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Abstract
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names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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access to its research and make a contribution to development policy discussions around the world. Policy Research Working 
Papers are also posted on the Web at http://econ.worldbank.org. The authors may be contacted at gcarletto@worldbank.org.  

Much of the current analysis on agricultural productivity 
is hampered by the lack of consistent, high quality data 
on soil health and how it is changing under past and cur-
rent management. Historically, plot-level statistics derived 
from household surveys have relied on subjective farmer 
assessments of soil quality or, more recently, publicly avail-
able geospatial data. The Living Standards Measurement 
Study of the World Bank implemented a methodological 
study in Ethiopia, which resulted in an unprecedented data 
set encompassing a series of subjective indicators of soil 
quality as well as spectral soil analysis results on plot-spe-
cific soil samples for 1,677 households. The goals of the 
study, which was completed in partnership with the World 
Agroforestry Centre and the Central Statistical Agency of 
Ethiopia, were twofold: (1) evaluate the feasibility of inte-
grating a soil survey into household socioeconomic data 
collection operations, and (2) evaluate local knowledge of 
farmers in assessing their soil quality.  Although a cost-
lier method than subjective assessment, the integration of 
spectral soil analysis in household surveys has potential 

for scale-up. In this study, the first large scale study of its 
kind, enumerators spent approximately 40 minutes per 
plot collecting soil samples, not a particularly prohibitive 
figure given the proper timeline and budget. The correlation 
between subjective indicators of soil quality and key soil 
properties, such as organic carbon, is weak at best. Evi-
dence suggests that farmers are better able to distinguish 
between soil qualities in areas with greater variation in 
soil properties. Descriptive analysis shows that geospatial 
data, while positively correlated with laboratory results 
and offering significant improvements over subject assess-
ment, fail to capture the level of variation observed on the 
ground. The results of this study give promise that soil 
spectroscopy could be introduced into household panel 
surveys in smallholder agricultural contexts, such as Ethi-
opia, as a rapid and cost-effective soil analysis technique 
with valuable outcomes. Reductions in uncertainties in 
assessing soil quality and, hence, improvements in small-
holder agricultural statistics, enable better decision-making.
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1. Introduction  

“Noting that soils constitute the foundation for agricultural development, essential ecosystem functions 

and food security and hence are key to sustaining life on Earth,” the UN General Assembly declared 2015 

the International Year of Soils (A/RES/68/232).1 The recent increased attention afforded to soil health is 

for naught, however, if soil health measurements are inaccurate or of inadequate resolution. This is 

especially critical in the face of increased variability in weather conditions brought on by climate change. 

Renewed interest in increasing agricultural productivity to meet food security needs and increasing 

resilience of agricultural systems in developing countries, especially in Sub-Saharan Africa, makes 

understanding soil fertility constraints and trends ever more important.   

Much of the current analysis on agricultural productivity is hampered by the lack of consistent, high 

quality data on soil health and how it is changing under past and current management. This is beginning 

to change, however. As soil testing methods become increasingly rapid and affordable, data constraints 

lessen. In Ethiopia, for example, an innovative national-scale soil mapping operation is underway. The 

Ethiopia Soil Information Service (EthioSIS) project, supported by the World Bank-funded Agricultural 

Growth Program and implemented by the Ethiopian Agricultural Transformation Agency, has begun to 

reveal its value (World Bank, 2016).2 Although the project has yet to be completed at full scale, 

knowledge acquired through EthioSIS and disseminated by extension agents has already led to the 

reformulation of critical inputs and substantial increases in wheat yields (Sawa, 2016). The early 

successes of EthioSIS illustrate the potential agricultural gains that can be unlocked by improving the 

detail and geographical scope of soil data.  

With an ever-expanding population and finite land resources, soils will become more and more taxed as 

we strive to produce sufficient food to meet the needs of the world population. Not only will there be a 

need to increase food production to accommodate the growing population, but at present roughly 795 

million people are estimated to be undernourished, 98 percent of whom are in developing regions (FAO et 

al., 2015). Land, although of finite quantity, can be used more productively, as evidenced by startling 

yield gaps observed across the world. The magnitude of yield gaps varies significantly across crops and 

context. For example, Lobell et al. (2009) clearly illustrate the variation in maize yield gaps, as average 

tropical lowland maize yields in Africa are less than 20 percent of yield potential, while tropical lowland 

maize yields reach approximately 40 percent of yield potential on average in East and Southeast Asia. 

Rice exhibits consistently smaller yield gaps, with average rice yields exceeding 80 percent of yield 

                                                            
1 A/RES/68/232: http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/68/232&Lang=E. 
2 To learn more about EthioSIS, please visit: http://www.ata.gov.et/highlighted-deliverables/ethiosis/. 
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potential in Bangladesh, Indonesia, and Nepal, among others (Lobell et al., 2009). Insufficient soil health 

is commonly used to explain, at least partially, said yield gaps (Cassman, 1999; Lobell et al., 2009; 

Tittonell et al., 2008). 

 

Several methods for closing yield gaps have been identified by the scientific community. According to the 

FAO, the use of sustainable soil management techniques, such as zero tillage and agroforestry, could 

boost food production by as much as 58 percent (FAO, 2015). The use of improved crop varieties and 

chemical input use have been shown to improve productivity and/or resilience exponentially (Cassman, 

1999; Duflo et al., 2008). Additionally, Kumar and Quisumbing (2011) draw positive linkages between 

improved varieties and nutritional status. However, the uptake of such practices has been unenthusiastic, 

particularly in Sub-Saharan Africa. Marenya and Barrett (2009) suggest that farmer demand for fertilizer 

use is variable on soil carbon level, with higher carbon content plots achieving greater marginal product 

of fertilizer, suggesting that soil quality has implications for adoption of fertilizer use. As will be 

illustrated in this paper, relying on subjective farmer assessments of soil quality as a proxy for carbon 

content may provide data unsuitable for use in targeting of fertilizer adoption programs. 

 

Productivity has also been observed to vary with farm size. Soil quality has long been argued to explain 

the inverse farm-size productivity puzzle, which suggests that small farms are more productive than larger 

farms (Bhalla and Roy, 1988; Barrett et al., 2010; Carletto et al, 2013; Carletto et al., 2015; Lamb, 2003; 

Tatwangire and Holden, 2013). Despite the results from Barrett et al.’s (2010) experimental study which 

concluded that soil properties did not explain away the inverse productivity relationship, much research 

suggests that omitted high quality data on soil properties is at least partially responsible for the inverse 

relationship (for example, Bhalla and Roy (1988)). 

 

Yield gaps and the quantity of crop production are not the only concerns related to soils, food security, 

and nutrition. The quality of food produced can vary, and lack of micronutrients can lead to hidden 

hunger (Cakmak, 2002; FAO, 2015).  With a direct link between the micronutrient content found in crops 

and the soils from which they grew, soil health measurement and monitoring could lead to the 

identification and, ideally, prevention of micronutrient malnutrition.  

 

Agricultural analysis is multidimensional. Knowing the quantity of production alone, or even 

productivity, is not sufficient to analyze determinants of strong yields, estimate adoption of sustainable or 

improved farm management practices, or establish causal links between agriculture and nutrition. These 

data, however, are most readily available in household-level surveys with a focus on agriculture, such as 
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the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA; 

www.worldbank.org/lsms). Historically, plot-level soil statistics derived from household surveys have 

relied on subjective farmer assessments of soil quality or on linking with soil raster data (when plots are 

geo-referenced). Direct systematic measurement of soil fertility as part of a large-scale household-level 

data collection operation has rarely been attempted due to the high costs of soil sampling and analysis. 

Recently developed rapid low-cost technology for assessing soil characteristics using infrared 

spectroscopy, however, has increased the potential for direct soil fertility characterization in large studies.  

The value of soil data is unquestionable, but the sources, quality, and resolution of such data vary widely. 

And while platforms like EthioSIS provide invaluable information on soil from an agronomic perspective, 

having soil data integrated with household-level or plot-level data on input use, farm management 

practices, agricultural labor, agricultural production, and household socioeconomic characteristics holds 

extensive analytical value. Soil data from household and farm surveys also provide great opportunities for 

validation of information obtained through other means. However, the quality of the subjective soil data 

that are most often found with such inclusive agricultural household surveys has rarely been validated. In 

this paper, we seek to compare subjective farmer assessment of plot-level soil quality against objective 

laboratory analyses, by utilizing the data purposively collected for methodological validation under the 

LSMS Methodological Validation Program.  

Using a unique plot-level data set collected by the Living Standards Measurement Study (LSMS) of the 

World Bank in collaboration with the World Agroforestry Centre (ICRAF) and the Central Statistical 

Agency of Ethiopia, and with funding from UK Aid, which consists of a menu of subjective farmer-

estimated indicators of soil quality and results from objective conventional and spectral soil tests, this 

paper analyzes the impacts of relying on subjective farmer estimates of soil quality for policy-based 

decision making through comparison of subjective and objective measures of soil properties. Results from 

the methodological experiment data suggest that smallholder farmers are unable to clearly discriminate 

between soil fertility levels, which we hypothesize may partially explain the slow adoption of improved 

agricultural practices and inputs often observed in Africa. 

Building on the few previously existing studies, such as those by Dawoe et al. (2012), Desbiez et al. 

(2004), Odendo et al. (2010), and Gray and Morant (2003), we aim to validate the use of subjective soil 

quality indicators against objective measures. Specifically, we compare a multidimensional farmer 

assessment of soils with plot-level soil analysis conducted using conventional and spectral testing, similar 

to the data used by Marenya and Barrett (2009).  
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The remainder of the paper is organized as follows. Section 2 details the specific subjective and objective 

soil data collected in the Ethiopia Land and Soil Experimental Research (LASER) project and provides 

descriptive statistics on each. Analytical comparison of the measurement methods is explored in Section 

3, with an emphasis on the ability of respondents with various characteristics to more or less accurately 

assess the quality of their soils against the objective benchmark. Section 4 concludes. 

 

2. Data 

2.1  LASER Study 

In an effort to collect the highest quality data possible in a large-scale household survey context, the 

Living Standards Measurement Study has prioritized methodological research in recent years through 

implementation of the LSMS Methodological Validation Program. With the aim of identifying the 

magnitude and (potential) systematic nature of measurement error associated with various measurement 

methods, and with financial support from UK Aid, the LSMS has designed several methodological 

experiments focused on key aspects of agricultural analysis, including soil fertility. Such methodological 

experiments strive to find balance between quality and scalability, and ultimately implement the most 

appropriate methods in future surveys. 

Nationally representative LSMS-ISA surveys commonly include basic subjective questions on soil 

fertility, often asked to the head of household or plot-manager. Additionally, when plots are geo-

referenced, indicators of soil health such as nutrient availability, toxicity, and salinity are derived from 

outside sources including the Harmonized World Soil Database and provided as supplementary data along 

with the full LSMS-ISA data set. However, in order to know how well the subjective assessments of soil 

quality correlate with true soil fertility measures, and whether there are any systematic measurement 

biases based on topography or respondent characteristics, the subjective measures must be taken 

alongside objective, plot-level measures. This was the motivation behind the Land and Soil Experimental 

Research (LASER) project. 

Data collection for the LASER study was conducted in 3 zones of the Oromia region in Ethiopia (refer to 

Figure 1). Oromia region was selected because it represents a large area of Ethiopia and encompasses 

areas with great variation in rainfall, elevation, and agroecological zones. In total, 85 enumeration areas 

(EAs) were randomly selected using the Central Statistical Agency of Ethiopia’s Agricultural Sample 

Survey (AgSS) as the sampling frame. Within each EA, 12 households were randomly selected from the 

AgSS household listing completed in September 2013. 
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Fieldwork was conducted in multiple waves. Post-planting activities were conducted during September – 

December 2013. Post-harvest activities were conducted from January to March 2014. Crop-cutting was 

conducted at any point during this period when the maize was deemed ready for harvest by the 

respondent. The post-planting, crop-cutting, and post-harvest questionnaires were administered using 

computer-assisted personal interviewing.  

 

2.2  Farmer Subjective Assessment 

Prior to the collection of physical soil samples, a series of subjective plot-level questions was 

administered to the self-identified ‘best informed’ household member on each plot. These questions 

ranged from a categorical coded-response “what is the soil quality of [field]?” to questions on soil color, 

texture, and type (clay, sand, loam, etc.). It is worth noting that the subjective questions were 

administered at the dwelling, not upon direct respondent observation of the soils, as the study was aimed 

at assessing farmer knowledge for larger-scale surveys that may not allow for visitation of each plot. 

Refer to Annex I for the relevant portion of the questionnaire instrument. 

Figure 1. Location of the study area: markers indicate fields 

where soil samples are collected from interviewed households 

in Borena, East Wellega, and West Arsi zones of the Oromia 

region, Ethiopia. 
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While subjective assessments of soil quality are both cost- and time-efficient, the quality of results may 

be questionable. Summary statistics of the subjective questions included in the LASER study, found in 

Table 1, reveal little discrimination by respondents.3 The table focuses on the sample of plots for which 

spectral soil analysis was completed, as this is the sample that will be compared to the laboratory results 

in subsequent sections, but there is also a column for the full sample of plots.  When asked about the 

quality of soil on a particular plot, 94 percent of all plots were reported to have either good or fair soil (35 

percent good, 59 percent fair). On the whole, only 6 percent of plots were reported to have poor soils. 

This heavy-tailed distribution holds across administrative zone and agroecological zone, with no more 

than 8 percent of plots in a single agroecological or administrative zone reported as poor. This finding is 

not unique to the LASER data set. In nationally representative LSMS-ISA surveys from Uganda (2013-

14), Malawi (2013), and Tanzania (2012-13), only 3 percent, 12 percent, and 6 percent of plots were 

reported as having poor soil, respectively (UBOS, 2013; Malawi NBS, 2013; Tanzania NBS, 2012). In 

                                                            
3 The sample is limited to plots in which a topsoil sample was tested in the laboratory. Due to mislabeling of soil 
samples and/or transportation between the field and the laboratories, 120 plots with subjective measurements do not 
have matching objective measurements. These observations have been dropped. The number of samples lost to mis-
labeling was significantly reduced by the use of barcoded labels in a replication study. 

Table 1. Subjective Assessment Summary 

East 
Wellega

Borena West Arsi

N 589 496 592 1677 100% 4149 100%
Soil Quality

Good 128 276 304 708 42% 1458 35%
Fair 419 193 274 887 53% 2445 59%

Poor 42 27 14 83 5% 246 6%
Soil Color*

Black 97 128 413 638 38% 1362 33%
Red 403 270 87 761 45% 2170 52%

White/Light 88 84 92 264 16% 592 14%
Yellow 1 14 0 14 1% 24 1%

Soil  Type
Sandy 143 123 93 360 21% 803 19%

Clay 291 250 360 901 54% 2292 55%
Mixture of Sand/Clay 92 120 139 351 21% 785 19%

Other 63 3 0 65 4% 269 6%
Soil  Texture°

Very Fine 4 26 26 56 3% 87 2%
Fine 240 225 404 870 52% 2070 50%

Between Coarse and Fine 259 187 140 586 35% 1584 38%
Coarse 81 56 21 158 9% 390 9%

Very Coarse 5 2 1 8 0% 18 0%
* Categories "White/Light" and "Yellow" combined for analysis
° Categories "Very Fine" and "Fine" were combined for analysis, as were "Coarse" and "Very Coarse"

Total

Plots with Objective Soil Analysis

Total

Full Sample
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the most recent nationally representative LSMS-ISA survey in Ethiopia (2013-14), nearly 21 percent of 

parcels (not fields, as measured in LASER) were reported as having poor soil quality (CSA, 2013). 

Subjective assessments of soil fertility also suffer from a lack of intra-household variation. Of households 

with more than one cultivated field in the sample, 63 percent reported the same soil quality on all plots. 

Similarly, 71 percent reported the same soil type, 73 percent reported the same soil color, and 68 percent 

the same soil texture. This is striking, especially given the high number of fields cultivated per household. 

Figure 2 (A–D) illustrates the percentage of households reporting no variation in the abovementioned 

indicators, by number of plots cultivated.  

Descriptive analysis suggests that farmers use soil color and texture as indicators of soil quality. As 

observed in Figure 3, self-reported dark and fine textured soils were categorized as good soils while red 

and course textured soils were more frequently categorized as poor soils. While the more specific 

subjective questions, such as texture and color, appear to be correlated with the overall quality 

assessments, the value of these questions in terms of correlation with objectively measured soil properties, 

believed to be the truest measure, remains to be analyzed. Section 3 will explore these correlations. 
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Figure 2. Percent of households reporting no variation in subjective soil quality questions, by 

number of plots cultivated per household.  
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2.3  Objective Data 

Soil samples were collected from up to two randomly selected plots per household (where applicable, one 

pure-stand maize plot was selected for crop-cutting). The in-field sampling protocol was designed with 

ICRAF, adapting the Land Degradation Surveillance Framework of the African Soil Information Service 

to fit the smallholder farm structure.4 From each selected plot, two samples were tested: (1) a composite 

sample collected from four points within the plot at 0-20 cm depth following the layout in Figure 4 

(referred to as topsoil), and (2) a single sample from the center of the plot at 20-50 cm depth (referred to 

as subsoil). Field staff were trained by ICRAF personnel to ensure comparability of field protocols. A 

thorough explanation of the soil collection, processing, and analysis protocols followed in LASER are 

found in the guidebook by Aynekulu et al. (2016).   

Soil samples were delivered to local processing laboratories within five days of collection to prevent 

decomposition of organic matter. Local laboratories, which were also trained on ICRAF protocols, were 

responsible for drying, grinding, sieving, and weighing the samples. After processing, samples were 

shipped to ICRAF laboratories in Nairobi, Kenya for analysis. All analyses completed by ICRAF were 

done following African Soil Information Service (AfSIS) protocols so as to ensure comparability of 

results with separate pre-existing and ongoing research in the region. On average, soil sample collection 

took approximately 40 minutes per field. In a replication study, also by the LSMS, this time was reduced 

by incorporating implementation lessons from LASER, such as using barcoded labels rather than 

handwritten labels (see the guidebook by Aynekulu et al. (forthcoming) for details).  
                                                            
4 For more information on the Land Degradation Surveillance Framework see http://www.africasoils.net/data/ldsf-
description. 

Figure 3. Farmers use soil texture (left) and color (right) as indicators of soil quality.  
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Two objective measures were employed by ICRAF laboratories. Conventional soil analysis (CSA), which 

includes traditional wet chemistry methods for soil nutrient extraction and some basic soil physical 

analyses, was conducted on 10 percent of samples (n=361). Conventional analysis, while often regarded 

as the gold standard in soil analysis, is expensive and destructive in nature. Spectral soil analysis (SSA), 

or soil infrared spectroscopy, the second set of tests conducted under the LASER study, is significantly 

less expensive and non-destructive, allowing for multiple tests over time.  

Soil infrared spectroscopy (IR) is an emerging technology that makes large area sampling and analysis of 

soil health feasible (AfSIS, 2014; Shepherd and Walsh, 2007) and overcomes the current impediments of 

high spatial variability of soil properties and high analytical costs, which are key challenges in monitoring 

soil health at a large scale (Conant et al., 2011). A review by Bellon-Maurel and McBratney (2011) 

showed an exponential increase in the use of near infrared (NIR) and mid-infrared (MIR) reflectance 

spectroscopy for soil analysis. Because spectral analysis is rapid, it greatly increases the quantity of soil 

samples that can be processed while also expanding the number of fundamental soil properties that can be 

simultaneously predicted with little increase in analytical costs. This reduces errors in quantifying soil 

carbon and other key properties that are often caused by spatial heterogeneity of soils. Infrared data can 

be integrated with geostatistic data (Cobo et al., 2010), remote sensing data and topographic information 

for digital soil mapping at the landscape level (Croft et al., 2012). Rossel et al. (2014), for instance, used 

infrared data to develop a soil carbon map of Australia.  

The suite of spectral analyses includes the following tests: mid-infrared diffuse reflectance spectroscopy 

(MIR), laser diffraction particle size distribution analysis (LDPSA), x-ray methods for soil mineralogy 

(XRD), and total element analysis (TXRF). MIR and LDPSA spectral tests were conducted on all top- 

and sub-soil samples (n=3,611), while the x-ray tests, XRD and TXRF, were conducted on the same 10 

percent on which conventional testing was executed. Ultimately, approximately 50 variables were 

predicted for each top and subsoil sample, containing both chemical and physical soil properties. 

Figure 4. Sample plot layout on agricultural plots, 
with four points (dotted circles). The distance along 
the radial arms between the center point and the 
other three points is 12.2 m.  Point 1 is the center of 
the plot. The composite topsoil sample is composed 

of samples from points 1, 2, 3, and 4.  
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2.3.1 Predictions of Soil Properties from Spectra  

Following the methods designed by Shepherd and Walsh (2002) the results of the CSA were used to 

predict soil properties onto the full sample based on the spectral signatures, an example of which is found 

in Annex II. Figure 5 illustrates the predictive power of the mid-infrared spectroscopy on key soil 

properties, while Table 2 summarizes selected predicted properties, disaggregated by top- and sub-soil. 

The predictive models are successful in that, of the variables predicted, the lowest correlation between 

predicted value and actual value (using the reference sample upon which CSA was conducted) was 0.946 

(prediction of zinc concentration using Mehlich 3 method). The highest correlation was in the prediction 

of aluminum concentration by TXRF, with a rho of 0.989. Key soil properties such as total carbon 

(percent), total nitrogen (percent), clay (percent), and pH were strongly predicted with correlation 

coefficients of 0.984, 0.983, 0.988, and 0.985, respectively. The near-perfect predictions lend confidence 

to our assumption that laboratory results obtained through spectral analysis are strong proxies for true 

measures. 

Table 2 illustrates that significant differences are observed between the top- and sub-soil samples, 

motivating the need to analyze both separately if study objectives and resources allow. The rooting depth 

of the crop(s) of interest should be considered when determining if top and/or sub-soils should be tested, 

as it is preferable to test the soil properties at the level at which the plant absorbs the majority of its 

nutrients (Lorenz and Lal, 2005). Levels of all presented properties are significantly different between 

top- and sub-soil at the 1 percent level, with the exception of sand percentage, which is significant only at 

the 10 percent level. In addition to variation across soil depths, levels of key soil properties vary across 

administrative zone. Figure 6 illustrates that distribution of total carbon and pH by administrative zone. 

Carbon levels are highest in the West Arsi zone, followed by East Wellega and Borena (means across 

zones significantly different at the 1 percent level). High carbon and pH variability is observed in Borena, 

likely due to the great variation in agroecological zones enclosed within its borders. East Wellega has 

more acidic soils, which could be suitable for maize production (FAO, 1983). 
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Figure 5. Mid-infrared spectroscopy strongly predicts multiple soil properties 
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Figure 6. West Arsi has the highest organic carbon content while soils from East Wellega 

are more acidic than Borena and West Arsi (top-soil levels reported).  

 Soil properties
Mean SD Mean SD

Physical
% Sand 12.2 7.0 11.8 7.4 0.4*
% Clay 65.0 12.8 67.3 13.3 -2.3***
% Silt 22.6 7.4 20.8 7.5 1.8***
Chemical
pH 6.3 0.6 6.3 0.6 0.0***
Macronutrients:
Total Carbon (%) 3.4 1.2 2.9 1.0 0.5***
Total Nitrogen (%) 0.3 0.1 0.2 0.1 0.1***
Exchangeable Calcium (mg kg^-1) + 3445 1826 3193 1933 252***
Potassium (mg kg^-1)+ 742 297 663 259 79***
Exchangeable Magnesium (mg kg^-1 540 192 510 198 30***
Micronutrients:
Iron (mg kg^-1)+ 160 62 148 55 12***
Zinc (mg kg^-1)+ 5.6 3 5.11 3 0.49***
Exchangeable Manganese (mg kg^-1 182 52 173 56 9***

*** p<0.01, ** p<0.05, * p<0.1
Note: Data limited to plots with both top and subsoil samples (n=1599)

Top Soil (0-20 cm) Sub Soil (20-50 cm)

+ Extracted with Mehlich 3 method
* Extracted with wet method

Difference in 
means

Table 2. Selected Predicted Properties Summary 
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3. Comparison of Methods 

Given the complexity of soil and the varying needs of different crops and agricultural systems, assessing 

the overall quality of soil at an objective level can be difficult in itself. Comparing categorical subjective 

questions to the array of objective measurements and evaluating how well those subjective data reflect the 

true soil quality is even more challenging. To simplify the process, we first analyze the ability of 

subjective questions to predict soil carbon levels, a proxy for overall soil health. We attempt to explain 

which respondent and plot characteristics improve the ability of subjective questions to accurately (or 

relatively more accurately) assess soil quality. Subsequently, in order to incorporate more of the rich 

laboratory data and better capture the complex nature of the soil, we construct two variations of soil 

quality indices. Basic OLS regression is then used to identify which subjective questions, if any, 

significantly predict changes in the soil quality indicators. Finally, to reinforce the value of plot-level 

spectral analysis, the spectral results are briefly compared with publicly available geospatial data. All 

analyses are conducted using top soil (0-20 cm depth) measurements unless otherwise specified.5  

3.1 Carbon as a proxy for overall soil quality 

Carbon content is often considered to be the best single indicator of soil quality (IIASA/FAO, 2012). 

Higher levels of organic carbon indicate greater soil fertility and more optimal soil structure 

(IIASA/FAO, 2012). Carbon is also highly correlated with other key properties such as total nitrogen 

(with rho of 0.974 in this data set). Do farmer assessments of overall soil quality reflect carbon levels? 

Descriptive analysis reveals little relation between organic carbon content (percent) and the respondent’s 

assessment of the soil as poor, fair, or good. As seen above, 42 percent, 53 percent, and 5 percent of the 

household respondents classified the status of their soil as good, fair, and poor, respectively. T-test results 

provide weak evidence of distinction between organic (or acidified) carbon content.6 In plots with 

reportedly good or fair soils, there is a greater organic carbon content than in plots reported with poor 

soils (difference is statistically significant at the 10 percent level). There is no significant difference in 

organic carbon content on plots with good and fair soils. The significant difference in organic carbon 

content on good and poor soils (3.36 percent and 3.10 percent, respectively) is consistent with other 

                                                            
5 The regression analysis found in Section 3.2 was also conducted using sub-soil results. For brevity, the results are 
not reported here. The findings using sub-soils are largely consistent with those using top soils, however subjective 
indicators appear to be a slightly better predictor of top soil soil quality indices. Sub soil results available from the 
authors. 
6 No significant difference is found between total carbon content in plots reported as good, fair, and poor. However, 
correlation between total carbon and acidified carbon among top soil samples in the LASER data is very high 
(0.9851). 
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studies, such as Desbiez et al. (2004) and Mtambanengwe and Mapfumo (2005), but with those studies 

finding a greater divergence in organic carbon content between categories.7 

To better illustrate the distribution of carbon levels across self-reported soil quality categories, Figure 7 

presents a scatter plot relating organic carbon, clay and silt content, and self-reported quality category 

(left) and box plots of carbon levels disaggregated by self-reported quality category (right). The scatter 

plot reveals that the soils reported as poor are not concentrated in areas with low carbon levels, but rather 

seemingly randomly distributed. This suggests that the local assessment on overall soil quality may not be 

a robust method for mapping soil quality and making decisions on potential interventions like fertilizer 

recommendations to improve land productivity.  

Disaggregating the self-reported indicators by respondent, geographic, and plot characteristics reveals 

slightly more explanation. Splitting the data into two age categories above and below 40 years (excluding 

the 68 observations in which the plot manager was not the respondent) shows that the younger 

respondents were able to differentiate between poor and good soils (p < 0.05), and between fair and poor 

soils (p < 0.01), but not between good and fair soils, where we define successful differentiation as a 

relative measure (higher carbon levels in reportedly better soils). There is no significant difference in total 

organic carbon levels across the three self-reported soil quality categories for the respondent age group of 

greater than 40 years. One might expect farmer age to be inversely correlated with education and literacy, 

                                                            
7 Both Desbiez et al. (2004) and Mtambanengwe and Mapfumo (2005) used a binary classification of plots, rather 
than ‘good’, ‘fair’, and ‘poor’. 

Figure 7. Scatter plot of organic carbon and clay/silt (%) by self-reported soil quality (left), and box 

plots of organic carbon by self-reported soil quality (right). 
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but when disaggregating by manager literacy, there is no significant difference in organic carbon levels 

between subjective soil quality categories. Disaggregation by manager (and respondent) sex yields less 

insight. Neither male nor female manager assessments of overall soil quality discriminate by carbon level.  

Geographic characteristics, particularly the variation in soils in the immediate vicinity of the household, 

may play a role in the correlation between subjective assessments of overall soil quality and objectively 

measured indicators. Overall quality is a highly subjective and relative measure and thus, it is likely to 

vary with the reference set available to the farmer. That is, in areas with greater variation in soil 

properties, a farmer may be better able to distinguish between plots that have good, fair, and poor soil 

because they have a wider range of soils against which they can make comparisons. This theory is 

supported by the results in Table 3.  

Limiting the sample to the enumeration areas with the highest and lowest quartile of variance in organic 

carbon content indeed suggests that subjective assessment of overall soil quality better approximates 

organic carbon content in areas with greater variation. In the enumeration areas with the highest quartile 

Table 3. Subjective Overall Soil Quality and Organic Carbon Content, by Geographic 
Area (top-soils reported) 

Good Fair Poor
All
Good 708 3.36 - *
Fair 886 3.37 - *
Poor 83 3.10 * *
EAs with lowest 25% variance
Good 151 2.66 - *
Fair 243 2.69 - *
Poor 23 3.13 * *
EAs with highest 25% variance
Good 184 3.65 * **
Fair 211 3.94 * ***
Poor 35 3.13 ** ***
West Arsi
Good 304 3.83 - -
Fair 274 3.79 - -
Poor 14 3.53 - -
East Wellega
Good 128 3.56 - -
Fair 419 3.47 - -
Poor 42 3.42 - -
Borena
Good 276 2.76 * -
Fair 193 2.54 * -
Poor 27 2.38 - -
*** p<0.01, ** p<0.05, * p<0.1

Mean Organic 
Carbon Content (%)N

Difference of Means
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of variance in organic carbon content, statistically significant differences are observed in the carbon 

content of soils reported as good and poor, fair and poor, and, to a lesser degree, good and fair. In 

enumeration areas with the lowest variance, not only are the differences only marginally significant, but 

reportedly poor soils have a higher mean carbon content than soils reported as good and fair. Breaking 

down the sample by administrative zone reveals some support to the idea of variation affecting the ability 

of farmers to rate the overall quality of their plots, as Borena, the zone with the highest variance, is the 

only zone in which any significant difference is observed between the three categories, albeit with weak 

statistical significance. 

Farm management practices and property rights may have implications on the ability of respondents to 

assess overall soil quality. Although there is no significant difference in organic carbon levels between 

plots that received and did not receive fertilizer (organic or inorganic), there is a difference in the 

relationship between subjective quality assessments and carbon content. On plots on which fertilizer was 

not used, respondents are better able to distinguish between lower and higher organic carbon levels. On 

these plots there is a significant difference in carbon levels between plots identified as good and poor, and 

fair and poor, but not between good and fair. No significant difference is found between plots of different 

classifications on which fertilizer was used. In a similar trend, plots for which the household holds a title 

are assessed more appropriately, again with a significant distinction between good and poor, and fair and 

poor, but not between good and fair. There was no significant distinction on plots without a title, which is 

potentially explained by reduced knowledge of plots that are not owned and perhaps have not been 

farmed by the respondent over multiple growing periods.  

Descriptive analysis suggests that on the 

whole, farmers do not do well at assessing 

overall soil quality, at least in terms of 

carbon content. Above, Figure 3 provided 

evidence that suggested farmers use 

texture as an indicator of overall soil 

quality. In fact, there does appear to be a 

relationship between farmer-reported soil 

texture and percent sand. Figure 8 plots 

the distribution of sand concentration in 

soils reported as fine, coarse, and 

between coarse and fine, with coarser 

soils expected to have a higher 

Figure 8. Sand content (%) disaggregated by farmer 

assessment of soil texture. 
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concentration of sand as opposed to silt and clay. 

The difference in sand concentration is significantly different than zero between all three categories, but 

the levels are in an unexpected direction as reportedly fine soils have 12.4 percent sand while soils 

reported between coarse and fine have 11.0 percent sand (reportedly coarse soil has 15.1 percent sand on 

average). Theoretically, soil texture does have an impact on objective soil quality, with sandy soils having 

less nutrient holding capacity. The impact of soil texture on soil quality indices is explored in the next 

section. 

3.2 Soil quality indices 
 

While carbon is commonly used as a proxy for soil fertility, it may not be the primary limiting factor of 

soils in the sample. To achieve a more dynamic measure of soil quality two indices are created. The 

indices were constructed following the guidance set forth by Mukherjee and Lal (2014) in their 

comparison of three approaches to soil quality indices. A simple additive and a weighted additive 

approach were utilized.8 The indices proposed by Mukherjee and Lal include three components: root 

development capacity, water storage capacity, and nutrient storage capacity. Data are only available for 

the construction of the nutrient storage component, which is 40 percent of the complete weighted additive 

SQI. Therefore, results presented here only indicate constraints related to nutrient storage capacity. 

Mukherjee and Lal use their expertise and existing literature to assign linear scores to relevant soil 

properties ranging from 0 to 3 based on the constraint posed by the level of the specific property 

(Mukherjee and Lal, 2014). These linear scores are summed to create the simple additive soil quality 

index (SA SQI). While Mukherjee and Lal assign scores for a multitude of soil properties, data in the 

LASER study allow for the inclusion of pH, organic carbon content (percent), total nitrogen content 

(percent), and electrical conductivity, the properties that together make up the nutrient storage capacity 

component. Unlike the weighted additive index (discussed below), the SA SQI is not normalized on the 

sample and therefore provides an indicator of overall soil quality that is not relative to the study sample.  

The SA SQI ranges from 0 to 7, with a mean of 4.61. 

The weighted additive index, referred to henceforth as the WA SQI, was constructed by assigning linear 

scores to the relevant soil properties (pH, soil electrical conductivity, organic carbon (percent), and total 

nitrogen (percent)), normalizing the scores for each individual property over the sample, and then 

                                                            
8 Additionally, a principal component analysis was conducted following Mukherjee and Lal (2014). This was not the 
preferred soil quality index method and is therefore not reported. Results available upon request. 
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applying the indicated weights and 

summing the scores.9 The linear scores for 

each included property ranged from 0 to 1 

and were determined by dividing all 

observations by the highest value in the 

sample for soil properties in which a 

higher value is more beneficial (carbon 

and nitrogen) and dividing the all observations by the lowest value in the sample for properties in which a 

lower value is preferred. Soil electrical conductivity and pH have an optimal range, and these were treated 

as such.10 This method follows Mukherjee and Lal (2014), who learn from Karlen and Stott (1994) and 

Fernandes et al. (2011). WA SQI scores range from 0.32 to 0.86, with a mean of 0.46. 

Table 4 presents the correlation matrix of the three abovementioned soil quality indicies, as well as the 

organic carbon content. All correlation coefficients are significant at the 1 percent level. 

 

3.2.1 Soil quality indices: Regression analysis 
 

In order to determine how well subjective soil indicators are correlated with objective measures, including 

the soil quality indices and organic carbon content, basic ordinary least squares regression analysis is 

conducted. The primary objective of the regression analysis is to determine how well subjective soil 

assessments predict soil quality index measures, and which subjective questions perform best. The 

following model is executed: ܵܳܫ = ߙ	 ଵߚ	+ ܺ + 	߳	                                   (2) 
 

where SQI is one of the two soil quality indices defined above, ߙ is a constant, X is a matrix of subjective 

soil indicators, and ߳ is a random error term with the usual desirable characteristics. Organic carbon 

content is also run as a dependent variable for robustness. While several factors, such as plot slope and 

various agricultural practices, may influence the soil quality on the plot, those covariates are excluded 
                                                            
9 Scores for each of the four soil properties normalized as (observation score – sample min)/(sample max – sample 
min). Weights were applied as follows: pH (0.3); electrical conductivity (0.3); organic carbon (0.2); total nitrogen 
(0.2). Scores and weights taken from Mukherjee and Lal (2014).  

10 For properties that have an optimal range, the observations were split into those above and below the critical 
thresholds (as defined by Mukherjee and Lal, 2014), with those below the threshold treated as though a higher value 
is preferred and those above the threshold treated as though a lower value is preferred.  

Table 4. Correlation of Soil Quality Indices 

SA SQI WA SQI
Organic 

Carbon (%)
SA SQI 1
WA SQI 0.659 1
Organic Carbon (%) 0.830 0.800 1
Note: All significant at the 1% level.



 
 

21 
 

from the simple model presented here. The objective is not to analyze the determinants of soil quality but 

rather to determine how well subjective measures of soil quality predict true measures (as proxied by 

laboratory results). The models are first run with individual subjective indicators in order to identify how 

well each variable predicts the index score independently, then with all subjective variables, in order to 

analyze the predictive power of the subjective indicators as a whole. Note that subjective soil texture was 

included rather than type, as the “other, specify” category of the soil type question consisted primarily of 

soil colors and as such, correlation between soil type and color was a concern.  

Results of the regression analysis are presented in Table 5. Immediately evident is the low explanatory 

power of the subjective indicators of soil quality, as expressed by the R2, which ranges from 0.002 to 

0.060. Specifications (1), (2), and (3), which look at the individual subjective indicators separately, 

suggest that soil color explains more of the variation in the soil quality indices and carbon content than do 

the subjective questions on overall quality and texture. The direction of the coefficients on red and 

white/light soils are as expected – they have a lower soil quality index score or organic carbon content 

than black soils. Coarse soils would be expected to have lower levels of nutrient availability, and 

therefore greater soil fertility, and this is reflected in the results, albeit with limited magnitude in the WA 

SQI model.  

The descriptive analysis on the subjective assessment of overall soil quality invoked little confidence in 

its relationship with objective soil quality, at least in this particular sample. This sentiment is reflected in 

the regression analysis. The subjective assessment of overall soil quality had no significant relationship 

with the WA SQI when self-reported soil color and texture were controlled for. In the model on the SA 

Table 5. SQI Regression Analysis, No Fixed Effects 

Dependent Variable:
Specification: (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
self-reported soil quality

fair -0.024 0.138* -0.009** -0.002 0.003 0.143**
poor -0.375* -0.011 -0.017** -0.005 -0.265** 0.023

red -0.623*** -0.640*** -0.033*** -0.032*** -0.570*** -0.588***
white/light -0.889*** -0.866*** -0.027*** -0.025*** -0.609*** -0.586***

between coarse and fine -0.067 -0.02 -0.008* -0.005 -0.054 -0.022
coarse -0.428*** -0.239* -0.015** -0.009 -0.379*** -0.265**

constant 4.640*** 5.039*** 4.675*** 5.001*** 0.461*** 0.475*** 0.460*** 0.478*** 3.364*** 3.712*** 3.409*** 3.674***

N 1677 1677 1677 1677 1677 1677 1677 1677 1677 1677 1677 1677
R2 0.002 0.048 0.006 0.052 0.005 0.041 0.004 0.043 0.002 0.053 0.008 0.060

Independent Var Mean:
Independent Var. Std Dev:

Robust standard errors.
*** p<0.01, ** p<0.05, * p<0.1

1.59 0.08

Organic Carbon (%)

3.35
1.22

self-reported soil texture 
(collapsed, 'fine' ommitted)

4.61 0.46

SA SQI WA SQI

self-reported color    
(collapsed, 'black' omitted)
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SQI and organic carbon, the results in specification (4) suggest that soils reported as fair are of greater 

quality than those reported as good. 

The results presented in Table 5 do not control for inter-household differences. Within the full sample, 

and not controlling for differences across households, the subjective indicators of soil quality do not 

exhibit strong predictive power of the soil quality indices or organic carbon content, but there is some 

relationship. Looking strictly at intra-household effects by including household fixed effects (and limiting 

the sample to households which had top soil samples for two plots), suggests that within household, 

subjective indicators have even less relationship with soil quality indices (refer to Table 6). After 

controlling for household fixed effects the strength of the model is reduced, as evidenced by the lower R2 

values. This is potentially associated with the lack of intra-household variation of subjective indicators 

illustrated previously. 

Although the amount of variation in the soil quality indices and carbon content explained by the 

subjective indicators falls with the inclusion of fixed effects, there is one positive outcome. The 

coefficients on subjective overall soil quality gain statistical significance and move in the right direction, 

with self-reported poor soil possessing a negative coefficient (marginally significant in the WA SQI and 

carbon models, not significant in the SA SQI model), suggesting that plots may be ranked appropriately 

within households. Overly positive conclusions on the ability of subjective questions to reflect soil quality 

should not be drawn from this result, however, given the lack of intra-household variation observed and 

the low magnitude of the coefficients.  

Several differences are observed in relationship between subjective indicators and the various soil quality 

Table 6. SQI Regression Analysis, Household Fixed Effects 

Dependent Variable:
Specification: (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)
self-reported soil quality

fair -0.188 -0.172 -0.015** -0.012* -0.166* -0.138
poor -0.109 -0.096 -0.033*** -0.030** -0.404** -0.364*

red -0.049 -0.041 -0.014 -0.013 -0.151 -0.138
white/light 0.165 0.191 0.004 0.006 -0.192 -0.171

between coarse and fine -0.252* -0.238 -0.021** -0.020** -0.219** -0.201*
coarse 0.047 0.096 -0.027* -0.023 -0.222 -0.200

constant 4.841*** 4.732*** 4.822*** 4.899*** 0.467*** 0.463*** 0.467*** 0.479*** 3.548*** 3.538*** 3.540*** 3.711***

N 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384 1384
R2 0.003 0.002 0.006 0.011 0.010 0.005 0.010 0.023 0.009 0.002 0.006 0.016
Robust standard errors.
All specifications include HH Fixed Effects.
*** p<0.01, ** p<0.05, * p<0.1

SA SQI WA SQI Organic Carbon (%)

self-reported color   
(collapsed, 'black' omitted)

self-reported soil texture 
(collapsed, 'fine' ommitted)
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indices. The SA SQI, which is not normalized on the sample, exhibits a weaker relationship with 

subjective indicators than the WA SQI, particularly when household fixed effects are included. This is 

likely explained by the fact that the WA SQI is normalized on the sample and, therefore, is more a 

measure of relative soil quality.  

3.2.2 Spectral Analysis & Geospatial Data 
 

To provide further confidence in the value of conducting spectral soil analysis on plot-level soil samples, 

a brief comparison is made with publicly available geospatial data. Admittedly, comparison may be made 

with more than one source of geospatial data. However, the AfSIS data have among the highest 

resolutions currently available in public data sets (250m) for Ethiopia (for details see Hengl et al, 2015). 

They also may be the most comparable to the LASER data in a methodological sense considering both are 

conducted by the ICRAF. For these reasons, the comparisons made here may present an upper bound of 

comparability, at least in this particular context. Values were extracted from the AfSIS geospatial data set 

using the GPS coordinates of the specific plots. Comparison is made between organic carbon content 

(percent) as measured by plot-level spectral testing and that indicated in the AfSIS map.  

Table 7 summarizes the mean organic carbon content observed in LASER and AfSIS. In the full sample, 

the difference in means between the two data sets is statistically different from zero at the 1 percent level. 

Although the magnitude of the difference may be immaterial depending on the research question of 

interest, it is important to note that the 

correlation between the two measures is only 

0.586.  

Concerns with the use of geospatial data are 

often related to their (in)ability to capture 

variation in soil properties within small areas. 

Indeed, a closer look at the correlation 

between the spectral analysis and the 

geospatial data reveals that the correlation 

falls when limiting the sample to the EAs with 

the highest quartile of variance in carbon 

content (as measured by spectral analysis). In 

EAs with the highest variance, correlation is 

only 0.387, while in EAs with the lowest 

Table 7. Soil Organic Carbon (%) in LASER and 

LASER AFSIS
Difference 
in Means

All Top-Soil
Mean 3.350 3.476 ***
Standard Dev. 1.216 1.192
Correlation
N
EAs with lowest 25% variance
Mean 2.775 2.884 **
Standard Dev. 1.200 1.045
Correlation 0.715
N 412
EAs with highest 25% variance
Mean 3.739 3.767 -
Standard Dev. 1.418 1.189
Correlation
N
*** p<0.01, ** p<0.05, * p<0.1
Difference in means: T-test

Organic Carbon (%)

0.586
1674

0.387
429
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variance, the correlation is 0.715 (refer to Table 7). 

4. Conclusions 

Knowledge of soil quality indicators and overall health is becoming increasingly important as food 

security issues become more pressing and climate change threatens to change the face of agriculture. Soil 

health, both perceived and actual, can have impacts on the targeting and uptake of improved agricultural 

practices, which can improve both the quality and quantity of food produced. For instance, Marenya and 

Barrett (2009) show that fertilizer effectiveness, and in turn, demand, is dependent on soil carbon content. 

However, results of the LASER study suggest that subjective soil quality indicators fail to effectively 

reflect true levels of organic carbon, thereby limiting the value of subjective assessments of soil quality in 

policy making.  

Certainly, asking a farmer to categorically rate overall soil quality has limited benefit. This particular 

subjective soil quality question does not successfully distinguish between soil carbon levels or predict soil 

quality index scores, at least within this sample in Ethiopia. Subjective questions on soil color and texture 

were more effective in predicting soil quality index scores and organic carbon content, although the low 

explanatory power of these variables leaves much to be desired. The value of subjective soil quality 

indicators is further questioned by the severe lack of intra-household variation observed. Further research 

validating different subjective questions, potentially formulated with soil scientists, may yield more 

optimistic results. However, the questions included in the LASER study are those that have been 

historically included in LSMS-ISA surveys in multiple countries.  

From a fieldwork implementation standpoint, the experience of the LASER study gives promise that the 

integration of soil spectroscopy into socioeconomic household panel surveys is feasible. The 

methodology is a relatively rapid and cost-effective soil measurement technique that could unlock further 

understanding of the effects of farm management practices and changes in soil health over time. Detailed 

guidance on implementation strategies and protocols implemented in the LASER study can be found in 

Aynekulu et al. (2016).  

Despite the weak correlation observed here between laboratory analysis and subjective assessment, 

several studies find subjective assessments of soil quality to be a significant determinant of plot-level 

productivity (for example, Carletto et al., 2013). This suggests that if subjective soil quality assessments 

are not capturing true soil properties, they must be capturing something else relevant to agricultural 

production. As a potential explanation for this, we echo the sentiments of Tittonell et al. (2008) and 

others, who suggest that farmers have a ‘holistic’ view of soils, and that rather than assessing the soil 

properties explicitly, they often incorporate other components such as overall agricultural productivity 
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and likelihood of crop theft, for example. This finding would indeed render subjective assessments of soil 

quality significant predictors of agricultural productivity, but largely leaving true soil quality omitted. 

Additional research is needed (and ongoing) to determine the effects of including these objectively 

measured soil properties in productivity analysis as opposed to, or in addition to, subjective assessments. 

Additionally, while a brief comparison of plot-level spectral analysis and AfSIS geospatial data was 

included to illustrate the ability of plot-level analysis to capture a greater degree of variation within small 

areas, further research in this arena would be valuable, including, for instance, a comparison of LASER 

results with the EthioSIS national soil map. Geospatial data on soil quality have been recently compared 

with subjective data by Kelly and Anderson (2016), who find a similar pattern in that farmers are often 

over-optimistic about the fertility of their soils with respect to the Harmonized World Soil Database. This 

line of work could be extended to include plot-level soil analysis and further validate the need for 

objective plot-level analysis.  

Ethiopia is poised to benefit greatly from advancements in soil testing, particularly with the rollout of 

projects like EthioSIS combined with the upscaling of data collection efforts at the farm household level. 

The results of the LASER study, which bring subjective estimates of soil quality under scrutiny and point 

to the need for more direct, yet practical, soil measurements, show the potential value of the 

complementarities between platforms like EthioSIS,  and household-level data collection, based on which 

accurate soil information can be made available as part of rich data sets on the socioeconomic condition 

and farming practices  of farming units. Soil data collection through household and farm surveys may also 

provide a much needed vehicle to groundtruth remote sensing information and calibrate soil models.  In 

this vein, fostering stronger linkages between national EthioSIS soil data and surveys like the Ethiopian 

Rural Socioeconomic Survey, a household panel survey supported by the LSMS-ISA, offers great 

opportunities from the research and operational perspectives.   

Evidence from the Ethiopia LASER study suggests that subjective farmer assessments of soil quality 

poorly explain objective laboratory results and lack intra-household variation. Spectral analysis has been 

proven to near-perfectly predict key soil parameters as measured by conventional wet chemistry methods 

while providing highly detailed data that can be useful in policy aimed at increasing agricultural output, 

such as fertilizer input programs and identifying optimal crop selection, as well as agricultural 

productivity analysis. Improving agricultural statistics by reducing the uncertainties in soil quality 

assessment via objective measurement can enable better decision-making, both at micro and macro levels. 
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Annexes 

Annex I. Subjective Soil Questionnaire Excerpt 
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Annex II. Example of Spectral Soil Signatures 
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