
Policy Research Working Paper 10892

Small Area Estimation of Poverty in Four 
West African Countries by Integrating 

Survey and Geospatial Data
Ifeanyi Edochie 

David Newhouse 
Nikos Tzavidis
Timo Schmid

Elizabeth Foster
Angela Luna Hernandez

Aissatou Ouedraogo
Aly Sanoh

Aboudrahyme Savadogo

Development Data Group &
Poverty and Equity Global Practice
September 2024 

P
ub

lic
 D

is
cl

os
ur

e 
A

ut
ho

riz
ed

P
ub

lic
 D

is
cl

os
ur

e 
A

ut
ho

riz
ed

P
ub

lic
 D

is
cl

os
ur

e 
A

ut
ho

riz
ed

P
ub

lic
 D

is
cl

os
ur

e 
A

ut
ho

riz
ed



Produced by the Research Support Team

Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10892

The paper presents a methodology to generate experimental 
small area estimates of poverty in four West African coun-
tries: Chad, Guinea, Mali, and Niger. Due to the absence of 
recent census data in these countries, household-level survey 
data are integrated with grid-level geospatial data, which are 
used as covariates in model-based estimation. Leveraging 
geospatial data enables reporting of poverty estimates more 
frequently at disaggregated administrative levels and makes 
estimation feasible in areas for which survey data are not 
available. The paper leverages the availability of a recent 
census in Burkina Faso for evaluation purposes. Estimates 
obtained with the same survey instruments and candidate 

geospatial covariates as the other four countries are com-
pared against estimates obtained using recent census data 
and an empirical best predictor under a unit-level model. 
For Burkina Faso, the estimates obtained using geospatial 
data are highly correlated with the census-based ones in 
sampled areas but moderately correlated in non-sampled 
areas. The results demonstrate that in the absence of recent 
census data, small area estimation with publicly available 
geospatial covariates is feasible, can lead to large efficiency 
improvements compared to direct estimation, and improve 
the timeliness of small area estimates.

This paper is a product of the Development Data Group, Development Economics and the Poverty and Equity Global 
Practice. It is part of a larger effort by the World Bank to provide open access to its research and make a contribution to 
development policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://
www.worldbank.org/prwp. The authors may be contacted at dnewhouse@worldbank.org.     
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1. Introduction  
This paper presents the methodology to generate experimental small area estimates (SAE) of 
poverty in four West African countries: Chad, Guinea, Mali, and Niger, as well as an evaluation 
exercise using data from another country in the region, Burkina Faso. SAE is a statistical 
method used to improve survey estimates by integrating survey data with geographically 
comprehensive auxiliary data (covariates) typically derived from census, administrative, remote 
sensing, or mobile phone data. Data integration is achieved with the use of statistical models to 
produce estimates at disaggregated geographic levels that are more accurate and precise than 
estimates that rely only on direct use of the survey data.  More disaggregated estimates are key 
for a better understanding of how to target interventions for the poorest areas as well as for 
monitoring the impact of such interventions.        

Table 1 illustrates the issues with obtaining poverty estimates at disaggregated geographic 
levels solely from survey data in the countries under study in this paper. The coefficient of 
variation estimated (cve) is a common measure used to judge the statistical precision of an 
estimate.3 Countries often adopt a maximum threshold for the mean or median cves of the 
estimates that can be reported, which in practice usually ranges from 0.15 to 0.3. For the 
countries of focus in this paper, the most recent survey estimates of poverty can be obtained 
from the 2018 round of the Enquête Harmonisée sur le Conditions de Vie des Ménages 
(EHCVM)4 which is available at the regional level for each country. The median cve of regional 
direct estimates produced by the Horvitz-Thompson estimator ranges from 0.07 to 0.12, which 
is typically within the acceptable range for publication. However, when we examine direct 
estimates of the poverty rates for the set of target administrative areas, which is one or two 
levels below the region, the estimates are too imprecise to publish.5 The target geography in 
Chad is the latest unofficial definition of departments provided to use by the National Institute of 
Statistics, while in Guinea it is the Sous-prefectures, and in Mali and Niger it is Communes. At 
these levels, the median cve of the direct survey estimates reported in Table 1 exceeds the 0.3 
threshold for each country except for Chad, where it is 0.27. In addition, not all the target areas 
are covered by the surveys, making direct estimation impossible for these areas.  While this is 
the case in all countries, unsampled areas are particularly prevalent in Mali, where less than 
40% of the target areas are in the sample.   

 

 

 
3 The use of the cve requires care especially when reported in relation to estimates of head count ratios. 
This is because although in theory -for example under simple random sampling- an estimate of 0.1 or 0.9 
should have the same variance, the value of the cve is affected by the point estimate leading to different 
relative precisions. The use of cves in Table 1 is only for illustrating that direct estimates at the required 
level of geography are not reliable and not for comparing the precision between direct estimates. 
4 This survey is the main output from the Harmonized Surveys on Household Living Conditions Program 
of the World Bank and the West Africa Economic and Monetary Union (WAEMU) Commission, which 
resulted in 10 countries (8 WAEMU members plus Guinea and Chad) collecting household data and 
constructing household welfare using methodologies that were highly harmonized across all the countries 
and updated in line with international best practice.      
5 These estimates were obtained using an approximation to the variance of the Horvitz-Thompson 
estimator implemented in the R SAE package (Molina and Marhuenda, 2015), which assumes that the 
second order inclusion probabilities are the product of first order inclusion probabilities.                 



 

 

Table 1: Statistics of poverty estimates in the focus countries.   

Country  Burkina 
Faso  

Chad Guinea Mali  Niger  

Year of most 
recent 
census  

2018  2009  2014 2009  2012 

      

Regions         

Number of 
regions in 
sample 

13 22 8 9 8 

Number of 
regions in 
census 

13 23 8 9 8 

Median cve 
of sample 
estimates of 
headcount 
poverty rates 
for regions   

0.114  0.123 0.069  0.085 0.079 

      

Target area       

Name of 
target area  

Commune  Department  Subprefecture Commune Commune 

Number of 
target areas 
(population) 

351  112 343 704 266 

Number of 
target areas 
(sample)  

234 99 251 244 228 

Median cve 
of sample 
estimates of 
headcount 
poverty rates 
for target 
areas 

0.435 0.271 0.370 0.415 

 

0.425 

Notes: Sample estimates are obtained from the 2018 round of the EHCVM in each country. 
Median cve of the sample estimates refers to the median estimated coefficient of variation 
across target areas. Departments in Chad are defined using an unofficial shapefile provided by 



 

 

the National Institute of Statistics, Economic, and Demographic Studies (INSEED).  Survey 
estimates are based on the subsample of households with valid GPS coordinates. 

Typically, small area estimation applications combine survey data with covariates from census 
(or other population) data. However, except for Burkina Faso, the last time a census was 
conducted in these countries was between 2009 and 2014. Using out-of-date census data to 
update small area estimates can lead to biased estimates for example, if the distribution of the 
census covariates used for prediction has changed over time. This is an issue that is often not 
discussed in applied poverty mapping work. Literature on approaches to update poverty 
estimates in the intercensal period includes Isidro et al. (2016), Koebe et al. (2022) and Arias-
Salazar (2023). In this paper we rely on using contemporaneous geospatial covariates, as first 
illustrated by Battese et al. (1988) (see also Nguyen, 2012), to produce small area poverty 
estimates in countries that lack recent census data.   

Advances in processing of geospatial data and the richness of geospatial data sources make 
their use as auxiliary information in small area models appealing. Newhouse et al. (2023) 
summarize recent literature on the use of geospatial data for small area estimation of wealth 
and poverty. Jean et al. (2016), Yeh et al. (2020), and Chi et al. (2022) show that satellite data 
are predictive of wealth indices. The present paper utilizes a method commonly used in small 
area estimation based on the empirical best predictor (EBP) under a nested error regression 
model (also referred to as mixed model) (Molina and Rao, 2010). When applied to predicting 
headcount poverty rates using geospatial covariates, this method has yielded predictions that 
are highly correlated with up-to-date census-based estimates in Mexico, Sri Lanka, and 
Tanzania (Masaki et al., 2022; Newhouse et al., 2022). The methodology we use in this paper 
deviates from the official approach endorsed by the World Bank’s Poverty Global Practice, as 
described in Corral et al. (2022), which is based on the EBP under a unit (household) level 
mixed model, and census micro-data as covariates (referred to as census-EBP). The main 
difference, besides the use of geospatial (instead of population census) covariates, is that our 
modeling approach utilizes only grid cell covariates, but the outcome is still modeled at the unit 
(household) level.  This is why sometimes this latter model is referred to as the unit context 
model.  

We explore the use of the unit context model in Chad, Guinea, Mali and Niger, which lack recent 
census data. We further leverage the availability of recent census data for a fifth country in West 
Africa, Burkina Faso, to conduct an evaluation exercise. The evaluation exercise compares 
estimates of headcount poverty rates obtained with a unit-level model and the empirical best 
predictor using census covariates, with poverty rates obtained using the empirical best predictor 
under the unit context model with geospatial covariates. 

As noted above, an alternative approach to small area estimation using geospatial covariates is 
to use an area-level model (Fay-Herriot, 1979), case in which both the direct estimates of 
poverty rates and the geospatial covariates are aggregated at the target area level.  Hence, in 
the evaluation exercise presented in Section 4 we also produce estimates under a Fay-Herriot 
model as a way of providing additional evidence about the validity of the estimates produced 
under the unit context model.    

Using geospatial data instead of census data in SAE and the unit context model has been 
criticized in recent literature (for example, Corral et al., 2021). This is due to the possible 
introduction of omitted variable bias (relative to the unit-level model) resulting from the 
aggregation of the geospatial covariates. Although a detailed discussion of this issue is beyond 



 

 

the scope of the current paper, being cognizant of the potential impact of using the unit context 
model on small area estimates is important.   

First, the bias that has been reported in the literature is relative to an assumed gold-standard 
unit (household) level model and the availability of up-to-date household-level census micro-
data. It is our view that if recent census data are available, the census-EBP method should be 
preferred. We argue, however, that in the absence of recent census data, the use of geospatial 
covariates may constitute a valid alternative for providing up-to-date small area estimates until 
data from the next census becomes available. Second, we have observed that the extent of bias 
in the unit context model depends on the method used to account for sample weights. In this 
paper, weights are incorporated following Guadarrama et al. (2018). This weighting procedure 
was implemented in a way that adjusts the estimates of the regression coefficients and random 
effects to account for sample weights but does not account for weights when estimating the 
variance components.6 As shown below, this can cause significant differences in small area 
estimates which are larger for models with lower predictive power, which is typically the case 
with unit context models. In Section 4 we explore both weighted and unweighted versions of the 
unit context model to assess how this impacts the estimates. Third, noting that aggregation is 
unavoidable due to the way geospatial data are processed, it is worth mentioning that the 
geographic level at which geospatial covariates are processed and linked to survey data (grid 
size) impacts the estimation. Because of this and because geospatial covariates can only act as 
proxies for the kind of variables typically used to model income (or consumption), it is 
reasonable to assume that the unit context model may show lower levels of predictive power 
and higher uncertainty than the unit (household) level model. However, because the estimators 
of interest are aggregations of individual-level predictions, it is not obvious that the lower 
predictive power and higher uncertainty will substantially reduce the quality of the small area 
estimates obtained by using the unit context model. Finally, as is the case with any model-
based method, model building, variable selection and residual diagnostics are critical. The data 
analyst can try to mitigate the impact of aggregation by processing the geospatial data at as a 
fine spatial level as possible to maximize the effective sample size. However, this may increase 
the risk of observing outliers in the geospatial data. The use of transformations may help make 
the data more consistent with the assumptions that the functional form is linear, and the error 
terms are distributed normally. As always, the use of model-diagnostics is crucial. 
 
In addition, Corral et al. (2021) report concerns with the estimated measures of uncertainty 
under a unit context model. From our perspective, if the model assumptions are satisfied, a 
parametric bootstrap MSE estimator will provide a valid estimator of the uncertainty under the 
assumed model. Since the true data generating process is unknown, we cannot know a-priori 
the extent to which the model assumptions are violated, regardless of the type of model 
assumed. In Section 4, we present results from Burkina Faso comparing coverage rates derived 
from the parametric bootstrap under the unit context model, treating census-based estimates as 
truth, with those from other estimators. For sampled areas, coverage rates under the unit 
context model for sampled areas are slightly below those from direct estimates and slightly 
above those obtained from an area-level model, indicating that the estimated measures of 
uncertainty obtained through the parametric bootstrap are reasonable in this case.  

In summary, we prefer to avoid making definitive statements about whether the unit context 
model works well or poorly. We instead posit that in the absence of a recent census, a unit 
context model with geospatial data may be considered as an alternative to the use of outdated 

 
6 “For the pseudo-EB estimator, we used the weighted estimator �̂�𝛽 given in You and Rao (2002) and the REML 
estimators of 𝜎𝜎�𝑣𝑣2 and 𝜎𝜎�𝜀𝜀2.”  (Guadarrama et al, 2018, p.8)   



 

 

census data. The presence of a recent census in Burkina Faso provides a valuable opportunity 
for evaluating this method. As with every SAE application, the performance of different methods 
will depend on the country context and the characteristics of the available survey and auxiliary 
data they are applied to. Evaluations of the estimates therefore remains of paramount 
importance.  

The paper is organized as follows. Section 2 describes the data sources and the process of 
integrating geospatial and survey data. Section 3 presents the core of the small area 
methodology, model selection and assessment, small area estimation, mean squared error 
estimation and measures to assess the small area estimates for all countries of focus in this 
paper. Section 4 presents an evaluation exercise using recent census and survey data in 
Burkina Faso. This allows us to compare small area estimates produced with geospatial 
covariates to small area estimates produced using covariate information from census micro-
data. The results of the evaluation exercise add new insights to the body of literature on the use 
of geospatial data in small area estimation and motivate the use of the unit context model with 
geospatial data in the four remaining countries that lack up-to-date census data. Section 5 
presents experimental point and uncertainty estimates for all countries using the unit context 
model. The paper concludes with a summary of the main findings and areas for further 
research.  

 
2. Data sources and geospatial data integration 
In this paper, we use geospatial covariates because, as shown in Table 1, the most recent 
censuses in the four focus countries were conducted in 2014 in Guinea, 2012 in Niger, and in 
2009 in Chad and Mali. If more recent census data existed, using these data would be the 
preferred option. For example, several variables routinely collected in censuses such as 
household size, education, and sector of employment have been shown to be highly predictive 
of household welfare. Estimates based on recent census data are expected to be more accurate 
and precise than estimates based on geospatial data, which is often only available at an 
aggregated level (see for example Corral et al., 2021).  

In this paper, however, we avoid using household-level predictors in the model because 
information for the same predictors from a recent census is not available. Using old census data 
can be problematic because it is not guaranteed to capture developments since the last census, 
especially in countries impacted by rapid changes. Interpreting the estimates as if these arise 
from the census year requires that the distribution of the census predictors, as well as their 
relationship to poverty, has not changed over time. This is a particular concern in countries such 
as these under study in this paper, which have among the highest fertility rates in the world and, 
in addition, have suffered from recent conflict and climate shocks which likely affected the 
geographic distribution of poverty and the geographic distribution of the population. Alternative 
sources of administrative data, such as health, land, or other administrative records, can also be 
useful sources of auxiliary data for small area estimation. However, these were not possible to 
obtain, and would not necessarily be commonly available for all four countries. We therefore 
decided to use publicly available, up-to-date geospatial data as covariates in small area models.  
The full list of candidate geospatial covariates, as well as a brief description of each of them are 
included in Table A1 in Appendix A.  

To estimate the model, we use survey data from the 2018 EHCVM surveys in the focus 
countries. The process of integrating the geospatial covariates with the survey data in each 



 

 

country is as follows. First, we process the covariates on a gridded shapefile with square grid 
cells of size 1 sq km covering the totality of the country. Then, each household in the survey is 
matched to a grid cell using the centroid of the Enumeration Area in which the household is 
located. For each country it was observed that in the 2018 EHCVM surveys, geocoordinates 
were not available for a small share of households (representing less than 7% of all surveyed 
households in all cases). We dropped these households from the data. A detailed description of 
the differences between the full sample and the portion with available geocoordinates that was 
used in the analysis is presented in Table A2 in Appendix A.  

Figures 1a and 1b illustrate the use of grid cells and creation of geospatial zonal statistics. Figure 
1a shows the grided cells in Conakry, Guinea. Figure 1b shows the value of the average radiance 
of nighttime lights across grid cells in the same area. The lighter grid cells have higher values of 
nightlights, while the darker cells have lower values. For each grid cell, we calculated the average 
feature value from the raster data. In addition to these grid cell-level indicators, we also calculate 
mean values of the indicator at the target area level to include as predictors in small area models.  
Including these contextual variables at the target area level as additional covariates helps improve 
the predictive performance of the model.  

 

Figure 1a: Grid in Conakry, Guinea.                           Figure 1b: Average radiance of nighttime lights in  

                                                                                                    Conakry, Guinea 

 

 

 

Source: Calculations based on data from Visible Infrared 
Imaging Radiometer Suite (VIIRS) 



 

 

3. Small area estimation methodology 
In this section we present a summary of the small area methodologies we use to estimate 
headcount poverty rates at the level of the target area in the five countries of interest. We use a 
version of the Empirical Best Predictor (EBP) (Battese et al., 1988; Jiang and Lahiri, 2006; Molina 
and Rao, 2010; Tzavidis et al., 2018) under the unit context nested error regression model with 
households as the unit of analysis and covariates defined by zonal statistics of geospatial 
variables at grid cell level (centroid of enumeration areas within target areas). Our methodology 
is similar to the one used by Masaki et al. (2022), which uses small area estimation to estimate 
non-monetary poverty indicators in Tanzania and Sri Lanka with geospatial covariates, and 
Newhouse et al. (2022), which applies similar techniques with geospatial covariates to estimate 
monetary poverty in Mexico. Van der Weide et al. (2022) also examines the performance of 
poverty estimates with geospatial covariates in Malawi but using a spatial error model with sub-
area-level estimates of poverty rates as the outcome, and geospatial zonal statistics as 
covariates.   

As mentioned in previous sections, when the census and survey data are collected from around 
the same time, using household-level census covariates is generally preferred, because the 
census tends to contain richer auxiliary information than geospatial data. When census data are 
sufficiently old, however, using cluster-level covariate aggregates taken from the old census can 
generate more accurate estimates than using old census household-level covariates (Lange et 
al., 2021). None of these variations of covariate use, however, reflect any changes in the 
distribution of the census covariates since the last census. Because, except for Burkina Faso, the 
census data in the focus countries of this paper are not up to date, we explore the use of more 
current geospatial data as covariates instead of old census data.  

We opt for a household-level model of welfare over a grid cell-level model of poverty rates 
because it utilizes more detailed information about the distribution of the welfare variable, and it 
is easier to interpret. In addition, defining the grid cell-level poverty rate as the outcome to be 
estimated, as in the case of an area-level model, requires accounting for the corresponding 
sampling variability, which may be challenging at such a small level of aggregation. We also prefer 
a household-level model to an area-level model because the former allows for the use of auxiliary 
data at the grid cell level rather than at the target area level, which can improve the accuracy and 
precision of the estimates, as demonstrated in Masaki et al. (2022) and Newhouse et al. (2022). 

We model the household log per capita consumption as a linear function of a subset of geospatial 
covariates selected through Lasso. The procedure is described in detail in Appendix B. The model 
equation takes the form: 

                                      𝑙𝑙𝑙𝑙 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟ℎ = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝛽𝛽1 + 𝑋𝑋𝑟𝑟𝑟𝑟𝛽𝛽2 + 𝐷𝐷𝑟𝑟𝛽𝛽3 + 𝜈𝜈𝑟𝑟 + 𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟ℎ,                               (1), 

where 𝑙𝑙𝑙𝑙 𝑌𝑌 𝑟𝑟𝑟𝑟𝑟𝑟ℎ represents the log per capita consumption of household h, for which the 
centroid of their survey enumeration area falls in grid g within target area a and region r. This 
value of consumption has been spatially deflated using estimated local prices.   𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟 represents 
the vector of grid cell geospatial zonal statistics, and 𝑋𝑋𝑟𝑟𝑟𝑟 represents the vector of unweighted 
averages of the geospatial variables at the target area level. 𝐷𝐷𝑟𝑟 represents a set of regional 
dummy variables, 𝜈𝜈𝑟𝑟 is a random effect specified at the target area level with 𝜈𝜈𝑟𝑟~ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2), and 
𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟ℎ is a household-specific error term with 𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟ℎ~ 𝑁𝑁(0,𝜎𝜎𝜖𝜖2) . Survey weights are incorporated 
into model estimation following Guadarrama et al. (2018), as described in Skarke et al. (2021).  
A recent paper by Cho et al. (2024) presents optimal predictors for general parameters under an 



 

 

informative sampling design. Implementing this methodology with the data from the focus 
countries is a useful area for future research. 

The EBP works by repeatedly simulating synthetic populations 𝑙𝑙𝑙𝑙 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟ℎ  under model (1) using the 
expected value of what is unobserved given what is observed in the sample. Under the assumed 
linear mixed model, this expectation has a closed form. Having fit model (1), the expected log 
household per capita consumption for each household in the population is computed as follows:  

𝑙𝑙𝑙𝑙 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟ℎ
(𝑙𝑙) =  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟�̂�𝛽1 + 𝑋𝑋𝑟𝑟𝑟𝑟�̂�𝛽2 + 𝐷𝐷𝑟𝑟�̂�𝛽3 + �̂�𝜈𝑟𝑟 + 𝑣𝑣𝑟𝑟

(𝑙𝑙) + 𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟ℎ
(𝑙𝑙)    , (𝑙𝑙 = 1, . . , 𝐿𝐿), 

where �̂�𝜈𝑟𝑟 is the random effect predicted with the sample data, 𝑣𝑣𝑟𝑟
(𝑙𝑙) is generated from 𝑁𝑁(0,𝜎𝜎�𝑣𝑣2(1 −

𝛾𝛾�𝑟𝑟)), 𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟ℎ
(𝑙𝑙)  is drawn from 𝑁𝑁(0,𝜎𝜎�𝜀𝜀2) and 𝛾𝛾�𝑟𝑟is the area-specific shrinkage factor that depends on the 

estimated variance components and the area sample sizes (Molina and Rao, 2010). For each 
simulated synthetic population, the target area-specific parameter, the headcount poverty rate, is 
computed using the simulated values of the welfare variable (per capita consumption) and the 
official national poverty lines for each country. This procedure is repeated L=100 times and the 
final estimated poverty rates for each area correspond to the average across the 100 simulations.  

In this paper we implement a version of the EBP that calculates the expected value of headcount 
poverty given the estimated model parameters, for each population unit (which in this case is a 
grid). Under the assumed linear mixed model, this expectation has a closed form. Having fit model 
(1), the expected poverty rate for each grid is computed as follows:  

𝑃𝑃�𝑟𝑟𝑟𝑟𝑟𝑟 = Φ�
𝑙𝑙𝑙𝑙𝑙𝑙(𝑍𝑍) − 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟�̂�𝛽1 − 𝑋𝑋𝑟𝑟𝑟𝑟�̂�𝛽2 − 𝐷𝐷𝑟𝑟�̂�𝛽3 − �̂�𝜈𝑟𝑟

𝜎𝜎�𝑣𝑣2(1− 𝛾𝛾�𝑟𝑟) + 𝜎𝜎�𝜀𝜀2
� ,  

where Φ is the standard normal cumulative distribution function, Z is the poverty line, and �̂�𝛽1, �̂�𝛽2,  
�̂�𝛽3, 𝜎𝜎�𝑣𝑣2, 𝜎𝜎�𝜀𝜀2, and �̂�𝜈𝑟𝑟 are estimated model parameters, and  𝛾𝛾�𝑟𝑟 is the area-specific shrinkage factor 
that depends on the estimated variance components and the effective area sample size. The 
estimated target-area headcount poverty rate,  𝑃𝑃�𝑟𝑟𝑟𝑟, is computed by taking a weighted average of 
the grid-level poverty estimates in each area, with the grid population estimates from WorldPop 
playing the role of aggregation weights. Estimation is implemented using a modified version of 
the povmap package (Edochie et al., 2024) in R to implement the estimation.7 The Povmap 
package is a modified version of the EMDI package (Kreutzmann et al., 2019) that allows for 
aggregation weights when aggregating across population units (grids in this case). The two 
versions of implementing the EBP lead to the same estimates for a large number of Monte-Carlo 
iterations 𝑙𝑙 . To verify this, we compare poverty headcount and MSE estimates obtained using the 
traditional method with 𝐿𝐿 = 100 Monte-Carlo replications with those obtained by calculating the 
expected value approach for one focus country, and report the results in Appendix D. Estimates 
of the mean squared error (MSE) of the small area estimates are calculated using parametric 
bootstrap under model (1) (Gonzalez-Manteiga et al., 2007) as implemented in the Povmap 
package. MSE estimation adjusts for the fact that the population data we use contain only one 
observation per grid, while the actual population contains multiple households per grid. An 
empirical best predictor under the two-fold version of the nested error regression model is also 
available (Marhuenda et al, 2017). The two-fold version of the EBP was used to produce official 

 
7 The code is available on the development branch of the package at: https://github.com/SSA-Statistical-Team-
Projects/povmap. 



 

 

small area estimates of poverty rates in Burkina Faso using the latest census in the country. 
These estimates are used as part of the sensitivity analysis in Section 4.  

An alternative approach to small area estimation with geospatial covariates is modeling directly 
the poverty rates using an area-level model (Fay and Herriot, 1979). In this case, both the direct 
estimates of poverty rates, denoted by �̂�𝑝𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟, and the geospatial covariates, denoted by 𝑋𝑋𝑟𝑟𝑟𝑟, are 
aggregated at the target area level. The FH model consists of two stages: the sampling model 
and the linking model. The combination of both stages results in an area-level linear mixed 
model denoted by  

�̂�𝑝𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟= 𝑋𝑋𝑟𝑟𝑟𝑟𝛽𝛽1 + 𝐷𝐷𝑟𝑟𝛽𝛽2 + 𝜈𝜈𝑟𝑟 + 𝜖𝜖𝑟𝑟, 

where 𝑋𝑋𝑟𝑟𝑟𝑟 represents the vector of unweighted averages of the geospatial variables selected for 
the model at the target area level. 𝐷𝐷𝑟𝑟 represents a set of regional dummy variables, 𝜈𝜈𝑟𝑟 is a 
random effect specified at the target area level with 𝜈𝜈𝑟𝑟~ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) and 𝜖𝜖𝑟𝑟 is the sampling error 
with 𝜖𝜖𝑟𝑟~ 𝑁𝑁(0,𝜎𝜎𝜖𝜖𝑎𝑎

2 ). The sampling variance 𝜎𝜎𝜖𝜖𝑎𝑎
2 is estimated under the sampling design and is 

assumed to be known. The variance component of the random effect is estimated by maximum 
likelihood methods (e.g., the adjusted maximum-likelihood of Li and Lahiri, 2010) to guarantee 
positive variance estimates. The MSE of the estimator under the FH model can be obtained by 
analytic solutions (e.g. Prasad and Rao, 1990) or by bootstrap techniques (Gonzalez-Manteiga 
et al., 2007). In this paper the FH model is estimated using the Fayherriot Command in Stata 
(Halbmeier et al, 2019) with no transformation. The routine works similarly to the way the FH 
model is estimated in the EMDI and Povmap packages (Harmening et al., 2023) in R.  
Transformed versions of the FH models, using for example the arcsin transformation, are also 
available and can be considered when modeling proportions. Transformed FH models can be 
also estimated by using the EMDI and Povmap R packages.    

3.1 Model selection and assessment 

The geospatial data listed in Table A1 were used to construct averages of zonal statistics both at 
the grid cell level and the target area level which are used as covariates in model (1). In addition, 
we include dummy variables at the region level. For model selection we use Lasso to select a set 
of predictor variables while avoiding overfitting. Estimation of the Lasso penalty parameter is 
implemented by minimizing the Bayesian Information Criterion (Zhang et al., 2010). The regional 
dummies are unpenalized and therefore are guaranteed to be selected in the model. Details are 
provided in Appendix B. 

Broadly, the signs and patterns of the coefficients of the unit context model reflect a positive 
association between population and building density, and a negative association between welfare 
and remoteness, as proxied by agricultural production and a high prevalence of grassland and 
shrubland. Fitting model (1) in the five countries under consideration leads to R2 values ranging 
from 0.19 in Chad to 0.32 in Niger. This range is consistent with similar applications in other 
contexts. In similar household-level models with aggregation of geospatial covariates at similar 
spatial scales, the R2 was 0.30 in Tanzania and 0.27 in Sri Lanka when predicting per capita 
consumption, and 0.13 in Mexico when predicting per capita income. Geospatial variables do not 
vary within grids-cells and therefore can only explain variation in welfare across enumeration 
areas. However, the R2 is not necessarily the most accurate measure of the benefit of 
incorporating auxiliary data, as small area estimates based on models with weaker predictors can 
also be of acceptable quality. Overall, the R2 values in the focus countries indicate that the 
geospatial variables measured at grid cell level (enumeration areas) are moderately predictive of 



 

 

variation in household per capita consumption and can potentially lead to acceptable small area 
estimates.
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Table 2 presents model residual diagnostics under model (1). The error terms appear to be 
reasonably normal as judged from the skewness and kurtosis, though less so for the unit-level 
error term in Mali.  Figure 2 presents quantile-quantile plots for the unit and area estimated 
model residuals for all five countries. Overall, the results show that the log-transformed model 
provides a reasonable approximation to the normality of the model error terms. Additional model 
and residual diagnostics are presented in Appendix C.   

Table 2: Model residual diagnostics. 

 Unit-level error term Area effect Model R2 

 Skewness Kurtosis Skewness Kurtosis  Marginal Conditional  

Burkina 
Faso  0.476 3.866 0.194 4.718 0.278 0.392 

Chad  0.400 3.477 -0.299 3.408 0.190 0.222 

Guinea 0.132 3.310 0.067 4.021 0.272 0.387 

Mali  0.559 4.123 -0.093 7.325 0.257 0.330 

Niger  0.434 3.644 0.364 4.916 0.317 0.365 

 

Figure 2: Quantile-quantile plots of unit-level error terms and area random effects. 

 

Panel A: Burkina Faso  

 

 

 

 

 

 

 

 

Panel B: Chad 
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Panel C: Guinea  

  

      

Panel E: Niger   

 

 

 

 

Panel D: Mali   

 

 

 

 

 

 

4. Evaluation exercise: Comparison of geospatial and census-based estimates of 
headcount poverty in Burkina Faso  
 

Before presenting estimates of headcount poverty rates for the four focus countries that lack 
recent census data, we conduct a sensitivity analysis with data from Burkina Faso. The 
availability of a recent census in Burkina Faso creates an opportunity to assess the estimates 
produced with geospatial covariates and the unit context model against officially adopted EBP 
census-based estimates as described below.  
 
Burkina Faso’s National Institute of Statistics and Demography carried out a census in 2018 
which was utilized by the Burkina Faso poverty team of the World Bank to generate small area 
estimates of poverty for Communes using the EBP census methodology (Molina and Rao, 
2010) under a two-fold nested error regression model (Marhuenda et al., 2017). Because the 
census and the survey data are from a similar period, the small area estimates using census 
auxiliary information are considered the gold standard. Comparing the census-based estimates 
with estimates produced using geospatial covariates offers an appropriate testing ground for 
assessing the extent of discrepancies between census-based and geospatial-based estimates. 
This framework can also be used to compare the estimates produced by different models.   
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For the purposes of the evaluation exercise, we treat the census-based EBP estimates as the 
gold standard. The census-based estimates are compared to: (a) small area estimates under 
both survey weighted and unweighted versions of model (1) with the outcome defined at 
household level and the geospatial covariates defined at grid cell level; (b) small area estimates 
under an area level (Fay-Herriot) model, with geospatial covariates aggregated at the target 
area level; and (c) small area estimates under a grid cell-level model where both the outcome 
and the geospatial covariates are defined at grid cell level. It is important to note that the survey 
data was collected from the same harmonized WAEMU survey instrument as the survey data 
for the other four countries we consider in this paper. 
 
Figure 3 and Table 3 summarize the results of these comparisons.  Across all Communes in 
Burkina Faso, we find a high correlation equal to 0.799 between the estimates under the 
household-level model with geospatial covariates and those derived under the household-level 
model with census covariates. However, there is a large difference in this correlation between 
in-sample and out-of-sample Communes. For the 234 Communes included in the sample, which 
comprise 84 percent of the population of Burkina Faso according to WorldPop estimates, the 
correlation between the survey and census-based estimates is 0.879. In contrast, the correlation 
for the 117 non-sampled Communes is 0.457. The in-sample correlation is also remarkably 
similar to findings from other contexts (Masaki et al., 2022; Newhouse et al., 2022; Van der 
Weide et al., 2022). The correlation for out-of- sample areas meanwhile, is significantly lower 
than the out-of-sample correlation of 0.7 reported between geospatial and census-based 
estimates in Mexico (Newhouse et al., 2022). This may be explained by differences in the 
nature of the geospatial covariates used in Mexico, which could lead to better out-of-sample 
predictions, as well as differences in the country context. Perhaps, the lower out-of-sample 
correlations in this case could be explained by the fact that non-sampled Communes are 
different from the sampled Communes, as they are more remote, and they are not covered by 
the survey. The household level, grid cell level, and area-level geospatial models all benefit from 
conditioning on the same household survey data that was used for producing the census-based 
estimates, making the census and geospatial estimates (household and area level) more 
consistent with each other in sampled areas. On the other hand, for out-of-sample areas 
prediction is purely based on grid cell aggregated covariates that may not be as predictive of 
poverty as household census covariates.  
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Figure 3:  Census-based vs geospatial-based estimates under the unit context model for 
sampled and non-sampled Communes in Burkina Faso. Red points represent areas 
(Communes) included in the sample survey, while blue points represent Communes not 
included in the sample survey. 
 

 

Table 3: Comparison of Commune poverty estimates for different estimation methods in Burkina 
Faso, by sampled and non-sampled Communes.   
 Sampled 

Communes 
Non-
sampled 
Communes 

All 
Communes 

Number of Communes 234 117 351 
Share of population  83.2% 16.8% 100% 
Correlation with census-based estimates    
Household-level model with geospatial covariates 
(with Guadarrama et al. (2018) weights)   

0.879 0.457 0.799 

Household-level model with geospatial covariates 
(Unweighted)  

0.880 0.478 0.807 

Grid cell-level model with geospatial covariates 0.823 0.529 0.767 
Area-level model with geospatial covariates 0.754 0.499 0.685 
Direct estimates with survey weights  0.837 N/A  N/A  
Average estimated MSE across Communes    
Household-level model with geospatial covariates 
(with Guadarrama et al. (2018) weights)   

0.007 0.023 0.013 

Household-level model with geospatial covariates 
(Unweighted) 

0.006 0.023 0.012 
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Grid cell-level model with geospatial covariates 0.015  0.029 0.020 
Area-level model with geospatial covariates 0.015 0.025 0.018 
Direct estimates with survey weights  0.047 N/A  N/A  
Coverage rate relative to census-based estimates   
Household-level model with geospatial covariates 
(with Guadarrama et al. (2018) weights)   

89.7% 97.4% 92.3% 

Household-level model with geospatial covariates 
(Unweighted) 

86.3% 95.7% 89.5% 

Grid cell-level model with geospatial covariates 96.2% 97.4% 96.6% 
Area-level model with geospatial covariates 86.8% 87.2% 86.9% 
Direct estimates with survey weights  91.0% N/A  N/A  
Average estimated headcount poverty rate across Communes  
Census-based estimates   45.7% 52.6% 48.0% 
Household-level model with geospatial covariates 
(with Guadarrama et al. (2018) weights) 

49.3% 54.1% 50.9% 

Household-level model with geospatial covariates 
(Unweighted)  

44.0% 47.6% 45.2% 

Grid cell-level model with geospatial covariates  48.5% 52.7% 49.9% 
Area-level model with geospatial covariates 39.1% 41.8% 40.0% 
Direct estimates with WorldPop weights  48.2% N/A  N/A  
Direct estimates with survey weights  46.8% N/A  N/A  

 
Looking at the MSE estimates in Table 3, the household-level model generates estimates with 
lower MSEs on average compared to the estimates under the grid cell-level and area-level 
models. A further comparison between the estimates produced with geospatial covariates and 
the census-based ones is to compute coverage rates by treating the assumed gold standard 
census-based estimates as the truth. The coverage rate is the share of Communes for which a 
95% normal confidence interval for headcount poverty, defined as the estimate plus/minus 1.96 
times the square root of the estimated MSE, contains the census-based estimate. Overall, the 
coverage rate for estimates under the household-level model with geospatial covariates is 
92.3%. Of course, this is not an ideal test because the census-based estimates are themselves 
estimates, derived from the same sample data as the geospatial based estimates. Nonetheless, 
the high coverage rate alleviates concerns about the validity of the estimates produced under 
the unit context model.  
 
Recent research suggests that machine learning methods that allow for more flexible functional 
forms can improve small area prediction (Krennmair and Schmid, 2022, Merfeld and Newhouse, 
2023). Exploring whether the use of machine learning methods improves prediction for out-of-
sample areas is an area of current research focus. The performance for out-of-sample 
prediction will depend on the focus country and how well geospatial data predict poverty. 
Therefore, out-of-sample estimates under the unit context model in the four countries that lack 
recent census data should be interpreted with great caution and are likely to change when the 
next round of census-based estimates becomes available. 

 

5. Assessment of experimental SAE estimates of head count poverty in Burkina Faso, 
Chad, Guinea, Mali and Niger 
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Having compared geospatial and census-based small area estimates of head count poverty in 
Burkina Faso, this section describes the generation of experimental small area estimates of 
head count poverty for all five countries. Estimates are produced using model (1) with 
geospatial covariates as described in Table A1. Because the estimates we produce are 
experimental and not official, the results we present do not identify target areas in the focus 
countries. Model-based estimates under model (1) with geospatial covariates are compared to 
direct estimates both at target area and at aggregate, regional levels. In addition, MSE 
estimates of the model-based estimates are compared to the estimated variances of the direct 
estimates.  

Figure 4 shows the relationship between the EBP estimates under model (1) and the direct 
estimates at the target area level. In general, model-based estimates are strongly correlated with 
direct estimates and exhibit less variation than direct estimates, as one would expect due to the 
impact of shrinkage.  

Figure 4: Direct estimates vs. model-based (under the unit context model with weighting 
following Guadarrama et al., 2018) estimates at target area level. 

 

 
Figure 5 shows the relationship between the EBP estimates under the weighted and unweighted 
version of model (1). The results show that weighted model-based estimates are systematically 
higher than the unweighted estimates, while the unweighted estimates are closer to the direct 
estimates. This may be due to the approach to weighting taken by the Guadarrama et al. (2018) 
method. In future research it will be interesting to compare the current estimates against 
estimates obtained by using other weighting methods, including the method that accounts for 
informative sampling proposed by Cho et al. (2024). For the remaining of this section, we will 
use the term model-based estimates to refer to those obtained under the unit context model 
using the weighting proposed in Guadarrama et al. (2018). 
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Figure 5: Unweighted model-based estimates vs weighted model-based estimates (under the 
unit context model with weighting following Guadarrama et al., 2018) at target area level   

 

Table 4 presents the median, over target areas, of the coefficient of variation estimated for the 
model-based versus the direct estimates. Our preferred measure of uncertainty for the direct 
estimates is based on the Horvitz-Thompson approximation, calculated using the R SAE 
package, with the sum of the sample weights for each area used to approximate the domain 
size.  

Table 4: Median cve for direct and model-based estimates.   

Country  Burkina 
Faso  

Chad Guinea Mali  Niger  

Direct survey estimates 

Sampled 
areas 

0.435 0.271  0.370 0.415 0.425  

Model-based estimates 

Sampled 
areas  

0.167 0.115 0.121 0.164 0.155 

Non-
sampled 
areas  

0.2084 0.268 0.220 0.229 0.229  
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Median 
percentage 
reduction 
in cve in 
sampled 
areas  

62.8% 59.7% 68.3% 60.6% 64.0% 

 

Figure 6: Cve for direct (Horvitz-Thompson approximation) Vs. cve for model-based estimates 
for sampled areas by country.   

 

 

The results in Table 4 show a large reduction in the median cve of the model-based estimates 
relative to direct estimates. Figure 6 shows reductions in the cve for all but a few target areas. 
The large efficiency gains from the use of model-based estimates are possibly moderately 
overestimated. In real data evaluations (e.g., Masaki et al., 2022 and Newhouse et al., 2022), 
coverage rates of confidence intervals produced by using parametric bootstrap MSE estimates 
are somewhat below the nominal 95%. Nevertheless, even considering this, we expect the 
model-based estimates to be more efficient than direct estimates.  

 

As a further comparison between model-based and direct estimates, we consider a goodness of 
fit statistic at the target area level, following Brown et al. (2001). The statistic is based on 
computing Z scores defined as follows, 
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𝑍𝑍𝑟𝑟 =
�𝑝𝑝�𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒−𝑝𝑝�𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑�

��𝑀𝑀𝑀𝑀𝑀𝑀�𝑒𝑒𝑒𝑒𝑒𝑒,𝑎𝑎+𝑉𝑉𝑉𝑉𝑉𝑉�𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑,𝑎𝑎�
,                                    (2) 

Where in (2) �̂�𝑝𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟 , �̂�𝑝𝑟𝑟
𝑒𝑒𝑒𝑒𝑝𝑝are the direct and model-based estimates of headcount poverty rates 

under model (1) for area 𝑎𝑎 respectively, and the denominator comprises the estimated mean 
squared error of the EBP estimates and the estimated variance of the direct estimates. The Z 
scores are useful for assessing the magnitude of the difference between the direct and model-
based estimates relative to corresponding uncertainty estimates and whether the differences, 
taken collectively over all areas, are statistically significant. The Wald test statistic is defined by, 

𝑊𝑊 = ∑ 𝑍𝑍𝑟𝑟2𝑟𝑟  ,                                              (3) 

where W is distributed as a chi-squared distribution with degrees of freedom equal to the 
number of areas. A value below the 95 percent threshold implies a p-value above 0.05, 
indicating that the differences are not statistically significant. Table 5 presents the p-value for 
each country when using the EBP estimates under the weighted version of the unit context 
model. For Burkina Faso, Chad and Mali we do not find statistically significant differences 
between the model-based and direct estimates. However, this is not the case for Guinea and 
Niger. Meanwhile, Table 6 presents the p-value for each country when using the EBP estimates 
under the unweighted version of the unit context model. In this case all p-values exceed 0.05, 
indicating that the differences between the direct and EBP estimates are not statistically 
significant at the 95 percent level. These results, along with the average poverty estimates 
reported in Table 3, show the significant impact that weighting can have on model-based 
estimates and highlight the need for further research on weighting methods.  

Table 5: Results from applying the goodness of fit test (3) in the 5 countries (Weighted version 
of the unit context model). 

Country Test statistic 
(W) 

95% 
Threshold 

Degrees of 
Freedom 

p-value  

Burkina Faso  251.7 270.7 234 0.2 

Chad  94.4 123.2 99 0.61 

Guinea  299.9 289.0 251 0.02 

Mali  260.4 281.4 244 0.23 

Niger 271.8 264.2 228 0.025 

 

 

Table 6: Results from applying the goodness of fit test (3) in the 5 countries (Unweighted 
version of the unit context model). 

Country Test statistic 
(W) 

95% 
Threshold 

Degrees of 
Freedom 

p-value  
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Burkina Faso  231.1 270.7 234 0.54 

Chad  87.3 123.2 99 0.79 

Guinea  246.4 289.0 251 0.57 

Mali  280.6 281.4 244 0.054 

Niger 216.5 264.2 228 0.70 

 

Turning now to comparisons at more aggregate levels, Figures 7, 8 and 9 compare the EBP 
geospatial estimates with direct estimates at the regional level. Figure 8 shows the same results 
as Figure 7 but excludes out-of-sample areas when aggregating the EBP estimates at the regional 
level. We decided to explore this latter approach considering the lower correlation between unit 
context model estimates and the unit-level model estimates for out-of-sample areas in Burkina 
Faso. Both Figures 7 and 8 aggregate the model-based estimates using WorldPop weights, while 
the direct estimates are aggregated using survey weights. Figure 9 remedies this inconsistency 
by using survey weights when aggregating the model-based estimates from target areas to 
regions.  Overall, the results show that the model-based estimates are aligned well with direct 
estimates at the regional level. Some discrepancies are to be expected, however, because model-
based estimates are affected by shrinkage.  

Figure 7: Small area estimates vs direct estimates at regional level (using WorldPop weights for 
aggregation)  

 

Figure 8: Small area estimates vs direct estimates at regional level (including only in sample target 
areas and using WorldPop weights for aggregation). 
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Figure 9: Small area estimates vs direct estimates at regional level (including only in sample target 
areas and using survey weights for aggregation). 

 

6. Conclusions 

This paper describes the methodology used for producing experimental small area estimates of 
headcount poverty rates in five West African countries where in four of these countries no 
recent census data are available and zonal statistics from geospatial data sources are available 
instead. The use of model-based estimation with geospatial covariates offers a pragmatic 

0

.2

.4

.6

.8

1
EB

P 
m

od
el

 e
st

im
at

es

0 .2 .4 .6 .8 1
Direct estimates

Burkina Faso
Chad
Guinea
Mali
Niger

0

.2

.4

.6

.8

1

EB
P 

m
od

el
 e

st
im

at
es

0 .2 .4 .6 .8 1
Direct estimates

Burkina Faso
Chad
Guinea
Mali
Niger



 

23 
 

approach for producing interim model-based estimates because the alternative of using old 
census data carries risks especially if the distribution of census variables has changed over the 
intercensal period.  

The presence of a recent census in Burkina Faso provided a valuable opportunity to evaluate 
the results of different models against ‘gold standard’ census-based estimates. In sampled 
areas, the estimates produced by the unit context model track the census-based estimates well 
and have lower MSEs than direct estimates. Across all areas, the correlation between the 
geospatial-based estimates and the census-based estimates is high, but this correlation was 
much higher in sampled areas than non-sampled areas. Models specified at the household level 
generated estimates that were moderately more accurate than those specified at the grid cell 
level, because the greater variation in per capita consumption allowed for the automated 
selection of a richer model. Both sets of estimates had lower MSEs than estimates under a 
model specified at the area level, which we think is due to the use of more granular auxiliary 
data.  

Overall, the estimates for the countries without census data show large improvements in MSE 
reduction compared to direct estimates. In particular, the median cve in sampled areas is 
reduced between approximately 59% and 68%. The five countries that are the focus of this 
paper are neighbors and share many economic and social characteristics. Furthermore, all of 
them implemented highly harmonized surveys concurrently, and the set of geospatial variables 
available for model selection is identical. However, one cannot be certain that the results for 
Burkina Faso generalize to the other four West African countries as there are important 
differences to take into account. Burkina Faso is facing a significant internally displaced people 
crisis, affecting about 10% of the population, but hosts far fewer refugees than Niger or Chad.  
Burkina Faso and Guinea lack the large areas of mainly uninhabited desert that characterize 
Mali, Niger, and Chad. Nonetheless, the relatively low correlation between the geospatial 
estimates and the census estimates in non-sampled areas observed in Burkina Faso raises the 
prospect that the estimates for these areas could significantly change when upcoming censuses 
are collected and combined with survey data to produce updated poverty maps. Given the 
scarcity of evidence on out-of-sample prediction accuracy in the literature, we recommend 
treating the out-of-sample estimates in the remaining four countries with a high degree of 
caution.  

There are several additional avenues for further research to inform these types of data 
integration efforts. These include additional empirical work to validate both point and uncertainty 
estimates against estimates using recent census data. Zonal statistics derived from geospatial 
data can be highly correlated. Initial results from current research indicate that the approach 
used for geospatial data processing and model building with geospatial data can impact the 
quality of the produced estimates. Model estimation also matters, it should be possible to 
improve upon existing methods for estimating mixed models with sampling weights. In addition, 
exploring the use of machine learning methods to capture complex relationships could improve 
estimation especially for out-of-sample areas. Despite room for further improvement, the model-
based estimates of the type calculated in this paper can provide interim estimates of the spatial 
distribution of poverty with acceptable uncertainty measures that cannot be obtained with survey 
data alone.  
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Appendix Α: Information on data sources 

 

Table A1: List of candidate geospatial variables.  

Variable Source  Approximate 
Resolution 

Year  

Population structure  WorldPop (https://www.worldpop.org) 100 m  2018 

Population density  WorldPop 100 m 2018 

Temperature 
TerraClimate 

(https://www.climatologylab.org/terraclimat
e.html)  

4 km  2018 

Palmer Draught 
Severity Index 
(PSDI) 

TerraClimate 
4 km  2018 

Distance to OSM 
major roads WorldPop 100 m 2016  

Radiance of night-
time lights  

VIIRS 
(https://eogdata.mines.edu/products/vnl/)  

500 m  2018 

Net primary 
production 

FAO Remote Sensing for Water 
Productivity (WaPOR) 2.1 

(https://data.apps.fao.org/wapor/?lang=en)  

240 m 2018 

Rainfall 
Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS) 
(https://www.chc.ucsb.edu/data/chirps)  

5.5 km 2018 

Elevation  

NASA’s SRTM Digital Elevation (3 arc 
seconds spatial resolution) 

(https://www.usgs.gov/centers/eros/scienc
e/usgs-eros-archive-digital-elevation-

shuttle-radar-topography-mission-srtm-1)  

30 m  2018 

Cellphone tower 
count  

The OpenCell ID project 
(https://www.opencellid.org/#zoom=16&lat

=37.77889&lon=-122.41942)  

1 km April 2022 

Years since change 
to impervious 
surface  

Tsinghua University via Google Earth 
Engine 

(https://developers.google.com/earth-
engine/datasets/catalog/Tsinghua_FROM-

GLC_GAIA_v10)  

30 m  2018 

Building count  WorldPop 100 m  2018 

https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://eogdata.mines.edu/products/vnl/
https://data.apps.fao.org/wapor/?lang=en
https://www.chc.ucsb.edu/data/chirps
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.opencellid.org/#zoom=16&lat=37.77889&lon=-122.41942
https://www.opencellid.org/#zoom=16&lat=37.77889&lon=-122.41942
https://developers.google.com/earth-engine/datasets/catalog/Tsinghua_FROM-GLC_GAIA_v10
https://developers.google.com/earth-engine/datasets/catalog/Tsinghua_FROM-GLC_GAIA_v10
https://developers.google.com/earth-engine/datasets/catalog/Tsinghua_FROM-GLC_GAIA_v10
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Coefficient of 
variation on 
buildings  

WorldPop 
100 m 2018 

Land cover 
classifications 

Copernicus Global Land Cover Layers: 
CGLS-LC100 Collection 3 

(https://developers.google.com/earth-
engine/datasets/catalog/COPERNICUS_L

andcover_100m_Proba-V-C3_Global)  

100 m  2018 

 

 

 

Table A2: Differences between full survey sample and subsample with available geospatial 
coordinates 

 Burkina 
Faso 

Chad Guinea Mali Niger  

Population       

Number of 
target areas  

351  112 343 704 266 

      

Full survey 
sample  

     

Number of 
target areas  

N/A 8 N/A  N/A N/A N/A 

Number of 
enumeration 
areas  

585 627 688 551 504  

Number of 
households  

7,010 7,497 8,256 6,602 6,024 

National 
poverty rate  

41.4  41.9 43.7 41.9 40.8  

      

Survey 
subsample 
with 
geospatial 
coordinates 

     

 
8  Households without geospatial coordinates do not have the required information to assign them to a target area.  

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global


 

29 
 

Number of 
target areas  

234 99 251 244 228 

Number of 
enumeration 
areas  

555 594 681 531 483 

Number of 
households  

6,650 7,124 8,159 6,362  5,777  

National 
poverty rate 
(subsample) 

41.0 42.8 43.9  42.0 40.9 

Notes: Only includes completed interviews. National poverty rate taken from World Development 
Indicators. All other figures taken from staff calculations based on 2018 EHCVM survey data.  

 

Appendix B: Method for model selection  
 

Lasso selects variables using the following optimization problem:  
 
�̂�𝛽 =  𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎𝑎𝑎𝑙𝑙 𝛽𝛽 ∈ 𝑅𝑅𝑝𝑝  𝐸𝐸𝑛𝑛[(𝑦𝑦𝑑𝑑 − 𝑋𝑋𝑑𝑑𝛽𝛽)2] + 𝜆𝜆

𝑁𝑁
∑ �𝑃𝑃𝑗𝑗𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1                                                         (B1) 

 
Where 𝑦𝑦𝑑𝑑 is log per capita consumption for household i, 𝑋𝑋𝑑𝑑 is a matrix of p normalized candidate 
predictor variables, 𝑅𝑅𝑝𝑝 represents the set of p-dimensional real numbers, 𝐸𝐸𝑛𝑛[ ] represents the 
empirical average in the sample of 𝑙𝑙 households, 𝑃𝑃𝑗𝑗 is a variable specific penalty parameter that 
takes on the values of zero or one, and 𝜆𝜆 is a penalty parameter. When lambda is set to 0, 
LASSO is equivalent to OLS, and as lambda increases, the optimal solution sets an increasing 
number of coefficients to zero. The penalty parameter 𝑃𝑃𝑗𝑗 is set to zero for the regional dummies, 
to ensure they are selected, and one for all other variables.  The remaining non-zero coefficients 
are the selected variables. Thus, the value of the penalty factor 𝜆𝜆 determines how many 
variables are selected for the model.   
 
We select the value of 𝜆𝜆  that minimizes the Bayesian Information Criteria, defined as:  
 

  𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑙𝑙𝑙𝑙(2𝜋𝜋) + 𝑙𝑙𝑙𝑙(𝐸𝐸𝑁𝑁[(𝑦𝑦𝑑𝑑 − 𝑋𝑋𝑑𝑑𝛽𝛽)2]) + 1 + 𝐵𝐵𝑁𝑁                  (B2) 
 
Where C is the number of non-zero coefficients, 𝑋𝑋𝑑𝑑 is a 1 by C vector of variables and 𝛽𝛽 is a C 
by 1 vector of coefficients estimated without a penalty. 𝑋𝑋𝑑𝑑, 𝛽𝛽, and C are all functions of 𝜆𝜆. Larger 
values of 𝜆𝜆 are associated with sparser models, which increase the value of the second term but 
reduce the value of the third term of (B2).  
 
The resulting lambda is plugged into equation (B1) to determine the set of variables with non-
zero coefficients. These variables, without further selection, are incorporated into the linear 
mixed model specified in equation (1).  
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Appendix C: Small area estimation with geospatial variables 

 
Residual Diagnostics 

We look at the impact of influential data points on the model fit by computing Cook’s distance. 
This is estimated by removing the ith observation from the data and summarizing the change in 
the regression model as follows:  

𝐷𝐷𝑑𝑑  =  
�∑ 𝑌𝑌𝑗𝑗 −𝑌𝑌𝑗𝑗(𝑑𝑑)

𝑛𝑛
𝑗𝑗= 1 �

2 

(𝑝𝑝+1)𝜎𝜎2
  

We estimate D for all 4-unit context models below. A data point (index) is said to be influential 
by the cook’s distance measure when 𝐷𝐷𝑑𝑑  >   4

𝑁𝑁
 (where N is the number of observations in the 

survey), an arbitrary rule of thumb common within the statistical literature. 

 

Figure C1: Cumulative Distribution Functions of Cook’s Distance by country  

   

  

 

 

 

 

Cross Validation 

To ensure that the models are not overfit, we conduct a 10-fold cross validation exercise of the 
models used in Mali, Guinea, Chad and Niger. The 10-fold cross validation procedure involves 
randomly selecting 90% of the sample (matching the survey design), training a welfare model 
on this data sample, predicting the outcome into the remaining 10%, and repeating the process 
a total of 10 times.  
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Table C1: In and out of sample R2 from cross-validation exercise.  

 Marginal R2  In-sample R2  Out of sample R2 

Burkina Faso  0.278 0.321 0.308 

Chad  0.190 0.185 0.174 

Guinea 0.272 0.339 0.326 

Mali  0.257 0.307 0.294 

Niger  0.317 0.266 0.249 

 

Note: The first column reports the marginal R2 of the empirical best predictor model, taken from 
Table 2. The second and third columns reports the average in and out of sample R2 from cross-
validated OLS regressions across ten folds. The results indicate that the in and out of sample R-
square values are very similar in both training and test datasets in all countries. 

 

Appendix D: EBP implementation  

As mentioned in Section 3, we compute an analytic version of the EBP estimator. Under the 
analytic approach we calculate expected values of headcount poverty instead of using Monte-
Carlo draws from the distributions of the error terms. The main advantage of using the analytic 
version of the EBP estimator is computational speed, To check that the results are not 
qualitatively different, we compare the two approaches for SAE in Burkina Faso. Table D1 
reports the results of this comparison. The results show that the estimates under the two 
approaches are not meaningfully different. 

Table D1: Comparison of the two approaches of implementing the EBP for small area 
estimation of headcount poverty in Burkina Faso.  

Burkina Faso  Headcount poverty estimates  MSE estimates 

Mean across areas (Analytic 
approach)  

0.510 0.013 

Mean across areas (Monte-
Carlo approach) 

0.509 0.013 

Rank Correlation  0.997 0.902  

Pearson Correlation  0.997 0.931 

Mean Absolute Difference  0.009  0.002  
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