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tions and meteorological conditions spanning 20 years at 
monthly frequency. The findings show that, on average, 
hydrological droughts lead to 0.83 micrograms per cubic 

meter excess fine particulate matter, equivalent to a 5.3 
percent increase from non-drought conditions. Counter-
factual simulations for the region indicate that this excess 
fine particulate matter may have resulted in up to 10,000 
premature deaths annually. Combining the estimates with 
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also shows that this health burden will likely persist over 
the next four decades.
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1 Introduction
Electricity generation is a water-intensive process, with most power plants requir-
ing water to spin hydroelectric turbines or cool thermoelectric generators (Sanders,
2015). In Latin America and the Caribbean (LAC), approximately half of the to-
tal power generation comes from hydropower, while the other half comes from
combustion power, including coal, oil, gas, and biomass (IEA, 2021). Because
hydrological droughts predominantly limit the generation capacity of hydropower
plants, droughts can shift generation to combustion power plants. A plausibly im-
portant but understudied consequence of this shift in generation is the worsening
of local air quality. Changes in air quality are a first-order concern, as exposure
to fine particle air pollution (PM2.5, < 2.5 µm) is detrimental to human health
(Dockery et al., 1993; Pope III et al., 2002, 2009; Cohen et al., 2017), with recent
studies showing that even low levels of exposure lead to adverse health outcomes
(Weichenthal et al., 2022). With nearly half a billion individuals in LAC residing
near a combustion power plant and climate change leading to more frequent and
severe hydrological droughts in the region, a key question is determining how air
quality changes in response to this shift in electricity generation.

In this paper, we fill this gap by quantifying the relationship between hydro-
logical droughts and increased PM2.5 concentrations around combustion power
plants in LAC. We begin by assembling a monthly frequency power plant-level
panel covering the 2000 to 2020 period. The panel provides information on both
PM2.5 concentrations in the proximity of combustion power plants and market-
level measures of the level of hydropower generation capacity in water stress.
These market-level measures are derived from granular watershed-level measures
of hydrological drought. Our preferred market-level measure is the fraction of
hydropower generation capacity affected by drought (FHD). The panel also pro-
vides information on an extensive set of meteorological factors, emissions from
wildfires, proxies of electricity demand, and characteristics of power plants. Us-
ing this dataset and fixed effect methods, we estimate the excess air pollution
created by changes in the FHD. Our estimates have a causal interpretation be-
cause, conditional on meteorological factors, changes in electricity demand, and
seasonal trends, hydrological droughts create a plausibly exogenous shock to hy-
dropower generation. Because hydrological droughts can increase PM2.5 through
alternative mechanisms, such as increasing the likelihood of wildfires, we exclude
plant-month observations affected by wildfires.

Our results fall into four categories. The first set of results shows that hydrological
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droughts considerably increase PM2.5 concentrations around combustion power
plants. At average FHD levels, we find an increase of 0.83 µg/m3, which increases
PM2.5 concentrations from 15.76 in the absence of hydrological droughts to 16.59
µg/m3 (i.e., roughly a 5.3 percent increase). With World Health Organization
guidelines categorizing PM2.5 concentration greater than 5 µg/m3 as harmful to
human health (WHO, 2021), the excess PM2.5 created by hydrological droughts
will likely lead to a considerable health burden for the region.

The second set of results highlights that the most likely mechanism for the doc-
umented increase in PM2.5 is the shift in electricity generation from hydropower
to combustion power plants. Specifically, we show a clear dose-response gradient
with PM2.5 monotonically increasing with FHD. We also provide evidence from
two placebo exercises that rule out wildfires and dust storms as plausible drivers
of our results. Specifically, we test and fail to find evidence of FHD increasing
PM2.5 around clean power plants (solar, wind, and nuclear) or around combus-
tion power plants in the years before they become operational. We also rule out
changes in electricity demand or other meteorological factors driving the results
by controlling for these factors in our specification. In our main specification, we
assume that these effects are additive and linear. Still, our result holds even after
relaxing these assumptions and using the post-double selection method of Belloni
et al. (2014) to test far more flexible specifications. The pattern of heterogeneous
effects with respect to plant size and fuel type further bolsters the case for the shift
in generation to combustion power plants as the primary mechanism. Specifically,
we find that the effects on excess PM2.5 are largest for smaller power plants and
those that use oil or biomass and more muted among larger power plants and those
that use coal. These results are consistent with the idea that smaller power plants
are more able to respond during a drought as they tend to be air-cooled, while
larger power plants tend to be water-cooled. Another possible reason the effect
is more muted among larger power plants (mainly coal) is their limited flexibility
(i.e., they provide baseload generation).

The third set of results quantifies the number of lives lost building on our esti-
mates of drought-induced excess PM2.5, demographic data on the population ex-
posed, and well-established concentration-response functions from the literature
that documents the adverse health effects of PM2.5 (e.g., Deryugina et al. (2019);
Liu et al. (2019)). Our preferred counterfactual calculation shows that the region
experiences as many as 10,000 premature deaths per year. The monetized losses
from the lives lost using conservative estimates of the value of a statistical life in-
dicate an associated cost in the order of $12 billion (constant 2019 USD) per year.
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We also characterize the population residing in close proximity to combustion
power plants and show that the burden of excess PM2.5 falls disproportionately
among groups with lower socioeconomic status.

The fourth set of results projects these costs into the future, accounting for pos-
sible changes in the climate, demography, and the electricity sector. Specifically,
we extend the counterfactual calculations until 2059, which roughly corresponds
to the expected operational lifespan of the combustion power plants in service.
We begin by computing the evolution of the FHD using data from 22 climate and
earth system models under three Shared Socioeconomic Pathways (SSPs). Con-
cerningly, for the region, we find that the FHD is expected to increase between
22 and 24 percent over the next four decades. Consistent with the increase in the
FHD, we also find that premature deaths and monetized losses are also likely to
increase. When assessing the effect of the SSPs in conjunction with three highly
stylized electricity sector scenarios, we find that merely flattening out the losses
would require the most optimistic SSP scenario in conjunction with an electricity
sector scenario where combustion power plants are phased out following regional
pledges. These results are important because they indicate that the health burden
of excess PM2.5 is largely permanent over the next four decades and is a first-order
concern for policy makers in the region. Another important feature of these re-
sults is that there are considerable differences in sub-regional trends, for example,
with the Andean Region (Colombia, Ecuador, and Peru) poised to experience a
decrease in hydrological droughts and consequently in their FHD.

Our paper contributes to several stands of literature. Most narrowly, it extends re-
cent work in the U.S. quantifying the relationship between hydrological droughts,
energy generation, and air quality (Eyer and Wichman, 2018; Herrera-Estrada
et al., 2018; Qiu et al., 2023). Specifically, we demonstrate that this relationship
also exists in LAC, we recover the first region-wide estimates of excess PM2.5

for the region, and we offer three novel insights about this relationship. First, we
provide the first estimates of the nexus between hydrological droughts and ex-
cess PM2.5 created by combustion power plants that use oil and biomass. We also
show that these plants lead to some of the largest decreases in air quality. These
findings are important because oil and biomass power plants are common in de-
veloping countries. Second, we show that the link between hydrological droughts
and worsening air quality can be observed even for short-duration droughts. We
can document this response because we observe small hydropower plants (greater
than 1 MW), which often lack dams, and as a result, their generation capacity is
more immediately affected by droughts. Third, we show that small-capacity com-
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bustion power plants, common in the region and more likely to be air-cooled and
less affected by droughts, lead to considerable increases in excess PM2.5. Over-
all, our findings complement the U.S. literature by highlighting that the threat
to air quality posed by hydrological droughts is more significant for developing
economies.

More broadly, our paper speaks to the literature that aims to quantify the eco-
nomic damage of climate change (see Auffhammer, 2018, and references therein)
by providing region-wide estimates for LAC of the societal cost that hydrological
droughts impose by altering electricity generation, and by projecting these losses
under several climate change scenarios. We also contribute to the literature on en-
vironmental inequalities (see Banzhaf et al., 2019, and references therein) by doc-
umenting that excess PM2.5 falls disproportionately among those with lower so-
cioeconomic status. We thereby highlight a novel channel through which droughts
reinforce socioeconomic inequalities.

The paper is organized as follows. Section 2 describes the data. Section 3 presents
the identification strategy and the results. Section 4 provides counterfactual cal-
culations of the losses created by excess PM2.5. Section 5 presents projections
of losses based on our results and climate models. Section 6 presents robustness
checks. Section 7 concludes.

2 Description of the data
We construct a power plant-level panel dataset to study whether hydrological
droughts impact PM2.5 concentrations by shifting electricity production towards
combustion power plants. This unique dataset combines market-level measures
of the level of distress by hydropower plants, derived from a granular watershed-
level measure of hydrological drought, with information on PM2.5 concentrations
within 50 km of each power plant. This monthly dataset covers all Latin American
and Caribbean countries between 2000 and 2020.

The starting point for our panel dataset is the Global Power Plant Database de-
tailed in Byers et al. (2018).1 This database provides detailed information on the
geolocation, capacity, fuel type, and commissioning year for all power plants with
generators above 1 megawatt (MW). This feature of our dataset is important be-
cause little is known about the pollution burden created by plants with smaller

1https://datasets.wri.org/dataset/globalpowerplantdatabase, Dataset Last Updated June 2, 2021.
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capacities. In our sample, 67 percent of plants have a capacity lower than 30
MW.2

Next, we augment this dataset with market-level measures of the degree of hy-
drological drought faced by hydropower plants at monthly frequency during the
2000 to 2020 period. The process of computing these measures of drought in-
volves several steps. In the first step, we follow existing literature and use runoff
anomalies to measure hydrological drought (Herrera-Estrada et al., 2018; IEA,
2021; Qiu et al., 2023). Runoff is the depth of water accumulated over time in the
soil and is a valuable indicator of drought or flood conditions. Runoff anomalies
indicate a period where water availability is above or below normal. Specifically,
we define runoff anomalies as the difference between the monthly runoff and its
corresponding average value over the reference period (2000 to 2019). To mea-
sure runoff anomalies, we use data from the International Energy Agency Weather
for Energy Tracker database3 (IEA and CMCC, 2022). This database provides in-
formation derived from the ERA 5 reanalysis on monthly total runoff anomalies
(surface and subsurface) measured in millimeters per hour (mm/h) at a spatial
resolution of 0.25◦x0.25◦.

In the second step, we determine the watershed of each hydropower plant in the
sample. The watershed is the area over which water would accumulate for use
by the hydropower plant. To compute these areas, we use the hydro basin poly-
gons (areas where water collects and may flow) from the HydroSHEDS database4

(Lehner and Grill, 2013). This dataset is produced from digital elevation maps and
hydrological models. Next, following standard engineering practices for each hy-
dropower plant, we delineate the watershed by tracing all of the upstream basins
(Pfastetter level 12) that flow in the direction of the power plant. The resulting
dataset provides a watershed for each hydropower plant.

In the third step, we overlay the information on runoff anomalies with the wa-
tershed delineations and compute the average monthly runoff anomalies for each
watershed. Figure A1 in the appendix plots the evolution of runoff anomalies for
the region in panel A and for sub-regions defined by the IEA in panel B. The
figures reveal considerable sub-regional heterogeneity even during periods of sig-
nificant overall drought, such as 2015 to 2020.

2Power plants with a capacity exceeding 30 MW are usually categorized as large plants by the
US Department of Energy.

3https://www.iea.org/data-and-statistics/data-tools/weather-for-energy-tracker
4https://www.hydrosheds.org/products/hydrobasins
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To measure the impact of anomalies with a duration greater than one month, we re-
peat the previous calculation using a moving average of the runoff anomalies over
the past three, six, nine, and 12 months. The resulting dataset provides detailed in-
formation on whether water availability conditions are above or below normal for
each hydropower plant. Figure 1 shows the distribution of the hydropower plants
in our sample and provides a visual example of how the hydrological drought
dataset is constructed.

Figure 1: Hydropower plants, watersheds, and runoff anomalies

Notes: Dots represent hydropower plants (N = 1,069), hatched areas show hydropower watersheds,
and the color gradient indicates the average monthly runoff anomalies ranging from low (red) to
high (blue). The right panel zooms into the hydropower plant Infernillo in Mexico (October 2020)
and shows its watershed.

In the fourth step, we use the information derived in the previous step to com-
pute market-level measures of the hydropower generation affected by hydrologi-
cal drought. In the absence of systematic information on the boundaries of electri-
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cal markets within countries, we define each electricity market using the country
boundaries. As documented by Timilsina et al. (2021), there is little cross-border
trade in the region, with less than 5 percent of total regional generation being
transmitted across countries.

Our preferred market-level measure is the fraction of hydropower generation ca-
pacity affected by drought (FHD). To construct this measure, we create a binary
variable equal to one when the watershed of a hydropower plant has less water
available than normal in the past three months (mean negative runoff anomaly)
and zero otherwise. Next, we compute the average of this variable for each mar-
ket and month. To account for the greater impact that larger plants experiencing
drought can have on electricity generation, we weigh this average by plant capac-
ity. We define droughts over a relatively short period (three months) because small
hydropower plants are common in the region, and for these plants, even short-run
changes in water availability may imply reduced generation capacity. Nonethe-
less, to check whether our results are robust to alternative definitions of drought
duration, we also compute the FHD variable using the moving average of runoff
anomalies in the past one, six, nine, and 12 months.

We also acknowledge that different aggregation methods prioritize different fea-
tures of the data. With our primary approach, we exploit the spatial granularity of
our data and aim to capture the effect of both local and regional droughts by iden-
tifying periods in which hydropower generation declines due to water availability
being below normal levels. However, to ensure that we study the full scope of
our data, we also compute our market-level measure in other ways. For instance,
we prioritize the number of plants affected in an alternative computation using an
arithmetic average instead of a capacity-weighted average.

Additionally, we calculate market-level measures considering only the most se-
vere droughts. To operationalize this alternative definition, we follow Herrera-
Estrada et al. (2018) and create a binary variable that equals one only when runoff
anomalies are one standard deviation below normal levels. We then compute the
average of the variable for each market and month. These and other variations of
the market-level measures help us understand the effects of extreme drought. We
also compute a measure that directly gauges the intensity of the drought by calcu-
lating the average runoff anomaly for each market and month. One downside of
this measure is that, in the case of non-market-wide droughts, it may incorrectly
assume that negative anomalies experienced by some hydropower plants can be
offset by positive anomalies experienced by other plants.
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With our battery of market-level measures added to the panel using country and
month-year identifiers, we focus on measuring the concentration of PM2.5 around
combustion power plants. Specifically, we use information on monthly mean sur-
face PM2.5 concentrations measured in micrograms per cubic meter (µg/m3) from
the V5.GL.03 dataset detailed in Van Donkelaar et al. (2021).5 This geophysical-
hybrid dataset provides estimates of PM2.5 concentrations by combining data from
satellites, chemical transport models, and ground-based monitors. It provides in-
formation at 0.01◦x0.01◦ resolution at a monthly frequency between 1998 and
2021. Because previous literature has shown that there are considerable health
effects within 50 km of a power plant (Qiu et al., 2023; Fraenkel et al., 2024;
Clay et al., 2016), we compute the average PM2.5 concentrations for every plant
and month at this distance and at 10 km. Figure 2 shows the distribution of the
combustion plants in our sample and provides a visual example of how the PM2.5

concentrations are calculated. To run placebo exercises, we also compute these
measures of PM2.5 concentrations within 50 km of non-combustion power plants
(i.e., solar, wind, nuclear, geothermal).

Next, we include in the dataset variables that can help us account for factors that
confound the relationship between PM2.5 concentrations and our market-level
measures of drought. Wildfires, which are more prevalent during droughts and
lead to higher PM2.5 concentrations (McClure and Jaffe, 2018), are a particular
source of concern. To limit the influence of surface PM2.5 related to wildfires,
we follow Qiu et al. (2023) and omit observations plausibly affected by wild-
fires. Specifically, we use data from the Global Fire Emissions Database version 4
(GFED4s)6 described in Van Der Werf et al. (2017). This dataset provides monthly
information on carbon emissions from fires at a spatial resolution of 0.25◦x0.25◦

and at a monthly frequency between 1997 and 2022. Using this information, we
identify and exclude from the sample plant-month-year observations where fire
emissions are observed within 50 km of a power plant.

To account for other confounding factors, we also include in our dataset several
meteorological variables derived from the Weather for Energy Tracker database
(IEA and CMCC, 2022).7 These variables provide monthly frequency informa-
tion and correspond to the mean value observed within 50 km of each power
plant. The meteorological variables are: temperature (◦C at 2m), total precipita-

5https://sites.wustl.edu/acag/datasets/surface-pm2-5/
6https://www.geo.vu.nl/ gwerf/GFED/GFED4/
7https://www.iea.org/data-and-statistics/data-tools/weather-for-energy-tracker.
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Figure 2: Combustion power plants, 50km radius, and PM2.5 concentrations

Notes: Dots represent combustion power plants (N = 1,835), hatched circles show the 50 km
radius around each combustion power plant, and the color gradient indicates PM2.5 concentrations
ranging from low (green) to high (red). The right panel zooms into the coal power plant Plutarco
Elı́as Calles in Mexico (October 2020) and shows its 50 km radius.

tion (mm/h), relative humidity (%), surface pressure (Pa), and wind speed (m/s
at 10m and 100m). The definitions and source of these variables can be found in
IEA (2022). Additionally, to account for changes in electricity demand related to
meteorological conditions (e.g., heat waves), we include market-level measures of
heating degree-days (HDD) and cooling degree-days (CDD) as part of our dataset.
Following IEA guidelines we define HDD (◦C days) with 18 ◦C reference and a
15 ◦C threshold. Similarly CDD (◦C days) is defined with 18 ◦C reference and a
21 ◦C threshold. See IEA (2022) for further details.

To quantify exposure to excess PM2.5 concentrations, we compute the population
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residing within 50 km of combustion power plants. Specifically, we use mod-
eled population at 100-meter spatial resolution available at five-year intervals from
the Global Human Settlement Layer (GHSL) database8 (European Commission,
2023). This dataset represents a significant advancement compared to prior at-
tempts at modeling population distribution in space. It achieves this by refining
raw census data into grid cells through the integration of remote-sensed imagery,
specifically by utilizing the volume of residential areas. To avoid double counting
the population in cases where the 50 km radius for different power plants overlaps,
we partition these areas using a Thiessen method. We then compute the sum of
the population residing in these areas in 2000, 2005, 2010, 2015, and 2020. We
linearly interpolate the data obtained in the previous step for each power plant to
create an annual frequency times series of the exposed population.

Additionally, to better characterize the population residing in proximity of a power
plant, we use the Thiessen polygons derived previously and 2019 Human De-
velopment Index (HDI) data down-scaled to 0.1◦x0.1◦ resolution from Sherman
et al. (2023) to compute mean plant level HDI. We then compare the plant-level
HDI with country-level HDI data from Smits and Permanyer (2019) to deter-
mine whether the population residing near power plants is systematically differ-
ent.

Last, to study how excess PM2.5 concentrations and exposure may change during
the operational lifespan of power plants already in operation, we use runoff pro-
jections from 22 climate models from the Coupled Model Intercomparison Project
Phase 6 (CMIP6). All these models provide runoff projections for the key Shared
Socioeconomic Pathways (SSPs): SSP1-2.6, SSP2-4.5, and SSP3-7.0. Using this
information on 66 future paths of runoff (22 models × 3 SSPs), we compute for
each path and hydropower watershed the average runoff anomaly at monthly fre-
quency between 2020 and 2060. The resulting dataset is then used to compute the
evolution of the fraction of hydropower generation capacity affected by drought
under the different models and SSPs. We also use the KC and Lutz (2017) popu-
lation growth rate projections corresponding to each SSP to model the evolution
of the population over the same time period.

8https://data.jrc.ec.europa.eu/dataset/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea
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3 Methods and results

3.1 Empirical approach
We estimate the impacts of drought on average PM2.5 concentrations around power
plants with the following fixed effects regression:

PMicmy = βHDcmy +X′
icmyγ + αi + αmy + αcm + εicmy, (1)

where PM represents the average PM2.5 (µg/m3) within 50km of combustion power
plant i in electricity market c in month m and year y.9 HDcmy is the market-level
measure of hydrological drought, X is a vector of meteorological controls at the
plant and market level, αi are power plant fixed effects, αmy are month-by-year
fixed effects, αcm market-by-month fixed effects, and εicmy is the error term.

The parameter of interest is β, which measures the impact of hydrological droughts
on PM2.5 concentrations under the assumption that the shocks are exogenous given
the controls. We account for time-invariant unobserved confounders using plant-
level fixed effects, for time-varying unobserved common shocks using month-
by-year fixed effects, and for market-specific seasonality using market-by-month
fixed effects.

Because meteorological conditions related to hydrological droughts can also af-
fect PM2.5 concentrations, Equation 1 includes several meteorological controls
including an indicator of local hydrological drought, temperature, total precipita-
tion, relative humidity, surface pressure, and wind speed measured at a height of
10 and 100 meters. To also account for the effect of changes in electricity demand
that may be correlated with hydrological drought conditions, we control for mean
market-level HDD and CDD.

Moreover, in results presented in Figure 12, we relax the additivity and linearity
assumptions of X′

icmyγ in Equation 1 and consider a far richer set of controls,
which includes up to third order polynomials of the controls in Xicmy as well
as their pairwise interactions (up to 494 controls). We then use the post-double-
selection estimator of Belloni et al. (2016) to test a series of alternative specifica-
tions that are more flexible than Equation 1 while remaining parsimonious.

9We classify plants as combustion if either the primary or secondary fuel type is coal, gas, oil,
biomass, petcoke, or waste. Analogously, we classify plants as non-combustion if the fuel type is
solar, wind, geothermal, or nuclear.
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Because hydrological droughts can also affect PM2.5 concentrations by increasing
the likelihood of wildfires, we exclude from the sample plant-month observations
where emissions from fires are observed. Because excluding these observations
from the sample does not fully rule out the presence of PM2.5 concentrations re-
lated to wildfires, in Figure 4, we also present the results of several robustness
exercises that show that wildfires are not driving our results.10

We estimate Equation 1 and alternative specifications using Ordinary Least Squares.
To allow for arbitrary patterns of correlation among PM2.5 concentrations across
space and over time, we cluster standard errors at the market level. Addition-
ally, Figure A4 presents results where we derive standard errors under alternative
assumptions.

3.2 Hydrological droughts lead to excess air pollution
We begin by estimating Equation 1 with our preferred measure of market-level
hydrological drought, where HDcmy is the fraction of hydropower generation ca-
pacity affected by drought (FHD). We define drought as experiencing an average
negative runoff anomaly in the past three months. Figure 3 panel A plots point es-
timates and confidence intervals. The estimate presented in model 1 corresponds
to the impact of the FHD. The estimated coefficient shows that PM2.5 concen-
trations could increase by as much as 1.55 µg/m3 in markets where FHD shifts
from 0 to 100 percent. Because this large shift is seldom observed in our sample,
in panel B, we plot the corresponding marginal effects, that is, the implied total
PM2.5 concentrations for different levels of FHD. The box plots provide an accu-
rate representation of the distribution of the marginal effects given the FHD levels
in our sample. The triangle markers represent PM2.5 concentrations at the aver-
age FHD level. The panel reveals that PM2.5 concentrations 50 km around power
plants in the absence of droughts are in the order of 15.76 µg/m3, they increase to
16.59 µg/m3 at average levels of FHD, and can increase to up 17.31 µg/m3 for the
highest FHD levels observed in our sample. These results are quantitatively im-
portant as they indicate that there is an increase of roughly 0.83 µg/m3 at average
FHD levels. In panel A model 2 (dose-response), we plot the coefficients from an
additional exercise where we estimate Equation 1 after discretizing the FHD vari-

10An alternative mechanism through which wildfire smoke could increase pollution is by re-
ducing solar generation and increasing generation from combustion power plants (Gilletly et al.,
2023). This mechanism is unlikely to be important in the region, as solar generation constitutes a
small fraction of total generation during our sample period.
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Figure 3: Effect of the fraction of hydropower generation affected by drought
(FHD) on PM2.5 concentrations
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Notes: Panel A plots point estimates and 95 percent confidence intervals (CIs) of β in Equation 1.
The CIs are derived from standard errors clustered at the market level. The benchmark model uses
our preferred measure of hydrological drought FHD. The dose-response model shows estimates
from an augmented version of Equation 1 where the FHD variable is discretized in four groups
(less than 25, 25 to 50, 50 to 75, and greater than 75 percent). The reference group is FHD less
than 25 percent. Panel B plots the distribution of implied total PM2.5 concentrations, that is, the
marginal effect plus the predicted level of PM2.5 in the absence of droughts. The box represents
the interquartile range, the whiskers report the minimum and maximum value, and the triangle
indicates the average value.

able into four groups: FHD less than 25 percent, FHD 25 to 50 percent, FHD 50
to 75 percent, and FHD greater than 75 percent. These groups roughly correspond
to the quartiles of the FHD variable. In the estimation, the reference group is FHD
less than 25 percent. Consistent with the idea that hydrological droughts increase
pollution by shifting generation to combustion power plants, we find that the im-
pact on PM2.5 increases as the fraction of hydropower plants experiencing drought
grows. We also find that the increase in PM2.5 is substantially larger when at least
50 percent of hydropower generation capacity is affected by drought.

Panel B further reveals that the implied PM2.5 concentrations of the benchmark
model are in a very similar range to that of the more flexible model presented in
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the row labeled dose-response (16.14 to 17.24 µg/m3). Given the similar results,
we will focus on the more parsimonious benchmark model for the remainder of
the paper.

3.3 Combustion power generation induced by drought drives
excess air pollution

Having established that hydrological droughts lead to increased PM2.5 concentra-
tions, we turn our attention to considering and testing alternative mechanisms
through which hydrological droughts might affect air pollution. Most promi-
nently, droughts increase the likelihood of wildfires, one of the primary sources of
PM2.5 pollution (Burke et al., 2021, 2023; McClure and Jaffe, 2018; Childs et al.,
2022). As noted in the data section, we excluded from the sample plant-month
observations where we observe emissions from wildfires. This restricted sample
lessens the concern that our results are driven by wildfires but does not entirely
rule out this possibility as PM2.5 pollution can be suspended in the atmosphere for
several days and may travel for hundreds of kilometers. To address this issue and
the related concern of other natural sources of PM2.5 emissions like dust storms
(Heft-Neal et al., 2020) also related to droughts, Figure 4 presents results from
two placebo exercises (models 2 and 3).

In the first placebo exercise, we compute PM2.5 concentrations within a 50 ra-
dius of non-combustion power plants (e.g., wind, solar, and nuclear) and exclude
observations with combustion power plants within that radius. We then estimate
Equation 1 using this sample. If fires or dust storms drive the excess air pollu-
tion, we should also expect to observe an increase in air pollution in this sample
of non-combustion power plants. However, consistent with the idea that fires
and dust storms are not the primary mechanism for the excess air pollution docu-
mented previously, we find that the impact of FHD on air pollution around non-
combustion power plants is small and statistically indistinguishable from zero.
One important caveat with the previous exercise is that the location of combus-
tion and non-combustion power plants may differ systematically, and the resulting
null effect may reflect the differences in geographic characteristics. To address
this limitation, the second placebo exercise tests whether air pollution increased
among combustion power plants in the years before they were operational. Once
again, we cannot reject the null hypothesis that the impact of FHD on air pollu-
tion is different from zero. These placebo exercises indicate that wildfires and
dust storms are unlikely to drive our results and that a more likely mechanism is
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the shift in generation towards combustion power plants.

Figure 4: Placebo exercises
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Notes: The figure plots point estimates and 95 percent confidence intervals (CIs) of β in Equation
1. The CIs are derived from standard errors clustered at the market level. All specifications use
FHD as our preferred measure of hydrological drought (HD). Model 1 is our benchmark, reflecting
the same estimate as model 1 in Figure 3, panel A. The second model presents an estimate derived
from a sample that only includes non-combustion power plants (e.g., wind, solar, and nuclear).
The sample further excludes plants with combustion power plants within a 50 km radius. The
third model presents an estimate derived from a sample composed of combustion power plants in
the period before they became operational.

3.4 Heterogeneous effects
Next, we conduct a series of exercises to document whether excess air pollu-
tion induced by hydrological drought varies with the characteristics of combus-
tion power plants, such as their size and fuel source. In the plant size exercise,
as measured by capacity, we follow the US Department of Energy definition and
create an indicator variable for larger than 30 MW. We then augment Equation 1
by including an interaction term between the FHD variable and the size indica-
tor variable. Analogously, we augment Equation 1 in the fuel source exercise by
including an interaction term with an indicator variable for the fuel source type
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(e.g., coal, gas, oil, biomass, or other). We then perform separate estimations of
each augmented version of Equation 1 and compute the marginal effects, that is,
the impact of FHD on PM2.5 concentrations for each subgroup. Figure 5 plots the
resulting point estimates and 95 percent confidence intervals. The figure reveals
that hydrological droughts lead to excess air pollution in all subgroups, with the
increase being substantially smaller for larger-capacity power plants (more than
30 MW) and for plants that use coal and gas as fuel.

There are several possible explanations for this pattern of results. One interpreta-
tion is that the largest increases in air pollution occur among power plants that are
likely to have spare capacity. While we do not observe plant-level capacity factors
in our data, baseload electricity generation is usually composed of large-capacity
coal and gas power plants Sanders (2015). Since these plants are designed to run
continuously near their maximum capacity, it is also reasonable that we observe a
more limited adjustment in generation and, hence, pollution response to droughts.
Another reason large baseload power plants have limited adjustment capacities
during drought is that they tend to be more water-intensive than smaller power
plants Sanders (2015). Smaller combustion power plants, to a larger extent, uti-
lize air-cooling methods and tend to be composed of biomass and oil plants in our
sample. In line with this, among all combustion power plants, we find the largest
drought-induced pollution increase for biomass power plants, a well-known sig-
nificant source of particle pollution.

We view this pattern of results as providing further supporting evidence in favor
of the idea that hydrological droughts increase air pollution by shifting generation
to combustion power plants.

4 The cost of drought-induced excess air pollution

4.1 Lives lost due to excess air pollution
To compute premature deaths, we combine a concentration-response function
(CRF) with our estimate of excess PM2.5 air pollution induced by drought and
counts of exposed population. Our counterfactual calculation involves several
steps. In the first step, we compute excess PM2.5 air pollution by multiplying
our benchmark estimate (Figure 3 panel A) by the observed FHD. The resulting
market-by-month-year variable measures the additional air pollution observed in
response to hydrological droughts shifting electricity generation to combustion
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Figure 5: Effect of the fraction of hydropower generation affected by drought
(FHD) on PM2.5 concentrations, by subgroup
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Notes: The figure plots point estimates and 95 percent confidence intervals (CIs). The CIs are
derived from standard errors clustered at the market level. All specifications use FHD as the
measure of hydrological drought (HD). In the first model (blue), we estimate an augmented version
of Equation 1 where we interact the FHD variable with a binary indicator for plant capacity greater
than 30 MW. In the second model (red), we perform an analogous exercise, but we interact the
FHD variable with an indicator variable of the plant’s fuel type. In all cases, we report the marginal
effects, that is, the impact of FHD for each sub-group. The coefficient on plants greater or equal to
30 MW is statically different from the coefficient on plants smaller than 30 MW at the five percent
level. The coefficient for plants that use coal is statically different from the coefficient for plants
that use oil at the five percent level.

power plants.

In the second step, we transform excess air pollution into premature deaths us-
ing the CRF estimated by Deryugina et al. (2019). We prefer this CRF estimate
because Deryugina et al. (2019) exploits variation in daily wind direction to es-
tablish the causal relationship between PM2.5 concentrations and excess mortality.
According to their CRF, a day of exposure to 1 µg/m3 leads to 0.69 excess deaths
per million U.S. adults 65 or older (Medicare beneficiaries). To use their CRF, we
transform it to monthly frequency by multiplying it by 30.

In the third step, we compute the counts of the exposed population. Specifically,
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for each combustion power plant, we compute the count of the population 65
or older residing within 50 km by multiplying the all-age population counts, de-
scribed in the data section, by the fraction of the population 65 or older. Infor-
mation on the fraction comes from World Bank (2023a) and is available at the
country year level. Accordingly, this calculation assumes that the age distribution
is uniform within countries.

In the fourth step, we derive counts of premature deaths at the plant-month-year
level by multiplying the variables described in steps one to three. For ease of
presentation, we aggregate this count of premature deaths to the LAC by year
level.

Last, to account for uncertainty in our estimate of excess air pollution, in the first
step, we draw our coefficient from a normal distribution with a mean equal to the
estimated coefficient (1.55) and a standard deviation equal to the standard error
(0.31). We then repeat 1,000 times steps one to four, taking a new draw each
time.11

Figure 6 plots the evolution of drought-induced premature deaths in LAC. The
spread of the box plot displayed each year results from the uncertainty in our esti-
mation of excess PM2.5 concentrations and the observed FHD. The figure reveals
the scale of the cost for LAC, with median premature deaths per year ranging from
3,681 to over 10,610. In Figure A2 in the appendix, we show that using the CRFs
from Liu et al. (2019) leads to median premature deaths per year that are in the
order of 503 to 4,987. The CRFs from Liu et al. (2019) have the advantage of
being derived for Chile and Mexico but have the disadvantage of not being causal
CRFs.

Another important consideration is that our counts of premature deaths could un-
derestimate the actual number of deaths if groups with lower socioeconomic status
are disproportionately exposed and vulnerable to PM2.5. There are several reasons
why exposure might be higher among individuals with lower socioeconomic sta-
tus, including a greater likelihood of residing near sources of PM2.5 and engaging
in outdoor occupations. Moreover, the adverse impact of PM2.5 on health is exac-
erbated among the disadvantaged due to their comparatively lower baseline health
status and more limited access to medical services.

11Specifically, we compute the number of premature deaths per plant-month-year for each draw
by: 0.69 (CRF) × 30 (days) × FHD × draw of FHD coefficient from ∼ N (1.55, 0.31)× exposed
population 65 or older.
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Figure 6: Premature deaths. Based on the concentration-response function of
Deryugina et al. (AER, 2019) for adults 65 or older
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Notes: This figure plots the evolution of drought-induced premature deaths in LAC. Details of the
calculation of premature deaths are presented in Section 4.1. The spread of the box plot displayed
each year results from the uncertainty in our estimation of excess PM2.5 concentrations and the
value of the observed FHD. Dots represent outliers.

To descriptively assess in our setting whether the population residing near power
plants tends to be worse off than the overall population, we use down-scaled Hu-
man Development Index (HDI) data from Sherman et al. (2023) to compute power
plant level mean HDI relative to country-level HDI. As illustrated in Figure 7, in
nearly four of every five combustion power plants, the population residing near the
plant has a considerably lower relative level of HDI. Moreover, this pattern is sys-
tematic across all types of combustion power plants (i.e., coal, gas, oil, biomass).
This finding is consistent with previous work on air quality and inequality, which
has highlighted the correlation between poverty and exposure to PM2.5 both across
and within countries (e.g., Rentschler and Leonova, 2023; Jbaily et al., 2022). The
association of lower HDI levels near combustion power plants can be a result of
socioeconomic sorting into cheaper housing near industrial zones, siting decisions
to place plants in areas with less political power, often coinciding with low-income
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Figure 7: Combustion power plant HDI relative to country HDI
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Notes: This figure plots for each combustion power plant the difference between the average
Human Development Index (HDI) among the population residing within 50 km and the HDI of
the country where the plant is located. The HDI was measured in 2019.

neighborhoods, or the adverse effects of past pollution exposure on HDI. Despite
the varied reasons for this association, this exposure pattern is noteworthy be-
cause our CRFs do not capture the plausibly greater vulnerability for populations
with lower HDI levels. Consequently, our counterfactual calculations of prema-
ture deaths are likely to underestimate the deaths caused by excess PM2.5 in the
region.

4.2 Value of lives lost due to excess air pollution
To monetize the cost of the lives lost previously documented, we calculate the
Value of a Statistical Life (VSL) estimate at the country-year level in two steps.
In the first step, we follow Banzhaf (2022) and compute a base VSL from a
meta-meta-analysis of U.S. VSL estimates. In the second step, we follow Vis-
cusi and Masterman (2017) and calculate an income-adjusted extrapolation for
each country and year using our base VSL, the GNI per capita data from World
Bank (2023b), and assuming that the income elasticity of the VSL is equal to
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one. Next, we compute the monetized losses in 2019 U.S.$ by multiplying our
estimates of premature deaths by the country and year-specific VSL estimates.
Figure 8 plots the evolution of these drought-induced losses in LAC. The figure
reveals that yearly median losses are in the order of $2.4 to $12 billion. An analo-
gous exercise using the Liu et al. (2019) CRF shows median losses of $0.5 to $4.9
billion (Figure A3 in the appendix).

Figure 8: Value of statistical lives lost. Based on the concentration-response func-
tion of Deryugina et al. (AER, 2019) for adults 65 or older and extrapolated US
VSL from Banzhaf (JBCA, 2022).
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Notes: This figure plots the evolution of the losses from lives lost in LAC. Details of the calculation
of premature deaths are presented in Section 4.2. The spread of the box plot displayed each year
results from the uncertainty in our estimation of excess PM2.5 concentrations and the value of the
observed FHD. Dots represent outliers.

Importantly, these monetized longevity losses are significantly underestimating
the total social cost of worsened air quality triggered by droughts. Our counter-
factual simulations do not account for the fact that the absence of excess PM2.5

would not only lead to health improvements that extend life but also increase the
quality of life (Murphy and Topel, 2006). Additionally, our loss estimates do not
account for non-health costs, such as effects on productivity and cognitive ability
(Adhvaryu et al., 2022; Kahn and Li, 2020; Zivin and Neidell, 2012). Recent lit-
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erature has shown that these non-health costs created by air pollution can be very
considerable, with an increase in 1 µg/m3 leading up to a 0.8 percent reduction in
GDP (Dechezleprêtre et al., 2019). For all these reasons, our loss estimates should
be interpreted as lower bounds.

5 The future cost of drought-induced excess air pol-
lution

With an average commissioning year of 2003 and a lifespan of up to 60 years
(Mills et al., 2017), the negative externality created by the combustion power
plants in our sample could continue for four more decades. In this section, we
quantify the possible paths of losses by combining our estimates with climate
projections from 22 climate models from the CMIP6 under three Shared Socioe-
conomic Pathways (SSPs): SSP1-2.6 (low emissions), SSP2-4.5 (intermediate
emissions), and SSP3-7.0 (high emissions). The SSPs are a set of scenarios and
provide projections on several outcomes, including runoff, demographic changes,
and economic growth.

In the first exercise, we quantify whether the hydropower plants are more likely
to experience hydrological droughts, and we document the sub-regional hetero-
geneity in drought exposure. Specifically, for every climate model and SSP, we
compute the percentage change in the average FHD between 2020 and 2059 rel-
ative to the FHD observed between 2000 and 2019. The result of this exercise
for LAC is plotted in Figure 9 panel A. We summarize this information using
box plots because we have 66 possible future paths (3 SSP × 22 models). Each
box plot corresponds to one of the SSPs, and the variability of the box plot is de-
termined by the distribution of projections given by the 22 climate models. The
triangle marker represents the ensemble mean from the 22 models. For the re-
gion, most models indicate an increase in the fraction of hydropower generation
affected by hydrological droughts. The ensemble mean suggests that the FHD will
likely increase between 22 and 24 percent. The ranking in the FHD increase is
consistent with higher-emission SPPs leading to a higher drought exposure. Still,
the differences across SPPs will remain small by 2060.

23



Figure 9: Projected change in hydropower affected by drought 2020-2059 relative
to 2000-2019, under different climate scenarios
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America and the Caribbean. The IEA sub-regions are: B. Central America and Mexico, C. South-
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Peru), E. Rest of South America (Brazil, Venezuela, Paraguay, and Uruguay), and F. Caribbean.
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Next, we perform an analogous analysis for each IEA sub-region. The results
from these exercises are presented in panels B to F. Nearly all sub-regions are ex-
pected to see an increase in FHD, with sub-regions like the Caribbean and South-
ern South America particularly hard hit. One notable exception is the Andean
Region (Colombia, Ecuador, and Peru), which is expected to see a reduction in
the FHD of roughly 25 percent. Given the location of the Andean Region and
the anticipated evolution of hydrological droughts, this result highlights the po-
tential that cross-border trade may hold in mitigating drought-induced air pollu-
tion.

In the second exercise, we project the evolution of premature deaths in LAC up
to 2059. Specifically, we extend the premature deaths counterfactual calculation
presented in Section 4.1 but compute excess air pollution using the runoff pro-
jections from the climate models instead of the observed runoff. We also allow
for demographic changes using the demographic projections of the SSPs. The
SSPs do not include projections on the evolution of electricity generation. How-
ever, because we expect the retirement schedule of combustion power plants to
have significant implications for this exercise, we include information on possible
retirements of combustion power plants by taking advantage of the region’s IEA
electricity generation scenarios and attaching the most closely aligned scenario to
each SSP.

For SSP1-2.6, we use the Announced Pledges Scenario (APS). This scenario is
described in IEA (2023) and is consistent with an expected temperature rise of 1.7
◦C by 2100. This scenario outlines how total electricity generation by fuel type
will evolve if countries fully honor existing pledges. This scenario is optimistic
as it does not mirror what governments are doing but rather governments’ aspira-
tions. In this scenario, gas, coal, and oil power generation are expected to decline,
while bioenergy generation is expected to increase. For the exercise, we omit the
increase in bioenergy generation (no new plants are included) and use the infor-
mation on the decline in generation from coal, gas, and oil to model the phase-out
of combustion power plants. To present the most optimistic scenario for PM2.5

reduction, we assume that plants with the largest exposed population are retired
first to meet the pledges.

For the SSP2-4.5, we use the Stated Policies Scenario (STEPS). This scenario
is described in IEA (2023) and is consistent with an expected temperature rise
of 2.4 ◦C by 2100. This scenario does not assume the automatic attainment of
aspirational energy targets but is built on the IEA’s current assessment of the re-
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gion’s energy system’s direction based on policies in place or announced. In this
scenario, gas, coal, and oil power generation are phased out at a slower rate than
in the previous scenario. As before, we omit the expected increase in bioenergy
production from the calculation and assume that plants with the largest exposed
population are phased out first.

For the SSP3-7.0, we construct the Reference Electricity Scenario (RES) that as-
sumes no changes in the electricity sector. In this scenario, combustion power
plants are not retired and remain the marginal electricity generation source to
make up for the hydroelectricity shortfalls due to drought. This scenario is not
the most pessimistic possible as we still assume that any growth in electricity gen-
eration is made up by clean energy generation. In all scenarios, we also assume
that the concentration-response function is constant, thus ruling out other forms of
adaptation, such as the reallocation of population away from power plants.

The results from this exercise are presented in Figure 10. The figure plots observed
premature deaths and 66 premature death projections (3 SSP-electricity scenarios
× 22 models). We plot a LOESS curve for the observed premature deaths and
the projections under each SSP-electricity scenario to better visualize the overall
trends. The figure reveals that while substantial uncertainty exists on the projected
number of premature deaths, it is only in the most optimistic scenario (SPP1-2.6-
APS), where we observe a flattening out of premature deaths at a level of roughly
5,000 deaths per year by 2060. This level is similar to that observed in the early
2000s. Scenarios that do not automatically assume that the region’s pledges will
be met show significant increases in premature deaths. In the most pessimistic
scenario (SPP3-7.0-RES), the projected premature deaths are roughly six times
larger, with as many as 30,000 deaths per year by 2060. These findings highlight
that even if countries in the region follow up on their pledges, it will not be enough
to fully mitigate premature deaths from drought-induced PM2.5.

In the third exercise, we monetize the losses from premature death projections us-
ing the same methodology as in Section 4.2. We allow for adjustments to the VSL
estimates based on the economic growth projections of each SSP. The results are
presented in Figure 11. The figure reveals that losses from premature death in-
crease or flatten out in all SSP-electricity scenarios. The ranking across scenarios
is the same as before, with the losses increasing exponentially over time due to
the effect of economic growth on the VSL estimates. Overall, these findings un-
derscore the challenge of merely flattening out losses. Even if current pledges are
met, fully mitigating damages will require further action. These actions can en-
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Figure 10: Projected deaths from drought-induced PM2.5
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Notes: The figure plots the evolution of premature deaths in LAC. Between 2000 and 2020, it plots
the average number of premature deaths. Details of this calculation are presented in Section 4.1.
Between 2016 and 2059, it plots 66 projections of premature deaths (22 models × 3 SSP-electricity
scenarios). These calculations follow the same methodology but use runoff projections from the
climate models, demographic projections from the SSPs, and electricity scenarios from the IEA.
To better visualize the overall trends, we also plot a LOESS curve for the observed premature
deaths and for the projections under each SSP-electricity scenario.

compass more ambitious reductions in power generation from combustion power
plants, including bioenergy, technological advancement that permits the reduction
of emissions from power plants, or other forms of private and public adaptation
that can reduce the exposure and vulnerability of the population to PM2.5.
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Figure 11: Projected monetized value of deaths from drought-induced PM2.5
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Notes: The figure plots the evolution of monetized losses from premature deaths in LAC. Between
2000 and 2020, it plots the average losses. Details of this calculation are presented in Section
4.2. Between 2016 and 2059, it plots 66 projections of losses (22 models × 3 SSP-electricity
scenarios). These calculations follow the same methodology but use runoff projections from the
climate models, demographic and economic growth projections from the SSPs, and electricity
scenarios from the IEA. To better visualize the overall trends, we also plot a LOESS curve for the
observed premature deaths and the projections under each SSP-electricity scenario.
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6 Robustness checks
A key threat to the validity of our research design is the possibility that meteo-
rological factors or changes in electricity demand may confound our estimates of
the impact of hydrological droughts on PM2.5. While we control for these factors
in Equation 1, they enter our econometric model linearly, and we assume that their
impact on PM2.5 is independent of each other. We conduct several exercises to test
that our results are robust to these assumptions.

Figure 12 plots point estimates and confidence intervals from these exercises. In
the first exercise, we introduce into Equation 1 the meteorological and electricity
demand controls in steps. As seen in models 1 to 3, we find a consistent and
statistically significant effect of FHD on excess PM2.5, albeit with the smallest
point estimate on the specification that only includes fixed effects.

Figure 12: Robustness of estimates to alternative model specifications
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Notes: The figure plots point estimates and 95 percent confidence intervals (CIs) of β in Equation
1. The CIs are derived from standard errors clustered at the market level. All specifications use
FHD as our preferred measure of hydrological drought (HD). Models 1 to 3 estimate specification
1 using OLS but introduce the controls in steps as described in the axis title. In models 4 and 5, we
estimate Equation 1 using the post-double selection method of Belloni et al. (2014). The model
specification and number of controls considered are specified in the axis title.
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In the second exercise, we relax the assumption of linearity and additivity by
including a far richer set of controls. Specifically, in model 4, we include second-
order polynomials of each control variable (each element of the X vector) and
all pairwise interactions (62 additional controls). Analogously, in model 5, we
include third-order polynomials of each control variable and all pairwise inter-
actions (494 additional controls). Simply including these controls in Equation
1 and performing the OLS estimation would make the assumption of including
all relevant confounds more plausible, but it would come at the cost of lowering
the precision of our estimates. To address this tradeoff, we use the more effi-
cient post-double selection method of Belloni et al. (2016), which penalizes the
models using a two-step LASSO procedure to select a subset of control variables
that are important for predicting both PM2.5 and FHD. This method allows us to
guard against omitted-variables bias by considering these larger sets of controls
while using a parsimonious model that produces valid inferential statements. As
seen in the Figure, models 4 and 5 produce estimates of FHD that are statistically
different from zero and whose 95 percent confidence intervals contain the point
estimate from our benchmark specification (model 3). Accordingly, we conclude
that our results are robust to the model specification.

Next, we test whether the inference of std errors used to construct confidence
intervals is robust to alternative assumptions and methods. Figure A4 in the ap-
pendix presents results from these exercises. Model 1 plots the point estimate
and confidence interval for the benchmark model. The confidence interval is con-
structed from standard errors clustered at the market (country) level. We present
this type of confidence interval throughout the paper. Model 2 presents confidence
sets derived using the wild cluster bootstrap method (Roodman et al., 2019). This
method provides valuable complementary evidence as it is robust to violations of
the standard large-sample assumptions necessary to derive cluster standard errors
(e.g., large number clusters, homogeneous size). As the figure highlights, this
more robust method produces a wider confidence set, but reassuringly, it shows
that FHD remains statistically different from zero at conventional levels.

Another assumption necessary for clustered standard errors to be valid is that ob-
servations in different clusters are independent of each other. While this assump-
tion is likely to hold in our setting, given that our clustering units (markets) are
much larger than our observational units (plants), it is still possible for plants
located on opposite sides of a cluster boundary to be affected by a correlated
and unobserved shock. To account for this possibility and the resulting greater
likelihood of type 1 errors, in models 3 and 4, we move away from using non-
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overlapping clusters and compute Conley errors using the methodology of Colella
et al. (2023). Following their recommendations, we assume a binary covariance
matrix, fully account for temporal dependence by allowing the lag cutoff to equal
the length of our panel, and present results with a narrow and wide distance cut-
off (50 km and 5,000 km). The wide distance cutoff exceeds the length of Chile
(the longest country in our sample). As seen in the figure, the confidence inter-
vals derived from Conley errors (models 3 and 4) are much narrower than those
of our benchmark (model 1), confirming in all cases that the estimate of FHD
is statistically different from zero. These findings highlight that the confidence
intervals used throughout the paper do a good job of quantifying the uncertainty
associated with estimating FHD and that our conclusions are robust to alternative
assumptions and methods for estimating standard errors.

We now turn our attention to testing whether our results are robust to using alter-
native variable definitions. We begin with the definition of hydrological drought
used to compute the FHD variable. Throughout the paper, we have defined that a
hydropower plant experiences a hydrological drought when we observe an aver-
age negative runoff anomaly over the past three months. To assess the importance
of this definition as described in the data section, we compute alternative versions
of the FHD variable where we define drought as observing average negative runoff
anomalies over averaging windows of length 1, 6, 9, and 12 months. Figure A5 in
the appendix reports the results from separately estimating Equation 1 using each
version of the FHD. Panel A presents point estimates and confidence intervals.
Panel B plots the implied total PM2.5 concentrations (PM2.5 concentrations in the
absence of droughts plus the marginal effect). The figure shows that estimates of
the FHD are similar for all definitions, albeit slightly larger when using shorter
averaging windows. This finding is important because it highlights that even
short-run droughts can considerably increase PM2.5 concentrations in LAC. This
finding is consistent with the widespread presence of small hydropower plants in
the region, for whom even short-run changes in water availability imply reduced
generation capacity.

We also test and find similar results using alternative ways of aggregating our wa-
tershed measure identifying hydropower plants affected by drought to the market
level. The first type of exercise sequentially estimates Equation 1 using alternative
versions of our preferred market-level measure, the fraction of hydropower gener-
ation affected by drought (FHD). The results from these exercises are reported in
figure A6 in the appendix. Panels A and B are analogous to those of the previous
figure. Model 1 reports the benchmark estimate. Model 2 uses an alternative ver-
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sion of FHD that uses an arithmetic average instead of weighting by generation
capacity. Model 3 computes the FHD as a fraction of overall generation instead
of a fraction of hydropower generation. Model 4 allows for regional markets and
computes the FHD, assuming that markets with small amounts of cross-border
trade are fully integrated.12 Model 5 performs the same calculation of the FHD as
model 4 but uses an arithmetic average instead of weighting by generation capac-
ity. Models 6 and 7 test the impact of FHD when we use more severe definitions
of drought. In these cases, we compute the FDH either assuming that droughts
occur when mean runoff anomalies are less than minus one standard deviation or
runoff anomalies or when they are less than the median of negative anomalies.
In model 8, we also verify that our results are robust to measuring PM2.5 in a
closer vicinity of combustion power plants (10 km). As seen in the figure, we find
very similar results across models. While in panel A, some versions of the FHD
lead to re-scaled and, in some cases, larger point estimates, panel B shows that
the implied total PM2.5 concentrations are nearly identical. The only exception is
model 8, which, as expected, highlights that PM2.5 concentrations are higher near
combustion power plants.

The second type of exercise also aims to assess the robustness of the results to
alternative market-level measures of hydrological drought. However, it focuses
on measures that directly gauge the intensity of droughts. Figure A7 in the ap-
pendix presents results from these exercises. Panels A and B are analogous to
those of the previous figure. We begin by computing the mean runoff anomaly
among hydropower plants for each market. For ease of presentation, we convert
this measure to standard deviation units and estimate Equation 1 using this vari-
able in place of HD. We are particularly interested in negative runoff anomalies as
they represent periods when water availability is below normal. As seen in model
1 panel A, a one-standard-deviation negative runoff anomaly leads to an increase
of 0.36 µg/m3. As shown in panel B, this estimate also implies that an average
negative runoff anomaly leads to PM2.5 concentration of 16.86 µg/m3. This con-
centration level is very similar to the level implied by our benchmark specification
estimate (16.59 µg/m3 at the average FHD). To test whether negative and positive
runoff anomalies have symmetric effects on PM2.5, in model 2, we re-estimate
Equation 1 but allow for a spline with a kink at zero. That is, we allow the slope
coefficient to differ for positive and negative runoff anomalies. The estimates in

12Specifically, we compute the FDH considering that the following countries are part of larger
regional markets. Market 1: Colombia, Ecuador, and Venezuela. Market 2: Brazil, Uruguay,
Paraguay. Market 3: Central America.
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panel A, while of a similar magnitude, indicate that one-standard-deviation neg-
ative runoff anomaly (drought) leads to a larger increase (0.44 µg/m3) in PM2.5

than the decrease in PM2.5 that one-standard-deviation positive runoff anoma-
lies would generate (-0.31 µg/m3). This asymmetric result is important because
it highlights that the externality created by drought periods cannot be offset by
downpour periods. The smaller effect of positive runoff anomalies is consistent
with the idea that infrastructure and operational limitations may restrict the ability
of hydropower plants to fully harness downpour periods to increase generation.
Next, in models 3 to 5, we compute for each market the mean runoff anomaly
among all power plants. This change in the measure allows us to bring to the
analysis a few markets without hydropower generation. In model 3, we estimate
Equation 1 using this new measure and this slightly larger sample. In model 4,
we restrict the sample to markets with limited hydropower capacity (less than 20
percent of overall generation). Finally, in model 5, we restrict the sample to mar-
kets reliant on hydropower (20 percent or more of overall generation). The figure
shows that hydrological droughts affecting markets reliant on hydropower drive
the increase in PM2.5. Importantly, consistent with our mechanism, we also fail to
find evidence of hydrological droughts leading to excess PM2.5 in markets where
hydropower plays a limited role in electricity generation.
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7 Conclusion
We conduct the first region-wide study documenting how hydrological droughts
lead to excess PM2.5 by shifting generation from hydropower to combustion power
plants. Our findings provide robust evidence showing that even short-run hydro-
logical droughts generate a significant externality. At average levels of the fraction
of hydropower generation affected by drought (FHD), we find increases in PM2.5

in the order of 0.83 µg/m3, which brings mean PM2.5 concentrations around com-
bustion power plants to roughly 16.59 µg/m3.

We also provide several pieces of supporting evidence for our mechanism. These
include showing the existence of a dose-response relationship between the FHD
and excess PM2.5, with placebos ruling out ruling alternative mechanisms such as
wildfires or dust storms, and showing that the increase in PM2.5 is driven by com-
bustion power plants that are likely less-water intensive and have spare capacity.
We conclude from this evidence that our estimate of excess PM2.5 represents the
additional air pollution created by the shift to combustion power plants triggered
by hydrological droughts.

The public health implications of the shift in electricity generation are signif-
icant. Counterfactual calculations that build on our estimates of excess PM2.5

and concentration-response function from the literature indicate that worsening
air quality leads to up to 10,000 premature deaths annually. Making conservative
assumptions on the value of statistical life, the monetized losses of these deaths
are in the order of $12 billion (constant 2019 USD).

Coupling our counterfactual calculations with projections from climate and de-
mographic models and stylized electricity sector scenarios shows that these losses
will continue in the absence of adaptation over the next four decades. Another im-
portant finding of these projections is the considerable sub-regional heterogeneity,
with most of the hydropower generation in LAC expected to experience increased
water stress, with the exception of the Andean region.

Our findings have several important policy implications. First, we document a pre-
viously unaccounted-for cost of a drought-induced shift in electricity generation,
accentuating the benefit of implementing demand-side management interventions
that can help mitigate this shift in the short term. Second, by quantifying the ex-
ternality, we also offer valuable input to the cost-benefit analysis of within-market
infrastructure investments capable of reducing excess PM2.5 over a longer time
horizon, such as energy storage facilities. Third, by highlighting this cost and the
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considerable sub-regional variation in hydropower exposure to drought, we bol-
ster the case that increasing regional interconnection may provide an effective way
to improve the reliability of clean energy and reduce air pollution. Fourth, because
excess PM2.5 falls disproportionately among those with lower socioeconomic sta-
tus, we highlight that policy makers can lessen socioeconomic inequalities by
addressing this externality.

Last, this analysis has three important caveats concerning the size of the exter-
nality and suggests that our loss estimates should be interpreted as lower bounds.
First, our counterfactual calculations do not account for the disproportionate expo-
sure to excess PM2.5 by groups with lower socioeconomic status, whose increased
vulnerability will likely lead to additional premature deaths in the region. Sec-
ond, our estimates do not account for the costs created by excess PM2.5 on other
outcomes such as quality of life and productivity. Third, our estimates do not
consider the cost of drought-induced excess emissions of other local or global
pollutants, which have a wide range of environmental, health, and economic con-
sequences. Notwithstanding the potential for even larger losses in LAC, this paper
documents how the existing energy generation infrastructure and droughts inter-
act to create a considerable health burden. This burden is poised to persist and
potentially worsen without energy policies that account for the electricity-water
nexus.
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APPENDIX

A Supplementary Figures

Figure A1: Runoff anomalies over time
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Notes: Panel A shows the regional monthly runoff anomalies. The blue-shaded areas represent
positive runoff anomalies. The red-shaded areas represent negative runoff anomalies. To better
visualize the trend over this period, we also plot a LOESS curve in green. Panel B shows monthly
runoff anomalies by IEA sub-region. The sub-regions are: Central America and Mexico, Southern
South America (Argentina, Bolivia, and Chile), Andean Region (Colombia, Ecuador, and Peru),
Rest of South America (Brazil, Venezuela, Paraguay, and Uruguay), and Caribbean.
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Figure A2: Premature deaths. Based on the concentration-response function of
Liu et al. (NEJM, 2019)
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Notes: This figure plots the evolution of drought-induced premature deaths in LAC. The calcula-
tion based on the Mexico CRF is as follows. For each draw, we compute premature deaths per
plant-month-and year using: 0.00129 (CRF) × 30 (days) × FHD × draw of FHD coefficient from
∼ N (1.55, 0.31) × daily mortality rate × exposed population. We then aggregate to the LAC
year level and repeat 1,000 times. The computation based on the Chile CRF is analogous, but the
CRF takes the value of .00027. The spread of the box plot displayed each year results from the
uncertainty in our estimation of excess PM2.5 concentrations and the value of the observed FHD.
Dots represent outliers.
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Figure A3: Value of statistical lives lost. Based on the concentration-response
function of Liu et al. (NEJM, 2019) and extrapolated US VSL from Banzhaf
(JBCA, 2022)
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Notes: This figure plots the evolution of the losses from lives lost in LAC. To monetize the cost
of the lives lost presented in Figure A2, we follow a procedure analogous to the one described
in Section 4.2. The spread of the box plot displayed each year results from the uncertainty in
our estimation of excess PM2.5 concentrations and the value of the observed FHD. Dots represent
outliers.
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Figure A4: Robustness of estimates to std errors under alternative assumptions
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Notes: The figure plots point estimates and 95 percent confidence intervals (CI) of β in Equation
1. All specifications use FHD as our preferred measure of hydrological drought (HD). The CIs are
derived from four types of standard errors. Model 1 uses standard errors clustered at the market
level. Model 2 uses standard errors clustered at the market level but accounts for few clusters using
the wild bootstrap methodology. See MacKinnon and Webb (2017) for details of the calculation.
Models 3 and 4 use Conley errors that assume all available lags and the cutoff described in the
axis title. See Colella et al. (2019) for details of the calculation.
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Figure A5: Effect of FHD on PM2.5 concentrations under alternative definitions
of drought duration
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Notes: Panel A plots point estimates and 95 percent confidence intervals (CIs) of β in Equation
1. The CIs are derived from standard errors clustered at the market level. All specifications use
FHD as the measure of hydrological drought (HD). Each model uses a version of the FHD derived
under the definition of drought listed in the axis title. Panel B plots the distribution of implied
total PM2.5 concentrations, that is, the marginal effect plus the predicted level of PM2.5 in the
absence of droughts. The box represents the interquartile range, the whiskers report the minimum
and maximum value, and the triangles indicate the average value.
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Figure A6: Robustness of estimates under alternative definitions of treatment and
outcome
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Notes: Panel A plots point estimates and 95 percent confidence intervals (CI) of β in Equation
1. The CIs are derived from standard errors clustered at the market level. Models 1 to 7 report
estimates from equation 1, each using the market-level measure of hydropower generation affected
by drought listed on top of the coefficient. Model 8 reports estimates from Equation 1 when the
outcome is PM2.5 concentrations within 10 km of a combustion power plant. Panel B plots the
distribution of implied total PM2.5 concentrations, that is, the marginal effect plus the predicted
level of PM2.5 in the absence of droughts. The box represents the interquartile range, the whiskers
report the minimum and maximum value, and the triangles indicate the average value.
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Figure A7: Robustness of estimates under alternative definitions of the treatment
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Notes: Panel A plots point estimates and 95 percent confidence intervals (CIs) of β in Equation
1. The CIs are derived from standard errors clustered at the market level. Models 1 to 5 estimate
Equation 1, each using the hydrological drought measure listed on top of the coefficient. Negative
coefficients imply an increase in pollution for droughts (negative runoff anomalies) and a decrease
in pollution for downpours (positive runoff anomalies). Markets with limited hydropower are those
with less than 20 percent of the generation coming from hydropower, and markets reliant are those
with 20 percent or more. Panel B plots the distribution of implied total PM2.5 concentrations,
that is, the marginal effect plus the predicted level of PM2.5 in the absence of droughts. The box
represents the interquartile range, the whiskers report the minimum and maximum value, and the
triangles indicate the average value.
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