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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10995

This paper estimates the differentiated economic impact of 
natural hazard-related disasters (the specific disasters and 
climate shocks studied here being floods) when they occur 
in conflict versus non-conflict affected areas. Existing lit-
erature shows that disasters and climate shocks can cause 
significant distress to countries and people on an institu-
tional and household level. However, assumptions are made 
that their impact tends to be larger in conflict-affected areas, 
with little evidence available on the differentiated extent of 
these damages. This paper investigates whether, and to what 
extent, the presence of conflicts has amplified the impacts 
of floods on economic activity and people, and hampered 
recovery. The paper applies a “top-down” approach to esti-
mating the differential impacts of disasters and climate 

shocks between conflict and non-conflict affected areas 
using satellite-derived imagery of nightlight radiance as a 
proxy for economic activity, along with geospatial foot-
prints of floods. The analysis considers two case studies: the 
2019 tropical cyclones Idai and Kenneth and subsequent 
floods in Mozambique, and the July 2022 floods in Nige-
ria. Using difference-in-difference estimations, the analysis 
finds that there are significant differences in disaster and 
climate shock impacts and recovery between conflict and 
non-conflict affected areas. Particularly, there is a greater 
decline in economic activity and a longer recovery time in 
conflict affected areas, as proxied by the greater change in 
the intensity of nightlight radiance.

This paper is a product of the Urban, Disaster Risk Management, Resilience and Land Global Department. It is part of 
a larger effort by the World Bank to provide open access to its research and make a contribution to development policy 
discussions around the world. Policy Research Working Papers are also posted on the Web at http://www.worldbank.org/
prwp. The authors may be contacted at kbenbih@worldbank.org.  
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Introduction 
The aim of this study is to examine the differential impact of disasters and climate shocks on 
populations in conflict-affected regions, specifically investigating the repercussions of flooding in 
conflict versus non-conflict areas. Using remote sensing technology, we attempt to overcome the 
challenge of data scarcity in conflict-affected countries, allowing us to account for short-term 
impacts of recent disaster and climate shock events. Despite the inherent limitations of using 
nightlight intensity as an economic activity indicator, it provides an empirical foundation for the 
analysis and enough observations for an ex-post quasi-experimental impact evaluation. We employ 
a difference-in-difference econometric approach, using satellite imagery of nightlight radiance 
alongside geospatial data on flood and conflict events. This methodological framework is applied to 
assess the aftermath of the March-April 2019 Floods in Mozambique following Cyclones Kenneth and 
Idai, as well as the 2022 floods spanning July to October in Nigeria. 

Results show significant disparities in the effects of disasters and climate shocks between conflict-
affected and non-conflict-affected areas. Specifically, we observe a more pronounced decline in 
economic activities in conflict-affected regions. 

  

The paper is structured as follows. The first section outlines the context of flood and conflicts. It pays 
attention to the interconnectedness of conflict and disasters and climate shocks, outlining the 
methodology and empirical strategy derived to estimate such ex-post impact. In the second section, 
we present the results and supporting data derived from the study, including the case studies on 
Mozambique and Nigeria. Finally, we discuss limitations as well as broader implications before 
concluding. 

Context: Flood impact and conflict affected population (Literature) 
1. Impact of flood  

Quantitative economic analyses have frequently used nightlight radiance as proxy for economic 
activity (Chen & Nordhaus, 2011; Henderson et al., 2012). These have also been used to estimate the 
impacts of weather variability and disasters and climate shocks (Bertinelli & Strobl, 2013; Elliott et 
al., 2015; Felbermayr et al., 2022; Heger & Neumayer, 2019; Miranda Montero et al., 2017) and, more 
specifically, floods (Kocornik-Mina et al., 2020). Most analyses using nightlight data usually 
demonstrate a negative impact of disaster and climate shocks on nightlights but with effects 
resorbing within the year following the event (Bertinelli & Strobl, 2013; Elliott et al., 2015; Gillespie et 
al., 2014). Schippers & Botzen (2023) find that for a severe disaster such as Hurricane Katrina, the 
effect can be longer lasting.  

However, there is a debate about the accuracy of nightlights as a proxy for economic activity. Critics 
argue that nightlight intensity may not capture economic activity accurately in all contexts, such as 
highly rural areas, where changes in lighting efficiency could affect the amount of light observed 
without necessarily reflecting changes in economic activity. Possibly other cultural and social factors 
or government policies on lighting could also influence the amount of nightlight observed. 
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Despite these concerns, nightlights have several advantages as a data source. They are globally 
available, providing coverage even in regions where economic data might be scarce or unreliable. 
Nightlights also have a standard spatial resolution and time intervals, which allows for consistent 
comparisons over time and across different geographic areas. When processed and interpreted 
correctly, taking into account the potential limitations and biases, nightlight data can indeed serve 
as a useful proxy for the intensity of economic activity (Gibson et al., 2021).  

2. Relationship between disaster and conflict-affected population 

Explicit studies of the relationship between disaster and climate risk and conflict have gained 
traction over the past decade (Siddiqi, 2018), specifically focusing on co-location and causation 
debates associated with climate-related hazards, violent and armed conflict, and insecurity 
(Gemenne et al., 2014; Gleditsch, 2012). Often, previous studies have focused on the impacts of 
disasters on conflicts – whether they exacerbate existing conflicts, ignite new ones, or in some cases 
halt ongoing conflicts (Nel & Regharts, 2008; Schleussner et al., 2016; Slettebak, 2012; Ghimire et 
al., 2015; Nardulli et al., 2015). Due to such uncertain impacts of disasters and disaster recovery 
effort on conflicts, other studies explore how disaster risk reduction and recovery measures should 
be done differently in conflict contexts (Brzoska, 2018; Peters et al., 2019; World Bank, 2016). 

Despite the growing body of literature related to the intricacies of disasters and conflicts, less 
attention has been given to understanding and quantifying the influences of conflicts on disaster 
impacts – the additional economic impacts of disasters should they take place in conflict areas and 
its effect on conflict-affected population – as well as the causal pathways and mechanisms behind 
such additional impacts. The absence of comprehensive economic data and ground truth data to 
validate disaster impacts, coupled with the complexity of defining conflict-affected populations are 
among the scientific challenges prohibiting analyzing the influence of conflicts on disaster impacts. 
This paper seeks to address this gap and support further quantitative analyses on the additional 
impact on households’ welfare and nations’ economic growth in countries experiencing these 
compounded crises.  

 

Empirical strategy 

Data 
In this study, we use pixel-level geospatial data, including nightlights, flood footprints, population 
density, and administrative boundaries, to econometrically analyze the specific effects of flood 
events in Mozambique as well as Nigeria's conflict and non-conflict affected regions.  

 Nightlights data 

Furthermore, we utilize composite images of nighttime radiance data captured by the Visible Infrared 
Imaging Radiometer Suite (VIIRS) sensor aboard the NASA-NOAA Suomi satellite. These monthly 
composites are available since 2012 at a resolution of 15 arcseconds by 15 arcseconds 
(approximately 463 meters at the equator). VIIRS Day Night Bands (DNB) data exclude grid cells 
affected by lightning, stray light, lunar illumination, and cloud cover (Elvidge et al., 2017). We favor 
VIIRS data over traditionally used data from the Defense Meteorological Satellite Program (DMSP) 
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due to several limitations identified in the latter, including blurring, lack of calibration, top-coding, 
and poor suitability as a GDP proxy in rural areas (Gibson et al., 2021). 

To address challenges associated with using VIIRS nightlights data as a proxy for economic activity 
(Skoufias et al., 2021), we apply filters to remove pixels with extreme values (i.e., we restrict the 
sample to values comprised between the 1st and 99th percentiles) and account for the number of 
observations available per pixel.1 We calculate the average nightlight radiance monthly spanning 
from 1 to 6 months before and after the occurrence of the 2019 floods in Mozambique and the 2022 
floods in Nigeria. Two variables are computed: "avg_rad," representing the nightlight radiance at the 
flooded pixel level, and "avg_radBuff05" which averages for each flooded pixel the nightlight radiance 
of the pixel itself and adjacent pixels within a 0.5-kilometer buffer.2 The latter variable is preferred to 
ensure maximum observation availability and to capture the impact on indirectly affected grid cells.3 
We also extracted the associated variables "cf_cvg" and "avg_cvgBuff05", which indicate the number 
of cloud-free observations in the month used to calculate average nightlight radiance.4 

Flood data 

Flood events are determined based on the methodology outlined by DeVries et al. (2020). We use S1 
Ground Range Detected scenes from the Synthetic Aperture Radar sensors onboard the Sentinel-1 
satellite, part of the European Space Agency's Copernicus program (ESA, 2023). These scenes 
provide data on Z-scores derived from SAR backscatter time series of single band co-polarization 
vertical transmit vertical receive (VV) and dual cross-polarization vertical transmit horizontal receive 
(VH). Since October 2014, this data has been available every 6 days at a 10-meter resolution.  

Floods are defined as the unexpected presence of water observed in any given pixel. To distinguish 
floods from permanent or seasonally occurring surface water, we utilize the historical Landsat-
derived monthly water probabilities dataset produced by the European Commission’s Joint Research 
Centre (Pekel et al., 2016). Flood confidence is categorized as high if both VV and VH Z-scores fall 
below the identified thresholds, and as medium if only one of these polarizations is below the 
thresholds. We classify floods in areas not designated as permanent open water (with a probability 
of water greater than 95%) or with a historical inundation probability less than or equal to 25%. For 
each case study, we preselect a historical reference period based on existing knowledge of past 
flooding events in the respective area.  

Conflict data 

Conflict areas are identified utilizing geocoded data sourced from the Armed Conflict Location & 
Event Data Project (ACLED) database (ACLED, 2023), covering the period from January 2012 to 
December 2023 for Nigeria and from January 2016 to December 2023 in Mozambique. For the 
purpose of this study, conflict, as defined by the WBG (2024) is, “a state of acute insecurity resulting 
from the use of lethal force by a group— encompassing state forces, organized non-state entities, or 
other irregular bodies— driven by a political purpose or motivation. Such force may manifest 

 
1 Pixels with no cloud-free observations are excluded. 
2 A pixel is around 100m2, we tested without buffer, 500m and 1km and chose a 500m buffer to introduce more 
variation of nightlight intensity within flooded pixels.  
3 A time series depicting both variables is provided in Figure 16 in the appendices for Nigeria. 
4 The corresponding time series for is presented in Figure 17 for Nigeria. 
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bilaterally— involving engagements among multiple organized, armed factions, occasionally leading 
to collateral civilian harm— or unilaterally, wherein a group targets civilians deliberately.” 
Furthermore, for the most precise depiction of areas severely affected by conflict, fatalities 
stemming from protests, riots, and strategic development (as per ACLED data) have been excluded, 
maintaining consistency with the WBG Classification of Fragility and Conflict Situation’s (FCS) 
objectives and the scope of this study. Our analysis focuses on conflict records categorized as 
‘Battles’, ‘Explosions/Remote violence’, and ‘Violence against civilians’. These types of conflicts are 
selected due to their violent nature.  

Settlement data 

To determine the urbanization level, we use the Global Human Settlement Layer (GHSL) which 
combines gridded population data estimated by CIESIN GPW v4.11 GHS-POP R2023 and built-up 
surface information from Landsat and Sentinel-2 data GHS-BUILT-S R2023 (Schiavina et al., 2023).5 
The settlement data are available at the 1km resolution. We consider the data for the year 2020, 
which is the closest available to the time period of interest for both countries. In case of Nigeria, we 
defined ‘urban’ areas as cells defined as high-density cluster,6 ‘suburban’ as moderate-density 
cluster,7 ‘rural’ as rural and low-density clusters8 and ‘Uninhabited’ as very low density rural and 
water covered areas (Figure 1).9 

 
5 In Google Earth Engine, this Image collection is accessible through https://developers.google.com/earth-
engine/datasets/catalog/JRC_GHSL_P2023A_GHS_SMOD.  
6 The ‘urban’ category includes the classes 30: “Urban Centre grid cell”, 23: “Dense Urban Cluster grid cell”. 
7 The ‘suburban’ category includes the classes 22: “Semi-dense Urban Cluster grid cell” and 21: “Suburban or peri-urban grid cell”. 
8 The ‘rural’ category includes the classes 13: “Rural cluster grid cell” and 12: “Low Density Rural grid cell”. 
9 The ‘uninhabited’ category includes the classes 11: “Very low density rural grid cell” and 10: “Water grid cell”. 

https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_SMOD
https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_SMOD
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Figure 1. Settlement categories in Nigeria 

 

 
Population data 

To maintain consistency with settlement data, population density estimates at the grid cell level are 
sourced from the High-Resolution Settlement Layer (HRSL) dataset (Facebook Connectivity Lab and 
Center for International Earth Science Information Network - CIESIN - Columbia University., 2016). 
These data are available at a resolution of 1 arc-second (approximately 30 meters) for the year 2020. 
Additionally, alternative population data are extracted from the WorldPop database (Linard et al., 
2012; WorldPop.org, 2024), available at a resolution of 100 meters for the year 2020. 

Table 1 below describes the variables used in the analysis of flood and conflict impacts on economic 
activity, as measured by nightlight changes. The ‘lat’ (latitude) and ‘lon’ (longitude) variables allow for 
location mapping and situating the analysis spatially. The 'months_EE' variable aids in understanding 
the temporal effects of floods by indicating months after the event and negative values indicating the 
months preceding. 
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The 'flood' variable is crucial for assessing the impact of floods with varying degrees of data reliability. 
'PopDens' provides insights into how population density might influence or be influenced by specific 
flood events. The variables 'cf_cvgBuff05' and 'avg_radBuff05' described above, measure economic 
activity through cloud observations and nightlight radiance, respectively. Additionally, they are 
averaged over adjacent pixels to provide context for each location.  

‘Treated' and 'Treated_after' distinguish areas affected by conflict before and after the flood in each 
country : March-April 2019 are months where the flood occurred in Mozambique while  July 2022 was 
considered  as the flooding month in this analysis for Nigeria. This is essential for determining the 
causal inference of conflict impact. 'Settlement' and 'Urban_Suburban' categorize urbanization 
levels to understand how different types of areas are affected by and respond to both floods and 
conflict events. Lastly, 'Fatalities' provides a direct measure of the human cost of conflicts.  

These variables collectively enable a comprehensive analysis of the effects of floods and conflicts 
when they co-occur in the same location. They are used to analyze the impacts of floods and conflict 
on specific aspects of economic activity, as potentially inferred by nightlight changes. Table 1 
describes these variables, their units of measurements, and how they will be used in the analysis.  

Table 1. Description of variables 

Variables Description Unit 
lat latitude Decimal coordinates 
lon longitude Decimal coordinates 
months_EE Month since the event  Months (positive if after event, negative if before 

event) 
flood Flood variable =1 or 2 if medium reliability, =3 if high reliability 
PopDens HRSL population density Person/km2 
cf_cvgBuff05 Total number of cloud-free 

observations that went into each 
pixel (averaged over the adjacent 
pixels) 

 

avg_radBuff05 Average nightlight radiance values 
(averaged over the adjacent pixels) 

nanoWatts/sr/cm2 

Treated Dummy variable representing 
conflict-affected area 

=1 if subject to a conflict within the buffer area 
before the floods, =0 otherwise 

Treated_after Dummy variable representing 
conflict-affected area  

=1 if subject to a conflict within the buffer area 
after the floods, =0 otherwise 

settlement Degree of Urbanization =11 if uninhabited, =12 if rural, =21 if suburban 
and =23 if urban 

Urban_Suburban Urbanization dummy variable =1 if urban or suburban, =0 otherwise 
Fatalities Total number of fatalities associated 

with conflicts within the buffer area 
 

 

Overall empirical strategy 
To differentiate the impact of floods on economic activity prior to the flood between conflict-affected 
(treatment group), and non-conflict affected (control group) areas, we first restrict the sample to 
flood-impacted pixels. We then apply the difference-in-differences regression method, a quasi-
experimental technique commonly used for ex-post impact evaluations. The underlying concept 
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involves comparing two groups over time. Due to their distinct characteristics, we expect differences 
in outcomes between the groups. However, the evolution of these differing outcomes over time, while 
holding group characteristics constant, should follow a similar trend (i.e., the common trend 
assumption) until an exogenous shock occurs. The presence of this parallel trend is crucial for 
establishing causal evidence of impact. The difference-in-differences research design is particularly 
suitable for ‘event’ studies and the quantification of the impact of unexpected shocks on economic 
outcomes. This method has been extensively employed in the reviewed literature (Card & Krueger, 
2000; Galiani et al., 2005). In our case studies, we are using the canonical difference in difference, 
which means two groups and two time periods (before and after).  

The difference-in-difference regression is specified as follows: 

𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝛽𝛽1 +  𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡𝛽𝛽2 +  Treatment𝑖𝑖,𝑡𝑡𝛽𝛽3 + 𝑐𝑐𝑃𝑃𝑐𝑐𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖,𝑡𝑡𝛽𝛽4 + 𝜀𝜀𝑖𝑖𝑡𝑡 (1) 

where 𝑌𝑌𝑖𝑖,𝑡𝑡  is the average log of nightlights data for each flooded pixel i at time t. The use of remote 
sensing data allows us to explore immediate to short term impact of the flood over our two groups. 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 is a dummy variable equal to 1 for flooded pixel i located within the conflict buffer zone 
before the flood event, and to 0 for flooded pixel i located in a non-conflict affected area before the 
flood event. 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡 is a dummy variable that represents the period after the exogeneous 
shock.10 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡 is the treatment variable, i.e., the variable of interest in a difference-in-
difference specification which accounts for the interaction of the treated and Post period variable; 
𝑐𝑐𝑃𝑃𝑐𝑐𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖𝑡𝑡  is the set of additional explanatory variable suspected to impact the level of nightlights 
radiance; and 𝜀𝜀𝑖𝑖𝑡𝑡 is an independent and identically distributed error term, clustered at the 
administrative level 2, to avoid spatial autocorrelation. 

One of the challenges in our analysis is the definition of conflict-affected areas. Conflict events in 
Mozambique are clustered geographically as such that it is readily ascertainable what regions are 
most impacted by these events, and thus defined as conflict-affected areas for the purpose of this 
study. 

Due to the complexity and wide geographical span of violent and non-violent conflict events in 
Nigeria, conflict-affected areas in Nigeria are not defined based on number of events alone but are 
based on the WBG FCS conflict classification. This classification uses publicly available data to 
annually assess countries, pinpointing those most affected by fragility and conflict. This method 
differentiates between territories experiencing Fragility and/or Conflict situations. Aligned with this 
definition, the study employs the following conflict indicators identified by the FCS index to delineate 
conflict-affected areas in Nigeria at the Local Government Area (LGA) scale: 

 
10 This variable takes a value of 1 if t = August 2020 to estimate the effect 1 month after the disaster, t = November 2020 for the effect 3 
months after the disaster, etc. and 0 otherwise. 
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(1) For ongoing conflict according to ACLED, (a) an absolute number of conflict deaths above 
250, and (b) above 2 deaths per 100,000 population. 

(2) For rapidly declining security situations according to ACLED, (a) an absolute number of 
conflict deaths above 250, (b) between 1 and 2 deaths per 100,000 population, and (c) the 
number of casualties has more than doubled in the past year. 

Difference in difference methodology relies on different assumptions where the common trend is the 
most important one. To validate this assumption of common trends before the flood, indicating that 
the dependent variable for both groups would have continued moving similarly in the absence of the 
extreme event, we conduct a test by comparing changes in the dependent variable for the treatment 
and control groups over multiple periods preceding the floods (i.e. estimate the difference-in-
difference between t-2 and t-1, the t-3 and t-2, etc.). This analysis helps ascertain whether the 
economic trajectories of the two groups were indeed parallel before the occurrence of the flood 
events. The regression is specified as: 

𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝛽𝛽1 +  𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡𝛽𝛽2 +  Treatment𝑖𝑖,𝑡𝑡𝛽𝛽3 + 𝑐𝑐𝑃𝑃𝑐𝑐𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑖𝑖,𝑡𝑡𝛽𝛽4 + 𝜀𝜀𝑖𝑖𝑡𝑡 (2) 

Variables are the same as specification (1) but the period of interest is not the same. We provide 
statistical tests as well as the common trend visually represented for each of our case study.  

Case study selection 
The study’s focus on disaster impacts in conflict vs non conflict affected areas limits the pool of 
country case studies. There are several aspects that determine the choice of the case study 
countries. First, the selected countries need to have geographically localized conflicts, allowing for 
a controlled comparison where conflict is the primary differing factor of disaster impacts. Second, 
there is a requirement that the selected countries were affected by a rapid onset disaster in recent 
years, to increase the possibility of available data in assessing the disaster’s impacts. If multiple 
countries are selected, the rapid-onset disaster events had to happen within the same time frame. 
This criterion ensures that the case studies provide a focused examination of the impact of disasters 
on economic activities in conflict setting vs non conflict settings, without the confounding effects of 
different country conditions or timelines of disaster events. Third, the disaster footprints should 
cover a substantial geographical extent of the selected countries’ area as opposed to localized 
disasters. This criterion is to ensure that there are both conflict- and non-conflict-affected areas hit 
by the disaster. Given the criteria above, we selected the 2019 Tropical Cyclones Idai and Kenneth in 
Mozambique and the July 2022 floods in Nigeria as case studies. Furthermore, the two countries have 
comparable contexts in terms of conflict characteristics which are crucial for isolating the variable 
of conflict in comparative analysis. 

 

Mozambique case study: 2019 Tropical Cyclones Idai and Kenneth 
The first case study focuses on the floods in Mozambique after TC Idai and Kenneth. In 2019, 
Mozambique was hit by two Tropical Cyclones (TC), Idai (March 4-15) and Kenneth (April 25-28), both 
of which have been qualified as among the strongest TCs on record in the Southern Hemisphere 
(Charrua et al., 2021). The northeastern region of the country is characterized by a widespread long-
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term humanitarian situation due to the ongoing conflict, dating back to 2017. As depicted in Figure 
2, TC Idai first made landfall on March 4, 2019, until March 9, before changing direction and making 
a second landfall on March 14, this time close to the city of Beira in Central Mozambique. A month 
later, on April 25, TC Kenneth made landfall in the Cabo Delgado province. Subsequent flooding 
significantly impacted large areas of the country, affecting conflict- and non-conflict affected areas 
(see Figure 3 and Figure 4).  

 

Figure 2.  Tracks of TC Idai and TC 
Kenneth, Mozambique, 2019 

Figure 3. Flood footprint following TC 
Idai  

Figure 4. Flood footprint following 
TC Kenneth 

 

  
Source: IBTrACS, 2019 Source: Authors’ elaboration using Google Earth Engine following DeVries 

et al. (2020)’s methodology. 
Note: Flood extent is estimated over a week following each event, i.e from  
March 4 to 22, 2019 for TC Idai and April 25 to May 2, 2019 for TC Kenneth.  
 

 

Table 2. Buffer size by settlement type for Mozambique 

  Settlement type 
  Urban Suburban rural 

Buffer size Large 20km 40km 80km 
Small 10km 30km 60km 

 

Descriptive statistics 

Across all months (from September 2018 to October 2019) and flooded grid cells,11 the unrestricted 
sample size is 5,755,486 observations (see Table 3). However, 94% of the sample pertains to 

 
11 We are accounting here pixels that have been flooded during the Kenneth and Idai cyclones in April and 
March 2019, respectively.  
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‘uninhabited’ grid cells, and only 1% is classified as ‘Urban’. Following Skoufias et al. (2021) paper, 
‘Uninhabited’ grid cells are removed from the estimation sample. Corresponding summary statistics 
are presented in  Table 4 and Table 5. The size of the restricted sample is now of 427,553 pixels. 

 

Table 3. Number of observations for the whole sample before selection 

  settlement 
  Uninhabited Rural Urban Total 
Total Observations 5,410,141 303,450 41,895 5,755,486 
Percentage of total 94% 5% 1%  

 

Table 4 presents a summary statistic based on the analysis of rural and urban flooded pixels. Notably, 
our main variable of interest, nightlights, exhibits a relatively low average intensity at the pixel level. 
This observation is aligned with the overall low density of distribution of nightlights, as corroborated 
by a population density of 16 person per km². Additionally, the average value of the urban dummy 
variable, which is close to 0, indicates a prevalence of rural flooded pixels over urban flooded pixels 
within our sample.  

Table 4. Summary statistics for habited flooded pixels (rural and urban categories) sample 

  N Mean SD Min p5 Median p95 Max 
PopDens 427,553 16.99 75.32 0 0 0 89.89 1367.76 
cf_cvgBuff05 427,553 11.74 3.33 1 5.34 12 16.49 21 
avg_radBuff05 427,553 1.02 4.16 0 0.06 0.2 3.75 88.18 
urban 427,553 0.12 0.32 0 0 0 1 1 

 

When considering the conflict-affected areas variable, the number of treated pixels – reflecting 
conflict-associated with each flooded grid cell - will depend on the conflict definition and buffer size 
considered. Table 5 provides a summary statistic of the number of conflicts and fatalities across 
different buffer sizes going from 10km to 100km. 

Table 5. Summary statistics of variables differing by buffer size 

Buffer size Variable Mean SD Min p5 Median p95 Max 

100km  conflicts 16.71 59.46 0 0 5 45 740 

  fatalities 4.12 11.59 0 0 1 14 156 

90km  conflicts 13.98 49.77 0 0 4 38 645 

  fatalities 3.54 10.15 0 0 1 12 154 

80km  conflicts 11.56 41.84 0 0 4 31 577 

  fatalities 3.03 9.19 0 0 1 11 135 

70km  conflicts 9.25 34.58 0 0 2 26 526 

  fatalities 2.48 7.93 0 0 0 10 113 

60km  conflicts 7.15 27.23 0 0 1 25 422 

  fatalities 1.98 6.82 0 0 0 9 102 



 
 

12 
 

50km  conflicts 5.69 21.33 0 0 1 22 371 

  fatalities 1.64 5.68 0 0 0 9 95 
40km  conflict 4.15 14.36 0 0 0 16 248 

  fatalities 1.25 4.36 0 0 0 9 69 
30km  conflicts 2.92 10.07 0 0 0 13 163 

  fatalities 0.91 3.21 0 0 0 9 44 
20km  conflicts 1.76 6.49 0 0 0 10 89 

  fatalities 0.2 1.19 0 0 0 1 26 
10km  conflicts 0.75 3.37 0 0 0 4 60 

  fatalities 0.2 1.19 0 0 0 1 26 
Number of observations: 427,553 
 

In analyzing the spatial distribution of conflicts in Mozambique, we note in Figure 5 the average 
density of conflict events spanning from 2016 to 2023. It is worth noting that some regions exhibit 
higher density of conflict, namely Cabo Delgado, Sofala and Gaza. It is particularly striking to note 
the occurrence of over 500 incidents in each of these three states over the studied period, which 
denotes a concentration of conflicts in these regions. To provide a comprehensive analysis our 
investigation is expanded to include the prevalence of conflict spanning the designated period (2016-
2023). This is visually depicted in Figures 5, 6, and 7. It is worth noting that the frequency of conflicts 
across all studied categories remained subdued prior to 2018. However, there was a significant surge 
in violence beginning in 2018, culminating in a peak in 2020 for incidents of violence against civilians, 
and in 2021 for battle-related conflicts. Even if we can observe a peak in the number of conflicts in 
2018, we would rather use conflicts over a long-term period (meaning a few years before the floods). 
In doing so, we are dealing with treated areas that have been affected by a conflict over the  long term 
and do not include flooded areas that might have been affected by a conflict a few years before the 
flood occurred. In the same way, all flooded pixels affected by a conflict after the cutoff date (March-
April 2019) are not accounted in this analysis. We thus exclude them from our sample in order to 
avoid reverse causality: the flood reinforcing the number of conflicts.  
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Figure 5: Number of conflicts per regions in Mozambique, period 2016 to 2023. 

 

Source: authors’ elaboration using ACLED data 

 

Figure 6: Total number of conflicts in Mozambique, period 2016 to 2023. 

 

Source: authors’ elaboration using ACLED data 

 



 
 

14 
 

Figure 7: Number of conflicts in Mozambique, period 2016 to 2023, by conflict types. 

 

Source: ACLED data 

 

As noted earlier in the text, the distribution of observations in the treatment and control groups is 
affected by the buffer zone (Table 5). As the buffer zone expands, there is a proportional increase in 
the treatment group and a decrease in the control group. Optimal balanced between the groups is  
obtained with a 60km buffer area around conflicts.  As such, we have selected 60km buffer zone as 
the basis for our analysis. Results from the other buffer zone will be provided in the appendices to 
support sensitivity analysis.  

Results: Mozambique  

To estimate the difference-in-difference regression presented in equation (1) for Mozambique, we 
consider 𝑌𝑌𝑖𝑖,𝑡𝑡 , the average log of nightlights data for each flooded pixel i at time t, with t ranging from 6 
months prior the TC’s induced floods (September 2018 to February 2019) and 6 months after (May 
2019 to October 2019). Results are presented in Table 6 considering avg_radBuff05 as the dependent 
variable. The variable of interest did_var (Treated*PostPeriod), estimating the differentiated impact of 
the cyclones on nightlights intensity one month after the TCs compared to one month before, is 
negative and significant. It reveals with high confidence that conflict-affected areas experienced a 
decline in economic activity that was 1.4 percent larger than non-conflict-affected areas one month 
after the cyclone hit. 

Four different model specifications, using different covariates and control variables, were tested to 
check the consistency of the results (columns (1) to (4) in Table 6). As a first covariate, we included 
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pop_HRSL_dens_km2 to control for variations in population density across studied pixels, which 
could affect nightlights independently from disaster-induced changes in access to electricity. The 
second column of Table 6 includes the number of cloud-free observations that went into each pixel 
averaged over the adjacent pixels. This variable is insignificant, confirming that the nightlight 
radiance is not impacted by the quality of observations as represented by the number of observations 
that were used to calculate the monthly average values. The third column includes the urban dummy 
variable which is positive and significant reassuringly proving that nightlight is stronger in urban areas 
that in rural areas.12 The last column includes the number of fatalities. This variable is not significant, 
indicating that the effect is not associated with the number of deaths related to the conflicts within 
the buffer zone.  

 

Table 6. Regression results of equation (1) for conflicts within 60km buffer for 1 month post TCs. Dependent variable 
avg_radBuff05 

  (1) (2) (3) (4) 
 Period -1 to 1 Period -1 to 1 Period -1 to 1 Period -1 to 1 
VARIABLES avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 
          
tot_treated 0.0291** 0.0297** 0.0197** 0.0175* 
 (0.0113) (0.0117) (0.00990) (0.0100) 
temp_shock -0.0366*** -0.0417*** -0.0366*** -0.0366*** 
 (0.00538) (0.00934) (0.00538) (0.00538) 
did_var -0.0134* -0.0149* -0.0134* -0.0134* 
 (0.00795) (0.00889) (0.00795) (0.00795) 
pop_HRSL_dens_km
2 0.00635*** 0.00635*** 0.00511*** 0.00511*** 
 (0.000848) (0.000848) (0.000770) (0.000770) 
cf_cvgBuff05  0.00124   
  (0.00199)   
Urban   0.384*** 0.384*** 
   (0.0642) (0.0641) 
tot_fatalities    0.00108 
    (0.00102) 
Constant 0.199*** 0.186*** 0.176*** 0.174*** 
 (0.0131) (0.0261) (0.0114) (0.0117) 
     
Observations 16,880 16,880 16,880 16,880 
R-squared 0.773 0.773 0.806 0.806 
Treatment Obs 9684 9684 9684 9684 
Control Obs 7196 7196 7196 7196 

 
Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 ranges from 1st to 99th percentile 
(.02 to 21.8 nanoWatts/sr/cm2) 
 
 

 
12 We also estimated this specification including interactions with the urban dummy variable to see if we would obtain 
different impacts for urban areas, but did not find a significant impact.  
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As depicted in Figure 8,13 we observe a decline in economic activity in both conflict-affected and non-
conflict affected areas between the dotted lines representing the landfall of Idai (left, in March 2019) 
and Kenneth (right, in April 2019). However, the decline is greater in conflict-affected areas, as 
evidenced by the slope of the red curve. Both groups experience further decline two months post 
TCs. 

Figure 8. Time series of mean nightlight (avg_radBuff05) over months before and after Cyclone Idai and Kenneth in 
Mozambique using large conflict buffers. T=0 refers to March/April 2019. 

 

To assess the differential impacts of floods over a longer time period, we re-estimate the preferred 
specification considering the difference between the month before the TCs and 2 to 18 months after 
the event. Results for 1 to 6 months are presented in Table 7. 

Based on results shown in Table 7 below and Figure 8 above, several significant patterns emerge 
across different time intervals following this disaster. In the immediate aftermath (t+1), there is a 
notable surge in impacts observed in conflict areas. The larger impacts in conflict areas could be 
attributed to the inherently lower quality of structures and infrastructure in these regions. 
Consequently, when confronted with disasters, the diminished resilience of conflict-affected areas 
results in a more pronounced reduction in nightlight radiance. Moving forward to t+2, t+3, and t+4, 
both conflict and non-conflict areas exhibit no statistically significant differences in their recovery, 
indicating a potential delay in the initiation of rehabilitation and reconstruction efforts across the 
board, or an equal access to resources (humanitarian aid, savings, etc.). However, by t+5 and t+6, 
while non-conflict areas show signs of recovery, conflict areas continue to lag behind. This disparity 

 
13 The nightlights sample for conflict-affected areas presents more radiance than non-conflict-affected areas 
due to sample bias: conflict-affected areas are closer to urban areas than non-conflict affected areas. 
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in recovery rates suggests that in the medium term (t+5 and t+6) non-conflict areas benefit from 
greater access to resources, institutional capacity, and potentially further financial support, 
facilitating their recovery process compared to conflict-affected regions. 

 
Table 7. Regression results for conflicts within 60km buffer, preferred specification at different periods post TCs 

 
  (1) (2) (3) (4) (5) (6) 

 
Period -1 to 
1 

Period -1 to 
2 

Period -1 to 
3 

Period -1 to 
4 

Period -1 to 
5 

Period -1 to 
6 

VARIABLES 
avg_radBuff
05 

avg_radBuff
05 

avg_radBuff
05 

avg_radBuff
05 

avg_radBuff
05 

avg_radBuff
05 

              
tot_treated 0.0291** 0.0250** 0.0228** 0.0220** 0.0276*** 0.0337*** 
 (0.0113) (0.00998) (0.0111) (0.0109) (0.0106) (0.0105) 
temp_shock -0.0366*** -0.0683*** -0.0860*** -0.0653*** 0.00238 0.0618*** 
 (0.00538) (0.00422) (0.00373) (0.00535) (0.00460) (0.00503) 
did_var -0.0134* 0.000594 0.00802 0.00634 -0.00966* -0.0142* 
 (0.00795) (0.00560) (0.00705) (0.00699) (0.00499) (0.00758) 
pop_HRSL_dens_k
m2 0.00635*** 0.00643*** 0.00652*** 0.00640*** 0.00628*** 0.00601*** 
 (0.000848) (0.000863) (0.000896) (0.000895) (0.000876) (0.000830) 
Constant 0.199*** 0.200*** 0.200*** 0.202*** 0.200*** 0.201*** 
 (0.0131) (0.0128) (0.0134) (0.0134) (0.0131) (0.0126) 
       
Observations 16,880 16,880 16,880 16,880 16,880 16,880 
R-squared 0.773 0.773 0.774 0.772 0.773 0.770 
Treatment Obs 9684 9684 9684 9684 9684 9684 
Control Obs 7196 7196 7196 7196 7196 7196 

Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 ranges from 1st to 99th percentile 
(0.02 to 2.7 nanoWatts/sr/cm2) 
 
 

Robustness checks 

We also ran the regression using only time periods prior to the disaster, from 6 to 1 months before the 
cyclones hit, to ensure that there were no significant pre-disaster nightlight variation discrepancies 
between the two groups that could have explained our results. The results presented in Table 8 and 
confirm that the did_var (Treated*PostPeriod) variable is not significant. This test implies that our 
findings are robust, and that usual nightlights variations do not drive the results of our difference-in-
difference specification, confirming causality.  

 

Table 8. Regression results for conflicts within 60km buffer testing common trends using log(nightlights), 1 to 6 months 
before the Tropical Cyclones 

  (1) (2) (3) (4) (5) 
 Period -2 to -1 Period -3 to -2 Period -4 to -3 Period -5 to -4 Period -6 to -5 
 Mozambique Mozambique Mozambique Mozambique Mozambique 
VARIABLES avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 
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tot_treated 0.0271*** 0.0209** 0.0269*** 0.0246** 0.0265*** 
 (0.00997) (0.00939) (0.00958) (0.00995) (0.00981) 
temp_shock 0.0799*** -0.0529*** -0.0589*** 0.00812** 0.0168*** 
 (0.00270) (0.00394) (0.00260) (0.00318) (0.00514) 
did_var -0.00383 0.00280 -0.00476 0.00122 -0.00428 
 (0.00570) (0.00482) (0.00411) (0.00545) (0.00687) 
pop_HRSL_dens_km
2 0.00639*** 0.00648*** 0.00646*** 0.00634*** 0.00629*** 
 (0.000899) (0.000926) (0.000887) (0.000863) (0.000860) 
Constant 0.122*** 0.175*** 0.234*** 0.228*** 0.213*** 
 (0.0129) (0.0129) (0.0128) (0.0126) (0.0128) 
      
Observations 16,880 16,880 16,880 16,880 16,880 
R-squared 0.772 0.772 0.775 0.764 0.759 
Treatment Obs 9684 9684 9684 9684 9684 
Control Obs 7196 7196 7196 7196 7196 

 
Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 ranges from 1st to 99th percentile 
(0.02 to 2.7 nanoWatts/sr/cm2) 
 

Nigeria case study: July 2022 floods 
2022 flood event  

According to EM-DAT & CRED / UCLouvain (2023), Nigeria suffered flooding during the period of July 
1, 2022 to October 31, 2022. The first row of Figure 9 presents the flooded pixel during each month 
and over the whole period, The second row shows flooded pixel during each month but not flooded 
during the other months. During the first couple of months of the flooding season, most flooded 
pixels are located in the south. During the second part of the period, the floods mainly occur along 
the Benue and Niger Rivers in the center part of the country. Given the length of the flooding period 
and the potential for adaptation and population displacement after the first flooding events, we focus 
on the ‘unexpected’ first floods. Therefore, we select the pixels that were flooded in July but not in 
August, September or October. 
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Figure 9. Flooded pixel during each month and over the whole period (first row) and flooded pixel during each month but 
not flooded during the other months (second row) 

 

Descriptive statistics A description of the variables included in the dataset is provided in Table 1 in 
the empirical strategy section. Across all months and grid cells, the unrestricted sample size is 
5,755,486 (see Table 9). While floods have caused serious damage and displacement over the period 
of July to October 2022 and beyond, in the confined time period used for the study (June 30th to July 
30th, 2022) the affected territory is limited. During this period, 75% of the sample pertains to 
‘uninhabited’ pixels, and 5% are ‘Uninhabited’ grid cells are removed from the estimation sample 
pixels. 

 

Table 9. Number of observations for the whole sample before selection 

 avg_radBuff05 avg_rad 

Observations Percentage of Total Observations Percentage of Total 
Uninhabited  339,269 75% 335,733 75% 
Rural  73,174 16% 72,525 16% 
Suburban  42,399 9% 41,764 9% 
Urban  21,955 5% 21,635 5% 
All  454,842  450,022  

  

Table 10 provides information regarding statistics of variables included within our model. As in 
Mozambique, nightlights density in Nigeria is rather low (1.44), even though we can observe a higher 
density of population especially within urban areas. Indeed, in the case of Nigeria, we see that 5% of 
flooded pixels are within urban areas against 1% in Mozambique. 
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Table 10. Summary statistics for habited flooded pixels (rural, suburban and urban categories) sample for large conflict 
buffers 

 N Mean SD Min p5 Median p95 Max 
PopDens 115,573 53.24 148.32 0 0 0 275.84 3,280.39 
pop_WorldPop_dens_km2 115,573 42.54 118.59 0 2.18 14.87 160.69 3,977.57 
cf_cvgBuff05 115,573 8.05 4.19 1 1.34 8.05 14 23.63 
cf_cvg 114,340 8.13 4.17 1 2 8 14 24 
avg_radBuff05 115,573 1.44 14 0 0.19 0.37 3.94 1,553.18 
avg_rad 114,289 1.42 17.37 0.01 0.18 0.37 3.9 ,2363.48 
nb_conflict 115,573 4.1 14.19 0 0 0 18 625 
Treated 115,573 0.39 0.49 0 0 0 1 1 
Treated_after 115,573 0.22 0.41 0 0 0 1 1 
Fatalities 115,573 19.37 137.01 0 0 0 49 4450 
settlement 115,573 15.68 4.87 12 12 12 23 23 
Urban_Suburban 115,573 0.37 0.48 0 0 0 1 1 

 

The spatial distribution of conflict in figures 10, 11 and 12 below illustrates a pattern: the conflicts 
are uniformly distributed across Nigeria. The country has a broader spatial and temporal span of 
conflicts. Furthermore, the conflict intensity and spread are higher throughout the country, as 
opposed to Mozambique, which has a concentration of conflict in three states.   

Figure 10. Number of conflicts in Nigeria at region level from 2011 to 2023. 

 

Source: ACLED data 
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Figure 11. Total number of conflicts in Nigeria from 2011 to 2023 

 

Source : ACLED data 

 

Figure 12. Number of conflicts in Nigeria from 2011 to 2023, by conflict type. 

 

Source: ACLED data 
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Nonetheless, the spatial distribution is different in Nigeria compared to Mozambique, we surprisingly 
observe that a peak of conflicts number also occurs from 2018. However, three main types of 
conflicts occurred from 2018: battles, protests and violence against civilians. To capture the indirect 
effects of these conflicts and considering the uniform distribution of those conflicts in Nigeria, we 
implement a buffer zone surrounding each event. Four studies examining geographic accessibility to 
markets, health care, and education by rural households in West Africa inform our understanding of 
the average distances of these households to such amenities in Nigeria. They showed that rural 
households are generally within 5 to 7 kilometers of essential amenities like markets, health care, 
and schools. These distances ranged from 4.82 to 7.10 kilometers for health care and approximately 
6.9 kilometers for schools.14 In peri-urban areas, households are closer, typically within 1 to 2 
kilometers of amenities, with distances ranging from 1 to 1.8 kilometers for primary schools and 
around 1 kilometer for secondary schools.15 To represent the extent of the impact of conflicts 
depending on the degree of urbanization, we consider two types of buffers around each conflict: 
large and small (see figures 13 and 14). Figure 14 also shows evidence of the uniform spatial 
distribution of conflicts within Nigeria. As opposed to Mozambique, where we observed a 
concentrated spatial distribution of conflicts as well as the context in Nigeria regarding conflicts, we 
cannot derive the same buffer zone size. Regarding these differences in settlement between 
Mozambique and Nigeria, we decide to specify different buffer zone areas that should better reflect 
Nigeria’s conflicts and population settlement (see Table 11).  

 

 
14 Adetunji (2020) found that rural traders in Nigeria lived an average of 6.56 kilometers from markets, while Tanou et al. (2021) reported 
distances of 5.29 to 7.10 kilometers to health care facilities in rural North Benin. Oldenburg et al. (2021) found that households with young 
children in Northwest Burkina Faso were approximately 4.82 kilometers from health care facilities. Popoola's (2022) research in Nigeria 
showed that rural villages were, on average, 6.9 kilometers from the nearest primary school. 
 
Adetunji,  Musilimu A. (2020). Households Travel Behaviour to Markets in Rural Communities in Ayedaade Local Government Area of Osun 
State, Nigeria. Journal of Asian Rural Studies, 4, 202. https://doi.org/10.20956/jars.v4i2.2336 
 
Tanou, M., Kishida, T., & Kamiya, Y. (2021). The effects of geographical accessibility to health facilities on antenatal care and delivery 
services utilization in Benin: A cross-sectional study. Reproductive Health, 18(205). https://doi.org/10.1186/s12978-021-01249-x 
 
Oldenburg, C. E., Sié, A., Ouattara, M., Bountogo, M., Boudo, V., Kouanda, I., Lebas, E., Brogdon, J. M., Lin, Y., Nyatigo, F., Arnold, B. F., &  
Lietman, T. M. (2021). Distance to primary care facilities and healthcare utilization for preschool children in rural northwestern Burkina 
Faso: Results from a surveillance cohort. BMC Health Services Research, 21(1), 212. https://doi.org/10.1186/s12913-021-06226-5 
 
15 In peri-urban areas, households are typically closer to amenities, with distances ranging from 1 to 2 kilometers. Popoola (2002) observed 
that households in peri-urban settlements near secondary towns or capital cities were around 1.2 to 1.8 kilometers from primary schools, 
and approximately 1 kilometer from secondary schools. 
 
Popoola, A., Magidimisha-Chipungu, H., & Chipungu, L. (2022). Towards rural inclusion: Improving the governance of service delivery in 
Nigeria. Cogent Social Sciences, 8(1), 2118793. https://doi.org/10.1080/23311886.2022.2118793 

https://doi.org/10.20956/jars.v4i2.2336
https://doi.org/10.1186/s12978-021-01249-x
https://doi.org/10.1186/s12913-021-06226-5
https://doi.org/10.1080/23311886.2022.2118793
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Table 11. Buffer size by settlement type 

  Settlement type 
  Urban Suburban rural 

Buffer size Large 1km 2km 10km 
Small 0.5km 1km 5km 

 

Figure 13. Flood pixels and small conflict buffers in Nigeria 

 
Note: the conflict categories depicted in this graph and used in the subsequent analysis are restricted to ‘Battles’, 
‘Explosions/Remote violence’, and ‘Violence against civilians’ 
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Figure 14. Flood pixels and large conflict buffers in Nigeria 

 
Note: the conflict categories depicted in this graph and used in the subsequent analysis are restricted to ‘Battles’, 
‘Explosions/Remote violence’, and ‘Violence against civilians’ 
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Results : Nigeria  

The results from the difference-in-difference regression support the observations made from 
inspecting the time series. The first column in Table 12 show the estimation results from equation (1) 
when considering small buffers around conflicts. The dependent variable is avg_radBuff05 and the 
period of interest is one month before the flood compared to one month after. The variable 
Treated*PostPeriod, which estimates the differentiated impact of the floods on nightlight radiance 
between conflict and non-conflict pixels, is negative and significant. This result shows that the flood 
led to a decline in nightlight radiance in 1.2% larger than in non-conflict-affected areas. The second 
column includes the additional covariate cf_cvgBuff05, which is the number of cloud-free images 
that were used in computing the average monthly radiance. Reassuringly, the effect is not significant. 
When including the Urban_Suburban dummy variable, the coefficient is positive and significant, 
indicating that nightlight radiance is than in urban and suburban areas than in rural settings (see 
column (3)). The Fatalities coefficient is also significant, but negative, showing that the larger the 
casualties of the conflict, the smaller the nightlight radiance. 

 

Figure 15. Time series of mean nightlight (avg_radBuff05) for July floods in Nigeria using large conflict buffers 

 
Note: The peak at t-3 (April 2022) can be explained by the event in which the federal government ordered the reopening of 
four international land borders (Idiroko border in Ogun State, Jibiya in Katsina, Kamba in Kebbi and Ikom border in Cross 
River), which had been closed since 2018 to prevent rice smuggling (IMF 2022, 26) 
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Table 12. Regression results for Nigeria for July floods in Nigeria and large conflict buffers 

 (1) (2) (3) (4) 
 T-1 to t+1 T-1 to t+1 T-1 to t+1 T-1 to t+1 
VARIABLES avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 
      
Treated -0.0522*** -0.0522*** -0.000604 0.000655 
 (0.0109) (0.0109) (0.0105) (0.0104) 
PostPeriod -0.0322*** -0.0392*** -0.0322*** -0.0322*** 
 (0.00488) (0.00784) (0.00488) (0.00488) 
Treated*PostPeriod  -0.0120** -0.0119** -0.0120** -0.0120** 
 (0.00547) (0.00554) (0.00547) (0.00547) 
     
PopDens 0.000505*** 0.000505*** 0.000408*** 0.000413*** 
 (8.49e-05) (8.48e-05) (7.93e-05) (7.95e-05) 
cf_cvgBuff05  0.00148   
  (0.00132)   
Urban_Suburban   0.112*** 0.112*** 
   (0.0156) (0.0157) 
Fatalities    -3.88e-05* 
    (2.16e-05) 
Constant 0.439*** 0.433*** 0.382*** 0.382*** 
 (0.00633) (0.00832) (0.00826) (0.00821) 
     
Observations 13,330 13,330 13,330 13,330 
R-squared 0.674 0.674 0.682 0.682 
Treatment Obs 5342 5342 5342 5342 
Control Obs 7988 7988 7988 7988 

Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 ranges from 0.14 to 16.64. 
 

Table 13. Regression results for July floods in Nigeria and large conflict buffers at different periods post July floods 

  (1) (2) (3) (4) (5) (6) 

 T-1 to t+1 T-1 to t+2 T-1 to t+3 T-1 to t+4 T-1 to t+5 T-1 to t+6 
VARIABLES avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 
        
Treated -0.0522*** -0.0554*** -0.0553*** -0.0600*** -0.0564*** -0.0531*** 

 (0.0109) (0.0113) (0.0111) (0.0119) (0.0122) (0.0117) 
PostPeriod -0.0322*** 0.0163*** 0.0705*** 0.0633*** 0.0533*** -0.0445*** 

 (0.00488) (0.00593) (0.00689) (0.00841) (0.0108) (0.00963) 
Treated*PostPeriod  -0.0120** -0.00657 -0.00898 -0.0101 -0.0232** -0.0204** 

 (0.00547) (0.00713) (0.00680) (0.00877) (0.0107) (0.00957) 
PopDens 0.000505*** 0.000485*** 0.000555*** 0.000580*** 0.000634*** 0.000602*** 

 (8.49e-05) (8.18e-05) (8.59e-05) (9.22e-05) (9.82e-05) (9.32e-05) 
Constant 0.439*** 0.441*** 0.438*** 0.438*** 0.434*** 0.434*** 

 (0.00633) (0.00630) (0.00655) (0.00705) (0.00792) (0.00752) 
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Observations 13,330 13,330 13,330 13,330 13,330 13,330 
R-squared 0.674 0.669 0.683 0.682 0.678 0.678 
Treatment Obs 5342 5342 5342 5342 5342 5342 
Control Obs 7988 7988 7988 7988 7988 7988 

Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 ranges from 0.14 to 16.64. 
 

Considering the flooded pixels whose values are available for the duration of the analysis, i.e., 6 
months before and 6 months after the July floods, we first inspect the trend in mean nightlight 
radiance. Figure 15 shows that both conflict-affected (represented by the red line), and non-conflict-
affected (represent by the dashed grey line) pixels follow a similar trajectory until the occurrence of 
the floods in July. Between t-1 (June 2022) and t+1 (August 2022), nightlight radiance and picks up 
again afterward, suggesting a temporary power outage due to the flood. However, the decline in 
radiance is sharper for conflicted areas than non-conflict affected areas. Furthermore, nightlight 
radiance in the conflict affected area rises more slowly than in the non-conflict area until December 
2020, suggesting longer term structural differences between the two groups following the flooding 
event.  

 

Robustness checks 

To confirm the validity of our results, we proceed to apply a statistical robustness check for the 
common trend. The test consists of re-estimating the difference in difference regressions 
considering months prior to the flood event of July. The results presented in Table 14 show that the 
Treated*PostPeriod variable alternate between negative and positive values and is not significant 
and, confirming the common trend assumption is respected.  
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Table 14. Regression results for July floods in Nigeria and large conflict buffers testing common trends using 
log(nightlights), 1 to 6 months before the floods 

 (1) (2) (3) (4) (5) 
 t-2 to t-1 T-3 to t-2 T-4 to t-3 T-5 to t-4 T-6 to t-5 
VARIABLES avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 avg_radBuff05 

      
Treated -0.0597*** -0.0575*** -0.0579*** -0.0677*** -0.0733*** 
 (0.0108) (0.0120) (0.0120) (0.0132) (0.0137) 
PostPeriod -0.0493*** -0.0225*** 0.0524*** -0.000375 0.0389*** 
 (0.00454) (0.00633) (0.00625) (0.00726) (0.00377) 
Treated*PostPeriod  0.00693 -0.000900 -0.00428 0.00614 0.00676 
 (0.00468) (0.00651) (0.00669) (0.00729) (0.00488) 
PopDens 0.000507*** 0.000554*** 0.000568*** 0.000606*** 0.000697*** 
 (8.21e-05) (8.77e-05) (9.17e-05) (9.92e-05) (0.000112) 
Constant 0.488*** 0.508*** 0.457*** 0.457*** 0.413*** 
 (0.00609) (0.00685) (0.00660) (0.00787) (0.00771) 
      
Observations 13,330 13,330 13,330 13,330 13,330 
R-squared 0.679 0.682 0.682 0.679 0.681 
Treatment Obs 5342 5342 5342 5342 5342 
Control Obs 7988 7988 7988 7988 7988 

Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 ranges from 0.14 to 16.64. 
 

Limitation and Discussion   

 
 

Assessing the quantitative impact of disasters on populations and economies is particularly 
challenging in poor and conflict-affected regions, where reliable socio-economic data may be 
lacking. Our analysis of descriptive statistics has indicated a tendency towards lower nightlight 
density in rural areas, which could potentially lead to an underestimation of economic activity due 
to the limitations in spatial resolution. Nightlight radiance in rural settings is typically less intense 
than in urban centers, and a higher incidence of such readings could result in a skewed sample. 
Furthermore, sectors like agriculture, which are less dependent on electricity, might not be fully 
represented by nightlight data. This is particularly true for poorer households in rural areas that may 
not have access to electricity, rendering them invisible in satellite-based observations. 
Consequently, vital aspects of a developing economy might be missed when relying exclusively on 
nightlight data for analysis. 

  

Nonetheless, and despite these limitations, access to advanced earth observation technologies, 
including regularly updated satellite imagery, presents new avenues for analysis using quasi-
experimental approaches. Nightlight satellite data can provide valuable insights into economic 
activity, primarily enabling the assessment of immediate to short-term impacts. Our case studies 
highlight the exacerbated effects of floods on nightlight in conflict-affected regions. For instance, we 
observed a decrease in nightlight radiance following the July 2022 floods in Nigeria, with conflict-
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affected areas experiencing up to 1.2% greater negative impacts than non-conflict areas. Similar 
patterns were observed in Mozambique, where cyclones led to a 1.39% reduction in economic 
activities in conflict-affected populations compared to their non-conflict-affected counterparts. As 
a potential next step, a long-term difference in difference regression analysis, as well as the use of 
observational data that could be more nuanced and contextual, could explore, in addition to the 
short-term impact identified here, the long-term impact of disasters dynamics in conflict settings. 

To fully comprehend these dynamics, it is essential to conduct further research to pinpoint the 
causal factors that exacerbate vulnerability in conflict-stricken settings. Our findings, however, 
emphasize the critical need for investment in disaster risk reduction and the prioritization of recovery 
initiatives in conflict-affected regions. Inhabitants of these areas suffer more significant impacts and 
face extended recovery periods in the aftermath of disasters, underscoring the necessity for focused 
interventions to reduce their vulnerabilities and bolster their resilience. 

Conclusion 
While extensive research has examined the impacts of disasters on conflict dynamics, less attention 
has been given to understanding how conflicts influence disaster impacts and recovery. By 
employing a difference-in-difference method alongside geospatial and satellite imagery datasets, 
this paper seeks to address this literature gap by estimating the impacts of a disaster in conflict 
settings and contrasting them with impacts in non-conflict settings. 

This study represents one of the initial attempts to quantitatively compare the diverging impacts of a 
disaster between conflict and non-conflict affected regions. Our findings suggest that in the 
aftermath of the floods of interest, conflict-affected areas in Nigeria and Mozambique experienced 
the most severe negative impacts following the flood event, up to 1.2% and 1.39%, respectively. 
These results indicate that conflict-affected areas bore a heavier burden of the floods compared to 
non-conflict areas. Additionally, the negative impacts in conflict settings continued to be larger than 
in non-conflict affected regions for the six months following the event, which gives an indication that 
these floods prolonged the recovery period for conflict-affected populations.  

In conclusion, despite existing methodological constraints, our study demonstrates that the impacts 
of disasters are significantly more pronounced in conflict settings compared to non-conflict areas. 
In the next phase of our analysis, we aim to supplement the current 'top-down' approach of assessing 
disaster impacts through satellite imagery with a 'bottom-up' approach using panel household 
survey data. By combining both approaches, we will gain insights into household-level impacts and 
their variations between conflict and non-conflict areas. 
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Appendix 1: Mozambique – different buffer sizes  
 

To confirm that the choice of buffer area around conflicts does not impact our results, we further re-
estimate our preferred specification at different buffer sizes, ranging from 100km to 10km around 
conflicts. As shown in Table 15, the difference-in-difference impacts remain significant and of similar 
magnitude for all buffer sizes, until 30km. When considering a small area around conflict, the impact 
becomes insignificant and the number of observations for the treatment group decreases 
considerably. Those results support the preferred buffer size of 60km. 
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Table 15. Regression results for conflicts within different buffers, preferred specification, 1 month post TCs 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 Period -

1 to 1 
Period -1 to 
1 

Period -1 
to 1 

Period -1 
to 1 

Period -
1 to 1 

Period -
1 to 1 

Period -
1 to 1 

Period -
1 to 1 

Period -1 to 
1 

Period -1 to 1 

VARIABLES Buffer 
100km 

Buffer 
90km 

Buffer 
80km 

Buffer 
70km 

Buffer 
60km 

Buffer 
50km 

Buffer 
40km 

Buffer 
30km 

Buffer 
20km 

Buffer 10km 

           
 Treated 0.0029

1 
0.0104* 0.0114** 0.0120*** 0.0136**

* 
0.0150** 0.0212* 0.0456*

** 
0.0514** 0.0883** 

 (0.0096
1) 

(0.00561) (0.00484) (0.00389) (0.0051
0) 

(0.0073
1) 

(0.0110) (0.0145
) 

(0.0217) (0.0372) 

 PostPeriod -
0.0343*

** 

-0.0335*** -0.0353*** -0.0369*** -
0.0370**

* 

-
0.0375**

* 

-
0.0378**

* 

-
0.0395*

** 

-0.0423*** -0.0430*** 

 (0.0048
7) 

(0.00488) (0.00484) (0.00448) (0.0043
7) 

(0.0044
1) 

(0.0042
0) 

(0.0038
0) 

(0.00377) (0.00355) 

Treated*Po
stPeriod 

-
0.0116*

* 

-0.0137** -0.0133** -0.0121** -
0.0139** 

-
0.0140** 

-0.0130* -
0.0125* 

0.000103 0.00953 

 (0.0057
0) 

(0.00611) (0.00651) (0.00575) (0.0055
5) 

(0.0060
2) 

(0.0068
3) 

(0.0068
7) 

(0.00686) (0.00806) 

 PopDens 0.0023
4*** 

0.00236*** 0.00248*** 0.00241*** 0.00244
*** 

0.00243
*** 

0.00234
*** 

0.0025
9*** 

0.00256*** 0.00253*** 

 (0.0005
49) 

(0.000551) (0.000563
) 

(0.000578
) 

(0.0005
75) 

(0.0005
69) 

(0.0005
32) 

(0.0004
36) 

(0.000438) (0.000457) 

urban 0.163*** 0.163*** 0.169*** 0.172*** 0.170*** 0.170*** 0.171*** 0.161*** 0.158*** 0.154*** 
 (0.0352

) 
(0.0353) (0.0354) (0.0362) (0.0354) (0.0348) (0.0340) (0.0323

) 
(0.0317) (0.0296) 

Constant 0.160*** 0.154*** 0.154*** 0.154*** 0.155*** 0.155*** 0.155*** 0.151*** 0.155*** 0.157*** 
 (0.0087

5) 
(0.00487) (0.00425) (0.00389) (0.0046

8) 
(0.0052
0) 

(0.0053
0) 

(0.0045
8) 

(0.00405) (0.00353) 

           
Observatio
ns 

17,884 18,078 18,396 18,476 18,698 18,770 19,006 19,602 20,424 21,362 

Treatment 
Obs 15,496 13,940 12,670 11,198 8,920 7,462 5,674 4,202 2,470 1,024 

Control 
Obs 2,388 4,138 5,726 7,278 9,778 11,308 13,332 15,400 17,954 20,338 

R-squared 0.470 0.468 0.480 0.474 0.478 0.483 0.486 0.504 0.500 0.485 
Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 range from .06 to 3.7. 
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Appendix 2: Tables and figures for the Nigeria case study 
 

 

Table 6. Variables description for additional variables 

Variable  Description Unit 
pop_WorldPop_dens_km2 WorldPop Population density Person/km2 
cf_cvg Total number of cloud-free observations that went into 

each pixel 
 

avg_rad Average Nightlight radiance values  nanoWatts/sr/cm2 
 

 

Table 7. Summary statistics for habited flooded pixels (rural, suburban and urban categories) sample for large conflict 
buffers 

__ N Mean SD Min p5 Median p95 Max 
cf_cvgBuff05 114,289 8.13 4.16 1 1.83 8.19 14 23.63 
cf_cvg 114,289 8.13 4.17 1 2 8 14 24 
avg_radBuff05 114,289 1.43 13.99 0.02 0.19 0.37 3.95 1,553.18 
avg_rad 114,289 1.42 17.37 0.01 0.18 0.37 3.9 2,363.48 
nb_conflict 114,289 4.11 14.24 0 0 0 18 625 
Treated 114,289 0.39 0.49 0 0 0 1 1 
Treated_after 114,289 0.22 0.41 0 0 0 1 1 
Fatalities 114,289 19.5 137.75 0 0 0 49 4450 
settlement 114,289 15.67 4.87 12 12 12 23 23 
Urban_Suburban 114,289 0.37 0.48 0 0 0 1 1 
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Table 8. Summary statistics for habited flooded pixels (rural, suburban and urban categories) sample for small conflict 
buffers 

 N Mean SD Min p5 Median p95 Max 
cf_cvgBuff05 114,289 8.13 4.16 1 1.83 8.19 14 23.63 
cf_cvg 114,289 8.13 4.17 1 2 8 14 24 
avg_radBuff05 114,289 1.43 13.99 0.02 0.19 0.37 3.95 1,553.18 
avg_rad 114,289 1.42 17.37 0.01 0.18 0.37 3.9 2,363.48 
nb_conflict 114,289 0.88 4.82 0 0 0 4 192 
Treated 114,289 0.15 0.36 0 0 0 1 1 
Treated_after 114,289 0.08 0.27 0 0 0 1 1 
Fatalities 114,289 4.37 60.23 0 0 0 8 2464 
settlement 114,289 15.67 4.87 12 12 12 23 23 
Urban_Suburban 114,289 0.37 0.48 0 0 0 1 1 

 

 

Figure 16. Mean avg_rad and avg_radBuff05 for all flooded grid cells over the analysis period 
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Figure 17. Mean cf_cvg and cf_cvgBuff05 for all flooded grid cells over the analysis period 

 

 

Table 16. Regression results of equation (1) using alternative population variables for 1 month post July floods. Dependent 
variable avg_radBuff05 

 (1) (2) 
 T-1 to t+1 T-1 to t+1 
VARIABLES avg_radBuff05 avg_radBuff05 
    
Treated -0.0522*** -0.0379*** 
 (0.0109) (0.00953) 
PostPeriod -0.0322*** -0.0322*** 
 (0.00488) (0.00488) 
Treated*PostPeriod  -0.0120** -0.0120** 
 (0.00547) (0.00547) 
PopDens 0.000505***  
 (8.49e-05)  
pop_WorldPop_dens_km2  0.00251*** 
  (0.000215) 
Constant 0.439*** 0.361*** 
 (0.00633) (0.00883) 
   
Observations 13,330 13,330 
R-squared 0.674 0.718 
Treatment Obs 5342 5342 
Control Obs 7988 7988 

 
Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; avg_radBuff05 ranges from .06 to 3.7 
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Table 0. Regression results for conflicts with different buffers and nightlight radiance variables, 1 month post July floods 
  (1) (2) (3) (4) 

 
T-1 to t+1 T-1 to t+1 T-1 to t+1 T-1 to t+1 

buffer large small large small 

VARIABLES avg_radBuff05 avg_radBuff05 avg_rad avg_rad 

         

Treated 
-0.0522*** 

-0.0413*** -0.0462*** -0.0322*** 

 (0.0109) 
(0.0123) (0.0110) (0.0119) 

PostPeriod 
-0.0322*** 

-0.0346*** -0.0307*** -0.0320*** 

 (0.00488) 
(0.00440) (0.00477) (0.00430) 

Treated*PostPeriod  
-0.0120** 

-0.0123* -0.0116** -0.0184** 

 (0.00547) 
(0.00722) (0.00592) (0.00744) 

PopDens 
0.000505*** 

0.000507*** 0.000525*** 0.000523*** 

 (8.49e-05) 
(8.53e-05) (9.21e-05) (9.22e-05) 

Constant 
0.439*** 

0.424*** 0.423*** 0.409*** 

 (0.00633) 
(0.00519) (0.00636) (0.00524) 

   
  

Observations 
13,330 

13,482 11,976 12,098 

R-squared 
0.674 

0.670 0.677 0.675 

Treatment Obs 
5342 

2096 4774 1844 

Control Obs 
7988 

11386 7202 10254 

Range of dependent 
variable .06 to 3.7 0.14 to 16.64 0.12 to 16.53 0.13 to 16.53 

Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.  
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Figure 18. Time series for conflicts with different buffers and nightlight radiance variables for July floods in Nigeria  
  mean nightlight radiance 
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Table 1. Regression results of equation (1) using fixed effect model for 1 month post July floods. Dependent variable 
avg_radBuff05 

  (1) 

 
T-1 to t+1 

 
Buffer large 

VARIABLES avg_radBuff05 

    

o.Treated - 
  
PostPeriod -0.0322*** 

 
(0.00477) 

Treated*PostPeriod  -0.0120** 

 
(0.00535) 

o.PopDens - 
  



 
 

43 
 

Constant 0.443*** 

 
(0.00212) 

  
Observations 13,330 

R-squared 0.055 

Number of ID_flooded 6,665 

Treatment Obs 5342 

Control Obs 7988 

Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; .14 to 16.64 
 
 


	Impacts of Disasters in Conflict Settings:  Evidence from Mozambique and Nigeria
	Introduction
	Context: Flood impact and conflict affected population (Literature)
	Data
	Overall empirical strategy
	Case study selection
	Mozambique case study: 2019 Tropical Cyclones Idai and Kenneth
	Nigeria case study: July 2022 floods
	Conclusion
	Appendix 1: Mozambique – different buffer sizes
	Appendix 2: Tables and figures for the Nigeria case study


