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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10254

Estimating the extent to which transportation contributes 
to air pollution levels has been hampered by the difficulty 
in separating the relative degree of ambient nitrogen dioxide  
generated by transportation, power generation, and indus-
trial activity—all of which play roles. This paper addresses 
this gap by isolating the impact of ground-level mobility on 
air pollution in India through a combination of remotely 
sensed tropospheric nitrogen dioxide measures and data 
from mobile phone users’ locations. The paper constructs 
vectors of ground-level movement of cell phones to estimate 

the impact of daily changes in mobility within a given 
district, controlling for both daily thermal electricity gen-
eration from upwind power plants and trends in ambient 
pollution concentrations over time and space. The findings 
show that tropospheric nitrogen dioxide concentrations are 
very responsive to changes in mobility, and that the effect 
varies with population density. The findings show that a 
1 percent increase in mobility increases nitrogen dioxide 
concentrations by more than 2 percent, suggesting that 
traffic congestion plays a significant role in air pollution.

This paper is a product of the Infrastructure Chief Economist Office. It is part of a larger effort by the World Bank to 
provide open access to its research and make a contribution to development policy discussions around the world. Policy 
Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The author may be contacted 
at fzhang1@worldbank.org.  
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1. Introduction 

 

The ability to accurately monitor emissions from transport-related activities with a high degree 

of spatial and temporal resolution is important for understanding the impact of transportation on 

air quality and human health. However, measuring the impact of traffic on ambient air pollution 

concentrations is difficult, particularly over large areas. The impact of traffic on pollution varies 

with vehicle characteristics, traffic congestion, and environmental conditions. There is a dearth 

of information on the number of vehicles on the road at any time. Even indicators of fuel use at 

the regional level are typically unavailable at the daily level. Traditional environmental 

indicators also have drawbacks; they are generally backward looking and often only available at 

coarse levels of spatial resolution. In developing country contexts, in particular, the collection of 

key environmental indicators relies on administrative procedures that take time and may be 

subject to biases resulting from existing political incentive structures (Xiong, 2018; Sandefur and 

Glassman, 2015).  

In this paper, we use data from mobile-phone users’ locations to construct vectors of 

ground-level movement, and combine these data with remotely sensed nitrogen dioxide (NO2) 

measures to better understand how transportation infrastructure usage impacts air pollution in 

India. To better measure the relative contribution of traffic to emissions, we exploit changes in 

mobility within a special unit to estimate elasticities of NO2 with respect to on-the-ground 

mobility. To understand the impact of ground-level transportation on pollution, our 

specifications leverage variations in mobility within a given district and by the day of the week. 

We use combinations of fixed effects to control for daily thermal electricity generation by 

upwind power plants and for trends in ambient pollution concentrations over time and space. Our 

study period leverages the big, abrupt changes in mobility that were a result of the COVID-19 
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pandemic in India. Other studies have pointed to the large changes in pollution that resulted from 

shutdowns during the pandemic, but to our knowledge we are the first to use this variation to 

study the relative impact of transportation on NO2 concentrations. 

We examine the impact of movement between 16x16km Bing Map tiles by leveraging 

within-pixel-by-day-of-the-week variation in mobility. We find an average elasticity for 

“movement” of greater than two, meaning that a 1 percent increase in movement between these 

tiles translates to more than a 2 percent increase in tropospheric NO2. We also find that the 

elasticity with respect to non-movement is slightly larger in magnitude and negative. Our 

estimates suggest that a 1 percent increase in the number of people who do not move between 

tiles is associated a decrease in in NO2 concentrations of 3 to 4 percent. In theory, we would 

expect an increase in the number of people not moving between tiles to offset the effect of people 

moving, but we highlight two measurement issues: 1) censoring, by which we mean the 

underreporting of movements; and 2) omitted variables bias, by which we mean that non-

movement during the period we study was correlated with pandemic-related economic 

shutdowns, which affected other pollution sources. To minimize the impact of these issues, we 

use subsamples of the data from regions where censoring was less prominent, and from periods 

when pandemic-related lockdown policies were not in effect in India.  

This paper contributes to several strands of literature. First, the mechanisms through 

which traffic impacts emissions and pollution concentrations are of broad interest. Studies in this 

line of the literature have thus far tended to focus on single urban environments, such as Seattle 

(Xiang et al., 2020) and the Danish cities of Copenhagen and Roskilde (Khan et al., 2020); Fu et 

al.,(2020) simulate the dispersion of NOx from traffic emissions in Baoding, Hebei, China. Misra 
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et al. (2013) provide an example of an integrated-modeling approach to understand the impact of 

urban traffic emissions in Canada. (See Colvile et al. (2001) for an overview of this literature.) 

Second, this paper contributes to the literature that studies the impacts of various policy 

changes on commuting behavior. Infrastructure and public transportation affect commuter 

behavior and, thus, pollution. Recent empirical work shows that the density of subway-network 

coverage has a significant impact on pollution in China (Li et al., 2019), and that expansions in 

regional train service in Germany reduced carbon monoxide and nitrogen dioxide (Lalive et al., 

2018). Tolls and congestion charges offer alternative policies to combat pollution from traffic 

because an increase in the cost of driving should induce substitution toward public transit or 

change the timing of trips during the day. The literature documents that temporary bans on car 

trips reduced pollution in Santiago, Chile (Rivera, 2021), and that temporary driving restrictions 

in China led to a significant reduction in key criteria pollutants (Han et al., 2020).1 Leveraging 

the waiver of tolls during a National Day holiday in 2012 in China, Fu and Gu (2017) find that 

the waiver led to pronounced increases in pollution.   

Third, the paper contributes to recent studies in economics that have leveraged changes in 

pollution from transportation to study health and mortality outcomes. For example, Anderson 

(2020) shows that changes in wind direction from highway traffic impact mortality rates in Los 

Angeles.  Knittel et al. (2016) use an instrumental variable strategy to study the effect of 

particulate matter from traffic congestion on infant mortality and health in California, finding 

large effects on infant mortality. Currie and Walker (2011) leverage changes in congestion in 

New Jersey and Pennsylvania from the rollout of an electronic toll collection system (EZ-Pass) 

to study the impact of transportation emissions on infant health, also finding significant impacts. 

 
1 There are also analytical models of urban environments that integrate traffic and pollution from mobile 

and point sources (e.g., Kyriakopoulou and Picard, 2021).  
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Zhou et al. (2010) study the impact of driving restrictions on pollution in the lead-up to the 2008 

Olympics in Beijing, documenting steep reductions of CO and NOx emissions that result. Recent 

studies have also leveraged the COVID-19 lockdown policies to examine effects on ambient 

pollution (e.g., Cole et al., 2020), but these studies measure the net impacts of a lockdown on air 

pollution, not the relationship between mobility and pollution.   

Fourth, the paper adds to the increasing number of studies that use remote-sensing data to 

estimate ambient pollution concentrations with high spatial resolution (Shen et al., 2021; 

Demetillo et al., 2020; Hopkins et al., 2016; Jiang et al., 2016), or to show the long-term patterns 

of air pollution over a large geographic area (Li et al., 2020). Akbar et al. (2018) provide a useful 

descriptive example of city-level patterns of mobility and congestion from India. While there are 

descriptive studies of pollution patterns over time and space, few studies incorporate mobility or 

traffic data on a large scale. To the best of our knowledge, we are the first to isolate the impact of 

ground-level mobility on air pollution.  

We proceed as follows: Section 2 describes the data used in the analysis. Section 3 

introduces our empirical approach and discusses the results. Section 4 offers conclusions and 

suggestions for future work.  

2. Data Description 

NO2 is an emissions byproduct of combustion from cars, trucks, power plants, and 

industrial facilities. We are interested in tropospheric NO2 , which is sensed remotely by several 

satellites maintained by the National Aeronautics and Space Administration (NASA) and the 

European Space Agency. We rely on NASA's AURA Ozone Monitoring Instrument (OMI) 

Level-3 product; this has a spatial resolution of roughly 25x25 km, and it records daily 

observations of tropospheric column densities (Krotkov et al, 2019). This product was selected 
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primarily for computational ease at the geographic scale we study; pre-processing has been 

completed by NASA and the resulting pixel-cell size is relatively compact. The satellite passes 

over the Indian subcontinent in the early afternoon, giving daytime estimates of NO2 molecules 

in each tropospheric column.  

Figure 1. Comparisons of Raw and Cleaned Daily NO2 Estimates 

  

Notes: Left panel: raw NO2 satellite data from June 8, 2020. Right panel: pixel-level moving 

average taken over the preceding 14-day period to smooth missing observations. 

 

Pixel-level satellite observations are often missing, or they are flagged as unusable due to 

cloud cover, mechanical obstructions, or variations in satellite orbital paths (Duncan et al., 2014). 

Following best practices and in an appeal to parsimony, we address the missing observations by 

relying on a backwards-looking, 14-day moving average taken at the pixel level, as shown in 

Figure 1. This adaptation smooths noise due to missing observations, while allowing us to 

maintain an analysis at the daily level.  

For our mobility data, we rely on Movement Maps (MM) provided by Meta (formerly 

Facebook). These are particularly well suited to our analysis. The data include the number of 

users of Meta’s suite of mobile-phone apps (Facebook, Messenger, Instagram, WhatsApp).  
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Meta’s raw MM data compile aggregate counts of cell-phone movements between 

16x16km Bing tiles. We restrict the data sample to include only Bing tiles that fall within India’s 

national borders. For a given starting tile, we observe the daily count of movement flows to 

every other Bing tile that occurred in the eight-hour window between 5:30am (0:00 UTC) and 

1:30pm (8:00 UTC). This afternoon timing coincides with the OMI satellite’s daily NO2 

readings. Thus, we can link morning inter-tile population movements with contemporaneous 

tropospheric nitrogen dioxide levels.  

Moreover, the relatively fine spatial dimensions of the MM data permit us to map 

mobility statistics onto individual NO2 pixel cells and to conduct analysis at that level. Most 

publicly available mobility data sets (e.g., Google Community Mobility, Apple Mobility Trends)  

provide only summary data at far larger spatial scales, such as the district or metropolitan-area 

levels. 

The primary mobility measures we generate for our analysis are simple in nature, and we 

calculate the measurements at the NO2 “pixel” level (N ≈ 4,000 for each day in the analysis). The 

first measure is the sum of all non-movers, which we define as those people in a given NO2 pixel 

cell whose mobile phones remained in the same Bing tile at the beginning and ending times of 

day that we examine. The second measure is a count of all movers associated with a pixel; this 

includes any phone that starts in one Bing tile but ends in another. This measure is a rough daily 

proxy for total population mobility. To conduct heterogeneity analyses, we also decompose this 

movement measure by distance. We separately sum mover counts by distance traveled: 0-20km, 

20-50km, 50-100km, or greater than 100km. 

The mobility data provide counts of movement between tile pairs for all tile pairs (i,j). 

The starting and ending tiles are determined by the location of an individual’s mobile phone at 
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the beginning and ending windows of time. The resulting movement matrix is analogous to a 

source-receptor matrix, with counts of people moving between all pairs (i,j).  

The diagonal elements (j,j) of the matrix represent individuals we call non-movers. That 

is, any individual appearing in some tile j  in the beginning and ending period will be counted as 

a non-mover for tile j. Due to the construction of the data set, we can only count individuals 

moving between tiles; an individual may be moving about within a tile during the day, but that 

individual would be counted as a non-mover. We note that this movement would be at most 

roughly 23 kilometers. Our specifications include spatial-unit fixed effects (or interactions with 

day-of-week indicators), so, to the extent that this movement is constant or cyclical within a 

week, it will be absorbed by our fixed effects.  

 In some cases, the data are censored. That is, if fewer than ten people move between a tile 

pair (i,j), that pair is coded as zero. This censoring leads to an underestimate of movement in 

certain cases, such as those tile pairs that are over long distances and/or are in very rural areas. 

Though this bias is likely smaller in urban areas where population densities are higher, there are 

more people moving between tile pairs than our estimates would indicate.  

Another caveat is that the data are only available from late March 2020; this is because 

the data were compiled and maintained in response to the COVID-19 epidemic. The pandemic 

induced significant variation in mobility and electricity demand during this period, which we 

leverage to study the impact on NO2 concentrations.  

To map the mobility pixels to the pollution pixels, we first calculate the total movement 

between any two tile pairs i and j. To capture the total movement associated with tile i, we sum 
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over j. In cases in which the pixels do not line up, we assign movement proportionally based on 

overlapping area.2  

Finally, we also use a rich set of electricity generation data for the entirety of India. 

Because NO2 emissions are produced both directly by coal- and gas-powered electricity 

generation and indirectly through industrial processes that also use this generation, we use these 

data primarily to control for non-transportation-related nitrogen oxides in the air.3 In their raw 

form, our electricity data provide daily total megawatts generated from 2013 to 2021 by 533  

facilities across the country. We merge the daily generation numbers from each facility with its 

geographic coordinates and fuel type, and then spatially join facilities to the NO2 -pixel-cell 

boundaries.4 

 We control for changes in wind patterns for each thermal generator. We calculate a 

downwind buffer area with radius 100 km for each stack location. For example, Figure 2a shows 

the average prevailing wind for January 2020, and Figure 2b illustrates the direction for June 

2020. Following Barrows, Garg and Jha (2019), we make the simplifying assumption that 

“downwind” areas can be characterized as a quadrant (i.e., a 90-degree slice) centered 

on the predominant monthly wind direction away from the plant.  

 

 
2 As a simplified example, suppose that two pollution pixels overlap with tile i. We assign the movement 

associated with tile i to the two pollution pixels based on the how much overlap there is with the two 

pollution pixels. If 75 percent of the area of tile i overlaps with the first pollution pixel, we assign 75 

percent of the total movement of i to that pollution pixel and 25 percent to the other.  

3 Many industrial facilities in India also have onsite captive generators to ease production constraints 
when there are blackouts or supply shortages. We have no simple way to measure use of these backups. 

4 Captive generation is not reported, and so it is missing from our analysis. Because buying electricity 

from the grid is less expensive than captive generation, it is likely the case that there was little captive 

generation during the period of study because reported shortages were rare.  
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Wind direction data come from the fifth generation (ERA5) atmospheric reanalysis of 

climate data produced by the Copernicus Climate Change Service (3CS) at the European Centre 

for Medium-Range Weather Forecasts (ECMWF).5 (See Hersbach et al. (2019) for further 

details.)  

 

Figure 2. Defining Downwind Regions for Thermal Power Plants 

 

 

a. January 2020 

 

b. June 2020 

Notes: Thermal electric-generating units in and around Maharashtra are shown as blue squares. 

For each stack location we then calculate a downwind buffer area with radius 100 km. Figure a. 

shows the average prevailing wind for January 2020, and b. illustrates the direction for June 

2020. Following Barrows, Garg and Jha (2019), we make the simplifying assumption that 

“downwind” areas can be characterized as a quadrant (i.e.. a 90-degree slice) centered 

on the predominant monthly wind direction away from the plant. Wind direction data come from 

the fifth generation (ERA5) atmospheric reanalysis of climate data produced by the Copernicus 

Climate Change Service (3CS) at the European Centre for Medium-Range Weather Forecasts 

(ECMWF) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-

monthly-means?tab=overview); see Hersbach et al. (2019) for further details.  

 

 

 
5 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
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We conclude by overlaying these data sets in a single visualization. In Figure 3, we 

illustrate each component of our data on April 16, 2020. The map is situated over northern India; 

it includes the cities of New Delhi and Chandigarh, as well the neighboring states of Haryana 

and eastern Punjab. The gridded background coloring illustrates the NO2 pixel-cell raster. 

Relatively higher NO2 concentrations are shown in yellow, while lower concentrations are 

shown in purple/red. The black diamond points are power plant locations. The orange-to-red 

points and lines visualize a selected subset of the movement data. To minimize visual clutter, we 

illustrate these data for three start tiles: one each in New Delhi, Chandigarh, and Haryana. These 

are marked with the red squares. 

            For each of these three origin tiles, flowlines are drawn to all local tiles (<100km) 

towards which we observe at least ten movements during morning hours. The color of the lines 

between start and end tiles differentiates mobility declines relative to a baseline established in 

January and February 2020. Darker red lines show a relatively soft decline during this early 

period of the COVID-19 pandemic, while the brightest orange lines denote that mobility fell to 

nearly 20 percent of baseline levels on these date. We do this for illustration purposes, but our 

empirical specifications do not define movement (or non-movement) relative to a baseline;  

instead these specifications rely on within-pixel deviations from the mean for that sample period.  
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Figure 3. Overlaying NO2 Data with Plant-level Generation and Granular Mobility Data 

  

 

 

 

3. Empirical Analysis 

 

Our goal is to identify the impact of ground-level transportation on ambient NO2 

concentrations. We leverage variation in electricity demand and mobility due to COVID-19-

related restrictions during 2020-21 and use fixed effects to obtain “within-pixel” or “within-

pixel-by-day-of-week” variation over time.  

We define an observation at the pixel-by-day level, where a pixel is defined by the 

gridded NO2 data. In addition to the fixed-effects approach described above, we also use a two-

step approach, in which we first estimate a model of NO2 concentrations as a function of power 
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generation and a suite of fixed effects and local trends for the pre-2020 period. We use the model 

to predict (out of sample) NO2 concentrations in 2020 and 2021, and we then use the residual as 

a new dependent variable that is regressed on measures of mobility. This allows us to leverage 

the longer panel structure of the power generation and NO2 data.  

 

3.1 Empirical Approach 

 

 

We are interested in estimating the impact of transportation on atmospheric 

concentrations of NO2 using tile-to-tile movements as a proxy for the level of transportation 

activities. We also control for the number of individuals not moving between tiles in a day. Our 

baseline regression specification is represented by 

𝑎𝑟𝑠𝑖𝑛ℎ(NO2𝑖𝑑𝑡) = 𝛼1𝑎𝑟𝑠𝑖𝑛ℎ(𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑡) +  
1

𝑎𝑟𝑠𝑖𝑛ℎ(𝑀𝑀𝑖𝑡) +


2

𝑎𝑟𝑠𝑖𝑛ℎ𝐻(𝑁𝑀𝑖𝑡) + 𝛾𝑖𝑑  +  𝜀𝑖𝑠𝑡, 

where 𝑎𝑟𝑠𝑖𝑛ℎ(NO2𝑖𝑠𝑡) is the inverse hyperbolic sine of remotely sensed NO2 in pixel i, day of 

the week d and date t. We choose this transformation because it has similar properties as a 

natural logarithm but is defined at zero. This has the advantage that the coefficients can be 

interpreted directly as elasticities (see Bellemare and Wichman (2020) for a discussion). On the 

right-hand side of the equation, Generationit is electricity generation upwind of pixel i on date t, 

while MM represents the numbers of people moving and NM represents those not moving across 

tiles in the data. Finally, 𝛾𝑖𝑑 represents a vector of pixel-by-day-of-week fixed effects, and 𝜀𝑖𝑠𝑡 is 

an idiosyncratic error term.  

 Our preferred specifications utilize day-of-week-by-pixel fixed effects. This allows us to 

control nonparametrically for pixel-specific fluctuations in pollution throughout the week; it also   

ensures that we are isolating within-pixel variation in mobility, thermal generation, and NO2.  
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Descriptive statistics for the key variables are shown in Table 1. To highlight the role of 

censoring in the mobility data we also show the proportion of observations that are censored and 

the conditional mean (i.e., the mean conditional on there being at least 10 individuals observed).  

Table 1. NO2 Pixel-level Means and Standard Deviations  

  

Mean 

(Std Dev) 

 

Proportion 

Censored 

Conditional Mean 

(Uncensored 

Observations) 

NO2 (Remotely Sensed) 2.11e+15     

(1.37e+15) 

  

 

Daily Electricity Generation 0.6412 

(5.6998) 

  

Upwind Elec. Gen. within 100 km 18.7066 

(36.1052) 

  

 

Individuals Staying in Same Tile 5167.513 0.00000135 5167.513 

 (21026.08) (0.0012) (21026.08) 

Individual Movement btw Tiles 0-20 km 361.7216 0.1408 421.0031 

 (1391.589) (0.3478) (1492.961) 

Individual Mvmt btw Tiles 20-50 km 120.8068 0.3370 182.2031 

 (477.0327) (0.4727) (576.2153) 

Individual Mvmt btw Tiles 50-100 km 24.4723 0.7002 81.6179 

 (102.5978) (0.4582) (174.4774) 

Individual Mvmt btw Tiles >100 km 10.1020 0.8863 88.8743 

 (73.5048) (0.3174) (201.3282) 

Notes: Authors’ calculations using the datasets described in this paper and including all pixel-

level data from 2020-2021 (March 2020 – April 2021). There are 1,483,558 pixel-by-day 

observations.  

The average number of individuals in a pixel who do not leave the Bing tile on a given 

day is 5,168, with a standard deviation nearly 4 times the mean. Figure 4 illustrates these 

differences in mobility across the states of India. 
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Figure 4. Variation in Mobility and Non-mobility Counts Across States 

 

Notes: Variability in total daily counts of movement and nonmovement (transformed by the 

inverse hypberbolic sine, arsinh) by state. The figure illustrates each state’s median, interquartile 

range and adjacent values. Adjacent values for a variable x are defined by the following. Define 

U as x[75] + 2
3 (x[75] − x[25] ). The upper adjacent value is defined as xi , such that x(i) ≤ U and x(i+1) 

> U. Define L as x[25] − 32 (x[75] − x[25] ). The lower adjacent value is defined as xi , such that x(i) ≥ 

L and x(i−1) < L. 

 

 

 

The baseline fixed-effects regression results are shown in tables 2 and 3. As expected, the 

estimated elasticities vary with the level of fixed effects included in the estimation. In Table 2 

results are shown for the impact of mobility on NO2. In column (2) of Table 2, a 10 percent 

increase in mobility leads to an increase in NO2 of roughly 1.3  percent. By contrast, a 10 percent 
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increase in non-movement, holding all else constant, leads to a decrease in NO2 concentrations of 

0.9 percent, but the effect is insignificant at the 5 percent level.  

 

Table 2. Fixed-effects Regressions, Pixel Level  
 (1) (2) (3) (4) 

arsinh(Total Mvmt btw Cells) 0.114** 0.134**     

  (0.0107) (0.0116)    

arsinh(Mvmt btw Cells, 0-20 km)     0.105** 0.126** 

     (0.0110) (0.0121) 

arsinh(Mvmt btw Cells, 20-50 km)     0.0636** 0.0688** 

   (0.00648) (0.00683) 

arsinh(Mvmt btw Cells, 50-100 km)   0.0354** 0.0372** 

   (0.00601) (0.00625) 

arsinh(Mvmt btw Cells, >100 km)   0.0114 0.0124 

   (0.00809) (0.00838) 

arsinh(Upwind Gen < 100km) 0.0259** 0.0258** 0.0260** 0.0258** 

 (0.00491) (0.00495) (0.00491) (0.00495) 

Pixel FE X  X  

DOW FE X  X  

Month-by-Year FE X X X X 

Pixel-by-DOW FE  X  X 

Adjusted R-Squared 0.093 0.081 0.093 0.081 

The dependent variable is arsinh(NO2). There are 1,469,328 (pixel-by-day) observations). * and ** represent 

significance at the 5 percent and 1 percent levels, respectively. The within-pixel standard deviation of “Total 

Movement” is 0.534.  

 

 

 

 

Table 3. Fixed-effects Regressions, Full Sample, Pixel Level  
 (1) (2) (3) (4) 

arsinh(Total “Non-Movers”) -2.371** -0.0899 -0.0913 -0.0947 

  (0.0330) (0.0520) (0.0523) (0.0534) 

arsinh(Upwind Thermal Gen < 100km) -0.0544** 0.0263** 0.0263** 0.0262** 

 (0.00484) (0.00491) (0.00491) (0.00495) 

Pixel FE X X X  

DOW FE X  X  

Month-by-Year FE  X X X 

Pixel-by-DOW FE    X 

Adjusted R-Squared 0.073 0.093 0.093 0.081 

The dependent variable is arsinh(NO2). There are 1,469,328 (pixel-by-day) observations. * and ** represent 

significance at the 5 percent and 1 percent levels, respectively. The within-pixel standard deviation of “Non-movers” 

is 0.169.  

 

 

 

 As shown in Table 1, censoring is a concern in the mobility measures. The movement 

between tiles i and j is not reported if there are fewer than 10 individuals observed. We are also 
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concerned with mobility being correlated with changes in economic activity driven by the 

pandemic and related policies. To address these concerns, we now estimate an analogous model 

for a subsample of the observations without zeros (i.e., where some movement is detected, but 

where movement between tile pairs may still be unreported). We also restrict the analysis to 

include observations from June to November 2020, a period when economic activity had 

resumed and the Delta variant of COVID-19 had not been identified as dominant in India.  

 Tables 4 and 5 show the results for movement and non-movement, respectively. The 

preferred specifications for mobility indicate that the impact of movement on NO2 is more than 

unit elastic; a 1 percent increase in movement leads to roughly a 2.5 percent increase in NO2. 

Non-movement has a larger impact in absolute value; a 1 percent increase in the number of 

individuals staying home, relative to the mean for that pixel, leads to a 4 percent decrease in 

NO2.  

 

Table 4. Pixel-level Regressions: June-Nov. 2020, Dropping Censored Observations 
 (1) (2) (3) (4) 

arsinh(Total Mvmt btw Cells) 2.411** 2.775**     

  (0.204) (0.223)    

arsinh(Mvmt btw Cells, 0-20 km)     0.199 0.244 

     (0.294) (0.334) 

arsinh(Mvmt btw Cells, 20-50 km)     0.364* 0.323 

   (0.182) (0.204) 

arsinh(Mvmt btw Cells, 50-100 km)   0.548** 0.672** 

   (0.0907) (0.0999) 

arsinh(Mvmt btw Cells, >100 km)   0.365** 0.367** 

   (0.0714) (0.0766) 

arsinh(Upwind Gen < 100km) 0.0246 0.0213 0.0236 0.0198 

 (0.0275) (0.0283) (0.0274) (0.0283) 

Pixel FE X  X  

DOW FE X  X  

Pixel-by-DOW FE  X  X 

Adjusted R-Squared 0.080 0.051 0.081 0.053 

The dependent variable is arsinh(NO2). There are 63,475 (pixel-by-day) observations. * and ** represent 

significance at the 5 percent and 1 percent levels, respectively. The sample is restricted to June-November 2020, and 

to observations without censoring.  
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Table 5. Pixel-level Regressions: June-Nov. 2020, Dropping Censored Observations 
 (1) (2) 

arsinh(Total “Non-movers”) -3.950** -4.043** 

  (0.0895) (0.0919) 

arsinh(Upwind Thermal Gen < 100km) 0.0228* 0.0225* 

 (0.00949) (0.00962) 

Pixel FE X  

DOW FE X  

Month-by-State   

Pixel-by-DOW FE  X 

Adjusted R-Squared 0.106 0.083 

The dependent variable is arsinh(NO2). There are 732,066 (pixel-by-day) observations. * and ** represent 

significance at the 5 percent and 1 percent levels, respectively. The sample is restricted to June-November 2020 and 

observations without censoring.  

 

3.2 Heterogeneity between States 

There is significant heterogeneity in NO2 levels, movement, and power generation between 

states. The specifications so far have restricted the elasticities of NO2 with respect to mobility to 

be the same across states. To test for heterogeneous responses of pollution concentrations to 

mobility we estimate the regressions separately by state.  

Table 6 shows the results for the three most populous states in India: Uttar Pradesh, 

Maharashtra and Bihar. As before, we separately estimate the elasticities with respect to total 

movement and total non-movement. The results are largest in magnitude for Maharashtra, with 

estimated elasticities of 7.5 for movement and -9.7 for non-movement. These estimates suggest 

that congestion in this highly urbanized state contributes significantly to NO2. 
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Table 6. State-specific Estimates for Three Most Populous States (Pixel-level Specification) 

  (1) (2) (3) (4) (5) (6) 

  U. Pradesh U. Pradesh Maharashtra Maharashtra Bihar Bihar 

arsinh(Total Mvmt) 1.162**  7.511**  0.562  

  (0.214)  (0.860)  (0.313)  

arsinh(Total “Non-

movers”)  

-0.633** 

 

-9.6823** 

 

-0.550** 

   (0.106)  (0.3659)  (0.163) 

arsinh(Upwind Gen) -0.00491 -0.0615** -0.384** 0.0389** 0.0265 0.0443** 

  (0.0272) (0.0121) (0.140) (0.0406) (0.0414) (0.0152) 

Pixel-by-DOW FE X X X X X X 

N 8464 64394 5418 72,532 2893 24839 

Adjusted R-squared -0.006 0.016 0.022 0.0589 0.018 0.018 

The dependent variable is asinh(NO2). Observations are at the pixel-by-day level. * and ** represent significance at 

the 5 percent and 1 percent levels, respectively. The sample is restricted to June-November 2020, and to  

observations without censoring.  

 

 

 

 

4. Conclusions 

 

 Fossil fuel combustion from transportation is known to cause air pollution, but separately 

identifying the impact of transportation on NO2 concentrations has been difficult due to data 

limitations and confounding factors. Measuring the impact of traffic on ambient air pollution 

concentrations is difficult, particularly over large areas, because the impact of traffic on pollution 

varies with vehicle characteristics, traffic congestion, and environmental conditions. There is 

also a dearth of information on the number of vehicles on the road at any time, and for daily 

indicators of fuel use at regional levels. We overcome these issues by combining remote-sensing 

estimates of tropospheric NO2 in India with data on electricity generation and on the movement 

of mobile phones. This combination allows us to estimate the responsiveness of tropospheric 

NO2 to population movements.  

We find that ground-level mobility has a large, significant impact on NO2 concentrations. 

The average elasticity for “movement” estimated nationwide is roughly 2.5, meaning that a 1 

percent increase in movement translates to a 2.5 percent increase in tropospheric NO2. We also 



   

 

20 

 

demonstrate that there is significant heterogeneity over space. In Maharashtra, for example, the 

estimated elasticities can be two to three times the average elasticity. Maharashtra is relatively 

industrialized and has higher incomes than most of India, which could be a driver in this 

difference.  

We also find that NO2 concentrations are very responsive to within-pixel changes in the 

number of individuals not moving long distances during the day. Because this measure is less 

contaminated by censoring, the elasticity is larger in magnitude. Our preferred estimates suggest 

that a 1 percent increase in the number of individuals not traveling long distances decreases NO2 

concentrations by about 4 percent.  

There are several areas for future research. First, machine learning could help researchers 

use the rich data available to better understand how the effects vary with other covariates, such 

as weather, topography, and land use. One could also estimate the effects separately for smaller 

spatial units, such as neighborhoods or cities, as well as determining how the effects vary with 

demographic characteristics. Finally, we note that our findings are for NO2 concentrations, but 

further work should be done to determine the impact on other pollutants as well as greenhouse 

gas emissions.  
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Appendix: Leveraging a Longer Data Series 

 

The results so far have been based on data beginning in 2020, when the mobility data first 

became available. In this subsection we leverage the longer panel of electricity generation and 

NO2 concentrations. We first estimate a high-dimensional fixed-effects model using data from 

2013 to 2019. We include upwind power generation, day-of-week-by-pixel fixed effects, state-

by-month fixed effects, and district-specific linear trends. Table 7 shows the results. The model 

explains a large share of the variation in NO2. We then use the model to predict out-of-sample 

NO2 concentrations in over the 2020-21 period, and the predictions are subtracted from the 

actual NO2 concentrations to generate residuals. The average residuals for each state are plotted 

over time in Figure 1A.  

 

 We then use the residuals at the pixel-by-day level as the dependent variable in a 

regression model, again restricting the sample to observations with reduced censoring as in 

Tables 5 and 6. The results are shown in Table 8. The results are similar in spirit, though with 

slightly smaller magnitudes.  

 

Table 7. Predictive Model, Pixel-Level 

  

Electric Generation 0.0217** 

  (0.000616) 

Gen. within 100 km 0.00976** 

 (0.000185) 

Gen. 100 - 200 km 0.00569** 

 (0.000157) 

Pixel-by-DOW FE X 

State-by-Month FE X 

District-Specific Linear Trend X 

Adj. R-sq 0.350 

The dependent variable is arsinh(NO2). There are 9,780,392 (pixel-by-day) observations. * and 

** represent significance at the 5 percent and 1 percent levels, respectively.  
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Table 8. Explaining Unexpected NO2 Fluctuations: Out-of-Sample Residuals (Pixel Level) 

 (1) (2)   (3) (4) 

arsinh(“Non-movers”) -1.684** -1.722**        

    (0.585) (0.612)       

arsinh(Total Mvmt)     0.147** 0.189**     

        (0.0478) (0.0602)     

arsinh(Mvmt 0-20 km)       0.0927* 0.126* 

          (0.0399) (0.0507) 

arsinh(Mvmt 20-50 km)       0.0794** 0.0979** 

          (0.0286) (0.0326) 

arsinh(Mvmt 50-100 km)       0.0828 0.0924 

          (0.0465) (0.0509) 

arsinh(Mvmt >100 km)       0.0674 0.0723 

       (0.0557) (0.0578) 

Pixel FE X  X  X  

Pixel-by-DOW FE  X  X  X 

Adj. R-sq 0.997 0.997 0.997 0.997 0.997 0.997 

The dependent variable is the residual from the predictive model described above. There are 

732,067 (pixel-by-day) observations. * and ** represent significance at the 5 percent and 1 

percent levels, respectively.  
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Figure 1A. Average Residuals by State and Date 

 
 

Note: The plots show average residuals at the state-by-day level. Residuals were calculated by 

taking the actual arsinh(NO2) levels minus out-of-sample predictions from model (3) of Table 5. 

For graphical exposition some outliers were dropped from this plot (those with an absolute value 

of greater than five).  

 

 

 

 

 

 

 

 

 


