Public Disclosure Authorized

Public Disclosure Authorized

Poricy RESEARCH WORKING PAPER 10255

Fewer Questions, More Answers

Truncated Early Stopping for Proxy Means Testing

Tim Oblenburg
Juul Pinxten
Daniel Fricke
Fabio Caccioli

WORLD BANKGROUP
Poverty and Equity Global Practice
December 2022




PoLicy ReEsearcH WORKING PaPER 10255

Abstract

The assignment of social programmes to their target pop-  maintaining predictive accuracy close to a standard proxy
ulation, known as targeting, is key to effective policy = means test baseline. Applying the approach to Indone-
implementation. Proxy means testing is a widely used tar-  sian data, simulation of a 40 percent population coverage
geting approach where means testing is infeasible due to ~ programme shows that targeting questionnaires could be
economic informality. This paper proposes a novel, prac-  shortened by 61 percent while maintaining PMT-level
tically feasible assessment approach that aims to reduce  accuracy. A case study of a large health insurance pro-
average proxy means test data collection costs, or allow  gramme in an urban area suggests that the share of intended
more extensive data collection within a given resource enve-  beneficiaries who are among the targeted population can
lope. Combining variable selection and prediction intervals, ~ potentially be increased from 65.6 percent to 78.3 percent
it develops a household-level truncated early stopping algo-  if enumerators conducted more of the shorter surveys that
rithm, which can reduce average interview length while  the truncated early stopping algorithm generates.

This paper is a product of the Poverty and Equity Global Practice. It is part of a larger effort by the World Bank to provide
open access to its research and make a contribution to development policy discussions around the world. Policy Research
Working Papers are also posted on the Web at htep://www.worldbank.org/prwp. The authors may be contacted at email@
timohlenburg.com, jpinxten@worldbank.org, d.fricke@ucl.ac.uk, and f.caccioli@ucl.ac.uk.

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Produced by the Research Support Team



Fewer Questions, More Answers:
Truncated Early Stopping for Proxy Means Testing

Tim Ohlenburg*!, Juul Pinxten?, Daniel Fricke!, and Fabio Cacciolil

"University College London (UCL)
*World Bank

JEL 132, C83, 022
Keywords proxy means testing, adaptive survey design, policy simulation

*This paper has benefitted from the patient guidance and comments of Utz Pape,
Virgi Agita Sari, Gracia Hadiwijaja, and Sailesh Tiwari. We are also grateful to review-
ers Takaaki Masaki, Matthew Wai-Poi, and Phillippe Leite, whose constructive feedback
improved contents and presentation.



1 Introduction

Low- and middle-income countries spend an average of 1.5% of GDP on so-
cial assistance [World Bank, 2022]. These public programmes aim to protect
the poor and vulnerable from shocks, help them cope with crises, support
investment in human capital and enjoy a decent standard of living through-
out the lifecycle [ILO, 2021]. Policymakers design a social protection pro-
gramme with a specific target population in mind. A crucial aspect of policy
implementation, commonly referred to as the targeting problem, is how to
identify households or individuals who are members of the target population
and therefore eligible for the programme. Due to limited fiscal resources,
social assistance tends to be limited to the most economically disadvantaged
segment of society. Consequently, socio-economic criteria are a prevalent el-
igibility category [Grosh et al., 2022], whether applied in isolation — such
as in a food subsidy programme for the poor — or in combination with an-
other eligibility category, such as conditional cash transfer programmes that
support poor families with school-age children.

In settings where nearly all households’ income is reported to the tax au-
thority, means testing via income tax records can determine socio-economic
eligibility. However, countries’ average informal employment share is above
50% in Asia Pacific, South Asia and Sub-Saharan Africa, while the poverty
rate of the informally employed is around six times higher than that of those
in formal employment [Ohnsorge and Yu, 2021]. This paper is concerned
with such settings, where means testing is unviable due to a lack of tax
records among poorer households. There, proxy means testing (PMT) has
become a widespread targeting approach since its description by Grosh and
Baker [1995].

PMT is a statistical approach that relies on two large-scale surveys. The
first, conducted at regular intervals in most countries, is a socio-economic
population sample survey that serves as training data for the PMT pre-
dictive model. The second is a targeting survey that collects current data
to determine household eligibility. Due to the large population coverage
of many social protection programmes, targeting surveys typically need to
be administered to a significant share of the population!. Given the high
cost of such extensive, country-wide data collection efforts, targeting sur-
veys are typically conducted on a multiannual basis when carried out as
a national survey sweep [Lindert et al., 2020]. Infrequent surveys delay
assessment of new programme applicants and re-assessment of existing ben-
eficiaries, resulting in programmes’ irresponsiveness to changing household
circumstances.

If budgets were not limited, the most accurate PMT approach would be

!For example, the social registries that store targeting data covered 87%, 75% and 40%
of Pakistan’s, Brazil’s and Indonesia’s populations respectively in 2015-17 [Leite et al.,
2017], amounting to total records of ca. 360 million people.



to assess all households, census-like, and to apply an extensive questionnaire
that asks all potentially relevant questions. In practice, administrative bud-
gets of social protection programmes are limited, so that neither all house-
holds will be assessed nor all questions asked. When eligible households are
missed from the assessment process, exclusion errors will arise no matter
how accurate the PMT model. For Indonesia, World Bank [2012] identifies
insufficiently broad assessment as a key area for improving targeting out-
comes, and its simulation shows that a full survey would lower exclusion
error significantly. Since budget constraints normally preclude universal as-
sessment, a practical option may be to streamline the data collection process
by asking fewer questions. If this could be done without significantly com-
promising model accuracy, more households could be assessed for the same
budget, which would improve targeting outcomes at no additional cost.

The aim of this paper is to develop such a method, achieving a similar
level of targeting accuracy as a standard PMT while asking fewer questions.
We propose an alternative to the PMT algorithm that applies a measure of
predictive uncertainty to household consumption estimation. We use pre-
diction intervals of a quantile regression-style estimator to identify those
households for which consumption is most likely above or below the socio-
economic eligibility threshold. By adjusting the intervals as data is collected,
enumeration can be stopped early (in the sense that not all questions need
to be asked) for a substantial share of households. In addition, questionnaire
length is limited to the most predictive subset of questions. Our approach
combines these mechanisms to expose a trade-off between predictive accu-
racy and questionnaire length that policymakers can set according to their
preferences or constraints. In contrast to more computationally demanding
methods proposed for an adaptive poverty classification, its limited com-
putational requirements make deployment feasible on the modest mobile
devices commonly used for digital data collection in low- and middle income
countries. The financial resources freed up by this approach could thus be
directed to more regular or more extensive targeting surveys.

In our empirical application for Indonesia, we find that the reduction in
questionnaire length compared with the PMT is rather substantial. For a
40% coverage programme, the number of questions can be reduced by 61%
(from an average of 22.8 to 8.9) when maintaining the exclusion error rate
at the PMT baseline of 26.44%. Tentative estimates for an urban setting,
namely Jakarta, in which we simulate a health insurance programme with
50% population coverage, suggest an increase in the proportion of eligible
recipients from 65.6% under PMT-based assignment to 78.3% under the
proposed method, assuming enumerators can survey additional households
by deploying shorter, adaptive questionnaires.

The paper is structured as follows. Section 2 reviews the relevant liter-
ature, outlines the PMT process, and provides context for the data used in
subsequent simulations. Section 3 describes the components and function-



ing of our novel targeting method. The results in Section 4 compare the
performance of our algorithm against a policy baseline. The Jakarta case
study in Section 5 presents an approach to maximize the inclusion of in-
tended beneficiaries by balancing survey coverage and accuracy in an urban
setting. Finally, Section 6 discusses the results and their implications.

2 Background

This section describes the standard approach to PMT as the foundation
of our proposed method. It sets the scene by linking the research to the
literature, and by framing PMT as a predictive modelling task with specific
design considerations. It then describes the PMT algorithm and provides
some context on its use in Indonesia, including the data collected for its
implementation.

2.1 Literature

This paper proposes a novel algorithmic approach to targeting and its gen-
eral context lies within the literature on targeting social programmes, and
particularly the PMT approach. The computational method and emphasis
on predictive modelling link it to the growing literature on machine learning
methods in targeting. The final related area we touch on is the literature
on adaptive designs for survey cost reduction.

The seminal paper on PMT as a targeting mechanism is the work of
Grosh and Baker [1995], who described a statistical welfare estimation ap-
proach that had been developed in Chile in the 1980s. With PMT’s increas-
ing popularity, Coady et al. [2004] conducted a systematic cross-country
assessment that suggested it to be the best option where means testing is in-
feasible, but that its effectiveness is often limited and very context-specific.
More recently, Brown et al. [2018] found that PMT could stand for Poor
Means Test, as targeting errors are often so high that untargeted benefit
programmes or simpler scorecard methods work nearly as well across their
country examples.

Indonesia has long been a productive place for targeting research, sup-
ported by progressive policymakers, their relationships with researchers and
the international development community. An influential output of this col-
laboration was Alatas et al. [2012], who showed in a randomized controlled
trial setting that PMT results in somewhat better targeting outcomes than
community-based targeting, but only when a consumption measure rather
than community perceptions of poverty were used as eligibility yardstick.
Relevant to survey design is an experiment by Banerjee et al. [2020], which
suggested that the inclusion of certain assets in a targeting survey does not
distort Indonesians’ buying behaviour, but that there is evidence of strate-
gic misreporting. Similarly, Camacho and Conover [2011] in Latin America



and Niehaus et al. [2013] in South Asia find evidence of manipulation on the
survey administration side. Tohari et al. [2019] made a case for considering
the full set of programmes with socio-economic criteria when conducting
targeting simulations via their extensive linking of Indonesian survey data.

A growing literature considers PMT from a predictive modelling per-
spective. McBride and Nichols (2018) highlighted the importance of using
out-of-sample validation data in model selection, which has been adopted in
Indonesia. A simplified scorecard approach supported by machine learning
prediction was suggested by Kshirsagar et al. [2017], who showed impres-
sive results with very limited data collection needs for Zambian data. A
systematic evaluation of machine learning methods for construction of the
predictive model in PMT was carried out by Areias and Wai-Poi [2022] with
data from 12 African countries, but it found that accuracy gains tend to
be limited and context specific; no clear machine learning works best across
the board. A similar conclusion emerged from a study of Indonesia’s PMT
model [Ohlenburg, 2020].

The model presented here has a household-specific stopping criterion as
its adaptive component. Adaptive methods link to extensive literatures on
the design of experiments, adaptive algorithms and active learning. As an
example of the latter, Saar-Tsechansky et al. [2009] studied active feature
acquisition when data collection is costly and variables differ in their in-
formation value. They proposed a framework that aims to maximize the
expected utility of each data item and tailors the sequence and length of
data acquisition to each instance, achieving a cost reduction for a given
level of accuracy.

A line of research that focuses on the aspect of fairness in targeting
emerged in the work of Noriega-Campero et al. [2020]. It puts an emphasis
on achieving equitable accuracy rates across subgroups of the population,
thereby avoiding systematic disadvantages in programme eligibility for spe-
cific groups. In contrast to the evidence of limited accuracy improvements
mentioned in the machine learning for targeting literature mentioned above,
this work also suggests scope for meaningful improvements in targeting ac-
curacy from changes in data preparation, such as the use of a deep feature
embedding, and predictive modelling methods including neural networks.

Bakker et al. [2019] pursued the fairness theme further in a paper that
leverages reinforcement learning for selection of fair targeting questions that
tailor the questionnaire sequence to each household according to group mem-
bership and other characteristics. Closely related to this paper is Bakker
et al. [2021], an adaptive design that computes a household-specific sequence
of questions and stops when a predictive certainty threshold is met in clas-
sifying households as poor or non-poor. Our approach differs in the use of
a uniform question sequence and the prediction of a continuous consump-
tion level. Estimation of the household consumption level enables us to rank
households, which is important for adjusting eligibility to meet coverage tar-



gets and for the common case of multi-programme assessment highlighted
by Tohari et al. [2019].

In view of the huge logistical scale of many targeting surveys, sample
population surveys are perhaps the most closely related information col-
lection exercise. Looking at their economic aspects, Groves and Heeringa
[2006] proposed a responsive survey design to reduce survey cost while main-
taining accuracy. Focusing on settings with cost and operational constraints
on data collection, Pape and Mistiaen [2018] proposed an effective imputa-
tion approach to estimate the population distribution of consumption rather
than a full LSMS-style survey. A similar focus on a reduced length survey
is Christiaensen et al. [2021], who investigated the use of components of
consumption to estimate household values but find both theoretical and
empirical problems with this approach.

2.2 PMT design
Three essential design criteria, echoed in Grosh et al. [2022], shape PMT:

e Accuracy. Identifying the intended beneficiaries accurately is the es-
sential paradigm of a targeting mechanism.

e (ost. The multiannual nation-wide PMT survey sweeps common in
low- and lower-middle income countries require major fiscal outlays.
The resource needs of on-demand registration, which countries with
sufficient administrative capacity tend to invest in, are also high and
imply the need for concise surveys that economize enumerator time.

o Verifiability. Survey responses determine PMT outcomes, creating a
monetary incentive for misreporting personal and household charac-
teristics towards responses that are associated with poverty?. As a
result, targeting surveys are often restricted to variables that are ob-
servable by enumerators, such as physical assets, or that are verifiable
via documentary evidence.

In comparison to other commonly used targeting methods such as ge-
ographic targeting, community-based targeting, means testing or hybrid
means testing, PMT uses easy-to-verify characteristics. It is most appro-
priate when informality is high and when some form of household specific
ranking is desired. At lower levels of informality in an economy, means or
hybrid means tests would be more appropriate and yield higher accuracy
than a PMT [Grosh et al., 2022].

*Banerjee et al. [2020] provide evidence of such strategic behaviour, which creates an
unfair advantage for those willing to be dishonest.



2.2.1 PMT process

To understand how a PMT aims to achieve these design considerations, we
break the approach down into its components. A PMT is a combination of
survey and statistical modelling work. It can be described as illustrated in
fig. 1:

1) Population  2) Pre-selection 3) Feature 4) Variable 5) Modelling  6) Targeting survey
sample survey & preparation engineering selection & prediction
) . - e
/ / . f(X) -
Raw survey Coded New Selected - Trained Household
data variables features features . model - responses
R :f—’ ’ ‘*
Consumption Consumption Predicted
module per person consumption

Figure 1: PMT modelling stages

1. Population sample survey. The country’s statistics authority conducts
a nationally representative survey to monitor socio-economic condi-
tions, independently of the PMT. This survey has two elements from
a PMT perspective: (a) a consumption module that is aggregated to
the dependent variable, and (b) the remainder of the survey contains
the set of potential independent variables.

2. Pre-selection & preparation. In variable pre-selection, a subset of the
non-consumption variables is chosen. As per the design criteria, it
should be both verifiable and also avoid perverse incentives for be-
havioural changes that may ultimately be harmful, such as “do your
children attend school regularly?”

3. Feature engineering. The creation of additional features, such as vari-
able transformations, interaction terms, group markers etc. is an im-
portant aspect of predictive modelling in data-constrained settings.

4. Variable selection. The combined set of potential features that emerges
from step 3 is usually large, which would result in high survey costs if
all were included in the targeting survey. The task of variable selection



is to identify those features — denoted as X — that offer most predictive
power. Some approaches, such as stepwise regression, perform the
selection simultaneously with model building, but the two tasks can
also be split.

5. Modelling. The modelling step involves the development of a super-
vised learning model f(X) that predicts consumption per household
member. Below we expand on the PMT approach to variable selection
and modelling, and then propose an adjusted algorithm.

6. Targeting survey & prediction. Operationalizing a PMT requires the
set of variables X to be queried from a list of potential beneficiaries.
In addition to the features, this survey may include household char-
acteristics that determine categorical programme eligibility, such as
the number of school-age children, verification of household charac-
teristics or identity via inspection of administrative documents. The
model f(X) is applied to produce consumption estimates for the set
of potential beneficiaries. Combining categorical and socio-economic
eligibility, the list of beneficiaries is determined either by a ranking of
household values (in case of a beneficiary quota) or via an absolute
threshold that assigns eligibility if a given household’s income falls
below it.

To consider the link between these steps and the design considerations
outlined before, note that both cost and verifiability are influenced by the
questionnaire design of the targeting survey. The number and detail of ques-
tions and the associated verification routines are an important cost lever,
especially in urban areas where travel times between households are short
for enumerators. In terms of the PMT process shown in fig. 1, verifiability
is considered in the pre-selection step. The variable selection aspect of the
modelling step also influences costs by shrinking the volume of questions.
The implicit policy objective of the PMT algorithm is to achieve the best
possible accuracy for a set of pre-selected questions. As such, the emphasis
of the standard PMT approach is accuracy, rather than on cost reduction.

The focus of this paper is on modelling, but note that targeting survey
design and eligibility determination are also impacted by modelling choices:
the targeting survey consists primarily of variables selected, and the pre-
dictive model is used to score eligibility. The key statistical challenge in
PMT design is model selection, particularly to limit the number of indepen-
dent variables without sacrificing accuracy. The number of possible variable
combinations is enormous in most settings due to the wide extent of the
sample population survey. It is computationally infeasible to try out any
but a fraction of these combinations within a chosen predictive model, and
PMT manages this challenge with the following algorithm.



2.3 PMT algorithm

PMT uses a ‘greedy’ approach to break the intractable variable selection
problem down into a sequence of manageable tasks. At each step, it selects
the best currently available option, until a stopping criterion is triggered.
Such a myopic procedure can result in a selection that is very different to the
optimal subset. However, the lack of theoretical guarantees is outweighed by
its feasibility and results that tend to be credible, as evidenced by widespread
policy adoption. A further benefit from the perspective of this paper is that
a greedy algorithm produces a sequence of nested variable sets, which is a
requirement for the adaptive approach laid out below. The original PMT
algorithm, implicit in Grosh and Baker [1995], uses stepwise regression as
the basic algorithm. It consists of the following key components:

e Predictive model. Ordinary least squares (OLS) regression is the workhorse
of PMT. Starting with an intercept, one OLS model is trained for each
un-queried variable.

e Selection criterion. The convention in stepwise regression tends to be
the use of the Bayesian or Akaike information criterion for in-sample
model selection [Friedman et al., 2001]. In forward selection, each
variable is considered in turn, and that which provides the largest
increase in the information criterion is added to the current variable
set.

e Stopping criterion. Variable selection continues until the best avail-
able model in the current step offers no improvement in the chosen
information criterion.

The PMT algorithm is described algorithm 1 below, where X is a design
matrix with partitions, Xge;, Ximp, and Xceng are column-wise partitions
thereof, y is the consumption level per household member that PMT esti-
mates to determine eligibility, f() is an OLS predictive model, AIC' is the
Akaike information criterion [Akaike, 1998].

2.4 Data and background
The Indonesia context

Indonesia uses a social registry to implement its PMT for targeting mul-
tiple programmes. Much of the country’s population lives clustered above
the poverty line and despite marked improvements in welfare, vulnerability
remains substantial. In 2018, the poverty rate was 9.8%, but 28% of Indone-
sians lived below 1.5 times the poverty line. As a result, a relatively small
income shock can push around 20% of Indonesian households into poverty.
Those living above this vulnerability line but below 3.5 times poverty line



Algorithm 1 Standard PMT (forward selection)
Input: Training data (X,y)
Xsel +—1
fO + £fit(Xser, y) > Predictive model
ysel «— f(Xsel)
(Xtmp, ytmp) <~ (Xsela S’sel)
while 3X. ; € X, ¢ X, do:
for each X. ; € X, ¢ X, do:
Xcand A append(Xsela X:,j)
f() A fit(Xcand7 y)
ycand < f(Xcand)

if AIC(y,¥cand) < AIC(y,¥tmp) then: > Selection criterion
(Xtmpa ytmp) < (Xcandv ycand)

end if

end for

if AIC(y,Yimp) >= AIC(y,¥se1) then: > Stopping criterion
break

end if

(Xsely ysel) <~ (Xtmp7 ytmp)

end while

comprise 46%, indicating that about 75% of the population live on incomes
below middle- and upper-class levels. The consumption distribution in fig. 2
shows how tightly clustered the consumption level of a large part of the pop-
ulation is, in turn highlighting the challenge of targeting social assistance
programs to the poorest.

The country’s PMT was revised in 2015 to consist of 514 distinct district-
level models, to account for the differences within a nation that spans geo-
graphically and economically diverse regions. Since the introduction of the
Unified Database for Targeting (now referred to as DTKS), improved tar-
geting outcomes were seen for social protection programmes that adopted
it [World Bank, 2017]. The country’s first unconditional cash transfer in
2005 covered more than a third of the population with the aim to protect
them from a reduction in the fuel subsidy. Beneficiary incidence — the share
of total beneficiaries found in a welfare grouping — in the poorest 20% of
the population comprised 36%. When an unconditional cash transfer was
launched for a third time in 2013, its coverage was about 40 percent, though
beneficiary incidence increased to 40%. Similarly, a conditional cash trans-
fer for families launched in 2007 saw an increase in beneficiary incidence in
the poorest 20% from 39% to 44% between 2010 and 20183. Its targeting

3Based on Holmemo et al. [2020] and World Bank staff calculations from SUSENAS
2010/2018.
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Figure 2: Indonesia’s distribution of household consumption per capita, 2018

Source: Holmemo et al. [2020], World Bank staff calculations from SUSENAS 2018

outcomes are on par with similar programs around the world, though ex-
clusion errors remain a major issue. Whilst the programme allocates over
71% of total program benefits to the poorest 40%, about one third of eligi-
ble households in the poorest decile still do not receive the program due to
being excluded from consideration or being misclassified as non-poor.

Survey questions

The primary data source for Indonesia’s PMT and for this paper is the
National Socio-Economic Survey (SUSENAS). Each year of this bi-annual
population sample survey contains responses from around 300,000 individ-
uals and is representative of the country’s 514 districts. Stratified by year
and district, the survey rounds for the five years of 2015-19 are split 80-20
into training and test sets of circa 1.2 and 0.3 million observations respec-
tively. SUSENAS includes an extensive consumption module and a living
conditions module from which the targeting survey questions are drawn. In
the modelling, the consumption data are adjusted for prices and expressed
as a logarithm per household member. The targeting survey mirrors the
DTKS social registry administered by the Ministry of Social Affairs. Ta-
ble 1 displays the variables that comprise the feature set.
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Table 1: Overview of Indonesian targeting survey variables

Type Theme Variables included

Core Demographics ~ Household size & HH size?, number of
people by age groups by gender, ur-
ban/rural, family structure, family smart
card

Optional Housing Materials used in the floor, wall, roof,
source of drinking water and cooking wa-
ter, type of lighting & cooking fuel, toi-
let facilities, septic tank, floor space per
capita, ownership status.

Assets Household ownership of: motorcycle,
car, computer, fridge, boat, motorboat,
phone, water heated, air conditioning

Education Household members’ total levels of educa-
tional attainment and enrolment
Employment Employment status, employment sectors

Baseline PMT

The Indonesian PMT implemented in the country’s social registry provides
the baseline method for the early stopping algorithm’s performance. Its
construction uses the data described above, and follows the canonical PMT
approach in Algorithm 1 except for two significant changes. The first is in
line with McBride and Nichols [2018], who pointed out that PMT is an out-
of-sample prediction task and that a cross-validation approach to variable
selection leads to better performance than in-sample measures such as in-
formation criteria. Accordingly, we substitute selection via an information
criterion with 5-fold cross-validation and a mean squared error (MSE) selec-
tion criterion. The stopping criterion is triggered when the cross-validated
error no longer declines. MSE is the preferred metric as it aligns with the
objective function of predictive model OLS*. The second change is to start
estimation from a set of core questions required for administrative reasons
or known up front. The rationale is that the algorithm should leverage
both mandatory and pre-existing data to achieve a higher starting accu-
racy, rather than to ignore available information and start estimation from
scratch. Table 1 displays the assignment of the two variable types.

A separate PMT model is built for each of the 514 districts. Although our
baseline follows the current policy practice, there are also minor differences

* Areias and Wai-Poi [2022] show that optimizing for MSE does not necessarily minimize
EER, which is coverage-level dependent, but it provides a consistent objective for multi-
programme targeting across coverage levels

12



in its construction in terms of the data, and it should not be understood
as equivalent to the official PMT. The adjustments include use of different
years of SUSENAS to the current set, corresponding to data available when
this project was initiated, as well as the simplification of the dataset. We
eliminate a number of household demographic and work status interaction
terms that were too numerous for the sequential approach proposed below,
while offering only a marginal predictive gain. Despite these differences, the
targeting metrics are of broadly comparable magnitude®, and we would not
expect a change in the qualitative conclusions if the current PMT were used
instead.

3 Methods

We already identified accuracy, cost and verifiability as the three major
design considerations of a statistical targeting method. An additional con-
sideration for methods that require on-the-fly prediction in the resource-
constrained, often geographically remote setting of PMT deployment is that
they need to be computationally feasible. The approaches proposed here
meet this criterion by virtue of being relatively simple to implement and de-
ploy on hardware with modest storage, memory and computational power
at inference time. If we consider verifiability to be embedded in the selec-
tion of variables that can be queried reliably, accuracy and cost remain as
desirable outcomes. A more extensive variable set improves the predictive
power of household data, as long as the additional variables contain addi-
tional information about its consumption level, but it also requires higher
collection cost. Consequently, statistical targeting requires a choice along
the length-accuracy trade-off in a resource-constrained setting.

The standard PMT approach described above has become widespread
since its publication by Grosh and Baker [1995] to design models that use a
moderate number of explanatory variables that also achieve a suitable level
of targeting accuracy. In its pure form of automated variable selection, it
selects the point on the accuracy-vs-enumeration-cost spectrum that max-
imizes model accuracy. This section revolves around the idea that other
points — and especially earlier points — along the variable sequence should
also be considered. A shorter questionnaire may be less accurate, yet it may
result in lower overall exclusion due to the consideration of more households.
We suggest methods which replace the single point with a range of options
that allow policymakers to select a length-accuracy profile that is suitable
for their conditions.

®Klasen et al. [2016] estimated exclusion errors for a forward stepwise regression model
of 27% for a simulated 50% program coverage. The forward stepwise model constructed
mirrors closely the approach taken in generating PMT rankings in the update of the
UDB/DTKS in 2015. Appendix A shows a PMT exclusion error rate of 21% at 50%
coverage.
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This section introduces three approaches. The first, truncated question-
naires, is a family of methods that includes the standard PMT, and which
varies questionnaire length uniformly for all respondents. The second, early
stopping, employs a measure of predictive uncertainty as a household-level
stopping criterion. Third, Truncated Early Stopping (TrESt), combines
the other two methods to leverage their respective strengths. Before an
explanation of the methods, the first subsection describes two modelling
preliminaries.

Modelling preliminaries

Predictive model In line with standard econometric practice, OLS re-
gression has been the predictive model of choice in the PMT literature. In
contrast, this paper uses a gradient boosting machine [Friedman, 2001] as
it provides greater predictive accuracy, deals efficiently with large datasets,
offers variable interactions without the need for explicit interaction terms,
and provides a flexible and coherent framework for all computational tools
deployed below except the group lasso. Although machine learning models
are often considered less transparent than linear ones, the interpretation
of feature importance for tree-based models — described as a variable se-
lection approach below — and the option to use explanation tools such as
SHAP [Lundberg and Lee, 2017] that is grounded in Shapley values provide
a similar degree of transparency, especially when considering that a causal
interpretation of model parameters is unsuitable in a predictive modelling
context (see Shmueli [2010]).

Grouped variables Given our emphasis on enumeration cost, the group-
ing of variables needs to be considered in more detail than in a standard
setting. The first of two related aspects concerns derived features that are
generated from other variables, such as squared terms, dummy/ one-hot en-
codings. Although they may enter the predictive model as a stand-alone
feature, the underlying information is queried through a question for an-
other variable. Such items should be treated as a single feature, both from
a questionnaire length and a variable selection perspective. In this vein, we
adjust the various methods below to treat grouped variables as single items.

The second aspect, mentioned in section (section 2.4), is the informa-
tion that needs to be collected from any and all respondent households to a
targeting survey. Social protection programmes with an economic wellbeing
eligibility criterion verified via PMT are often targeted to specific population
subgroups. For this purpose, the households are classified most commonly
by demographic criteria, such as family structure or age group. The veri-
fication of such categorial eligibility implies the collection of a core set of
relevant variables before income proxies are queried. Combined with items
known up-front, such as geographic features, any data needed for adminis-
trative or statistical purposes makes up a core questionnaire administered
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to all respondents at the beginning of enumeration. We refer to the remain-
der of variables, which amount to 37 items in our Indonesian dataset, as
optional. In the subsequent discussion and simulations, we take the core
questions as given and refer to optional questions when discussing items
such as questionnaire length.

Having been selected for administrative reasons, the short core question-
naire has limited predictive power for household consumption. At the other
extreme, a full socio-economic population sample survey contains rich house-
hold information that confers greater predictive accuracy, but is unsuitable
for administration to a large section of the population. The following three
subsections describe methods that provide a menu of choices in between,
and expose the relationship between survey cost and accuracy.

3.1 Truncated questionnaires

A simple approach is to order the optional features from most to least predic-
tive. A truncated questionnaire, i.e. one that is limited to a certain number
of questions, arises from adding the desired number of most predictive fea-
tures to the core set. Computation of the predictive accuracy for each of
the iteratively growing variable sets provides the cost-accuracy trade-off. In
addition to a predictive model, this approach requires an ordering of fea-
tures by their predictive power for household consumption. We test several
variable selection methods to perform such an ordering and thus generate a
sequence that can be truncated.

o Stepwise selection. The classic mechanism of PMT modelling®. To
generate a complete variable sequence instead of a particular set of
regressors, we adjust algorithm 1 by eliminating the stopping criterion
and recording the order in which variables are added to the set of
predictors.

o Variable importance. Tree-based predictive models perform variable
selection during the construction of their tree structure. Our gradi-
ent boosting model, which is based on decision trees, generates two
measures of variable importance. One is the proportion of trees in
which each variable is used, the other is the sum of increases in the
trees’ objective function produced by the splits of each variable. We
translate both the split and gain measures into two separate variable
orderings. The first is to rank variables in descending order of either
the number of splits, or of the gain they produce, when the full set of
variables is considered jointly. The second uses a backward selection
approach, recursively eliminating the variable with the lowest split or
gain, respectively.

5 Alternative methods have begun to gain traction among practitioners [Grosh et al.,
2022).
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e Group lasso. A variation of the Lasso, or Least Absolute Shrinkage and
Selection Operator [Tibshirani, 1996], the group lasso’s [Yuan and Lin,
2006] objective function allows regularization over grouped variables:

ming |y — XU+ A vl
=1 =1

where, following the exposition of Simon et al. [2013], X is the sub-
matrix of X with columns corresponding to the predictors in group
I, BY is the coefficient vector of that group and p; is the length of
B As in the basic lasso [Tibshirani, 1996], A remains a free param-
eter that induces sparsity along the regularization path, only in this
case jointly over groups and single variables. From the sets of groups
selected for increasing values of A\, we construct a nested sequence of
group sets that results in the variable sequence.

Note that we separate the variable selection approach that generates a
question sequence from the predictive model that is used to predict along
each sequence. The uniform prediction model used in this paper enables
a comparison of the differences in length-accuracy trade-offs of the various
sequences, as the starting accuracy of the core questionnaire and the final
accuracy of the full variable set are identical across sequences. This clar-
ifies the variable sequence that achieves the highest accuracy for a given
number of questions (for the average household). Truncation is designed to
achieve the best average result, but — unlike the following method — it fails
to exploit the household-specific information that becomes available during
enumeration.

3.2 Early stopping

In machine learning the term early stopping is commonly used to refer to
a learning algorithm that stops training at a point where additional iter-
ations yield no more benefit or lead to overfitting (e.g. Goodfellow et al.
[2016]). In our setting, we re-purpose the term to refer to an interruption
of household-level data collection when additional questions are expected to
lack meaningful information about a household’s consumption level. Like
truncated questionnaires, this approach draws on variable sequence selec-
tion and gradient boosting as the predictive model. The key difference lies
in the prediction of conditional quantiles instead of a conditional mean for
each step along the variable sequence.

This change is accomplished by a change of objective function from mean
squared error to quantile regression loss [Koenker and Bassett Jr, 1978]. By
setting a symmetric prediction interval of a percentile § and (1—6), a pair of
models estimates a plausible quantile range for a household’s consumption
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level in view of the information accumulated at the current point of the ques-
tion sequence. Enumeration proceeds until the prediction interval suggests
that a household is either eligible or ineligible. Eligibility is assumed when
the upper bound of the prediction interval lies below the programme’s eligi-
bility threshold, and ineligibility is assumed when the lower bound lies above.
When early stopping is triggered in this way, the conditional mean” predic-
tion for a model trained on the variables queried until this point is recorded
as the household’s final consumption estimate. Algorithm 2 summarizes the
procedure, where X ore, Xse and X. ; denote column-wise partitions of de-
sign matrix X, f() is a prediction model for the conditional mean, gy is a
quantile regression model for quantile 6.

Figure 3 illustrates the process for a single household. In this case, the
prediction interval shifts down and becomes narrower as more information
is collected. After 12 questions, the upper bound falls below the eligibility
threshold, at which point the conditional mean of the household’s consump-
tion level is logged as the final estimate (dashed line), and enumeration ends.
The trade-off between cost and accuracy is achieved via the width of the
prediction interval determined by the percentile value 6. As 6 is decreased,
the prediction interval becomes narrower and is more likely to exclude the
eligibility threshold. Early stopping will be triggered for a greater share
of households, leading to a reduction in the average number of questions
per household. A lower # can be interpreted as a less certain prediction®
that reduces enumeration cost at the expense of less precise consumption
estimates.
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Figure 3: Illustration of early stopping for an example household

"The conditional median would be a point estimate alternative, and in a similar vein
[Brown et al., 2018] showed that the use of quantile regression set to the intended coverage
quantile of the target population can result in an exclusion error reduction.

8The predictive model does not calibrate the prediction intervals precisely to the true
population quantile. As a result, a 6 value of, say, 0.05 does not correspond accurately
to a 95% probability of the true value being below the upper bound of the prediction
interval, but it can be thought of as an approximation.
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For truncated questionnaires, we noted that the ordering of variables
by predictive power leads to diminishing accuracy gains as more items are
added. Similarly, the prediction intervals that determine early stopping
behaviour shift progressively less. This implies that households for which
early stopping is not triggered early on are unlikely to breach the stopping
threshold at any point. The result is a full questionnaire for those households
close to the eligibility threshold, which raises average questionnaire length
with little accuracy benefit. The following approach can overcome this issue.

Algorithm 2 Early stopping

Input: Training set (X,y), inference set (X™/7), core variables X e, vari-
able sequence s, eligibility threshold
Xl < Xeore > Pre-compute models
for each s € s do:
Xsel < append(X. )
F20) £t (Xoa,y)
qg() — fit(@, Xsel; y)
QT—O() A fit(l - 97XselaY)
end for
for each x; € X"/" do: > Infer consumption
Xsel <= XZiCoTre
for each s € s do:
query(Xi,s)
Xgel < aPPend(Xsela Xi,s)
if g5(xse1) < or ¢f_p(Xser) > v then:
yls = f(xsel)
break
end if
end for
Yi = fS (Xsel)
end for

3.3 Truncated early stopping (TrESt)

TrESt performs early stopping, but with a limit on the maximum num-
ber of questions that households can be asked. This approach provides a
household-specific stopping criterion for cases where eligibility status ap-
pears clear, while capping questionnaire length to balance cost and accu-
racy for more ambiguous cases. Figure 4 illustrates the concept, showing
the EER-average length result for a range of truncations that emerge from
the early stopping points for selected interval widths. Setting truncation to
the full number of optional variables recovers the early stopping solution,
whereas a maximum width prediction interval would yield the truncated
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questionnaire solution.

Truncated questionnaires and early stopping both expose the cost-accuracy
trade-off via a single hyperparameter. For the former, this is the number
of optional questions, and for the latter it is the width of prediction in-
tervals. TrESt requires both hyperparameters, which can work in opposite
directions; a longer questionnaire can be counteracted with a narrower pre-
diction interval, and vice versa, which results in overlapping outcomes for
different hyperparameter pairs. The TrESt solution consists of those hyper-
parameter pairs that generate the lower bound of accuracy-length outcomes
(shown as a red line in fig. 8 in the results section). We use a separate valida-
tion set to identify the lower bound hyperparameters without overfitting, as
cross-validation was already deployed on the training set in the generation

of the variable sequence®.

Questions (#)

Exclusion error rate

Figure 4: Ilustrative truncation sequences for selected early stopping predictions.
Colours represent different prediction intervals.

4 Results

This section presents the simulation results for each of the three proposed
approaches, for a social protection programme with 40% population coverage
in Indonesia. A PMT baseline provides a comparison with current policy
practice. Whereas the PMT baseline consists of district-specific models, the
other approaches are trained at national level with a district identifier in
the core questionnaire that enables generation of locally adapted models.
Our main outcome of interest is the number of questions that an approach
requires versus the exclusion error rate. We favour the exclusion error rate
(EER) as the evaluation metric most closely aligned with the targeting policy
objective of identifying the eligible poor. Additional targeting metrics for a

9A more computationally intensive approach along the lines of Cawley and Talbot
[2010] may be preferable in settings with limited data.
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broader range of programme population coverages from 10% to 50% can be
found in appendix A.

The graphical results show the number of optional questions that are
required for a given accuracy, measured by EER. This ordering implies that
policymakers choose a minimum required accuracy with reference to a bench-
mark method, rather than assigning a question budget per household. Re-
call that the full questionnaire starting point and the core questionnaire-only
end point are shared, as the predictive model is identical across sequences.
A method that is closer to the origin is preferable as it offers a superior
cost-accuracy trade-off. The complete questionnaire that mirrors Indone-
sia’s targeting survey of 37 optional questions results in a simulated EER
of 26%'0. At the other extreme, a gradient boosting model trained only on
core questionnaire variables would achieve an EER of 37.78%. The range
between core and full questionnaire spans almost half the EER’s lower end
value, implying a major — and likely unacceptable — decline in targeting
accuracy when minimizing question numbers.

4.1 Truncated questionnaires

The first set of results is for questionnaires of uniform length administered
to all households. We consider outcomes for sequences based on stepwise
selection, the group lasso!!, and variable importance for the generation of
grouped variables sequences that underlie these questionnaires. For the tree-
based variable importance measures, we noted the option of using either split
counts or loss function gains, as well as their computation via either a one-
way ranking or a backwards selection-style recursive feature elimination.
From the resulting four possible implementations, we show one-off gain as
the best-performing one, which leaves recursive split-based elimination as a
complement. Figure 5 shows the four methods’ relative performance.
Figure 5 reveals stepwise selection to be the most effective approach in
this setting, followed by the group lasso and then the variable importance
measures. Whereas the performance penalty of the group lasso is moderate,
the variable importance measures underperform significantly and cannot
be recommended for this use case. Whereas there is a steep rise in the
required number of questions to achieve the ultimate, small reductions in
EER (top left), the sequencing of variables by predictive power results in a
strong accuracy impact for initial questions (bottom right). The second key
result is that fewer than 5 questions raise the EER strongly, and beyond 15
questions the accuracy gain becomes imperceptible for the best-performing
method of stepwise selection. An intermediate range provides a moderate

10The full questionnaire would be selected when a gradient boosting model is used in
the PMT algorithm instead of OLS on nation-wide data.

"We use the Group Lasso python library and the LightGBM framework [Ke et al.,
2017] to implement gradient boosting.
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Figure 5: Truncated questionnaires: number of questions by EER comparison for
several variables sequences

elasticity between EER and questionnaire length. It appears likely that
policymakers with all but extreme preferences are likely to choose a point in
this range for settings, where each question has a meaningful budget impact.

4.2 Early stopping

This subsection assesses whether early stopping, a basic adaptive method
that processes household information during enumeration, can improve the
cost-accuracy trade-off of a PMT-style approach. We compare outcomes
among the same variable sequences as above, and then evaluate whether
early stopping or truncated questionnaires yield better results in each case.

Recall that early stopping, which generates the length-accuracy trade-off
via the width of prediction intervals, results in questionnaire length varia-
tion across households. The end points of the variable sequences are very
similar, at 34.8 (variable importance/ gain), 34.5 (recursive feature elimina-
tion/ split), 34.5 (group lasso), and 34.2 (stepwise) questions, all resulting
in an EER of 25.99%. The number of questions is below the full-length 37 as
early stopping is triggered in some instances even when the interval width is
set to a minimum of 0.01, as even basic information is sufficient to identify
households with an extreme income level. The identical EER with that of a
full questionnaire shows that there is no loss in accuracy from early stopping
for that subset of households.

To constrain the range of outcomes to a statistically credible range, we
have limited the maximum # quantile to 0.3, resulting in prediction intervals
limited by the 30th and the 70th percentiles at its most narrow. Note that
the prediction bound collapses to the median as the quantile reaches 0.5
in our symmetric interval scheme. At that point, early stopping would be
triggered at the core questionnaire for all households, yielding the same
result as the truncation at zero questionnaire with EER 37.78% as above.
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Accordingly, the end point of early stopping is the same across all approaches
including truncated questionnaires, and the reader may picture the lines
converging at this point.

The first main result, shown in fig. 6, mirrors that of the previous subsec-
tion: early stopping based on stepwise selection provides the best trade-off,
followed the group lasso sequence and then the variable importance mea-
sures. The differences between variable selection approaches are notably
smaller than for truncated questionnaires, suggesting that early stopping
is less sensitive to the particular variable sequence used. The likely rea-
son for this effect is that stopping happens at different points for different
households, and also more often at more effective models, which smooths
the outcomes.

35 —— Fwd stepwise GBM

Group lasso
30 Variable importance (gain)
—— Recursive feature elimination (split)

25

20

Questions (#)

15

10

0.260 0.265 0.270 0.275 0.280 0.285 0.290
Exclusion error rate

Figure 6: Early stopping: number of questions by EER comparison for several
variable sequences

The shape of the stepwise selection curve shows that the trade-off be-
tween length and accuracy is remarkably similar. We observe that the elas-
ticity becomes greater at around 20 questions. When plotted on the same
graph, a direct comparison underlines the validity of this impression. Fig-
ure 7 compares the results of the truncation and early stopping approaches
separately for each of the variable selection methods. Interestingly, the
truncation vs early stopping results are nearly identical for both the step-
wise selection and the group lasso plots, despite the substantial difference
in the algorithms. The similarity suggests that both methods are able to
exploit their respective variable sequences with similar efficacy.

In the case of variable importance, the early stopping approach provides
better results than truncated questionnaires. We again interpret this rela-
tive outperformance as being related to a less precise ranking of variables
by predictive power, and the smoothing across models that occurs in early
stopping. Overall, the stepwise selection variable sequence retains the best
length-accuracy result by a small margin over the group lasso. For this se-
quence, truncated questionnaires require slightly fewer questions for a given
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accuracy, when considering shorter questionnaires, whereas for long ques-
tionnaires the early stopping solution is more effective by what amounts to
a negligible margin.

Fwd stepwise GBM Group lasso
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Figure 7: EER comparison of early stopping vs stepwise selection by number of
questions

4.3 Truncated Early Stopping (TrESt)

Early stopping and truncated questionnaire can potentially be combined
as they exploit the same variable sequence in distinct ways. The results
shown in fig. 8 confirm the effectiveness of a joint approach in an empirical
application!?. The orange dots show the early stopping outcomes for var-
ious prediction interval widths, and the green line represents the range of
truncated questionnaires. Grey lines emerging from each dot represent the
truncation paths for the early stopping models, and their lower bound (in
red) constitutes the TrESt solution.

The initial near-vertical decline of the grey lines confirms that the exclu-
sion of the least predictive variables from questionnaires is similarly useful
in an early stopping algorithm to reduce average questionnaire length. The
zoomed-in section isolates the lower bound, and plots it against the current
policy baseline to illustrate the performance difference. TrESt achieves a
PMT-equivalent EER with an average of only 8.9 questions per household,
compared with 22.4 for the PMT policy baseline. We review a key aspect
of algorithm functioning before considering a full set of results across the
different methods.

To appreciate the mechanics of the TrESt approach, consider the algo-
rithm’s behaviour for different pairs of questionnaire length and prediction
interval width. Figure 9 shows the proportion of households for which early
stopping is triggered along these dimensions. As expected, a larger quantile,

12Stepwise selection and a gradient boosting model are used to generate the TrESt
algorithm results below.
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Figure 8: Overview plot

which results in a narrower prediction interval, increases the proportion of
early stopping for a given questionnaire length. At the first percentile, there
is practically no early stopping on completion of the core questionnaire,
whereas at the 30th percentile this basic information is deemed sufficient
to classify nearly half (45.3%) of households. At the other end, by the
penultimate question, only 9.0% of households’ prediction interval excludes
the eligibility threshold for the 1st percentile, rising to 89.9% for the 30th
percentile.

The information about a household’s economic conditions in the first five
optional questions has the strongest impact on stopping, as it shifts and nar-
rows the prediction interval more than subsequent information. The share
of households for which early stopping is triggered becomes increasingly flat
thereafter. Even at the most sensitive end of the considered intervals (30th
percentile), early stopping only increases by 1.5 percentage points over the
last twenty questions. From truncated questionnaires, we already know that
the consumption estimate’s accuracy gain is very limited at this part of the
questionnaire. Excluding the last variables from considerations thus has
only a small impact on the ultimate consumption estimate, but it reduces
questionnaire length by one-third.

4.4 Comparison table

Table 2 compares the results of the main approaches the main results in
terms of the EER that corresponds to a particular questionnaire length.
It demonstrates that a trade-off between average questionnaire length and
targeting accuracy that can be generated with each of the three proposed
methods. In our Indonesia simulation, both truncated questionnaires and
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Figure 9: Proportion of stopped questionnaires

early stopping yielded remarkably similar outcomes. TrESt is able to lever-
age the respective mechanisms for a superior length-accuracy trade-off for
the case of shorter questionnaires. Above circa 18 questions, early stop-
ping becomes the most effective approach, albeit by a small margin'3. For
questionnaires with fewer than 20 items, at which point a notable trade-
off between length and accuracy emerges, TrESt provides the best set of
solutions. The resulting range of options begs the question which specifica-
tion should be chosen, and we explore this issue for a specific setting in the
following section.

Table 2: Comparison of EER% across models by questionnaire length (approxi-
mate length)

Approx. questions PMT Truncated Early stop  TrESt

37 - 25.99 - -

30 - 26.00 25.99 (29.5) -

23 26.44 (22.8) 26.09 26.01 (23.2) 26.08 (23.3)
20 - 26.09 26.05 (20.3) 26.10 (19.8)
15 - 26.28 26.44 (14.7) 26.18 (15.1)
10 - 27.02 27.07 (10.3) 26.34 (9.9)
5 - 28.55 28.53 (5.6)  27.32 (5.0)
0 - 37.79 37.79 37.79

5 Case study: Urban Setting

The benefit of a method to allow much shorter questionnaires while main-
taining accuracy becomes more tangible when placed into a particular policy

13The small underperformance of TrESt vs early stopping for long questionnaires can
be attributed to the selection of hyperparameter pairs on the validation set.
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context. This section calibrates a TrESt model to a particular urban set-
ting, allowing us to weigh enumeration costs against estimation accuracy,
and thereby maximize a policy objective. The following rudimentary policy
simulation suggests scope for substantially improved targeting outcomes.

Three basic solutions for the cost-accuracy trade-off are apparent. One
is maximum accuracy regardless of cost. Implicitly, the standard PMT falls
into this category as it optimizes the model’s predictive power regardless of
questionnaire length. The other extreme would be the minimum cost solu-
tion of a core questionnaire. In many cases, the optimal solution may lie at
a point where cost and accuracy are balanced to achieve a certain policy ob-
jective. Programme incidence, defined as the share of intended beneficiaries
in the covered population, is a realistic objective, and in this case study we
optimize for it on the assumption of a fixed budget. Accordingly, we select
the TrESt model specification that yields the highest feasible incidence by
weighing the extent of survey coverage against overall accuracy.

The setting we simulate is DKI Jakarta, Indonesia’s capital city region
that had about 10.5 million inhabitants within a densely populated urban
environment. Information shared by the local government, which is charged
with updating the social registry, suggests that enumerators who administer
the current targeting questionnaire survey collect information from 10 to 20
households per day, and that each questionnaire takes between 15 and 30
minutes per household (personal communication, September 2021). Taking
the midpoints of these ranges implies that the average travel time between
households is 10 minutes. Based on the number of items that make up the
core questionnaires and the implied travel time, the fixed and maximum
variable times for each interview both amount to circa 16 minutes!®. As-
suming that each of the optional questions takes the same amount of time,
variable time is reduced to the proportion of grouped questions out of the
full questionnaire total.

The programme we simulate is the PBI-JKN subsidized health insur-
ance programme intended to cover 40% of the population nationally, but
which the DKI government has extended to 51% of households. Round-
ing to 50% to align with our simulations, and adjusting household figures
accordingly, SUSENAS data indicate an incidence of 62.8% in 2019. A sim-
plifying assumption at baseline is that all households which are included in
the social registry receive the programme, as full coverage of all the surveyed
households mirrors actual practice at national level, where the DTKS social
registry contained the same 40% share of households that the programme
aimed to cover [Pahlevi, 2019].

We simulate the impact of a shorter questionnaire by separating house-
holds into consumption deciles and splitting each decile into a surveyed and

14Based on 26 core items out of a total of 112 ungrouped variables, and rounding up to
the full minute.
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an unsurveyed group according to empirically observed percentages in the
SUSENAS data. The PMT is distinct to the policy baseline as it would
only require an average of 24.4 questions to be asked for the Jakarta area
local models, whereas the status quo is based on the actual policy prac-
tice of querying a full questionnaire. A shorter questionnaire then allows
additional households to be sampled at random from the unsurveyed pop-
ulation'®. The additional households are surveyed with either a PMT or a
TrESt questionnaire based on the stepwise selection sequence that proved
most effective. To determine eligibility, households are ranked according to
the PMT predictions, or the TrESt predictions that arise from the lower
bound length-interval width pairs that yield its solution. Each hyperparam-
eter pair results in an average number of questions, which in turn determines
the total number of households that can be surveyed at a given accuracy. A
corresponding incidence value is the main outcome for each pair.

Figure 10 shows the simulation results. The incidence curve is less
smooth than for the national results due to a more limited number of ob-
servations for Jakarta. The chosen hyperparameter pair, marked by the red
triangle, is a maximum questionnaire length of only 5 grouped items, along-
side a medium level of early stopping sensitivity generated by 6 set to 0.11.
Note that this specification lies slightly below the best test set outcome as
it was chosen according to its performance on a validation set.

—— TrESt
v Selected spec
® PMT simulation
x Policy baseline

Incidence

0.5 0.6 0.7 0.8 0.9 10
Share of households interviewed

Figure 10: Simulated PBI-JKN incidence in DKI Jakarta at 50% coverage

The simulations indicate that a PMT that only queries the questions
required for the model would allow for an additional 16.7% of the popula-
tion to be surveyed. However, the linear model’s modest predictive power
in the DKI setting only raises the incidence to 65.6%. In contrast, TrESt
achieves a significantly higher incidence at any model specification. At an
average of 21.8 questions, even the model with the longest average question-
naire requires fewer questions on average than the PMT and still achieves

5 Random selection is a conservative assumption, as households could be prioritized by
likely eligibility, e.g. through poverty maps.
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a considerably higher incidence of 74.1%. The chosen solution only uses an
average of 3.9 questions per household, allowing 94.6% of the population
to be sampled to achieve an incidence of 78.3%. Further average length
reductions yield little benefit in terms of respondent numbers, and decrease
accuracy so much that the overall effect on incidence is negative.

This case study suggests that TrESt has significant potential for raising
incidence in a suitable setting. The case study relies on limited information
and should be interpreted as a stylized example rather than as a fully cali-
brated use case. Nevertheless, it provides an illustration of the relationship
between targeting survey coverage and household-level accuracy, and that it
can be beneficial for desired policy outcomes to prioritize the former over the
latter. Another caveat is that the low travel time between households in the
urban setting under consideration here is a key environmental factor that
promotes a close link between questionnaire length and incidence. Whether
similar benefits would accrue where population density is lower could be as-
sessed with enumeration meta-data for rural and peri-urban localities. Even
when the number of questions is similar, the simulation suggests that the
TrESt approach has a considerable advantage over a standard PMT, likely
due to a more efficient orientation of survey resources to households with
more uncertain eligibility status, and due to the greater predictive power of
the non-linear, national-level machine learning model.

6 Discussion

We proposed a selection of practically feasible methods that expose a trade-
off between accuracy and survey length, all based on variable sequences that
order questions in order of predictive power. One simply truncates ques-
tionnaires to a certain length for all surveyed households, another deploys
prediction intervals to generate a household-level early stopping criterion.
For the most effective variable sequence — generated by stepwise selection
— both approaches produce remarkably similar results in a simulation of a
40% programme coverage simulation with data from Indonesia, despite re-
lying on different mechanisms. Compared with a policy baseline PMT that
requires 22.8 questions to achieve an EER of 26.44%, truncation only needs
14 questions for a similar EER, and the early stopping method requires
18. A combined method that leverages their respective advantages achieves
a superior length-accuracy trade-off at any point, and requires a mere 8.9
questions for an equivalent EER.

The methods presented here provide policymakers a choice on cost ver-
sus accuracy to suit their context and constraints. When selecting a point
that maximizes incidence in a rudimentary simulation of an urban setting,
a considerable improvement (to [78.3 %] incidence) appears feasible over
both current practice ([65.6%]) and a more streamlined approach based on
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a PMT model ([62.8%]). Whether similar gains can be achieved in a less
densely populated setting is an open question. Similarly, the assumptions
of a uniform time per question and the ability to expand survey coverage to
nearly the whole area population might prove overoptimistic in a real-world
setting. Nevertheless, the urban case study highlights the potential benefit
of expanding targeting survey coverage in some settings, even if it entails a
moderate accuracy penalty.

A census sweep of the whole population with an extensive questionnaire
would provide the most comprehensive data for accurate targeting. But if
budgets are constrained, surveying more households with a shorter ques-
tionnaire may yield the best results. Beyond maximizing incidence with
limited resources, policymakers would also enjoy greater flexibility through
the methods presented here. The resources needed to conduct regular re-
assessment constrain targeting surveys to be conducted with multi-year gaps
in the case of survey waves, and potentially also increase the re-assessment
intervals in on-demand systems. A reduction in survey cost could contribute
to a more dynamically supportive social protection system by raising the fre-
quency of assessment and re-assessment. It is also worth noting that TrESt’s
efficient use of survey resources via household-level early stopping, a suit-
ably truncated questionnaire, and a more effective predictive model appears
to offer a clear accuracy improvement over the standard PMT for a given
average questionnaire length.

To generate transparent results, our simulations consider a single pro-
gramme with a fixed population coverage rate. Countries with social reg-
istries, of which Indonesia’s DTKS is a well-documented example, usually
target multiple programmes with differing population coverage rates that re-
sult in different eligibility thresholds. Prediction interval-based methods can
be adjusted to this common scenario by using an eligibility interval instead
of a threshold. The appropriate interval for each household can be identi-
fied according to characteristics queried in the core questionnaire. Ceteris
paribus, wider eligibility intervals will result in longer questionnaires on aver-
age. A related caveat is that the targeting accuracy of new programmes that
leverage existing consumption estimates but which have different eligibility
thresholds — widely adopted during the recent COVID-19 pandemic — will be
lower than that of estimates based on full questionnaires or newly collected
data. Policymakers considering the introduction of a TrESt-style method
are advised to simulate such contingencies in a fully calibrated model.

Implementation of the TrESt algorithm would require changes to enu-
meration practice. Software is one aspect, as it requires on-the-fly inference
of prediction intervals for the stopping criterion. For Indonesia, an exist-
ing Android app used for the targeting survey could be adjusted for this
purpose, but survey bodies elsewhere that currently rely on paper or off-
the-shelf digital questionnaires would require new software. Deployment on
sufficiently powerful hardware, such as a mid-range tablet or smartphone
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that can conduct the computations on the fly, or a reliable internet connec-
tion for processing in the cloud, would be required. Enumerator training is
another implementation aspect that would require adjustment as the target-
ing survey questions need to be ordered by their stepwise regression sequence
rather than the standard of thematic grouping. A final IT-related issue is
that the social registry information collected with a TrESt or early stopping
approach would collect jagged optional question data, so that survey design-
ers would need to include all variables required for analytical or monitoring
purposes in the core questionnaire.

Although the simulations presented here suggest scope for reducing sur-
vey costs while potentially reducing exclusion errors, this paper is only desk-
based proof of concept. Indonesia has already achieved good targeting out-
comes through years of investment in improving targeting processes and im-
plementation. Continued improvements in design could further strengthen
targeting outcomes at no additional cost, but piloting would be advisable
to verify that the method is practical, that the results hold in the field,
and also to collect additional data. For Indonesia, a simple PMT trial that
collects the survey metadata to estimate realistic survey times would pro-
vide key budgetary inputs. Similarly, information on travel times between
households would be important to calibrate time savings, particularly in
rural districts and island locations where shorter questionnaires may only
yield negligible savings. Detailed cost estimation along the lines of Fujii and
van der Weide [2020] on the cost-effectiveness of double sampling would be
advisable if implementation were to be considered.

One way to improve accuracy may be to draw on alternative data sources,
such as the exploration of internet and phone expenditure for Indonesia’s
PMT by Pinxten [2021]. Such data can potentially support better classifica-
tion, shorter questionnaires, or both. Similarly, alternative data preparation
tailored to the early stopping approach may offer significant benefits in terms
of accuracy or question numbers. On the other hand, the shortened ques-
tionnaire raises the risk of misreporting, as it concentrates both predictive
power and enumerator attention on a few high-impact variables. A restric-
tion to verifiable variables may mitigate this risk, but monitoring of response
patterns would remain important to identify emerging subterfuge.

Beyond a more detailed assessment of financial and logistical aspects,
additional applications with data from other countries would be helpful in
assessing whether the early stopping algorithm can be a useful tool in other
settings. The distributional impact in terms of unequal outcomes for differ-
ent groups is another important aspect that would warrant further explo-
ration. Appendix B outlines an illustrative group-level analysis which sug-
gests that outcomes for pensioner households are similar for early stopping
when compared with a standard PMT. Further reassurance would be gained
by verification of estimation consistency for a full range of relevant vulner-
able groups, as well as by a more extensive exploration of targeting fairness
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along the lines of Noriega-Campero et al. [2020]. The distributional anal-
ysis could be combined gainfully with a consideration of multidimensional
poverty measures that assess impacts beyond the standard consumption-
based perspective taken here.

In terms of methodological options, alternative variable selection meth-
ods that are less prone to suboptimal choices, different predictive models, or
non-symmetric prediction intervals that align with the skew of consumption
distributions may yield further improvements in the cost-accuracy trade-off.
A promising research direction is to move beyond the stopping criterion to
a survey design with a question sequence tailored on-the-fly to each house-
hold. The adaptation of the tree-based method in Bakker et al. [2021] from
classification to regression would be one step in this direction. While com-
putational constraints preclude deployment of a fully-adaptive approach in
the field, the development of a semi-adaptive method that deploys a limited
set of variable sequences may be a promising research avenue. A related di-
rection would be to tailor data collection to the promotion of more equitable
targeting outcomes for economically disadvantaged groups.
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A Additional targeting metrics and coverage rates

To show that the methods proposed perform well for a variety of programme
coverage levels, this annex provides simulations for programmes that are
targeted at 10%, 20%, 30%, 40%, and 50% of the population. Figure Al
shows the number of questions by EER across coverage levels. It highlights
that the performance ranking of truncation and early stopping varies with
the coverage level, which points to the need for context-specific selection if
one of these is to be chosen. At low coverage rates, early stopping performs
relatively better than truncation as the eligibility threshold moves to the
lower bound and facilitates exclusion of non-eligible households with high
consumption levels. TrESt not only maintains its superior performance, but
outperforms truncation and early stopping by a wider margin than at the
relatively elevated 40% coverage level considered in the main text.
Whereas the previous focus was on EER as the key targeting metric,
this annex expands the results to a wider set of metrics. Table Al outlines
these, adding the commonly used inclusion error rate (IER), mean squared
error (MSE), and the coefficient of variation (R?). The results are shown in
tables A2 to A5, for each of which we provide brief commentary below.

Table A1l: Major targeting metrics

Metric Description

Mean Squared The average squared difference between observed and pre-

Error (MSE) dicted household consumption. MSE ranges over positive
values and is denominated, and a smaller value signifies a
more accurate predicted consumption level.

Coefficient of The proportion of variation in household consumption that is

determination  captured by the predictive model. A value of zero implies the

(R?) lack of a linear relationship, whereas a value of one implies
perfect correlation between predictor and predictand.

Exclusion The proportion of households with consumption below the
Error Rate eligibility threshold who are incorrectly predicted as being
(EER) above. EER ranges between zero and one, and a smaller

value signifies a more accurate predicted eligibility status.

Inclusion Error The proportion of households with consumption above the

Rate (IER) eligibility threshold who are incorrectly predicted as being
below. IER also ranges between zero and one, and a smaller
value signifies a more accurate predicted eligibility status.

The EER for each coverage level shown in table A2, in the same format
as the main results table table 2, highlights that lower coverage rates result
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Figure Al: Questionnaire length vs exclusion error rate by method for various
programme coverage rates
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in a higher proportion of exclusion among intended beneficiaries. At first
sight, an EER of 50% may suggest that the eligibility assignment method is
arbitrary, but random assignment would only capture 10% of beneficiaries
and result in an EER of ca. 90%. Where household-level targeting is the
policy preference for small coverage programmes, one can therefore argue
that PMT, TrESt and other methods thus provide considerable advantages
even if they only capture half of the intended beneficiaries. In terms of the
number of questions needed to match PMT accuracy, around ten optional
questionnaire items — and thus less than half the PMT outcome of around 23
— are needed for TrESt across coverage levels. For the Indonesia context, a
questionnaire of this length would thus appear to provide a versatile method
for most programmes.

Table A3 shows IER rates, a metric often considered important for po-
litical economy reasons. When the IER is defined with the number of ben-
eficiaries in the denominator, e.g. as in Brown et al. [2018], then the fixed
coverage rate used here would result in IER = EER. By using number of
non-beneficiaries instead to align with local policy practice, we note that
the inclusion error rate becomes IER = EER * coverage rate / (1 - coverage
rate); EER and IER are then only equal in the case of 50% coverage. Given
the close relationship between EER and IER in the fixed coverage regime
considered here, the outcomes are qualitatively similar. As an effect of a
growing denominator as the coverage level declines, the IER varies in the
opposite direction to EER.

The coefficient of determination, or R2, is a continuous targeting metric
that is independent of the coverage level for methods such as the standard
PMT and truncation. For early stopping and TrESt, the coverage level
affects the algorithm’s stopping criterion, and thus also feeds into estimation
results. Table A4 shows that the point estimates of early stopping and
TrESt are less precise than those of the PMT and truncation, which optimize
for these point estimates. Although the classification-based EER and TER
outcomes match the PMT at around ten questions, the R? at this point is
considerably lower. However, this relative underperformance is of no concern
if accurate eligibility is the ultimate objective. In fact, the lower point
accuracy is a design feature as the algorithms stop trying to pinpoint the
consumption level as soon as they identify a sufficient estimated difference to
the eligibility threshold. As such, inferior continuous targeting metrics are
unproblematic as long as there is no separate need for accurate consumption
estimates.

The same insights hold for the MSE results shown in table A5 as for the
previous table (not least because, as IER and EER, they are mathematically
related). The PMT and truncation display the same MSE across coverage
levels, and truncation achieves a similar result with ca. 10 versus 22.8 ques-
tions. Early stopping and TrESt drop off due to their mechanics, and can
only match the PMT in question numbers for its MSE level, but not trun-
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Table A2: Exclusion error % by model and number of question for various cover-
age rates (approx. no. of questions in brackets)

Number of questions PMT Truncated  Early stop  TrESt

10% coverage

37.0 - 50.01 (37.0) - -

30.0 - 50.08 (30.0) -

22.8 50.16 (22.8) 50.23 (23.0) - -

20.0 - 50.30 (20.0) 50.01 (20.5) —

15.0 - 50.60 (15.0) - 50.09 (12.1)
10.0 - 51.70 (10.0) 50.15 (10.5) 50.21 (10.3)
5.0 - 54.09 (5.0)  51.85 (5.1)  50.62 (4.9)

0.0 - 63.82 (0.0)  63.08 (0.8)  63.34 (0.1)

20% coverage

37.0 - 39.56 (37.0) -

30.0 - 39.76 (30.0) -

22.8 40.05 (22.8) 39.76 (23.0) 39.56 (23.0)

20.0 - 30.87 (20.0) 39.56 (19.8) 39.82 (19.1)

15.0 - 40.16 (15.0) 39.75 (15.3) 39.70 (14.8)
10.0 - 41.07 (10.0) 40.86 (9.8)  39.89 (10.0)
5.0 - 43.35 (5.0)  45.88 (5.2)  40.86 (5.0)

0.0 - 53.99 (0.0) - 53.79 (0.1)

30% coverage

37.0 - 32.03 (37.0) - -

30.0 - 32.03 (30.0) 32.03 (29.7) -

22.8 32.34 (22.8) 3212 (23.0) 32.06 (23.2) -

20.0 - 32.17 (20.0) 32.07 (20.2) -

15.0 - 32.31 (15.0) 32.37 (14.9) 32.14 (15.0)
10.0 - 33.24 (10.0) 33.36 (10.2) 32.34 (9.8)

5.0 - 35.11 (5.0)  37.33 (4.7)  33.59 (5.0)

0.0 - 45.10 (0.0) - 44.97 (0.1)

40% coverage

37.0 - 25.99 (37.0) -

30.0 - 26.00 (30.0) 25.99 (20.5) 26.09 (27.2)
22.8 26.44 (22.8) 26.09 (23.0) 26.01 (23.2) 26.08 (22.6)
20.0 - 26.09 (20.0) 26.05 (20.3) 26.10 (20.1)
15.0 - 26.28 (15.0) 26.44 (14.7) 26.19 (15.0)
10.0 - 27.02 (10.0) 27.07 (10.3) 26.35 (10.1)
5.0 - 28.55 (5.0)  28.53 (5.6)  27.41 (5.0)

0.0 - 37.79 (0.0) 35.19 (0.5)

50% coverage

37.0 - 20.85 (37.0) -

30.0 - 20.86 (30.0) 20.85 (30.5) 20.91 (30.2)
22.8 21.17 (22.8)..20.91 (23.0) 20.90 (22.5) 20.96 (22.7)
20.0 - 20.95 (20.0) 20.95 (20.3) 20.98 (19.8)
15.0 - 21.05 (15.0) 21.21 (15.4) 21.00 (15.0)
10.0 - 21.69 (10.0) 22.09 (9.8)  21.17 (9.9)

5.0 - 22.89 (5.0) 23.77 (5.2)  22.16 (5.0)

0.0 - 31.19 (0.0) - 28.99 (0.6)




Table A3: Inclusion error % by model and number of question for various coverage

rates (approx. no. of questions in brackets)

PMT Truncated  Early stop  TrESt
10% coverage
37.0 - 5.56 (37.0) -
30.0 - 5.56 (30.0) -
22.8 5.57 (22.8) 558 (23.0) -
20.0 - 5.59 (20.0)  5.56 (20.5) -
15.0 - 5.62 (15.0) - 5.57 (12.1)
10.0 - 5.74 (10.0)  5.57 (10.5)  5.58 (10.3)
5.0 - 6.01 (5.0) 576 (5.1)  5.62 (4.9)
0.0 - 7.09 (0.0)  7.01(0.8)  7.04 (0.1)
20% coverage
37.0 - 0.89 (37.0) - -
30.0 - 9.94 (30.0) -
22.8 10.01 (22.8) 9.94 (23.0)  9.89 (23.0) -
20.0 - 9.97 (20.0)  9.89 (19.8)  9.96 (19.1)
15.0 - 10.04 (15.0) 9.94 (15.3)  9.92 (14.8)
10.0 - 10.27 (10.0) 10.21 (9.8)  9.97 (10.0)
5.0 - 10.84 (5.0) 1147 (5.2)  10.21 (5.0)
0.0 - 13.50 (0.0) - 13.45 (0.1)
30% coverage
37.0 - 13.73 (37.0) - -
30.0 - 13.73 (30.0) 13.73 (20.7) -
22.8 13.86 (22.8) 13.77 (23.0) 13.74 (23.2) -
20.0 - 13.79 (20.0) 13.74 (20.2) -
15.0 - 13.85 (15.0) 13.87 (14.9) 13.77 (15.0)
10.0 - 14.24 (10.0) 14.30 (10.2) 13.86 (9.8)
5.0 - 15.05 (5.0)  16.00 (4.7)  14.40 (5.0)
0.0 - 19.33 (0.0) - 19.27 (0.1)
40% coverage
37.0 - 17.33 (37.0) -
30.0 - 17.33 (30.0) 17.33 (20.5) 17.39 (27.2)
22.8 17.63 (22.8) 17.39 (23.0) 17.34 (23.2) 17.39 (22.6)
20.0 - 17.39 (20.0) 17.37 (20.3) 17.40 (20.1)
15.0 - 17.52 (15.0) 17.63 (14.7) 17.46 (15.0)
10.0 - 18.01 (10.0) 18.04 (10.3) 17.57 (10.1)
5.0 - 19.03 (5.0)  19.02 (5.6)  18.28 (5.0)
0.0 - 25.19 (0.0) 23.46 (0.5)
50% coverage
37.0 - 20.85 (37.0) - -
30.0 - 20.86 (30.0) 20.85 (30.5) 20.91 (30.2)
22.8 21.17 (22.8) 20.91.(23.0) 20.90 (22.5) 20.96 (22.7)
20.0 - 20. 953§20 0) 20.95 (20.3) 20.98 (19.8)
15.0 - 21.05 (15.0) 21.21 (15.4) 21.00 (15.0)
10.0 - 21.69 (10.0) 22.09 (9.8)  21.17 (9.9)
5.0 - 22.89 (5.0) 2377 (5.2)  22.16 (5.0)
0.0 - 31.19 (0.0) - 28.99 (0.6)




Table A4: Coefficient of determination (R?) by model and number of question for

various coverage rates (approx. no. of questions in brackets)

PMT Truncated Early stop TrESt
10% coverage
37.0 - 0.63 (37.0) -
30.0 - 0.63 (30.0) -
22.8 0.62 (22.8) 0.63 (23.0) - -
20.0 - 0.63 (20.0) 0.55 (20.5) -
15.0 - 0.63 (15.0) - 0.46 (12.1)
10.0 - 0.61 (10.0) 0.44 (10.5) 0.46 (10.3)
5.0 - 0.57 (5.0)  0.37 (5.1)  0.43 (4.9)
0.0 - 0.31 (0.0) 0.32 (0.8)  0.31 (0.1)
20% coverage
37.0 - 0.63 (37.0) -
30.0 - 0.63 (30.0) — -
22.8 0.62 (22.8) 0.63 (23.0) 0.56 (23.0) -
20.0 — 0.63 (20.0) 0.53 (19.8) 0.55 (19.1)
15.0 - 0.63 (15.0) 0.49 (15.3) 0.51 (14.8)
10.0 - 0.61 (10.0) 0.43 (9.8)  0.51 (10.0)
5.0 - 0.57 (5.0)  0.38 (5.2)  0.46 (5.0)
0.0 - 0.31 (0.0) - 0.31 (0.1)
30% coverage
37.0 - 0.63 (37.0) -
30.0 — 0.63 (30.0) 0.61 (29.7) -
22.8 0.62 (22.8) 0.63 (23.0) 0.56 (23.2)
20.0 - 0.63 (20.0) 0.54 (20.2) —
15.0 - 0.63 (15.0) 0.49 (14.9) 0.55 (15.0)
10.0 - 0.61 (10.0) 0.45 (10.2) 0.5 (9.8)
5.0 - 0.57 (5.0)  0.40 (4.7)  0.50 (5.0)
0.0 - 0.31 (0.0) - 0.31 (0.1)
40% coverage
37.0 - 0.63 (37.0) -
30.0 - 0.63 (30.0) 0.61 (29.5) 0.61 (27.2)
92.8 0.62 (22.8) 0.63 (23.0) 0.57 (23.2) 0.60 (22.6)
20.0 - 0.63 (20.0) 0.55 (20.3) 0.58 (20.1)
15.0 - 0.63 (15.0) 0.51 (14.7) 0.56 (15.0)
10.0 - 0.61 (10.0) 0.48 (10.3) 0.55 (10.1)
5.0 - 0.57 (5.0)  0.44 (5.6)  0.51 (5.0)
0.0 - 0.31 (0.0) 0.38 (0.5)
50% coverage
37.0 - 0.63 (37.0) -
30.0 - 0.63 (30.0) 0.61 (30.5) 0.62 (30.2)
22.8 0.62 (22.8) 0.63 (g% 0) 0.58 (22.5) 0.60 (22.7)
20.0 - 0.63 (20.0) 0.57 (20.3) 0.60 (19.8)
15.0 - 0.63 (15.0) 0.54 (15.4) 0.60 (15.0)
10.0 - 0.61 (10.0) 0.49 (9.8)  0.56 (9.9)
5.0 - 0.57 (5.0)  0.45 (5.2)  0.51 (5.0)
0.0 - 0.31 (0.0) - 0.39 (0.6)




cation. As such, a truncation approach may be preferable in settings where
survey costs should be minimized, but accurate consumption estimates are
required for uses outside the programme’s eligibility determination mecha-
nism.
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Table A5: Mean squared error by model and number of question for various cov-
erage rates (approx. no. of questions in brackets)

PMT Truncated Early stop TrESt
10% coverage
37.0 - 0.16 (37.0) -
30.0 - 0.16 (30.0) -
22.8 0.17 (22.8) 0.16 (23.0) - -
20.0 - 0.16 (20.0) 0.19 (20.5) -
15.0 - 0.16 (15.0) - 0.23 (12.1)
10.0 - 0.17 (10.0) 0.24 (10.5) 0.23 (10.3)
5.0 - 0.18 (5.0)  0.27 (5.1)  0.25 (4.9)
0.0 - 0.30 (0.0)  0.30 (0.8)  0.30 (0.1)
20% coverage
37.0 - 0.16 (37.0) -
30.0 - 0.16 (30.0) — -
22.8 0.17 (22.8) 0.16 (23.0) 0.19 (23.0) -
20.0 - 0.16 (20.0) 0.20 (19.8) 0.19 (19.1)
15.0 - 0.16 (15.0) 0.22 (15.3) 0.21 (14.8)
10.0 - 0.17 (10.0) 0.25 (9.8)  0.21 (10.0)
5.0 - 0.18 (5.0)  0.27 (5.2)  0.24 (5.0)
0.0 - 0.30 (0.0) 0.30 (0.1)
30% coverage
37.0 - 0.16 (37.0) -
30.0 — 0.16 (30.0) 0.17 (29.7) -
22.8 0.17 (22.8) 0.16 (23.0) 0.19 (23.2) -
20.0 - 0.16 (20.0) 0.20 (20.2) -
15.0 - 0.16 (15.0) 0.22 (14.9) 0.19 (15.0)
10.0 - 0.17 (10.0) 0.24 (10.2) 0.20 (9.8)
5.0 - 0.18 (5.0)  0.26 (4.7)  0.22 (5.0)
0.0 - 0.30 (0.0) 0.30 (0.1)
40% coverage
37.0 - 0.16 (37.0) — -
30.0 - 0.16 (30.0) 0.17 (29.5) 0.17 (27.2)
22.8 0.17 (22.8)  0.16 (23.0) 0.19 (23.2) 0.17 (22.6)
20.0 - 0.16 (20.0) 0.20 (20.3) 0.18 (20.1)
15.0 - 0.16 (15.0) 0.21 (14.7) 0.19 (15.0)
10.0 - 0.17 (10.0) 0.23 (10.3) 0.19 (10.1)
5.0 - 0.18 (5.0)  0.24 (5.6)  0.21 (5.0)
0.0 - 0.30 (0.0) 0.27 (0.5)
50% coverage
37.0 - 0.16 (37.0) — -
30.0 - 0.16 (30.0) 0.17 (30.5) 0.17 (30.2)
22.8 0.17 (22.8) 0.16 (g% 0) 0.18 (22.5) 0.17 (22.7)
20.0 - 0.16 (20.0) 0.19 (20.3) 0.18 (19.8)
15.0 - 0.16 (15.0) 0.20 (15.4) 0.17 (15.0)
10.0 - 0.17 (10.0) 0.22 (9.8)  0.19 (9.9)
5.0 - 0.18 (5.0)  0.24 (5.2)  0.21 (5.0)
0.0 - 0.30 (0.0) 0.27 (0.6)




B Example analysis of group-level outcome differ-
ences

Changes in policy implementation, such as the use of a new algorithm, may
have distributional effects in the sense of systematic outcome differences
across beneficiary groups. Most commonly, groups are defined by demo-
graphic or ethnic characteristics, but any economically vulnerable minority
would be a useful unit of analysis. The machine learning literature refers
to group-based outcome issues as fairness (see Barocas et al. [2021] for a
textbook-style overview), with various definitions of what constitutes a fair
outcome at group level. While a comprehensive assessment of the fairness ef-
fects of PMT vs early stopping is beyond the scope of this paper, this annex
provides a simple example of the kind of analysis that could be conducted
to ensure equitable policy outcomes across the population.

We select two-person pensioner households as an example of an eco-
nomically vulnerable group. The histogram in Figure A2 shows the EER
distribution for this group across districts, both for the PMT (red) and the
early stopping (blue) algorithm. The purple area is the overlap between
the group’s outcomes for the two estimators, while the dotted lines show
the mean respective EER rates. The means lie close together at 25.6% for
the PMT and 25.8% for early stopping, and the predominance of purple
area also implies that there is only a marginal increase in misclassification
risk for this group when the early stopping algorithm is used instead of the
PMT baseline. There is slightly more dispersion for early stopping, evident
in the somewhat higher frequency of districts in which either all or none of
the eligible pensioner households are classified correctly. Apart from this,
the overall pattern is as similar as can be expected for a statistical process
subject to randomness; we can conclude that the early stopping algorithm
does not produce disparate outcomes for this group.

---- PMT mean

--—- Early stopping mean
PMT frequency

B Early stopping frequency

Freguency
z
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Figure B1: EER in a 40% coverage programme for two-person pension age house-
holds, early stopping vs PMT models
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