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Abstract

In fragile states and areas beset by insecurity and conflict,
the time available for a face-to-face interview is typically
limited. That prevents administering the lengthy household
consumption expenditure surveys used for measuring pov-
erty. This paper presents a new approach to obtain unbiased
estimates of poverty when the time to conduct interviews is
a binding constraint. The finite list of consumption recall
items is partitioned selectively into a core module and algo-
rithmically into nonoverlapping optional modules. Each

household is systematically assigned the core module and
randomly assigned one of the optional modules. Multi-
ple imputation techniques are then used to estimate total
household consumption. Based on ex post simulations, the
approach is demonstrated to yield reliable estimates of per
capita consumption and poverty using data from a regular
household budget survey collected in Hargeisa, Somaliland.
The approach is then applied to a survey conducted in Mog-
adishu where interview time could not exceed 60 minutes.
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Introduction

Poverty is the paramount indicator to gauge the socioeconomic well-being of a population. Especially after
a shock, poverty estimates can disentangle who in the population was affected how severely. As one of
the main indicators for poverty, monetary poverty is measured by a welfare aggregate usually based on
consumption in developing countries and a poverty line. The poverty line indicates the minimum level of

welfare required for a healthy living.

Consumption aggregates are estimated traditionally by time-consuming household consumption surveys.
A household consumption questionnaire records consumption and expenditures for a comprehensive list
of food and non-food items. With around 300 to 400 items, the administering time of the questionnaire
often exceeds 90 — 120 minutes. In addition to higher costs due to longer administering time, response
fatigue can increase measurement error especially for items at the end of the questionnaire. In a fragile
country context, a face-to-face time of 90 — 120 minutes can be prohibitively high. For example, security

concerns restricted the duration of a visit in Mogadishu to about 60 minutes.

The extensive nature of household consumption surveys makes it difficult to obtain updated poverty
estimates especially when they are needed the most: after a shock and in fragile countries. Therefore,
approaches were developed to reduce administering time to allow collection of consumption data with
significantly lower administering time. The most straightforward approach to minimize administering time
reduces the number of items either by asking for aggregates or by skipping less frequently consumed
items, called reduced consumption methodology. However, both approaches have been shown to
underestimate consumption, which in turn overestimates poverty.? Splitting up the questionnaire for
multiple visits is another solution but attrition issues — especially in fragile country contexts — increase
required sample size and also have a high cost implication. In addition, multiple visits to the same

household can increase security concerns.

A second class of approaches utilizes a full consumption baseline survey and updates poverty estimates
based on a small subset of collected indicators.? These approaches estimate a welfare model on the
baseline survey using a small number of easy-to-collect indicators. This allows updating poverty estimates
by collecting only the set of indicators instead of direct consumption data. While the approach is cost-

efficient and easy to implement in normal circumstances, the approach has two major drawbacks in the

2 Beegle et al, 2012.
3 Douidich et al, 2013; SWIFT.



context of fragility and shocks. First, the approach requires a baseline survey, which is sometimes — for
example in Mogadishu — not existent. Second, the approach relies on a structural model estimated from
the baseline survey.? In the case of shocks, the structural assumptions, which cannot be tested, are often
violated. Thus, poverty updates based on the violated assumption tend to under-estimate the impact of
the shock on poverty. Therefore, cross-survey imputation methodologies are not applicable in the context

of shocks and fragility.

A new methodology is proposed combining an innovative questionnaire design with standard imputation
techniques. This substantially reduces the administering time of a consumption survey to about 60
minutes while at the same time credible poverty estimates are obtained. Thus, the gain in administering
time is bought by the need to impute missing consumption values. Due to the design of the questionnaire,

the method circumvents systematic biases as identified for alternative methodologies.

After explaining the methodology in more detail in the next section, the performance of the methodology
is assessed ex post using collected household budget data in Hargeisa, Somalia. Next, the methodology is
applied to newly collected data in Mogadishu, Somalia, where full consumption data collection was
impossible due to security constraints. The consistency of the consumption estimates is evaluated by
performing validity checks. A conclusion discusses the limitations of the methodology, the benefits

especially in combination of using CAPI technology and the need for further research.

Methodology

Overview

The rapid consumption survey methodology consists of five main steps (Figure 1). First, core items are
selected based on their importance for consumption. Second, the remaining items are partitioned into
optional modules. Third, optional modules are assigned to groups of households. After data collection,
fourth, optional consumption modules are imputed for all households. Fifth, the resulting consumption

aggregate is used to estimate poverty indicators.

4 Christiaensen et al, 2010; Christiaensen et al, 2011.



Figure 1: lllustration of the rapid consumption survey methodology (using illustrative data only). The consumption module is
partitioned into core and optional modules, which in turn are assigned to households. Consumption is imputed utilizing the
sub-sample information of the optional modules either by single or multiple imputation methods.
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First, core consumption items are selected. Consumption in a country bears some variability but usually a
small number of a few dozen items captures the majority of consumption. These items are assigned to
the core module, which will be administered to all households. Important items can be identified by the
average food share per household or across households. Previous consumption surveys in the same

country or consumption shares of neighboring / similar countries can be used to estimate food shares.®

5 As shown later, the assignment of items to modules is very robust and, thus, even rough estimates of
consumption shares are sufficient to inform the assignment without requiring a baseline survey.
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Second, non-core items are partitioned into optional modules. Different methods can be used for the
partitioning into optional modules. In the simplest case, the remaining items are ordered according to
their food share and assigned one-by-one while iterating the optional module in each step. A more
sophisticated method would take into account correlation between items and partition them into
orthogonal sets per module. This would lead to high correlation between modules supporting the total

consumption estimation.

Conceptual division into core and optional items should not be reflected in the layout of the questionnaire.
More complicated partition patterns can result in a set of very different items in each module. However,
the modular structure should not influence the layout of the questionnaire. Instead, all items per
household will be grouped into categories of consumption items (like cereals) and different recall periods.
Therefore, it is recommended to use CAPI technology, which allows hiding the modular structure of the

consumption module from the enumerator.

Third, optional modules will be assigned to groups of households. Assignment of optional modules will be
performed randomly stratified by enumeration areas to ensure appropriate representation of optional

modules in each enumeration area. This step is followed by the actual data collection.

Fourth, household consumption will be estimated by imputation. The average consumption of each
optional module can be estimated based on the sub-sample of households assigned to the optional
module. In the simplest case, a simple average can be estimated. More sophisticated techniques can
employ a welfare model based on household characteristics and consumption of the core items. Six

techniques are presented in the next section and perform their estimation on the data set from Hargeisa.

Single imputation of the consumption aggregate under-estimates the variance of household consumption.
Depending on the location of the poverty line relative to the consumption distribution, this can either
consistently under- or over-estimate poverty. Multiple imputation based on boot-strapping can mitigate
the problem but will render analysis more complicated. Single as well as multiple imputation techniques

are used for the evaluation of the methodology.

Module Construction

Consumption for a household is estimated by the sum of expenditures for a set of items

m
Vi = Z Vij
j=1
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where y; denotes the consumption of item j in household i. The list of items can be partitioned into M+1

modules each with my items:

M mp
k . k
yi = Z yi( ) with yl-( ) = Z Vikj
k=0 j=1

For each household, only the core module yl.(o)and one additional optional module yl.(k*)are collected.

The item assignment to the modules should be based on either a previous survey or a survey in a related
country with similar consumption behavior. As the core module is administered to all households, it
should include items covering the largest shares of consumption. Optional modules can be constructed in
different ways. Currently, an algorithm is used to assign items iteratively to optional modules so that items
are orthogonal within modules and correlated between modules. In each step, an unassigned item with
highest consumption share is selected. For each module, total per capita consumption is regressed on
household size, the consumption of all assigned items to this module as well as the new unassigned item.
The item will be assigned to the module with the highest increase in the R2 relative to the regression
excluding the new unassigned item. The sequenced assignment of items based on their consumption
share can lead to considerable differences in the captured consumption share across optional modules.
Therefore, a parameter is introduced ensuring that in each step of the assignment procedure the
difference in the number of assigned items per module does not exceed d. Using d=1 assigns items to
modules (almost) maximizing equal consumption share across modules.® Increasing d puts increasing

weight on orthogonality within and correlation between modules.

The assignment of optional modules must ensure that a sufficient number of households are assigned to
each optional module. Household consumption can then be estimated using the core module, the

assigned module and estimates for the remaining optional modules:

~ 0 k* ~(k
9=y +y )+zyl_()

keEK*

where K*:={1,..,k* — 1,k* + 1, ..., M} denotes the set of non-assigned optional modules.

6 Even with d=1, equal consumption share across modules is not maximized because among the modules with the same number of assigned
items, the new item will be assigned to the module it is most orthogonal to; rather than to the module with lowest consumption share.
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Consumption Estimation

Consumption of non-assigned optional modules can be estimated by different techniques. Three classes
each with two techniques are presented differing in their complexity and theoretical underpinnings. The
first class of techniques simply uses summary statistics like the average to impute missing data. The
second class is based on multiple univariate regression models. The third class uses multiple imputation

techniques taking into account the variation absorbed in the residual term.

Summary Statistics (average and median)
This class of techniques applies a summary statistic on the collected module-specific consumption and

applies the result to the missing modules. For each module k, the summary statistic f can be computed as
" k
9% = £ ().

For household i, household consumption is estimated as

~ 0 k* ~(k
9=y + yi( )+ Teex- 9.

Thus, each household is assigned the same consumption per missing module. In the following, the average
and the median are used as summary statistics. The median has the advantage of being more robust
against outliers but cannot capture small module-specific consumption if more than half of the

households have zero consumption for the module.

Module-wise Regression (OLS and Tobit regression)
Module-wise estimation applies a regression model for each module. This allows capturing differences in

core consumption as well as other household characteristics

~(k k 0 k
900 = pUOYO) 4 Tl 4 00

(F)

With xiTrepresenting a vector of household characteristics and u; ~ an error term assumed to be normally

distributed with N(O, 0(")). Thus, module-wise estimation uses a regression separately for each module.
Coefficients are estimated only based on the subsample assigned to module k. In general, a bootstrapping
approach using the residual distribution could mimic multiple imputations; but is not applied here. Given
the impossibility of negative consumption, a Tobit regression with a lower bound of 0 is used in addition

to a standard OLS regression approach. For the OLS regression, negative imputed values are set to zero.



Multiple Imputation Chained Equations (MICE)
Multiple Imputation Chained Equations (MICE) uses a regression model for each variable and allows
missing values in the dependent and independent variables. As missing values are allowed in the

independent variables, the consumption of all optional modules can be used as explanatory variables:

~(k k 0 k kr k
90 = é)yi()Jr 2 B,E,)yi( )+xl_Tﬁ(k)+ul§)
kreK*

Missing values in the explanatory variable (yi(k')) are drawn randomly in the first step. Iteratively, these

values are substituted with imputed values drawn from the posterior distribution estimated from the

regression for ?i(k'). While the technique of chained equations cannot be shown to converge in

distribution theoretically, practical results are encouraging and the method is widely used.

Multi-Variate Normal Regression (MImvn)

Multiple Imputation Multi-variate Normal Regression uses an EM-like algorithm to iteratively estimate
model parameters and missing data. In contrast to chained equations, this technique is guaranteed to
converge in distribution to the optimal values. An EM algorithm draws missing data from a prior (often
non-informative) distribution and runs an OLS to estimate the coefficients. Iteratively, the coefficients are
updated based on re-estimation using imputed values for missing data drawn from the posterior
distribution of the model. Multiple Imputation Multi-variate Normal Regression employs a Data-
Augmentation (DA) algorithm, which is similar to an EM algorithm but updates parameters in a non-
deterministic fashion unlike the EM algorithm. Thus, coefficients are drawn from the parameter posterior
distribution rather than chosen by likelihood maximization. Hence, the iterative process is a Monte-Carlo
Markov —Chain (MCMC) in the parameter space with convergence to the stationary distribution that
averages over the missing data. The distribution for the missing data stabilizes at the exact distribution to
be drawn from to retrieve model estimates averaging over the missing value distribution. The DA

algorithm usually converges considerably faster than using standard EM algorithms:

~(k k). (0 k
900 = gUOLO) L 1T 4y 00

Estimation Performance
The performance of the different estimation techniques is compared based on the relative bias (mean of

the error distribution) and the relative standard error. The relative error is defined as the percentage



difference of the estimated consumption and the reference consumption (based on the full consumption

module):

For estimation based on multiple imputations, e; is averaged over all imputations.

Each proposed estimation procedure is run on random assignments of households to optional modules.
A constraint ensures that each optional module is assigned equally often to a household per enumeration.

The relative bias and the relative standard error are reported across all simulations.

The performance measures can be calculated at different levels. At the household level, the relative error
is the relative difference in the household consumption. At the cluster level, the relative error is defined
as the relative difference of the average reference household consumption and average estimated
household consumption across the households in the cluster. Similarly, the global level compares total

average consumption for all households.

Results

In this section, the rapid consumption methodology will first be applied to a data set including a full
consumption module from Hargeisa, Somalia. This will be used to assess the performance of the rapid
consumption methodology compared to the traditional full consumption. Subsequently, the results from
the High Frequency Survey in Mogadishu are presented. Security risks restrict face-to-face interview time

to less than one hour. Therefore, the rapid consumption methodology is employed to derive the first ever



consumption estimates for Mogadishu. The resulting consumption aggregate is presented with

consistency checks for its validation.

Ex post Simulation

The rapid consumption methodology is applied ex post to household budget data collected in Hargeisa,
Somalia. Hargeisa was chosen as it is the most similar city to Mogadishu. Using the full consumption data
set from Hargeisa allows a full-fledged assessment of the new methodology. Based on selected indicators,
the results are compared after estimating consumption based on the rapid consumption methodology
with the results from using the traditional full consumption module. A comparison is added with the

results for a reduced consumption module.

The simulation assigns each household to one optional module. The consumption data for the modules
not assigned to the household is deleted. Multiple simulations are performed with varying assignment of
modules to households. Across the simulations, three consumption aggregates and four poverty and
inequality indicators are calculated. The consumption indicators capture the accuracy of the estimation
at three different levels: the household level, the cluster level (consisting of about 9 households) and the
level of the data set. In addition, the poverty headcount (FGTO), poverty depth (FGT1) and poverty severity

(FGT2) as well as the Gini coefficient are calculated to capture inequality.

The six proposed estimation techniques presented in the previous section are compared based on 20
simulations with respect to their relative bias and relative standard error. All simulations used the same
item assignment to modules using the algorithm as described with parameter d=3 (see Table 1 for the
resulting consumption shares per module).” The estimation techniques differ considerably in terms of
performance. The techniques are also compared to using a reduced consumption module where the same
consumption items are collected for all households. The number of items is equal to the size of the core
and one optional module implying a comparable face-to-face interview time to the Rapid Consumption

methodology.

7 Robustness checks are performed with different item assignment to modules including setting the parameter d=1
and d=2. The estimation results are extremely robust to changes in the item assighnment to modules.
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Table 1: Number of items and consumption share captured per module.

Food Non Food

Number Share of Number of Share of

of Items Consumption Iltems Consumption
Core 33 92% 25 88%
Module 1 17 3% 15 3%
Module 2 17 2% 15 3%
Module 3 15 2% 15 4%
Module 4 17 2% 15 3%

Comparing the reduced consumption approach with the full consumption as reference, the reduced
consumption approach suffers from an under-estimation of the consumption (Figure 2 and Table 3 in the
appendix). This is not surprising because the approach only collects consumption from a subset of items.
Applying the median as a summary statistic also results in an under-estimation of consumption. As
consumption distributions have a long right tail, the median consumption belongs to a poorer household
than the average household. In the case of Hargeisa, several optional modules have a median of zero
consumption. Thus, the median underestimates the consumption similarly to the reduced consumption
approach. In contrast, the average consumption of households is larger than the consumption of the
median household. Thus, it is not surprising that the technique using the average as summary statistic

over-estimates total consumption at the household and cluster level.

The regression techniques have a similar performance with a considerable upward bias at all levels. The
Tobit regression performs slightly better at the household and cluster level. In contrast, both multiple

imputation techniques perform exceptionally well with a bias below 1% at all levels.
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Figure 2: Average Relative Bias at household, cluster, and Figure 3: Average Relative Standard Error at household,
simulation level for six estimation techniques.? cluster, and simulation level for six estimation techniques.?
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While the bias is important to understand systematic deviation of the estimation, the relative standard
error helps to understand the variation of the estimation. Except in a simulation setting, the standard
error of the estimation cannot be calculated as only one assignment of households to optional modules
is available (Figure 3 and Table 3 in the appendix). Thus, it is important that the estimation technique

delivers a small relative standard error.

Generally, the relative standard error reduces when moving from the household level over the cluster
level to the global level. The relative standard error for the reduced consumption methodology is smaller
than for the summary statistic techniques because the reduced consumption is not subject to the variation
from the module assignment to households. The regression techniques have large relative standard errors
at the household level of around 20% while the multiple imputation techniques vary between 15% and
20%. At the cluster level, the relative standard error drops to 7% for regression techniques and 5% for
multiple imputation techniques. At the global level, the relative standard error is around 3% for regression

techniques and 1% for multiple imputation techniques.

The distributional shape of the estimated household consumption can be compared to the reference

household consumption by employing standard poverty and inequality indicators. The poverty headcount

8 Reduced consumption is abbreviated with ‘red’, median with ‘med’, average with ‘avg’, OLS regression with ‘reg’,
Tobit regression with ‘tobit’, multiple imputations using chained regressions with ‘MICE’ and multiple imputations
using multivariate normal approximation with ‘MImvn’.
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(FGTO) is 57.4% for the reference distribution.® Not surprisingly, the reduced consumption and the median
summary statistic overestimate poverty by several percentage points due to the under-estimation of
consumption (Figure 4 and Table 4 in the appendix). The average summary statistic and the regression
techniques underestimate poverty since they overestimate consumption. The multiple imputation
techniques over-estimate poverty but only by 0.5 percentage points (or about 1 percent) performing
significantly better than the reduced consumption approach with a more than two times larger bias. The
reduced consumption and the median summary statistic as well as the multiple imputation techniques
deliver good results for the FGT1 and FGT2 emphasizing that not only the headcount can be estimated
reasonably well but also the distributional shape is conserved. Except for the median summary statistic,
these techniques also perform well estimating the Gini coefficient with a bias of less than 0.5 percentage
points. The relative standard errors show similar results as for the estimation of the consumption (Figure
5 and Table 4 in the appendix). While the relative standard error of the reduced consumption for FGTO is
double compared to the multiple imputation techniques, the relative standard errors for FGT1 are

comparable but larger for FGT2 and Gini for the multiple imputation techniques.

Figure 4: Average Bias for FGTO, FGT1, FGT2 and Gini Figure 5: Average Standard Error for FGTO, FGT1, FGT2 and

coefficient. ® Gini coefficient.
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In summary, the average summary statistic and the regression approaches cannot deliver convincing
estimations. While the reduced consumption and the median summary statistic perform considerably

better, they both over-estimate poverty by construction. Only the multiple imputation techniques can

°The FGTO is calculated based on the USS 1.90 PPP (2011) international poverty line converted into local currency
in 2013.
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convince in all estimation exercises. Especially in the estimation of the important poverty headcount

(FGTO), the multiple imputation techniques are virtually unbiased.

Application to Mogadishu

In late 2014, consumption data using the proposed rapid methodology were collected in Mogadishu using
CAPI. The rapid consumption questionnaire did reduce face-to-face time considerably. A household visit
took about 40 minutes on average (median: 35 minutes) including greeting, household roster and
characteristics, consumption module as well as perception questions. Nine out of ten interviews took less

than 65 minutes.

After data cleaning and quality procedures, 675 households with consumption data were retained.’® A
welfare model was built to predict missing consumption in optional modules. The welfare model is tested
on the core consumption (after removing the core consumption as explanatory variable). The model for
food consumption retrieves an R2 of 0.24 while non-food consumption is modeled with an R2 of 0.16 (see
Table 3). It is important to emphasize that these models give a lower bound of the R2 compared to the
models used in the prediction as the prediction models include the core consumption as explanatory
variable. Given the assessment of the different estimation techniques in the last section, the multivariate

normal approximation using multiple imputations is applied to the Mogadishu data set.

For the Mogadishu data set, the assignment of items to modules had to be refined manually.!! The
refinement has minor impact on the share of consumption per module (Table 2). It is peculiar though that
the share of consumption per module is very different between Hargeisa and Mogadishu. Using the
Hargeisa data set, 91% of food consumption (76% for non-food consumption) is captured in the core
module. In contrast, the core food consumption share is only 64% (for non-food consumption 62%) in
Mogadishu before imputing consumption of non-assigned modules. Thus, employing a reduced
consumption module based on consumption shares identified in Hargeisa would have crudely under-

estimated consumption in Mogadishu without the possibility to evaluate the inaccuracy. In contrast, the

10 While the survey also covered IDP camps, the presented analysis is restricted to households in residential areas
excluding IDP camps.

11 The manual refinement is necessary to ensure that items like ‘other fruits’ cannot double count types of fruits
not assigned to the household. This is implemented by relabeling and manual assighment to modules. In addition,
some items grouping several sub-items were split into single items, which is generally preferable for recall and
recording as well as calculation of unit values.
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rapid consumption methodology allows the estimation of shares for each module while the consumption

estimation procedure implicitly takes into account the ‘missing’ consumption shares for each household.

Table 2: the number of items and consumption share captured per module simulated for Hargeisa, estimated for Mogadishu
before imputation of non-assignment modules (normalized to 100%) and after imputing full consumption.

Food Consumption Non-Food Consumption
Share Share

Number Share Share Mogadishu Number Share Share Mogadishu

of ltems  Hargeisa Mogadishu Imputed of Items Hargeisa Mogadishu Imputed
Core 33 91% 64% 54% 26 76% 62% 52%
Module 1 19 3% 9% 16% 15 7% 9% 12%
Module 2 20 2% 14% 14% 15 5% 9% 12%
Module 3 15 2% 5% 6% 15 6% 8% 9%
Module 4 15 2% 8% 9% 15 6% 11% 15%

The cumulative consumption distribution can be compared for the consumption captured in the core
module, the consumption captured in the core and the assigned optional module and the imputed
consumption (Figure 6). By construction, the core consumption shows the lowest consumption per
household. Adding the consumption from the assigned optional module shifts the cumulative
consumption curve slightly. The imputed consumption is shifted even further as the estimated

consumption shares from the non-assigned module are added as well.
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Figure 6: Cumulative consumption distribution in current USD per
day and capita for core module (dark blue), core and assigned
optional module (medium blue) and imputed consumption (light
blue).??
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Without a full consumption aggregate available for Mogadishu, only consistency of the retrieved
consumption aggregate with other household characteristics to validate the estimates can be shown.
Consumption per capita usually reduces with increasing household size. Indeed, household size is
significantly negatively correlated with estimated per capita consumption (coefficient: -0.04, t-statistic: -
2.10, p-value: 0.04).2® Per capita consumption also decreases with a larger share of children among the
household members (coefficient: -0.28, t-statistic: -1.66, p-value: 0.098). The proportion of employed
members in the household significantly increases consumption per capita (coefficient: 0.51, t-statistic:
2.77, p-value: <0.01). Thus, the retrieved consumption estimate is consistent and — using the evidence

from the ex post simulations — highly accurate.

Conclusions
The results from the ex post simulation indicate that the rapid consumption methodology can reliably
estimate consumption and poverty. At the same time, the experience in Mogadishu showed that the rapid

consumption methodology can be implemented in extremely high risk areas while succeeding in limiting

12 Note that the presented consumption aggregate does not include consumption from durables goods.

13 The reported numbers are corrected against correlation with household characteristics included in the welfare
model. As the welfare model for the prediction of consumption includes household size, robustness check are
calculated excluding household size from the welfare model used for prediction. The correlation between
consumption per capita and household size is still significant (coefficient: -0.03, t-statistic: -2.17, p-value: 0.03).
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face-to-face interview time to less than one hour. While these results are encouraging, the rapid

consumption methodology has some limitations.

The rapid consumption questionnaire varies comprehensiveness and order of items in the consumption
module between households. The effect of a response bias due to this neither can be estimated from the
simulations nor from the data collected in Mogadishu. However, an enhanced design with different
optional modules varying in their comprehensiveness of items can shed light on this bias. Comparison
between responses for the same item in a comprehensive and an incomprehensive list would indicate a
lower bound for response bias. Assuming that the context of a comprehensive list is a better estimate,

the response bias could be corrected for.

The rapid consumption survey methodology can increase the gap between capacity at the enumerator
level and complexity of the survey instrument. Capacity at the enumerator level is often low in developing
countries — especially in a fragile context. The rapid consumption survey methodology increases the
complexity of the questionnaire, which can further increase the gap between existing and required
capacity at the level of enumerators. However, CAPI technology can seal off complexity from the
enumerator, as software can automatically create the consumption module based on core and optional
modules for each household without showing the partition to the enumerator. In Mogadishu, advanced
CAPI technology was used generating the questionnaire automatically based on the assignment of the
household to an optional module. While enumerators were made aware that different households will be
asked for different items, administering the rapid consumption questionnaire did not require any

additional training of enumerators beyond standard consumption questionnaires.

Analysis of rapid consumption survey data requires high capacity. Analysis capacity is usually limited in
developing — and especially fragile — countries. While the general idea of assignment of optional
consumption modules to households will be digestible by local counterparts, poverty analysis based on a
bootstrapped sample of the consumption distribution is likely to overwhelm local capacity. However, even
standard poverty analysis is often out of limits for local capacity in fragile countries. Therefore, capacity
building usually focuses on data collection skills with a long-term perspective to increase data analysis
capacity. In addition, the rapid consumption survey methodology might be the only possibility to create

poverty estimates in certain areas, for example Mogadishu.

The results of the ex-post simulation and the application in Mogadishu suggest that the rapid consumption

methodology can be a promising approach to estimate consumption and poverty in a cost-efficient and
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fast manner even in fragile areas.’* A similar ex-post simulation for South Sudan (data not shown)
indicates that the rapid consumption methodology can also be applied at the country level with large
intra-country consumption variation.® Further research can help further refining the methodology and
estimation techniques. A better understanding of the relationship between the number of items in the
core module and the number of optional modules with the accuracy of the resulting estimates can help
to further optimize the methodology. Also the algorithm for the assignment of items to modules was
designed ad hoc and can certainly be further improved. The estimation techniques can be optimized
utilizing different techniques and more appropriate welfare models, for example including locational
random effects. Finally, ultimate validation of the rapid consumption methodology should come from a
parallel implementation of a full consumption survey and the rapid consumption methodology to directly

compare estimates.

14 Costs for implementing a rapid consumption survey are lower than conducting a full consumption survey due to
the reduced face-to-face time allowing enumerators to conduct more interviews per day.

15 Ongoing field work employs the rapid consumption methodology currently in South Sudan to update poverty
numbers.
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Appendix

Table 3: Bias and relative error for consumption aggregate at the household, cluster and global level.

Household Cluster Global

Method Bias SE Bias SE Bias SE

Reduced Consumption (red) -3.5% 6.4% -3.6%  4.5% -41% 4.1%
Median (med) -5.5% 9.6% -6.7% 8.0% -7.5% 7.5%
Average (avg) 5.2% 14.4% 0.6% 6.0% -1.0% 1.1%
OLS Regression (reg) 7.3%  19.0% 3.3% 6.2% 2.5% 2.6%
Tobit Regression (tobit) 6.6%  25.7% 29% 6.7% 2.6%  2.8%
Chained Equations (MICE) 0.6% 13.1% -04% 4.8% -1.2% 1.3%
Multivariate Normal (MImvn) 1.1% 22.3% -0.2%  5.3% -1.0% 1.3%

Table 4: Bias and relative error for FGTO, FGT1, FGT2 and Gini for different estimation techniques.

FGTO FGT1 FGT2 Gini

Method Bias SE Bias SE Bias SE Bias SE

Reduced Consumption (red) 21%  2.1% 0.6% 0.6% 0.3% 0.3% -03% 0.3%
Median (med) 24%  2.5% 0.6% 0.6% 02% 02% | -13% 1.3%
Average (avg) -3.8% 3.8% -2.6%  2.6% -1.6%  1.6% -3.9%  3.9%
OLS Regression (reg) -3.5% 3.6% 21%  2.1% -1.3% 1.3% -2.6%  2.6%
Tobit Regression (tobit) -3.4%  3.5% -1.9%  2.0% -11% 1.1% -1.7% 1.8%
Chained Equations (MICE) 0.8% 1.1% 0.8% 0.8% 0.7% 07% | -0.5% 0.6%
Multivariate Normal (MImvn) 0.7% 1.0% 0.7% 0.8% 0.6% 0.7% -0.5% 0.7%
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Table 5: Test of Welfare Model on core consumption reporting coefficients (t-statistics) for Mogadishu.

Core Food Core Non-Food

Variable Consumption Consumption

Core Food Consumption

... 2nd Quartile 0.78 (1.17)

... 3rd Quartile 0.09 (1.46)
_.4thQuartle | 052722

Core Non-Food Consumption

... 2nd Quartile 0.07 (1.11)

... 3rd Quartile 0.12 (1.77)
o AthQuartile L 0.42(5.81) _
_HouseholdSize | 0.07(-836) _______-0.04(4.34) _
_Household Head Education |  016(3.34) 0.12 (2.56) _

Dwelling Characteristics

... Shared Apartment 0.04 (0.59) -0.13(-2.12)

... Separated House -0.14 (-1.13) -0.19 (-1.55)
_-SharedHouse | -0.07(-0.81) -0.14(-1.52) _

Water Access

... Piped Water -0.22 (-0.93) -0.04 (-0.19)
_..PublicTap | 041(247) - -0.01(-0.08) _

Insufficient Food in last 4 weeks 0.05 (1.49) -0.05 (-1.50)

R2 0.24 0.16

N 675 675
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