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An Introduction to Deterministic Infectious Disease Models
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1. Introduction

Deterministic infectious disease models are a powerful tool in epidemiology. They are flexible
enough to generate approximations of many types of infectious disease outbreaks yet simple
enough to require minimal computational resources. They are easy to understand and therefore
helpful to policy makers who are faced with difficult decisions during potentially deadly
outbreaks. This aspect of deterministic models makes them sometimes preferred to more
complex models with stochasticity or “black box” structures that are difficult to dissect.

Despite their simplicity, deterministic infectious disease models are versatile in their application
and have been used to understand the dynamics of many different types of diseases. For one,
these models can be very useful at predicting the future spread of an infectious disease early on
during an outbreak. For example, Fisman, et al. used a simple disease model to understand the
epidemic dynamics of Ebola in 2014 [1]. Understanding disease dynamics can help public health
officials respond appropriately to try to ensure community wellbeing. Deterministic infectious
disease models can also be used to understand why there are surges in cases of endemic diseases
which may otherwise have consistent levels of prevalence. Feng, et al. implemented a
deterministic infectious disease model to understand the potential causes of resurging cases of
tuberculosis [2]. Their model helped shape the argument for the importance of exogeneous
reinfection as a cause of climbing tuberculosis cases. Often, these models influence important
decisions in health policy. Granich et al. developed a deterministic model to evaluate the
effectiveness of universal voluntary HIV testing on mitigating HIVV/AIDS epidemics [3].

The purpose of this paper is to enable the reader to understand and implement a deterministic
infectious disease model and is organized as follows. Section 2 uses the SIR model to explain the
concepts and mathematics underlying deterministic infectious disease modeling, including the
parameters of the model, the reproduction ratio, and vaccination thresholds to prevent outbreaks.
Section 3 explains how to implement an SIR model in Excel, including creating graphs. Section
4 presents other common model structures, such as SI and SEIR models. Section 5 describes the
differences between deterministic and stochastic infectious disease models. Section 6 discusses a
stochastic simulation model of future Filovirus outbreaks. Section 7 concludes.

2. The SIR Model

The SIR model is the quintessential deterministic infectious disease model first described by
Kermack and McKendrick [4] and more recently by Keeling and Rohani [5]. The SIR model is
based on the idea that a population during an outbreak can be divided into three groups or
compartments: S — susceptible, I — infected, and R — recovered. The susceptible compartment
represents the portion of the population that has not yet been exposed nor infected with the
disease but could be infected in the future. The infected compartment represents the portion of
the population that is both infected with the disease and infectious. The recovered compartment
represents the portion of the population that has recovered from infection and developed
immunity to reinfection.



The way that individuals transition between compartments in the model is dependent on several
factors. Transition from the susceptible to the infected compartment requires disease
transmission and is based on the transmission rate and the prevalence of the disease. Transition
from the infected to the recovered compartment is based on the recovery rate of infection. These
transitions are outlined in Figure 1.

Figure 1. SIR model structure. Disease state transitions are possible from susceptible to infected

and from infected to recovered compartments.

Differential equations describe the SIR model mathematically. The equations represent the rate
of change of each compartment over time rather than the absolute number of individuals in a
compartment at any given time. The SIR model equations are as follows [5]:
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The notation Z—f means the rate of change of function X over time t. In this case, the rate is

P . . as . .
measured at infinitely small increments of time dt. For example, - s the instantaneous rate of

change of the size of the compartment of susceptible individuals at a given time t. In these
equations, N is the size of the total population, g is the transmission rate, and y is the recovery
rate. The equations make the relationships between compartments more obvious. For example,
the rate of overall infection is dependent on the number of susceptible individuals and infected
individuals at a given time, as well as the fixed transmission rate parameter, 8. When you plug in
all the numbers, the result of each equation gives units in number of people per time step.

The transmission rate, £, is the product of the average number of contacts per individual per time
step and the probability of transmission between a susceptible and infected individual. While the
average number of contacts per individual per time step and the probability of transmission
between a susceptible and infected individual are sometimes known, the 8 parameter is more
often calibrated using observed incident cases of an infectious disease over time.



The recovery rate, y, is equivalent to the inverse of the infectious period. For example, if an

infectious disease has an infectious period of 5 days, then y = c dtlys = 0.2days™ 1.

The equations reveal several ways to mitigate the spread of an infectious disease. The first of
which includes interventions to reduce the transmission rate, . This could include reducing the
contact rate through interventions such as social distancing [6] or reducing the transmission
probability of each contact through interventions such as wearing masks [7]. Additionally, given
that the rate of decline in the number of infected individuals is directly related to the recovery
rate, y, then treatments aimed at reducing the infectious period of a disease can also help to
mitigate the spread of an outbreak [8].

2.1 The Reproduction Ratio

The reproduction ratio is an important measure of the strength of an infectious disease outbreak.
The basic reproduction ratio, R, is the average number of secondary infections that arise from
an average primary infection in a fully susceptible population [5]. Notably, if R, > 1, then the
conditions allow for an outbreak to occur, as the average primary infection leads to more than
one additional secondary infection. Conversely, if R, < 1, then conditions do not allow for an
outbreak to occur, as the average primary infection does not lead to an additional secondary
infection.

This outbreak threshold, and thus R, can be derived mathematically from the SIR equations we
described earlier. Another way to think about the threshold for an outbreak to occur is to
consider the conditions that must be present for the rate of change of the infected compartment to

be positive when the outbreak begins. Mathematically, % > 0 when t = 0. For the SIR model:

BS(0)1(0)
Simplifying: 55(0)
N 7

In this case, S(0) = N as the population is fully susceptible (save for the primary infection).
Therefore, the threshold for an outbreak to occur is re-written:

B

—>1
14

Thus, combining the two ways to express the outbreak threshold, for the SIR model, R, = g.

The reproduction ratio of an outbreak at a given time, t, is known as the effective reproduction
ratio, R;. The difference between R, and R; is that R, describes the outbreak in a fully
susceptible population, whereas R, describes the outbreak in the current conditions at time t.

Therefore, for the SIR model R, = %. In other words, as the size of the susceptible

compartment decreases, so too does the effective reproduction ratio. This makes intuitive sense,
as there are fewer possible susceptible individuals to serve as secondary infections for the
average primary infection.



The concept of the reproduction ratio is not limited to the SIR model. It is possible to derive the
R, and R, for more complicated models with additional compartments. Diekman et al. developed
a method called the next generation method which utilizes linear algebra to derive the R, and R;
as functions of the model parameters [9]. Additionally, the R, and R; can be estimated from an
observed epidemic curve. Wallinga and Teunis developed a likelihood-based estimation method
to approximate R, and R; of an outbreak [10]. This method does not require a formalized model
structure and is therefore useful in evaluating R, and R, for emerging disease outbreaks where
historical data are sparse.

The R, of an outbreak is often one of the first metrics that researchers seek to quantify. For
example, estimates of R, for COVID-19 range from 2.2-5.7 [11]. Estimates of R, for Ebola
range from 1.5-1.9 [12]. Estimates of R, for smallpox range from 3.5-6 [13]. Finally, estimates
of R, for measles range from 12-18 [14]. This high basic reproduction ratio is one of the reasons
that measles is frequently at the center of debates around vaccination and vaccine hesitancy.

2.2 Vaccination in SIR Models

The SIR model elucidates powerful information about vaccination in a relatively simple way.
The basic idea is that the vaccination moves individuals from the susceptible compartment to the
recovered compartment by conferring immunity without infection. Using the concept of the
effective reproduction ratio, we can determine the level of vaccination required to prevent an
outbreak of an infectious disease. The key concept again is to reduce the effective reproduction

ratio to below one. The notation for the effective reproduction ratio under vaccination will be

R yax- FOr the SIR model, Ry ;0 = % To derive the level of vaccination required to prevent

an outbreak, we want R, ,,,,, < 1, thus the fraction of the population that can remain susceptible
is:
S0) vy

N B
When t = 0, we assume the population is composed of susceptible S(0) or vaccinated R(0)
individuals and that N = S(0) + R(0). With substitution:
N-R(©) _y

N B

R(O -
O _F-v
N B
The proportion of the population that needs to be vaccinated to prevent an outbreak from starting

must be greater than ﬁ‘%y. With further algebra, % >1- Ri Therefore, the portion of the
0

After reducing with algebra:

population which should be vaccinated to prevent disease outbreak is at least 1 — Ri.
0

2.3The SIR Model with Birth and Death

Demography is a simple addition to the SIR model and is described in detail by Keeling and
Rohani [5]. In this model, we assume a natural mortality rate u where % is the average lifespan of
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an individual in the model. For simplicity, in this implementation there are equal mortality rates
in each compartment of the model (i.e. infection does not lead to greater mortality rates).
Historically, the birth rate, § = uN so that the overall population remains the same;

mathematically, (g + % + Z—I: = 0) [5]. The updated SIR model is as follows:

dl  BSI

R I
=N (y +uw

dR

E = )/I — ‘UR
Using the same method as before, we can again derive R, and R, for an SIR model with birth
and death. First, we find the threshold at which an outbreak occurs in a completely susceptible

population using % > 0:

S0
Simplifying algebraically the conditions required for an outbreak to occur are:
B
Yy tu
Therefore, R, = —_in an SIR model with birth and death. Similarly, R, = B5E) Thus, when
y+u (y+mwN

accounting for mortality in an SIR model, R, and R; are lower compared to an SIR model
without birth and death. This is an intuitive result because by adding mortality into the model,
the overall length of the infectious period is reduced despite holding transmission and recovery
constant. Likewise, the proportion of individuals needed to be vaccinated to prevent an outbreak

1, - .
1- R—) is lower because the value of R, is lower.
0

3. Implementing an SIR Model in Excel

An Excel spreadsheet is a great platform to implement and experiment with an SIR model. The
first thing to note is that implementation of the SIR model in Excel will require difference
equations rather than differential equations. The SIR difference equations define the rate of
change of the susceptible, infected, and recovered populations over very small but finitely small
increments of time (At), whereas the SIR differential equations define the rate of change of the
susceptible, infected, and recovered compartments over an infinitely small increment of time
(dt). The difference equations for the SIR model are as follows:

AS  —BSI
At N
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Likewise, the difference equations for the SIR model with birth and death are as follows:

Al BSI

—_ 0 _ I
AT N y+uw

AR ’ R

At yi—n
If At is very small, then the difference equations will be close approximations of the differential
equations. This simple modification will greatly reduce the computational complexity of the SIR
model and allow for seamless integration into Excel without sacrificing much accuracy.

To learn how to implement an SIR model in Excel, we are going to model a new infectious
disease called disease X. First, open Excel and set up a spreadsheet to include columns titled
“Parameter Name”, “Parameter Value”, “t”, “dS/dt”, “dI/dt”, “dR/dt”, “S”, “I”’, and “R”. The
first two columns will serve as the user inputs for the model parameters. The other columns will
be the model output. Then, list the model parameters under the “Parameter Name” column.

99 <¢

These parameters include “beta (transmission rate)”, “gamma (recovery rate)”, “delta (birth

rate)”, “mu (death rate)”, the time step “dt (very small time step)”, “N (total population)”, and
“Portion immune or vaccinated”. The spreadsheet should now look something like Figure 2.

Next, populate the parameter values in column B. Choose a value for § between 0 and 1.
Mathematically, g is restricted to this interval because the infection term is normalized to the

population when we divide by N in %. In this case, disease X has transmission rate § = 0.74.

Then, populate a value for y. Remember that the recovery rate is the inverse of infection period.
Disease X has an infectious period of 10 days, therefore, y = 0.1. For now, set § = 0 and u = 0.
The very small time step At for disease X is 1 day. Finally, model a population of 100,000
individuals with no immunity or vaccination.

After the spreadsheet is setup, it is time to input the initial conditions for disease X. On day 0,
there is 1 infected individual.

Then, to finish implementing the initial conditions of disease X, use formulas to improve the
flexibility of the model. Rather than treating cells 12 and K2 as user inputs, make them formulas
relative to the total population. When t = 0, the only individuals in the recovered population are
either immune or vaccinated which is equal to the product of the total population and the portion
of the population which is immune or vaccinated. Populate cell K2 with “=B9*B11” this is
equivalent to N times the portion of the population that is immune or vaccinated. Likewise, since
S = N — I — R, populate cell 12 with “=B9-J2-K2”. The spreadsheet should now look like that of
Figure 3.



Figure 2. The Excel spreadsheet after initial setup
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Figure 3. The Excel spreadsheet after assigning parameter values
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Now, it is time to implement the SIR model itself. First, implement the difference in time At in
cell D3 using the formula “=D2+$B$7”. This is the initial time t = 0 plus our very small time
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increment At. The cells which are referenced with dollar signs “$” indicate that the reference is
“frozen” to that cell. This means that when we drag down the formulas to copy them to other
cells, the reference to the At parameter will remain the same.

Then, implement = = & — £ — 15 in cell E3 using the formula “=$B$4 - ($8$2*12*12)/$BS9 -
$B$5*12”. While the current parameter values for birth rate and death rate are 0, it is nice to

implement this feature now rather than later. Next, implement% = &1 yI — ul in cell F3 using

t N
the formula “=($B$2*12*J2)/$B$9 - $B$3*J2 - $B$5*J2”. Finally, implement AA—Iz =yl — uR in
cell G3 using the formula “=$B$3*J2 - $B$5*K2”.

Use the SIR formulas to update the number of individuals in each compartment. To update the
susceptible compartment, use the formula “=I12 + E3” in cell I3. This will add the total number of
susceptible individuals when t = 0 to the change in the number of susceptible individuals that

we calculated as % The result is the total number of susceptible individuals when t = 1. Ina

similar way, to update the infected compartment use the formula “=J2 + F3” in cell I3, and to
update the recovered compartment use the formula “=K2 + G3” in cell 13. The spreadsheet
should now look like that of Figure 4.

To complete the implementation of the SIR model, select cells D3 through K3 and drag the
formulas down until you reach ¢t = 100. By day 100, the change in population between groups
should be minimal and almost all the population should be in the recovered compartment. The
spreadsheet should resemble that of Figure 5.

To visualize the model you just created, highlight columns I, J, and K. Go to the “Insert” tab at
the top, click on the icon called “Insert Line or Area Graph”, and choose the first option under
“2-D Line” called “Line”. This will automatically generate a line graph of the SIR model you
created. To improve the x axis, click on and select the graph you created and then navigate to the
“Chart Design” tab at the top. Under the “Chart Design” tab, click on the “Select Data” option. A
pop-up window should appear titled “Select Data Source” as seen in Figure 6.

In the pop-up window, under the column titled “Horizontal (Category) Axis Labels” click the
box labeled “Edit”. Then select (or manually enter) cells D2 through D102 as pictured in Figure
7. Then, click “OK” and “OK” again. At this point you have now created your first epidemic
curves in Excel. Feel free to change the “Chart Title” and to add “Axis Titles” as in Figure 8.
The x axis represents the time in terms of days and the y axis represents the number of
individuals in each compartment.



Figure 4. The Excel spreadsheet with the first day of implementation of the SIR model
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Figure 6. The Excel spreadsheet with the "'Select Data Source' pop-up window
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To model an outbreak with birth and death in Excel, first decide on an appropriate death rate (or
1/lifespan). For this example, set u = 0.05. Then, set the birth rate § such that the overall
population remains stable. To do so, use the formula “=B5*B9” in cell B4 this is equivalent to
uN as we discussed earlier. The spreadsheet will now look like that of Figure 9. Notice that the
epidemic curves find a new long-term stable level of individuals in each compartment. This new
equilibrium has a larger number of susceptible and infected individuals at any given time. This
makes sense because the births into the model provide the population with 5,000 new susceptible
individuals every day.
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Figure 9. The Excel spreadsheet with epidemic curves for SIR model with birth and death
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Figure 10. The Excel spreadsheet when vaccination threshold prevents an outbreak of disease X
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4. Other Common Model Structures

The SIR model is not the only common type of deterministic model. Two other common models
are the SI/SIS model and the SEIR model. They have various uses and may be more appropriate
for a given infectious disease than the SIR model.

The SI, or SIS, model is a deterministic model with two compartments: S — susceptible and | —
infected. The difference between the SI model and the SIS model is that the SI model is intended
for lifelong infections from which there is no recovery, and the SIS model is intended for
infections from which there is recovery but not immunity to reinfection. In the SI model (Figure
11a), susceptible individuals become infected and remain infected until death. Human infectious
diseases that exhibit this behavior include HIV [15]. In addition, there are a variety of animal and
plant infectious diseases that are lifelong and fatal including Feline Infectious Peritonitis,
Spongiform Encephalopathy, Leishmaniasis, Rabbit Hemorrhagic Disease, and Highly
Pathogenic Avian Influenza [5]. In the SIS model (Figure 11b), susceptible individuals can
become infected and infected individuals recover without immunity to reinfection. Some
examples of infectious diseases that do not confer immunity include rotaviruses, many sexually
transmitted infections, and many bacterial infections [5].

Figure 11. SI (A) and SIS (B) model structure. Disease state transitions are possible from
susceptible to infected compartments in both models and from infected to susceptible

compartments in the SIS models
A

t |

v

v

The mathematical formulations of these models are similar [5]. For the SI model with birth and
death, the equations are as follows:



For the SIS model with birth and death, the equations are as follows:

ds BSI
=4yl - —yus

dtdl BSI N
R I
=N (y +uw

B

y+u

For the SI model, R, = g and for the SIS model R, =
the SIR model previously.

using the same methodology as for

Another popular model is called the SEIR model. The SEIR model is a deterministic infectious
disease model with four compartments: S — susceptible, E — exposed, | — infected, R — recovered.
In this case, the exposed population is comprised of individuals who are infected with the disease
but not yet infectious, whereas the infected population is comprised of individuals who are both
infected and infectious. The period of time between transitioning to the exposed compartment
and transitioning to the infected compartment is called the latent period. Individuals in the model
progress from the susceptible compartment to the exposed compartment to the infected
compartment and finally to the recovered compartment. The diagram of the model can be seen in
Figure 12. The SEIR model has been used to describe diseases such as COVID-19 [16] and
Ebola [17]. The equations that define the SEIR model are similar to that of the SIR model [5].

The latent period is defined as % in this model:

ds_ o BSI_
dt N _H
dE_BST_ 4 08
dt N o+ 1
ar_ E— Q@+l
prinid Y+
dR—I R

For the SEIR model, the next generation method is needed to derive R, [9]. The next generation

method is beyond the scope of this document, but the result is that R, = — %% for the SEIR
plo+mW)(y+u)

model.

Figure 12. SEIR model structure. Disease state transitions are possible from susceptible to exposed
from exposed to the infected and from infected to recovered compartments
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5. Deterministic versus Stochastic Models

While deterministic models have a long and successful history in epidemiology, they are not
without their limitations. The first and most notable limitation of deterministic models is that
they assume homogeneous mixing. This assumption means that all individuals within the model
have equal probability of coming into contact with one another [18]. This assumption can be
reasonable when you are solely interested in the population level outcomes of a disease but does
not reflect the real world contact structures between human beings. Another important limitation
of deterministic models is that they do not incorporate uncertainty [18]. Deterministic models
produce the same output every time given the same inputs. Roberts et al. point out that it can
therefore be difficult to incorporate the possibility of events like multi-strain infections,
infections with time-varying infectivity, and infections where superinfection is possible [19].

Unlike deterministic models, stochastic models incorporate an element of randomness [5]. This
element of randomness can be implemented through various methods. Two common ways
include adding randomization to parameters and adding randomization to events. In deterministic
models, each parameter is a constant point estimate, however, in stochastic models, any number
of parameters can be described by a distribution [5]. For example, Malloy et al. describe several
parameters of COVID-19 with distributions instead of point estimates and sample from these
distributions over many Monte Carlo simulations [16]. Another similar approach introduces

noise to the model events, such as the terms describing infection (%) or recovery (yI). Allen

outlines this approach in an example model of the spread of malaria [20]. The result of both
processes produces uncertainty bounds on important epidemiological outcomes, such as the
number of cases or R,,.

Despite the obvious perks of stochastic models, they can be more difficult to implement,
understand, and describe. The requirement to run many simulations of a stochastic model means
that they are computationally more expensive than deterministic models. Stochastic models
should be thought of as a robust way to capture uncertainty in disease dynamics or
heterogeneities of a population. However, Muller et al. shows that it is possible to develop
deterministic models that approximate stochastic processes [21], and Allen and van den
Driessche confirm that deterministic and stochastic epidemiological thresholds are similar [22].
Depending on the application, deterministic models will often suffice.

6. Stochastic Simulation to Predict Outbreak Size

An additional goal of public health preparedness and infectious disease modeling is to predict
when new outbreaks might occur and how big they will be. It is possible to simulate this
phenomenon using principles of stochastic modeling and the computing power of Excel.
Accompanying this document is another Excel spreadsheet containing data on Filovirus (Ebola
and Marburg) outbreaks between 1996 and 2014. The data describe the start date of the outbreak
(“Start Year or Date of First WHO Report”), the disease of the outbreak (“Pathogen”), the
location of the outbreak (“Territory(ies)”), and the total number of cases and deaths during the
outbreak. Ultimately, the question that we will answer is how many outbreaks of at least a
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certain size, z, will we expect over a given time period, y? To answer our question, we will first
need to develop a model for the time between outbreaks and the size of each outbreak. Therefore,
the two most important data needed to answer this question are the start date of the outbreak and
the total number of cases of the outbreak.

The time between outbreaks is called “Delay” in the attached spreadsheet. Since these outbreaks
occur continuously and independently, we assume that the delay between outbreaks occurs at a
constant average rate, A, and therefore, the occurrence of an outbreak can be modeled as a
Poisson process [23]. The time between events in a Poisson process is modeled using an
exponential distribution, which is a continuous and memoryless distribution. A continuous
distribution is one in which there is an associated probability for an infinite number of outcomes
over a given range, and a memoryless distribution is one in which the probability of an event
occurring is independent of the time that has elapsed [23]. The exponential distribution is defined
by only one parameter, A, the rate at which an event occurs[24]. In this case, the rate of outbreaks
is estimated as the inverse the delay between outbreaks. The average observed delay between
outbreaks is 296 days which makes A = 1/296. In column H of the spreadsheet, we assess the
goodness of fit of the chosen distribution using the likelihood function. The likelihood function
is a way determining how well a proposed distribution fits observed data [24]. It is calculated by
multiplying together the likelihoods of choosing each data point from the exponential
distribution [24]:

L= [ren

For the exponential distribution, the likelihood of choosing a random value from the distribution
is f(X;, 1) = Ae~**. Due to the properties of both the exponential distributions and logarithms, it
is easier to instead use the log likelihood function to measure goodness of fit. Simplifying, we
get:

In(£,@) = ) In(f (X, D) = ) [In(D) - Ax;]
i=1 =1

In the spreadsheet formulas, the rate of new outbreaks occurring, 4, is replaced by the equivalent
inverse of the average delay ﬁ which simplifies to:

ln(ﬁn(l)) = Zn: [— In(E[X]) — %]

The likelihood of each x; is shown as an example in cells H3-H25.

The size or severity of the outbreak is measured in terms of the total number of cases in cells D2-
D25. The Weibull distribution is a great choice to model the number of cases because it is a very
flexible distribution [25]. By calibrating the shape parameter, a, and the scale parameter, S, of
the distribution, we can leverage the Weibull to model many types of data. In the spreadsheet, «
is parameter 1 and S is parameter 2. The log-likelihood of each data point is located in cells 12-
125 of the spreadsheet calculated using the pre-existing “Weibull.Dist” function in Excel. In cells
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A31-010142, 10,110 sample parameter sets are generated using a Markov Chain Monte Carlo
method (the Metropolis-Hastings algorithm) and using the likelihood function to calculate an
acceptability threshold. The details of the Metropolis-Hastings algorithm are laid out in a
digestible manner by Wakefield [26]. The important takeaway is that the algorithm gives us a
structured format to sample the distribution state space.

Of the many parameter sets generated by the Metropolis-Hastings algorithm, 200 are randomly
selected in cells Q31 — AZ231. The sampled 1/4 parameters (average delay between outbreaks)
for the exponential distribution are in cells R32 — R231. The sampled parameter sets for the
Weibull distribution are in cells T32 — U231. Then, we use the distributions to generate
outbreaks. In cells V32 — AJ231 of the spreadsheet, we simulate the delays between outbreaks
for up to 15 outbreaks each column “di” denotes the start day of the ith outbreak. In cells AK32
— AY 231 of the spreadsheet, we simulate the number of cases per outbreak for all outbreaks in
the “Policy term” in years defined in cell W13. Each column “0i” denotes the number of cases of
the ith outbreak. Now that we have simulated Filovirus outbreaks for the duration of our policy
term, we want to identify how many of the simulated outbreaks meet our minimum case
threshold defined as the “Payout case threshold” in cell W14. In cells AZ32 — AZ231, we count
the number of outbreaks in our policy term which have at least the number of cases defined in
our payout case threshold. This column is called “# payouts.”

Finally, we use each simulation of outbreak events to generate our own probability distribution.
This probability distribution will help us answer our original question. It defines the likelihood of
having a given number of filovirus outbreaks of at least our payout case threshold size over the
time horizon of our policy term. In cells Y2 — Y17, are the number of Filovirus outbreaks that
meet our threshold in our time horizon from 0 — 15 outbreaks. Since the range of possible
outcomes is finite, we call this a discrete probability distribution. In cells Z2 — Z17, we count the
frequency of occurrences of a given payout in our 200 simulations. For example, cell Z2 is the
number of times there were 0 Filovirus outbreaks that met our case threshold size within our
policy term. Finally, in cells AA2 — AA17, we include the cumulative distribution function. For
example, cell AA2 is the probability that there will be 0 Filovirus outbreaks of at least our
threshold size in our policy term, cell AA3 is the probability that there will be 0 or 1 Filovirus
outbreaks of at least our threshold size in our policy term, cell AA4 is the probability that there
will be at most 2 Filovirus outbreaks of at least our threshold size in our policy term, and so on.

We can easily construct our probability distribution function. Feel free to try this yourself. First,
label cell AB1 “pdf”. Next, enter the formula “=Z2/200” into cell AB2. Then, drag this formula
down to cell AB17. You can now see more easily which outcome is most likely to occur.

7. Conclusions

After reading this document, you should have a good understanding of some of the fundamental
deterministic infectious disease models including the SIR model, SI model, SIS model, and SEIR
model. You should feel comfortable with the mathematics behind these models and be able to
evaluate key outbreak features, such as R, and the portion of the population needed to be
vaccinated to prevent an outbreak. Additionally, you should be able to continue to explore how
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these parameters interact using an Excel spreadsheet model and to communicate the limitations
of such models and how they differ from stochastic infectious disease models.

Deterministic infectious disease models are simple to understand, implement, and communicate
which makes them very powerful tools in epidemiology. They can be expanded and manipulated
to approximate the spread of almost any infectious disease on earth with minimal computational
requirements. Their simplicity and flexibility mean that they will continue to be ubiquitous in the
world of infectious disease modeling, and those who are able to understand these models will be
able to effectively engage with the infectious disease epidemiology community.
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