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1. Introduction 
 

Deterministic infectious disease models are a powerful tool in epidemiology. They are flexible 

enough to generate approximations of many types of infectious disease outbreaks yet simple 

enough to require minimal computational resources. They are easy to understand and therefore 

helpful to policy makers who are faced with difficult decisions during potentially deadly 

outbreaks. This aspect of deterministic models makes them sometimes preferred to more 

complex models with stochasticity or “black box” structures that are difficult to dissect.  

 

Despite their simplicity, deterministic infectious disease models are versatile in their application 

and have been used to understand the dynamics of many different types of diseases. For one, 

these models can be very useful at predicting the future spread of an infectious disease early on 

during an outbreak. For example, Fisman, et al. used a simple disease model to understand the 

epidemic dynamics of Ebola in 2014 [1]. Understanding disease dynamics can help public health 

officials respond appropriately to try to ensure community wellbeing. Deterministic infectious 

disease models can also be used to understand why there are surges in cases of endemic diseases 

which may otherwise have consistent levels of prevalence. Feng, et al. implemented a 

deterministic infectious disease model to understand the potential causes of resurging cases of 

tuberculosis [2]. Their model helped shape the argument for the importance of exogeneous 

reinfection as a cause of climbing tuberculosis cases. Often, these models influence important 

decisions in health policy. Granich et al. developed a deterministic model to evaluate the 

effectiveness of universal voluntary HIV testing on mitigating HIV/AIDS epidemics [3]. 

 

The purpose of this paper is to enable the reader to understand and implement a deterministic 

infectious disease model and is organized as follows. Section 2 uses the SIR model to explain the 

concepts and mathematics underlying deterministic infectious disease modeling, including the 

parameters of the model, the reproduction ratio, and vaccination thresholds to prevent outbreaks. 

Section 3 explains how to implement an SIR model in Excel, including creating graphs. Section 

4 presents other common model structures, such as SI and SEIR models. Section 5 describes the 

differences between deterministic and stochastic infectious disease models. Section 6 discusses a 

stochastic simulation model of future Filovirus outbreaks. Section 7 concludes. 

 

 

2. The SIR Model 
 

The SIR model is the quintessential deterministic infectious disease model first described by 

Kermack and McKendrick [4] and more recently by Keeling and Rohani [5]. The SIR model is 

based on the idea that a population during an outbreak can be divided into three groups or 

compartments: S – susceptible, I – infected, and R – recovered. The susceptible compartment 

represents the portion of the population that has not yet been exposed nor infected with the 

disease but could be infected in the future. The infected compartment represents the portion of 

the population that is both infected with the disease and infectious. The recovered compartment 

represents the portion of the population that has recovered from infection and developed 

immunity to reinfection. 
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The way that individuals transition between compartments in the model is dependent on several 

factors. Transition from the susceptible to the infected compartment requires disease 

transmission and is based on the transmission rate and the prevalence of the disease. Transition 

from the infected to the recovered compartment is based on the recovery rate of infection. These 

transitions are outlined in Figure 1. 

 

Figure 1. SIR model structure. Disease state transitions are possible from susceptible to infected 

and from infected to recovered compartments. 

 

 
 

Differential equations describe the SIR model mathematically. The equations represent the rate 

of change of each compartment over time rather than the absolute number of individuals in a 

compartment at any given time. The SIR model equations are as follows [5]: 

 
𝑑𝑆

𝑑𝑡
=

−𝛽𝑆𝐼

𝑁
 

 
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝛾𝐼 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

 

The notation 
𝑑𝑋

𝑑𝑡
 means the rate of change of function 𝑋 over time 𝑡. In this case, the rate is 

measured at infinitely small increments of time 𝑑𝑡. For example, 
𝑑𝑆

𝑑𝑡
 is the instantaneous rate of 

change of the size of the compartment of susceptible individuals at a given time 𝑡. In these 

equations, 𝑁 is the size of the total population, 𝛽 is the transmission rate, and 𝛾 is the recovery 

rate. The equations make the relationships between compartments more obvious. For example, 

the rate of overall infection is dependent on the number of susceptible individuals and infected 

individuals at a given time, as well as the fixed transmission rate parameter, 𝛽. When you plug in 

all the numbers, the result of each equation gives units in number of people per time step. 

 

The transmission rate, 𝛽, is the product of the average number of contacts per individual per time 

step and the probability of transmission between a susceptible and infected individual. While the 

average number of contacts per individual per time step and the probability of transmission 

between a susceptible and infected individual are sometimes known, the 𝛽 parameter is more 

often calibrated using observed incident cases of an infectious disease over time. 
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The recovery rate, 𝛾, is equivalent to the inverse of the infectious period. For example, if an 

infectious disease has an infectious period of 5 days, then 𝛾 =
1

5 𝑑𝑎𝑦𝑠
= 0.2 𝑑𝑎𝑦𝑠−1.  

 

The equations reveal several ways to mitigate the spread of an infectious disease. The first of 

which includes interventions to reduce the transmission rate, 𝛽. This could include reducing the 

contact rate through interventions such as social distancing [6] or reducing the transmission 

probability of each contact through interventions such as wearing masks [7]. Additionally, given 

that the rate of decline in the number of infected individuals is directly related to the recovery 

rate, 𝛾, then treatments aimed at reducing the infectious period of a disease can also help to 

mitigate the spread of an outbreak [8]. 

 

2.1  The Reproduction Ratio 
 

The reproduction ratio is an important measure of the strength of an infectious disease outbreak. 

The basic reproduction ratio, 𝑅0, is the average number of secondary infections that arise from 

an average primary infection in a fully susceptible population [5]. Notably, if 𝑅0 > 1, then the 

conditions allow for an outbreak to occur, as the average primary infection leads to more than 

one additional secondary infection. Conversely, if 𝑅0 < 1, then conditions do not allow for an 

outbreak to occur, as the average primary infection does not lead to an additional secondary 

infection.  

 

This outbreak threshold, and thus 𝑅0, can be derived mathematically from the SIR equations we 

described earlier. Another way to think about the threshold for an outbreak to occur is to 

consider the conditions that must be present for the rate of change of the infected compartment to 

be positive when the outbreak begins. Mathematically, 
𝑑𝐼

𝑑𝑡
 > 0 when 𝑡 = 0. For the SIR model: 

𝛽𝑆(0)𝐼(0)

𝑁
− 𝛾𝐼(0) > 0 

Simplifying: 
𝛽𝑆(0)

𝑁
> 𝛾 

 

In this case, 𝑆(0) ≈ 𝑁 as the population is fully susceptible (save for the primary infection). 

Therefore, the threshold for an outbreak to occur is re-written: 
𝛽

𝛾
> 1 

Thus, combining the two ways to express the outbreak threshold, for the SIR model, 𝑅0 =
𝛽

𝛾
.  

 

The reproduction ratio of an outbreak at a given time, 𝑡, is known as the effective reproduction 

ratio, 𝑅𝑡. The difference between 𝑅0 and 𝑅𝑡 is that 𝑅0 describes the outbreak in a fully 

susceptible population, whereas 𝑅𝑡 describes the outbreak in the current conditions at time 𝑡. 

Therefore, for the SIR model 𝑅𝑡 =
𝛽𝑆(𝑡)

𝛾𝑁
. In other words, as the size of the susceptible 

compartment decreases, so too does the effective reproduction ratio. This makes intuitive sense, 

as there are fewer possible susceptible individuals to serve as secondary infections for the 

average primary infection. 
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The concept of the reproduction ratio is not limited to the SIR model. It is possible to derive the 

𝑅0 and 𝑅𝑡 for more complicated models with additional compartments. Diekman et al. developed 

a method called the next generation method which utilizes linear algebra to derive the 𝑅0 and 𝑅𝑡 

as functions of the model parameters [9]. Additionally, the 𝑅0 and 𝑅𝑡 can be estimated from an 

observed epidemic curve. Wallinga and Teunis developed a likelihood-based estimation method 

to approximate 𝑅0 and 𝑅𝑡 of an outbreak [10]. This method does not require a formalized model 

structure and is therefore useful in evaluating 𝑅0 and 𝑅𝑡 for emerging disease outbreaks where 

historical data are sparse. 

 

The 𝑅0 of an outbreak is often one of the first metrics that researchers seek to quantify. For 

example, estimates of 𝑅0 for COVID-19 range from 2.2-5.7 [11]. Estimates of 𝑅0 for Ebola 

range from 1.5-1.9 [12]. Estimates of 𝑅0 for smallpox range from 3.5-6 [13]. Finally, estimates 

of 𝑅0 for measles range from 12-18 [14]. This high basic reproduction ratio is one of the reasons 

that measles is frequently at the center of debates around vaccination and vaccine hesitancy. 

 

2.2 Vaccination in SIR Models 
 

The SIR model elucidates powerful information about vaccination in a relatively simple way. 

The basic idea is that the vaccination moves individuals from the susceptible compartment to the 

recovered compartment by conferring immunity without infection. Using the concept of the 

effective reproduction ratio, we can determine the level of vaccination required to prevent an 

outbreak of an infectious disease. The key concept again is to reduce the effective reproduction 

ratio to below one. The notation for the effective reproduction ratio under vaccination will be 

𝑅0,𝑣𝑎𝑥. For the SIR model, 𝑅0,𝑣𝑎𝑥 =
𝛽𝑆(0)

𝛾𝑁
. To derive the level of vaccination required to prevent 

an outbreak, we want 𝑅0,𝑣𝑎𝑥 < 1, thus the fraction of the population that can remain susceptible 

is: 
𝑆(0)

𝑁
<

𝛾

𝛽
 

When 𝑡 = 0, we assume the population is composed of susceptible 𝑆(0) or vaccinated 𝑅(0) 

individuals and that 𝑁 ≈ 𝑆(0) + 𝑅(0). With substitution: 
𝑁 − 𝑅(0)

𝑁
<

𝛾

𝛽
 

After reducing with algebra: 
𝑅(0)

𝑁
>

𝛽 − 𝛾

𝛽
 

The proportion of the population that needs to be vaccinated to prevent an outbreak from starting 

must be greater than 
𝛽−𝛾

𝛽
. With further algebra, 

𝑅(0)

𝑁
> 1 −

1

𝑅0
. Therefore, the portion of the 

population which should be vaccinated to prevent disease outbreak is at least 1 −
1

𝑅0
. 

 

2.3 The SIR Model with Birth and Death 
 

Demography is a simple addition to the SIR model and is described in detail by Keeling and 

Rohani [5]. In this model, we assume a natural mortality rate 𝜇 where 
1

𝜇
 is the average lifespan of 
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an individual in the model. For simplicity, in this implementation there are equal mortality rates 

in each compartment of the model (i.e. infection does not lead to greater mortality rates). 

Historically, the birth rate, 𝛿 = 𝜇𝑁 so that the overall population remains the same; 

mathematically, (
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0) [5]. The updated SIR model is as follows: 

𝑑𝑆

𝑑𝑡
= 𝛿 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 

 
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝛾 + 𝜇)𝐼 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

Using the same method as before, we can again derive 𝑅0 and 𝑅𝑡 for an SIR model with birth 

and death. First, we find the threshold at which an outbreak occurs in a completely susceptible 

population using 
𝑑𝐼

𝑑𝑡
> 0: 

𝛽𝑆(0)

𝑁
− 𝛾 − 𝜇 > 0 

Simplifying algebraically the conditions required for an outbreak to occur are: 
𝛽

𝛾 + 𝜇
> 1 

Therefore, 𝑅0 =
𝛽

𝛾+𝜇
 in an SIR model with birth and death. Similarly, 𝑅𝑡 =

𝛽𝑆(𝑡)

(𝛾+𝜇)𝑁
. Thus, when 

accounting for mortality in an SIR model, 𝑅0 and 𝑅𝑡 are lower compared to an SIR model 

without birth and death. This is an intuitive result because by adding mortality into the model, 

the overall length of the infectious period is reduced despite holding transmission and recovery 

constant. Likewise, the proportion of individuals needed to be vaccinated to prevent an outbreak 

(1 −
1

𝑅0
) is lower because the value of 𝑅0 is lower. 

 

 

3. Implementing an SIR Model in Excel 
 

An Excel spreadsheet is a great platform to implement and experiment with an SIR model. The 

first thing to note is that implementation of the SIR model in Excel will require difference 

equations rather than differential equations. The SIR difference equations define the rate of 

change of the susceptible, infected, and recovered populations over very small but finitely small 

increments of time (∆𝑡), whereas the SIR differential equations define the rate of change of the 

susceptible, infected, and recovered compartments over an infinitely small increment of time 

(𝑑𝑡). The difference equations for the SIR model are as follows: 

 
∆𝑆

∆𝑡
=

−𝛽𝑆𝐼

𝑁
 

 
∆𝐼

∆𝑡
=

𝛽𝑆𝐼

𝑁
− 𝛾𝐼 
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∆𝑅

∆𝑡
= 𝛾𝐼 

 

Likewise, the difference equations for the SIR model with birth and death are as follows: 

 
∆𝑆

∆𝑡
= 𝛿 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 

 
∆𝐼

∆𝑡
=

𝛽𝑆𝐼

𝑁
− (𝛾 + 𝜇)𝐼 

 
∆𝑅

∆𝑡
= 𝛾𝐼 − 𝜇𝑅 

 

If ∆𝑡 is very small, then the difference equations will be close approximations of the differential 

equations. This simple modification will greatly reduce the computational complexity of the SIR 

model and allow for seamless integration into Excel without sacrificing much accuracy. 

 

To learn how to implement an SIR model in Excel, we are going to model a new infectious 

disease called disease X. First, open Excel and set up a spreadsheet to include columns titled 

“Parameter Name”, “Parameter Value”, “t”, “dS/dt”, “dI/dt”, “dR/dt”, “S”, “I”, and “R”. The 

first two columns will serve as the user inputs for the model parameters. The other columns will 

be the model output. Then, list the model parameters under the “Parameter Name” column. 

These parameters include “beta (transmission rate)”, “gamma (recovery rate)”, “delta (birth 

rate)”, “mu (death rate)”, the time step “dt (very small time step)”, “N (total population)”, and 

“Portion immune or vaccinated”. The spreadsheet should now look something like Figure 2. 

 

Next, populate the parameter values in column B. Choose a value for 𝛽 between 0 and 1. 

Mathematically, 𝛽 is restricted to this interval because the infection term is normalized to the 

population when we divide by 𝑁 in 
−𝛽𝑆𝐼

𝑁
. In this case, disease X has transmission rate 𝛽 = 0.74. 

Then, populate a value for 𝛾. Remember that the recovery rate is the inverse of infection period. 

Disease X has an infectious period of 10 days, therefore, 𝛾 = 0.1. For now, set 𝛿 = 0 and 𝜇 = 0. 

The very small time step ∆𝑡 for disease X is 1 day. Finally, model a population of 100,000 

individuals with no immunity or vaccination.  

 

After the spreadsheet is setup, it is time to input the initial conditions for disease X. On day 0, 

there is 1 infected individual.  

 

Then, to finish implementing the initial conditions of disease X, use formulas to improve the 

flexibility of the model. Rather than treating cells I2 and K2 as user inputs, make them formulas 

relative to the total population. When 𝑡 = 0, the only individuals in the recovered population are 

either immune or vaccinated which is equal to the product of the total population and the portion 

of the population which is immune or vaccinated. Populate cell K2 with “=B9*B11” this is 

equivalent to 𝑁 times the portion of the population that is immune or vaccinated. Likewise, since 

𝑆 = 𝑁 − 𝐼 − 𝑅, populate cell I2 with “=B9-J2-K2”. The spreadsheet should now look like that of 

Figure 3. 
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Figure 2. The Excel spreadsheet after initial setup 

 
 
Figure 3. The Excel spreadsheet after assigning parameter values 

 
 

Now, it is time to implement the SIR model itself. First, implement the difference in time ∆𝑡 in 

cell D3 using the formula “=D2+$B$7”. This is the initial time 𝑡 = 0 plus our very small time 
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increment ∆𝑡. The cells which are referenced with dollar signs “$” indicate that the reference is 

“frozen” to that cell. This means that when we drag down the formulas to copy them to other 

cells, the reference to the ∆𝑡 parameter will remain the same.  

 

Then, implement 
∆𝑆

∆𝑡
= 𝛿 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 in cell E3 using the formula “=$B$4 - ($B$2*I2*J2)/$B$9 - 

$B$5*I2”. While the current parameter values for birth rate and death rate are 0, it is nice to 

implement this feature now rather than later. Next, implement 
∆𝐼

∆𝑡
=

𝛽𝑆𝐼

𝑁
− 𝛾𝐼 − 𝜇𝐼 in cell F3 using 

the formula “=($B$2*I2*J2)/$B$9 - $B$3*J2 - $B$5*J2”. Finally, implement 
∆𝑅

∆𝑡
= 𝛾𝐼 − 𝜇𝑅 in 

cell G3 using the formula “=$B$3*J2 - $B$5*K2”. 

 

Use the SIR formulas to update the number of individuals in each compartment. To update the 

susceptible compartment, use the formula “=I2 + E3” in cell I3. This will add the total number of 

susceptible individuals when 𝑡 = 0 to the change in the number of susceptible individuals that 

we calculated as 
∆𝑆

∆𝑡
. The result is the total number of susceptible individuals when 𝑡 = 1. In a 

similar way, to update the infected compartment use the formula “=J2 + F3” in cell I3, and to 

update the recovered compartment use the formula “=K2 + G3” in cell I3. The spreadsheet 

should now look like that of Figure 4. 

 

To complete the implementation of the SIR model, select cells D3 through K3 and drag the 

formulas down until you reach 𝑡 = 100. By day 100, the change in population between groups 

should be minimal and almost all the population should be in the recovered compartment. The 

spreadsheet should resemble that of Figure 5. 

 

To visualize the model you just created, highlight columns I, J, and K. Go to the “Insert” tab at 

the top, click on the icon called “Insert Line or Area Graph”, and choose the first option under 

“2-D Line” called “Line”. This will automatically generate a line graph of the SIR model you 

created. To improve the x axis, click on and select the graph you created and then navigate to the 

“Chart Design” tab at the top. Under the “Chart Design” tab, click on the “Select Data” option. A 

pop-up window should appear titled “Select Data Source” as seen in Figure 6. 

 

In the pop-up window, under the column titled “Horizontal (Category) Axis Labels” click the 

box labeled “Edit”. Then select (or manually enter) cells D2 through D102 as pictured in Figure 

7. Then, click “OK” and “OK” again. At this point you have now created your first epidemic 

curves in Excel. Feel free to change the “Chart Title” and to add “Axis Titles” as in Figure 8. 

The x axis represents the time in terms of days and the y axis represents the number of 

individuals in each compartment. 
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Figure 4. The Excel spreadsheet with the first day of implementation of the SIR model

 
 
Figure 5. The Excel spreadsheet with SIR model extended to 100 days 
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Figure 6. The Excel spreadsheet with the "Select Data Source" pop-up window

 
 
Figure 7. Select the cells in column D to serve as x axis labels
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Figure 8. The Excel spreadsheet with the SIR epidemic curves for Disease X

 

 

To model an outbreak with birth and death in Excel, first decide on an appropriate death rate (or 

1/lifespan). For this example, set 𝜇 = 0.05. Then, set the birth rate 𝛿 such that the overall 

population remains stable. To do so, use the formula “=B5*B9” in cell B4 this is equivalent to 

𝜇𝑁 as we discussed earlier. The spreadsheet will now look like that of Figure 9. Notice that the 

epidemic curves find a new long-term stable level of individuals in each compartment. This new 

equilibrium has a larger number of susceptible and infected individuals at any given time. This 

makes sense because the births into the model provide the population with 5,000 new susceptible 

individuals every day. 
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Figure 9. The Excel spreadsheet with epidemic curves for SIR model with birth and death

 

Figure 10. The Excel spreadsheet when vaccination threshold prevents an outbreak of disease X 
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4. Other Common Model Structures 
 

The SIR model is not the only common type of deterministic model. Two other common models 

are the SI/SIS model and the SEIR model. They have various uses and may be more appropriate 

for a given infectious disease than the SIR model. 

 

The SI, or SIS, model is a deterministic model with two compartments: S – susceptible and I – 

infected. The difference between the SI model and the SIS model is that the SI model is intended 

for lifelong infections from which there is no recovery, and the SIS model is intended for 

infections from which there is recovery but not immunity to reinfection. In the SI model (Figure 

11a), susceptible individuals become infected and remain infected until death. Human infectious 

diseases that exhibit this behavior include HIV [15]. In addition, there are a variety of animal and 

plant infectious diseases that are lifelong and fatal including Feline Infectious Peritonitis, 

Spongiform Encephalopathy, Leishmaniasis, Rabbit Hemorrhagic Disease, and Highly 

Pathogenic Avian Influenza [5]. In the SIS model (Figure 11b), susceptible individuals can 

become infected and infected individuals recover without immunity to reinfection. Some 

examples of infectious diseases that do not confer immunity include rotaviruses, many sexually 

transmitted infections, and many bacterial infections [5]. 

 
Figure 11. SI (A) and SIS (B) model structure. Disease state transitions are possible from 

susceptible to infected compartments in both models and from infected to susceptible 

compartments in the SIS models 

 
 

The mathematical formulations of these models are similar [5]. For the SI model with birth and 

death, the equations are as follows: 

 
𝑑𝑆

𝑑𝑡
= 𝛿 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− 𝜇𝐼 
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For the SIS model with birth and death, the equations are as follows: 

 
𝑑𝑆

𝑑𝑡
= 𝛿 + 𝛾𝐼 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝛾 + 𝜇)𝐼 

 

For the SI model, 𝑅0 =
𝛽

𝜇
, and for the SIS model 𝑅0 =

𝛽

𝛾+𝜇
 using the same methodology as for 

the SIR model previously. 

 

Another popular model is called the SEIR model. The SEIR model is a deterministic infectious 

disease model with four compartments: S – susceptible, E – exposed, I – infected, R – recovered. 

In this case, the exposed population is comprised of individuals who are infected with the disease 

but not yet infectious, whereas the infected population is comprised of individuals who are both 

infected and infectious. The period of time between transitioning to the exposed compartment 

and transitioning to the infected compartment is called the latent period. Individuals in the model 

progress from the susceptible compartment to the exposed compartment to the infected 

compartment and finally to the recovered compartment. The diagram of the model can be seen in 

Figure 12. The SEIR model has been used to describe diseases such as COVID-19 [16] and 

Ebola [17]. The equations that define the SEIR model are similar to that of the SIR model [5].  

The latent period is defined as 
1

𝜎
 in this model: 

𝑑𝑆

𝑑𝑡
= 𝛿 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆 

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝜎 + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝛾 + 𝜇)𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

 

For the SEIR model, the next generation method is needed to derive 𝑅0 [9]. The next generation 

method is beyond the scope of this document, but the result is that 𝑅0 =
𝜎𝛽𝛿

𝜇(𝜎+𝜇)(𝛾+𝜇)
 for the SEIR 

model. 

 
Figure 12. SEIR model structure. Disease state transitions are possible from susceptible to exposed 

from exposed to the infected and from infected to recovered compartments 
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5. Deterministic versus Stochastic Models 
 

While deterministic models have a long and successful history in epidemiology, they are not 

without their limitations. The first and most notable limitation of deterministic models is that 

they assume homogeneous mixing. This assumption means that all individuals within the model 

have equal probability of coming into contact with one another [18]. This assumption can be 

reasonable when you are solely interested in the population level outcomes of a disease but does 

not reflect the real world contact structures between human beings. Another important limitation 

of deterministic models is that they do not incorporate uncertainty [18]. Deterministic models 

produce the same output every time given the same inputs. Roberts et al. point out that it can 

therefore be difficult to incorporate the possibility of events like multi-strain infections, 

infections with time-varying infectivity, and infections where superinfection is possible [19]. 

 

Unlike deterministic models, stochastic models incorporate an element of randomness [5]. This 

element of randomness can be implemented through various methods. Two common ways 

include adding randomization to parameters and adding randomization to events. In deterministic 

models, each parameter is a constant point estimate, however, in stochastic models, any number 

of parameters can be described by a distribution [5]. For example, Malloy et al. describe several 

parameters of COVID-19 with distributions instead of point estimates and sample from these 

distributions over many Monte Carlo simulations [16]. Another similar approach introduces 

noise to the model events, such as the terms describing infection (
−𝛽𝑆𝐼

𝑁
) or recovery (𝛾𝐼). Allen 

outlines this approach in an example model of the spread of malaria [20]. The result of both 

processes produces uncertainty bounds on important epidemiological outcomes, such as the 

number of cases or 𝑅0. 

 

Despite the obvious perks of stochastic models, they can be more difficult to implement, 

understand, and describe. The requirement to run many simulations of a stochastic model means 

that they are computationally more expensive than deterministic models. Stochastic models 

should be thought of as a robust way to capture uncertainty in disease dynamics or 

heterogeneities of a population. However, Muller et al. shows that it is possible to develop 

deterministic models that approximate stochastic processes [21], and Allen and van den 

Driessche confirm that deterministic and stochastic epidemiological thresholds are similar [22]. 

Depending on the application, deterministic models will often suffice. 

 

 

6. Stochastic Simulation to Predict Outbreak Size 
 

An additional goal of public health preparedness and infectious disease modeling is to predict 

when new outbreaks might occur and how big they will be. It is possible to simulate this 

phenomenon using principles of stochastic modeling and the computing power of Excel. 

Accompanying this document is another Excel spreadsheet containing data on Filovirus (Ebola 

and Marburg) outbreaks between 1996 and 2014. The data describe the start date of the outbreak 

(“Start Year or Date of First WHO Report”), the disease of the outbreak (“Pathogen”), the 

location of the outbreak (“Territory(ies)”), and the total number of cases and deaths during the 

outbreak. Ultimately, the question that we will answer is how many outbreaks of at least a 
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certain size, 𝑧, will we expect over a given time period, 𝑦? To answer our question, we will first 

need to develop a model for the time between outbreaks and the size of each outbreak. Therefore, 

the two most important data needed to answer this question are the start date of the outbreak and 

the total number of cases of the outbreak.  

 

The time between outbreaks is called “Delay” in the attached spreadsheet. Since these outbreaks 

occur continuously and independently, we assume that the delay between outbreaks occurs at a 

constant average rate, 𝜆, and therefore, the occurrence of an outbreak can be modeled as a 

Poisson process [23]. The time between events in a Poisson process is modeled using an 

exponential distribution, which is a continuous and memoryless distribution. A continuous 

distribution is one in which there is an associated probability for an infinite number of outcomes 

over a given range, and a memoryless distribution is one in which the probability of an event 

occurring is independent of the time that has elapsed [23]. The exponential distribution is defined 

by only one parameter, 𝜆, the rate at which an event occurs[24]. In this case, the rate of outbreaks 

is estimated as the inverse the delay between outbreaks. The average observed delay between 

outbreaks is 296 days which makes 𝜆 = 1/296. In column H of the spreadsheet, we assess the 

goodness of fit of the chosen distribution using the likelihood function. The likelihood function 

is a way determining how well a proposed distribution fits observed data [24]. It is calculated by 

multiplying together the likelihoods of choosing each data point from the exponential 

distribution [24]: 

ℒ𝑛(𝜆) = ∏ 𝑓(𝑋𝑖, 𝜆)

𝑛

𝑖=1

 

 

For the exponential distribution, the likelihood of choosing a random value from the distribution 

is 𝑓(𝑋𝑖, 𝜆) = 𝜆𝑒−𝜆𝑥. Due to the properties of both the exponential distributions and logarithms, it 

is easier to instead use the log likelihood function to measure goodness of fit. Simplifying, we 

get: 

ln(ℒ𝑛(𝜆)) = ∑ ln(𝑓(𝑋𝑖, 𝜆))

𝑛

𝑖=1

= ∑[ln(𝜆) − 𝜆𝑥𝑖]

𝑛

𝑖=1

 

 

In the spreadsheet formulas, the rate of new outbreaks occurring, 𝜆, is replaced by the equivalent 

inverse of the average delay  
1

𝐸[𝑋]
 which simplifies to: 

ln(ℒ𝑛(𝜆)) = ∑ [− ln(𝐸[𝑋]) −
𝑥𝑖

𝐸[𝑋]
]

𝑛

𝑖=1

 

 

The likelihood of each 𝑥𝑖 is shown as an example in cells H3-H25.  

 

The size or severity of the outbreak is measured in terms of the total number of cases in cells D2-

D25. The Weibull distribution is a great choice to model the number of cases because it is a very 

flexible distribution [25]. By calibrating the shape parameter, 𝛼, and the scale parameter, 𝛽, of 

the distribution, we can leverage the Weibull to model many types of data. In the spreadsheet, 𝛼 

is parameter 1 and 𝛽 is parameter 2. The log-likelihood of each data point is located in cells I2-

I25 of the spreadsheet calculated using the pre-existing “Weibull.Dist” function in Excel. In cells 
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A31 – O10142, 10,110 sample parameter sets are generated using a Markov Chain Monte Carlo 

method (the Metropolis-Hastings algorithm) and using the likelihood function to calculate an 

acceptability threshold. The details of the Metropolis-Hastings algorithm are laid out in a 

digestible manner by Wakefield [26]. The important takeaway is that the algorithm gives us a 

structured format to sample the distribution state space. 

 

Of the many parameter sets generated by the Metropolis-Hastings algorithm, 200 are randomly 

selected in cells Q31 – AZ231. The sampled 1/𝜆 parameters (average delay between outbreaks) 

for the exponential distribution are in cells R32 – R231. The sampled parameter sets for the 

Weibull distribution are in cells T32 – U231. Then, we use the distributions to generate 

outbreaks. In cells V32 – AJ231 of the spreadsheet, we simulate the delays between outbreaks 

for up to 15 outbreaks each column “d𝑖” denotes the start day of the 𝑖th outbreak. In cells AK32 

– AY231 of the spreadsheet, we simulate the number of cases per outbreak for all outbreaks in 

the “Policy term” in years defined in cell W13. Each column “o𝑖” denotes the number of cases of 

the 𝑖th outbreak. Now that we have simulated Filovirus outbreaks for the duration of our policy 

term, we want to identify how many of the simulated outbreaks meet our minimum case 

threshold defined as the “Payout case threshold” in cell W14. In cells AZ32 – AZ231, we count 

the number of outbreaks in our policy term which have at least the number of cases defined in 

our payout case threshold. This column is called “# payouts.” 

 

Finally, we use each simulation of outbreak events to generate our own probability distribution. 

This probability distribution will help us answer our original question. It defines the likelihood of 

having a given number of filovirus outbreaks of at least our payout case threshold size over the 

time horizon of our policy term. In cells Y2 – Y17, are the number of Filovirus outbreaks that 

meet our threshold in our time horizon from 0 – 15 outbreaks. Since the range of possible 

outcomes is finite, we call this a discrete probability distribution. In cells Z2 – Z17, we count the 

frequency of occurrences of a given payout in our 200 simulations. For example, cell Z2 is the 

number of times there were 0 Filovirus outbreaks that met our case threshold size within our 

policy term. Finally, in cells AA2 – AA17, we include the cumulative distribution function. For 

example, cell AA2 is the probability that there will be 0 Filovirus outbreaks of at least our 

threshold size in our policy term, cell AA3 is the probability that there will be 0 or 1 Filovirus 

outbreaks of at least our threshold size in our policy term, cell AA4 is the probability that there 

will be at most 2 Filovirus outbreaks of at least our threshold size in our policy term, and so on.  

 

We can easily construct our probability distribution function. Feel free to try this yourself. First, 

label cell AB1 “pdf”. Next, enter the formula “=Z2/200” into cell AB2. Then, drag this formula 

down to cell AB17. You can now see more easily which outcome is most likely to occur.  

 

 

7. Conclusions 
 

After reading this document, you should have a good understanding of some of the fundamental 

deterministic infectious disease models including the SIR model, SI model, SIS model, and SEIR 

model. You should feel comfortable with the mathematics behind these models and be able to 

evaluate key outbreak features, such as 𝑅0 and the portion of the population needed to be 

vaccinated to prevent an outbreak. Additionally, you should be able to continue to explore how 
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these parameters interact using an Excel spreadsheet model and to communicate the limitations 

of such models and how they differ from stochastic infectious disease models.  

 

Deterministic infectious disease models are simple to understand, implement, and communicate 

which makes them very powerful tools in epidemiology. They can be expanded and manipulated 

to approximate the spread of almost any infectious disease on earth with minimal computational 

requirements. Their simplicity and flexibility mean that they will continue to be ubiquitous in the 

world of infectious disease modeling, and those who are able to understand these models will be 

able to effectively engage with the infectious disease epidemiology community.  
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