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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 5722

The authors construct a new measure of connectivity in 
the global air transport network, covering 211 countries 
and territories for the year 2007. It is grounded in 
network analysis methods, and is based on a gravity-
like model that is familiar from the international trade 
and regional science literatures. It is a global measure of 
connectivity, in the sense that it captures the full range 
of interactions among all network nodes, even when 
there is no direct flight connection between them. The 
best connected countries are the United States, Canada, 
and Germany; the United States’ score is more than 

This paper is a product of the International Trade Department, Poverty Reduction and Economic Management Network. It 
is part of a larger effort by the World Bank to provide open access to its research and make a contribution to development 
policy discussions around the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.
org. The authors may be contacted at jarvis1@worldbank.org, and ben@developing-trade.com.

two-thirds higher than the next placed country’s, and 
connectivity overall follows a power law distribution that 
is fully consistent with the hub-and-spoke nature of the 
global air transport network. The measure of connectivity 
is closely correlated with important economic variables, 
such as the degree of liberalization of air transport 
markets, and the extent of participation in international 
production networks. It provides a strong basis for future 
research in areas such as air and maritime transport, as 
well as international trade. 
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1 Introduction 

Air transport is increasingly important to the global economy. Be it for exports of perishable goods, such 

as Kenyan cut flowers, or the movement of highly specialized component parts within transnational 

production networks, the ability to move goods quickly, reliably, and at a reasonable price is a crucial 

ingredient in the trade performance of a wide range of countries. The economic importance of air 

transport was highlighted by the eruption of Iceland's Eyjafjoell volcano in April 2009, which severely 

disrupted air traffic—including freight—into and out of Europe. Press reports indicate that Kenyan 

farmers were forced to dump stocks of fresh food and flowers destined for European markets, at a cost 

of some $3.8m per day.4 

Our aim in this paper is to analyze one aspect of the global air transport system that has received 

relatively little attention from economists and policy experts to date: its character as a network industry, 

and thus the importance of connectivity as an overall measure of the level of service—frequency of 

flights, reliability, and diversity of destinations—available to end users. Connectivity is increasingly 

emerging as a key policy concept, particularly in international forums such as ASEAN and the Asia-Pacific 

Economic Cooperation, yet it currently lacks a rigorous empirical framework that would allow 

policymakers to undertake cross-country comparisons, or track progress through time. Our approach 

aims to help fill that void, using air transport as an example.  

This paper builds on and extends two recent efforts at measuring connectivity in economically important 

sectors. Whereas UNCTAD (2007) adopts an intuitive but ad hoc approach to developing a connectivity 

indicator for liner shipping based on a weighted average of capacity and utilization data, we embed our 

approach in a rigorous network analysis framework. In addition to being more consistent, our approach 

also has the advantage of taking account of the hub-and-spoke nature of the global air transport 

                                                           
4
 http://news.bbc.co.uk/2/hi/8629623.stm.  

http://news.bbc.co.uk/2/hi/8629623.stm
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network in a way that the country aggregates used by UNCTAD (2007) do not. Pearce (2007) also takes 

an intuitive approach to analyzing air transport connectivity, and his measure better captures the hub-

and-spoke nature of the network. However, our approach is more rigorous in the sense that it is 

embedded in a consistent model of the global air transport network. We also apply our method to a 

much larger dataset: over 200 countries and territories, as compared to the 47 considered by Pearce 

(2007). 

To capture the various dimensions of performance in a single numerical indicator—the Air Connectivity 

Index (ACI)—we define connectivity as the importance of a country5 as a node within the global air 

transport system. A country is considered to be better connected the stronger is the overall "pull" it 

exerts on the rest of the network. A country's connectivity score is higher if the cost of moving to other 

countries in the network is relatively low. It is considered to be less well connected if the dispersion of 

those costs is high. These two factors are both important in the context of a network industry. 

Combining them means that, for example, a spoke country with a strong connection to only one other 

country cannot have a high connectivity score: although the cost of moving from one country to the 

other is low, the dispersion of costs across all markets is very high. A regional hub with strong 

connections to a moderate number of destinations receives an intermediate connectivity score, since 

costs are relatively dispersed across the remainder of the network, although to a lesser extent than for a 

pure spoke country. Finally, a global hub with strong connections to many other countries in the 

network receives a relatively high connectivity score. 

This approach to defining and measuring connectivity flows naturally from a generalized gravity model 

framework familiar from the regional science literature, since the pioneering work of A.G. Wilson 

(Wilson, 1970; Roy, 2004) which proposed a general bilinear formulation of bilateral flows. It also nests a 

                                                           
5
 Given the breadth of the dataset we use for the empirical analysis in this paper, the term "country" is used 

loosely to refer to both countries in the strict legal sense and other territories with independent air services. 
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variety of recent models from the international trade literature that follow a similar path to Wilson's, 

including the "gravity with gravitas" model of Anderson and Van Wincoop (2003), the Ricardian model of 

Eaton and Kortum (2002), and the heterogeneous firms model of Chaney (2008). We show that origin 

and destination fixed effects from a simple gravity regression can be rescaled to produce a measure of 

connectivity that corresponds to the total pull exercised by each country on the rest of the network. This 

measure captures the level of costs on bilateral routes, as well as the dispersion of costs across routes. It 

takes account of all possible nodal connections, even those for which no direct flights are in fact 

observed. As such, it provides a highly tractable yet informative indicator of air transport connectivity. It 

has the added advantage of being closely related to the concepts of multilateral resistance and market 

potential, which are familiar from the international trade and economic geography literatures (Anderson 

and Van Wincoop, 2003; Head and Mayer, 2011); indeed, our analysis makes it possible to link such 

measures to the deep structure of networks with bilateral flows, such as air transport or trade. 

Although we focus on air transport in this paper, the methods we develop can easily be applied more 

broadly, in areas such as maritime transport, and even international production networks for 

manufactured goods. The concept of connectivity that we develop measures "before-the-border" 

effects, whether endogenous (e.g., transport policies), or exogenous (e.g., geography, and the hub-and-

spoke structure of the network). In addition to explaining how countries effectively connect to 

international freight transport and logistics networks, it complements existing indicators of trade and 

transport facilitation outcomes ("beyond-the-border" metrics such as the Logistics Performance Index or 

the Doing Business Trading Across Borders data), which are primarily endogenous, and not tied to the 

geography of the network (Arvis et al., 2007 and 2010). 

We implement our model empirically to produce an internationally comparable ACI for the year 2007 as 

an input into future research work, and a useful policy benchmarking tool. We show that, as expected, 
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the ACI is strongly correlated with the degree of liberalization in air services markets, which suggests 

that policy can play an important role in shaping connectivity. In addition, we find that better connected 

countries tend to be more specialized in trade in machinery parts and components, which is consistent 

with their being more deeply integrated into international production networks that rely heavily on air 

transport.  

The paper proceeds as follows. The next section reviews existing work on measuring connectivity in air 

transport and related contexts. We draw on the policy literature, as well as contributions from the 

applied mathematics and network analysis fields. Section 3 discusses some important features of the 

international air transport network that need to be kept in mind when analyzing connectivity. Section 4 

presents our measure of connectivity, and derives it from a general gravity model framework. Section 5 

presents empirical results, and discusses robustness issues. In Section 6, we show that the ACI is closely 

correlated with indicators that we would expect to be related to connectivity, particularly the degree of 

liberalization in air transport markets, and the percentage of exports traded within international 

production networks. Section 7 concludes with a discussion of policy implications, and possible 

directions for future research. 

2 Previous Attempts at Measuring Connectivity 

The previous literature does not disclose any comprehensive attempt to measure air transport 

connectivity at the national level using rigorous network analysis methods. However, a number of 

important contributions deal with related or complementary areas. 

The most closely related work to ours is by Pearce (2007). He defines connectivity as summarizing the 

scope of access between an individual airport or country and the global air transport network. On that 

basis, his connectivity indicator for each international airport combines information on the number of 
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destinations served, the frequency of service, the number of seats per flight, and the size of the 

destination airport. Using a dataset similar to the one we use here (see further below), Pearce (2007) 

calculates connectivity measures for airports in 47 countries. He finds suggestive evidence of a 

relationship between connectivity thus defined, and important economic outcome measures such as 

labor productivity, and competitiveness of the travel and tourism sector.  

In addition to the connectivity index developed by Pearce (2007), the applied mathematics and physics 

literature discloses a number of examples of the application of network methods to the air transport 

context, although they do not focus specifically on connectivity. For example, Guimerà et al. (2008) 

analyze the network structure of global air transport at the city level, focusing on the description of its 

mathematical properties and the identification of separate communities—an abstract analogue of hub-

and-spoke systems—within the global network. There is also a number of applications of similar 

techniques to national or regional air traffic: Bagler (2008) examines India, and Li and Cai (2003) analyze 

China. 

Another strand of the existing literature on air transport focuses on the impact of bilateral liberalization 

(Gönenç and Nicoletti, 2000; Doove et al., 2001; Intervistas, 2007; and Geloso Grosso and Shepherd, 

2011). The general approach of these papers is to measure the restrictiveness of policy settings in a 

group of countries, and then to relate these policies to observed outcomes, such as bilateral traffic 

levels or international trade in goods. Although they thus provide important insight into the impacts of 

policy on sector performance, they do not explicitly consider the role that network structure and 

connectivity might simultaneously play. 

Outside the air transport context, UNCTAD is continuing to develop a Liner Shipping Connectivity Index 

(UNCTAD, 2007; Hoffmann and Wilmsmeier, 2008). They define connectivity in terms of access to 

regular and frequent transport services, then use factor analysis to bring together data on capacity and 
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utilization in the liner shipping sector. In particular, they consider the number of carriers, the number of 

bilateral links between national ports, total vessel capacity and number, the number of direct services, 

and the size of the largest vessel on each route. Their methodology produces a connectivity index that is 

a weighted average of those data, with the weights determined statistically. Hoffman and Wilmsmeier 

(2008) show that connectivity defined in this way is an important determinant of observed freight rates 

in the Caribbean. 

Our approach differs from previous contributions in three main ways. First, we extend the connectivity 

work of Pearce (2007) and UNCTAD (2007) by embedding it in a systematic model. This approach avoids 

the charge that the resulting measure of connectivity is ad hoc. Second, we are interested in using 

connectivity as a policy tool, rather than simply a means of describing network properties, as in the 

applied mathematics literature. Third, we focus on the country as the level of analysis—again, this is 

important from a policy point of view, since many of the economic outcome variables that we would 

expect to be correlated with air connectivity are measured at the national, not airport, level. Trade data 

are an important example. 

3 Characteristics of the Global Air Transport Network 

Before describing our measure of air connectivity and its derivation, it is useful to consider some salient 

characteristics of the network we are analyzing. To do this, we use data from the Schedules Reference 

Service (SRS) Analyzer platform (www.srsanalyser.com). SRS is the leading industry database of flight 

information, covering passenger and cargo links among over 200 countries and territories. We use data 

aggregated to the country level, but SRS can also provide much more detailed information on links 

between individual airports; Pearce (2007) uses SRS data at the airport level, for example.  

http://www.srsanalyser.com/
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Although SRS represents the best currently available data source on international flight connections, it 

suffers from one major limitation: it provides information on bilateral capacity, not true origin-

destination traffic. For example, SRS reports that there are 74 flights per week from the United States to 

Australia. However, it does not allow us to identify the proportion of passengers on those flights who 

actually stay in Australia, and those who use Australia as a transit point only.6 Although IATA compiles 

data on passenger numbers based on true origin and true destination, we prefer SRS as a data source 

because it is more comprehensive in terms of country coverage. It also includes cargo traffic, which is 

crucial for present purposes because of our interest in examining the links between air connectivity and 

trade. Indeed, the lack of true origin-destination flows is less problematic than it at first appears in light 

of the fact that for policy purposes, we are primarily interested in relating connectivity to cargo, not 

passenger, flows. 

Previous work has shown that the international air transport network has many of the characteristics of 

a "small world network" in the terminology of the applied mathematics literature (e.g., Guimerà et al., 

2008). Typically, small world networks have a relatively short average distance between nodes. Due to 

the presence of hubs which facilitate short connections between nodes, the number of direct 

connections between nodes tends to follow a power law distribution. 

We find both of these properties in the SRS data. The average distance between nodes is 2.3, and the 

mode is 2. Over 80% of nodes can be reached from any other node in three steps or less (Figure 1), 

which is consistent with a general rule of thumb in the airline industry. (A three step journey 

corresponds to two intermediate stopovers between the origin and the destination.) Moreover, a 

                                                           
6
 There is an obvious analogy here with the trade literature, in which re-exports and re-imports pose frequent 

measurement problems in highly open economies. 
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histogram of the number of direct connections of each node in the network is clearly suggestive of a 

power law (Figure 2), an observation which is confirmed by a simple regression.7 

Figure 1: Cumulative distribution of the number of steps required for each origin-destination link, 2005. 

 

                                                           
7
 Following Gabaix and Ibragimov (2011), we regress log(rank-0.5) on a constant and log(no. of direct connections). 

The coefficient is -0.82, and it is 1% significant based on robust standard errors. However, the hypothesis that the 
coefficient is equal to unity—i.e., that the data follow a Zipf law—is rejected at the 1% level. Gabaix and Ibragimov 
(2011) show that the regression we use has superior properties to the more common one in which log(rank) is the 
dependent variable.  
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Figure 2: Histogram of the number of direct connections from each node, 2005. 

 

These findings suggest that it is extremely important to account for hub and spoke interactions when 

measuring connectivity in the air transport network. Of course, this accords closely with thinking in the 

industry.8 In the next section, we develop a measure of connectivity that does just that. 

Graphical software developed for network analysis is also a popular tool for grasping the structure of a 

network, including hub and spoke structure and the centrality of nodes. However, any two-dimensional 

graphical illustration of the air transport network must be arbitrary, at least in part. Figure 3—prepared 

using the Pajek9 freeware program—uses the air transport adjacency matrix to plot the most central 

nodes in the middle of the figure, based on closeness centrality (see Appendix 3 for a discussion of that 

concept). Nodes with less than 20 connections have been dropped. Unsurprisingly, this approach 

                                                           
8
 It is outside the scope of this paper to discuss the factors that have given rise to the emergence of a hub-and-

spoke system in the air transport market. See, for example, Dempsey (1990) for a discussion of the role of policy 
and deregulation. 
9
 http://pajek.imfm.si/doku.php 
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provides a rather Western-centric view of the world, in which the most central countries are the USA 

and European hubs, with other regions revolving around them. 

4 The Air Connectivity Index (ACI): Theoretical Basis and Definition 

Connectivity is an intuitive concept, but one without a generally agreed definition. We envisage it as an 

attribute of individual nodes in a network. Any measure of connectivity should provide a consistent and 

robust definition of how well the node is connected to the rest of the network. In the case of air 

transport, we are interested in assessing how well connected each country (node) is to the rest of the 

world. Intuitively a good definition of connectivity should have the following properties: 

1. It should be realistic, in the sense of being supported by an underlying model of transportation 

flow within the network, where shipments move depending on the size of each node, and the 

attributes of individual links and nodes. Depending on its degree of realism, the model should 

take account of the costs associated with moving between nodes on a given link, as well as the 

finiteness of trips. Ideally, the model should be linked with mainstream models in transportation 

economics, such as the gravity-type model.10 

2. It should be intensive, in the sense of being independent of the size of a node. Ideally, two 

nodes with the same connections to the rest of the world should have the same connectivity 

even if they have different size. For this reason, measures such as the total number of 

passengers or amount of traffic do not themselves qualify as indicators of connectivity. This is 

not to say, however, that size does not matter at all. Indeed, it is widely expected, and 

frequently observed in practice, that larger nodes are also better connected, but this should not 

come from the definition of connectivity itself. 

                                                           
10

 In fact, one of the earliest uses of a gravity-type model includes air transport: see Zipf (1946).  
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Figure 3: Graphical representation of the global air transport network, based on unweighted closeness centrality (nodes with less than 20 connections excluded). 
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3. It should be dimensionless and normalized. Connectivity should be a number without dimension, 

preferably with bounds (a finite or semi-finite predefined interval such as 0-1). The motivation 

for non-dimensionality comes from the fact that a good definition should be irrespective of the 

objects described, and should be based on normalized flows (e.g., making flows through the 

transport network sum to one).This requirement is a stronger one than being intensive. For 

instance, the number of passengers per unit of GDP is intensive but not dimensionless, while the 

number of links from a node is neither. The share of total flows is both dimensionless and 

intensive.  

4. An ideal definition of connectivity should be global, in the sense that it directly or recursively 

incorporates information on the full network, and not only the properties of a given node and its 

immediate neighborhood (i.e., those other nodes to which it is directly connected). Thus the 

connectivity of node i should depend on the connectivity of the full set of nodes to which it is 

connected. 

There are essentially four groups of connectivity measures applied so far to transport and economic 

problems: intuitive metrics; concentration indicators; clustering techniques; and centrality indices such 

as closeness centrality or PageRank. (We review their implementation in detail in Appendix 3.) The last 

two sets of indicators are rooted in recent developments in network theory. Indeed, network theory has 

been a very active field of knowledge over the last two decades, at the juncture of statistical physics and 

the social sciences. Although a wide variety of tools and models is now available, we did not find an "off-

the-shelf" framework that could be directly applied to describing the problems posed by spatial 

economic interaction networks, such as air transportation or shipping. We therefore develop our own 

model in this section. The value added of the solution proposed here is that it combines some of the 

previous ideas in a spatial interaction framework, and makes connectivity a natural metric in gravity 

modeling.  
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4.1 A Minimalist Gravity Model 

In the problem of interest, nodes are not just abstract individuals or entities with a zero-one linkage 

between them. They are interacting spatial objects (countries, airports, ports) with differentiated levels 

of activity and measurable costs of interaction between them, such as the time it takes to fly from one 

point to another in the case of air transport. The essence of the gravity interpretation of spatial 

interaction models, such as those in the trade literature, is a bi-proportional structure. On the one hand, 

the flow between the origin and the destination is proportional to the size or potential of the origin and 

destination. It is also inversely proportional to an "impedance" between them, which is independent of 

their potentials and incorporates information about bilateral interactions between the nodes, such as 

the distance, time, and cost involved in moving from one node to another. 

The generic bi-proportional gravity model takes the following form: 

                

where    is the repulsive potential of node i, and    is the attractive potential of node j; the flow     is 

"pushed" from i and "pulled" to j. The bilateral impedance     is exogenous and decreasing in the cost, 

distance, or disutility of movement or interaction between origin and destination.11 Depending on the 

model, the impedance may be exponential or a power of trade costs. For instance, the entropy based 

model of spatial interaction (Wilson, 1967, 1970; Roy, 2004) refers to an exponential law, i.e.     

           where       is the bilateral cost of transportation. In contrast, neo-classical models of 

trade based on CES preferences tend to yield a power dependence on trade costs (e.g., Anderson, 1979; 

                                                           
11

 This is a very general form of gravity, but it can easily be adapted to meet specific theoretical assumptions from 
the trade literature. Setting the potential terms equal to exporter and importer GDP adjusted by appropriately 
defined multilateral resistance gives the "gravity with gravitas" model of Anderson and Van Wincoop (2003). The 
Ricardian gravity model of Eaton and Kortum (2002) also takes this basic form. If bilateral impedance is assumed to 
include fixed and variable cost elements, then the heterogeneous firms model of Chaney (2008) also fits this 
general pattern. In each case, of course, the economic interpretation of the trade cost exponent is different. See 
Head and Mayer (2011) for a similar, though less general, approach. 
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Anderson and Van Wincoop, 2003). In this formulation,            
    

 where   is the elasticity of 

substitution, and       is the bilateral ad valorem cost of trade. In practice, we can normalize cost and 

impedance so that the lowest possible bilateral cost is null and corresponds to an impedance of one, 

and thus we can refer to –          as "cost". 

Wilson (1967) shows that there are two broad categories of spatial interaction models depending on 

whether the potentials   and   are endogenous or exogenous. The exogenous potentials models are by 

far the most used in international economics, where the potentials are econometrically estimated 

functions of macro-variables capturing the size (GDP or population) and perhaps degree of development 

or performance of the country (GDP per capita). With endogenous potentials models, by contrast, the 

potentials are estimated from the requirement that row and column totals in the gravity model 

estimates must equal the total outflows or inflows of the nodes. Thus: 

                 

 

 

                 

 

 

This non-linear problem yields the potentials up to the trivial scale transformation        and 

   
 

 
  . That total flows apparently have one degree of freedom less than the potentials simply 

results from the fact that the totals in rows and columns are not independent since                . 

The endogenous gravity model has several interesting properties. First, once bilateral costs are known or 

econometrically estimated, only two variables per node are needed: total outflows and inflows. 

Furthermore, as a consequence of the non-linear nature of the model, the potential of a node does not 

depend upon its own variables, but on every other interaction in the network. A third property is that by 

construction, the model conserves row and column totals. This problem is one that arose early on in the 
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gravity literature (Linnemann, 1966; Tinbergen, 1962): it was observed that regressing flows against 

distance and size parameters does not guarantee conservation of the relevant sums. Simple convexity 

considerations lead to the conclusion that the sum of regressed flows by node (country) exceeds the 

actual total flow. This discrepancy is even more serious when a country has larger and closer partners, 

which tend to divert trade from more distant partners. The same phenomenon happens with transport 

flows and is referred to as "intervening opportunities" in the transport literature (Roy, 2004). Arvis and 

Shepherd (Forthcoming) show that the discrepancy is quantitatively significant in the international trade 

context. 

In the trade literature, this question is addressed using the concept of multilateral resistance (MR), 

which corrects for origin and destination interactions with the rest of the world. Anderson and Van 

Wincoop (2003) use standard trade theory to motivate a rigorous approach to MR in place of the ad hoc 

"remoteness" corrections used in some traditional gravity modeling. The same idea is built into the 

Wilson (1967) framework, which provides a simpler, purely mechanical explanation—i.e., independent 

of the nature of the underlying economics—in which MR is the pull or push exercised by the rest of the 

world. Let    be the pull exercised by destinations in the rest of the world on origin node i, and let    be 

the push exercised by origins in the rest of the world on destination node j. We can then define: 

                             

 

 

                             

 

 

from which it follows (Wilson, 1967) that: 

             
       

      



17 
 

Total outflows are, thus, as expected roughly proportional to total outflows/inflows of the 

origin/destination multiplied by an impedance factor, as in the most naïve gravity formulation. This 

conclusion is maintained notwithstanding the correction for the pull and push from the rest of the 

world, or adjustment for multilateral resistance. In other words,              . 

4.2 A Gravity-Based Definition of Connectivity 

Given their fundamental nature and meaning, it is tempting to use the pull or push from the rest of the 

world as a natural implementation of the connectivity of an origin or destination. However, in view of 

the scale invariance property of potentials, some normalization is needed for a proper definition. It is 

natural to compare the push and pull to what they would be if all the bilateral impedances were one, 

which yields a first candidate for connectivity: 

       
  

       
 

         

      
   

The above expression applies to the connectivity of outflows, but permuting  ,  ,  ,  and   gives the 

corresponding value for inflows. It is reminiscent of the market potential measure developed recently by 

Head and Mayer (2011) in the economic geography literature, but is derived from a more general 

framework in which no adding up constraints are imposed on the flows and the potentials. 

This expression can be interpreted in two ways. First, connectivity is equal to the average impedance  , 

weighted by the potential of each partner. An alternative interpretation is that the numerator 

summarizes the pull or push of all partners, and the denominator represents the maximum possible pull 

or push. 

4.2.1 Self-Interaction and the Definition of Connectivity 

The denominator in equation (5) excludes a country's own potential from the sum     . This choice 

leads to some inconsistency, as is apparent in rather common cases, such as comparing equation (5) for 
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close neighbors. Take an idealized Canada-USA situation with two countries, 1 and 2, with different sizes 

(2 being the bigger one), close interaction (impedance one) between them, and the same pull/push with 

the rest of the world (Figure 4). Let       and       be the potentials for the two nodes, and   be the 

pull from the rest of the world. Then equation (5) yields 
    

           
 for node 1 , and 

    

           
 for node 

2. Because      , the smaller node has the higher connectivity value, which is expected since 1 has a 

bigger pull from its neighbor than 2 does from 1. This is not totally intuitive, however. The inclusion of 

the potential of the nodes in the formula to take account of this problem and equalize the connectivity 

of the two nodes, as in the expression 
       

              
, is more consistent with the expected properties of 

connectivity. Hence a consistent definition of connectivity should also include a country's own 

contribution to push and pull. 

       
     

    
 

   
  

    

    
 

where            
   

  
  

Figure 4: Connectivity of two countries with similar flow patterns. 

 

This improved definition amounts to including in the flow matrix   a diagonal term, which corresponds 

to the effective flow between each country and itself with an impedance of one, i.e.          or 

     . This factor represents the intensity of the flow with the closest possible neighbor. This effective 
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flow may not be the real one, for instance domestic air transportation, but rather an equivalent level of 

domestic traffic that would exhibit the same pattern as international traffic. Such an approach of re-

creating a diagonal of economic flows for consistency purposes is not new, and was indeed introduced 

half a century ago by Deutsch and Savage (1960). 

4.2.2 Final Definition and Properties 

For a symmetric definition of connectivity, we can take the geometric average of the connectivities of i 

as origin and destination. (The rationale for the geometric average becomes apparent below, when we 

interpret the log of connectivity in terms of entropy and trade costs.) This approach gives: 

      
   

   
  

    

    
  

   
  

    

    
 

The above construction produces a consistent definition of connectivity with the desirable properties 

outlined earlier. It is rooted not only in the topology of the network, but also in a fundamental 

understanding of spatial interactions among the nodes. It can also be seen to be closely related to the 

idea of multilateral resistance that underlies the recent gravity literature in international trade.  

Under this definition, connectivity is a non-dimensional number between zero and one. The non-linear 

construction means that the concept is indeed global: a country's connectivity depends not only on its 

neighbors, but also on all of the interactions among the other countries in the network (just as 

multilateral resistance depends on trade costs across all potential trading partners). The size or potential 

of the node does not enter directly into our measure of connectivity, which represents the pull and push 

of the rest of the world. 

Finally, our proposed connectivity concept is consistent with the intuitive property of propagation of 

connectivity: i.e., a country's connectivity increases if that of its closest neighbors increases. Because the 
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construction is non-linear, the mechanism of propagation is less evident than with linear diffusion 

models like eigenvector centrality or PageRank, for instance (see Appendix 3). But the connectivity of 

node i indeed increases with the potential of close neighbors for which the bilateral impedance     is 

above the connectivity   , because from (6): 

    
   

   
 

      

    
 

Another useful property of our measure emerges from a simple decomposition. The flow-weighted 

average "cost", measured by log-impedance, for origin node i is: 

         
   

   
         

 

   
   

   
   

   

    
 

   
   

   
   

   

   

     

  
 

     
     

    
  

   

   
   

   

   

  

    
 

 

where the effective diagonal term          is included. Combining this expression with the definition 

of connectivity in (6) allows us to write: 

            
   

   
         

                
            

  
   

   
   

   

   

  

    
 

           
                

 

where the relative entropy of the flows from node i is the Kullback-Leibler distance with reference to the 

destination potentials  .12 Average costs and entropy are both strictly positive, which means that 

connectivity is the product of a cost factor—which measures remoteness or location in the network—

                                                           
12

 In the trade literature, Straathof (2008) notes a connection between multilateral resistance in the Anderson and 
Van Wincoop (2003) model and Shannon's measure of entropy, which is a generalization of the Kullback-Leibler 
measure used here. However, Straathof (2008) interprets it as a measure of product diversity. 
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and the exponential of the negative of entropy, which measures the diversity of a node's connections. 

Connectivity can thus be summarized as the product of remoteness and diversification.13 In the context 

of air transport, the first factor has a lot to do with geography, while the second is likely also influenced 

by policies that tend to establish more connections with the rest of the world through a more "open 

sky". 

Table 1 provides a comparison of the Air Connectivity Index (ACI; equation 7) with the other measures of 

connectivity discussed in Appendix 3, in terms of the criteria set out at the beginning of this section. As 

can be seen, the ACI is the only measure that responds to all five desirable criteria for a measure of 

connectivity. 

Table 1: Comparison of the ACI with alternative measures of connectivity. 

 Realistic Intensive Normalized Local Global 

UNCTAD (2007) Y N N N N 

Pearce (2007) Y N N Y N 

Kullback-Leibler distance N Y Y Y Y 

Clustering Coefficient N Y Y Y N 

PageRank or Eigenvector Centrality partial Y N Y Y 

Closeness centrality partial Y Y Y Y 

ACI Y Y Y Y Y 

4.3 A Simple Example 

To see how our measure of connectivity works in practice, we take a simple example that is of some 

relevance to the air transport setting. We assume a network consisting of two layers: an inner layer of   

fully connected hubs, and an outer layer of   spokes attached to the hubs (Figure 5). All links have the 

                                                           
13

 We note in passing that the decomposition proposed here retains data on observations where no actual flow is 
observed, due to the presence of summation operators prior to taking logarithms. 
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same impedance    , and the flow matrix   is symmetric. Let    and    be respectively the potential 

of hubs and spokes. Then it follows that the pull from the rest of the world is         for hubs and 

      for spokes. 

Figure 5: A simple two layer hub and spoke network. 

 

From (6), we obtain normalized connectivity scores as follows: 

          
   

  
  

    
  
  

 

          
  

  
  

    
  
  

 

As 
  

  
 decreases from  to 0,    increases from 

 

 
 to  , and    increases linearly from 

 

  
 to 

 

 
. Thus, the 

connectivity of the spokes has two important properties. As expected, it is less than that of the hubs. 
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Moreover, the connectivity of a spoke improves with that of the hub, in this case linearly (after 

elimination of 
  

  
 in (11)): 

        
 

   
    

 

 
  

    

 
   

4.4 Empirical Implementation 

The model presented above, and its application to air transport, is parametric. The dependent variable 

measures the bilateral interaction between nodes, i.e. a measure such as the number of flights or total 

seat capacity. Since the potentials are endogenous, the independent variables are the bilateral 

impedances. The bilateral impedance variable is not a "cost" in the strict sense, but an adequate 

measure of how far apart nodes are, using air transport. It can be proxied by data derived from 

geographical distance, as described below. 

To implement the model empirically, we need estimates of the potentials (the   and   terms in 

equation 19). They can be consistently obtained by using origin and destination fixed effects, as in much 

of the trade literature (e.g., Anderson and Van Wincoop, 2003). This approach determines the   and   

terms up to a multiplicative constant. Santos Silva and Tenreyro (2006) argue that heteroskedasticity 

concerns, as well as the need to account for zeros in the flow matrix, make the Poisson pseudo-

maximum likelihood estimator a good candidate for a workhorse estimator of the fixed effects and 

other parameters in gravity models. In a companion paper (Arvis and Shepherd, Forthcoming), we show 

that Poisson has an additional desirable property: it is the only unconstrained (pseudo-)maximum 

likelihood estimator to preserve equality between actual and estimated total trade flows. For these 

reasons, we use Poisson to obtain estimates of the gravity model potentials.14 

                                                           
14

 Helpman et al. (2008) show that sample selection can also be an issue in gravity models with zero trade flows. 
However, the literature does not yet disclose an estimator that combines the desirable properties of those 
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5 Estimation of the ACI for 2007 

The previous developments can be applied quite generally to many spatial interaction networks. 

However, as stated earlier, this paper focuses on an application to the global air transportation network. 

We estimate an Air Connectivity Index (ACI) for 2007, using data for the month of June. The flow 

variables are sourced directly from data in the SRS Analyzer system. The SRS database provides the 

number of direct flights per week among over 200 origin and destination countries, including passenger 

and cargo flights.15 In the remainder of this section, we present results from the empirical 

implementation of the model using the approach outlined in the previous section, and provide a 

comparison with alternative metrics. 

5.1 Cost Function Specification 

As discussed in Section 4, we derive the potential terms (  and  ) as fixed effects using a Poisson 

estimator. In the trade literature, it is standard to include the simple logarithm of distance as a measure 

of trade costs (impedance). In the context of air transport, it is also natural to posit that the bilateral 

impedance is a function of distance, or equivalently time of flight. However, we take a more refined 

approach to the parameterization of this dependence for two reasons.  

First, it is important to allow for a richer set of shapes than the simple logarithm to account for the 

network structure of air transport. The commercial implications of short- versus long-haul flights are 

very different. Airplanes can only safely fly a limited distance, thereby making it technically impossible 

                                                                                                                                                                                           
developed by Santos Silva and Tenreyro (2006) and Helpman et al. (2008). We prefer Poisson because it is 
consistent under much weaker assumptions than the Heckman-like estimator used by Helpman et al. (2008). 
15

 Although from an international trade perspective we are primarily interested in movements of goods, not 
people, we include passenger traffic in addition to pure cargo flights because a significant proportion, perhaps 
50%, of air freight travels as cargo on passenger flights (Geloso Grosso and Shepherd, 2011). However, it is beyond 
the scope of this paper to examine possible differences in connectivity for passenger or mixed versus pure cargo 
flights. 



25 
 

for some country pairs to have a direct flight between them. In practice, trade costs are therefore 

unlikely to be a simple logarithmic function of distance without any breaks or other nonlinearities. 

Furthermore, at the core of the generalized gravity model is the fact that the impedance should be 

normalized to one for the closest neighboring nodes, with zero cost between them. A simple logarithmic 

dependence diverges for zero distance, and therefore needs to be adapted. One solution to this 

problem is to introduce a regularized cost function which is zero for zero distance, but which has the 

same overall shape as the classic logarithmic dependence. The simplest modification is the shifted 

logarithmic function: 

                            

where the dependence of distance is given by a shifted log: 

                              

In this expression, the constant   represents the "natural scale" of the network. The intuitive 

interpretation of this scale is that there is a fixed minimum cost in the interaction between nodes, or in 

the context of air transport the time to take off and land when moving from terminal to terminal. From 

a theoretical standpoint, this expression is also consistent with the CES foundation of gravity (Anderson, 

1979), where                           . Identification of costs with distance means that 

the corresponding elasticity of substitution would be: 

             

5.2 Econometric Results 

The primary question for implementing the shifted log estimator in distance is the choice of scale 

parameter  . A natural approach is to determine it endogenously in the regression by selecting   and   
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in (14) and (15) so as to maximize the log-likelihood of the Poisson regression function. To do this, we 

adopt a grid search approach and run a series of fixed effects Poisson regressions (Figure 6). We run the 

grid search at 100km intervals over the range 100-19,000km. The value of the log-likelihood is 

maximized at approximately        . Interestingly, this value corresponds to an operational 

threshold in the industry, between medium- and long-haul flights (5 hours or 4,000 kilometers).The beta 

coefficient for the cost function is 1% significant, and the model provides a strong overall fit with the 

data (Table 3). As measured by R2, model fit improves from 0.74 to 0.85 when we use the shifted log 

function as opposed to the simple logarithm of distance, which suggests that our approach is capturing 

an important feature of the data. 

Figure 6: Grid search results using the shifted log distance function. 
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Table 2: Gravity model regression results using the shifted log distance function. 

Dependent Variable:   No. of Flights per Week 

                                    -0.001*** 

[0.000] 

Observations 44,313 

R2 0.854 

Prob. values based on robust standard errors corrected for clustering by country-pair are in brackets 

below the coefficient estimates. Statistical significance is indicated by * (10%), ** (5%), and *** (1%). 

The model includes fixed effects by origin and destination country (estimates suppressed for brevity), and 

is estimated by Poisson. R2 is calculated as the squared correlation coefficient between the actual and 

fitted values. 

The elasticity of substitution implied by the model (see equation 15) is about 5.5, which confirms a high 

impact of distance on transport flows. Although sectoral characteristics are obviously very different, it is 

useful to compare this order of magnitude with estimates of the elasticity of substitution from goods 

markets. Anderson and Van Wincoop (2003), for example, use a benchmark of     for their 

counterfactual gravity model simulations. The simple average of the sectoral elasticities of substitution 

estimated by Broda and Weinstein (2006) ranges from four to 17, depending on the time period and 

aggregation scheme used. Our estimate might therefore be considered to be towards the low end of 

estimates for goods, which would be consistent with the intuition that different transport routes are less 

substitutable than products from different origins.  

Another way of looking at the distance result is by converting the regression coefficient to a simple 

elasticity, familiar from standard gravity models in the trade literature. Evaluated at the mean, a one 

percent increase in distance is associated with an approximately 3% decrease in the number of flights 

per week. This elasticity is much stronger than is typically found in gravity models of international trade, 

particularly those estimated by Poisson (Santos Silva and Tenreyro, 2006). Nonetheless, this finding sits 

well with the nature of the transport industry, in which distance is obviously a primary commercial 

concern due to the importance of fuel in total operational costs. 
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5.3 Robustness of the Cost Specification and Dependence on the Distance 

Shift Parameter 

The cost function used above depends on the shift parameter  . For a given distance   the cost 

increases from zero to   as the shift goes from zero to infinity. Hence, the dependence of distance on 

potential is comparatively less with a lower shift parameter, changing from a power dependence with 

zero shift to a negative exponential dependence with infinite shift. This phenomenon can be seen in the 

value of the implied elasticity of substitution, which increases with the shift parameter (Figure 7). The 

lower value is simply one plus the negative exponent of the log regression of aviation flows, known since 

Zipf (1946) to be slightly higher than one. 

Figure 7: Implied elasticity of substitution as a function of the distance shift parameter. 
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impedances) than a country in a region where distances are longer, as in East Asia for instance. Although 

results are robust around the value of the shift parameter that maximizes the log-likelihood, we 

nonetheless observe that a lower value of the shift parameter improves the score of regional hubs such 

as the UAE, or those in East Asia, as compared to European countries. An extreme case of the 

phenomenon is to use nodal distance instead of geographical distance. This amounts to using the 

adjacency matrix as the impedance matrix, i.e.        .16 Intuitively, this measure uses the same 

information as closeness centrality and is also based on a definition that uses moves on the network 

(through the iteration in this case). For comparative purposes, this nodal distance connectivity is given in 

Appendix 2 along with the connectivity computed with a lower value of the shift than the one that 

maximizes the log-likelihood, namely 100km instead of 3,900km. 

5.4 Robustness and Comparisons with Other Connectivity/Centrality Metrics 

Full details of the ACI calculated using the regression results from Table 3 substituted into equation (7) 

are presented in Appendix 1. Results are intuitively appealing, and generally accord well with thinking in 

the industry. The most connected country is the USA (22%), followed by Canada (13%), and Germany 

(12%). A cluster of European countries makes up the top ten, with scores ranging from about 10% to 

12%. This positioning is consistent with their role as regional hubs, and their close connections with 

Germany and the UK as major international gateways. Partly as a result of the optimal distance shift 

parameter suggested by the data, Asian countries—including regional hubs such as China (6%), Hong 

Kong SAR, China (5%), Japan (5%), Korea (5%), and Thailand (4%)—fall into the middle range of 

connectivity scores. The same is true for the Middle Eastern hubs of the UAE (5%), Bahrain (4%), and 

Qatar (4%). The bottom end of the rank table is made up of isolated countries in Oceania, such as the 

                                                           
16 In practice no regression is needed, as the potentials   and   can be determined iteratively from any starting 

value (e.g. total outflows):   
     

 
   

      
   

 

 , and conversely for  . This iteration converges quadratically. 
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Cook Islands, French Polynesia, Niue, Kiribati, and the Marshall Islands, as well as African countries 

including Zimbabwe, Mauritius, Madagascar, and Angola. 

Figure 8 shows that connectivity drops off sharply from the most connected country (USA, 22%) to the 

second ranked country (Canada, 13%). The mean ACI score is about 4%, but the median is 3.4%, which 

suggests that the distribution is significantly left-skewed. Both characteristics are suggestive of a power 

law distribution, as is the case for the number of direct air connections of each country (Figure 2). A 

simple regression (Gabaix and Ibragimov, 2011) confirms this finding.17 Intuitively, it is not surprising 

given that the air transport network is widely known to be composed of a relatively small number of 

well-connected hubs, and a large number of less well-connected spokes. 

Figure 8: ACI score vs. rank. 

 

                                                           
17

 The ACI (in logarithms) has a coefficient of -0.33, which is significant at the 1% level based on robust standard 
errors. The hypothesis of a Zipf law is, however, strongly rejected at the 1% level. 
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One interesting feature of the ACI is that the most connected country, the US, still receives only a fairly 

low score (22%). The reason is that although the US is very well connected globally, it still only has direct 

air links to 101 out of a possible 210 countries. Some of the links it does have—in particular with 

countries that are themselves poorly connected—are very weak. For instance, there are only a few 

flights per week between the USA and some destinations in Africa, Oceania, and even Latin America, 

compared with thousands of flights per week to neighboring Canada and Mexico. So although the US as 

an origin provides a wide range of possible destinations, many other countries can only be reached 

either indirectly, or using relatively irregular services. Most commonly, passengers and goods will pass 

through another regional hub on their way to a poorly connected destination. Because of this hub and 

spoke structure, even the most connected country in our sample has a relatively low overall connectivity 

score. 

In Table 4, we use Spearman's rank correlation coefficient to compare the ACI with the other possible 

measures of connectivity discussed in Appendix 3. Figure 9 presents the same information visually. With 

the exception of the two clustering coefficients, the ACI correlates strongly with all of these measures. 

Interestingly, the strong association with traffic share emerges even though our definition of 

connectivity is independent of market size: it is a consequence of the position of large countries in the 

network, rather than a conclusion that flows directly from the definition of connectivity. In addition, the 

fact that the ACI is strongly associated with the number of direct air links a country has captures the 

intuitive importance of direct versus indirect links in assessing connectivity: the implication is that 

indirect links are effectively down weighted, which would be consistent with a model in which transfers 

are penalized due to the additional costs involved. 

The reason for the weak correlation with the weighted and unweighted clustering measures is 

undoubtedly that they capture local connectivity only, whereas the ACI is a global measure, as discussed 
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above. In light of the decomposition presented above in which the ACI is shown to be negatively related 

to the Kullback-Leibler entropy measure, the negative rank correlation in that case is entirely expected. 

In sum, these results confirm that the ACI captures an important part of the intuitive concept of 

connectivity in the air transport context. 

Table 3: Rank correlations between the ACI and alternative connectivity indicators. 

 
Spearman's Rho 

Traffic Share 0.7590 

No. of Direct Links 0.6704 

Clustering Coefficient -0.0831 

Weighted Clustering Coefficient 0.2476 

Theil Index 0.5537 

Kullback-Leibler Distance -0.8400 

Closeness Centrality 0.7295 
Figure 9: Correlations between the ACI and alternative connectivity indicators. 

 

One important aspect of the association between the ACI and simpler, but intuitive, measures of 

connectivity such as traffic share and the number of direct links, is that the link is much weaker in low 
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income countries than for the sample as a whole: Spearman's rho is only around 0.4 in both cases. This 

finding suggests that although the ACI captures similar overall tendencies to those summarized in 

simpler metrics, its main value added is in dealing differently with smaller, less connected countries. We 

believe this makes the ACI particularly useful from a development policy point of view. 

6 The ACI, Policy, and Trade Outcomes 

It is important to check the external validity of the ACI by comparing it with input and output indicators 

that we would expect to be correlated with it. We start by considering the input side. We expect that 

liberalization of air transport markets tends to promote better connectivity. By reducing the cost of 

moving from one country to another, Bilateral Air Services Agreements (BASAs) should lead to more and 

stronger connections between countries. More liberal countries should therefore have a higher ACI 

score. Figure 10 shows that this is clearly the case (correlation coefficient = 0.45, 1% significant). We use 

the World Trade Organization's Air Liberalization Index (ALI), averaged across all partner countries, to 

measure how liberal a country's air transport policy environment is. The clear implication of this result, 

should it be borne out by more detailed analysis, is that countries seeking to improve their air transport 

connectivity would do well to move towards more liberal policy regimes, in addition to potentially 

considering measures such as lower landing or airport fees. 
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Figure 10: ACI vs. ALI. 

 

We also expect the ACI to be an important determinant of economic outcomes, particularly in the area 

of trade performance. As an increasingly important mode of transport, better air connectivity should be 

associated with a greater degree of trade integration. Figure 11 investigates this hypothesis. 

Interestingly, we find a positive but statistically insignificant association between the ACI and trade 

openness, as measured by merchandise trade as a percentage of GDP. One possible explanation for this 

finding is that it reflects the fact that air transport is only an important mode for some sectors. Goods 

with a relatively low value to weight ratio cannot be profitably moved by air, and tend to rely to a 

greater degree on maritime shipping. Since high value to weight products make up only a relatively 

small percentage of total trade, this would explain why the overall correlation is weak (correlation 

coefficient = 0.09, not statistically significant). 
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Figure 11: ACI vs. merchandise trade as a percentage of GDP. 

 

We can test the explanation advanced in the previous paragraph by focusing on goods traded within 

international production networks, which tend to have a high value to weight ratio and rely heavily on 

air transport due to the need to move goods quickly and maintain low inventories. Production networks 

need to move intermediate parts and components across borders multiple times in the course of 

producing final goods. The process can only work profitably if transport is relatively quick and cost-

effective. Because of these factors, we expect to see a particularly strong correlation between a 

country's degree of integration into international production networks, and its air connectivity. 
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Figure 12: ACI vs. trade in parts and components. 

 

This relationship is exactly what we see in Figure 12 (correlation coefficient = 0.54, 1% significant). The 

upward sloping line indicates that parts and components—a common proxy for goods circulating within 

network structures (Ando and Kimura, 2005)—represent a higher share of total exports in countries that 

are better connected with the international air transport network. The contrast with the result for 

overall merchandise trade is striking, and indicates that air transport is particularly important for 

promoting trade in high value to weight sectors, such as those traded within international production 

networks. This finding potentially has important implications for developing countries seeking to deepen 

their level of involvement in this type of trade. 
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7 Conclusion 

This paper has developed a simple but consistent measure of the degree to which countries are 

connected to the international air transport network: the Air Connectivity Index (ACI). Our measure 

captures important features of that network, such as its hub and spoke structure, and the dual 

importance of the number and strength of flight connections. As expected, the ACI correlates strongly 

with important economic measures on both the input and output sides, including the degree of policy 

liberalization in air services markets, and specialization in parts and components trade as a proxy for 

trade openness in high value to weight sectors. 

There are a number of ways in which future work can expand on our findings. As a starting point, we 

hope to update the index on a regular basis, to give policymakers and analysts consistent information on 

connectivity over time. This approach will enable them to track performance, and examine the impacts 

of policies designed to improve the air transport environment, and boost connectivity. 

Second, there is scope for detailed econometric work looking at the extent to which air connectivity 

determines trade outcomes, and the pattern of specialization across countries. We would expect 

countries with strong connectivity to specialize in industries such as perishable goods and networked 

components, which are intensive in their use of high speed transport services. The results presented in 

this paper can only be regarded as suggestive, and should be investigated more thoroughly in the future. 

Third, we expect air transport connectivity to influence exporters' choice of transport mode. This is an 

issue that can be investigated using data on imports by mode for two major markets, namely the US and 

the EU. To the extent that a country's ACI score is influenced by its policy environment—and particularly 

the degree of liberalization of air services markets—there may be scope to reduce distortions in the 

modal choices of exporters and transport operators by improving connectivity. 
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Fourth, there is scope to apply and adapt the proposed implementation of connectivity to other modes 

of transport or international networks. Maritime transport is a particular priority, because it still 

represents the dominant mode of transport for international trade transactions. This position is 

particularly true for developing countries. UNCTAD's Liner Shipping Connectivity Index has already made 

critical contributions in this area. However, as explained in Section 2, there are essential differences in 

the way information is incorporated in the two methodologies. The two approaches should prove to be 

strongly complementary in future policy work. 

Finally, the theoretical foundation of our approach, which bridges spatial modeling and trade theory, 

makes it suitable for a broad range of applications to spatial economic interactions between countries or 

other nodes. Applications to international trade immediately come to mind, in particular in measuring 

connectivity in relation to international production networks, for instance. In this respect, there are 

areas for further research and improvement, for example when it comes to the robustness of the 

specification for the impedances and the cost function; the dependence on distance used here may not 

be suitable for other problems, and will need to be addressed on a case by case basis. 

In particular, the implementation of the model departs from the simplicity of the solutions promoted in 

the network literature (Appendix 3), such as clustering and centrality indicators. In the absence of 

economic interactions between nodes, generic network analysis does not need to refer to bilateral costs 

on the network and indicators do not depend on exogenous independent variables, in this case bilateral 

distance. Developing a fully endogenous model would mean that not only the potentials, as here, but 

also the impedances would be determined from the data, in a way which is consistent with the 

generalized gravity framework. It is an apparently open and seemingly formidable problem. 
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Appendix 1: The Air Connectivity Index (ACI) 2007 

Country ACI Rank  Country ACI Rank 

Afghanistan 3.08% 115  Chile 1.79% 162 

Albania 7.28% 25  China 5.70% 46 

Algeria 6.64% 33  Christmas Island 1.99% 145 

Angola 1.42% 189  Cocos (Keeling) Islands 1.48% 187 

Anguilla 4.11% 73  Colombia 3.02% 117 

Antigua and Barbuda 3.95% 82  Comoros 1.43% 188 

Argentina 2.41% 133  Congo 1.57% 184 

Armenia 3.99% 79  Cook Islands 0.54% 211 

Aruba 3.88% 84  Costa Rica 3.24% 110 

Australia 5.90% 44  Cote d'Ivoire 1.84% 158 

Austria 9.40% 11  Croatia 9.06% 15 

Azerbaijan 3.63% 98  Cuba 4.92% 52 

Bahamas 5.87% 45  Cyprus 4.84% 54 

Bahrain 4.42% 66  Czech Republic 9.87% 10 

Bangladesh 2.79% 121  Dem. Republic of the Congo 1.64% 178 

Barbados 3.37% 106  Denmark 9.11% 14 

Belarus 6.67% 32  Djibouti 2.32% 135 

Belgium 12.03% 4  Dominica 3.77% 91 

Belize 3.78% 90  Dominican Republic 4.50% 62 

Benin 1.93% 150  East Timor 1.30% 192 

Bermuda 7.47% 23  Ecuador 2.39% 134 

Bhutan 2.74% 123  Egypt 4.29% 69 

Bolivia 1.56% 185  El Salvador 3.44% 105 

Bosnia and Herzegovina 8.13% 21  Equatorial Guinea 1.73% 169 

Botswana 1.84% 159  Eritrea 2.52% 130 

Brazil 2.67% 125  Estonia 6.35% 37 

British Virgin Islands 4.24% 71  Ethiopia 2.22% 136 

Brunei Darussalam 2.57% 129  Falkland Islands 0.72% 203 

Bulgaria 7.02% 28  Fiji 0.97% 199 

Burkina Faso 2.02% 143  Finland 6.16% 39 

Burundi 1.71% 170  France 11.64% 7 

Cambodia 3.67% 95  French Polynesia 0.54% 210 

Cameroon 1.73% 168  French Guiana 1.92% 151 

Canada 13.44% 2  Gabon 1.61% 179 

Cape Verde 1.77% 163  Gambia 1.91% 152 

Cayman Islands 4.33% 68  Georgia 3.96% 80 

Central African Republic 1.68% 173  Germany 12.11% 3 

Chad 1.98% 147  Ghana 1.86% 156 
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Country ACI Rank  Country ACI Rank 

Gibraltar 6.14% 40  Malaysia 3.91% 83 

Greece 6.13% 41  Maldives 1.66% 175 

Grenada and South Grenadines 3.46% 104  Mali 1.96% 148 

Guadeloupe 3.87% 87  Malta 6.07% 42 

Guatemala 3.50% 103  Marshall Islands 0.64% 207 

Guinea 1.67% 174  Martinique 3.69% 94 

Guinea Bissau 1.81% 161  Mauritania 2.13% 139 

Guyana 2.46% 131  Mauritius 1.18% 195 

Haiti 4.50% 63  Mexico 4.52% 60 

Honduras 3.54% 102  Micronesia 0.82% 201 

Hong Kong SAR, China 4.88% 53  Moldova 6.37% 36 

Hungary 8.63% 17  Mongolia 2.68% 124 

Iceland 3.87% 86  Montserrat 3.95% 81 

India 3.82% 88  Morocco 5.27% 49 

Indonesia 2.79% 122  Mozambique 1.65% 176 

Iran 3.74% 93  Myanmar 3.19% 112 

Iraq 3.99% 78  Namibia 1.74% 167 

Ireland 8.48% 19  Nauru 0.71% 204 

Israel 4.52% 61  Nepal 2.86% 119 

Italy 9.03% 16  Netherlands 11.73% 6 

Jamaica 4.35% 67  Netherlands Antilles 3.87% 85 

Japan 5.28% 48  New Caledonia 1.37% 190 

Jordan 4.44% 65  New Zealand 2.03% 142 

Kazakhstan 2.61% 128  Nicaragua 3.35% 107 

Kenya 2.05% 141  Niger 2.09% 140 

Kiribati 0.63% 208  Nigeria 1.94% 149 

Kuwait 4.14% 72  Niue 0.62% 209 

Kyrgyzstan 2.65% 127  Norfolk Island 1.61% 180 

Laos 3.64% 97  Norway 7.39% 24 

Latvia 6.90% 30  Oman 3.76% 92 

Lebanon 4.63% 58  Pakistan 3.23% 111 

Lesotho 1.90% 154  Palau 1.49% 186 

Liberia 1.58% 182  Panama 3.33% 108 

Libya 5.07% 50  Papua New Guinea 1.10% 197 

Lithuania 6.99% 29  Paraguay 1.86% 157 

Luxembourg 11.74% 5  Peru 1.81% 160 

Macau 4.77% 56  Philippines 3.13% 114 

Macedonia 7.18% 27  Poland 8.16% 20 

Madagascar 1.25% 193  Portugal 6.41% 35 

Malawi 1.60% 181  Qatar 4.50% 64 
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Country ACI Rank  Country ACI Rank 

Reunion 1.19% 194  Tuvalu 0.65% 206 

Romania 6.77% 31  Uganda 1.89% 155 

Russian Federation 5.30% 47  Ukraine 6.23% 38 

Rwanda 1.76% 164  United Arab Emirates 4.77% 57 

Saint Kitts and Nevis 4.03% 76  United Kingdom 11.55% 8 

Saint Lucia 3.62% 99  United States 22.78% 1 

Saint Vincent and Grenadines 3.56% 101  Uruguay 2.17% 137 

Sao Tome and Principe 1.57% 183  Uzbekistan 2.82% 120 

Saudi Arabia 4.00% 77  Vanuatu 1.11% 196 

Senegal 1.98% 146  Venezuela 3.65% 96 

Serbia 7.88% 22  Vietnam 3.80% 89 

Seychelles 1.31% 191  Wallis and Futuna Islands 0.67% 205 

Sierra Leone 1.65% 177  Western Samoa 3.06% 116 

Singapore 4.09% 74  Yemen 2.65% 126 

Slovakia 9.18% 13  Zambia 1.71% 171 

Slovenia 9.39% 12  Zimbabwe 1.01% 198 

Solomon Islands 0.96% 200     

Somalia 1.75% 165     

South Africa 3.57% 100     

South Korea 4.79% 55     

Spain 8.49% 18     

Sri Lanka 2.02% 144     

Sudan 2.44% 132     

Suriname 2.17% 138     

Swaziland 1.70% 172     

Sweden 7.20% 26     

Switzerland 10.76% 9     

Syria 4.54% 59     

Taiwan, China 4.25% 70     

Tajikistan 2.92% 118     

Tanzania 1.75% 166     

Thailand 4.06% 75     

Togo 1.90% 153     

Tonga 0.78% 202     

Trinidad and Tobago 3.26% 109     

Tunisia 6.61% 34     

Turkey 6.05% 43     

Turkmenistan 3.19% 113     

Turks and Caicos Islands 4.93% 51     
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Appendix 2: Alternative Connectivity/Centrality Measures 

Country 
ACI 
(a=100) 

ACI 
(Nodal 
Dist.) 

Traffic 
Share 

No. of 
Links 

Clustering 
Coefficient 

Weighted Clustering 
Coefficient 

Theil 
Index 

Kullback-Leibler 
Distance 

Closeness 
Centrality 

Afghanistan 0.27% 5.09% 0.03% 9 0.83 0.96 1.63 3.10 0.49 

Albania 0.61% 17.10% 0.11% 13 0.97 0.99 1.82 1.92 0.56 

Algeria 0.58% 23.32% 0.20% 23 0.68 0.98 1.68 1.85 0.61 

Angola 0.17% 9.93% 0.02% 13 0.49 0.52 2.15 3.68 0.53 

Anguilla 0.36% 5.59% 0.04% 4 1.00 1.00 1.12 3.45 0.50 

Antigua and Barbuda 0.46% 19.48% 0.15% 19 0.43 0.46 2.53 3.78 0.58 

Argentina 1.25% 20.35% 0.43% 21 0.49 0.84 2.10 3.42 0.58 

Armenia 0.35% 18.59% 0.08% 17 0.84 0.98 1.55 2.79 0.59 

Aruba 0.44% 8.35% 0.12% 7 0.81 1.00 1.32 3.14 0.52 

Australia 3.55% 22.18% 0.67% 32 0.34 0.76 2.53 2.61 0.59 

Austria 1.34% 49.04% 1.59% 61 0.49 0.92 3.05 0.76 0.82 

Azerbaijan 0.37% 25.41% 0.11% 30 0.66 0.91 2.68 2.06 0.64 

Bahamas 0.82% 12.39% 0.55% 7 0.76 0.99 0.20 2.33 0.55 

Bahrain 0.65% 27.85% 0.33% 34 0.62 0.91 2.75 2.21 0.65 

Bangladesh 0.41% 16.95% 0.15% 21 0.72 0.93 2.50 2.35 0.57 

Barbados 0.44% 15.19% 0.17% 15 0.51 0.81 2.24 3.56 0.58 

Belarus 0.53% 19.83% 0.08% 16 0.87 0.97 2.32 2.07 0.58 

Belgium 1.74% 48.51% 1.34% 64 0.41 0.94 3.06 0.51 0.81 

Belize 0.31% 6.44% 0.04% 5 1.00 1.00 0.98 2.75 0.50 

Benin 0.26% 4.97% 0.03% 14 0.58 0.61 2.32 4.93 0.50 

Bermuda 0.46% 10.19% 0.07% 3 1.00 1.00 0.45 2.05 0.55 

Bhutan 0.21% 1.39% 0.01% 3 1.00 1.00 0.90 4.71 0.43 

Bolivia 0.23% 9.62% 0.05% 7 0.90 0.91 1.86 3.37 0.52 

Bosnia and Herzegovina 0.67% 15.26% 0.06% 11 0.96 0.96 2.10 2.55 0.55 
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Country 
ACI 
(a=100) 

ACI 
(Nodal 
Dist.) 

Traffic 
Share 

No. of 
Links 

Clustering 
Coefficient 

Weighted Clustering 
Coefficient 

Theil 
Index 

Kullback-Leibler 
Distance 

Closeness 
Centrality 

Botswana 0.23% 2.44% 0.04% 3 0.67 0.97 0.44 5.05 0.41 

Brazil 1.66% 33.24% 0.48% 27 0.47 0.73 2.53 2.21 0.68 

British Virgin Islands 0.41% 6.05% 0.13% 4 1.00 1.00 0.58 2.42 0.50 

Brunei Darussalam 0.27% 8.94% 0.06% 10 0.96 0.99 2.05 2.70 0.49 

Bulgaria 0.66% 28.59% 0.25% 27 0.83 0.99 2.61 1.08 0.65 

Burkina Faso 0.20% 4.43% 0.02% 10 0.80 0.84 2.10 4.80 0.49 

Burundi 0.17% 1.57% 0.02% 5 0.90 0.97 1.19 6.41 0.46 

Cambodia 0.45% 8.38% 0.17% 9 0.86 0.96 1.87 3.13 0.48 

Cameroon 0.23% 6.31% 0.05% 15 0.53 0.62 2.39 4.28 0.50 

Canada 1.84% 53.10% 2.93% 56 0.35 0.98 0.98 1.65 0.82 

Cape Verde 0.18% 15.56% 0.02% 10 0.64 0.89 1.69 3.26 0.58 

Cayman Islands 0.33% 8.37% 0.06% 6 0.80 0.97 0.85 2.43 0.51 

Central African Republic 0.14% 3.25% 0.00% 5 0.60 0.72 1.56 4.52 0.49 

Chad 0.17% 3.32% 0.01% 8 0.50 0.75 1.62 3.76 0.49 

Chile 0.79% 19.19% 0.23% 20 0.51 0.90 2.15 3.04 0.57 

China 4.08% 49.96% 2.33% 55 0.44 0.89 2.56 1.72 0.79 

Christmas Island 0.17% 1.92% 0.00% 3 0.67 0.71 1.08 6.00 0.44 

Cocos (Keeling) Islands 0.12% 1.05% 0.00% 2 1.00 1.00 0.69 7.14 0.37 

Colombia 0.73% 18.59% 0.35% 17 0.70 0.96 2.10 2.46 0.57 

Comoros 0.15% 1.51% 0.01% 5 0.50 0.55 1.49 5.90 0.39 

Congo 0.24% 5.55% 0.03% 11 0.58 0.70 2.01 5.13 0.51 

Cook Islands 0.10% 5.01% 0.01% 4 0.83 0.96 0.82 5.23 0.50 

Costa Rica 0.50% 15.27% 0.22% 15 0.67 0.89 1.94 2.43 0.54 

Coted'Ivoire 0.85% 28.49% 0.29% 24 0.80 0.96 2.45 1.23 0.64 

Croatia 0.38% 33.28% 0.10% 27 0.46 0.72 2.69 1.73 0.68 

Cuba 0.59% 27.66% 0.29% 32 0.75 0.97 2.53 1.82 0.64 

Cyprus 1.09% 41.84% 0.86% 45 0.64 0.93 3.18 0.72 0.77 
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Country 
ACI 
(a=100) 

ACI 
(Nodal 
Dist.) 

Traffic 
Share 

No. of 
Links 

Clustering 
Coefficient 

Weighted Clustering 
Coefficient 

Theil 
Index 

Kullback-Leibler 
Distance 

Closeness 
Centrality 

Czech Republic 0.26% 6.12% 0.03% 11 0.71 0.76 2.08 4.54 0.50 
Democratic Republic of 
the Congo 1.28% 44.47% 1.43% 42 0.66 0.97 2.90 0.97 0.80 

Denmark 0.23% 4.91% 0.03% 9 0.67 0.76 1.71 5.10 0.51 

Djibouti 0.41% 5.94% 0.04% 6 0.80 0.87 1.66 3.93 0.50 

Dominica 0.59% 26.35% 0.30% 22 0.52 0.93 1.28 1.88 0.63 

Dominican Republic 0.14% 2.11% 0.02% 2 1.00 1.00 0.26 5.03 0.37 

East Timor 0.42% 12.75% 0.15% 13 0.83 0.98 1.92 2.74 0.53 

Ecuador 0.78% 43.45% 0.48% 52 0.49 0.79 3.35 1.49 0.77 

Egypt 0.42% 10.08% 0.15% 9 0.72 0.94 1.73 2.89 0.51 

El Salvador 0.17% 11.51% 0.01% 8 0.68 0.72 1.95 2.82 0.54 

Equatorial Guinea 0.20% 4.47% 0.01% 7 0.76 0.88 1.69 3.97 0.50 

Eritrea 0.68% 27.37% 0.16% 20 0.95 0.98 2.64 1.85 0.64 

Estonia 0.41% 21.01% 0.14% 35 0.37 0.48 3.25 2.82 0.60 

Ethiopia 0.07% 0.53% 0.00% 2 1.00 1.00 0.69 5.07 0.37 

Falkland Islands 0.29% 9.39% 0.05% 14 0.31 0.72 2.04 3.97 0.52 

Fiji 0.91% 43.70% 0.72% 38 0.72 0.95 2.91 1.08 0.78 

Finland 2.46% 65.34% 5.03% 110 0.25 0.87 3.23 0.44 0.92 

France 0.18% 3.58% 0.02% 4 0.67 0.62 1.18 4.56 0.50 

French Guiana 0.16% 7.63% 0.02% 7 0.62 0.86 1.40 2.52 0.51 

French Polynesia 0.18% 3.99% 0.02% 8 0.54 0.79 1.66 5.60 0.49 

Gabon 0.22% 9.56% 0.01% 7 0.52 0.79 1.40 5.18 0.54 

Gambia 0.33% 17.74% 0.05% 15 0.80 0.92 2.35 2.36 0.58 

Georgia 3.62% 61.12% 8.22% 98 0.30 0.93 3.30 0.46 0.91 

Germany 0.31% 20.86% 0.09% 22 0.45 0.63 2.48 3.83 0.63 

Ghana 0.55% 7.16% 0.02% 2 1.00 1.00 0.66 2.06 0.51 

Gibraltar 1.09% 43.24% 0.95% 48 0.60 0.95 2.85 0.88 0.78 

Greece 0.36% 6.67% 0.06% 9 0.69 0.90 1.65 4.67 0.50 
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Country 
ACI 
(a=100) 

ACI 
(Nodal 
Dist.) 

Traffic 
Share 

No. of 
Links 

Clustering 
Coefficient 

Weighted Clustering 
Coefficient 

Theil 
Index 

Kullback-Leibler 
Distance 

Closeness 
Centrality 

Grenada and South 
Grenadines 0.49% 11.39% 0.18% 13 0.47 0.86 1.45 4.34 0.54 

Guadeloupe 0.43% 10.02% 0.16% 10 0.76 0.93 1.84 2.73 0.53 

Guatemala 0.18% 4.11% 0.02% 7 0.62 0.84 1.72 4.75 0.49 

Guinea 0.17% 1.14% 0.01% 2 1.00 1.00 0.30 6.20 0.43 

Guinea Bissau 0.22% 6.68% 0.03% 5 0.80 1.00 1.03 5.07 0.51 

Guyana 0.37% 9.22% 0.07% 11 0.67 0.91 1.20 2.67 0.51 

Haiti 0.36% 8.24% 0.09% 9 0.72 0.96 1.55 3.17 0.50 

Honduras 2.11% 43.01% 1.66% 44 0.54 0.90 2.61 1.64 0.74 

Hong Kong SAR, China 0.95% 42.72% 0.66% 44 0.64 0.91 3.20 0.82 0.78 

Hungary 0.41% 30.59% 0.15% 16 0.98 0.98 2.37 1.03 0.69 

Iceland 2.08% 42.96% 1.08% 53 0.47 0.80 3.09 1.49 0.75 

India 1.11% 17.57% 0.49% 16 0.76 0.92 1.88 2.86 0.56 

Indonesia 0.53% 31.36% 0.25% 35 0.61 0.94 2.28 2.16 0.66 

Iran 0.32% 3.56% 0.05% 7 0.86 0.94 1.20 4.45 0.49 

Iraq 1.21% 37.96% 1.28% 33 0.72 0.99 2.05 0.97 0.73 

Ireland 0.62% 40.46% 0.32% 41 0.62 0.92 3.26 0.73 0.76 

Israel 3.26% 56.83% 4.41% 87 0.35 0.93 3.00 0.52 0.88 

Italy 0.28% 7.37% 0.07% 22 0.42 0.54 2.57 4.46 0.51 

Jamaica 0.48% 19.91% 0.20% 16 0.48 0.93 1.06 2.03 0.59 

Japan 3.96% 42.85% 1.79% 42 0.49 0.94 2.49 1.39 0.75 

Jordan 0.58% 37.42% 0.27% 38 0.64 0.74 3.14 2.10 0.73 

Kazakhstan 0.43% 23.60% 0.16% 25 0.64 0.93 2.49 1.90 0.61 

Kenya 0.64% 27.23% 0.24% 37 0.35 0.59 2.97 3.06 0.61 

Kiribati 0.09% 4.67% 0.00% 4 0.33 0.25 1.31 6.75 0.50 

Kuwait 0.60% 30.79% 0.31% 33 0.70 0.90 2.74 2.28 0.69 

Kyrgyzstan 0.27% 5.13% 0.03% 9 0.83 0.96 1.46 3.32 0.50 

Laos 0.33% 3.76% 0.04% 4 1.00 1.00 1.20 3.82 0.46 
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Country 
ACI 
(a=100) 

ACI 
(Nodal 
Dist.) 

Traffic 
Share 

No. of 
Links 

Clustering 
Coefficient 

Weighted Clustering 
Coefficient 

Theil 
Index 

Kullback-Leibler 
Distance 

Closeness 
Centrality 

Latvia 0.66% 34.46% 0.26% 28 0.80 0.92 2.98 1.35 0.71 

Lebanon 0.54% 28.38% 0.19% 40 0.58 0.87 3.00 1.76 0.65 

Lesotho 0.17% 1.53% 0.02% 1 0.00 0.00 0.00 5.25 0.41 

Liberia 0.16% 1.25% 0.01% 5 0.70 0.66 1.51 6.02 0.40 

Libya 0.43% 24.46% 0.12% 33 0.48 0.78 3.06 1.95 0.61 

Lithuania 0.61% 29.20% 0.18% 22 0.95 0.98 2.83 1.32 0.65 

Luxembourg 1.38% 41.84% 0.26% 52 0.52 0.91 2.97 0.65 0.81 

Macau 1.17% 11.32% 0.41% 11 0.87 1.00 1.56 2.69 0.54 

Macedonia 0.58% 11.77% 0.05% 11 0.96 0.98 2.27 2.51 0.53 

Madagascar 0.20% 7.01% 0.04% 8 0.61 0.78 1.72 4.72 0.51 

Malawi 0.18% 7.01% 0.02% 8 0.89 0.93 1.80 4.28 0.51 

Malaysia 1.02% 36.69% 0.78% 40 0.52 0.83 2.79 2.01 0.67 

Maldives 0.25% 16.96% 0.05% 14 0.85 0.90 2.03 3.11 0.58 

Mali 0.23% 5.08% 0.04% 13 0.62 0.72 2.15 4.50 0.50 

Malta 0.52% 28.76% 0.14% 25 0.85 0.98 2.30 1.07 0.65 

Marshall Islands 0.10% 4.22% 0.01% 3 0.67 0.85 0.96 4.65 0.50 

Martinique 0.42% 9.30% 0.09% 12 0.53 0.64 1.59 4.33 0.54 

Mauritania 0.20% 6.82% 0.02% 8 0.89 0.99 1.69 3.75 0.51 

Mauritius 0.28% 21.42% 0.06% 16 0.71 0.69 2.20 3.37 0.60 

Mexico 3.29% 29.99% 1.51% 24 0.53 0.98 0.79 1.99 0.65 

Micronesia 0.09% 4.19% 0.00% 2 1.00 1.00 0.68 4.80 0.50 

Moldova 0.48% 15.80% 0.05% 14 0.98 1.00 2.36 2.11 0.58 

Mongolia 0.23% 4.88% 0.02% 5 1.00 1.00 1.36 2.77 0.49 

Montserrat 0.41% 2.36% 0.02% 1 0.00 0.00 0.00 6.51 0.37 

Morocco 0.74% 33.59% 0.48% 37 0.47 0.91 2.42 1.27 0.70 

Mozambique 0.31% 3.56% 0.08% 7 0.43 0.95 0.62 4.83 0.45 

Myanmar 0.31% 6.05% 0.06% 7 0.95 1.00 1.36 3.12 0.48 
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Namibia 0.26% 10.79% 0.06% 5 0.60 0.96 0.64 4.61 0.53 

Nauru 0.08% 0.51% 0.00% 2 0.00 0.00 0.68 8.88 0.34 

Nepal 0.29% 8.62% 0.06% 13 0.78 0.93 2.09 2.98 0.50 

Netherlands 1.89% 59.65% 2.56% 85 0.34 0.92 3.07 0.38 0.90 

Netherlands Antilles 0.64% 14.64% 0.36% 20 0.39 0.61 2.26 3.37 0.55 

New Caledonia 0.14% 3.54% 0.02% 7 0.62 0.83 1.62 4.22 0.44 

New Zealand 1.46% 15.91% 0.30% 21 0.34 0.81 1.50 3.72 0.55 

Nicaragua 0.33% 8.46% 0.07% 8 0.89 0.93 1.70 3.20 0.51 

Niger 0.18% 4.14% 0.01% 8 0.93 0.99 1.94 4.84 0.49 

Nigeria 0.36% 26.48% 0.11% 30 0.48 0.70 2.84 2.36 0.66 

Niue 0.07% 0.62% 0.00% 1 0.00 0.00 0.00 5.81 0.35 

Norfolk Island 0.11% 1.68% 0.01% 2 1.00 1.00 0.47 4.68 0.37 

Norway 1.04% 36.49% 0.94% 32 0.75 0.99 2.59 1.18 0.73 

Oman 0.54% 12.13% 0.25% 18 0.76 0.99 1.92 2.82 0.54 

Pakistan 0.57% 26.38% 0.27% 29 0.66 0.95 2.21 2.34 0.64 

Palau 0.15% 6.57% 0.01% 4 1.00 1.00 1.29 2.79 0.51 

Panama 0.61% 14.55% 0.30% 21 0.50 0.82 2.44 2.73 0.54 

Papua New Guinea 0.15% 8.00% 0.02% 6 0.73 0.95 0.86 4.27 0.52 

Paraguay 0.23% 3.55% 0.05% 5 1.00 1.00 1.25 4.43 0.50 

Peru 0.64% 16.67% 0.20% 15 0.71 0.87 2.45 2.63 0.56 

Philippines 0.75% 22.47% 0.36% 23 0.60 0.92 2.59 1.74 0.59 

Poland 1.08% 38.58% 1.03% 33 0.81 0.98 2.77 0.69 0.74 

Portugal 1.08% 39.67% 1.02% 38 0.53 0.96 2.42 0.85 0.74 

Qatar 0.73% 38.42% 0.43% 48 0.51 0.80 3.25 1.72 0.70 

Reunion 0.25% 5.13% 0.05% 11 0.55 0.77 1.55 5.06 0.51 

Romania 0.75% 34.90% 0.47% 30 0.85 0.99 2.57 1.09 0.72 

Russian Federation 1.66% 50.56% 1.35% 64 0.46 0.76 3.45 1.12 0.83 
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Rwanda 0.19% 2.12% 0.02% 6 0.80 0.96 1.14 5.86 0.49 

Saint Kitts and Nevis 0.41% 6.27% 0.08% 6 0.73 0.99 1.29 3.77 0.50 

Saint Lucia 0.42% 12.43% 0.09% 11 0.64 0.86 2.01 3.54 0.55 
Saint Vincent and 
Grenadines 0.38% 6.53% 0.06% 8 0.89 0.99 1.69 4.65 0.50 

Sao Tome and Principe 0.14% 0.83% 0.00% 5 0.30 0.14 1.47 6.28 0.43 

Saudi Arabia 0.74% 35.62% 0.45% 44 0.52 0.79 3.13 2.11 0.70 

Senegal 0.39% 26.38% 0.12% 25 0.41 0.48 2.95 2.96 0.64 

Serbia 0.68% 25.90% 0.23% 28 0.72 0.82 2.73 2.00 0.62 

Seychelles 0.15% 16.72% 0.02% 11 0.84 0.90 2.26 2.32 0.58 

Sierra Leone 0.17% 2.16% 0.01% 7 0.52 0.50 1.82 5.63 0.46 

Singapore 1.81% 43.00% 1.21% 48 0.46 0.83 2.91 1.76 0.74 

Slovakia 1.02% 26.15% 0.14% 18 0.88 0.98 2.37 1.51 0.63 

Slovenia 0.85% 28.50% 0.16% 25 0.77 0.91 2.83 1.33 0.65 

Solomon Islands 0.11% 1.90% 0.01% 5 0.40 0.61 1.42 5.59 0.37 

Somalia 0.17% 2.25% 0.02% 5 0.90 0.83 1.29 5.62 0.47 

South Africa 2.15% 36.72% 0.53% 48 0.31 0.30 3.11 3.32 0.69 

South Korea 1.73% 43.64% 1.32% 41 0.51 0.94 2.30 1.73 0.76 

Spain 4.11% 52.19% 4.77% 71 0.36 0.95 2.59 0.66 0.82 

Sri Lanka 0.51% 19.62% 0.17% 18 0.86 0.96 2.03 2.87 0.60 

Sudan 0.31% 10.13% 0.09% 19 0.68 0.85 2.44 3.11 0.53 

Suriname 0.17% 1.96% 0.01% 4 0.67 0.88 0.95 4.29 0.48 

Swaziland 0.20% 1.93% 0.03% 2 1.00 1.00 0.36 5.10 0.41 

Sweden 1.19% 40.25% 1.20% 37 0.72 0.98 2.84 1.02 0.75 

Switzerland 1.56% 51.07% 2.13% 63 0.48 0.96 2.90 0.50 0.84 

Syria 0.52% 31.01% 0.16% 37 0.63 0.82 3.11 1.96 0.66 

Taiwan, China 1.37% 29.92% 0.91% 27 0.60 0.87 2.33 1.99 0.65 

Tajikistan 0.28% 5.02% 0.04% 9 0.86 0.95 1.20 3.63 0.49 



53 
 

Country 
ACI 
(a=100) 

ACI 
(Nodal 
Dist.) 

Traffic 
Share 

No. of 
Links 

Clustering 
Coefficient 

Weighted Clustering 
Coefficient 

Theil 
Index 

Kullback-Leibler 
Distance 

Closeness 
Centrality 

Tanzania 0.35% 12.53% 0.10% 15 0.52 0.89 1.76 4.23 0.55 

Thailand 1.96% 50.93% 1.13% 57 0.44 0.78 3.25 1.46 0.80 

Togo 0.23% 4.04% 0.02% 9 0.78 0.72 1.88 4.97 0.50 

Tonga 0.11% 2.03% 0.01% 4 1.00 1.00 1.17 5.27 0.37 

Trinidad and Tobago 0.42% 16.56% 0.15% 16 0.51 0.81 2.21 3.65 0.59 

Tunisia 0.60% 29.42% 0.22% 32 0.67 0.95 2.50 1.36 0.65 

Turkey 1.17% 53.29% 1.04% 75 0.41 0.85 3.22 0.89 0.84 

Turkmenistan 0.23% 1.81% 0.01% 4 1.00 1.00 1.29 4.15 0.47 

Turks and Caicos Islands 0.36% 6.80% 0.05% 5 0.80 0.91 1.40 3.11 0.50 

Tuvalu 0.07% 0.38% 0.00% 1 0.00 0.00 0.00 7.56 0.34 

Uganda 0.24% 9.05% 0.04% 12 0.65 0.87 1.97 4.27 0.53 

Ukraine 0.74% 41.91% 0.47% 49 0.58 0.91 3.05 1.52 0.77 

United Arab Emirates 2.32% 55.64% 1.66% 79 0.35 0.73 3.54 1.57 0.85 

United Kingdom 3.91% 63.02% 8.01% 102 0.28 0.91 3.18 0.45 0.90 

United States 19.42% 69.60% 8.88% 101 0.20 0.61 3.10 1.16 0.91 

Uruguay 0.38% 5.78% 0.11% 6 0.87 1.00 0.91 4.51 0.47 

Uzbekistan 0.35% 25.29% 0.11% 25 0.69 0.88 2.33 2.37 0.63 

Vanuatu 0.13% 2.27% 0.01% 5 0.80 0.93 1.39 5.09 0.37 

Venezuela 0.69% 29.09% 0.39% 31 0.42 0.84 2.15 1.99 0.65 

Vietnam 0.67% 19.36% 0.36% 17 0.71 0.91 2.44 2.34 0.57 
Wallis and Futuna 
Islands 0.07% 0.39% 0.00% 2 1.00 1.00 0.56 7.27 0.34 

Western Samoa 0.25% 6.14% 0.03% 5 0.90 0.94 0.91 2.59 0.50 

Yemen 0.29% 19.83% 0.07% 22 0.64 0.82 2.62 2.89 0.58 

Zambia 0.36% 6.41% 0.10% 9 0.81 0.95 1.30 4.49 0.50 

Zimbabwe 0.29% 9.09% 0.07% 11 0.53 0.92 1.30 4.56 0.51 
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Appendix 3: Alternative Measures of Connectivity 

The air transport network can be envisaged as a collection of nodes, each of which represents a 

country.18 The structure of the network is given by the so-called adjacency or link matrix  , where a 

typical element       if there is a direct air link going from country i to country j; otherwise, it is equal 

to zero. In practice the adjacency matrix is very close to symmetric for the air transportation network, so 

we can assume        . 

The activity on each link of the network is measured in terms of the flow on the network, which is 

summarized in the matrix  . A typical element     is the total flow from country i to country j, and     is 

the flow in the other direction from j to i (transport networks are bi-directional). There are two primary 

choices for   in the case of air transport, namely frequency (number of flights per unit time) or capacity 

(number of seats per unit time). 

Intuitive Metrics 

A first intuitive approach to connectivity is simply counting the number of connections by node, often 

referred to as degree centrality.19 For instance, using the elements of the adjacency matrix: 

            
 

 

An alternative approach is to use the total outflow or inflow from each node:20 

             
 

            
 

 

                                                           
18

 In reality, of course, many countries have multiple international airports. In principle, our analysis could be 
replicated at the level of individual airports, so as to obtain connectivity scores at the airport level. From a policy 
point of view, however, it is primarily country scores that are of the most interest, so we abstract from the airport 
dimension in this paper. 
19

 In the context of approximately symmetric link and flow matrices, the distinction commonly made between in- 
and out-degree centrality is of limited relevance, and so we present only one measure. 
20

 We use the dot convention to designate summation over an index. 



55 
 

Such simple output indicators obviously contain significant information, but by definition remain local 

rather than global, in the sense that they do not incorporate information from the full structure of the 

network. Counts of total outflow or total destinations do not incorporate information on the network 

beyond the immediate neighborhood of each node. That is, they do not capture indirect connections, 

which are of particular importance in air transport where connecting flights are common. Nor do these 

types of measures reflect the interactions among nodes. A further shortcoming of the most common 

form of degree centrality—which is based on the adjacency matrix—is that it does not combine 

information on the number and intensity (flow strength) of connections. Both are important, however, 

for measuring connectivity from a policy perspective. 

In order to extract information on connectivity from simple output indicators, UNCTAD (2007) and 

Pearce (2007)—see further in the main text—combine them with other node-specific outcomes, like 

GDP or GDP per capita. On the one hand, these compound indicators are arbitrary definitions, and thus 

not entirely satisfactory from a formal standpoint: there is a size bias—larger nodes are considered to be 

better connected—and these indicators are not global metrics rooted in network modeling. On the 

other hand, they are legitimate indicators based on expert knowledge and a professional understanding 

of the factors that influence the flows measured. The rankings produced are consistent with analytical 

priors. 

Concentration Metrics 

A more sophisticated approach than simple counting, and one which makes use of more information 

from the matrix, is to use concentration indices such as the Herfindhal or Theil indices of the flows to 

and from a node in the network. The Theil index is the entropy of the relative weight of the outflows or 

inflows from node i to the neighboring node js, and is given by the following expression: 
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These kinds of concentration indicators have no dimension. However, they do not incorporate 

information about the structure of the network. They are essentially local measures, because they only 

use information from a single node. Relative entropy measures are better in this respect, since they 

compare the composition of flows to or from a node to an average composition. The most commonly 

used is the Kullback-Leibler distance, which is a modification of the Theil index. In this case, the 

reference composition should be the relative weight of each node (excluding the contribution of node i 

since there is no flow from a node to itself), or 
   

       
. Then: 

                  
   

    
  

   

    
   

       
   

 

A variation of this definition will be significant in the approach to connectivity developed in this paper—

see Section 4 of the main text. 

Clustering 

Clustering is an important concept in network theory. It is essentially a topological concept. The 

clustering coefficient of node i is an intuitive measure of how well connected the nodes in the 

neighborhood of i are. This number, comprised between 0 and 1, is given by: 

                 
                               

                                        
 

Or using the notation above for the adjacency matrix: 
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A hub or a bridge between clusters will have a small clustering coefficient. A node connected to several 

hubs will have a clustering coefficient of close to one. This definition applies equally to directional and 

non-directional networks; that is, a triangle is counted once for each direction it can be run, ijk and ikj. A 

variant of this definition applies to weighted networks (Barrat et al., 2004). It gives higher weight to 

triangles with higher flows to the node: 

                
  

               

          
               

    

This definition of clustering has already been applied to airports (Barrat et al., 2004). By construction, it 

not only includes information about interactions with neighboring nodes, but also about interactions 

between neighboring nodes. However, the analysis of interactions does not go beyond the immediate 

partners within a cluster. It is not clear what high or low clustering means for a node's global 

connectivity: it is rather a measure of local connectivity, and the degree of belonging to a local cluster. A 

hub will tend to exhibit local clustering, but so does an isolated node bridging between clusters. Visual 

inspection of the results of Barrat et al. (2004) and our computations in the main text do not support 

clustering as a candidate for connectivity in a broader policy context. 

Centrality and PageRank 

Centrality measures the importance of a node in relation to all the other nodes in the network. The 

more important a destination is for its neighbors, the more central it is. There are several 

implementations of the concept. All of them are based on the concept of random movement through 

the network from one node to the next, an image directly relevant to transportation on a hub and spoke 

network. The most central nodes are the ones most often encountered when moving randomly through 

the network. The "pointing" is defined by the transition probabilities matrix from a modified adjacency 

matrix  : 
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Depending on the nature of a given problem, the modified adjacency matrix can be the adjacency matrix 

with elements equal to unity if a link is active, or the flow matrix  . 

Eigenvector centrality, one of the most elegant tools in network theory, is a linear implementation of 

this concept. It has been made famous by the Google algorithm called PageRank (Brin and Page, 1988; 

Bryan and Liese, 2006). PageRank gives the highest ranking to the most probable pages when clicking on 

relevant hyperlinks from web pages. Formally, ranking pages is analogous to the current problem 

(replace page by country, hyperlink by air route, and web-surfer by passenger). 

Eigenvector centrality    is the average occupation of individual nodes when moving randomly through 

the network: 

       
          

 

   

 

From an initial occupation,   converges to the main eigenvector of the transposed transition matrix. 

According to the Frobenius theorem, for a matrix with positive coefficients, the leading eigenvalue is 

positive, and the corresponding leading eigenvector coordinates have the same sign. Furthermore, since 

the probability of node occupation is conserved when moving randomly on the network: 

         
   

 

       
 

  

        
 

  

    
 

 

 

The eigenvalue is therefore one, and the procedure converges to a mean occupation   . A generalized 

version of the algorithm introduces a damping factor  , which corresponds to a probability of stopping 
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at an intermediate node. In the transport context, a rationale for including such a damping factor could 

be to impose a cost penalty for transit or transshipment at a hub. This approach gives: 

        
               

 

   

    
  

For practical purposes,    would be the inverse of the "diameter" of the network, i.e. the number of 

links in the shortest path between the furthest pair of nodes. Transport networks typically have a 

diameter of around four, which gives   
 

 
. The PageRank algorithm has been implemented for web 

pages and journal citations using the link matrix as the adjacency matrix, i.e.     
   

   
. 

The networks considered by measures such as eigenvector centrality and PageRank are unidirectional, 

i.e.               . In such cases, the algorithm is very successful at identifying the nodes which are 

most referenced eventually in cascade by the others. In the case when the activity between nodes is 

measured by bi-directional flows, as in transportation or trade,        . When flows are symmetric, as 

in the case of transportation capacity, or just balanced (total inflows equal total outflows), PageRank 

only produces the trivial result that centrality is simply proportional to total out(in)flow or "market 

share". To see this, let connectivity    be the ratio of eigenvector centrality to total outflow, i.e. 

        . Then: 

        
     

   

   

   

   
  

 

   

     

   

   
  

 

   

 

When flows are balanced, as is the case for a symmetric flow matrix,         and        . As a result, 

  
          

 
   , for which a solution is      and           . In the damped version of the 

model, connectivity is essentially a rescaling of the step zero value, i.e.             
 . 
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Although eigenvector centrality is very appealing as a measure of connectivity, there is no easy way to 

adapt the model to produce non-trivial results for an approximately symmetric flow matrix, as in the 

case of air transport. (In the data—see main text— the correlation between inbound and outbound 

traffic is 0.998, which reflects an approximate bilateral balance in traffic.) Intuitively, linear procedures 

will not break the symmetry between inflows and outflows, and will produce the same centrality 

measures for inflows and outflows proportional to total flows.  

Nodal Distance and Closeness Centrality 

Another application of centrality, closeness centrality, defines distance or the separation between two 

nodes in the network        as the number of steps between them. One definition (Newman, 2008) sets 

distance in terms of the minimum number of steps required to reach j from i (nodal distance). An 

alternative definition (Newman, 2008) treats the distance between two nodes as the average number of 

steps required to reach j for the first time from i when moving randomly through the network. 

Since bilateral separation is at least equal to unity, the inverse of average distance—referred to as 

accessibility or closeness centrality (Newman, 2008)—is a number between zero and one. A higher value 

indicates that a node is closer to the rest of the network, and is thus more connected. The nodes are 

weighted according to their outflows (excluding i), thus: 

         
 

          

   

       

 

This definition is relatively simple to implement, at least in the case of the geodetic distance given by the 

minimal separation.21 It is more complex (Newman, 2008) when random separation is applied, given the 

obvious constraint of non-return. However, the concept of separation distance is topological; it 

                                                           
21

 This definition requires less detailed information than the adjacency matrix: just the link matrix, and total 
outflows. 
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imperfectly emulates real distance, time, or some other bilateral cost that is an important determinant 

of activity in real-life economic networks such as air transport. Furthermore, this concept becomes 

trivial (nodal distance of one) when the network is very connected and the adjacency matrix has mostly 

ones. This issue does not arise in the context of air transport, for which the adjacency matrix is sparse, 

but is more of a concern for possible applications in other areas, such as international trade. 

 


