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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10828

This paper reviews the main methods for small area esti-
mation of welfare indicators. It begins by discussing the 
importance of small area estimation methods for producing 
reliable disaggregated estimates. It mentions the baseline 
papers and describes the contents of the different sections. 
Basic direct estimators obtained from area-specific survey 
data are described first, followed by simple indirect methods, 
which include synthetic procedures that do not account 
for the area effects and composite estimators obtained as 
a composition (or weighted average) of a synthetic and a 
direct estimator. The previous estimators are design-based, 
meaning that their properties are assessed under the sam-
pling replication mechanism, without assuming any model 
to be true. The paper then turns to proper model-based 
estimators that assume an explicit model. These models 
allow obtaining optimal small area estimators when the 

assumed model holds. The first type of models, referred to 
as area-level models, use only aggregated data at the area 
level to fit the model. However, unit-level survey data were 
previously used to calculate the direct estimators, which act 
as response variables in the most common area-level models. 
The paper then switches to unit-level models, describing 
first the usual estimators for area means, and then moving 
to general area indicators. Semi-parametric, non-parametric, 
and machine learning procedures are described in a separate 
section, although many of the procedures are applicable 
only to area means. Based on the previous material, the 
paper identifies gaps or potential limitations in existing 
procedures from a practitioner’s perspective, which could 
potentially be addressed through research over the next 
three to five years.

This paper is a product of the Poverty and Equity Global Practice. It is part of a larger effort by the World Bank to 
provide open access to its research and make a contribution to development policy discussions around the world. Policy 
Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The author may be contacted 
atisabelmolina@ucm.es.   
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Chapter 1

Introduction

The recent natural disasters and current armed conflicts are having dev-

astating effects on the lives of millions of people. In these times of great

turbulence, it becomes even more urgent to help those in need. We can-

not forget that social and economic development helps prevent future

conflicts and mitigates the impact of adverse events. However, especially

in the current circumstances, humanitarian aid and development funds

are limited, making it even more important to direct them to the places

where they are most needed.

Elbers et al. (2004) investigated the impact on poverty alleviation of

transferring an exogenously given budget to geographically defined sub-

groups of the population according to their relative poverty status. They

observed substantial gains from targeting smaller administrative units,

such as districts or villages, as opposed to larger regions. However, for

effective targeting, it is crucial to utilize the most reliable statistical in-

formation concerning the living conditions of people in those small areas.

Small area estimation (SAE) methods offer reliable statistical figures at

the local level or for population subgroups. These techniques are well-

developed for various contexts, but there are still certain limitations in

the existing methodology under realistic circumstances. This paper first

3



CHAPTER 1. INTRODUCTION 4

reviews the existing SAE procedures, starting with the very simple direct

estimates obtained from area-specific survey data, progressing through

the simple past indirect methods, and concluding with the more sophisti-

cated and recent model-based procedures, some of which can incorporate

various, possibly heterogeneous, data sources.

The review is based on several documents, including other recent review

papers. Specifically, it heavily relies on Molina (2019), Corral Rodas,

Molina and Nguyen (2021), Molina, Corral and Nguyen (2022), Corral

et al. (2022) and Molina and Rao (2023). Drawing upon this literature

review, this paper then identifies challenges or gaps in the current SAE

methodology that are relevant for practitioners and could potentially be

addressed through research in the next 3-5 years.

Chapters 2 to 6 review a significant portion of the existing SAE litera-

ture. Chapter 2 describes direct estimators based on area-specific survey

data and related methods. Chapter 3 goes over early indirect estima-

tors, including the first synthetic estimators as well as composite estima-

tors. Then, Chapters 4–6 provide an overview of modern model-based

SAE procedures, describing many recent extensions of these models and

methods. We emphasize the main ideas behind each method, focusing

on model types and on the estimation methods based on them. The de-

scription includes the pros and cons of each procedure from a practical

standpoint, while details such as fitting procedures and other technical

issues are omitted due to space restrictions. Finally, Chapter 8 enu-

merates open problems or topics deserving further research, once again

considering the perspective of practitioners. It suggests potential topics

of interest that could be addressed through research in the next 3-5 years.



Chapter 2

Direct estimation

The earliest estimates for subpopulations based on sample surveys were

“direct”, in the sense that they used only the survey data from the sub-

population of interest without “borrowing strength” from other subpop-

ulations. These estimates are based on the sampling design; that is,

they exhibit good properties across all possible samples of units drawn

from the target population using the specified sampling design (random

mechanism used to draw the samples). For a detailed account of the sam-

pling theory, refer to the well-known books by Cochran (1977), Särndal,

Swensson and Wretman (1992), Thompson (1997), or Lohr (1999). The

guidelines by Corral et al. (2022) briefly introduce the design-based setup

for inference in the context of SAE for poverty mapping in Section 2.1.

This section introduces common direct estimators based on sampling the-

ory, as they serve as the benchmark for any comparison. These estimators

make no model assumptions and exhibit good properties for areas or do-

mains with sufficiently large sample sizes. However, they are inefficient

(with large variances) in areas with small sample sizes. SAE methods

aim to improve the efficiency (reduce the variance) of direct estimators,

typically at the cost of increased bias. For example, refer to Figure 2.1

in Corral et al. (2022), which illustrates the design bias of model-based

5



CHAPTER 2. DIRECT ESTIMATION 6

small area estimators compared with direct ones in a design-based vali-

dation study. It is crucial to note that this design bias must always be

kept small for small area estimators to be useful (say, relative bias not

exceeding 10%).

Let U be a finite population of N units, assumed to be partitioned into

D subpopulations, referred to as areas or domains, denoted U1, . . . , UD,

with sizes N1, . . . , ND, where N =
∑D

d=1Nd. Let ydi be the target variable

for unit i within area d, where i = 1, . . . , Nd and d = 1, . . . , D. In

survey sampling, model assumptions are not made for ydi and these values

are assumed to be fixed constants (measured without error). Therefore,

randomness arises only from the mechanism used to draw the sample (the

sampling design).

In this paper, target indicators for the areas are defined as general (real)

functions of the values of the target variable in all the units from area d,

that is, δd = hd(yd1, . . . , ydNd
). Simple indicators are obtained when hd(·)

is a linear function. Let us define the vector yd = (yd1, . . . , ydNd
)′. Then,

a linear indicator has the form δd = a′dyd, where ad = (ad1, . . . , adNd
)′ is a

vector of known constants. Sampling theory was traditionally developed

for linear indicators. Here we review traditional direct estimators for area

means

Ȳd =
1

Nd

Nd∑
i=1

ydi, d = 1, . . . , D.

which are special cases of linear indicators δd = a′dyd, for ad = (1/Nd, . . . , 1/Nd)
′.

A sample sd of size nd is supposed to be drawn independently from each

area Ud, and s = s1∪· · ·∪sD is the overall sample, with size n =
∑D

d=1 nd.

An unbiased estimator of Ȳd across all the possible samples sd drawn

from Ud using the specified sampling design is the Horvitz-Thompson

(HT) estimator. Let πdi be the inclusion probability of unit i in the

sample sd from area d, and wdi = π−1di be the survey weight (or elevation

factor) of that unit. The survey weight is interpreted as the number

of population units that the i-th sample unit represents. The Horvitz-
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Thompson estimator of Ȳd is then given by

ˆ̄Y d =
1

Nd

∑
i∈sd

wdiydi.

Although the HT direct estimator ˆ̄Y d is unbiased for Ȳd, it is not a

weighted average unless Nd =
∑

i∈sd wdi, and it may have larger vari-

ance than the ratio HT (or Hájek) estimator of Ȳd, which is defined as

the weighted average

ˆ̄Y
R

d =
1

N̂d

∑
i∈sd

wdiydi = ȳdw, (2.1)

where N̂d =
∑

i∈sd wdi.

If πdi > 0 for all i = 1, . . . , Nd, the variance across the possible samples

sd (hereafter design variance) of the HT estimator of Ȳd is given by

varπ( ˆ̄Y d) =
1

N2
d

{
Nd∑
i=1

y2di
πdi

(1− πdi) + 2

Nd∑
i=1

Nd∑
j>i

ydiydj
πdiπdj

(πd,ij − πdiπdj)

}
.

(2.2)

The design variance of the Hájek estimator ˆ̄Y
R

d may be obtained by ap-

plying the Taylor linearization method to the ratio of HT estimators N̂d

and Ŷ R
d =

∑
i∈sd wdiydi of the totals Nd and Yd =

∑Nd

i=1 ydi, respectively.

If the sample sd is drawn with simple random sampling (SRS), then

wdi = Nd/nd for all i = 1, . . . , Nd, and both the HT direct estimator and

the ratio HT estimator reduce to the usual (unweighted) sample mean,

ˆ̄Y d = ˆ̄Y
R

d =
1

nd

∑
i∈sd

ydi = ȳd.

Under SRS without replacement, the design variance (2.2) reduces to the

usual formula,

varπ( ˆ̄Y d) =

(
1− nd

Nd

)
σ2
y

nd
, σ2

y =
1

Nd − 1

Nd∑
i=1

(
ydi − Ȳd

)2
. (2.3)
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Direct estimators based on the sampling design offer several advantages,

particularly when applied to areas with large sample sizes. Specifically,

they avoid making model assumptions for the study variable and have

good properties across all possible samples sd drawn from Ud. As men-

tioned earlier, the HT estimator is design unbiased for Ȳd, and the ratio

HT estimator is design consistent as the area sample size nd grows. This

means that they are more likely to be close to the true mean Ȳd as nd

increases. Another important advantage of direct estimators is their use

of “all-purpose” expansion weights. This means that the same expan-

sion weights wdi are employed for the estimation of totals or means of

any variable of interest, facilitating the automatic production of large

amounts of statistical information. However, challenges arise for areas

with small sample sizes, where the design variance becomes unaccept-

able. Note that varπ( ˆ̄Y d) = O(n−1d ), indicating that it decreases as the

area-specific sample size nd grows at the same rate as 1/nd. However,

it grows unboundedly as nd decreases, as illustrated clearly for SRS in

(2.3).

Generalized Regression (GREG) estimators and more general calibration

estimators (Deville and Särndal, 1992; Lehtonen, Särndal and Veijanen,

2003) applied to areas are designed to enhance the efficiency of direct

domain estimators, owing to the knowledge of the totals of certain auxil-

iary variables. These procedures adjust the sampling weights wdi so that

the expansion estimates of the known totals of the auxiliary variables,

based on the final weights, become equal to the known true totals. The

adjusted weights may be similarly used to estimate totals or means of

other variables of interest.

Nowadays, expansion weights are typically calibrated using the known

totals of certain auxiliary variables and are also adjusted for non-response.

However, the resulting expansion estimators may still be inefficient for

areas with a small sample size nd, as their design variances are O(n−1d ).

One way to ameliorate the SAE problem at the design stage of the survey,
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which is always advisable, is to allocate the total survey sample size n

more efficiently among the different areas. However, as stated by Fuller

(1999), p. 344, “the client will always require more than is specified at

the design stage”, and hence SAE techniques might still be needed.



Chapter 3

Basic indirect estimators

Indirect estimators overcome data scarcity in an area by “borrowing

strength” across areas. This is done by imposing homogeneity assump-

tions that connect the areas through shared parameters. These common

parameters are estimated with a larger sample size, leading to signifi-

cantly more efficient small area estimators.

The first indirect estimators were “synthetic”, a term used for estimators

that assume common characteristics for all the areas, without allowing

for area heterogeneity. According to Gonzalez (1973), “An estimator is

called a synthetic estimator if a reliable direct estimator for a large area,

covering several small areas, is used to derive an indirect estimator for

a small area under the assumption that the small areas have the same

characteristics as the large area”.

Very simple synthetic estimators are post-stratified synthetic estima-

tors, which assume that the population is partitioned into J groups

U1, . . . , UJ , known as post-strata, each with sufficiently large sample

sizes n1, . . . , nJ , that cut across the areas. Hence, the area Ud is also

partitioned in J groups, U1
d , . . . , U

J
d of population sizes N1

d , . . . , N
J
d , and

means Ȳ 1
d , . . . , Ȳ

J
d , where Ȳ j

d =
∑

i∈Uj
d
ydi/N

j
d , j = 1, . . . , J . The area

mean Ȳd can be expressed as a weighted average of the means for the J

10



CHAPTER 3. BASIC INDIRECT ESTIMATORS 11

post-strata within that area, as

Ȳd =
1

Nd

Nd∑
i=1

ydi =
1

Nd

J∑
j=1

N j
d Ȳ

j
d . (3.1)

Assuming that the mean Ȳ j of the study variable in post-stratum j is

constant across the D areas and only varies between post-strata, that is,

assuming that Ȳ j
d = Ȳ j, for all d = 1, . . . , D, and for each j = 1, . . . , J ,

we can replace Ȳ j
d by Ȳ j in (3.1), resulting in

Ȳd =
1

Nd

J∑
j=1

N j
d Ȳ

j. (3.2)

Then, the post-stratified synthetic (PS-SYN) estimator of Ȳd is obtained

by replacing the mean in each post-stratum Ȳ j in (3.2) with the direct

estimator ˆ̄Y
j,R

, as follows

ˆ̄Y
PS−SY N
d =

1

Nd

J∑
j=1

N j
d

ˆ̄Y
j,R
.

Since post-strata sample sizes are assumed to be sufficiently large, estima-

tors ˆ̄Y
j,R

, j = 1, . . . , J , have small design variances, resulting in a small

design variance for the PS-SYN estimator of Ȳd. However, the assump-

tion of a constant mean across the areas within the same post-stratum is

hardly true, leading to typically large design bias in PS-SYN estimators.

It is important to note that a reduction of design variance at the expense

of a large design bias is not an acceptable estimation strategy.

Hansen, Hurwitz and Madow (1953), p. 483, were the first to use a

model for synthetic estimation, in an application based on the 1945 Radio

Listening Survey. The objective was to estimate the median number of

radio stations heard during the day in family houses from D = 500 US

counties. They had estimates xd, d = 1, . . . , D, obtained from a mail

survey conducted in the 500 counties, which were biased due to only 20%

response rates and incomplete coverage. Additionally, they had estimates
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yd obtained for an intensive survey conducted in m = 85 of the counties.

By considering those counties as the first 85 and regarding yd as the true

county median, they assumed the linear regression model

yd = β0 + β1xd + ed, d = 1, . . . , D, (3.3)

with the usual regression assumptions, namely independent errors, E(ed) =

0 and var(ed) = σ2
e , d = 1, . . . , D. They fitted the regression model using

the available yd values for the m = 85 counties. The fitted regression pa-

rameters were then applied to predict the number of radio stations heard

during the day in the remaining 500 − 85 = 415 counties, for which the

mail survey estimates xd were available. The resulting predicted values

are taken as the small area estimators for the remaining 415 counties

where yd was not available. Estimators derived from a regression model

with common regression coefficients for all the areas, and where area

effects are not estimated, are referred to as regression-synthetic estima-

tors. Note that the regression coefficients in (3.3) are constant for all the

D = 500 US counties and are estimated with the data (xd, yd) from the

m = 85 counties where yd was available, and county effects are not esti-

mated. Moreover, the estimators derived from (3.3) do not account for

the fact that yd are subject to sampling error, unlike the SAE procedures

described in Chapter 4.

As mentioned earlier, synthetic estimators can have relatively small de-

sign variances, but their design bias can be substantial due to the un-

realistic assumptions underlying synthetic estimators. Since their design

bias is not negligible, design mean squared error (MSE) estimates, which

account for both, bias and variance, should be used to complement the

synthetic point estimates. Aside from the potentially large bias, a chal-

lenge lies in obtaining efficient and area-specific design MSE estimates

for these estimators.

Composite estimators, defined as a weighted average of a synthetic and

a direct estimator for the same area, were proposed to shrink direct es-

timators toward the synthetic ones, reducing the design variances of the



CHAPTER 3. BASIC INDIRECT ESTIMATORS 13

direct estimators at the cost of slightly increasing their design bias. It is

worth noting that averaging different predictors is one of the main ideas

behind modern machine learning procedures.

In composite SAE estimators, optimal weights are sought from a design-

based standpoint. Unfortunately, the optimal weight depends on the true

design MSE estimates of the two estimators involved, encountering once

again the problem of estimating the design MSE for synthetic estimators.

Griffiths (1996) studied composite estimators and applied them to the

estimation of labor force characteristics for US congressional districts.

Purcell and Kish (1979) considered a common weight for all the areas and

obtained the optimal weight that minimized the total design MSE for all

the D small areas. The resulting composite estimators have good overall

efficiency for the D areas, but not necessarily for each small area. In SAE,

it is desirable to reduce the largest MSEs, which typically correspond to

the areas with the smaller sample sizes, and this is not ensured by these

composite estimators.

Actually, in SAE, it is much more appealing to consider composite esti-

mators with area-specific weights, such that the weight attached to the

synthetic estimator grows for areas with small sample sizes and decreases

for areas with large sample sizes, giving more weight to the direct esti-

mator. Following this idea, Drew, Singh and Choudhry (1982) proposed

the sample-size-dependent (SSD) estimators. These are composite es-

timators defined with simple weights that depend on the area sample

size. They applied these estimators to produce estimates for Census Di-

visions from the Canadian Labor Force Survey. In practice, as observed

in the application by Drew, Singh and Choudhry (1982), SSD estimators

borrow little or no strength, because the weights attached to the direct

estimators frequently turn out to be either equal or close to one.

Chapter 4 describes the first SAE model, which also leads to a composite

estimator, but with optimal properties under model assumptions made

for the study variable. These model-based estimators outperform the
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composite estimators described above by borrowing significant strength

from other areas. They can achieve substantial efficiency gains, provided

that the model assumptions hold.



Chapter 4

Area level models

A proper SAE model that incorporates the sampling errors into the lin-

ear regression (3.3), was introduced by Fay and Herriot (1979) with the

purpose of estimating the mean per capita income in US areas with fewer

than 1,000 inhabitants. This model utilizes only aggregated data at the

area level, which is more easily available. Due to its broad applicability,

simplicity, interpretability, and the favorable properties of the estimators

derived from it, it is possibly the most popular SAE model.

The Fay-Herriot (FH) model is defined in two stages. In the first stage,

Fay and Herriot (1979) assume that the true area indicators δd vary lin-

early with a p× 1 vector xd = (xd1, xd2, . . . , xdp)
′ of area-level covariates,

as follows:

δd = x′dβ + ud, d = 1, . . . , D. (4.1)

This model is known as linking model, because the vector of regression

coefficients, β = (β0, β1, . . . , βp−1)
′, is assumed to be constant for all the

areas, thus “linking” the areas. The regression errors, ud, are assumed

to be independent for all d = 1, . . . , D, following ud ∼ N(0, σ2
u), with

σ2
u > 0 unknown, and are referred to as area effects, because they model

the between-area heterogeneity that is not explained by the area-level

covariates in xd. Typically, xd1 = 1 to allow for an intercept in the

15
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regression and xd2, . . . , xdp are the population means of p − 1 auxiliary

variables, obtained from census data.

Note that the true indicators δd are not available and hence model (4.1),

as it is, cannot be fit. However, direct estimators δ̂DIRd , d = 1, . . . , D, are

assumed to be available from the unit-level data in a (current) survey,

where the areas may be identified. Traditional indicators of interest are

the area means δd = Ȳd, for which basic direct estimators δ̂DIRd and

corresponding design variances varπ(δ̂DIRd ), are described in Chapter 2.

Note that the direct estimators δ̂DIRd are subject to sampling error, which

might be substantial, since they are based on the nd observations from

area d, which is supposed to be too small for certain areas. Fay and

Herriot (1979) proposed to account for the (important) sampling errors

of the direct estimators δ̂DIRd of δd, by considering the following model,

known as sampling model, in the second stage:

δ̂DIRd = δd + ed, d = 1, . . . , D, (4.2)

where ed, d = 1, . . . , D, are supposed to be independent, and inde-

pendent of the area effects ud, following ed ∼ N(0, ψd), with variances

ψd = varπ(δ̂DIRd ), d = 1, . . . , D, assumed to be known.

Replacing the linking model (4.1) in the sampling model (4.2) results in

the linear mixed model

δ̂DIRd = x′dβ + ud + ed, d = 1, . . . , D, (4.3)

with known and heteroscedastic error variances ψd, d = 1, . . . , D. The

statistical theory behind linear mixed models is well described in Searle

(1971), Searle, Casella and McCulloch (1997) and Jiang (2007). For σ2
u

known, Henderson (1950) obtained the best linear unbiased predictor

(BLUP) of a linear combination of the vector of fixed effects β and the

vector random effects ud = (u1, . . . , uD)′ in a linear mixed model. The

BLUP of δd = x′dβ + ud is the predictor δ̃d that is a linear combination

of y = (δ̂DIR1 , . . . , δ̂DIRD )′, which is unbiased in the sense E(δ̃d − δd), and
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minimizes the model MSE, E(δ̃d− δd)2. Here, the expectations are taken

with respect to the distribution induced by the FH model (4.3), where

the normality assumptions are not necessary. Note that the inference

under a model (model-based inference) is completely different from the

inference under the sampling design (design-based inference) described in

Chapter 2. In model-based inference, the true values δd are assumed to

follow a model, and are thus random variables, unlike in the design-based

inference. That is the reason why the term “estimator” of δd is replaced

by “predictor” of (the realized value of) δd.

Based on the FH model (4.1)–(4.2), the BLUP of δd = x′dβ+ud is obtained

simply by fitting the linear mixed model (4.3) assuming σ2
u known, and

then using the predicted value of δd through the model, that is,

δ̃FHd = x′dβ̃ + ũd. (4.4)

Here, ũd = γd(δ̂
DIR
d − x′dβ̃) is also the BLUP of the area effect ud, where

γd = σ2
u/(σ

2
u + ψd), and β̃ is the weighted least squares (WLS) estimator

of β, which equals the maximum likelihood (ML) estimator of β under

normality of random effects and errors, given by

β̃ =

(
D∑
d=1

γdxdx
′
d

)−1 D∑
d=1

γdxdδ̂
DIR
d . (4.5)

Note that it is possible to use only the regression part of the BLUP in (4.4)

to estimate δd, which is the regression-synthetic estimator δ̃RSY Nd = x′dβ̃.

This is customarily taken for areas d that are not observed in the survey

or for which no positive variance estimates ψd are available (for which

γd is not defined, so its limiting value γd = 1 as ψd → 0 is taken in the

BLUP).

Replacing ũd = γd(δ̂
DIR
d − x′dβ̃) in (4.4) and re-arranging the terms, the

BLUP can be seen as a composite estimator between the direct estima-

tor δ̂DIRd used as response variable, and the above regression synthetic
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estimator, that is,

δ̃FHd = γdδ̂
DIR
d + (1− γd)x′dβ̃, (4.6)

where the weight attached to the direct estimator, γd = σ2
u/(σ

2
u + ψd) ∈

(0, 1), depends on the estimated variance ψd of the direct estimator (which

grows as the area sample size nd decreases), relative to the unexplained

area heterogeneity measured by σ2
u. For an area d where the direct esti-

mator δ̂DIRd is efficient, δ̃FHd attaches more weight to the direct estimator

δ̂DIRd than to the regression-synthetic counterpart, and more weight is

given to the latter for the areas whose direct estimator has bad quality

in terms of ψd, relative to the unexplained between-area variability σ2
u.

Note that the regression-synthetic estimator “borrows strength” from all

the areas through β̃. Hence, the BLUP (4.6) based on the FH model

(4.3) automatically “borrows strength” for the areas where it is needed,

but gets close to the direct estimator when it is efficient enough, which

is a desirable property, given that direct estimators are design unbiased

(or design consistent) without making any model assumptions. As a con-

sequence, the BLUP (4.6) inherits the good (design) properties of the

direct estimator for sufficiently large nd, such as design consistency. The

expression 4.6 indicates that the BLUP may be employed for all the ar-

eas d = 1, . . . , D, regardless of whether they have large or small sample

size nd; or equivalently, whether their corresponding direct estimator has

acceptable quality or not.

Note that using the regression-synthetic estimators δ̃RSY Nd = x′dβ̃ for all

the areas is not recommendable for several reasons: first, area effects

might be significant; we can never be completely sure that the available

covariates are explaining all the area heterogeneity; second, the sample

size nd might be large in some or even many of the areas, and hence those

observations on the actual target variable obtained from the survey, which

are expensive to get, would be waisted; third, we can never be completely

sure that the assumed model is correct, and we would give zero weight

to the direct estimator (which makes no model assumptions) for all the
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areas, even for those with large sample size. Finally, design consistency is

lost; that is, given the true value of the indicator δd, the estimator δ̃RSY Nd

is not more likely close to it as the area sample size nd grows.

The BLUP of δd depends on the area effects variance, σ2
u, which is un-

known in practice, and must be estimated. The usual estimation methods

are ML and restricted/residual ML (REML), both using the Normal like-

lihood, or the FH method proposed by Fay and Herriot (1979), which is a

moments method. The REML method corrects the ML estimator by ac-

counting for the degrees of freedom associated with estimating the vector

of regression coefficients β, resulting in an estimator of σ2
u with smaller

bias for finite number of areas D. Under certain regularity assumptions,

the three estimators are consistent as the number of areas D grows.

Let σ̂2
u be a consistent estimator of σ2

u. By replacing σ2
u with σ̂2

u in the

BLUP given in (4.4), we obtain the empirical BLUP (EBLUP) of δd,

δ̂FHd = γ̂dδ̂
DIR
d + (1− γ̂d)x′dβ̂, (4.7)

where now γ̂d = σ̂2
u/(σ̂

2
u+ψd) and β̂ =

(∑D
d=1 γ̂dxdx

′
d

)−1∑D
d=1 γ̂dxdδ̂

DIR
d .

We will refer to the EBLUP (4.7) based on the FH model (4.3) as the

FH estimator.

When β and σ2
u are known, the MSE of the BLUP, δ̃FHd , under the FH

model (4.3) is given by

MSE(δ̃FHd ) = γdψd ≤ ψd = varπ(δ̂DIRd ). (4.8)

As a consequence, given δd, if σ2
u and β are known, the FH estimator,

δ̃FHd , cannot be less efficient than the direct estimator. In practice, σ2
u and

β are estimated, and the error due to the estimation of those parameters

is added to the MSE. Under the normality of random effects ud and

sampling errors ed and certain regularity assumptions, Prasad and Rao

(1990) obtained an approximation with o(D−1) error for large number of

areas D for the MSE of the FH estimator, see Rao and Molina (2015),

eqn. (6.2.1). They further obtained an estimator of the MSE with bias of
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error o(D−1), see Rao and Molina (2015), pp. 136-137. The terms added

to the MSE in (4.8) due to the estimation of σ2
u and β are O(D−1),

meaning that they tend to zero as D grows at a rate of 1/D. Therefore,

for a large number of areas D, the FH estimator is likely to improve the

direct estimator in terms of MSE. As a consequence, these estimators

usually improve in most of the areas, as long as the number of areas D is

large enough, but the efficiency gains might be small or even non-existing

for small D.

The FH model is probably the most applied SAE method, because it

requires only aggregated data at the area level and corrects the poten-

tially large bias of regression-synthetic estimators, by accounting for the

unexplained between-area heterogeneity, while preserving good design

properties for areas with large sample sizes nd. Still, the unit-level models

described in Sections 5 and 6 use unit-level data, of size n =
∑D

d=1 nd, typ-

ically much larger than D. Consequently, they can achieve substantially

greater efficiency gains than FH estimators, estimated with a sample size

equal to D, provided that the unit-level covariates are useful.

An issue with FH estimators is that the error variances in the sampling

model, ψd = varπ(δ̂DIRd ), d = 1 . . . , D, are assumed to be known. These

variances are not known and are usually estimated with the nd observa-

tions in the survey for area d, which are also “direct”. Therefore, the

estimated variances v̂arπ(δ̂DIRd ) have a significant error, leading to FH

estimators that are poorer than those obtained with the known true vari-

ances. Additionally, the error due to the estimation of these sampling

variances, which depends on the area-specific sample size nd, is typically

ignored in the MSE of the FH estimator; hence, gains with respect to di-

rect estimators might be overstated in the areas with small sample sizes

nd.

Bell (2008), as well as Rivest and Vandal (2003), studied the effect in the

MSE of the BLUP for β and σ2
u known, of using the direct estimators

v̂arπ(δ̂DIRd ) of ψd = varπ(δ̂DIRd ) in place of the true variances. Using
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estimated variances ψ̂d = S2
d/nd, where S2

d = (nd − 1)−1
∑

i∈sd(ydi −
ȳd)

2, Rivest and Vandal (2003) proposed an estimator of the MSE that

accounts for the uncertainty due to the estimation of these variances.

Wang and Fuller (2003) gave another estimator of the MSE when β and

σ2
u are estimated, using certain moment estimators of these parameters.

However, more general results for other fitting methods and estimators

ψ̂d of ψd are lacking.

The Generalized variance function (GVF) proposed by Vaillant (1987), or

a more general preliminary regression model for the estimated variances

v̂arπ(δ̂DIRd ), is often applied to smooth these estimated variances. The

smoothed variances obtained as predicted values from this model are then

treated as the true variances ψd. However, the number of variables (or

number of parameters) in that model, which tunes the level of smoothing

of these variances, is not clear. Note that the aim of the preliminary

model is not to reproduce the direct variance estimates. Moreover, when

assessing the gains of FH estimators compared to direct estimators in

applications, it is unclear whether the comparison should be done based

on the raw estimated sampling errors or on the smoothed versions.

The SAIPE project (see e.g. Bell, 1997) within the US Census Bureau

regularly employs the FH model. Ericksen and Kadane (1985) and Cressie

(1989) used the FH model to estimate the decennial census undercounts

in each US state, and Dick (1995) used it to estimate Canadian census

undercounts. A historical application of FH model is given by You and

Chapman (2006), who used the same data set as in Arora and Lahiri

(1997) to estimate small-area average expenditure on fresh milk.

The FH model has been utilized by various authors to estimate welfare

indicators. Let us mention just a few examples. Molina and Morales

(2009) estimated poverty rates and gaps in Spanish provinces by gender.

Jedrzejczak and Kubacki (2013) estimated income inequality and poverty

rates by regions and family type in Poland. Casas-Cordero Valencia,

Encina and Lahiri (2015) estimated poverty rates in Chilean comunas
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based on the FH model with arcsin transformation. Corral and Cojocaru

(2019) estimated poverty indicators in Moldova by districts and Seitz

(2019) estimated poverty at the district level in Central Asian countries.

The FH model has been extended in many different ways. For the case

where the sampling errors ed in (4.2) are correlated, Isaki, Huang and

Tsay (1991), an later Isaki, Tsay and Fuller (2000), extended the FH

model and used it to estimate census undercounts by different post-

strata. Multivariate versions used to estimate several dependent area

indicators were proposed by Fay (1987), and were utilized by Datta, Fay

and Ghosh (1991) and Datta et al. (1996) to improve the direct estimates

of median income for four-person families. A bivariate FH model with

a t-distribution was considered by Bell and Huang (2006) to account for

outliers in the poverty ratios for school-aged (5-17) children for US states

in 2002. Later, Benabent and Morales (2016) used a bivariate FH model

to estimate poverty proportions and gaps at the province level for the

years 2005 and 2006.

A subarea-level model, used to produce estimates at two different nested

aggregation levels, was introduced by Fuller and Goyeneche (1998), and

a similar model was studied by Torabi and Rao (2014). Unmatched sam-

pling and linking models, where a one-to-one transformation of the target

indicator g(δd) is taken as response variable in the linking model (4.1) but

retaining the sampling model (4.2), were originally studied by You and

Rao (2002b). A FH model with measurement error in the covariates

was introduced by Ybarra and Lohr (2008). This model was used by

Marchetti et al. (2015) using big data covariates to estimate poverty

rates and mean income in the ten provinces of the Tuscany region in

Italy.

The FH model has been extended to “borrow strength” over time, as

well as across areas, by Rao and Yu (1992; 1994). They added AR(1)

time effects nested within the area effects in the FH model. You, Rao

and Gambino (2003) applied the Rao-Yu model to estimate monthly un-
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employment rates for cities with population over 100,000 inhabitants in

Canada. Ghosh, Nangia and Kim (1996) proposed a different time se-

ries cross-sectional model and used it to estimate the median income of

four-person families for US states and the District of Columbia. Datta

et al. (1999), You (1999) and Datta, Lahiri and Maiti (2002) replaced

the AR(1) time effects in Rao-Yu model by a random walk, and Datta

et al. (1999) applied the model, including seasonal variation, to esti-

mate monthly unemployment rates for 49 US states and the District

of Columbia. Pfeffermann and Burck (1990) proposed a more complex

model with area-by-time random effects and regression coefficients vary-

ing by area and time. Esteban et al. (2010; 2012) applied the Rao-Yu

model to estimate small area poverty indicators in Spanish provinces by

gender.

Various extensions of the FH model have been propose to “borrow strength”

from space. A model with area effects following a Conditionally Autore-

gressive (CAR) process (Besag, 1974) was proposed by Cressie (1991)

to estimate the census undercount in US states. Petrucci and Salvati

(2006) proposed a model with area effects following a Simultaneously

Autoregressive (SAR) process to estimate the amount of erosion deliv-

ered to streams in the Rathbun Lake Watershed in Iowa by D = 61

sub-watersheds. Pratesi and Salvati (2008) used the same model to esti-

mate mean PCI in D = 43 sub-regions of Tuscany. A similar spatial FH

model was used by Giusti, Masserini and Pratesi (2017) to estimate mean

income and poverty rates for the 57 Labor Local Systems of the Tuscany

region in Italy for the year 2011. Chandra, Salvati and Chambers (2017)

proposed an SAE model for non-stationary spatial data. Marhuenda,

Molina and Morales (2013) considered a spatio-temporal model, includ-

ing simultaneously area effects following a SAR process and time effects

following an AR(1) process nested within the area effects. They applied

this model to the estimation of poverty indicators for Spanish provinces

in 2008, using survey data from 2004-2008.
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Generalized Linear Models (GLMs) (Nelder and Wedderburn 1972; Mc-

Cullagh and Nelder 1989) have also been used in SAE. Although most

of the applications are related to disease mapping, there are also contri-

butions to SAE estimation of wealth. For example, a hierarchical Beta

mixed regression model was employed by Fabrizi and Trivisano (2016) to

estimate of the Gini coefficient. A Poisson mixed model with normal area

effects was applied by Boubeta, Lombard́ıa and Morales (2016) to esti-

mate poverty rates in counties of the Spanish region of Galicia by gender.

This work was extended in Boubeta, Lombard́ıa and Morales (2017) by

including AR(1) time effects nested within the area effects, and in Bou-

beta et al. (2020) to a model with spatio-temporal correlation. Franco

and Bell (2013; 2015) used a bivariate Binomial Logit Normal model to

estimate county poverty rates of school-aged (5-17) children.

We now discuss extensions of the EBLUP under the FH model that are

robust to certain model misspecifications. Jiang, Nguyen and Rao (2011)

proposed the observed best predictor (OBP) as a more robust alternative

under misspecification in the linking model. The OBP is obtained by

using estimators of the model parameters obtained from a predictive point

of view, without appealing to the linking model. The OBP was extended

to models for counts by Chen, Jiang and Nguyen (2015).

The presence of area-level outliers in the FH model was studied by Datta

and Lahiri (1995) and Bell and Huang (2006) under the Hierarchical

Bayesian (HB) setup. The first robust proposal for the FH model seems

to be by Ghosh, Maiti and Roy (2008), based on Huberized residuals,

obtained by applying the Huber’s ψ function (Huber, 1964) to model

residuals.

Other practical issues related to the FH model studied in the literature

are benchmarking the small area estimates so that they add up to the

estimate in a larger area covering the small areas, see Pfeffermann and

Barnard (1991), Wang, Fuller and Qu (2008), Datta et al. (2011), Steorts

and Ghosh (2013) and Bell, Datta and Ghosh (2013).
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The EBLUP based on the basic FH model is implemented in several R

packages, namely the sae package (Molina and Marhuenda, 2015), which

includes also spatial and spatio-temporal extensions of the FH model,

together with either analytical or resampling-based functions for MSE

estimation; the Josae package (Breidenbach, 2018), which allows to in-

clude heteroscedasticity in the model; hbsae (Boonstra, 2012), which

includes also Hierarchical Bayesian methods and BayesSAE (Shi, 2018),

which includes functions for unmatched models and also spatial models.

The temporal Rao and Yu (1992) model is implemented in the R package

saery (Esteban Lefler, Morales González and Pérez Martin, 2014); mul-

tivariate FH models can be fit with the R package msae (Permatasari and

Ubaidillah, 2020) and, finally, measurement error models can be applied

with the package saeME (Mubarak and Ubaidillah, 2020). The EBLUP

based on the basic FH model is also available as a command in Stata

fhsae (Corral et al. 2018). The Stata command fhsae also allows for

the aggregation of estimators and obtains the mean cross-product error

detailed in Rao and Molina (2015), Section 6.2.6. Additionally, Halb-

meier et al. (2019) developed the fayherriot Stata command, which

includes transformations to address violations of the model assumptions

and adjustments of the non-positive random effect variance estimates.



Chapter 5

Unit level models: Linear

indicators

Battese, Harter and Fuller (1988) proposed a linear regression model with

random area effects for data at the unit level, known as the nested error

model, to estimate small area means. The model is defined as

ydi = x′diβ + ud + edi, ud
iid∼ (0, σ2

u),

edi
ind∼ (0, σ2

ek
2
di), i = 1, . . . , Nd, d = 1, . . . , D, (5.1)

where xdi is a 1 × p vector of auxiliary variables for unit i from area d.

The first component of xdi is typically set to one to allow for a common

intercept, and the remaining elements are the values of auxiliary variables

that may vary by units or only by areas, β is the p×1 vector or regression

coefficients, common for all the areas, ud represents the random effect of

area d and edi is the unit-level regression error. Area effects ud and errors

edi are all independent, and kdi are known heteroscedasticity constants,

i = 1, . . . , Nd, d = 1, . . . , D.

Battese, Harter and Fuller (1988) utilized the nested error model men-

tioned above to estimate county means of crop areas under corn and under

soybeans. They obtained unit-level data on corn and soybeans produc-

tion from farm-interview data and auxiliary information from LANDSAT

26
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satellite images. Therefore, their application represents a very early ex-

ample of integration of different data sources for SAE.

This model has traditionally been used to estimate linear indicators such

as area means, employing the EBLUPs defined by Henderson (1950) un-

der the “infinite” population setup, or those derived by Royall (1970,

1976) under a finite population scheme, which agree when the area sam-

pling fractions are negligible. We start describing the latter. Let us

decompose the mean of area d into a sum of values for the units observed

in the sample sd and for the units in the sample complement rd = Ud−sd,
as follows:

Ȳd = N−1d

(∑
i∈sd

ydi +
∑
i∈rd

ydi

)
.

The values ydi for sample units i ∈ sd are observed, and only those for

non-sample units i ∈ rd are unknown. The BLUP of Ȳd under the nested

error model (5.1) is obtained by fitting the model to the sample data

using the WLS estimator β̃ of β, and then predicting the values ydi for

units outside the sample from area d. Specifically, the BLUP is given by

˜̄Y
BLUP

d = N−1d

(∑
i∈sd

ydi +
∑
i∈rd

ỹdi

)
, (5.2)

with predicted values given by

ỹdi = x′diβ̃ + ũd, ũd = γd(ȳda − x̄′daβ̃), γd =
σ2
u

σ2
u + σ2

e/ad·
. (5.3)

Here, ȳda = a−1d·
∑

i∈sd adiydi and x̄da = a−1d·
∑

i∈sd adixdi are respectively

the weighted means of the response and the auxiliary variables, with

weights given by adi = k−2di , for ad· =
∑

i∈sd adi, ũd is the BLUP of ud and

ỹdi is the BLUP of ydi for i ∈ rd, under the model (5.1).

Similar to the vector of response variables for area d, yd = (yd1, . . . , ydNd
)′,

we construct the corresponding matrix of auxiliary variables for that same

area, Xd = (xd1, . . . ,xdNd
)′. Under the nested error model (5.1), it holds
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that yd
ind∼ N(Xdβ,Vd), d = 1, . . . , D, where

Vd = σ2
u1Nd

1′Nd
+ σ2

eAd,

where 1k denotes a vector of ones of size k and Ad = diag(k2di; i =

1, . . . , Nd). Consider the partition of the vector yd of area d and the

matrices Xd and Vd into sub-vectors and matrices corresponding to the

sample units i ∈ sd, and for the non-sample units i ∈ rd = Ud − sd, as

follows:

yd =

(
yds

ydr

)
, Xd =

(
Xds

Xdr

)
, Vd =

(
Vds Vdsr

Vdrs Vdr

)
.

With this notation, when σ2
u and σ2

e are known, the WLS estimator of β,

which equals the ML estimator under normality, is given by

β̃ =

(
D∑
d=1

XdsV
−1
ds X′ds

)−1 D∑
d=1

XdsV
−1
ds yds. (5.4)

For areas with negligible sampling fraction, i.e., with nd/Nd ≈ 0, the

BLUP of the area mean Ȳd can be written as

˜̄Y
BLUP

d ≈ γd

{
ȳda + (X̄d − x̄da)

′β̃
}

+ (1− γd)X̄′dβ̃. (5.5)

As γd ∈ (0, 1), similar to the case of the FH estimator, the BLUP under

the nested error model is a composite estimator, where the role of the

direct estimator is now played by ȳda+(X̄d− x̄da)
′β̃, known as the survey

regression (SR) estimator. This SR estimator is composed in (5.5) with

the regression-synthetic estimator, X̄′dβ̃. Note that the SR estimator is

obtained by fitting the same model (5.1), but by treating the effects of

areas ud as fixed rather than random. This estimator is not efficient for

areas with small sample sizes nd. Therefore, for those areas, the BLUP

borrows strength from all the other areas through the regression-synthetic

estimator.
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To clarify the comment above, let us consider the homoscedastic case

where kdi = 1 for all i and d. In this scenario, γd = σ2
u/(σ

2
u + σ2

e/nd).

Hence, for an area with a small sample size nd, γd is close to zero, and

the BLUP approaches the regression-synthetic estimator, which borrows

information from other areas. However, for an area with a large sam-

ple size nd, γd approaches one, and the BLUP approaches the “survey

regression” estimator. Note that γd also depends on the heterogeneity

among areas measured by σ2
u. If the areas are highly heterogeneous (σ2

u

is large compared to σ2
e/nd), or equivalently, if the considered auxiliary

variables do not explain a significant portion of the variability, then γd

approaches one, and more weight is attached to the “survey regression”

estimator, which is similar to a direct estimator. Conversely, if the areas

are homogeneous, or in other words, the auxiliary variables are powerful

predictors, then more weight is given to the synthetic estimator, obtained

through regression with these auxiliary variables.

Once again, the BLUP given in (5.2) depends on the true values of the

variance components of the model (5.1), θ = (σ2
u, σ

2
e)
′. Replacing the

true θ with a consistent estimator θ̂ = (σ̂2
u, σ̂

2
e)
′ in the BLUP (5.2), we

obtain the EBLUP, given by

ˆ̄Y
EBLUP

d = N−1d

(∑
i∈sd

ydi +
∑
i∈rd

ŷdi

)
, (5.6)

where, denoting β̂ to the result of substituting θ with the estimator θ̂ in

β̃ given in (5.4), the predicted values are now

ŷdi = x′diβ̂ + ûd, ûd = γ̂d(ȳda − x̄′daβ̂), γ̂d =
σ̂2
u

σ̂2
u + σ̂2

e/ad·
. (5.7)

For a non-sampled area, i.e., with sample size nd = 0, by taking the

limiting value γd = 0, we report the regression-synthetic estimator ˆ̄Y d =

X̄′dβ̂.

An analytical estimator of the MSE of the EBLUP, ˆ̄Y
EBLUP

d , was ob-

tained under the assumption of normality for random effects and errors
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by Prasad and Rao (1990) for negligible sampling fraction (see Rao and

Molina, 2015), Section 7.2.2). For the MSE estimator under nonnegligible

sampling fraction, see Section 7.2.3 of the same book.

The BLUP is unbiased under the model (5.1) and is optimal in terms of

minimum MSE, among linear estimators in the sample data ys that are

unbiased for Ȳd. When substituting θ with the estimator θ̂, the EBLUP
ˆ̄Y
EBLUP

d remains unbiased under the model (5.1), under certain condi-

tions on the estimator θ̂. Common estimation methods, specifically ML,

REML and Henderson’s III method, satisfy these conditions. EBLUPs

under the nested error model (5.1) may significantly increase efficiency

compared to direct estimators and even compared to FH estimators, as

they utilize much more detailed information (without reducing the data

to means).

A clear disadvantage of small area estimators based on a nested error

model, compared to those based on the FH model with design-based

direct estimators as response variables, is that the sampling design is

not accounted for. Hence, complex and, specially, informative (non-

ignorable) sampling might produce a substantial design bias in the re-

sulting EBLUPs. As noted already by Kott (1990) and Prasad and Rao

(1999), it is appealing to have design-consistent estimators, which provide

protection against model failures for areas with larger sample sizes.

You and Rao (2002a) proposed the Pseudo EBLUP of an area mean Ȳd,

which incorporates the sampling weights and therefore accounts for the

sampling design. Pseudo EBLUPs are obtained as follows. Taking the

weighted average of ydi over the sample units in area d, in the homoscedas-

tic nested error model (5.1) obtained taking kdi = 1, for i = 1, . . . , Nd,

we obtain

ȳdw = x̄′dwβ + ud + ēdw, d = 1, . . . , D, (5.8)

where E(edw) = 0 and var(edw) = σ2
eN̂
−1
d

∑
i∈sd w

2
di. On the other hand,

taking the average over the population units in area d in the same model,

we obtain that Ȳd ≈ X̄′dβ + ud, since by the SLLN, the population mean
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of the errors tends to the expected value of the errors, which is zero.

The Pseudo BLUP is defined as Henderson (1950)’s BLUP of the linear

combination X̄′dβ + ud under the aggregated nested error model (5.8),

that is,

Ỹdw = X̄′dβ̃w+ũdw, ũdw = γdw

(
ȳdw − x̄′dwβ̃w

)
, γdw =

σ2
u

σ2
u + σ2

eN̂
−1
d

∑
i∈sd w

2
di

,

(5.9)

but replacing the WLS estimator of β given in (4.5) by

β̃w =

{
D∑
d=1

∑
i∈sd

wdixdi (xdi − γdwx̄dw)

}−1 D∑
d=1

∑
i∈sd

wdi (xdi − γdwx̄dw) ydi = β̃w(σ2
u, σ

2
e).

The Pseudo EBLUP is obtained by replacing the unknown variance com-

ponents σ2
u and σ2

e with consistent estimators in the Pseudo BLUP (5.9).

You and Rao (2002a) considered the method of fitting constants, also

known as Henderson’s method III, and, using this method, provided an

analytical estimator for the MSE of the Pseudo EBLUP under the as-

sumption of normality of random effects and errors, following Prasad and

Rao (1990). Based on Henderson’s method III, Huang and Hidiroglou

(2003) derived estimators of the variance components σ2
u and σ2

e that

incorporate the survey weights.

Pseudo EBLUPs are not optimal under the model, but reduce the de-

sign bias of EBLUPs under complex designs. They are, in fact, design-

consistent as nd goes to infinity. Moreover, the estimated totals satisfy

the convenient benchmarking property of adding up to a design-based es-

timator of the total at a larger region covering the areas. Consequently,

they represent a good alternative to FH estimators, taking into account

the sampling design but utilizing much more detailed unit-level informa-

tion to gain greater efficiency.

In model-based SAE based on unit-level data, a model is assumed for

all the population units. However, once the sample is drawn from the

population, the model for the sample part yds of the population vector
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yd = (y′ds,y
′
dr)
′ is simply obtained by marginalization, i.e., integrating

out with respect to the sample complement, ydr. The model for yds

(sample model) then has the same shape as the population model for yd

when the sampling design is ignorable. However, this does not hold in the

case of non-ignorable (informative) samplings, where the selection of the

units, given the available covariates, depends on the values of the target

variable.

Pfeffermann, Krieger and Rinott (1998) and Pfeffermann and Sverchkov

(1999, 2003) studied model-based inference under non-ignorable informa-

tive sampling. The procedure derives the likelihood of the sample vector

ys (known as the “sample likelihood”) from that of the population y and

from a model assumed for the survey weights, based on Bayes Theorem.

By fitting the assumed model for the survey weights and replacing the

fitted parameters in the sample likelihood of ys, this likelihood can then

be maximized to obtain the sample model parameters. Pfeffermann and

Sverchkov (2007) applied the sample likelihood approach to SAE, ob-

taining adjusted EBLUPs of area means Ȳd under informative sampling

of areas and of units within areas. Sverchkov and Pfeffermann (2018)

extend the sample likelihood approach to correct also for non-ignorable

non-response when estimating small area means. The Pseudo EBLUP of

You and Rao (2002b), despite not being based on any optimality criteria,

also protects against informative sampling, avoiding model assumptions

for the survey weights. Verret et al. (2015) proposed another simple

approach to deal with informative sampling in SAE, based on adding the

survey weight as a covariate in the small area model.

For two-stage sampling, or when estimation is intended at two different

(nested) aggregation levels, Stukel and Rao (1999) used a two-fold nested

error model with area and subarea random effects. Let Cd be the number

of subareas in the population for area d, d = 1, . . . , D. The homoscedastic

model is then

ydci = x′dciβ + ud + vdc + edci, ud
iid∼ (0, σ2

u), vdc
iid∼ (0, σ2

v)
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edci
iid∼ (0, σ2

e), i = 1, . . . , Ndc, c = 1, . . . , Cd, d = 1, . . . , D,(5.10)

where area effects ud, subarea effects vdc and errors edci are all indepen-

dent. Under this model, they provided EBLUPs of area means Ȳd and

subarea means Ȳdc, for sampled and non-sampled subareas.

A nested error model with random slopes was considered by Moura and

Holt (1999). A general linear mixed model that includes the nested er-

ror model as a special case was studied by Datta and Ghosh (1991). To

model simultaneously several dependent response variables, a multivari-

ate extension of the nested error model was introduced by Fuller and

Harter (1987), and this model was also studied by Datta, Day and Ba-

sawa (1999). Different multivariate extensions were also considered by

Lohr and Prasad (2003) and Báıllo and Molina (2009).

The nested error model is designed for continuous response variables,

such as income or expenditure. However, some poverty indicators are

functions of binary variables, such as having income or expenditure be-

low the poverty line or not. Hence, regression models for binary responses

are also of interest. MacGibbon and Tomberlin (1989) proposed a model

for binary response variables following Bernoulli distribution, assuming

a linear regression model with normally distributed random effects apart

from covariates, for the logit of the probability of success. This model be-

longs to the class generalized linear mixed models (GLMMs). Malec et al.

(1997) considered a similar model with random coefficients. An extension

of the logistic GLMM to the multinomial distribution for a categorical re-

sponse variable was proposed originally by Molina, Saei and Lombard́ıa

(2007). López-Vizcáıno, Lombard́ıa and Morales (2013) considered an

area-level model for multinomial counts, with independent area effects for

each multinomial category, and López-Vizcáıno, Lombard́ıa and Morales

(2015) extended the latter model by adding time-correlated random ef-

fects following an AR(1) process.

Ghosh et al. (1998) proposed generalized linear mixed models (GLMMs)

within the natural exponential family, including area and unit random
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effects. GLMMs were also studied by Hobza, Marhuenda and Morales

(2020). Ghosh et al. (1999) extended the GLMM to include spatial

correlation and applied it to disease mapping. Jiang and Larihi (2001)

obtained empirical best (EB) predictors under a logistic GLMM at the

unit level. The optimal EB predictors under a unit-level logistic mixed

model do not have closed-form expressions and hence require computa-

tionally intensive methods such as Monte Carlo simulation. Given that

the likelihood does not either have a closed form and complex numer-

ical methods are also needed for model fitting, a resampling procedure

for MSE estimation of EB predictors might become too computation-

ally intensive. A way to reduce this computational burden is to consider

suboptimal predictors such as plug-in predictors. EB and plug-in pre-

dictors are compared by Hobza and Morales (2016) and by Molina and

Strzalkowska-Kominiak (2020). Hobza, Morales and Santamaŕıa (2018)

estimated poverty proportions under unit-level temporal Binomial-Logit

mixed models. Berg and Chandra (2014) studied small area prediction

for a unit-level log-normal model. Berg (2022, 2023) proposed a unit-level

Poisson-Gamma model for counts and Tzavidis et al. (2015) proposed

robust small area prediction for counts.

GLMs are also used by Isidro, Haslett and Jones (2016) in the so called

extended structure preserving estimation (extended SPREE) method for

updating small area estimates of poverty in intercensal years. A couple of

methods for SAE estimation under GLMMs for counts are implemented

in the R package saeeb (Fauziah and Wulansari, 2020).

Models with measurement error in the covariates are classified in Fuller

(1987) into functional measurement error models, where the true value

of the covariate is assumed to be fixed, and structural models, when it

is regarded as random. The former were developed by Ghosh and Sinha

(2007) and Datta, Rao and Torabi (2010), while the latter were firstly

studied by Fuller and Harter (1987), Ghosh, Sinha and Kim (2006) and

Torabi, Datta and Rao (2009).
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EBLUPs are affected by misspecification of the model. Jiang, Nguyen

and Rao (2014) proposed the OBP for an area mean as a robust alterna-

tive to misspecification of a nested error model. EBLUPs are also affected

by unit and area-level outliers. Robust versions that are less affected by

outliers have been also proposed. A robust EBLUP (REBLUP) under

the nested error model was first obtained by Sinha and Rao (2009). Ro-

bust bias corrections for the presence of unit and area-level outliers were

proposed by Chambers et al (2014), Jiongo, Haziza and Duchesne (2013)

following the robust approach for finite populations by Chambers (1986),

and Beaumont, Haziza and Ruiz-Gazen (2013) based on conditional bias

to measure the influence. Based on the M-quantiles defined by Breck-

ling and Chambers (1988), Chambers and Tzavidis (2006) proposed M-

quantile models for SAE of area means, and a bias-adjusted M-quantile

estimator was proposed by Tzavidis, Marchetti and Chambers (2010).

Fabrizi et al. (2012) studied benchmarking under M-quantile models.

Lahiri and Salvati (2023) have recently extended the nested error model

to the case of area-specific regression slopes, as well as heteroscedas-

tic error variances, estimating these parameters with robust estimating

equations that pool the sample data from all the areas.



Chapter 6

Unit level models: General

indicators

The models described in Chapter 5 were in principle intended to estimate

only linear indicators, specially, area means. However, most poverty and

inequality indicators are non-linear. Note that, even if the target indi-

cators are simple area means, once a non-linear transformation of the

target variable is taken as the response variable in the SAE model (such

as log, routinely taken for monetary variables to reduce skewness and

heteroscedasticity), EBLUPs are not useful anymore. Taking exponen-

tials of EBLUPs in a nested error model with log transformation might

result in substantial bias, as shown in Molina and Mart́ın (2018).

Elbers, Lanjouw and Lanjouw (2002, 2003) proposed the first method,

known as the ELL, designed to estimate general indicators defined in

terms of a continuous monetary variable. This method became very pop-

ular and was employed by default within the World Bank until 2020. For

example, Bedi, Coudouel and Simler (2007) describe poverty mapping

applications in Albania, Bolivia, Bulgaria, Cambodia, Yunnan Province

of China, Ecuador, Indonesia, Mexico, Morocco, Sri Lanka, Thailand and

Vietnam. For a later application of ELL method, see Farris et al. (2017),

36
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who estimate poverty in Uganda.

The ELL method assumes the nested error model of Battese, Harter and

Fuller (1988) given in (5.1) for the log of a welfare measure, but with

random effects for the sampling clusters (or primary sampling units),

which are typically nested within the areas. Assume there are Cd clusters

in area d, and that the number of population units in cluster c from area

d is Ndc, for c = 1, . . . , Cd and d = 1, . . . , D. Let ydci denote the natural

log of the welfare measure zdci for unit i within cluster c from area d.

Then, the original ELL method assumes the model

ydci = x′dciβ + udc + edci, udc
iid∼ (0, σ2

u),

edci
ind∼ (0, σ2

dci), i = 1, . . . , Ndc, c = 1, . . . , Cd, d = 1, . . . , D,(6.1)

where xdci is a 1× p vector of auxiliary variables for unit i within cluster

c from area d and β is the p× 1 vector of regression coefficients. Again,

the first component of xdci is customarily set to one, and the remaining

values may vary by units, clusters, or areas. In this model, udc and edci are

respectively cluster and unit-specific idiosyncratic errors, assumed to be

independent of each other. Error variances σ2
dci are previously estimated

using an additional regression model for squared unit-level residuals, in

terms of possibly different covariates, called the alpha model.

In the case where clusters are equal to areas, or equivalently, a single

cluster within each area d, we have Cd = 1 and Ndc = Nd, for all the

areas d = 1, . . . , D. In that case, we can remove the subscript c, and the

model (6.1) reduces to the BHF model given in (5.1), with area effects

ud and heteroscedastic model errors edi, that is, with var(edi) = σ2
di.

The ELL estimator of a general indicator δd = δd(yd) is obtained us-

ing a bootstrap procedure that approximates the marginal expectation

δ̂ELLd = E[δd] under the model (6.1). In contrast, as will be seen later, the

EB predictor is approximately the optimal predictor in terms of MSE,

given by the conditional expectation E[δd|yds], where yds is the vector

of sample observations of the response variable in area d. The ELL
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bootstrap procedure delivers also an estimate of the MSE of the ELL

estimator.

We outline here the original bootstrap procedure of Elbers, Lanjouw

and Lanjouw (2003). A later implemented version of the ELL boot-

strap procedure is described in Corral, Molina and Nguyen (2021), Sec-

tion 2. For simplicity, here we describe the procedure for the case in

which all the clusters are sampled. In this procedure, we denote by

sdc the set of units sampled from cluster c within area d, of size ndc,

c = 1, . . . , Cd, d = 1, . . . , D. We also use ys = (y′1s, . . . ,y
′
Ds)
′ for the

vector with the sample data from the response variable for all the areas,

and Xs = (X′1s, . . . ,X
′
Ds)
′ for the corresponding matrix with the sample

data on the auxiliary variables.

ELL bootstrap procedure:

1. Fit the model (6.1) by ordinary LS to the sample data, leading to the

OLS estimator β̂0 = (X′sXs)
−1X′sys of β. Then, obtain marginal

residuals ydci − x′dciβ̂0 for each sample unit from cluster c in area d,

i.e., for each i ∈ sdc, c = 1, . . . , Cd, d = 1, . . . , D.

2. Draw regression coefficients from their estimated distribution as fol-

lows

β∗ ∼ Np

(
β̂0, v̂ar(β̂0)

)
,

3. From the marginal residuals obtained in step 1, predict the cluster ef-

fects as ûdc0 = n−1dc
∑

i∈sdc(ydci−x′dciβ̂0), c = 1, . . . , Cd, d = 1, . . . , D.

Then, generate randomly bootstrap cluster effects u∗dc for all the clus-

ters c = 1, . . . , Cd, d = 1, . . . , D, from the empirical distribution of

{ûdc0, c = 1, . . . , Cd, d = 1, . . . , D}.

4. Construct now the conditional residuals for each sample unit as

êdci = ydci−x′dciβ̂0− ûdc0, i ∈ sdc, c = 1, . . . , Cd, d = 1, . . . , D. Then,

draw individual errors e∗dci, for each population unit i = 1, . . . , Ndc,

c = 1, . . . , Cd, d = 1, . . . , D, from the empirical distribution of the

sample conditional residuals êdci.
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5. Using the bootstrap conditional residuals from step 4, along with

the generated β∗ in step 2, and making use of the values of the

auxiliary variables for all the population units, generate bootstrap

values of the response variable for all individuals in the population,

as follows:

y∗dci = x′dciβ
∗ + u∗dc + e∗dci, i = 1, . . . , Ndc, c = 1, . . . ,Md, d = 1, . . . , D.

This provides us with a complete census of the response variable,

from which we calculate the true value of the indicator for area d,

δ∗d = hd(y
∗
d11, . . . , y

∗
d1Nd1

, . . . , y∗dC1, . . . , y
∗
dCNdC

).

6. Repeat steps 1–5 for r = 1, . . . , R, resulting in R complete censuses.

For each census r, we compute the indicator of interest δ
∗(r)
d . The

ELL estimator of δd is then obtained by averaging the true values

δ
∗(r)
d over the R censuses, as follows:

δ̂ELLd =
1

R

R∑
r=1

δ
∗(r)
d .

As an estimator of the MSE of the ELL estimator, the ELL method

uses the bootstrap variance, given by

mseELL(δ̂ELLd ) =
1

R

R∑
r=1

(δ
∗(r)
d − δ̂ELLd )2.

Consider now that we wish to estimate the area mean δd = Ȳd using the

ELL bootstrap procedure, keeping β∗ = β̂0 fixed across the bootstrap

replicates for simplicity. Let y
∗(r)
dci be the values generated in step 5, in

the r-th bootstrap replicate of the ELL bootstrap procedure. According

to the bootstrap generating process, for β∗ = β̂0, the bootstrapped value

of the area mean in the r-th replicate is

Ȳ
∗(r)
d =

1

Nd

Cd∑
c=1

Ndc∑
i=1

y
∗(r)
dci = X̄′dβ̂0 +

1

Nd

Cd∑
c=1

Ndcu
∗(r)
dc +

1

Nd

Cd∑
c=1

Ndc∑
i=1

e
∗(r)
dci .
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Then, the ELL estimator of δd = Ȳd is obtained by taking the average of

Ȳ
∗(r)
d over the R bootstrap replicates,

ˆ̄Y
ELL

d =
1

R

R∑
r=1

Ȳ
∗(r)
d = X̄′dβ̂0+

1

Nd

Cd∑
c=1

Ndc
1

R

R∑
r=1

u
∗(r)
dc +

1

Nd

Cd∑
c=1

Ndc∑
i=1

1

R

R∑
r=1

e
∗(r)
dci .

(6.2)

However, note that, for large R, the averages over the R bootstrap repli-

cates of the cluster random effects u
∗(r)
dc and of the errors e

∗(r)
dci are zero by

the strong law of large numbers,

1

R

R∑
r=1

u
∗(r)
dc ≈ E(udc) = 0,

1

R

R∑
r=1

e
∗(r)
dci ≈ E(edci) = 0. (6.3)

This means that the ELL bootstrap procedure makes cluster effects udc

vanish, even if they are actually included in ELL model (6.1). Then, re-

placing (6.3) in (6.2), the resulting ELL estimator reduces to the regression-

synthetic estimator, which does not account for the cluster effect,

ˆ̄Y
ELL

d ≈ X̄′dβ̂0. (6.4)

This issue occurs because the ELL estimator approximates the marginal

mean E[δd], without conditioning on the available sample data yds. Hence,

it does not utilize the sample observations yds available from area d, rely-

ing solely on the linear regression without the area effects. Consequently,

the ELL estimator faces the same issues as the regression-synthetic esti-

mator; specifically, it can be highly design-biased if the regression model

is not correctly specified, and has substantial MSE when the considered

auxiliary variables do not sufficiently explain the between-area hetero-

geneity.

To reduce between-area heterogeneity, Elbers, Lanjouw and Lanjouw

(2002) recommended the inclusion of contextual (aggregated) covariates,

such as location means of household characteristics and those derived

from Geographic Information Systems (GIS). Haslett (2016) also noted

the importance of including such contextual covariates. Although any
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type of auxiliary information is welcome as long as it is useful to pre-

dict welfare, in practice there is no guarantee that area heterogeneity

has been completely accounted for by the available covariates, unless a

formal statistical test for σ2
u = 0 was conducted in each application. In

any case, estimators that do incorporate area effects converge to their

synthetic counterparts whenever σ2
u becomes small, so there is no reason

for excluding area effects.

An additional problem with the traditional ELL bootstrap method is

that the noise measures delivered do not correctly estimate the true error

measures of ELL estimators. The reason is that, unlike in usual bootstrap

methods, the ELL bootstrap procedure does not re-fit the model and re-

estimate the target indicators with each bootstrap sample (which should

be drawn from each bootstrap census). Hence, the real-world estimation

process is not adequately replicated in the bootstrap world. As a result,

the estimated MSE through this method does not accurately replicate the

error incurred in estimation in the real world. Finally, when the sampling

clusters are not the areas of interest, the MSE of the ELL estimator for

an area indicator δd can be severely underestimated if the area effects are

not well explained (i.e., when their variance σ2
u is significant).

The ELL method is implemented in the PovMap software (Zhao, 2006),

which offers a simple point-and-click user interface and is considerably

fast and efficient in terms of memory. The sae Stata command developed

by Nguyen et al. (2018) replicates most of the procedures implemented

in the PovMap software.

Banerjee et al. (2006) conducted a review of the research at the World

Bank and raised several concerns about the ELL method. First of all,

they suggested that ELL was not accounting for potential area effects.

This diagnosis was correct even if clusters in the ELL model are equal to

the areas, because the cluster/area effects udc vanish when applying ELL

bootstrap procedure according to (6.3)–(6.4). They also realized that

ELL estimated sampling errors were not accounting for the correlation
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between observations in different clusters within the same area. These

two problems were eventually solved by the Empirical Best (EB) method

and the bootstrap MSE estimator proposed by Molina and Rao (2010).

The EB method is similar to ELL in that it combines survey data with

auxiliary data, obtained typically (but not exclusively) from a census

or administrative records, uses a unit-level model and is designed for

general (and perhaps several) indicators that depend on a welfare mea-

sure, based on a single model. This original EB method of Molina and

Rao (2010) assumes that a one-to-one transformation of the welfare vari-

able, ydi = T (zdi), follows the nested error model (5.1) with normality

for the area effects ud and the errors edi. Under this model, the area

vectors yd = (yd1, . . . , ydNd
)′, d = 1, . . . , D, are independent and satisfy

yd
ind∼ N(µd,Vd), with mean vectors µd = Xdβ, and covariance matrices

Vd = σ2
u1Nd

1′Nd
+ σ2

eAd, where Ad = diag(k2di; i = 1, . . . , Nd).

The best predictor of a general indicator δd = hd(yd) is defined as the

function of the sample observations, δ̃d = δ̃d(ys), which minimizes the

MSE under the model, given by MSE(δ̃d) = E
[
(δ̃d − δd)2

]
. The mini-

mizer is given by

δ̃Bd (θ) = Eydr
[hd(yd)|yds;θ], (6.5)

where the expectation is taken with respect to the distribution of the out-

of-sample vector ydr given the in-sample values yds from area d. Since

under the nested error model (5.1), the area vector yd follows a normal

distribution, the distribution of ydr|yds, required to calculate the best

predictor (6.5), is also normal, given by

ydr|yds
ind∼ N(µdr|s,Vdr|s), d = 1, . . . , D, (6.6)

where the vector of conditional means and the corresponding covariance

matrix take the form

µdr|s = Xdrβ + γd(ȳda − x̄′daβ)1Nd−nd
, (6.7)

Vdr|s = σ2
u(1− γd)1Nd−nd

1′Nd−nd
+ σ2

ediagi∈rd(k2di). (6.8)
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For a single out-of-sample unit i ∈ rd, we have

ydi|yds ∼ N(µdi|s, σ
2
di|s), (6.9)

where the conditional mean and variance are given by

µdi|s = x′diβ + ũd, ũd = γd(ȳda − x̄′daβ), (6.10)

σ2
di|s = σ2

u(1− γd) + σ2
ek

2
di. (6.11)

This conditional distribution depends on the vector of model parame-

ters θ = (β′, σ2
u, σ

2
e)
′. The empirical best predictor (EB) is obtained by

replacing θ = (β′, σ2
u, σ

2
e)
′ with a consistent estimator θ̂ = (β̂′, σ̂2

u, σ̂
2
e)
′

in the best predictor (6.5), that is, δ̂EBd = δ̃Bd (θ̂). Standard estimation

methods that provide consistent estimators even if normality does not

hold under certain regularity assumptions, are ML and REML methods

using the normal likelihood, and Henderson’s III method.

The conditional expectation defining the best predictor accepts a closed

form for certain indicators δd = hd(yd), such as for the FGT indicators

for α ∈ {0, 1}, but not in general. A general procedure to approximate

the EB predictor is by using Monte Carlo (MC) simulation. The MC

simulation procedure proposed by Molina and Rao (2010) is described

next.

Monte Carlo simulation procedure for EB estimator:

1. Fit the model (5.1) to the sample data (ys,Xs), obtaining an esti-

mator θ̂ = (β̂′, σ̂2
u, σ̂

2
e)
′ of θ = (β′, σ2

u, σ
2
e)
′.

2. Generate, for ` = 1, . . . , L, vectors of response variables for out-of-

sample individuals in area d, y
(`)
dr , based on the distribution of ydr|yds

given in (6.6)–(6.8), with θ replaced by its estimator θ̂ obtained in

step 1.

3. Augment the generated vector y
(`)
dr with the in-sample data yds to

form a census vector for area d, y
(`)
d = (y′ds, (y

(`)
dr )′)′. Using the

census vector y
(`)
d , calculate the indicator of interest δ

(`)
d = hd(y

(`)
d ).
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4. Repeat steps 2-3 for ` = 1, . . . , L. The MC approximation of the

EB predictor of δd is obtained by averaging the indicators over the

L simulated censuses, that is,

δ̂EBd =
1

L

L∑
`=1

δ
(`)
d . (6.12)

In step 2, it is necessary to simulate L vectors y
(`)
dr from a multivariate

Normal distribution of size Nd − nd (which can be huge in many real

applications) with covariance matrix Vdr|s, making the process compu-

tationally unfeasible. Molina and Rao (2010) proposed a procedure that

avoids the generation of huge multivariate normal vectors, by noting that

Vdr|s given in (6.8) is the covariance matrix of a random vector y
(`)
dr , whose

elements arise from the following nested error model,

y
(`)
di = x′diβ̂ + ûd + v

(`)
d + ε

(`)
di , i ∈ rd, d = 1, . . . , D, (6.13)

where v
(`)
d and ε

(`)
di are all independent and satisfy, respectively,

v
(`)
d

ind∼ N(0, σ̂2
u(1− γ̂d)), ε

(`)
di

ind∼ N(0, σ̂2
ek

2
di). (6.14)

Using the model (6.13)–(6.14) to generate the non-sample elements y
(`)
di ,

i ∈ rd, instead of generating a multivariate Normal vector of size Nd −
nd, we only need to generate 1 + Nd − nd independent Normal random

variables, v
(`)
d

ind∼ N(0, σ2
u(1 − γd)) and ε

(`)
di

ind∼ N(0, σ2
ek

2
di), for i ∈ rd. By

using the vector y
(`)
dr with these generated out-of-sample elements y

(`)
di ,

i ∈ rd, in step 3, we construct the census vector y
(`)
d = (y′ds, (y

(`)
dr )′)′ and

calculate the indicator of interest δ
(`)
d = hd(y

(`)
d ).

For an area d that is not sampled (i.e., with nd = 0), as there is no in-

sample part in this case, we generate the whole census vector y
(`)
d = y

(`)
dr

from the model (6.13) by setting γd = 0 (limiting value as nd → 0).

Obtaining an analytical estimator for the MSE of the EB predictor δ̂EBd of

δd in general is challenging. Molina and Rao (2010) proposed a parametric
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bootstrap method, based on the bootstrap procedure for finite popula-

tions introduced by González-Manteiga et al. (2008). This method is

described below.

Bootstrap procedure for MSE estimation:

1. Fit model (5.1) to the sample data ys = (y′1s, . . . ,y
′
Ds)
′, obtaining

estimates of the model parameters, β̂, σ̂2
u, and σ̂2

e .

2. Generate bootstrap area effects as follows:

u
∗(b)
d

iid∼ N(0, σ̂2
u), d = 1, . . . , D.

Generate, independently of u
∗(b)
1 , . . . , u

∗(b)
D , bootstrap errors as fol-

lows:

e
∗(b)
di

ind∼ N(0, σ̂2
ek

2
di), i = 1, . . . , Nd, d = 1, . . . , D.

Then, generate a bootstrap population (or census) of the response

variable through the model,

y
∗(b)
di = x′diβ̂ + u

∗(b)
d + e

∗(b)
di , i = 1, . . . , Nd, d = 1, . . . , D.

3. Define the census vector of response variables for area d, y
(b)
d =

(y
(b)
d1 , . . . , y

(b)
dNd

)′, and calculate from it the indicator of interest, δ
(b)
d =

hd(y
(b)
d ), d = 1, . . . , D.

4. For the original sample s = s1∪· · ·∪sD, let y
∗(b)
s = ((y

∗(b)
1s )′, . . . , (y

∗(b)
Ds )′)′

be the vector containing the bootstrap observations whose indices

are in the sample, i.e., it contains the variables y
∗(b)
di , i ∈ sd, d =

1, . . . , D. Fit the model (5.1) again to the bootstrap sample data

y
(b)
s and obtain the bootstrap EB predictors δ̂

EB∗(b)
d , d = 1, . . . , D.

5. Repeat steps 2–4 for b = 1, . . . , B, and obtain the true values, δ
∗(b)
d ,

and the corresponding bootstrap EB predictors, δ̂
EB∗(b)
d , for each

area d = 1, . . . , D, and for each bootstrap replicate, b = 1, . . . , B.



CHAPTER 6. UNIT LEVEL MODELS: GENERAL INDICATORS 46

6. The “naive bootstrap” estimator of the MSE of the EB predictor,

δ̂EBd , is given by

mseB(δ̂EBd ) = B−1
B∑
b=1

(
δ̂
EB∗(b)
d − δ∗(b)d

)2
, d = 1, . . . , D.

If the model is correctly specified, the best predictor is exactly model un-

biased and has minimum MSE under the model. The “empirical” version

obtained by replacing the unknown model parameters with estimators are

neither exactly unbiased nor optimal. Nevertheless, when using consis-

tent estimators of the model parameters as the total sample size n grows,

EB is expected to be nearly unbiased and nearly optimal for large total

sample size n. The gains in efficiency of EB with respect to ELL may

be remarkable when the nested error model assumptions hold and area

effects are significant (equivalent to a poor explanatory power of auxil-

iary variables), as illustrated by Molina and Rao (2010) and corroborated

by the results of many different authors, see, for example, Corral Rodas,

Molina and Nguyen (2021).

The EB method under a homoscedastic model is implemented in the sae

R package by Molina and Marhuenda (2015), in the emdi by Kreutzmann

et al. (2019) and the more recent updating of the later, the povmap R

package (Edochie et al., 2023). It is also implemented in the Stata sae

command by Nguyen et al. (2018), see https://github.com/pcorralrodas/SAE-

Stata-Package. The EB method has been applied, for example, to esti-

mate poverty indicators in Spanish provinces by gender in 2006 (Molina

and Rao, 2010), mean income in Mexican municipalities (Molina and

Mart́ın, 2018), mean income and (non-extreme) poverty rates for census

tracts by gender in Montevideo, Uruguay, and poverty rates and gaps in

Palestinian localities by gender (Molina Peralta and Garćıa Portugués,

2020).

Note that to estimate non-linear indicators, both ELL and EB methods

require two data sources: a survey with unit-level data of the variable of
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interest and of the auxiliary variables for all areas, {(zdi,xdi); i ∈ sd, d =

1, . . . , D}, as well as a census with the values of the same auxiliary vari-

ables for all the population units, {xdi; i = 1, . . . , Nd, d = 1, . . . , D}. The

original EB estimator proposed by Molina and Rao (2010) additionally

requires identifying the units in the census that are also in the sample for

each area, a process that was not needed in the ELL approach. Linking

the survey and census data files for each area is not always feasible in

practice. Actually, the original EB method assumes that, for each area

d, the survey sample sd is contained in the set of census units, which is

regarded as Ud. In practice, these two data files might come from differ-

ent time instants, and the census set of units does not necessarily include

the set of survey units. Hence, yds is not necessarily a sub-vector of yd,

d = 1 . . . , D.

Correa, Molina, and Rao (2012) proposed the Census EB (CEB) pre-

dictor, which does not require identifying the survey sample units in the

census file and delivers practically the same point estimate as EB, if the

sampling fraction nd/Nd is small. The CEB predictor of δd = hd(yd) is

the EB predictor of δd = hd(yd), assuming that the augmented vectors

yda = (yds,yd)
′, composed by the survey and the census vectors of model

responses, d = 1, . . . , D, follow the nested error model (5.1). Hence, the

CEB predictor of δd is the EB predictor δ̂CEBd = Eyd
[δd|yds; θ̂] obtained

under the nested error model for yda, d = 1, . . . , D. A general MC simu-

lation procedure that approximates the CEB predictors is then adapted

from that for EB predictors. This procedure is described next.

Monte Carlo simulation procedure for Census EB estimator:

1. Fit the model (5.1) to the sample data (ys,Xs), obtaining an esti-

mator θ̂ = (β̂′, σ̂2
u, σ̂

2
e)
′ of θ = (β′, σ2

u, σ
2
e)
′.

2. Generate, for ` = 1, . . . , L, a census vector y
(`)
d , whose elements y

(`)
di ,

are generated as follows

y
(`)
di = x′diβ̂ + ûd + v

(`)
d + ε

(`)
di , i ∈ rd, d = 1, . . . , D, (6.15)
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where v
(`)
d and ε

(`)
di are generated independently, as follows

v
(`)
d ∼ N(0, σ̂2

u(1− γ̂d)), ε
(`)
di ∼ N(0, σ̂2

ek
2
di). (6.16)

3. With the generated census vector y
(`)
d , calculate the indicator δ

(`)
d =

hd(y
(`)
d ).

4. Repeat step 3 for ` = 1, . . . , L. The MC approximation of the EB

predictor of δd is obtained by averaging the indicators over the L

simulated censuses:

δ̂EBd =
1

L

L∑
`=1

δ
(`)
d . (6.17)

The MSEs of the Census EB estimators may be estimated through a

slight modification of the bootstrap procedure described for EB. The

difference between the EB and Census EB estimators lies in the fact that

the units from the survey cannot be identified in the census. Therefore,

in each bootstrap repetition, we cannot generate census vectors y
∗(b)
d , d =

1, . . . , D, and then take the sample part y
(b)
s from them. For the Census

EB predictors, in step 2, we generate the bootstrap census vector y
(b)
d ,

d = 1, . . . , D, using the values of the auxiliary variables from the census,

Xd, d = 1, . . . , D. In step 3, the true values of the bootstrap indicators

are obtained from the bootstrap census vectors, δ
∗(b)
d = hd(y

∗(b)
d ). In step

4, the bootstrap sample vector y
∗(b)
ds is not extracted from y

∗(b)
d ; instead,

it is generated again using the values of the same auxiliary variables, but

this time taken from the survey, Xds, d = 1, . . . , D.

Corral Rodas, Molina and Nguyen (2021) extended the model-based sim-

ulation experiment of Molina and Rao (2010) to more realistic scenarios

with a much better explanatory power of the model, including contex-

tual variables, using much larger area population sizes and much smaller

sampling fractions, generating errors from a Student’s t5 distribution in-

stead of a normal distribution, and also decreasing the overall sample size

and the area sample sizes. Additionally, Corral et al. (2021) performed

a design-based validation study, using the Mexican Intracensal Survey
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as a fixed census and rawing 500 samples from it using a realistic sam-

pling method. In these simulation experiments, the CEB estimates were

practically identical to EB ones, and both performed generally better, in

terms of MSE, than the traditional ELL.

As the EBLUP, neither the original ELL estimators, nor the EB or the

Census EB estimators based on the nested error model, account for the

sampling design, and might be biased under informative sampling. Simi-

lar to the Pseudo EBLUP of You and Rao (2002a), Guadarrama, Molina

and Rao (2014) defined Pseudo EB predictors that incorporate the survey

weights in the EB procedure. They noticed that the conditional distri-

bution (6.9) defining the EB predictor under the homoscedastic nested

error model (5.1) with kdi = 1 for all i and d, depends on the sample

data yds only through the (unweighted) area sample mean ȳd, that is,

δ̂EBd = Eydr
(δd|ȳd). Then they defined the Pseudo EB predictor of δd as

δ̂PEBd = Eydr
(δd|ȳdw), where the expectation is now taken with respect

to the distribution of out-of-sample units, given the weighted area means

ȳdw. The resulting conditional distribution, for each out-of-sample unit

ydi, i ∈ rd, is now

ydi|ȳdw
ind∼ N(µwdi|s, σ

2w
di|s), i ∈ rd, (6.18)

where the conditional mean and variance are given by

µwdi|s = x′diβ + ũdw, ũdw = γdw(ȳdw − x̄′dwβ), (6.19)

σ2w
di|s = σ2

u(1− γdw) + σ2
e , (6.20)

for γdw defined in (5.9). Guadarrama, Molina and Rao (2014) adapted the

Monte Carlo simulation procedure for EB estimation to the Pseudo EB

and proposed a parametric bootstrap procedure to estimate the MSE of

the Pseudo EB predictor. A Census version of the Pseudo EB predictor,

similar to the Census EB, can be easily defined.

For an area mean Ȳd, the Pseudo EB reduces to the Pseudo EBLUP of

You and Rao (2002a) given in (5.9), when using the same estimators of
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the model parameters. Hence, it inherits the good design properties of the

Pseudo EBLUP for Ȳd; that is, it is design consistent as the area sample

size nd becomes large and satisfies the self-benchmarking property.

Van der Weide (2014) modified the methodology implemented in the

PovMap sofware, attempting to imitate the EB approach, but under the

original ELL model given in (6.1). In the modified methodology, the

generation of censuses of the response variable is done by retaining the

predicted cluster effects obtained under normality, rather than generating

cluster effects from the empirical distribution of average marginal resid-

uals, as in ELL bootstrap procedure. Instead of the raw best predictors

of the cluster effects, they considered the predicted cluster effects from

the Pseudo EB of You and Rao (2002a), analogous to ũdw given in (6.19)

but for the clusters, and previously extended to the heteroscedastic case

of var(edci) = σ2
dci, i = 1, . . . , Nd, d = 1, . . . , D. These extended predicted

cluster effects are given by

ũdcw,2 = γdcw,2(ȳdcw,2−x̄′dcw,2β), γdcw,2 =
σ2
u

σ2
u +

∑
i∈sdc w

2
dci

(∑
i∈sdc wdci

∑
i∈sdc

wdci

σ2
dci

)−1 ,
(6.21)

where

ȳdcw,2 =

{∑
i∈sdc

wdci
σ2
dci

}−1 ∑
i∈sdc

wdci
σ2
dci

ydci, x̄dcw,2 =

{∑
i∈sdc

wdci
σ2
dci

}−1 ∑
i∈sdc

wdci
σ2
dci

xdci.

To estimate the regression parameter β, they extended the survey-weighted

estimator β̃w of You and Rao (2002a) to the heteroscedastic model. This

estimator is given by

β̃w,2 =

{
D∑
d=1

∑
c∈C

(∑
i∈sdc

wdci
σ2
dci

xdcix
′
dci − γdcw,2

∑
i∈sdc

wdci
σ2
dci

x̄dcwx̄′dcw

)}−1

×
D∑
d=1

∑
c∈C

(∑
i∈sdc

wdci
σ2
dci

xdciydci − γdcw,2
∑
i∈sdc

wdci
σ2
dci

x̄dcwȳdcw

)
. (6.22)

Expressions for the variances of ũdcw,2 and β̃w,2 were also provided.
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Under homoscedasticity and with clusters equal to the areas, the pre-

dicted area effects ũdcw,2 are identical to those of the Pseudo EB in

Guadarrama, Molina and Rao (2014), ũdw, given in (6.19). Addition-

ally, if no survey weights are considered (wdi = 1 for all i and d), ũdcw,2

reduces to the best predictor of the area effect ũd of Molina and Rao

(2010), given in (6.10).

The new bootstrap procedure proposed by Van der Weide (2014) draws

a sample of clusters from the present in the survey. Using the data from

this bootstrap sample of clusters, the model (6.1) is fitted, and predicted

cluster effects ũdcw,2 are calculated for the clusters c that appear in the

bootstrap sample of clusters. For those that do not appear, predicted

cluster effects are set to zero. These predicted cluster effects are then

retained in the generation of the census data of the response variable.

In all the simulation experiments conducted by Corral et al. (2021), this

new procedure, referred to as clustered bootstrap-EB (CB-EB), appeared

to be seriously biased, while EB and Census EB performed better than

ELL and CB-EB even in simulation scenarios without normality.

In an attempt to combine the positive aspects of each procedure, Corral

et al. (2021) extended the Census Pseudo EB estimators of Guadarrama,

Molina and Rao (2018), to the heteroscedastic nested error model by

using (6.21) and (6.22), for the case when the clusters are equal to the

areas (Cd = 1 for all d). They also incorporated the survey weights in

the estimates of the variance components, as proposed by Van der Weide

(2014). Furthermore, they adapted the parametric bootstrap procedure

for MSE estimation of the Census EB, as described above, to the extended

Census Pseudo EB estimators. The Stata sae command was updated

by incorporating these extensions; for more details on the implemented

computational procedures, refer to see Section 6 of Corral et al. (2021).

The Pseudo EB by Guadarrama, Molina and Rao (2014) accommodates

the survey weights and is expected to mitigate the design bias of EB in

cases of informative sampling (or sample selection bias). However, this
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predictor is not based on any optimality criteria, so good properties are

not guaranteed. As discussed in Chapter 5, Pfeffermann and Sverchkov

(2007) proposed the sample likelihood approach that adjusts the likeli-

hood for the selection process and obtained adjusted EBLUPs of area

means. Cho et al. (2024) extended the approach of Pfeffermann and

Sverchkov (2007) to the case of general area indicators, obtaining EB

predictors under informative sampling. In simulation experiments, Cho

et al. (2024) show how the adjusted EB predictors reduce design bias

under informative selection of units within areas, but also showcased a

surprisingly good behavior of the Pseudo EB predictor, which does not

make model assumptions about the survey weights. Cho et al. (2024)

also propose a parametric bootstrap procedure to estimate the MSE of

adjusted Pseudo EB predictors, which performs well in simulations for

sampled areas.

In the case of very complex non-linear indicators, where the EB/CEB

predictor has no closed form, the complete MC simulation procedure for

EB/CEB, along with the bootstrap procedure for MSE estimation de-

scribed above, are computationally demanding. Hierarchical Bayesian

procedures avoid the application of resampling procedures for MSE es-

timation, since they provide samples from the posterior distribution of

the target indicators, from which posterior variance or credible inter-

vals can be obtained directly. Hence, Bayesian SAE procedures can be

computationally faster for large populations. However, when estimating

living conditions of people, Bayesian procedures need to be applied with

caution. To minimize the influence of priors on the final results, only non-

informative priors are recommended for this kind of application. Molina,

Nandram and Rao (2014) proposed a hierarchical Bayes (HB) version of

the EB procedure based on non-informative priors. This HB procedure

yields practically the same point estimates as EB and avoids the conver-

gence issues of Markov Chain MC (MCMC) procedures. A Census HB

counterpart is straightforward.
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Marhuenda et al. (2017) extended the EB procedure based on the nested

error model to the two-fold nested error model of Stukel and Rao (1999)

given in (5.10), which includes subarea (e.g. cluster) effects nested within

the area effects. This procedure has now been incorporated into the

sae Stata package. Marhuenda et al. (2017) obtained clear losses in

efficiency of EB estimators of poverty indicators when the random effects

are specified only for the subareas (e.g. clusters), but estimation is desired

for areas. Recently, Guadarrama, Morales and Molina (2020) have further

extended the EB procedure by considering a two-fold model with time

effects nested within the area effects, following an AR(1) process.

EB procedure under the nested error model (5.1) requires normality of

area effects and unit-level errors, and this may be achieved by using a

transformation of the welfare as the model response. In practice, the most

common transformation for monetary variables, typically right-skewed

and displaying heteroscedasticity, is the natural logarithm. When esti-

mating area means of the original variables in a model with log transfor-

mation, Molina and Mart́ın (2018) studied the analytical EB predictors

and obtained second-order correct MSE estimators with a closed form.

Often, a positive constant is added to the monetary variable before tak-

ing log transformation. Adding this constant is not only needed to have

positive values; it is often necessary to shift the values far from zero,

where the log function is less steep. Note that values zdi close to zero

have log(zdi) tending to minus infinity, which causes outliers on the left

tail of the distribution, see Figure 4.7 of Corral et al. (2022). Hence,

the constant is required to achieve approximate normality. Other trans-

formations different from log, such as those from the Box-Cox or power

families, can be taken, but making the shift previously is likely needed as

well. The constant might be chosen by fitting the model to a grid of values

in the range of the monetary variable, and selecting the value for which

a skewness measure of model residuals is closest to zero. Rojas-Perilla et

al. (2020) study data-driven transformations of the target variable in the

EB method.
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Note that, theoretically, a transformation to achieve normality always

exists, but the problem is how to find it. Searching for an adequate

transformation to achieve normality may be avoided by considering in-

stead a skewed distribution for the original welfare variable. Diallo and

Rao (2018) extended the EB method to the skew normal distribution

and Graf, Maŕın and Molina (2019) to the generalized beta of the second

kind (GB2), a flexible distribution that accommodates different types of

unimodal skewness.

When the deviation from normality appears only in isolated observations

and/or areas, which may occur even after transformation of the target

variable, another possible approach is to consider models for outliers,

such as models based on mixtures of normal distributions. A mixture

may be specified for the model errors only, as proposed by Gershunskaya

(2010) to estimate area means, or for both the random effects and errors,

as considered by Elbers and Van der Weide (2014) to estimate poverty

and inequality indicators. Bikauskaite, Molina and Morales (2021) extend

the EB procedure to a multivariate mixture model that accounts for area-

level outliers and incorporates heterogeneity in the regression coefficients

apart from the variance components. Based on this model, they estimate

poverty rates and gaps in Palestinian localities by gender.

Finally, robust procedures have been applied to reduce the effect of out-

liers in the final predictors of poverty indicators by Marchetti, Tzavidis

and Pratesi (2012), using the unit-level M-quantile approach introduced

by Chambers and Tzavidis (2006).



Chapter 7

Semi-parametric and

machine-learning methods

This section describes model-based methods that are more flexible than

the usual parametric linear or generalized linear regression models, by

removing certain assumptions from the latter models. Some procedures

remove the distributional assumptions but preserve linearity, while oth-

ers preserve distributional assumptions, but consider more general semi-

parametric specifications of the regression model. Therefore, in all cases,

certain assumptions are retained.

We include here a wide range of machine learning procedures because of

their potential flexibility, although all of the model-based procedures de-

scribed in the previous chapters can be considered also machine learning

procedures. Note that they all “learn” from the available data to predict

the values (or improve poorer predictions) of the target variable/s. How-

ever, from the methods described hereafter, those based on unit-level data

are designed to estimate only area means and cannot be extended directly

to more complex area indicators, and those based on models/methods for

aggregated data are specific for the target indicator used in the particular

application.

55
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Without assuming any probability distribution, Ghosh and Lahiri (1987)

obtained estimators of small area means by specifying only the first two

moments of the response variable. Their work was initially restricted to

the case of no covariates, but was further extended to the case of area-

level covariates by Raghunathan (1993).

Avoiding the specification of a linear regression model for the conditional

expectation of the study variable, but assuming normality, Opsomer et

al. (2008) proposed a nested error model with non-parametric mean

function, using splines (Ruppert, Wand and Carrol, 2003). Specifically,

Opsomer et al. (2008) derived EBLUPs of small area means in a model

with penalized spline regression models. Robust estimators of small area

means have been developed under the penalized spline model by Rao,

Sinha and Dumitrescu (2013). Ugarte et al. (2009) used a unit-level

model with penalized B-splines to estimate average prices per square

meter of used dwellings in neighborhoods of the city of Vitoria, Spain.

Wagner et al. (2017) used constrained penalized B-splines to estimate

means of spruce timber reserves in forest districts of the German federal

state Rhineland-Palatinate.

Spline models are designed for quantitative covariates. However, in many

SAE applications with unit-level data, most of the covariates available in

surveys and the corresponding census (if not all) are actually qualita-

tive. Machine-learning techniques based on non-parametric regression

methods, such as regression and classification trees (CART) described by

Breiman et al. (1977), are currently very popular. Reasons for their pop-

ularity include a more automatized process of model construction that

may be applied to large number of predictors, avoiding the application of

model selection procedures, and the similar treatment of qualitative and

quantitative predictors. The high variability of predictions obtained from

a single regression tree has led to the development of ensemble methods

that combine the predictions from multiple trees, such as the random

forests introduced by Breiman (2001) or tree boosting techniques (Fried-
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man, 2001).

In the context of SAE for poverty mapping, there are numerous recent

applications of machine-learning techniques, and we will discuss just a

sample of them. For example, Blumenstock et al. (2015) employed the

gradient boosting techniques by Friedman (2001) to predict poverty and

wealth in small areas of Rwanda, using covariates obtained from mobile

phone metadata. Pokhriyal and Jacques (2017) applied Bayesian Gaus-

sian Process (GP) regression, which assumes a linear regression with a

non-parametric additive term, where a GP prior is assumed for the non-

parametric part, and utilized elastic net regularization for model selec-

tion. They predicted the Global Multidimensional Poverty Index (MPI)

at the commune level in Senegal, by combining the predictions obtained

from two separate Bayesian GP regression models, each using a differ-

ent data source. Steele et al. (2017) obtained highly granular poverty

maps for Bangladesh using Bayesian Geostatistical Models with auxil-

iary information obtained from mobile phone and satellite data. Hersh

et al. (2021) employed four different machine learning techniques (ridge

and elastic net linear regression, random forests and extreme gradient

boosted trees) to map poverty by enumeration districts of Belize, using

open satellite derived features. Chi et al. (2022) utilized gradient boost-

ing techniques to obtain estimates of average asset-based relative wealth

indexes (RWIs) for 2.4-km populated microregions in the 135 low and

middle income countries, using aggregated satellite imagery and big data

sources, namely mobile phone data, topographic maps, and aggregated

and deidentified connectivity data from Facebook. The latter procedure

is specific for the asset-based RWIs, as these indexes are obtained from

household assets and amenities, recorded by household surveys from the

Demographic and Health Survey (DHS) Program, which include subre-

gional geomarkers. Hence, the procedure may not be easily extendable

to other types of poverty indicators.

The aforementioned machine-learning SAE procedures may be applied
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in off-census years, as they are not based on census data. However,

they seem to be all synthetic, similar to the traditional ELL method,

in the sense of not accounting for area effects. If that is the case, their

performance in an application is going to depend on the ability of the

auxiliary information at hand to explain the between-area heterogeneity

of the variable of interest. They might achieve great efficiency gains

in an application where the covariates fully explain the between-area

heterogeneity, but result in very poor estimates when the covariates are

week in that sense. Note that to evaluate small area estimators, we need

to look at their true MSE (accounting for both, bias and variance), since

the produced MSE estimates might be biased low, giving a misleading

picture of the true efficiency of the estimators. In real applications as

those reviewed above, true MSEs are not available. The only way of

having the true MSE is conducting simulation experiments.

Corral, Henderson and Segovia (2023) conducted design-based simula-

tions based on a real census that included an income variable, by draw-

ing multiple samples from it. They showed that, in the case of weak

auxiliary information, such as the geo-referenced area-level data in their

study, gradient boosting techniques applied at the area or cluster (PSU)

level perform very poorly compared to other SAE procedures, both in

terms of design bias and MSE. However, when using much more powerful

census auxiliary area-level information, the same technique performs well

in terms of design bias and MSE, close to the gold standard EB method

based on the richer unit-level census data and including area effects. The

EB method has a more consistent performance in terms of design bias

and MSE than the machine learning procedures, even when the auxiliary

information is week. Hence, their results point out the need to include

area effects in modern machine learning procedures as well.

Moreover, the methods for aggregated data in certain locations that use

survey estimates as a response variable in the models do not take into

account the sampling errors of these survey estimates. These sampling
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errors actually vary across the considered locations, so heteroscedasticity

should be considered across locations. Note that sampling errors do not

occur in epidemiological studies, where disease mapping procedures are

typically applied. In disease mapping, most often all of the individuals

with a particular disease are registered, and hence the data are not from

sample surveys. In official statistics, where data on the study variable

comes from surveys of limited location sample sizes, the sampling errors

by location can be rather large, and these sampling errors should be

incorporated in the estimation procedures. The above machine learning

procedures seem not to include sampling errors, neither in the estimation

procedures, nor in the accompanying noise measures. Noise measures that

ignore sampling errors might severely understate the true error measures

of the poverty estimates shown in the resulting maps.

In a machine-learning context different from SAE, Hajem et al. (2014)

proposed mixed-effects random forests (MERF) obtained by adding nor-

mally distributed random effects to the random forests by Breiman (2001).

They used an iterative algorithm that starts fitting a random forest, then

adds predicted area effects under normality, and then iterates these two

steps until convergence. Recently, Krennmair and Schmid (2022) have

used the MERF introduced by Hajem et al. (2014) to estimate small area

means of the variable of interest. The exact fitting algorithm, based on

the EM algorithm is not detailed, and the theoretical properties of the re-

sulting estimators are not known. Convergence of the iterative algorithm

is neither ensured. They do not provide details of how the bootstrap

samples are drawn in the construction of the random forest (since the

sample comes from different areas) or how to set the tuning parameters,

namely the number of variables for the splits in the tree branches and

the number of bootstrap samples. Nevertheless, simulation results seem

promising, as they indicate robustness to skewness on the distribution of

the model errors and to misspecification of the regression function, at the

expense of small efficiency losses with respect to the optimal estimators

obtained under normality of model errors and with a correct specification
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of the regression.

The MERF proposed by Hajem et al. (2014) and applied to SAE by

Krennmair and Schmid (2022) are actually based on the normality of the

random area effects. Similarly, although more flexible than fully paramet-

ric procedures, semi-parametric and other machine-learning methods still

make certain model assumptions (although sometimes not mentioned),

and their properties will depend on the extent to which these assump-

tions hold. Actually, perhaps the only purely non-parametric estimators

are direct ones, which unfortunately are inefficient in small areas, and in-

creasing the level of flexibility typically results in less efficient estimators.

Certainly, practically all small area estimation methods require a proper

check of the underlying model assumptions. This should be carried out

with the available data, e.g. through customary residual plots. Model

checking is especially important for those models that do not include area

effects, which lead to synthetic estimators, since they rely very strongly

on the regression model for all of the areas, even for those with plenty of

observations. Note that the methods that account for area effects give a

positive weight to the direct estimators, which are approximately design-

unbiased, regardless of whether model assumptions hold. In the case

of clear evidences of model departure, the model should be modified to

accommodate the existing data features. Otherwise, the resulting small

area estimates should be taken with a lot of caution.

It is important to emphasize that, as in Statistics in general, in SAE,

there is no panacea. That is, there is no universal procedure that works

well for all possible datasets. Instead, depending on the data features,

we need to choose a method with the level of flexibility/complexity that

accommodates the real features reasonably well, without losing too much

efficiency compared to less flexible/complex procedures. Furthermore,

the challenging aspect is that there is no automatic procedure for cor-

rectly choosing between procedures with different levels of complexity for

all possible datasets.
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As mentioned in the previous comment, to ensure the reliability of model-

based estimators, model diagnostics based on the available data should

not provide evidence against the model assumptions. However, it is im-

possible to check the model for non-sampled areas. Therefore, we cannot

be certain that these areas truly satisfy the model assumptions and are

not outliers, unless additional information is available. Furthermore, as

discussed earlier, synthetic estimators typically used for those areas are

inefficient if area effects are significant. Thus, it is not advisable to pro-

duce estimates for non-sampled areas.



Chapter 8

Challenges and potential

research topics

The previous chapters reviewed SAE methods, ranging from basic direct

and indirect methods to modern model-based procedures designed to es-

timate general non-linear area indicators, defined in terms of a single

continuous variable. For other important SAE topics such as model fit-

ting methods and their properties, MSE estimation, prediction intervals

or HB procedures, we refer the reader to Rao and Molina (2015).

This chapter outlines limitations in the current SAE literature encoun-

tered in certain practical situations. The issues or limitations listed below

highlight research topics that might be of interest for practitioners and

could potentially be addressed in the next 3-5 years.

1. Estimation of general indicators with unit-level models in off-census

years: A common limitation of model-based SAE procedures using

unit-level data for estimating non-linear indicators, is the require-

ment of a census containing the values of the auxiliary variables for

all population units. Census files are available every 10 years, and

might be severely outdated in off-census years. Outdated census

auxiliary information can result in significant biases in the result-
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ing small area estimators. Various proposals exist in the literature

for SAE in off-census years. Applying a FH model or a machine-

learning procedure that uses only aggregated auxiliary information

are possible solutions, but aggregated models lose efficiency com-

pared to unit-level models. Other authors suggest applying ELL

or EB methods with the so-called unit-context models, which use

unit-level survey data on welfare as the model response but with ag-

gregated auxiliary information. For ELL applications using a unit-

context model, see Nguyen (2012) or Lange, Pape and Pütz (2018).

For application of EB using a unit-context model, see Masaki et al.

(2020). When estimating small area means, the unit-context model

is nearly equivalent to the FH model that uses the same aggregated

covariates, but this is not the case for non-linear area indicators.

Unfortunately, simulations experiments conducted by Corral et al.

(2021), both at the model- and design-based frameworks, showed

that estimators of poverty indicators obtained using unit-context

models can be significantly biased. Hence, further research is needed

to obtain estimators of poverty indicators in off-census years based

on unit-level data.

2. Variable selection in SAE: Typically, covariates for an SAE model

are selected by applying model selection procedures to the analogous

regression model without the area effects. The usual model selec-

tion methods include exhaustive search for the case of small number

of potential covariates, forward, backward and stepwise selection

procedures, or the least absolute shrinkage and selection operator

(LASSO) by Tibshirani (1996). However, the resulting set of covari-

ates is not necessarily the best for the analogous regression model

that includes area effects. Specific model selection procedures for

mixed models, such as the fence method by Jiang et al. (2008),

have been proposed. Nevertheless, computationally efficient model

selection procedures specific to SAE deserve further research.
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3. Estimation of error variances in the FH model and associated MSE

estimates: Error variances in the FH model are assumed to be

known, because they cannot be estimated with area-level data. Typ-

ically, these error variances are replaced with the estimated sampling

variances of the direct estimators acting as model response variables.

However, these variance estimators are also based in the area-specific

survey data, making them inefficient in small areas. Moreover, the

usual estimators of the MSE for FH estimators do not account for

the uncertainty due to the estimation of these error variances, which

might be substantial. More research is needed to obtain efficient

error variances and derive MSE estimators that account for the un-

certainty due to the estimation of these variances.

4. The Alpha model in unit-level models: The traditional ELL method

includes heteroscedastic idiosyncratic errors, and EB or Census EB

under the nested error model allows for the inclusion of known het-

eroscedasticity factors k2di, although this possibility is not imple-

mented in the sae R package. In the ELL method, the error vari-

ances σ2
dci are firstly predicted through the so-called “Alpha model”,

which uses a regression model in logistic form for the squared residu-

als e2dci, in terms of possibly different covariates than those included

later in the regression of the welfare variable. Heteroscedasticity is

likely to be needed in applications where the statistical units are

households instead of individuals, due to the different households

sizes. In general, before applying the Alpha model, it would be

recommendable to check for evidences of heteroscedasticity in the

particular data set using a formal test such as Wald test (Greene

2000, Section 12.5.3), and consider the Alpha model only when nec-

essary. In any case, further research is needed on proper variable

selection methods in models for heteroscedasticity within the SAE

context.

5. Machine learning techniques: Semi- or non-parametric machine learn-
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ing procedures are more flexible than their linear or generalized lin-

ear model counterparts, and some of them avoid the application of

variable selection methods. Procedures used for aggregated data

might be applied in off-census years, but sampling errors (varying

across locations) need to be incorporated into the models, as is done

in the FH model. Except for the mixed random forest for unit-

level data employed by Krennmair and Schmid (2022), the machine-

learning procedures reviewed here are synthetic, not accounting for

area effects. Hence, when applying these methods, one needs to

cross fingers for the available covariates to explain all the between-

area heterogeneity, as illustrated by Corral, Henderson and Segovia

(2023). The mixed-effects random forests used by Krennmair and

Schmid (2022) include area effects and show promising results in

simulations. However, normality is still required, convergence of the

fitting algorithm is not ensured, and theoretical properties of the

estimators are not known. In general, non-parametric regression

techniques are flexible enough to accommodate complex trends, but

they are expected to lose efficiency compared to a model with an ap-

proximately correct parametric specification. Moreover, additional

research is needed for estimating general non-linear area indicators

and obtaining reliable estimates of MSE under machine learning

procedures.

6. Estimation of design MSE: Conventional model MSE estimates of

model-based estimators are obtained assuming that the correspond-

ing model assumptions hold. However, we know that “All models are

wrong, but some are useful”. Hence, model MSE estimators might

be understating the real uncertainty when the model does not hold

exactly. The MSE across the possible samples of units that may be

drawn from the population with the selected sampling design, known

as design MSE, does not assume that the model holds, and hence

accounts for model uncertainty. Accordingly, design MSE might

be a more objective error measure of small area estimators. When



CHAPTER 8. CHALLENGES AND POTENTIAL RESEARCH TOPICS 66

estimating small area means, Molina and Strzalkowska-Kominiak

(2020) proposed using the same idea of “borrowing strength” behind

SAE, to estimate the design MSE of small area estimators. Reliable

design MSE estimators for general non-linear indicators are still a

challenge.

7. Correction for non ignorable non-response: As already discussed,

under sample selection bias (or non-ignorable informative sampling),

the selection of units depends on the values of the target variable.

In that case, the model for the sample units differs from the model

assumed for the population units and hence the sample model should

be fitted to the sample data. Pfeffermann and Sverchkov (2007)

obtained adjusted EBLUPs of small area means under non-ignorable

informative sampling, and Cho et al. (2024) have extended the

procedure to general non-linear parameters and more general models

for the sampling weights. Similarly, in the case of non-ignorable

non-response, the indicators of responding depend on the values of

the target variable, causing the model followed by the respondents

(which are a subset of the sample units) to differ from the model

for the sample units. Sverchkov and Pfeffermann (2018) studied

SAE of small area means, accounting for non-ignorable informative

sampling and non-ignorable non-response. Extension to non-linear

indicators is currently under study.

8. Estimation of multidimensional poverty indicators: Multidimensional

poverty indicators assess poverty from a wider perspective, but there

are multidimensional indicators of different natures. Some of them

are based on constructing a single index by applying principal com-

ponents or other dimension reduction procedure to a set of variables

measuring different deprivations. Since the resulting index is quan-

titative, unit-level SAE procedures such as Census EB might be

applied similarly to estimate linear or non-linear functions of that

index in the area units. Other multidimensional poverty indicators
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define a person as multidimensionally poor when its welfare measure

falls below a certain threshold and at the same time has a number

of deprivations from a given set. Estimating this multidimensional

poverty indicator with area-level models is straightforward, since

direct estimators may be obtained from the survey and used as re-

sponse variable in a FH model. However, using unit-level models

entails simultaneously modeling the welfare measure, which is a con-

tinuous variable, and the required deprivations, which are dummy

indicators. All these variables are dependent, and employing an SAE

model for several dependent response variables of different natures

is a challenge, at least in the frequentist setup.
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López-Vizcáıno, E., Lombard́ıa, M.J. and Morales, D. (2015), Small

Area Estimation of Labour Force Indicators Under a Multinomial



CHAPTER 8. CHALLENGES AND POTENTIAL RESEARCH TOPICS 81

Model with Correlated Time and Area Effects, Journal of the Royal

Statistical Society, Series A, 178 (3), 535–565.

MacGibbon, B., and Tomberlin, T.J. (1989), Small Area Estimation of

Proportions Via Empirical Bayes Techniques, Survey Methodology,

15, 237–252.

Maiti, T. (1998), Hierarchical Bayes Estimation of Mortality Rates for

Disease Mapping, Journal of Statistical Planning and Inference, 69,

339–348.

Marchetti, S., Giusti, C., Pratesi, M., Salvati, N., Giannotti, F., Pe-

dreschi, D., Rinzivillo, S., Pappalardo, L. and Gabrielli, L. (2015).

Small area model-based Estimators using big data sources, Journal

of Official Statistics, 31 (2), 263–281,

Marchetti, S., Tzavidis, N. and Pratesi, M. (2012). Non-parametric

bootstrap mean squared error estimation for M-quantile estimators

of small area averages, quantiles and poverty indicators. Computa-

tional Statistics and Data Analysis, 56, 2889–2902.

Marhuenda, Y., Molina, I. and Morales, D. (2013). Small area esti-

mation with spatio-temporal Fay-Herriot models. Computational

Statistics and Data Analysis, 58, 308–325.

Marhuenda, Y., Molina, I., Morales, D., and Rao, J. N. K. (2017).

Poverty mapping in small areas under a twofold nested error re-

gression model. Journal of the Royal Statistical Society: Series A,

180(4), 1111–1136.

Masaki, T., Newhouse, D., Silwal, A.R., Bedada, A. and Engstrom,

R. (2020). Small area estimation of non-monetary poverty with

geospatial Data, World Bank Policy Research Working Paper 9383.
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