present the results for this break up in
Table 9. We find that the negative association between high temperatures and test scores
is driven by the first three quartiles (schools in colder locations). In hotter regions, though
the relationship between hot days and test scores is negative, it is statistically insignificant.
These results of hotter regions being able to cope with heat better are consistent with the
findings of Zhang et al. (in press).

It is not obvious what kinds of adaptation are leading to these reduced effects in hotter
regions. Based on data from World Bank Group (2018), only 8% (11 out of 137 schools)
of Ethiopian schools have any adoption of heat adaptation technologies including fans or
evaporative air cooling, and air conditioning20. This suggests that mechanical cooling is

20Notably, this survey sampled the largest school in each location, implying that the true number of
Ethiopian schools with cooling technologies might be even lower than 8%.

13



not the predominant means of adaptation in this setting. It is possible that the construction
of schools differs across settings, such that materials or ventilation approaches result in a
greater ability to keep classrooms cool in hotter areas. We leave further examination of
these important questions around adaptation to future work.

7 Robustness Checks

7.1 Does temperature affect stream choice?

One potential source of endogeneity in our model could arise from stream choice being
a function of temperature. Since the stream of study is chosen at the start of 11th grade,
it could be that temperature during the 10th grade affected performance on end-of-year
exams, which, in turn, affected the choice of stream.

We know that for a given location, temperature across years is correlated.
If there is selection into streams based on temperature exposure during 10th grade,

then our results might be biased. To test this, we run equation 2.

PSjt = ΣM−1
m=1 β

mLag2T
m
jt +ΣN−1

n=1 δ
nLag2Precnjt + θFemale Sharejt + γr(j) + αt + ϵjt (2)

where the outcome variable PS is the proportion of students in the science stream in
school j in year t. Lag2T is the second-year lag of temperature bin M . Lag2Prec is the
second-year lag of precipitation bin N . Female Share is the share of women in school j
and year t. We include the share of female students to control for gender specific prefer-
ences on which stream to enroll in. γr(j) and αt are the region (which the school is mapped
to), and year fixed effects, respectively.

The results presented in Table 10 are all economically insignificant, suggesting temper-
ature is not playing a large roll in stream selection. While the point estimates of 10th grade
exposure to heat are negative, the effect size is infinitesimal.

7.2 Does temperature affect grade progression?

It could be that our population of students is a selected sample of students who are resilient
to or more adapted to higher temperatures. This would occur if only the students who can
adapt remain in school long enough to appear in our sample. If this was true, we would
be underestimating the effects of high temperature exposure on test performance.

To address this concern, we consider data on grade progression within the schools in
our sample and check grade progression of each school from 11th grade to 12th grade.
(We do not have cohort information prior to the 11th grade.) We have this information for
approximately 83% of school x exam year combinations between 2017-2019.

We do not find any effects of high temperature exposure in the 11th grade on drop out
rates and grade progression rates in our sample (Table 11). This is true for both male and
female students, suggesting that our estimates are valid.
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7.3 Are the results sensitive to changes in the way the dependent variable is
defined?

We test whether our main specification is sensitive to changes in results by considering
variations in the way we define out dependent variable (students’ scores). In Table 12 we
compare the results for the standardized total scores with those using average scores and
relative scores. We consider the average score across subjects instead of the total raw score
because the required number of subjects vary by year: it was five in 2003 and increased to
seven from 2004 onward. The relative score is defined as the student’s score as a percent-
age of the highest score within each stream and year; this allows us to test for the effects of
high temperatures on the distribution of scores while controlling for the level of difficulty
of the exam, using the highest score as reference. We find that our results remain consis-
tent across these different specifications. We also tested all of our regression specifications
using these three dependent variables and found no significant differences in the direction
and significance of our results.

8 Conclusion

In this paper, we study the effect of high temperatures on test scores in the context of a
high-stakes exam in Ethiopia. We find that each additional day with temperatures above
33◦C reduces the standardized total test score of students by 0.009 standard deviations.

Delving into the potential channels that drive this negative association, we find that
the effects are driven by hot days that fall in the school year (as compared to hot days that
fall in the summer and winter breaks). Contrary to findings from India, we do not find
evidence of the results being driven by hot days during the agricultural growing season.
We further substantiate this result by finding that as compared to their counterparts in
rural areas, students in urban areas experience larger negative effects of temperatures on
test performance. We also rule out the channel of high temperatures worsening exam
performance due to poor nutrition caused by increased food insecurity.

We then proceed to present the first significant findings of heterogeneity of tempera-
ture effects on exam performance by gender and show that female students’ scores suffer
smaller declines caused by higher temperatures. We do not have conclusive evidence for
why female students are less impacted, but we do find that female students are less likely
to take extended absences from school as compared to their male counterparts. Thus,
we believe that the heterogeneity in effects by gender may be explained by female stu-
dents putting in more effort on their academic performance, conditional on temperature,
as compared to their male counterparts.

Consistent with our hypothesis about female students offsetting the negative impact
of heat with greater effort, we find that the negative effects of temperature for all students
are larger for easier subjects (civics and aptitude) as compared to the more challenging
subjects (english and math). We believe that this is because, conditional on temperature,
students exert higher levels of effort on more difficult subjects as compared to the easier
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ones. We are unable to directly test this, and leave it for future work.
Further, we find that students from schools located in hotter regions are better able

to cope with higher temperatures as compared to their counterparts from cooler regions.
This provides suggestive evidence of heat acclimatization since Ethiopian schools have
negligible adoption of cooling technologies as heat adaptation measures.

Overall our results add to the growing body of literature indicating that high temper-
atures during the school year reduce the amount that students learn. Our estimates are
some of the first from Sub-Saharan Africa and thereby add important additional context
to this literature. Our overall effect sizes from Ethiopia are substantially larger than those
found in other developing country contexts, but are not as large as the estimates found
in the US. Future work should examine how adaptation, such as investments in fans and
air-conditioning in schools, might help students cope better with higher temperatures, and
might indirectly also reduce absenteeism.
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Tables

Table 1: Impact of Heat Exposure on Standardized Scores

Standardized Score
(1) (2) (3) (4)

T > 33C −0.009∗∗∗ −0.009∗∗∗ −0.007∗∗ −0.007∗∗

(0.002) (0.002) (0.003) (0.003)

T 30-33C −0.003∗∗ −0.004∗∗∗ −0.002 −0.002
(0.001) (0.001) (0.002) (0.002)

T 27-30C −0.00004 −0.001 0.002 0.001
(0.001) (0.001) (0.002) (0.002)

T 24-27C −0.002∗∗ −0.002∗∗∗ −0.003∗ −0.003∗

(0.001) (0.001) (0.001) (0.001)

T 21-24C −0.002∗∗ −0.002∗∗∗ −0.002∗∗ −0.002∗∗

(0.001) (0.001) (0.001) (0.001)

T < 18C −0.003∗∗ −0.003∗∗ 0.0003 0.0004
(0.001) (0.001) (0.002) (0.002)

Female Control X X X
Avg T in First Half of June Control X X
Age Control X
Fixed Effects
Year X X X X
School X X X X
Stream X X X X
Observations 2,132,635 2,132,635 1,082,496 1,082,496
R2 0.189 0.247 0.332 0.339

Notes. Estimates are from linear regressions using panel fixed effects. The dependent variable
is the standardized test scores of students taking the 12th grade exams and is constructed to
have mean of (or close to) zero. All regressors include the number of days in the temperature
bin for the school-year cycle: June-May. All regressions control for the number of days in the
precipitation bins. Errors are clustered at the school level. *p<0.1 **p<0.05 ***p<0.01.
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Table 2: Impact of Heat Exposure on Performance in Common Subjects

Standardized Score
English Math Civics Aptitude

(1) (2) (3) (4)
T > 33C −0.003∗ −0.001 −0.011∗∗∗ −0.006∗∗∗

(0.001) (0.001) (0.002) (0.002)

T 30-33C 0.00001 0.001 −0.005∗∗∗ −0.002
(0.001) (0.001) (0.001) (0.001)

T 27-30C 0.001∗∗ 0.002∗∗∗ −0.003∗∗ 0.001
(0.001) (0.001) (0.001) (0.001)

T 24-27C −0.00002 0.001∗∗ −0.003∗∗∗ −0.0002
(0.0005) (0.001) (0.001) (0.001)

T 21-24C −0.0004 0.0005 −0.003∗∗∗ −0.001
(0.0004) (0.0005) (0.001) (0.0005)

T < 18C −0.002∗∗∗ −0.003∗ −0.002 −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Female Control X X X X
Fixed Effects
Year X X X X
School X X X X
Stream X X X X
Observations 2,132,635 2,132,635 2,104,972 2,132,635
R2 0.271 0.140 0.144 0.196

Notes. Estimates are from linear regressions using panel fixed effects. The
dependent variables are the subject-wise standardized test scores of students
taking the 12th grade exams (for the common subjects across both streams)
and is constructed to have a mean of (or close to) zero. All regressors in-
clude the number of days in the temperature bins during the school-year cy-
cle: June-May. All regressions control for the number of days in the precipita-
tion bins. Errors are clustered at the school level. *p<0.1 **p<0.05 ***p<0.01.
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Table 3: Impact of Heat Exposure on Standardized Scores

Standardized Score
(1) (2)

T > 33C: Not Growing −0.012∗∗∗

(0.003)

T 30-33C: Not growing −0.007∗∗∗

(0.002)

T 27-30C: Not growing −0.002∗

(0.001)

T > 33C: Any growing −0.008∗∗∗

(0.003)

T 30-33C: Any growing −0.002
(0.002)

T 27-30C: Any growing −0.0001
(0.001)

T > 33C: School Year −0.010∗∗∗

(0.003)

T 30-33C: School Year −0.005∗∗∗

(0.002)

T 27-30C: School Year −0.001
(0.001)

T > 33C: Not School Year −0.008∗

(0.005)

T 30-33C: Not School Year −0.006
(0.004)

T 27-30C: Not School Year −0.001
(0.003)

Female Control X X
Other Temperature Bins: X X
Fixed Effects
Year X X
School X X
Stream X X
Observations 2,132,635 2,132,635
R2 0.248 0.248

Notes. Estimates are from linear regressions using panel fixed
effects. The dependent variable for all regressions is the stan-
dardized test scores of students taking the 12th grade exams
and is constructed to have a mean of (or close to) zero. All
regressors include the number of days in the temperature bin
by season-school year. All regressions control for the number
of days in the corresponding season-school year precipitation
bins. Errors are clustered at the school level. *p<0.1 **p<0.05
***p<0.01.
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Table 4: Impact of Heat Exposure on Standardized Scores

Standardized Score
Urban Rural

(1) (2)
T > 33C −0.009∗∗∗ −0.007∗∗

(0.003) (0.003)

T 30-33C −0.007∗∗∗ −0.0001
(0.002) (0.002)

T 27-30C −0.002 0.001
(0.001) (0.001)

T 24-27C −0.004∗∗∗ −0.0003
(0.001) (0.001)

T 21-24C −0.003∗∗∗ −0.001
(0.001) (0.001)

T < 18C −0.005∗ −0.003∗

(0.003) (0.002)

Outcome Mean: 0.09 -0.09
Female Control X X
Fixed Effects
Year X X
School X X
Stream X X
Observations 1,232,230 900,405
R2 0.260 0.224

Notes. Estimates are from linear regressions
using panel fixed effects. The dependent vari-
able is the standardized test scores of students
taking the 12th grade exams in urban and ru-
ral areas. All regressors include the number of
days in the temperature bin for the school-year
cycle: June-May. All regressions control for the
number of days in the precipitation bins. Er-
rors are clustered at the school level. *p<0.1
**p<0.05 ***p<0.01.
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Table 5: Impact of Heat Exposure on Number of Negative Food Consumption Shocks

Number of Negative Food Consumption Shocks
(1) (2) (3)

Lag T > 33C −0.006
(0.006)

Lag T 30-33C 0.013∗∗

(0.006)

Lag T 27-30C −0.004
(0.004)

Lag T > 33C: Growing Season −0.026∗

(0.015)

Lag T 30-33C: Growing Season 0.013
(0.009)

Lag T 27-30C: Growing Season −0.014∗

(0.008)

Lag T > 33C: Major Season 0.007
(0.021)

Lag T 30-33C: Major Season 0.016
(0.014)

Lag T 27-30C: Major Season 0.001
(0.011)

Lag T > 33C: Non-Major Season −0.016∗

(0.009)

Lag T 30-33C: Non-Major Season 0.005
(0.012)

Lag T 27-30C: Non-Major Season −0.013∗

(0.007)

Lag T > 33C: Non-Growing Season 0.010
(0.008)

Lag T 30-33C: Non-Growing Season 0.006
(0.009)

Lag T 27-30C: Non-Growing Season 0.003
(0.007)

Outcome Mean 0.871 0.871 0.871
Fixed Effects
Year X X X
Enumeration Area X X X
Observations 10,207 10,207 10,207
R2 0.331 0.332 0.328

Notes. Estimates are from linear regressions using panel fixed effects. The dependent variable is the
number of negative food consumption shocks experienced by the household in a given calendar year.
The regressors represent the number of days in the temperature bins during the previous calendar year.
All regressions control for precipitation bins from the previous calendar year. Errors are clustered at the
enumeration area level. *p<0.1 **p<0.05 ***p<0.01.
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Table 6: Impact of Heat Exposure on Standardized Scores

Standardized Score
Total English Math

(1) (2) (3)
T > 33C −0.010∗∗∗ −0.003∗ −0.001

(0.002) (0.001) (0.001)

T 30-33C −0.005∗∗∗ −0.0003 0.0003
(0.001) (0.001) (0.001)

T 27-30C −0.001 0.001∗∗ 0.002∗∗

(0.001) (0.001) (0.001)

T 24-27C −0.002∗∗∗ 0.0001 0.001
(0.001) (0.0005) (0.001)

T 21-24C −0.002∗∗∗ −0.0004 0.0003
(0.001) (0.0004) (0.001)

T < 18C −0.003∗∗ −0.002∗∗ −0.003∗∗

(0.001) (0.001) (0.001)

Female * T > 33C 0.001∗∗∗ 0.0002 0.001∗∗∗

(0.0002) (0.0002) (0.0002)

Female * T 30-33C 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0004) (0.0003) (0.0003)

Female * T 27-30C 0.0004 0.0001 0.0004∗

(0.0003) (0.0002) (0.0002)

Female * T 24-27C 0.0001 −0.0003∗ 0.001∗∗∗

(0.0002) (0.0002) (0.0002)

Female * T 21-24C 0.0004 0.0001 0.001∗∗

(0.0003) (0.0002) (0.0002)

Female * T < 18C 0.00005 −0.0005∗ 0.001∗∗

(0.0004) (0.0003) (0.0004)

Female −0.598∗∗∗ −0.359∗∗∗ −0.441∗∗∗

(0.058) (0.039) (0.052)

Fixed Effects
Year X X X
School X X X
Stream X X X
Observations 2,132,635 2,132,635 2,132,635
R2 0.248 0.271 0.141

Notes. Estimates are from linear regressions using panel fixed effects. The
dependent variable is the standardized test scores of students taking the 12th
grade exams and is constructed to have a mean of (or close to) zero; we con-
sider the total score in all exams, and then the separate scores by subject. All
regressors include the gender of the student and the number of days in the
temperature bin in the school-year cycle: June-May. All regressions control
for the number of days in the precipitation bins for the school year. Errors are
clustered at the school level. *p<0.1 **p<0.05 ***p<0.01.
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Table 7: Impact of Gender on Absenteeism

Absent from School > 1 Week
(1) (2)

Female −0.035∗∗∗ 0.018
(0.013) (0.017)

Travel Time to School 0.002∗∗

(0.001)

Female X Travel Time to School −0.002∗∗∗

(0.001)

Outcome Mean: 0.063 0.063
Fixed Effects
Year X X
Enumeration Area X X
Observations 5,398 5,393
R2 0.337 0.343

Notes. Estimates are from linear regressions using panel fixed effects.
The dependent variable is whether school going students (5th grade
and above) in the LSMS household survey were absent from school
for more than a consecutive week in the past 6 months. The regressors
identify whether or not the student was female and what the travel
time to school (in minutes) for the student was. Errors are clustered
at the enumeration area level. *p<0.1 **p<0.05 ***p<0.01.
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Table 8: Impact of Heat Exposure on Standardized Scores

Standardized Score
Quartiles

(1) (2) (3) (4)
T > 33C −0.014 −0.003

(0.048) (0.006)

T 30-33C −0.017 −0.005∗ −0.003
(0.015) (0.003) (0.006)

T 27-30C −0.010∗∗∗ −0.001 −0.001 −0.001
(0.003) (0.002) (0.002) (0.006)

T 24-27C −0.003∗∗ −0.002∗ −0.001 −0.007
(0.001) (0.001) (0.002) (0.006)

T 21-24C −0.003∗∗ −0.003∗∗∗ −0.002 −0.007
(0.001) (0.001) (0.002) (0.007)

T < 18C −0.001 −0.001 0.001 −0.017
(0.002) (0.001) (0.008) (0.029)

Outcome Mean: 0.028 0.102 -0.009 -0.133
No of Schools: 300 300 300 299
Mean Days T > 30C: 0 0.152 10.689 107.428
Female Control X X X X
Fixed Effects
Year X X X X
School X X X X
Stream X X X X
Observations 574,115 588,150 650,821 319,549
R2 0.236 0.293 0.234 0.219

Notes. Estimates are from linear regressions using panel fixed effects. The
dependent variable is the standardized test scores of students taking the
12th grade exams. We divide the the schools into quartiles based on the
mean number of days that each school experienced temperatures above
30◦C; the sub-headers represent the subsample of quartile 1-3 and quartile
4. All regressors include the number of days in the temperature bin. All
regressions control for the number of days in the precipitation bins. Errors
are clustered at the school level. *p<0.1 **p<0.05 ***p<0.01.
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Table 9: Impact of Heat Exposure on Standardized Scores

Standardized Score
Quartiles 1-3 Quartile 4

(1) (2)
T > 33C −0.018 −0.003

(0.048) (0.006)

T 30-33C −0.008∗∗∗ −0.003
(0.002) (0.006)

T 27-30C −0.002∗ −0.001
(0.001) (0.006)

T 24-27C −0.003∗∗∗ −0.007
(0.001) (0.006)

T 21-24C −0.003∗∗∗ −0.007
(0.001) (0.007)

T < 18C −0.003∗ −0.017
(0.001) (0.029)

Outcome Mean: 0.039 -0.133
No of Schools: 900 299
Mean Days T > 30C: 3.886 107.428
Female Control X X
Fixed Effects
Year X X
School X X
Stream X X
Observations 1,813,086 319,549
R2 0.252 0.219

Notes. Estimates are from linear regressions using panel
fixed effects. The dependent variable is the standardized
test scores of students taking the 12th grade exams. We
divide the the schools into quartiles based on the mean
number of days that each school experienced tempera-
tures above 30◦C; the sub-headers represent the subsam-
ple of quartile 1-3 and quartile 4. All regressors include
the number of days in the temperature bin. All regressions
control for the number of days in the precipitation bins.
Errors are clustered at the school level. *p<0.1 **p<0.05
***p<0.01.
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Table 10: Impacts of Heat Exposure on Stream Choice

Fraction of Students in Science
Lag 2: T > 33C −0.0001

(0.0001)

Lag 2: T 30-33C −0.0004∗∗∗

(0.0001)

Lag 2: T 27-30C −0.0001
(0.0001)

Lag 2: T 24-27C 0.00002
(0.0001)

Lag 2: T 21-24C −0.0003
(0.0002)

Outcome Mean: 0.63
Female Share Control X
Fixed Effects
Year X
Region X
Observations 9,616
R2 0.322

Notes. Estimates are from linear regressions using panel fixed
effects run at the school level. The dependent variable is the
fraction of students in each school who enroll in the science
stream. All regressors include the number of days in the tem-
perature bin during the time when these students were in their
10th grade. All regressions control for the number of days in
the precipitation bins during the time that the current cohort of
students were in their 10th grade. Errors are clustered at the
region level. *p<0.1 **p<0.05 ***p<0.01.
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Table 11: Impact of Heat Exposure on Grade Progression

Grade Progression (Fraction)
All Male Female
(1) (2) (3)

Lag 1: T > 33C −0.0004 −0.0003 −0.001
(0.0005) (0.0005) (0.0005)

Lag 1: T 30-33C 0.001 0.0005 0.0003
(0.001) (0.001) (0.0004)

Lag 1: T 27-30C −0.0002 −0.0001 0.00004
(0.0003) (0.0004) (0.0003)

Lag 1: T 24-27C 0.00004 0.0001 −0.0002
(0.0002) (0.0002) (0.0003)

Lag 1: T 21-24C 0.0004 0.0005 0.0005
(0.0004) (0.0004) (0.0004)

Lag 1: T < 18C 0.00001 0.0001 −0.0002
(0.0005) (0.0005) (0.0004)

Outcome Mean: -0.016 -0.011 0.017
Female Control
Fixed Effects
Year X X X
Region X X X
Observations 2,482 2,475 2,475
R2 0.015 0.014 0.016

Notes. Estimates are from linear regressions using panel
fixed effects run at the school level. The dependent vari-
able is the fraction of students in each school who enrolled
in grade 12 as compared to the class composition in the
previous year (grade 11). All regressors include the num-
ber of days in the temperature bin during the time when
these students were in their 11th grade. All regressions
control for the number of days in the precipitation bins
during the time that the current cohort of students were
in their 11th grade. Errors are clustered at the region level.
*p<0.1 **p<0.05 ***p<0.01.
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Table 12: Impact of Heat Exposure on Different Outcomes

Dependent Variable
Standardised

Score
Relative

Score (%)
Average
Score (%)

(1) (2) (3)
T > 33C −0.009∗∗∗ −0.104∗∗∗ −0.090∗∗∗

(0.002) (0.024) (0.021)

T 30-33C −0.004∗∗∗ −0.040∗∗ −0.035∗∗

(0.001) (0.016) (0.014)

T 27-30C −0.001 −0.006 −0.005
(0.001) (0.012) (0.010)

T 24-27C −0.002∗∗∗ −0.024∗∗∗ −0.021∗∗∗

(0.001) (0.009) (0.008)

T 21-24C −0.002∗∗∗ −0.026∗∗∗ −0.023∗∗∗

(0.001) (0.007) (0.007)

T < 18C −0.003∗∗ −0.031∗ −0.029∗

(0.001) (0.017) (0.015)

Outcome Mean: 0.01 55.21 49.07
Female Control X X X
Fixed Effects
Year X X X
School X X X
Stream X X X
Observations 2,132,635 2,132,635 2,132,635
R2 0.247 0.287 0.320

Notes. Estimates are from linear regressions using panel fixed
effects. The dependent variables are listed as column headers.
All regressors include the number of days in the temperature
bin for the school-year cycle: June-May. All regressions control
for the number of days in the precipitation bins. Errors are clus-
tered at the school level. *p<0.1 **p<0.05 ***p<0.01.
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Figures

Figure 1: Distribution of Daily Max Temperature Over the Years
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Notes: In this figure, we illustrate the cumulative sum of days within various temperature bins spanning the years 2003-

2019. The calculation involves initially deriving the weighted average of the days in each temperature bin for every unique

school location in our dataset for each year. The weights are determined by the number of students taking the exam in the

respective location. Subsequently, we aggregate the weighted mean of the number of days falling within each temperature

bin over the course of multiple years, encompassing the period from 2003-2019.

32



Figure 2: Impact of Heat Exposure on Test Performance
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Notes: This figure plots the results from Column (2) of Table 1 where we run a fixed effects regression of the standardized

scores of 12th grade students on the number of hot days in each temperature bin (excluding the reference bin) controlling

for precipitation bins as well as the gender of the student. The x-axis represents various temperature bins, while the y-axis

illustrates their respective coefficients. These coefficients signify the effect on standardized test scores resulting from an

additional hot day in the temperature bin of interest compared to the reference bin.

Figure 3: Distribution of Subject-wise Raw Scores in 2018
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Notes: This figure illustrates the distribution of raw scores for the 2018 12th grade exam in four common subjects: civics,

aptitude, math, and english, each assessed on a scale of 0 to 100. Comparable distributions are observed for other years.
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Figure 4: Impact of Heat Exposure on Test Performance by Season
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Notes: This figure plots the results from Column (1) of Table 3 where we run a fixed effects regression of the standardized

scores of 12th grade students on the number of hot days in each temperature bin disaggregated by growing and non-

growing seasons (excluding the reference bin) controlling for precipitation bins as well as the gender of the student. The

x-axis represents various temperature bins, while the y-axis illustrates their respective coefficients. These coefficients sig-

nify the effect on standardized test scores resulting from an additional hot day in the temperature bin x season of interest

compared to the reference bin. We find that the effects for non-growing season are larger than those for the growing season

in the highest temperature bin, although the results are not statistically different.
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Appendix: For Online Publication

Appendix Tables

Table A1: Impact of Heat Exposure on Standardized Scores

Standardized Score
(1) (2) (3) (4)

T > 33C −0.009∗∗∗ −0.009∗∗∗ −0.008∗∗ −0.008∗∗

(0.002) (0.002) (0.003) (0.003)

T 30-33C −0.003∗∗ −0.004∗∗∗ −0.002 −0.002
(0.001) (0.001) (0.002) (0.002)

T 27-30C −0.00004 −0.001 0.001 0.001
(0.001) (0.001) (0.002) (0.002)

T 24-27C −0.002∗∗ −0.002∗∗∗ −0.002∗ −0.003∗

(0.001) (0.001) (0.001) (0.001)

T 21-24C −0.002∗∗ −0.002∗∗∗ −0.002∗ −0.002∗

(0.001) (0.001) (0.001) (0.001)

T < 18C −0.003∗∗ −0.003∗∗ 0.0002 0.0003
(0.001) (0.001) (0.002) (0.002)

Female Control X X X
Avg T in Exam Week Control X X
Age Control X
Fixed Effects
Year X X X X
School X X X X
Stream X X X X
Observations 2,132,635 2,132,635 1,082,496 1,082,496
R2 0.189 0.247 0.331 0.338

Notes. Estimates are from linear regressions using panel fixed effects. The dependent
variable is the standardized test scores of students taking the 12th grade exams and is
constructed to have a mean of (or close to) zero. All regressors include the number of
days in the temperature bin for the school-year cycle: June-May. All regressions control
for the number of days in the precipitation bins. Errors are clustered at the school level.
*p<0.1 **p<0.05 ***p<0.01.
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Table A2: Impact of Heat Exposure on Standardized Score

Standardized Score
5 Km Buffer 20 Km Buffer

(1) (2)
T > 33C −0.009∗∗∗ −0.009∗∗∗

(0.002) (0.002)

T 30-33C −0.004∗∗∗ −0.004∗∗∗

(0.001) (0.001)

T 27-30C −0.001 −0.001
(0.001) (0.001)

T 24-27C −0.002∗∗∗ −0.002∗∗∗

(0.001) (0.001)

T 21-24C −0.002∗∗∗ −0.002∗∗∗

(0.001) (0.001)

T < 18C −0.003∗∗ −0.003∗∗

(0.001) (0.001)

Female Control X X
Fixed Effects
Year X X
School X X
Stream X X
Observations 2,132,635 2,132,635
R2 0.247 0.248

Notes. Estimates are from linear regressions using
panel fixed effects. The dependent variable the stan-
dardized test scores of students taking the 12th grade ex-
ams across different school-buffer constructions and has
a mean of (or close to) zero. All regressors include the
number of days in the temperature bin. All regressions
control for the number of days in the precipitation bins.
Errors are clustered at the school level. *p<0.1 **p<0.05
***p<0.01.
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Table A3: Impact of Heat Exposure on Standardized Scores

Standardized Score
No Lags 1 Year Lags 2 Year Lags 3 Year Lags

(1) (2) (3) (4)
T > 33C −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗

(0.002) (0.002) (0.002) (0.002)

T 30-33C −0.004∗∗∗ −0.004∗∗∗ −0.005∗∗∗ −0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

T 27-30C −0.001 −0.001 −0.002∗ −0.002∗

(0.001) (0.001) (0.001) (0.001)

T 24-27C −0.002∗∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)

T 21-24C −0.002∗∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.001) (0.001) (0.001) (0.001)

T < 18C −0.003∗∗ −0.003∗∗ −0.003∗∗ −0.003∗∗

(0.001) (0.001) (0.001) (0.001)

Female Control X X X X
Fixed Effects
Year X X X X
School X X X X
Stream X X X X
Sum T > 33C −0.009 −0.01 −0.007 −0.004
Sum T 30-33C −0.004 −0.005 −0.003 0
Observations 2,132,635 2,132,635 2,132,635 2,132,635
R2 0.247 0.248 0.250 0.251

Notes. Estimates are from linear regressions using panel fixed effects run at
the school level. The dependent variable is the standardized test scores of stu-
dents taking the 12th grade exams and is constructed to have a mean of (or
close to) zero. All regressors include the number of days in the temperature
bin. All regressions control for the number of days in the precipitation bins
and the lags of temperature bins as specified in the sub-column headers. Er-
rors are clustered at the region level. *p<0.1 **p<0.05 ***p<0.01.
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Table A4: Impact of Heat Exposure on Standardized Scores

Standardized Score
Natural Science

Stream
Social Science

Stream
(1) (2)

T > 33C −0.009∗∗∗ −0.009∗∗∗

(0.002) (0.003)

T 30-33C −0.005∗∗∗ −0.002
(0.001) (0.002)

T 27-30C −0.002∗ 0.001
(0.001) (0.001)

T 24-27C −0.003∗∗∗ −0.001
(0.001) (0.001)

T 21-24C −0.002∗∗∗ −0.002∗

(0.001) (0.001)

T < 18C −0.002∗ −0.005∗∗∗

(0.001) (0.002)

Female Control X X
Fixed Effects
Year X X
School X X
Stream
Observations 1,359,565 773,070
R2 0.269 0.234

Notes. Estimates are from linear regressions using
panel fixed effects. The dependent variables are the
standardized test scores of students taking the 12th
grade exams by stream and is constructed to have a
mean of (or close to) zero. All regressors include the
number of days in the temperature bins during the
school-year cycle: June-May. All regressions control
for the number of days in the precipitation bins. Er-
rors are clustered at the school level. *p<0.1 **p<0.05
***p<0.01.
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Table A5: Impact of Heat Exposure on Performance in the Sciences

Standardized Score

Physics Chemistry Biology
General
Science

(1) (2) (3) (4)
T > 33C −0.005∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.003

(0.002) (0.002) (0.002) (0.004)

T 30-33C −0.002 −0.004∗∗∗ −0.004∗∗∗ −0.002
(0.001) (0.002) (0.002) (0.002)

T 27-30C 0.001 −0.002∗ −0.001 0.0003
(0.001) (0.001) (0.001) (0.002)

T 24-27C −0.001 −0.003∗∗∗ −0.003∗∗∗ 0.001
(0.001) (0.001) (0.001) (0.001)

T 21-24C 0.001 −0.001∗∗ −0.001∗∗ −0.0002
(0.001) (0.001) (0.001) (0.001)

T < 18C −0.001 −0.001 −0.0002 0.002
(0.001) (0.001) (0.001) (0.003)

Female Control X X X X
Fixed Effects
Year X X X X
School X X X X
Stream
Observations 1,169,633 1,169,633 1,169,633 189,932
R2 0.162 0.177 0.175 0.139

Notes. Estimates are from linear regressions using panel fixed effects.
The dependent variables are the subject-wise standardized test scores of
students taking the 12th grade exams for the science stream and is con-
structed to have a mean of (or close to) zero. All regressors include the
number of days in the temperature bins during the school-year cycle:
June-May. All regressions control for the number of days in the precip-
itation bins. Errors are clustered at the school level. *p<0.1 **p<0.05
***p<0.01.
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Table A6: Impact of Heat Exposure on Performance in the Social Sciences

Standardized Score

Economics History Geography
Social

Science
(1) (2) (3) (4)

T > 33C −0.005∗∗ −0.007∗∗∗ −0.004∗ −0.002
(0.002) (0.002) (0.002) (0.004)

T 30-33C −0.002 −0.001 0.002 0.001
(0.002) (0.002) (0.001) (0.002)

T 27-30C 0.002 0.002 0.003∗∗∗ 0.002
(0.001) (0.001) (0.001) (0.002)

T 24-27C −0.001∗ −0.001 0.00004 0.001
(0.001) (0.001) (0.001) (0.001)

T 21-24C −0.001 −0.001 −0.0001 0.001
(0.001) (0.001) (0.001) (0.001)

T < 18C −0.002 −0.003∗ −0.003∗∗ −0.001
(0.001) (0.001) (0.001) (0.003)

Female Control X X X X
Fixed Effects
Year X X X X
School X X X X
Stream
Observations 571,536 571,536 571,536 201,534
R2 0.175 0.157 0.202 0.150

Notes. Estimates are from linear regressions using panel fixed effects.
The dependent variables are the subject-wise standardized test scores
of students taking the 12th grade exams for the social science stream
and is constructed to have a mean of (or close to) zero. All regressors
include the number of days in the temperature bins during the school-
year cycle: June-May. All regressions control for the number of days in
the precipitation bins. Errors are clustered at the school level. *p<0.1
**p<0.05 ***p<0.01.
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Appendix Figures

Figure A1: Percentage Change in Average Number of Days with T > 33◦C Over the Years
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Notes: The solid line illustrates the percentage change in the mean number of days with T > 33◦C over the years. We

use the number of hot days in 2003 as our index. We compute the mean number of hot days in each year by deriving the

weighted average of the days in the highest temperature bin for every unique school location in our dataset for each year.

The weights are determined by the number of students taking the exam in the respective location. We then compute the

percentage change in the average number of hot days in each year as compared to the average number of hot days in 2003.

The temperature data utilized in this analysis is sourced from the ERA5-Land dataset. The dashed line represents no change

in the number of hot days.
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Figure A2: Distribution of Daily Max Temperature Over the Years by Region
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Notes: In this figure, we illustrate the cumulative sum of days within various temperature bins spanning the years 2003-

2019 for each region in Ethiopia. The calculation involves initially deriving the weighted average of the days in each

temperature bin for every unique school location in our dataset for each year and each region. The weights are determined

by the number of students taking the exam in the respective location. Subsequently, we aggregate the weighted mean of

the number of days falling within each temperature bin over the course of multiple years, encompassing the period from

2003-2019, for each region. The temperature bins were defined using ERA5 Land dataset.

Figure A3: Map of Mean Standardised Scores by School

Notes: We map the mean standardized score of students in distinct geographic locations. The mean is computed by ini-

tially averaging the standardized scores for each geographic location in each year and subsequently calculating the overall

average across multiple years for each specific geographic location. These standardized scores are derived from data en-

compassing 2.13 million test-takers who participated in the EHEECE exam in Ethiopia between 2003 and 2019.
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Figure A4: Map of Mean Days with Temperature Above 33◦C by School

Notes: We calculate the mean residual from a regression model, incorporating the number of days in the highest temper-

ature bin (T >33◦C) as the dependent variable. This regression includes fixed effects for stream, year, and school as the

regressors, with standard errors clustered at the school level. To obtain the mean residual, we initially compute the resid-

ual for each unique geographic location in each year. Subsequently, we calculate the overall average across multiple years

(from 2003 to 2019) for each geographic location. This residual allows us to capture the variation in the number of days in

the highest temperature bin that remains unexplained by the fixed effects. The temperature data utilized in this analysis is

sourced from the ERA5-Land dataset.
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