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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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The paper presents the development and implementation 
of a geo-spatial model for mapping populations’ access to 
specified types of water and sanitation services in Nigeria. 
The analysis uses geo-located, population-representative 
data from the National Water and Sanitation Survey 
2015, along with relevant geo-spatial covariates. The 

model generates predictions for levels of access to seven 
indicators of water and sanitation services across Nigeria 
at a resolution of 1×1 square kilometers. The predictions 
promise to hone the targeting of policies meant to improve 
access to basic services in various regions of the country. 
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1. INTRODUCTION

Until now, efforts to measure access to water and sanitation around the world have provided a 

certain level of aggregation at the subnational level, such as for particular government districts, 

but rarely do we encounter high-resolution maps for entire countries. Using survey data to map 

particular indicators is difficult for a number of reasons. First, the actual location of the surveyed 

establishment is usually unavailable. Second, due to cost constraints, and to ensure 

representativeness, surveys typically use cluster-based sampling techniques, which makes the 

distribution of observations uneven across a given area. The absence of reliable, granular, evenly 

distributed, geo-referenced data makes it difficult to accurately compare water, sanitation and 

hygiene (WASH) access across a country, or to identify those areas in greatest need of investment.  

The poor provision of safe, accessible water and sanitation services in Nigeria has commensurate 

public health and economic impacts. Evidence from Nigeria has shown that those sectors of the 

population with the worst water, sanitation, and hygiene conditions are also the ones most at risk 

of attaining diseases due to inadequate health. A majority share of the Global Burden of Disease 

(GBD) enteric burden – a common measure for estimating the health burden and risk factors of 

diseases – estimated for Nigeria is associated with inadequate WASH, and disproportionately 

borne by poorer children and those in vulnerable geographic areas. Approximately 73 percent of 

the GBD enteric burden estimated for the country is associated with inadequate WASH.2 

A recent, nationwide multi-sector assessment undertaken by the Federal Ministry of Water 

Resources (FMWR) of the Government of Nigeria with support from the World Bank – the 2015 

National Water and Sanitation Survey, NWSS – provides uniquely detailed information on access 

to WASH in Nigeria, as gathered from a wide-ranging set of surveys: a nationally representative 

household survey on access to safe water and sanitation which covered 201,842 households,  a 

spatial inventory of 89,721 water points and 5,100 water schemes in the country, and a survey on 

the provision of WASH in over 50,000 public facilities, including health and educational centers.3  

2 Andres et al (2017). 
3 Please refer to Andres et al. (2017) for more information on the NWSS.  
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The model presented here makes use of the NWSS household survey, as well as the surveys on 

water points and water schemes, all of which include geo-locational data.4 These data present an 

unprecedented opportunity to use geo-spatial models to analyze, at a detailed level, the 

geographical characteristics of access to safe water and sanitation across the country. 

 

In sectors outside WASH, many household and facility surveys now include geo-locational 

information (e.g., the latitude and longitude of survey clusters, recorded via a Global Positioning 

System [GPS] device at the time of the survey, or linked to spatial administrative boundary data). 

Spatial, statistical modeling approaches are being developed by exploiting this locational 

information to generate mapped surfaces of indicators of interest at increasingly fine spatial scales, 

and with greater precision than was previously possible. Central to many of these approaches is a 

body of theory known as model-based geo-statistics (MBG) (Diggle & Ribeiro 2007; Diggle et al. 

1998). MBG has been successfully applied to point-located survey data to create a wide range of 

maps, including, for example, mapping malaria prevalence (Gething et al. 2011, 2012) and poverty 

(World Bank 2016). The availability of the NWSS 2015 data makes it possible to extend the MBG 

approach to mapping local populations’ access to water and sanitation services, and their proximity 

to the nearest functioning water source, in Nigeria. The high level of granularity resolved in the 

mapped outputs can improve our understanding of inequalities in access levels between and within 

the different regions of the country. 

  

2. DATA 

 

National Water and Sanitation Survey (NWSS) 2015 

Data on access to WASH variables come from the 2015 NWSS household survey. The household 

survey was conducted by the Federal Ministry of Water Resources, which interviewed 201,842 

households across 36 states in Nigeria (Figure 1).5 The survey asked questions relating to 

                                                       
4 All surveyed households and water service points were georeferenced in the surveys to provide latitude and longitude coordinates. 
Water schemes were also georeferenced using their centroid location, although it should be noted that in many cases these schemes 
occupy a significant area and so the use of a single central location is a potentially crude approximation of their true spatial extent 
and coverage. 

 
5 See a more detailed description at Andres et al. (2017). 
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respondents’ access to water and sanitation services, and their use of water and sanitation 

infrastructure. It also included questions on household expenditure, health and hygiene.  

 

From the NWSS household survey , we were able to construct seven access to WASH indicators, 

informed by the Sustainable Development Goals (SDGs) (WHO/UNICEF 2015). These indicators 

are: (1) access to improved water, (2) access to basic water, (3) access to improved water on 

premises, (4) access to piped water on premises, (5) lack of access to fixed-point sanitation (also 

known as open defecation), (6) access to improved sanitation, and (7) access to sewerage 

connection, with definitions as follows: 

 

(1) Improved water sources are those which, by the nature of their construction and when 

properly used, are adequately protected from outside contamination, particularly fecal 

matter. Such sources include piped water to yards/plots, public taps or standpipes, tube 

wells or boreholes, protected springs, and rainwater. 

(2) Basic water satisfies the requirements of “improved water” while also satisfying the 

additional requirement that it take less than 30 minutes, round trip, to collect the water in 

question. 

(3) Improved water on premises fulfills the same requirements as basic water, but further 

implies that the water is available directly on household premises.6  

(4) Piped water on premises fulfills the same requirements as improved water on premises, 

but is provided through pipes. 

(5) Fixed-point sanitation involves a pit or other containment structure, regardless of the 

quality of the structure or whether it is hygienically maintained. While it includes both 

improved and unimproved facilities, it stands in contrast to open defecation, which is 

defined as not having access to any type of toilet. 

                                                       
6 The global SDG indicator for water is defined as the “percentage of population using safely managed drinking water 
services,” and covers those improved drinking water sources that are (1) located on premises, (2) available when 
needed, and (3) compliant with fecal and priority chemical standards. Unfortunately, at the time the FMWR 
commissioned data collection for the National Water and Sanitation Survey (NWSS), this SDG indicator had not yet 
been defined, so we did not include access to safely managed water in the MBG model.  
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(6) An unshared improved sanitation facility, an indicator of improved sanitation, is one that 

hygienically separates human excreta from human contact and is not shared with any other 

household.7  

(7) Sewerage implies that an improved sanitation facility is connected to a sewer system. 

 

Geo-spatial covariates and population data 

In addition to the NWSS’s outcome data on the indicators of interest, a second category of data 

used for analysis was a suite of geo-spatial covariates that may be correlated with the indicators of 

interest, and thus partially explain observed spatial variation, allowing for more accurate 

predictions across each map. Geo-spatial covariates are gridded spatial data: each grid cell (or 

pixel) contains the value of a particular property. An initial set of spatial covariates were identified 

as potentially useful predictors of water and sanitation access levels, based on previous attempts 

to predict poverty in Nigeria (Gething & Molini 2015). This set of covariates is presented in Figure 

2 and consists of (1) a vegetation index, (2) aridity, (3) land-surface temperature, (4) brightness of 

nighttime lights, and (5) estimated travel time to the nearest functioning water source. The spatial 

covariates may be described as follows: 

 (1) Vegetation index (Figure 2a). NASA’s Moderate Resolution Imaging Spectroradiometer 

(MODIS, http://modis.gsfc.nasa.gov/) generates high-resolution satellite imagery on 

various measures of environmental conditions. This includes the Enhanced Vegetation 

Index (EVI), which measures reflectance in the green and red parts of the visible spectrum 

to provide a relative measure of the density of photosynthesizing vegetation in each pixel. 

These data were preprocessed to provide average values for the year 2015 in each 1x1 

kilometer (km) pixel. 

(2) Aridity (Figure 2b). The Consultative Group for International Agricultural Research 

(CGIAR) Consortium maintains high-resolution global raster climate data related to 

evapotranspiration processes and a rainfall deficit for potential vegetative growth. These 

are based on data from the WorldClim project (Hijman et al. 2005), and ultimately from 

                                                       
7 The global SDG indicator for sanitation, “percentage of population using safely managed sanitation services,” 
implies the use of an improved sanitation facility that is not shared with other households, and where excreta are safely 
disposed on site or transported and treated offsite. Unfortunately, at the time the FMWR commissioned data collection 
for the National Water and Sanitation Survey (NWSS), this indicator had not yet been defined, so data about excreta 
disposal or treatment were not collected. 
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weather station data interpolated using covariates such as altitude 

(http://csi.cgiar.org/Aridity/). 

(3) Land surface temperature (Figure 2c). NASA’s MODIS also generates high-resolution 

satellite imagery on land surface temperature (LST). 

(4) Brightness of nighttime lights (Figure 2d). This information comes from the Defense 

Meteorological Satellite Program Operational Linescan System’s (DMSP OLS’s) annual 

composite satellite data for nighttime lighting in 2009 (https://ngdc.noaa.gov/eog/). These 

data allow regions to be differentiated by the density of their population and also the degree 

of the electrification of their dwellings, commercial and industrial premises, and 

infrastructure. 

(5) Estimated travel time to nearest functioning water source (Figure 2e). This covariate was 

created for the current study by first creating a “friction surface” that estimates the time 

required to traverse each 1x1 km pixel across Nigeria. This varies according to the type of 

land cover, topography, and the layout of the road and the wider transport network across 

the country. The friction surface was then used in a least-cost path algorithm to estimate 

the likely travel time from the center of each 1x1 km pixel to the nearest functioning 

improved water source (such as a well, bore hole, or pump). The latitude and longitude, as 

well as the level of functionality, of every such water point and water scheme in Nigeria 

was recorded as part of the NWSS 2015. 

(6) A final category of data used in the analysis was a gridded map of estimated population 

density across Nigeria (Figure 2f) constructed from satellite-derived settlement maps and 

available census data as part of the AfriPop project (www.afripop.org) (Linard et al. 2012). 

An alternative population grid, from the Global Rural Urban Mapping Project (GRUMP, 

http://sedac.ciesin.columbia.edu/data/set/grump-v1-population-density) was also 

investigated. These gridded population surfaces were not used as covariates but were used 

to calculate population-weighted mean and count estimates for the various modeled 

indicators. 

 

Defining and implementing a standardized grid format 

The geo-spatial data sources described above were obtained in a variety of spatial resolutions and 

geographic extents. The land-sea templates inevitably varied, so the precise definition of 
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coastlines, and the inclusion or exclusion of small islands and peninsulas, was not consistent. These 

factors precluded the direct use of these data in a single spatial model. To overcome these 

incompatibilities, and generate a fully standardized suite of input grids on an identically defined 

geographic template, a processing chain with the following stages was developed. First, each input 

data source was re-projected, where necessary, using a standardized equirectangular Plate Carrée 

projection under the World Geodetic System 1984 coordinate system. Second, where input grids 

were defined at differing spatial resolutions, they were re-sampled to 1×1 km. Third, grids were 

either extended or clipped to match a standardized extent. Fourth, a bespoke algorithm was 

developed that compared each rectified and re-sampled grid to a “master” land-sea template for 

Nigeria and used a simple interpolation and/or clipping procedure to align new grids to this master 

template, thus ensuring that all the coastline was perfectly consistent on a pixel-by-pixel basis. 

 
3. METHODOLOGY 

 
Model-based geo-statistics 
 
The predictive approach used in this study to generate fine-scale maps of each water and sanitation 

indicator across Nigeria was based on a body of statistical theory known as model-based geo-

statistics (MBG). In an MBG framework, the observed variation in cluster-level indicator values 

is explained by one of the following four components:  

(1) A sampling error, which can often be large given the small sample sizes of individual 

clusters, is represented using a standard sampling model (e.g., a binomial model where 

cluster-level data consist of a selection of “poor” households from the total number 

sampled).  

(2) Some non-sampling variation can often be explained using fixed effects – whereby a 

multivariate regression relationship is defined by linking the dependent poverty variable 

with a suite of geo-spatial covariates.  

(3) An additional non-sampling error not explained by the fixed effects is usually spatially 

auto-correlated, and this is represented using a random effect component. A spatial 

multivariate normal distribution known as a Gaussian Process is employed, parameterized 

by a spatial covariance function.  
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(4) Finally, any remaining variation not captured by these components is represented using a 

simple Gaussian noise term, equivalent to that employed in a standard spatial linear model.  

The full model output is, for every pixel on the mapped surface, a posterior distribution for the 

predicted indicator, representing a complete model of the uncertainty around the estimated value. 

These can be summarized using a point estimate (such as the posterior mean) to generate a mapped 

surface of the indicator value. This methodology is able to present smaller points of estimation (in 

the spatial dimension) than are other methodologies such as small area estimation (Blankespoor & 

van der Weide 2017).  

 

Formal description of the model structure 
 

MBG models are a class of generalized linear mixed models, with an approximation of a 

multivariate normal random field (i.e., a Gaussian Process) used as a spatially auto-correlated 

random effect term. Each indicator (the proportion of individuals with access to the specified 

water/sanitation services)	ܻሺݔ௜ሻ at each location in Nigeria ݔ௜ for the year 2015 was modeled as a 

transformation ݃	ሺ∙ሻ of a spatially structured field superimposed with additional random variation 

݃ሺ. ሻ. The count of individuals with access ௜ܰ
ା from the total sample of ௜ܰ in each survey cluster 

was modeled as a conditionally independent binomial variate given the unobserved underlying 

ܻሺݔ௜ሻ value. The spatial component was represented by a stationary Gaussian process ݂ሺݔ௜,  ௜ሻݐ

with mean ߤ and covariance ܥ. The unstructured component ߳ሺݔ௜ሻ was represented as Gaussian 

with a zero mean and variance ܸ. Both the inference and prediction stages were coded using the 

Integrated Nested Laplace Approximation (INLA) framework, primarily in the R programming 

language. 

 

The mean component, ߤ, was modeled as a linear function of the n geo-spatial covariates, ߤ ൌ  ,ݔߚ

where ܺ ൌ ሺ1, ଵܺሺݔሻ, . . . , ܺ௡ሺݔሻሻ′	was a vector consisting of a constant and the covariates indexed 

by spatial location ݔ, and ߚ ൌ ሺߚ଴, ,ଵߚ … ,  ௡ሻ was a corresponding vector of the regressionߚ

coefficients. Each covariate was converted to z-scores before analysis. Covariance between spatial 

locations was modeled using a Matern covariance function: 
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ܥ ቀ݀൫ݔ௜; ௝൯ቁݔ ൌ ଶߪ
1

Γሺݒሻ2௩ିଵ	
ቆ√2ݒ	

݀൫ݔ௜; ௝൯ݔ
ߩ

ቇ
௩

௩ܭ	 ቆ√2ݒ	
݀൫ݔ௜; ௝൯ݔ

ߩ
ቇ 

 

Where, ݀൫ݔ௜; ,ߪ ;௝൯ is the geographical separation between two pointsݔ ,ݒ  are parameters of the ߩ

covariance function defining, respectively, its amplitude, degree of differentiability, and scale; ܭ௩ 

is the modified Bessel function of the second kind of order ݒ; and Γ is the gamma function. 

 

Incorporation of covariates 

In a standard non-spatial generalized linear model (GLM) regression approach, it is necessary to 

undertake a formal covariate selection procedure to maximize the ultimate predictive accuracy of 

the model. Including too few informative covariates means that exploratory power is lost, but the 

inclusion of too many may result in the high-dimensional multivariate model overfitting the data, 

explaining noise rather than signal and, ultimately, reducing predictive accuracy. Because full geo-

statistical models are extremely time-consuming to fit, a common practice has been to use simpler 

non-spatial models to determine the optimum covariate selection for subsequent inclusion in the 

full spatial modeling framework. Techniques such as stepwise variable selection are often used, 

whereby a covariate set is built up by progressively adding new candidate covariates to a model 

(forward selection) or subtracting them from an initial inclusive set (backward selection), and 

deciding to keep or discard each new covariate based on its impact on the model fit. These 

techniques are, however, known to be sensitive to the order in which variables are added or 

removed, and therefore risk generating arbitrary final selections. 

 

In this study, a more novel approach has been implemented: the use of “regularization” embedded 

within the geo-statistical model itself. In intuitive terms, this allows a large suite of candidate 

covariates to be entered into the main model while achieving two things. First, it allows the model 

to sacrifice a small amount of bias for a large reduction in variance (in a trade-off between bias 

and variance), greatly improving out-of-sample predictive capacity. Second, the regularizer 

shrinks the coefficients of the covariates, which means the effects of collinearity are minimized, 

making the model more stable and robust. In formal terms, a Gaussian process anterior was 

imposed on the likelihood, allowing regularization of the posterior mean: 
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ሺ݌ ௫݂|ݕሻ ൌ
|ݕሺ݌ ௫݂ሻ݌ሺ ௫݂ሻ

ሻ൘ݕሺ݌ ൌ ܰሺݕ; ௫݂, ሻܰሺܫଶߪ ௫݂; ,ߤ ሻܥ
ܰሺݕ; ,ߤ ܥ ൅ ሻ൘ܫଶߪ  

 

െ2log݌ሺ݂|ݕሻ ൌ ሺݕ െ ௫݂ሻ்ିߪଶܫሺݕ െ ௫݂ሻ ൅ ሺ ௫݂ െ ሺܥሻ்ߤ ௫݂ െ ሻߤ ൅  ݐ݊ܽݐݏ݊݋ܿ

 

െ2log݌ሺ݂|ݕሻ ൌ ݕ|ଶหିߪ െ ௫݂|หூ
ଶ
൅ ห| ௫݂ െ ห|ߤ

஼

ଶ
൅  ݐ݊ܽݐݏ݊݋ܿ

 

Here ܰሺ⋅ሻ is the Gaussian probability distribution function; ௫݂ is the Gaussian process function; y 

is the response; ߤ,  is the noise ܫଶߪ are the mean and covariance functions, as defined earlier; and ܥ

or error. The regularization is not just the ݈ଶ distance in the conventional ridge regression but the 

Mahalanobis distance, which accounts for the elliptical skew due to the covariance function, 

thereby including all correlated effects into the regularizer. In addition to the conceptual benefits 

afforded by the Gaussian process prior, the possible inclusion of a priori non-linear 

transformations on the fixed effects was explored. However, these non-linear transformations did 

not lead to significant improvements over the non-transformed parsimonious model, and so the 

latter was retained. Model complexity was measured using the Deviance Information Criteria. 

 

Model implementation and output 

Bayesian inference was implemented using the INLA algorithm to generate approximations of the 

marginal posterior distributions of the outcome variable ܻሺݔ௜ሻ at each location on a regular 1×1 

km spatial grid across Nigeria and of the unobserved parameters of the mean, covariance function, 

and Gaussian random noise component. At each location, the posterior distribution was 

summarized using the posterior mean as a point estimate, and maps were generated of each of 

these metrics in ArcGIS 10.4. 

 

Aggregation at the level of individual states and local government areas (access rate and 

count) 

The MBG models generate predicted maps of each indicator at a 1x1 km resolution. While these 

provide the most fine-grained picture of variation in water and sanitation access across the country, 

it is also useful to summarize these patterns at higher levels of aggregation corresponding to the 

administrative unit levels at which program planning, implementation, and decision-making are 
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carried out. For each indicator, therefore, various aggregate versions were calculated at both the 

level of the state (1st subnational unit) and local government area (LGA, 2nd subnational unit), as 

follows: 

 

(1) Mean indicator rates. These are calculated as population-weighted means of the indicator 

predictions across all pixels within each administrative unit, and provide the best estimate 

of the percentage of the population within each unit that meets the criterion of each 

indicator (e.g., the percentage of people with access to basic water in state x). 

(2) Indicator rate quintiles. Mapping the mean indicator rates allows for a comparison of the 

absolute level of access across administrative units. Also of interest is the relative level of 

access, and this is best visualized by identifying the quintile within which each 

administrative unit lies relative to others across the country. 

(3) Indicator count. This is the sum of the population in each administrative unit that meets 

the criterion for the indicator. Since this metric is primarily used to help target underserved 

populations, a count was calculated for that fraction of the population without access to 

water/sanitation services (e.g., the count of people that do not have access to basic water 

in state x). 

 
4. RESULTS 

 
Model coefficients  
 

Table 1 shows fitted coefficients for each of the fixed effects (covariates) used in the model for 

each water and sanitation indicator. Since these are Bayesian models, each parameter is estimated 

as a full posterior distribution, and is summarized here via the 50th (median), 2.5th, and 97.5th 

percentiles. The magnitude, direction, and significance of fitted coefficients varied considerably 

across the different indicators. In some cases, the observed relationships matched prior 

expectations: for example, that access to basic and improved water was inversely correlated to an 

increase in travel time to the nearest water point or scheme, or that areas that were more lit up at 

night (thus more urban) were associated with higher access to sewerage connections and piped 

water on premises, and lower rates of open defecation. Others were less intuitive: for example, that 

improved sanitation rates were higher in areas that were less bright at night. It should be noted 
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that, although many covariates contributed in a statistically significant way to the final model fits, 

their interpretation is not as straightforward as in a non-spatial model, because much of the 

variation in observed indicator values is accounted for via the random effect component.  

 
Table 1 Parameter estimates for fixed effects (covariates)  

 Percentile EVI Aridity LST NTL 
Time to 

waterpoint 

Basic water 
2.5th -0.699 -2.290 -4.184 -0.064 -0.033 

50th -0.041 -0.765 -2.066 -0.020 -0.028 

97.5th 0.615 0.758 0.051 0.024 -0.022 
Improved water 2.5th -1.597 -2.226 -4.409 -0.084 -0.050 

 
50th -0.869 -0.506 -2.061 -0.036 -0.044 

97.5th -0.143 1.209 0.282 0.011 -0.039 

Improved water on premises 
2.5th -0.353 -2.181 -4.438 -0.104 -0.005 

50th 0.248 -0.782 -2.497 -0.064 0.000 

97.5th 0.849 0.611 -0.559 -0.024 0.005 

Piped water on premises 
2.5th 1.251 -1.699 -2.541 0.012 0.014 

50th 1.723 -0.618 -1.055 0.042 0.017 

97.5th 2.197 0.456 0.432 0.072 0.021 

Open defecation 

2.5th 4.083 -3.472 -1.945 0.151 0.014 

50th 4.728 -1.899 0.121 0.191 0.018 

97.5th 5.373 -0.324 2.187 0.231 0.023 

      

 
Improved sanitation 
 

2.5th -0.628 -1.857 -3.760 -0.096 -0.005 

50th 0.012 -0.343 -1.692 -0.054 0.000 

97.5th 0.652 1.168 0.377 -0.012 0.005 

Sewerage connection 
2.5th 1.908 -3.598 -5.114 0.013 0.012 

50th 2.320 -2.650 -3.803 0.039 0.015 

97.5th 2.731 -1.697 -2.489 0.064 0.018 
Note: EVI, enhanced vegetation index; LST, land surface temperature; NTL, brightness of nighttime lights. In a Bayesian model, 
each coefficient is fitted as a probability distribution function, and this is summarized here by the median and 95% credible interval 
range. Coefficients statistically different from zero (“significant” with 95% confidence) are highlighted in gray. 

 

Model validation  

The predictive performance of the model for each indicator is assessed via out-of-sample cross-

validation. A fourfold hold-out procedure was implemented whereby 25% of the data points were 

randomly withdrawn from the data set, the model was run in full using the remaining 75% of data, 

and the predicted values at the locations of the hold-out data were compared with their observed 

values. This was repeated four times without replacement such that every data point was held out 

once across the four validation runs. Standard validation statistics were computed as measures of 
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model precision (mean absolute error), accuracy (mean square error), and linear association 

(correlation) between observed and predicted values. 

 

Table 2 displays validation statistics from the fourfold out-of-sample validation procedure 

implemented for each predicted variable. The correlation between observed and predicted values 

was generally very high, exceeding 0.8 (on a scale from zero to one) for most indicators. The two 

exceptions were piped water on premises and sewerage connection, and here the lower correlations 

can be attributed to the almost universally low observed values of these indicators – meaning 

correlations were being assessed within a very small range. Mean absolute errors, which measure 

the overall precision of the model (and are expressed here on the same scale as the variables 

themselves – i.e., a proportion between zero and one) again suggested good model performance: 

the average difference between observed and predicted values at each location was between 0.1 

and 0.2. The most precise predictions were for piped water on premises and sewerage connection 

– again reflecting the lack of variability in the observed data. Mean square errors, which capture 

overall model performance (both bias and variance), were also small, exceeding 0.05 for only one 

variable – improved water. 

 
Table 2 Validation statistics summarizing performance of geo-statistical models predicting each 
water and sanitation variable 

Variable Correlation Mean absolute error Mean squared error 

Basic water 0.816 0.172 0.047 

Improved water 0.830 0.185 0.054 

Improved water on premises 0.808 0.142 0.035 

Piped water on premises 0.516 0.085 0.014 

Improved sanitation 0.815 0.150 0.039 

Open defecation 0.865 0.152 0.043 

Sewerage connection 0.241 0.076 0.009 

 
Model uncertainty 

While the out-of-sample validation procedure provides an external check on the model’s predictive 

performance and fit, the framework also provides an internal, model-based estimate of the 

uncertainty associated with the prediction in every pixel. It reveals which parts of each map are 

more or less certain, as driven by local heterogeneities in the indicator data and the density of data 
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points. Figure 3 presents uncertainty levels for the water indicators. The estimation results for the 

indicators of access to improved water, basic water, and improved water on premises show high 

levels of confidence in densely populated areas. In areas where population numbers are low the 

precision of the estimates is low. This is favorable from the policy perspective, since certainty is 

most important in policy decisions that affect the greatest number of people. In the case of piped 

water on premises, the estimation results have a high level of certainty across a large proportion 

of the territory. In Figure 4, the results for sanitation indicators are similar to those for water. In 

the case of indicators with relatively widespread coverage, such as open defecation and improved 

sanitation, the results again have low levels of uncertainty in areas with high densities of 

population. For the access to sewerage indicator, at only 5.6 percent, on average, across the nation, 

a high level of confidence is seen nationwide.   

 
 
Geo-spatial modeling of basic indicators 
 
In Figures 5–11, the results of the geo-statistical modeling exercise are presented for the seven 

water and sanitation indicators listed earlier. Each of these figures is divided into three different 

maps: (1) a detailed pixel-level map shows the predicted percentage of the population, in each 1x1 

km pixel, with access to the indicator in question; (2) equivalent percentage estimates are 

aggregated at the state level; and (3) a population count of those with access to the indicator is 

defined for each state. 

 

Figure 5 maps the share of population using improved water. The 1x1 km pixel maps reveal 

pronounced spatial heterogeneity, and across relatively short distances. This is partly due to urban-

rural gradients: urban areas tend to have high rates of access to improved water, and rates drop off 

rapidly outside city limits. At the state level, rates span the range from just 23% (in Bayelsa) to 

89% (in Jigawa). The largest concentrations of population without access to improved water are 

found in Kano (6.0 million), Kaduna (4.5 million), and Benue (3.8 million). Figures 6 and 7 map 

the share of population using basic water and improved water on premises, respectively. 

Unsurprisingly, estimated rates are lower for both indicators than for improved water, given their 

more stringent requirements. Both maps have a similar urban-rural pattern characterized by higher 

rates of access within and around the major urban centers (especially Lagos and Imo to the north 
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and Kano to the south). The degree to which these higher urban rates extend past city limits and 

into surrounding rural areas is far smaller for basic water and improved water on premises than for 

improved water, leading to a more focal, concentrated urban effect. 

 

At the state level, Enugu has the lowest rates of access to both basic water and improved water on 

premises (7.5% and 6%, respectively), while Lagos has the highest (75% and 60%, respectively). 

Interestingly, despite having the highest rates of access, the large urban states also have the largest 

number of people without access. The two largest populations without basic water are in Kano (8 

million) and Kaduna (5 million); the largest without improved water on premises are in Kano (9 

million) and Lagos (5.5 million). Figures 8 and 9 map the populations with piped water on premises 

and with a sewerage connection, respectively. Very few Nigerians have access to either: the maps 

show almost uniform, very low rates nationwide other than in a handful of pockets with some 

access. Even in the states with the highest access rates (Abuja and Lagos), only 16% and 12% of 

the population have piped water and sewerage connections, respectively. Only seven states have 

rates of 10% or more for piped water (Abuja, Plateau, Taraba, Delta, Yobe, Nassarawa, and 

Jigawa) and just four states have rates of 10% or more for sewerage connections (Lagos, Abuja, 

Nassarawa, and Taraba). 

 

Figure 10 maps the share of the population using an improved sanitation facility. Here, the spatial 

pattern is rather different from the others; while there are predominately low rates throughout much 

of the country, the pixel-level map shows areas of much higher access across the states of Kaduna 

and Niger and parts of Kano and Jigawa. Interestingly, these well-served areas are not well 

identified in the state-level aggregate maps, highlighting the importance of looking at variations at 

a local-level resolution. Rates vary at the state level from 7% in Bayelsa to 57% in Kaduna: the 

largest populations without access are found in Lagos (12 million) and Kano (8 million). When we 

compare these results with Figure 9, which shows the predicted level of access to sewerage, we 

observe that the main difference is in access to improved sanitation. In the case of sewerage, the 

level of access is very low across all the regions of Nigeria.  

 

Finally, Figure 11 maps the share of population practicing open defecation. This is the indicator 

that displays perhaps the most polarization across the country: around one-third of states display 
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very high rates of open defecation, especially in the central and southern areas, excluding the 

coastal regions. The remainder of the country to the north displays very low rates. Accordingly, 

the state with the highest rates is Kwara, where 63% of the population practices open defecation, 

while the practice is least prevalent in Kano, at just 2%. 

 

5. CONCLUSION 

 

In order to design targeted policies, access to geographically specific information is crucial. 

However, this information is usually derived from representative surveys, whose sampling 

techniques are meant to save on costs while ensuring the representativeness of the population, but 

only permit a limited degree of desegregation, so the inferences are not extended to outliers. Geo-

spatial models can help address these limitations by generating predictions for areas where 

information is lacking. In this paper, we implement a model-based geostatistical (MBG) prediction 

of access to specified water and sanitation services in Nigeria. Using information from households 

and water points and water schemes gathered as part of the National Water and Sanitation Survey 

2015, as well as an array of geo-spatial covariates, we generate layers of information for seven key 

indicators of access to WASH, at a spatial resolution of 1x1 km.  

 

The availability of these spatially detailed estimates provides a new trove of important information 

to support the targeting of programs advancing water and sanitation access in Nigeria, and offers 

more detailed, granular estimates, for tracking progress toward the SDGs.  
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Figure 1  Map showing geo-positioned data from the 2015 National Water and Sanitation Survey on surveyed 
households (left) and water service points and schemes (right).  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

Figure 2 Geo-spatial covariates and ancillary data included in the analysis   

(a) mean enhanced vegetation index imagery derived 

from NASA’s MODIS 

(b) aridity, derived from weather station data and 

maintained by the CGIAR Consortium 

(c) mean land surface temperature from NASA’s 

MODIS 

    

(d) imagery of nighttime lights in Nigeria in 2009 

maintained by NOAA 

 

(e) estimated travel time to nearest functioning water 

service point, as identified in the NWSS 2015 

 

(f) population density layer for Nigeria in 2011

maintained by the AfriPop project 
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Figure 3 Map showing uncertainty associated with modeled 1×1 km pixel level predictions of the percentage of 
population with access to four water service indicators. Uncertainty is quantified using the width of the posterior 
predictive distribution for each pixel (measured on the same scale as the indicator itself: a percentage between 0 
and 100%). This is the range of values within which there is a 95% probability that the true indicator value lies, 
thus wide intervals are more uncertain and narrow intervals less uncertain. 

(a) Improved water   (b) Basic water 

 

 

 

(c) Improved water on premises  (d) Piped water on premises 
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Figure 4 Map showing uncertainty associated with modeled 1×1 km pixel level predictions of the percentage of 
population with different sanitation access indicators. Uncertainty is quantified using the width of the posterior 
predictive distribution for each pixel (measured on the same scale as the indicator itself: a percentage between 0 
and 100%). This is the range of values within which there is a 95% probability that the true indicator value lies, 
thus wide intervals are more uncertain and narrow intervals less uncertain. 
(a) Sewerage connection   (b) Improved sanitation 

 

 

 
   

(c) Open defecation  
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(a)      (b) 

 

 
Figure 5 (main) Map showing modeled 1×1 km pixel level predictions of the percentage of population using improved 
water. Also shown are state-level estimates of (a) the percentage of people with improved water and (b) the number 
of people without imrpoved water. 
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(a)       (b) 

 

 
Figure 6 (main) Map showing modeled 1×1 km pixel level predictions of the percentage of population using basic 
water. Also shown are state-level estimates of (a) the percentage of people with basic water and (b) the number of 
people without basic water. 
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(a)       (b) 

 

 
Figure 7 (main) Map showing modeled 1×1 km pixel level predictions of the percentage of population with improved 
water on the premises. Also shown are state-level estimates of (a) the percentage of people with improved water on 
premises and (b) the number of people without improved water on premises. 
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(a)       (b) 

 

 
Figure 8 (main) Map showing modeled 1×1 km pixel level predictions of the percentage of the population with piped 
water on the premises. Also shown are state-level estimates of (a) the percentage of people with piped water on 
premises and (b) the number of people without piped water on premises. 
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(a)       (b) 

 

 
Figure 9 (main) Map showing modeled 1×1 km pixel level predictions of the percentage of population with a sewerage 
connection. Also shown are state-level estimates of (a) the percentage of people with a sewerage connection and (b) 
the number of people without a sewerage connection. 
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(a)       (b) 

 

 
Figure 10 (main) Map showing modeled 1×1 km pixel level predictions of the percentage of the population with 
improved sanitation. Also shown are state-level estimates of (a) the percentage of people with improved sanitation 
and (b) the number of people without improved sanitation. 
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(a)       (b) 

 

 
Figure 11 (main) Map showing modeled 1×1 km pixel level predictions of the percentage of population not practicing 
open defecation. Also shown are state-level estimates of (a) the percentage of people not practicing open defecation 
and (b) the number of people practicing open defecation. 
 


