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New technologies can both substitute for and complement 
labor. Evidence from structural vector autoregressions 
using a large global sample of economies suggests that the 
substitution effect dominates in the short-run for over 
three-quarters of economies. A typical 10 percent tech-
nology-driven improvement in labor productivity reduces 
employment by 2 percent in advanced economies in the 
first year and 1 percent in emerging market and develop-
ing economies (EMDEs). Advanced economies have been 
more affected by employment-displacing technological 
change in recent decades but the disruption to the labor 
market in EMDEs has been more persistent. The negative 

employment effect is larger and more persistent in econo-
mies that have experienced a larger increase, or smaller fall, 
in industrial employment shares since 1990. In contrast, 
economies where workers have been better able to transi-
tion to other sectors have benefited more in the medium 
run from the positive “income effect’’ of new technologies. 
This corresponds with existing evidence that industrial jobs 
are most at risk of automation and reduced-form evidence 
that more industrially-focused economies have tended to 
create fewer jobs in recent decades. EMDEs are likely to 
face increasing challenges from automation as their share of 
global industry and production complexity increases.

This paper is a product of the Prospects Group. It is part of a larger effort by the World Bank to provide open access to its 
research and make a contribution to development policy discussions around the world. Policy Research Working Papers are also 
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1 Introduction

Concerns are frequently raised about how the gains from new technologies are shared, particularly

through their impact on employment. Currently, concerns are highest around the automation of

manufacturing jobs but historically many major innovations have been accompanied by the threat

of job losses (World Bank, 2019). New technologies can be both a substitute or a complement for

labor, and therefore can boost job opportunities as well as reduce them (Autor, 2015). Certain

segments of the labor market can be harmed by technological change even where they result in new

labor tasks. Where the skills needed to accompany new technologies are unavailable, or demand

for new labor tasks does not rise sufficiently, aggregate employment can be persistently lower.

A large literature has attempted to assess the impact of technological change on employment

within affected sectors but so far the effects on aggregate employment have been under-explored,

particularly in EMDEs. This paper sheds new light on the question of how typical technology

shocks affect aggregate employment in a broad range of 30 advanced economies and 96 emerging

and developing economies (EMDEs). The large coverage relative to existing studies is enabled by

new methodologies developed in Dieppe et al. (2019, 2021).1 A further key contribution of this

paper is that the large sample size of economies under consideration allows for an exploration of

country-characteristics which are important in determining the size and persistence of employment

impacts following a technology shock.

“Technology shocks” in the sense discussed in this paper are derived from a structural vector-

auto regression (SVAR). These are identified as innovations which account for the largest share

of long-term (low-frequency) changes in productivity or TFP (Dieppe et al., 2019). The resulting

shocks “look-through” temporary changes in labor productivity or TFP, which are often driven

by non-technological factors such as changing factor utilization (Basu et al., 2006).2 Furthermore,

this methodology captures many types of technology shock; these can be neutral or complementary

to labor, resulting in increased employment, and can also be labor-saving, such as automating

technology developments (Acemoglu, 2003). The shocks captured by the SVAR approach will

therefore reflect the “typical” technology introduced over the estimation horizon.

Ninety percent of advanced economies and 70 percent of EMDEs experience a fall in employment

in year 1 following a positive technology shock, while half of advanced economies and one-third of

EMDEs experience a statistically significant fall in employment. In many economies, this fall in

employment is relatively persistent, lasting 10 years on average before the effect dissipates. The

finding is robust across multiple estimation methodologies for identifying technology shocks and

suggests that the type of technology shocks affecting most economies have been labor-substituting.

Economies with higher average productivity levels have suffered larger initial employment losses

1Gaĺı (1999) and Rujin (2019) assess the impacts of technology shocks on hours and employment in the G7.
2This identification does not rule out that factors other than productivity-enhancing technologies can drive long-run
productivity developments but it does assume that this is the dominant driver.
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following technology shocks, reflecting a higher propensity to introduce labor-saving technologies

in advanced economies relative to EMDEs. EMDEs have yet to be affected by labor-substituting

technological change to the same degree as advanced economies. However, EMDEs have been

affected by these technologies in large number and experienced more persistent employment losses

on average than advanced economies. This finding corresponds with the finding that “premature

deindustrialization” has been a widespread phenomenon in EMDEs. Higher trade openness and

exposure to FDI inflows are associated with lower initial employment losses following technology

shocks, consistent with a large literature that has found FDI is associated with job gains in EMDEs;

firms frequently invest in these economies to take advantage of lower labor costs, not to remove

workers from the production process.

Those economies where employment shares have remained more concentrated in the industrial

sector since 1990 have seen larger and more persistent employment losses on average following a

technology shock. This may seem paradoxical at first: the industrial sector, which has had a higher-

than-average potential for automation in recent decades, has proved more resilient as a share of

employment in the face of labor-displacing technological innovation in some economies. A simple

adaption of the framework of Acemoglu and Restrepo (2017, 2018) to incorporate differential income

elasticities shows that the services sector will be the key beneficiary of increased demand due to the

efficiency gains from automation that occur in the industrial sector. This is because the income-

elasticity and price-elasticity of demand for industrial goods is low, so that the displacement effect

for workers is unlikely to be offset by rising demand. In a world where the majority of economies

have experienced the direct effects of the loss of employment from labor-displacing technologies,

those that have been best able to transition workers to less-affected sectors such as services will

have stronger aggregate employment growth and a larger fall in the share of industrial employment.

Those economies that have been less successful at redeploying workers to other sectors will have

lower aggregate employment but higher industrial employment shares.

This paper proposes an additional perspective on the “premature deindustrialization” hypothesis

(Rodrik, 2016), where lower employment shares in industry are presented as a loss of the “escalator

of development”; instead, accelerated rotation away from industrial employment may be seen as a

sign of success in many cases, resulting from a smooth transition of workers and demand to new

sectors following the introduction of new labor-displacing technologies in industry.

A lack of transferable skills to other sectors will reduce the growth of aggregate employment

following a labor-substituting technology shock. Policies to improve the skill base of workers can

aid worker transitions to sectors less affected by labor-displacing technologies but may require a

prolonged period to implement and reap returns. Policies to increase demand for industrial prod-

ucts may provide nearer-term relief; there are large scale requirements for infrastructure investment

to meet poverty reduction targets in EMDEs and emission reduction targets in both advanced

economies and EMDEs. Public sector investment and increased incentives for private sector invest-
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ment will boost industrial output and could help reduced prolonged falls in employment as new

technologies are introduced.

2 Literature

Before turning to the new SVAR evidence on the effects of productivity-enhancing technology

shocks presented in this paper, it is useful to review the evidence from the existing SVAR literature,

alongside the theoretical and non-SVAR empirical evidence for the effects of automation and new

technologies on employment.

2.1 Theory

Productivity-improving technologies can generate opposing forces on total employment in an econ-

omy: first, a substitution effect, where new technologies can replace the need for workers; and

second, an income effect, where increases in the profitability of production increase the demand for

labor, in the affected or alternative sectors (Aghion and Howitt, 1994). The ability of the income

effect to offset automation will depend crucially on the type of workers required to complement

new technologies and capital assets, and the supply of workers with the appropriate skills for these

tasks (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018).

Search and matching models have been used to examine the employment displacement effects of

introducing new technologies into the production process. Mortensen and Pissarides (1998) show

that as the costs of updating skills and equipment for existing workers grow, “creative destruction”,

or the replacement of current labor tasks with capital embodying new technologies is likely to

occur (Schumpeter, 1942). In addition, they find that employment protection and unemployment

benefit levels can exacerbate the degree and persistence of unemployment following a technology

shock (Mortensen and Pissarides, 1999). Restrepo (2015) finds that employment in routine jobs is

likely to have declined since the 1990s due to search-and-matching frictions, as new technologies

frequently require increasingly novel skills.

This paper focuses on new technologies displacing labor as a driver of falling employment fol-

lowing a technology shock. However, a second mechanism exists for technology shocks to reduce

employment (or labor input more generally). The bulk of the literature analyzing the impact of

technology shocks using SVAR identification techniques have focused on the effects of sticky prices

in the canonical New Keynesian model as the reason for falling employment. Here, the mechanism

is that aggregate demand remains inflexible in the short run due to sticky prices and grows by less

than productivity following a technology shock. This leads firms to cut labor input in response to

new technologies. As prices adjust, demand expands and employment recovers (Gaĺı, 1999; Basu
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et al., 2006).3 In contrast, this paper finds evidence of more persistent employment effects than

might be driven by sticky prices. For most economies, investment does not fall in response to a

technology shock. Investment, as well as employment, is expected to fall initially in standard New

Keynesian models.

In some cases, the SVAR literature has assigned the fall in employment found in some ad-

vanced economies following an SVAR-identified technology shock to the displacement of labor for

new technologies, rather than the sticky-price mechanism. Canova et al. (2013) and Michelacci

and Lopez-Salido (2007) attribute falling employment after a technology shock to Schumpeterian

‘creative destruction’ effects. This paper builds on this tradition, using a significantly larger set of

economies under consideration, and using new SVAR identification techniques. However, a range

of alternative and complementary approaches have also been implemented to establish the effects

of new technologies on employment.

2.2 Sectoral evidence

A large body of evidence has shown that jobs have become increasingly polarized into low- and

high-skill occupations in the U.S. and Europe in recent decades, as a combination of automation

and offshoring has reduced demand for middle and low-skilled workers performing routine and

codifiable jobs (Acemoglu, 1999; Autor, 2015; Goos et al., 2014). Many of these lost occupations

were in the industrial sector, even as value-added produced by the sector remained resilient; in the

United States, employment of machine operators, assemblers, and other production employees fell

by over one-third every 10 years between 1980 and 2005 (Autor and Dorn, 2013). In a study of 16

European economies during 1993-2010, the share of employment accounted for by middle- and low-

skilled industrial sector occupations fell by nearly 10 percentage points (Goos et al., 2014). In the

United States and France, the increased use of robotics in industry is found to be inversely related

to industrial employment levels since 1990 and 2010, respectively (Acemoglu et al., 2020; Acemoglu

and Restrepo, 2020). Some service sector occupations are also found to have been negatively affected

by this trend in both regions, notably middle-skilled jobs such as office clerks. However, codifiable

middle- and low-skill jobs have been (at least partially) replaced by higher demand for both low-

skill service sector jobs, which are less easy to automate, and higher-skill jobs that complement

new technologies. SVAR analysis of sectoral manufacturing data for advanced economies has also

found negative effects on total hours worked of developments that have driven persistent positive

TFP growth (Chang and Hong, 2006; Park, 2012; Khan and Tsoukalas, 2013).

3A wide range of SVAR literature has tackled the response of labor inputs in response to technology to assess the
presence of a sticky-price mechanism, including (to name just a few) Christiano et al. (2004), Dedola and Neri (2007),
Collard and Dellas (2007), Francis and Ramey (2005), Francis et al. (2014), and Canova et al. (2010). The majority
of research has found evidence of decreasing employment from technology shocks in the U.S. context.
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2.3 General equilibrium impacts of technological progress on employ-

ment

Several studies in the U.S. have found that technological change has caused aggregate employment

to fall. These studies have gone beyond an examination of the sectoral effects of technological

job displacement. During the so-called ‘jobless recoveries’ in the US after the recessions of 1991,

2001, and 2008, when the employment rate fell or stagnated overall, middle-skilled and automatable

roles declined, particularly in the manufacturing sector (Jaimovich and Siu, 2019; Charles et al.,

2016). It has been further argued that even high-skilled workers have been substituted for newer

technologies and pushed into lower-skilled positions, reducing overall employment (Beaudry et al.,

2016). However, there remains controversy over the net impacts of technological change. In some

cases, the fall in employment in the sector affected by technological change is found to be offset by

employment gains in other sectors, particularly in “downstream” sectors which use inputs from the

affected sector (Autor and Salomons, 2018).

2.4 EMDE evidence

There is so far little evidence of the effects of technological change on employment in EMDEs. In

part this is because EMDEs have been large beneficiaries of outsourcing from advanced economies;

many manufacturing and codifiable service sector jobs have moved to EMDEs to take advantage

of cheap labor costs (Maloney and Molina, 2016). What technology-influenced change does appear

to be occurring has increased the share of routine semi-skilled jobs in many EMDEs, in contrast to

the fall in these types of jobs in advanced economies (World Bank, 2019). That said, large increases

in manufacturing productivity do appear to have resulted in “premature deindustrialization” in

EMDEs, where employment falls in the sector at much lower levels of income per capita than has

occurred historically (Rodrik, 2016). That could suggest that productivity-enhancing technology in

the manufacturing sector has reduced employment relative to a counterfactual, which would have

been otherwise higher still.

3 Estimating the effects of technology shocks on employ-

ment

Much of the evidence on the impact of productivity-improving technology on employment has

centered around the impacts of IT and manufacturing technologies in the US and Europe in recent

decades. There has yet to be an assessment of the effects of general improvements in technology

on employment in a broad range of countries. To assess the impact of productivity-enhancing

technology changes on a range of countries, we turn to the SVAR literature, which has already
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extensively estimated the relationship between “technology shocks” and total hours worked in the

United States and some European economies, finding a negative impact on total hours worked in

the first year following the shock (Gaĺı, 1999; Francis and Ramey, 2005; Francis et al., 2014).4

In this paper, innovations in technology (“technology shocks”) are identified as shocks that

drive the largest proportion of long-run developments in labor productivity, while other shocks

are assumed to have only transitory effects. Therefore, technology shocks represent any structural

development that results in lasting changes in labor productivity. These innovations could boost

labor productivity through higher technical efficiency, in the sense of higher TFP in a standard

Cobb-Douglas framework. Equally, new technologies may allow for the replacement of tasks pre-

viously completed using manual labor with capital, or “robot” inputs, altering the ratio of labor

and capital inputs, without necessarily boosting the overall efficiency with which capital and labor

are combined (Acemoglu and Restrepo, 2018). In both cases, output per unit of labor input is

increased. The identification may capture a mix between labor-augmenting and labor-displacing

technologies.

Traditionally, long-run restrictions have been used to identify technology shocks. However, long-

run restrictions are susceptible to significant bias from the presence of non-technology shocks which

can also drive developments in productivity (Chari et al., 2009; Dieppe et al., 2019, 2021). Instead,

the Spectral identification, detailed below, is more robust, particularly when applied to volatile

emerging and developing market economy data.

3.1 Spectral identification of technology shocks

The Spectral identification searches for the shock which maximizes the contribution to the variance

of productivity at long-run frequencies. This abstracts from the shocks which may instead drive

variation in labor productivity at business-cycle frequencies, such as demand and other short-run

impact shocks. This approach effectively applies a band-pass filter to the reduced-form coefficients

of a VAR containing macroeconomic variables, identifying the spectral density of the variables

within a particular frequency band. The technology shock is then identified by maximizing the

variance of labor productivity explained at the desired frequency.

We start by writing the Wold representation of the VAR (assuming it is invertible):

Yt =
(
I −

(
B1L+B2L

2 + . . . BpL
p
))−1

ut = Dut (1)

Here, B are the reduced-form auto-regressive coefficients, while u are the reduced form errors in the

VAR representation and D reflects the sum of the MA-representation coefficients of the VAR. By

post-multiplying Yt by Yt−τ and summing across its lags (of τ periods), the series of auto and cross

covariances (γ) can be written as a function of D and the variance-covariance matrix of errors:

4For a detailed review of the technology SVAR literature, see Ramey (2016).
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∞∑
τ=−∞

γ (τ) =

∞∑
τ=−∞

EYtYt−τ = DΣuD
′ (2)

The spectral density of Y at frequency ω can be written as a function of D, D
(
e−iτω

)
=(

I −
(
B1Le

−iω +B2L
2e−i2ω + . . . BpL

pe−ipω
))−1

:

SY Y (ω) = D
(
e−iτω

)
ΣuD

(
e−iτω

)′
=

∞∑
τ=−∞

γ (τ) eiτω (3)

Due to the limited time series available for estimation in many EMDEs, the “limited spectral”

identification, where D is truncated at the 10-year horizon due to the associated biases when

estimating the long-run estimation on finite data (Dieppe et al., 2019, 2021).

To assess the spectral density within a frequency band, the spectral power can be integrated

between ω = [ω , ω̄]. The shock that maximizes the variance of labor productivity over the desired

frequency is the eigenvector associated with the largest eigenvalue of SY Y (ω), see (Uhlig, 2003).

The frequency band of interest here is from 10-∞ years so that technology shocks are identified

as the shock that dominates very long-run productivity developments, while excluding short-term

developments such as those at business-cycle frequencies from the maximization problem.

3.2 Assessing the impact of technology shocks in a pooled panel envi-

ronment

Initially, in order to understand the typical impacts of technology shocks across countries, a sim-

ple pooled panel estimation with fixed effects is used. This is performed separately across ad-

vanced economies and EMDEs, particularly since the variance of productivity is three times larger

in EMDEs than in advanced economies, given assumptions required on common parameters for

panel estimations. For each economy, the VAR consists of the log-level of labor productivity, log-

employment per capita (including self-employment), the log share of investment (gross-fixed capital

formation), and separately consumption in GDP, and consumer price inflation.

Macroeconomic aggregates such as GDP and employment are from the World Bank’s World

Development Indicators (WDI) database and The Conference Board’s Total Economy Database

(TED) for employment. Employment and GDP data are extended where available with WDI and

ILO employment estimates and Penn World Table 9.1 GDP data where possible. The majority of

economies have full data coverage over the same period over which the growth accounting compo-

nents are available, and the average sample length is 40 years for EMDEs and 45 years for advanced

economies. Hence, here, annual data is used to estimate the VARs. This choice reduces the degrees

of freedom in the VAR estimation, while at the same time significantly lengthening the period over

which the VAR is estimated for many EMDEs. The span of the data is critical for identifying
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technology shocks as those which drive long-term developments in productivity.

The estimation is performed using the pooled panel VAR approach:

Y nt = Cn +

k∑
τ=1

BτY
n
t−τ + ut

Where Cn varies across countries, n, while B and the variance-covariance matrix of residu-

als Σu are assumed to be common across countries. The estimated parameters, B and Σu, can

then be used to identify the effects of technology shocks using the spectral identification described

above. Standard Normal-Inverse-Wishart priors are used in the Bayesian estimation. For several

EMDEs, periods of high, or hyper-inflation, have occurred. Dummy variables are included for those

economies during periods in which inflation has exceeded 20 percent.

In both EMDEs and advanced economies, the impulse responses of a range of macroeconomic

variables behave in a way consistent with theoretical predictions. Labor productivity rises on a

sustained basis over the 10-year horizon under consideration (Figure 1). The additional IRFs are

scaled to the size of the effect on productivity for greater ease in comparing the impacts between

advanced economies and EMDEs. The IRFs for employment, investment, consumption, and con-

sumer price inflation can, therefore, be interpreted as the impact on those variables for 10 percent

improvement in labor productivity resulting from the technology shock.

In advanced economies, employment falls in the first year following a technology shock by 2

percentage points for each 10 percentage point rise in labor productivity.5 In EMDEs, employment

falls by 1 percent, but more persistently, only becoming statistically insignificant from zero after 9

years. In both advanced economies and EMDEs, investment rises more than one-for-one with the

impact on productivity for the majority of the IRF horizon, while consumption adjusts more slowly

to the new steady state of higher output. Consumer prices fall in both regions as output can be

produced with fewer inputs. In EMDEs, the adjustment of prices is slower, possibly reflecting less

well-anchored inflation expectations.

While the initial impact on employment in EMDEs is smaller than in advanced economies,

it is more persistent. One interpretation is that EMDEs have introduced fewer labor-displacing

technologies with a smaller initial disruptive impact on employment than in advanced economies.

However, EMDEs have coped less well at moving workers into new roles, or generating higher

demand from these new technologies, even at long horizons. The smaller negative employment

impact in EMDEs is consistent with the literature which has found that the replacement of low

and middle-skilled workers has primarily been an advanced-economy phenomenon so far, with many

new technologies implemented in EMDEs specifically designed to take advantage of lower-cost labor

inputs.

5Rounding from 1.6 percent for advanced economies, and 1.1 percent for EMDEs.
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Figure 1: Technology shock IRFs targeting labor productivity: Pooled estimation

Advanced Economies EMDEs

Note: With the exception of the labor productivity IRF, IRFs are scaled by the impact of the technology shock’s

impact on productivity. Each IRF can be interpreted as the effect of a technology shock which increases labor

productivity by 10 percent. Shaded area reflects 68% confidence intervals.

As a robustness check, a new VAR specification is estimated, substituting log-TFP levels for

labor productivity using data from the Penn World Table 9.1 (Appendix A, Figure 10). This

second approach may more accurately capture the “technology” driver of productivity as arguably,

shocks explaining the largest share of low-frequency variation in labor productivity may be subject

to contamination from capital-specific shocks, such as corporate tax cuts that are expected to be

permanent. There are also downsides to targeting TFP, the estimation of which is highly liable

to measurement error of the capital stock, particularly in EMDEs. Under this approach, the

impacts are similar in magnitude for most variables but the employment impacts become even

more persistently negative in EMDEs.
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3.2.1 Results of individual VAR estimations

A key assumption of the pooled panel estimation is the assumption of both a common set of

autoregressive parameters (B) and a variance-covariance matrix. The finding of falling employment

following a technology shock may therefore simply be an average effect that does not apply to all

EMDEs and advanced economies, or be swayed by outliers.

As an alternative, individual country estimations are produced. There are several limitations

to this standalone identification: annual data limits the degrees of freedom for estimation, and,

measurement error, particularly in EMDEs, could limit estimation accuracy and inference. These

limitations can be partly tackled with an additional panel approach using hierarchical priors that

allows for a degree of heterogeneity while dealing with limited sample size issues by incorporat-

ing priors based on estimations from other economies (Jarociński, 2010). Further details of the

hierarchical prior estimation are provided in Appendix A.

Individual and hierarchical-prior based estimations point to a high degree of homogeneity in the

response of employment to technology shocks. Individual country results are provided in Appendix

C. Results demonstrate that the fall in employment is not a result of outliers, but a widespread

result of technology shocks in many economies. Around three-quarters of EMDEs and 90% of

advanced economies experience a negative response of employment to technology shocks in year 1

(Figure 2). 40-50% of all economies experience a statistically significant fall in employment at the

16% confidence level when incorporating hierarchical priors into the estimation. This ratio falls to

approximately 35% in EMDEs without the use of these priors.

Figure 2: Proportion of economies with negative, and statistically-significant negative
impacts of technology on employment in year 1

The results of the employment impacts using the Spectral identification show relatively modest
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differences when incorporating hierarchical priors. This is a result of this identification methodology

proving relatively robust to the issues posed by short samples and large contamination from non-

technology shocks in the data. As an additional robustness exercise, the more established long-

run restriction and Max-Share methodologies are also implemented (Appendix A). Using these

methodologies, 60-80% of economies experience a negative impact on employment, while the use of

hierarchical priors has a more broad-based effect on increasing the number of economies that are

found to have statistically significant negative impacts.

Figure 3: Distribution of employment impacts of technology improvement across
economies

Advanced Economies: Year 1 EMDEs: Year 1

Advanced Economies: Year 5 EMDEs: Year 5

Note: Chart shows the density of median IRFs from individually-estimated VARs in advanced economies and EMDEs

respectively. All IRFs are scaled by the impact of the technology shock’s impact on productivity. The distribution

therefore shows the range of responses of employment across countries from the effect of a technology shock that

boosts labor productivity by 10 percent.

Figure 3 shows the distribution of scaled employment impacts (per one-percent labor produc-

tivity impact) at the one-year and five-year horizon. The impacts show a modal peak in both

12



advanced economies and EMDEs at modestly negative values. Importantly, the distribution does

not display bi or multi-modal features. Therefore, the negative impact does not appear to be a

categorical effect, i.e. countries that have a specific feature will see employment fall but rather the

effects are a continuous distribution across economies.

A forecast error variance decomposition (FEVD) is one method of assessing the importance of

technology shocks in driving the variation of employment relative to other shocks in the typical

economy. For both advanced economies and EMDEs, technology shocks drive around 30-40% of

the forecast error variance of employment at the 10-year horizon (Table 1).

Table 1: Forecast error variance contribution of technology shocks to employment

Year 1 Year 5 Year 10

Advanced economy 13% 24% 31%

EMDE 19% 31% 42%

Note: Average of individual EMDE and advanced economy country-by-country estimated forecast error variance

decompositions

3.3 What country-specific factors are associated with falling employment

following a technology shock

The degree of labor market disruption in each economy can depend on multiple factors, including the

types of technologies introduced over the sample period, and the degree to which they complement

skilled or unskilled labor; the policies enacted by governments in each economy to engage workers

in new roles following technology-driven labor market disruption; and measurement or data issues

which may influence the results. To examine the underlying driver and correlates of employment

disruption following technology shocks, the median scaled employment IRF for each country is

treated as the dependent variable in cross-section regressions containing potential structural factors

associated with the employment effect.

Proxies for the degree to which economies experiencing large scale technological change are

rare, particularly on a consistent basis across countries. Sectoral employment shares, both in levels

and how much they have changed in recent decades are one proxy for economies going under

significant technological transformation. In particular, the literature has widely found that in

advanced economies, manufacturing jobs have particularly been at risk of replacement, making

industrial employment, which includes manufacturing and is widely available across economies, a

useful covariate to test. Data on sectoral employment shares are taken from the World Bank’s

World Development Indicators, as are data on foreign direct investment net inflows, which may

also be a proxy for the implementation of new technologies. Educational attainment is measured
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in average years of schooling, taken from the Barro and Lee (2015) dataset.

Variables are taken as averages during the period 1990-2018, primarily due to widespread sectoral

data availability only starting in the 1990s. This is a shorter horizon than over which the VARs are

estimated. However, results are robust to using longer averages including the 1980s for non-sectoral

data and shorter averages since 2000. The overall explanatory power of the covariates is modest

but material for the employment impact in year 1, with an adjusted-R2 of 0.18 in the best-fitting

specification, particularly given the wide range of factors that will influence this outcome across

economies. There are many statistically significant determinants of the employment effect found

despite the simple nature of the proxies for structural and technological change (Table 2).

Rising industrial employment . An increasing share of employment in the industrial sector

since 1990 is strongly correlated with the negative employment effects of technology shocks at

all horizons.6 A 10 percentage point rise in the industrial employment share over this period

is associated with a 0.1-0.2 percentage point larger negative impact on employment on average

from a technology shock. The effect is statistically significant at the 1% or 5% level in each of

the horizons. The average level of industrial employment during this period is also separately a

statistically significant determinant of the employment impact at the 5 and 10-year horizons but

it loses significance when included in the same estimation as the change in employment share. As

will be discussed in the following section, all advanced economies in the sample lost employment

share in the manufacturing sector since 1990. However, a smaller loss of employment share in

the industrial sector, relative to a large loss, remains a significant determinant of the size of the

negative employment impact. Changes in the share of employment in agriculture and services are

not statistically-significant determinants of the employment impact.

An interpretation of this finding is that economies that have made productivity gains that are

more centered around the industrial sector have experienced less job intensive (or even job-reducing)

productivity growth. Economies with increasing employment shares in the industrial sector since

the 1990s will have been at the highest risk from automation. In addition, those economies with

increasing employment shares in this industry may have had the least success in increasing employ-

ment in other sectors following job losses in the industrial sector due to automation. This finding

links directly to much of the existing literature which has found that routine manufacturing jobs

(although to a lesser extent routine service sector jobs) have been at the highest risk of automation.

6While industrial production can include types of production other than manufacturing, such as mining and extraction
industries, there is no relationship between the proportion of exports made up of commodities and the employment
impact, suggesting that the manufacturing component of industry is the key driver of the employment dislocation
following technology shocks.
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Table 2: Determinants of employment IRF at multiple time horizons
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Education/Schooling levels. At each horizon, the employment impact following a technology

shock is unrelated to the average years of schooling of the workforce. The insignificant effect

possibly reflects opposing forces. Education levels may affect both the likelihood of domestically-

generated innovation and adoption of new technologies, or cushion the impact of adopting new

technologies, which more highly skilled workers able to complement new forms of production. The

distribution of education may be broad, such that a highly-skilled workforce can incorporate skill-

biased technologies, but have little success in reallocating labor to other tasks due to a large

low-skilled segment of the workforce.

Productivity levels and productivity growth The log-level of productivity, measured in 2010

US dollars (at 2010 exchange rates) has a negative relationship with the employment impact in year

1, consistent with the larger negative impact experienced by advanced economies. In addition, the

cumulative growth of productivity is positively correlated with the effect on employment: faster

productivity growth since 1990 is associated with a more positive impact on employment. It is less

clear how to interpret this finding. More frequent and larger positive technology shocks will result in

greater cumulative productivity growth; it may be that a larger variety of introduced technologies is

associated with smaller negative employment impacts, or it is plausible that the types of economies

experiencing large cumulative productivity growth over this period have been better at ensuring

displaced workers are successfully reintegrated into the workforce.

Foreign direct investment and trade The extent of net foreign direct investment and trade

openness is positively related to the degree of employment variation following a technology shock.

As FDI is one of the key vehicles for transferring technology to EMDEs, this is reassuring. A range

of literature, including panel estimations and country-specific case studies, has found FDI to be

associated with increased employment, particularly where it is export-focused (Hale and Xu, 2016;

Waldkirch et al., 2009).

3.4 Robustness and alternative explanations for technology-driven fall

in employment

This paper has attributed the fall in employment following an SVAR-identified technology shock

to the introduction of labor-displacing technology. This section briefly reviews other plausible

candidate drivers for this result, finding each to be an unlikely source of the result.

Short sample biases The high persistence of EMDE employment effects following a shock

may fuel concerns that some of this effect may be driven by short-sample issues and limited degrees

of freedom in estimation. However, short-sample issues are found to be associated with lower IRF

persistence than the true IRF (Jarocinski and Marcet, 2010). Therefore, this effect should be in

the opposite direction to the result found for emerging markets. Including the sample length for

each economy under consideration as a regressor in Table 2 does not yield a statistically significant
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coefficient at horizons, 1, 5, or 10 years.

Unrelated low-frequency trends in productivity and employment The second source

of bias that could be present in advanced economies and EMDEs is the effects of unrelated long-

run trends in productivity growth and employment Fernald (2007). In the US context, long-run

trends in these variables are found to change the sign of the employment effect of technology

shocks. Tests for the presence of structural breaks in unspecified time periods in the employment

and productivity growth series suggests the presence of multiple breaks for all economies in the

sample (Bai and Perron, 1998). The multitude of structural breaks could suggest the presence

of low-frequency unrelated trends across both advanced economies and EMDEs. To ensure that

these potentially unrelated trends are not driving the negative employment effect, an HP filter is

applied to the log employment series, removing low-frequency trends a leaving only higher frequency

movements in the employment data. The panel-estimation result continues to be a negative response

of employment in both advanced economies and EMDEs (Figure 4). By construction, the removal

of low-frequency variation in employment will reduce the size and persistence of the IRFs in both

groups, with both IRFs now no longer significantly different from zero in the second year. The

presence of low-frequency correlations between technology and employment cannot be ruled out as

unrelated. However, the presence of a range of structural characteristics associated with the degree

of persistence of the IRFs suggests that the relationship is unlikely to be spurious.

New Keynesian explanations of negative employment response to technology shocks

The initial technology shock SVAR literature focused on determining whether the economy reacted

to technology shocks consistent with an RBC or New Keynesian description of the economy. In

the New Keynesian explanation, all factor inputs to production should contract initially following a

technology shock, as prices are inflexible in the short run, restricting increases in production. And

the same quantity of production could be achieved with fewer inputs. This framework predicts that

both investment and employment or hours should fall in the short term. As documented above, it

is clear that employment falls in the short-term for around three-quarters of advanced economies

and EMDEs. However, the same exercise finds that investment falls in just one-third of advanced

economies and less than 10% of EMDEs in the sample. Just 20% of the negative impacts are

statistically significant in advanced economies, falling to 2% in EMDEs.
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Figure 4: Employment impacts when estimation uses HP-filtered log employment in
VAR estimation

News shocks A growing literature has explored the macroeconomic impacts of “news” about

new technologies (Barsky and Sims, 2011; Beaudry and Portier, 2006; Miranda-Agrippino et al.,

2019; Alexopoulos, 2011). Frequently, this literature uses the Max-Share identification approach

combined with an orthogonalized “surprise” technology shock which is not anticipated. The identi-

fication here does not separate technology shocks into those which are anticipated and those which

are “surprise” shocks. For this identification to be enacted, the VAR is usually applied to utilization-

adjusted measures of TFP. With standard TFP measures, “surprise” shocks would largely capture

non-technology features of TFP. At this time, there are no publicly available utilization-adjusted

TFP series outside of the United States. Regardless, it is not clear whether the absence of a sepa-

rately identified news shock would bias the results of this exercise. A news shock is generally found

to be associated with long-run improvements in productivity, as is the technology shock identified

here. The primary difference is the imposed lack of contemporaneous impact. The news shock

literature has also generally found similar evidence of an initial decline in hours-worked, such that

conflating the news and surprise shocks is unlikely to bias the identified technology shock in a

particular direction (Barsky and Sims, 2011; Kurmann and Sims, 2017; Miranda-Agrippino et al.,

2019).
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Table 3: Determinants of employment effect: employment protection

Dependent variable:

Employment IRF

After 1 year After 1 year After 5 years After 5 years After 10 years After 10 years

(1) (2) (3) (4) (5) (6)

Productivity level log −0.229∗∗∗ −0.115∗∗∗ −0.076 −0.038 0.023 −0.003

(0.070) (0.038) (0.059) (0.032) (0.049) (0.030)

Years Schooling 0.039 0.019 0.017 0.021 −0.011 0.008

(0.031) (0.018) (0.026) (0.015) (0.022) (0.014)

WEF: Hiring and firing −0.013 0.021 −0.035 −0.026 −0.008 −0.009

(0.073) (0.049) (0.062) (0.041) (0.052) (0.038)

OECD: Collective dismissal −0.007 −0.045 −0.006

(0.109) (0.092) (0.077)

OECD: Individual dismissal −0.015 −0.009 −0.022

(0.044) (0.037) (0.031)

Constant 1.800∗∗ 0.628∗ 0.796 0.218 −0.091 −0.056

(0.741) (0.366) (0.626) (0.307) (0.523) (0.286)

Observations 56 103 55 102 56 103

Adjusted R2 0.188 0.105 −0.045 −0.006 −0.073 −0.022

Residual Std. Error 0.357 0.333 0.301 0.279 0.252 0.260

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Regression with the scaled employment response to technology shocks as the dependent variable, and a range

of variables reflecting labor market frictions as the regressors. WEF variable refers to the World Economic Forum’s

survey of firm’s ability to easily hire and fire workers, ranked from 1 (difficult) to 7 (easy). OECD indicators are

the OECD’s ranking of the strictness of employment legislation to protect against individual and collective

dismissal, with a higher index value indicating increased strictness

Labor market frictions and ease of hiring and firing Cross-country variations in the

degree of labor market flexibility and employment protections provide an alternative explanation for

the variation in the persistence of employment changes following a technology shock (Rujin, 2019).

The OECD’s Indicators of Employment Protection cover 73 economies, 55 of which are included in

the dataset of SVAR estimations. This database includes relative measures across economies of the

strictness of protections against individual and collective dismissal. A separate database produced

by the World Economic Forum produces a measure of labor market flexibility on a comparative

scale across all economies where SVAR estimates of the employment impact are available. While

labor market structures may play an important role in governing the persistence of the employment

response in theory, these variables are found to be uncorrelated with the employment impact at all

horizons (Table 3).

19



4 Industrial employment and employment losses following

technology shocks

Several characteristics have been identified as being associated with the size and persistence of the

impact of technology shocks on employment. Only the change in the share of industrial employment

since 1990 is found to be a key determinant of the employment effect at all horizons. This section

examines the SVAR and reduced-form evidence on the importance of the industrial employment

share and its association with technology-driven employment losses. It then outlines a theoretical

model to explain the empirical findings.

4.1 Pooled estimation of high and low industrial employment share economies

This section examines the differences between economies that have experienced higher changes in

industrial employment shares in recent decades, and how their employment impact has differed

from economies experiencing falling industrial employment using separate panel VAR estimations.7

All advanced economies in our sample have experienced a fall in the industrial share of employ-

ment since the 1990s (Figure 5). Those with a “high” employment share change can be regarded

as having experienced the smallest fall in industrial employment shares in the advanced economy

cohort. Those with a “high” employment share change include the United States, Australia, Fin-

land, France, and Italy. Those that have experienced a “low” change in the industrial share of

employment include Hong Kong, SAR, Singapore, Spain, Ireland, and Slovenia. These economies

have more rapidly de-industrialized. In the EMDE sample, more than half of the 96 economies

have increased in their share of industrial employment between 1990-99 and 2010-18. These in-

clude economies such as Vietnam, China, Thailand, Indonesia, and Oman. Those EMDEs with

“low” or falling manufacturing shares include Bulgaria, the Russian Federation, South Africa, and

Zimbabwe.

It is clear that the services sector has been the sector where the most new jobs have been created

in both advanced economies and EMDEs. However, not all of this change has been generated by

technological-displacement. There have been large flows in EMDEs from agriculture to services,

and also a component of job flows due to changing income elasticities of demand for these products

(Comin et al., 2015; Rodrik, 2016). This additional factor may be the reason that changes and

the level of employment in agriculture and services are not found to be related to employment

disruption changes following a technology shock; structural change has dominated employment

flows in these sectors. This structural change has occurred regardless of whether increasing income

has been driven by rising participation rates, employment-augmenting technologies, or employment

displacing technologies.

7This approach has been used in different contexts to identify characteristic dependent fiscal multipliers (Ilzetzki et al.,
2013).
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Figure 5: Change in sectoral employment shares, 1990-99 and 2010-18

Note: Change in the employment share between 1990-99 and 2010-18. Shaded region shows the interquartile range,
while the ‘whiskers’ shows the range excluding outliers (diamonds).

Panel-VAR estimations are performed on groups of economies that have experienced large falls

in industrial employment, relative to those that have experienced increases, or smaller falls in

industrial employment. First, economies are ordered by their change in employment share in the

industrial sector since the 1990s. In separate groups, advanced economies and EMDEs in the

highest quartile are listed as “high” change in employment share, and those in the lowest listed as

“low” change. In both advanced economies and EMDEs, there is a marked difference between the

response of employment to a technology shock.

The results show that the negative employment impact in advanced economies is 4 times as

large for those economies where industrial employment has fallen the least (Figure 6). The median

impulse response does not return to zero until year 6 in these economies, while it becomes neutral

in year 2 in economies that have seen a bigger decline in the share of industrial employment. In

EMDEs, the two groups of economies have only a 100% differential in the initial employment impact,

but the persistence for high-manufacturing economies is much greater. Even at the 10-year mark,

the negative impact remains close to -0.1 percent. For those EMDEs and advanced economies with

small increases on decreases in industrial employment shares, IRFs become positive, with impacts

+0.1-0.2 percent at the 10-year horizon.
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Figure 6: Technology shock employment IRFs: High and low change in industrial
employment share since the 1990s

Advanced Economies EMDEs

Note: For advanced economies and EMDEs separately, economies are ordered by the change in industrial employment

share from 1990-99 to 2010-18. The IRF for those economies in the upper quartile is given as “High change in

employment share”, while those in the bottom quartile are given as “Low change in employment share”. IRFs are

scaled to show the effects of a technology shock which increases labor productivity by 10 percent.

4.2 Reduced-form evidence of the relationship between aggregate em-

ployment growth and industrial employment shares

A correlation exists between the growth of employment since the 1990s as a proportion of the

working-age population and the change in the workforce employed in industry, a key covariate of

the estimated employment IRFs. This relationship is weak when including oil and metals export-

ing economies, where industrial employment developments are strongly influenced by commodity

price changes. However, the relationship strengthens when these economies are excluded, both for

employment and the size of the labor force relative to the population (Figure 7).
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Figure 7: Employment and labor force growth and change in the industrial employment
share

Note: Change in the industrial employment share between 1990-99 and 2010-18 compared to the change in employ-

ment as a share of the working-age population over the same time period, and the change in the labor force as a

share of the working-age population. Economies where over 20% of exports consist of oil or metals are excluded.

Those economies that have been less successful in increasing the aggregate workforce over this

time period have had a more robust share of industrial employment. In the next section, one

plausible reason provided for this finding is that in economies where automation has triggered

large positive income effects, aggregate employment will increase but demand will be reallocated

to other sectors such as services, further reducing the industrial employment share. In economies

with smaller income effects from labor-substituting technologies, or frictions in reallocating workers

to new sectors, aggregate employment will grow by less and industrial employment will remain a

larger share of total employment. The reduced-form relationship is stronger for the labor force as a

whole (employment plus the unemployed) than for employment. Cortes et al. (2020) find evidence

of smaller flows of job-seekers into the labor force, as well as flows out of the labor force in response

to automation.

The relationship is robust even after accounting for factors relating to workforce aging, the

gender composition of the workforce, and the level and growth rate of GDP per capita. The latter

variable controls for whether the fall in industrial employment is simply a by-product of structural

change in fast-growing economies, and not necessarily associated with technological displacement.
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The change in the industrial employment share remains a statistically significant determinant of

aggregate employment growth controlling for all of these additional factors (Table 4).

Table 4: Covariates of the change in employment and labor force to population ratio, 1990-99 to
2010-18

Dependent variable:

Employment Labor force

(1) (2)

Change in industry employment share −0.148∗ −0.227∗∗∗

Change in share over 50 in working-age population -0.03 -0.159

Change in female employment share 0.458∗∗∗ 0.517∗∗∗

Change in log GDP per capita 0.835 0.311

Log GDP per capita 0.271 0.944∗∗∗

Constant -3.70∗∗∗ -8.489∗∗

Observations 100 100

Adjusted R2 0.30 0.51

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Changes are calculated as the difference between the period averages for each economy during 1990-99 and

2010-18

4.3 Theoretical framework: industrial employment share and employ-

ment growth

This section outlines a static theoretical model that explains the empirical findings concerning

technology shocks, employment growth, and the industrial employment share. It uses a simplified

version of the framework of Acemoglu and Restrepo (2018, 2020), and closely follows the notation

of Acemoglu and Restrepo (2017), which assesses the overall impact of automation on aggregate

job creation. In their framework, the job-displacing effect from automation can in part be offset by

two factors: higher relative demand for the products in the affected industry as goods are produced
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more cheaply due to automation; and secondly, higher overall income driving higher demand for all

goods. Automation can increase aggregate employment if the latter effects are large enough.

This section shows that aggregate job gains can result from labor-substituting technologies, but

likely alongside an even larger fall in employment shares in the sector most affected historically,

industry. The finding applies where low price elasticities of substitution and low income elasticities

of demand exist for those sectors subject to automation. Where there is little or no offsetting income

or substitution effect from automation affecting the industrial sector, aggregate employment will

rise by less or fall by more, but employment shares in industry will remain more robust. This

framework purely considers demand-side mechanisms, while there are a range of supply-side factors

that could contribute to this finding, complementing this approach.

This framework augments that of Acemoglu and Restrepo (2018, 2020) by also considering the

effects of different income-elasticities of demand between sectors; it is well documented that the

demand for industrial goods falls relative to that of services as income rises (Rodrik, 2016; Comin

et al., 2015). This helps to explain why the industrial sector shrinks more in economies with large

positive income and employment effects from automation, but less so in economies that have not

experienced as large a positive effect.

In a simplification, a model is created of an industrial sector that is subject to labor-substituting

technological change, and a services sector that is not. While it is true that certain jobs in the

services sector have been automated, analysis of U.S. and European job markets has found that

industrial middle and low-skilled jobs have been most affected in recent decades by automation

(Goos et al., 2014; Autor, 2015).

Firms are split into sectors k that produce industrial goods (I), and those that produce non-

automatable services (NAS). Industrial goods and services producers produce output X(k) by

combining tasks x, such that production is performed as

X(k) = A min
s∈(0,S)

(xk(s))

Tasks, S, are divided into those that can only be performed by workers (w), and those that

can be performed by labor or capital (r). Specifically, in the industrial sector tasks S ∈ [0,M ] are

technologically automated and can be performed by capital. The output of capital in every task is

set to 1, and to further simplify the model it is assumed that the productivity of labor in each task

is constant as well and equal to γ. Consequently, the production function for task s in industry k

can be written as:

xI(s) =

r(s) + γw(s) if s < M

γw(s) s > M

There is therefore perfect substitution of labor for capital in the automatable tasks s < M . It
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is assumed that capital is always cheaper than employing labor, such that automation increases

the cost-effectiveness of production. The savings from switching a unit of production from labor to

capital is reflected as: π = (1− Qγ
W ), where Q is the price of capital, and W reflects the wage rate.

Therefore, the demand for labor from industry is:

Ld(I) =
(1−M)

γA
X(I)

In the services sector, no tasks are automated (M=0). All tasks require labor for production such

that the process can be described as a single type of task.

xNAS(S) = γw(s) for 0 ≤ s ≤ 1

In the services sector, total labor demand will be equal to:

Ld(NAS) =
1

γA
X(NAS)

Given that prices are equivalent to marginal costs, it is assumed that:

P (NAS) =
W

γA
, P (I) =

1

A
(MQ+ (1−M)

W

γ
)

It is clear that an increase in M , the proportion of tasks that can be produced by capital,

will lower the price of goods in industry, and reduce the quantity of labor required to produce a

given level of output. An increase in M is therefore an example of labor-productivity enhancing

technological change considered in the empirical SVAR exercise.

Households have the following consumption and labor preferences:

U(Y, L) = logY − 1

1 + φ
L1+φ (4)

Where Y , income, is equivalent to total consumption, and L is the total hours worked. The

consumption bundle is defined over the variety of goods produced by the industrial and services

sectors.

A constraint allows for a non-homothetic aggregate with different income elasticities of demand

for the goods and services produced, Y (I) and Y (NAS), as in Comin et al. (2015):

1 =
∑

k∈[I,NAS]

(αkY )
εk Y (k)

σ−1
σ

where σ measures the degree of substitutability between industrial and non-automatable services

and αI + αS = 1. The parameter εk governs the degree of income elasticity for each sector, such
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that consumption of a sector’s produce rises by more with respect to income for higher εk.

Maximisation is subject to the following sequence of period budget constraints:∑
k∈[I,NAS]

P (k)Y (k) = WN +QR

where D is the nominal payoff of a portfolio held from the previous period, Q is the stochastic

discount factor for one-period ahead nominal payoffs for the domestic household, W is the nominal

wage for each sector.

Optimality results in the following demand functions for industrial and services sector products:

Y (k) = αk

(
P (k)

E

)−σ
Y εk (5)

Where E is total expenditure, defined as:

E =

 ∑
k∈(I,NAS)

αkY
εkP (k)1−σ

 1
1−σ

Defining P = E
Y and setting this aggregate price index to be a numeraire allows equation 5 to be

rewritten:

Y (k) = αk (P (k))
−σ

Y εk+σ

The remaining optimality conditions concern labor supply and intertemporal allocations. Labour

supply satisfies:

Y Lφ =
WNAS

Pt
,

Finally, automating capital, R, is supplied at price Q, and is assumed to have an upward sloping

supply curve:

Q =

(
R

Y

)η
Income and substitution effects of automation. In response to a change in the proportion

of production tasks that can be automated,
(

dM
1−M

)
, total labor demand in this economy depends

on several effects (Annex A.2).

27



d lnLd =

(
1 + η

1 + ε

) l(I)
dM

1−M︸ ︷︷ ︸
Direct displacement

+ sL,Iπl(I )σ
dM

1−M
+ (1− sL)πl(I)

dM

1−M︸ ︷︷ ︸
Substitution and income effects


The first is direct displacement, where a share of the workers in industry (l(I)) are directly

replaced by capital. The additional effects are a substitution and income effect, where the cost

savings from automation (π) reduces the price of goods in the industrial sector, increasing demand

for them. This effect restores some workers in industry but crucially depends on the price elasticity

of demand for these goods (σ), and the proportion of costs that were accounted for by labor in

industry (sL,I). Finally, there is an income effect, where the gains from cheaper production are

spent on goods in industry and the non-automatable services sector. This also crucially depends

on the savings from the automation of industrial jobs (π). Those economies where automation

does not produce large cost savings, perhaps because the supply of automating capital is inelastic

or expensive to install, or where the price elasticity of demand is low (σ), will not see aggregate

employment increase in response to automation.

Labor substituting technological change and employment shares. In this economy,

because automation is specified to only occur in the industrial sector, the share of labor employment

in industry falls in response to labor-substituting technological change for plausible parameter

values. As a counter-example, in order for the share of industrial employment to remain constant,

the price effect must offset both the direct displacement effect and the fact that industry has a

lower income-elasticity than services. The change in demand for labor in industry with response to

increased automation (M) can be written:

d lnLdI = d ln

(
(1−M)

γA
αk (P (I))

−σ
Y εI+σ

)
= − dM

1−M
+ σsL,Iπ

dM

1−M
+ (εI + σ)d lnY

(6)

For non-automatable services, the effect on labor demand is purely due to the income effect.

d lnLdNAS = d ln

(
1

γA
αk (P (NAS))

−σ
Y εNAS+σ

)
= (εNAS + σ)d lnY

(7)

In order for the share of employment in industry not to fall, the price effect must offset both

the displacement effect and the difference in income elasticities between the two sectors.
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d lnLdI − d lnLdNAS = − dM

1−M︸ ︷︷ ︸
Direct displacement

+ σsL,Iπ
dM

1−M︸ ︷︷ ︸
Price effect offset

+ (εI − εNAS)l(I )sLπ
dM

1−M︸ ︷︷ ︸
Differential income elasticities

(8)

First, in the simplified case where the income elasticities are equivalent, this requires:

1

σ
≤ πsL,I (9)

Even in cases where the income elasticity of demand in both sectors was equal, where the labor

share was equivalent to 0.5 in industry (sL), and the cost savings from switching to capital is 20

% (π), the elasticity of substitution parameter, σ, would have to reach 10 to ensure that the share

of labor in industry did not fall. Consumers would have to be highly price elastic in response to

changes in the prices of manufactured goods and services, which is at odds with the data. σ is

estimated to be well below unity in almost all economies (Comin et al., 2015). Therefore, even

in cases where automation had positive aggregate employment effects, we should expect the most

affected industries to lose employment shares. This is consistent with the SVAR results, where

industrial employment falls in economies experiencing higher employment impacts from technology

shocks.

Why are economies with lower job creation following the introduction of new tech-

nologies associated with higher industrial shares? The above demonstrates a mechanism

through which economies will lose employment shares in industry if that sector experiences labor-

displacing technology improvements, even where aggregate employment increases. However, it does

not explain why economies with smaller employment losses from new technologies will experience

relatively larger falls in their industrial employment share. This section outlines the conditions

through which a larger positive income effect from a labor-substituting technology shock results in

a larger reallocation of demand away from the industrial sector while boosting aggregate employ-

ment.

Differential income elasticities play a role in boosting consumption and employment by more in

the service sector than industry following an improvement in income, further reducing the recovery

of employment in the sector most affected by automation, industry. Where the income-elasticity

differential between the two sectors outweighs the effect of lower prices in industry from the produc-

tivity improvement (low σ), aggregate employment will increase due to automation while shrinking

the industrial employment share.

The income elasticity of services is found to be higher than manufacturing and industry across

OECD and emerging market economies (Comin et al., 2015). Aggregate and household estimations

find that the difference between the manufacturing and services income elasticity has ranged between

−0.18 and −0.57, broadly equivalent to the parameters εI−εNAS . σ is found to be inelastic, ranging
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from 0.2− 0.63.

The larger the rise in incomes due to the efficiency savings from the technology shock (driven

by the savings, π), the larger the fall in the employment share of industry in cases where:

σsL,I ≤ sLl(I)(εI − εNAS)

Therefore, for a sufficiently low price elasticity of substitution, or a sufficiently high income

elasticity differential between the sectors, the more industrial employment shares will fall for a

given saving from automation, π. The function also depends on the difference in the labor share

between the industrial sector (sL,I) and the aggregate economy (sL).

In economies where aggregate employment has fallen by more following a technology shock,

industrial employment shares have remained robust since 1990. This plausibly reflects a lower

efficiency improvement from automation in these economies, and thus a smaller reallocation of

demand to the services sector. It could also point to a failure to accommodate rising services

demand with domestic employment and production.

Additional supply-side channels. This simple model only considers demand-side drivers of

this result. Several supply-side factors could have contributed to weaker industrial employment

shares in those economies with larger aggregate employment growth due to new technologies and

smaller aggregate employment growth in those with more robust industrial employment shares.

Several studies have documented that rising market power has increased markups and reduced the

labor share in those sectors most affected by technological change, including within manufacturing

(Autor et al., 2020; De Loecker et al., 2020). In this case, savings produced by automation would

not flow through to lower prices, producing a smaller increase in demand for goods in that sector.

Secondly, this simple framework does not account for skills mismatch. Where labor-substituting

technology shocks result in income gains that increase demand for products and services requiring

high- or niche-skills, supply constraints may prevent an increase in employment in these other

sectors, and aggregate employment may not rise (Restrepo, 2015). This effect would be compounded

by the demand channels described above. A low income elasticity for industrial goods would reduce

demand for re-employment in roles requiring similar skill-sets. Economies that have the skill-base

to meet the demand for workers in other sectors would see rising aggregate employment and a more

rapid decline in industrial employment.

5 Summary, future risks, and policy options

This paper has found that labor-substituting technological change has been widespread across

advanced economies and EMDEs in recent decades. That is to say, while not all productivity-

enhancing technologies are labor displacing, they have accounted for a sizeable proportion of
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productivity-enhancing technologies, such that employment falls in the majority of economies fol-

lowing an “average” technology shock. Other explanations for falling employment, such as a New

Keynesian sticky-price mechanism or labor market regulations and frictions, are ruled out as drivers

of this result.

Technology-driven employment losses are larger in economies with higher productivity levels.

This plausibly reflects a higher propensity to invest in labor-substituting technologies in economies

with more sophisticated production capabilities and those with a labor force more able to design and

implement these production methods. However, job losses from new technologies have often been

more persistent in lower-income EMDEs. Trade openness and FDI inflows appear to be associated

with reduced employment losses from new technologies, consistent with a large literature that has

found that export-focused FDI is often designed to take advantage of lower labor costs in EMDEs

and is associated with higher employment levels.

Higher industrial employment share growth since the 1990s is a key correlate of larger and

more persistent falls in aggregate employment from productivity-enhancing technologies. A model

adapted from Acemoglu and Restrepo (2018) shows that where the income effects from automa-

tion are large, low-income elasticities of demand could reduce relative demand for employment in

industry even where aggregate employment improves. Therefore, those economies with a successful

reallocation of labor and large income effects from job-displacing technologies have seen a larger fall

in industrial employment. The reallocation of demand to sectors other than industry, where job-

displacing technologies have been more prevalent, could exacerbate difficulties in matching workers

with new roles suitable for their skill-sets.

This analysis has examined historical relationships. However, several studies find a pronounced

risk from new technologies to employment in the future. In advanced economies, a wide range of

estimates have been provided for the proportion of jobs which are at risk of future automation:

Arntz et al. (2016) find that 9 percent of jobs across 21 OECD economies are at high risk of

automation in the future. A broader study of 32 economies, including several EMDEs, has found

that on average 14 percent of jobs are at high risk of automation, with a further 32 percent at

risk of significant change due to automation, primarily in the manufacturing sector, consistent with

the finding that industrial concentration has been associated with lower job growth in this paper

(Nedelkoska and Quintini, 2018; Organisation for Economic Co-operation and Development, 2019).

Increasingly, many service sector roles will be at risk according to these studies. These include roles

such as food preparation and some sales roles. This literature has not considered the effect of new

roles that could be created by the introduction of technologies, or the macroeconomic implications

stemming from higher demand, so are gross rather than net impacts on total jobs. So far, no

studies have estimated the impact of anticipated technological change on a large sample of EMDE

labor markets. As EMDEs acquire an increasing share of global industrial and manufacturing

employment, it is likely that they will increasingly face challenges from automation.
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Reforms aimed at increasing workforce skills to complement new technologies and service sector

roles appear to be key in reducing lost employment due to automation but could require significant

lengths of time to result in improved workforce capabilities. In the nearer term, policies aimed

at restoring demand in industrial sectors most affected by job displacing technologies may be

appropriate to sustain employment levels.

Policies that help enhance workforce skills and educational attainment could potentially reduce

the fall in employment following the incorporation of production processes which remove the need

for lower- or middle-skilled employment. Many EMDEs will need to make improvements at earlier

levels of education in order to build a foundation for more advanced levels of education which

will adequately complement new technologies (World Bank, 2018, 2019). EMDE universities and

on-the-job training are also often under-provided in many EMDEs, but also display high returns

in terms of wage premia where they exist, in addition to enabling better adaptation to changing

production technologies.

The persistence of declining employment in EMDEs and large scale of displacement in advanced

economies highlights the need for adequate social protection to ensure that those who are displaced

from their employment can increase their opportunities to transition into new industries. Encour-

aging both private savings and social insurance for unemployment is needed in the formal and

informal sectors will act as a safety net for displaced workers.

While supply-side policies to improve skill matching may take decades, policymakers may re-

spond to job displacement by directly increasing demand for industrial goods or incentivizing private

sector demand or investment in the sector. Substantial investment requirements have been iden-

tified in both advanced economies and EMDEs to meet climate and poverty reduction targets,

particularly in infrastructure investment which would require a significant increase in industrial

production.8

8For example, the European Commission has estimated that investment amounting to 2% of European Union GDP
would be required each year to meet current climate and energy targets in 2030 (European Commission, 2020). In
addition, Rozenberg and Fay (2019) find that EMDEs may need to invest between 2 and 8 percent of GDP each
year, primarily in infrastructure for energy, sanitation, agriculture, and transportation to meet the United Nation’s
Sustainable Development Goals by 2030.
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A Appendix: Results using long-run and Max-Share tech-

nology identifications, and targeting TFP instead of labor

productivity

This appendix provides robustness checks on the estimations of the employment effect of technology

in the main text. In the main text, a spectral identification is implemented, which is found to be

more robust to the short-sample and volatile data used across countries. Here, the Max-Share and

long-run identifications of technology shocks (Francis et al., 2014; Gaĺı, 1999) are also implemented,

finding similar results. These identifications, and those in the main text, are also applied to VARs

estimated using the hierarchical-prior methodology of Jarociński (2010) to aid robustness given the

short sample nature of the data for many economies.

A.0.1 Max-Share SVAR identification methodology

The Max-Share identification is a similar approach to the Spectral identification which does not

utilize the frequency domain. It is a more established methodology of which variants have also

been used to identify technology “news” shocks (Francis et al., 2014; Barsky and Sims, 2011). It is

therefore used as a robustness check on the results of the Spectral SVAR. Instead, it assumes that

technology shocks are the predominant driver of productivity around the 10-year horizon of the

forecast error variance. In this identification, the technology shock is that which drives the largest

proportion of the forecast error variance of labor productivity at this horizon, as in (Francis et al.,

2014).

10 years is longer than the period over which the business cycle occurs (typically assumed to be

2-8 years) but short enough to reduce challenges related to estimation on a finite sample. Francis

et al. (2014) imposes this restriction in a VAR containing productivity, hours, consumption and

investment as a share of GDP. The forecast error at horizon k can be written:

yt+k − ŷt+k =

k−1∑
τ=0

Bτut+k−τ (10)

By defining an orthonormal matrix A0 with columns α, and e as a selection vector (size 1×n),

we find the shock j which maximizes the contribution to the total forecast error variance of variable

i at horizon k

maxω (α) =
e′i

(∑k−1
τ=0 B

ταα′Bτ ′
)
ei

e′i

(∑k−1
τ=0 B

τΣuBτ ′
)
ei

s.t. α′α = 1 (11)
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The technology shock at this maximized value is then: εtecht = α′chol (Σu)
−1
ut. Following

Uhlig (2003), identifying the structural shock that maximizes the contribution to the forecast error

variance of productivity is solved by identifying the eigenvector associated with the maximum

eigenvalue of Vτ , where Vτ is the FEVD of the target variable based on reduced-form shocks and

the denominator of ω(α).

A.0.2 Long-run restrictions

Isolating the long-run components of labor productivity (prodt) and employment (hourst), labeled

LPLR and EmployLR, respectively, this methodology imposes the restriction that only the technol-

ogy shock can impact labor productivity in the long-run.{
LPLR

EmployLR

}
=

{
∗ 0

∗ ∗

}{
εtech.

εnon−tech.

}
(12)

Assuming the structural AR matrix polynomial,

A (L) = I2 −A1L−A2L
2 . . .−ApLp (13)

The long-run counterpart is therefore,

A (1) = I2 −A1 −A2 . . .−Ap (14)

In a stationary VAR containing the log-difference series of productivity and hours, the long-run

effect of the technology shock on growth will dissipate. The long run impact of each shock on the

level of the target variable can be written as:[
LPLR

HoursLR

]
= A(1)−1

[
εtech.

εnon−tech.

]
= B(1)−1A−1

0

[
εtech.

εnon−tec.

]
=

[
Θ11 0

Θ21 Θ22

][
εtech.

εnon−tech.

]
(15)

where B(L) is the reduced-form VAR polynomial. Restricting the loading of the non-technology

shock onto productivity to be zero can be accomplished by ensuring the long-run impact matrix is

lower triangular. This is accomplished by solving for A−1
0 as follows:

A−1
0 = B(1)chol[B (1)

−1
ΣuB(1)

−1′
] (16)

Where Σu is the reduced-form variance-covariance matrix.
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A.0.3 Heterogenous Panel VAR identification of technology shock and employment

impact

There are several limitations to a standalone identification procedure for individual economies:

annual data use limits the degrees of freedom for estimation; and, measurement error, particularly

in EMDEs, could limit estimation accuracy and inference. These limitations can be partially tackled

using a panel structural VAR approach which allows for some heterogeneity across economies. Here,

estimation priors for each economy are informed by the mean group estimator of Pesaran and Smith

(1995), and implemented as in Jarociński (2010).

Each economy has a unique set of reduced-form coefficients βc and variance-covariance matrix

Σc. The VAR estimation has the standard likelihood function

p(yc | βc,Σc) = (Σc)
− 1

2 exp

(
−1

2
(yc −Xxβc) (Σc)

−1
(yc −Xxβc)

)
In addition, the country-specific parameters have a common mean across countries:

βc ∼ N (b,Σb)

The prior density is defined as:

p(βc | b,Σb) = (Σb)
− 1

2 exp

(
−1

2
(βc − b) (Σb)

−1
(βc − b)

)
The q × q matrix Σb further embed prior variances that are similar to the Minnesota prior

through the matrix Ωb:

Σb = (λ1 ⊗ Iq)Ωb

Here, the parameter λ1 governs the tightness of the application of the pooled-group priors to

individual country parameters (lower λ1 lowers the variance of the priors, and therefore lowers the

variation of country parameters more rigorously).

Additional priors within Ωb replicate the Minnesota approach:

λ3 guides the variance on coefficients on own lags:

σ2
aii =

(
1

lλ3

)2

λ2 changes the variance applied to lags of other endogenous variables:

σ2
aij =

(
σ2
i

σ2
j

)(
λ2

lλ3

)2
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λ4 governs the tightness on exogenous variables including the constant.

σ2
ci = σ2

i λ
2
4

Additionally, because some EMDE economies have experienced periods of high, or even hyper,

inflation, additional dummies are included in countries experiencing above 20% annual inflation.

The priors are applied separately to the group of advanced economies and EMDEs given their

characteristic differences.

Vτ = e′i

(
k−1∑
τ=0

BτΣuB
τ ′

)
ei (17)

λ2 is set to 0.5, λ3 is set to 1, and λ4 is set to 100. λ1 is set to an inverse-gamma distribution

on each draw, with the variance dependent on the variation of parameters around the mean-group

estimator.

A.1 Results of Long-run and Max-Share identifications

Results for both the long-run (Figure 8) and Max-Share identifications (Figure 9) show a broad-

based finding of negative employment impacts in the initial year following a technology shock.

When estimated using hierarchical priors using the long-run identification, over 70% of economies

experience a negative impact. Using the Max-Share identification, over 70% of advanced economies

experience a negative initial impact, while nearly 60% of EMDEs do. However, for advanced

economies, this rises to 80% when the VARs are estimated without hierarchical priors. The use of

hierarchical priors substantially increases the proportion of economies where the negative impact

is statistically significant in both identifications. Both identifications are shown to be more biased

by non-technology shocks than the Spectral approach used in the main text (Dieppe et al., 2019).
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Figure 8: Long-run identification: Proportion of economies with negative, and statis-
tically significant negative impacts of technology on employment

Figure 9: Max-Share estimation: Proportion of economies with negative, and statisti-
cally significant negative impacts of technology on employment

A.2 Targeting TFP to identify technology shocks

Identifying technology shocks as those which drive the largest proportion of low-frequency variation

of labor productivity may in part capture lasting capital-specific shocks. For example, institutional

changes that encourage a higher degree of capital deepening or permanent tax cuts. As an alter-

native robustness check, in this section, the level of TFP (from the Penn World Tables, rtfpna) is

substituted for labor productivity in the VAR. The Spectral identification then identifies technol-

ogy as the largest driver of long-run TFP variation. This does not result in a sample-reduction
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on average. However, this approach also sufferers from shortcomings. The capital stock is difficult

to measure, particularly in EMDEs, and often relies on initializing the capital stock at an average

value (Feenstra et al., 2015). In contrast, labor productivity reflected simply as output per worker,

requires fewer assumptions.

Figure 10: Technology shock IRFs targeting TFP levels: Pooled estimation

Advanced Economies EMDEs

Note: All IRFs are scaled by the impact of the technology shock’s impact on productivity. Each IRF can be

interpreted as the effect of a technology shock which boosts labor productivity by 10 percent

The TFP-targeting IRFs show a very similar pattern to the main estimations using labor pro-

ductivity, both in magnitudes and direction of impact (Figure 10). One of the primary differences

is that the employment impact is even more persistent in EMDEs, and increasingly negative over

time. As in the labor productivity specification, the initial impact of technology on employment
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is smaller in EMDEs than in advanced economies. In addition, a similar pattern emerges for the

proportion of economies with negative employment impacts initially. Around 60% of economies face

negative impacts on employment in year 1, while in the case of using hierarchical priors, 90% of

advanced economies show a negative impact. 20% or fewer advanced economies and EMDEs show

a statistically-significant impact, rising to 80% when including the priors (Figure 11). In EMDEs,

far fewer show statistically negative employment impacts, even in the hierarchical priors estimation.

This could reflect greater difficulties in estimating the capital stock and TFP in these economies.

Figure 11: Spectral estimation targeting TFP, not labor productivity: Proportion of
economies with negative, and statistically significant negative impacts of technology
on employment
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B Theoretical framework: Sectors affected and unaffected

by automation.

Labor demand and supply

To disentangle how changing automation (M) in the industrial sector will affect the aggregate

demand for labor, we uncover how automation will affect aggregate output and relative prices. The

demand for each product Y (k) is assumed to be equal to output, such that X(k) = Y (k). Therefore,

the demand for the products produced by the services and industrial sector’s respectively can be

written:

X(k) = α (P (k))
−σ

Y εk+σ

Following the concepts in Acemoglu and Restrepo (2018), and closely following the notation of

Acemoglu and Restrepo (2017), the envelope theorem is first used to disentangle the influence of

automation (M) on aggregate income. Holding quantities L(NAS), L(I), and R fixed

d lnY |L(NAS),L(I),R =
∑

k∈[I,NAS]

sYkd lnX(k)|L(NAS),L(I),R

=
∑

k∈[I,NAS]

sYk

(
−αkσP (k)−1−σ dP (k)

dM
Y k+σ|L(NAS),L(I),R

)

= sYI
−αI (P (I))

−1−σ
Y k+σ

αI (P (I))
−σ

Y k+σ

(
1

A
(Q− W

γ
)

)
= sYI

1

AP (I)

(
W

γ
−Q

)
dM

Since the price index and demand for services products does not directly feature M , only the

demand for industrial sector goods is affected to the first order.9 The change in output is therefore

a function of the cost savings from switching from paying wages to paying for capital, the elasticity

of substitution between industrially-produced and services products, and the share of the product

in aggregate production sYI = P (I)X(I)
Y .

Substituting for the share of industry in total output and the equation for labor demand for a

given X(I) yields:

9In Acemoglu and Restrepo (2020), σ is eliminated from this equation using the idealized price index: 1 =∑
K αkY

εkP 1−σ
Xk

. Differentiating yields: 0 =
∑ αk(1−σ)P (k)−σ

1
, which in turn leads to

∑
αP−σ =

∑
ασP−σ
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d lnY |L,R =
P (I)X(I)

Y

1

AP (I)

(
W

γ
−Q

)
dM

=
γLI
Y

(
W

γ
−Q

)
dM

1−M

=
γsLLI
WL

(
W

γ
−Q

)
dM

1−M

= sLπl(I )
dM

1−M

Where sL = WL
Y , the income share of all labor, and lI = L(I)

L is the share of workers in

the industrial sector. π = (1 − Qγ
W ), or the cost savings from changing from labor to capital.

Intuitively, this equation can be thought of reflecting the product of the cost savings from switching

to capital/robot-driven production (π), multiplied by the elasticity of substitution for consuming

industrial products (σ), multiplied by the income share of industrial workers (sI), multiplied by the

share of industrial workers actually employed in industry (and not the services sector), l(I).

This partial differentiation holds inputs of labor (L) and capital (R) constant. Using factor

income shares, Y = WL+QR, total differentiation yields:

d lnY = d lnY |L,R +
WdL

Y
+
QdR

Y

Multiplying by numerator and denominator by labor or capital inputs in each component of the

equation (and using the fact that d lnX = dX
X ) allows it to be rewritten as:

d lnY = sLπl(I )
dM

1−M
+ sLd lnL+ sRd lnR

Where s reflects the share of each factor of production in total output (i.e. sL = WL
Y ). The

share of output allocated to each factor is clearly dependent on the demand for that factor and

wages in that sector.

How do prices respond to automation? Here we assess the changes in the price of industrial

goods in response to an increase in automation. Starting with the fact that the price of industrial

goods is equal to their marginal cost:

P (I) =
1

A
(MQ+ (1−M)

W

γ
)

d lnP (I) =
1

AP (I)

(
Q− W

γ

)
dM +

(1−M)W

AγP (I)
d lnW +

MQ

AP (I)
d lnQ
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Using the definition of the cost saving from automation: π = (1− Qγ
W )

d lnP (I) =
−W (1−M)

AγP (I)
π

d lnM

1−M
+

(1−M)W

AγP (I)
d lnW +

MQ

AP (I)
d lnQ

Output in the industrial sector can be written as the sum of wages and payments to cap-

ital, P (I)Y (I) = WLI + QR. Given that LI = (1−M)
γIA

Y (I) and R = (M)
A P (I)Y (I), Y (I) =

Y (I)
(
W (1−M)

γIA
+ (M)Q

A

)
. Using the definition sL,I = W (1−M)

γAP (I) and sR,I = (M)Q
AP (I) :

d lnP (I) = −sL,Iπ
d lnM

1−M
+ sL,Id lnW + sR,Id lnQ

Prices are therefore a function of the cost savings from switching from labor to capital for

production, and the changes in the cost of wages and capital used in production. Prices in the

non-automatable service sector do not depend on the substitution away from labor to machines,

but simply wages:

P (NAS) =
W

γA

d lnP (NAS) =
Wd lnW

γAP (NAS)
= sL,NASd lnW

Now that the determinants of changing income and prices have been determined, demand for

labor can therefore be written as a combination of the impacts on jobs immediately affected by

automation and jobs that are not:

LdI =
(1−M)

γA
X(I)

=
(1−M)

γA
ασk (P (k))

−σ
Y εk+σ

(18)

d lnLd = −l(I)
dM

1−M
+ σsL,Iπl(I)

d lnM

1−M
− (sLd lnW + sRd lnQ)︸ ︷︷ ︸∑

k∈(I,NAS) l(k)σ(sL,kdlnW+sR,kdlnQ)

+ sLπlI
dM

1−M
+ sLd lnL+ sRd lnR (19)

The fact that the income elasticities do not enter this equation is due to the assumption that it

is assumed that
∑
k l(k)(εk + σ) = 1, or that the income effect across all sectors average to unity,

such that aggregate consumption rises in line with income.

Finally, this can be combined with the additional conditions:
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d lnY = sLπl(I)
dM

1−M
= sLdW + sRdR

Which comes from the partial differentiation of the identities YI = LIW +RIQ, Y = LW +RQ,

reflecting changes in factor prices but while keeping factor quantities unchanged.

Secondly, the labor and capital supply schedules can be differentiated as

dW = scL(d lnL+ d lnW ) + scR(d lnR+ d lnQ) + φd lnL

d lnQ = ηd lnR− ηscL(d lnL+ d lnW )− ηscR(d lnR+ d lnQ)

The equation for d lnLd, after substituting in the income identity, becomes:

d lnLd(1− sL) = −l(I)
dM

1−M
+ σsL,Iπl(I)

dM

1−M
− sLπl(I)

dM

1−M
+ sLπl(I )

dM

1−M
+ sRd lnR

d lnR now needs to be replaced using an expression purely in terms of M and d lnL in order to

solve for the effects of automation on labor demand. Substituting M in for the wage and capital

supply equations

d lnW = sLπl(I)
dM

1−M
+ (sLd lnL+ sRd lnR) + φd lnL

d lnQ = ηd lnR(1− sR)− ηsLd lnL− ηsLπl(I)
dM

1−M

From the differentiated income identify, d lnQ = sL
sR
πl(I) dM

1−M −
sL
sR

d lnW

sL
sR
πl(I)

dM

1−M
− sL
sR

d lnW = ηd lnR(1− sR)− ηsLd lnL− ηsLπl(I)
dM

1−M

sL
sR
πl(I)

dM

1−M
− sL
sR

(
sLπl(I)

dM

1−M
+ (sLd lnL+ sRd lnR) + φd lnL

)
= ηd lnR(1−sR)−ηsLd lnL−ηsLπ

dM

1−M

πl(I)
dM

1−M
(1− sL + ηsR) + (−φ− sL + ηsR) d lnL = (1 + η)sRd lnR

πl(I)
dM

1−M
(1− sL + ηsR)

(1 + η)sR
+

(−ε− sL + ηsR)

(1 + η)sR
d lnL = d lnR
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πl(I)
dM

1−M
(1− sL + ηsR)

(1 + η)sR︸ ︷︷ ︸
=1

+
(−φ− sL + ηsR)

(1 + η)sR
d lnL = d lnR

This can now be substituted into the d lnR term in the labor demand equation.

d lnLd
(

(1− sL)(1 + η)sR
(1 + η)ssR

− sR(−φ− sL + ηsR)

(1 + η)sR

)
= −l(I)

dM

1−M

+ σsL,Iπl(I)
dM

1−M
+ scRπl(I)

dM

1−M
(20)

d lnLd
(

1 + φ

1 + η

)
= l(I)

dM

1−M︸ ︷︷ ︸
Direct displacement

+ sL,Iπl(I )σ
dM

1−M
+ (1− sL)πl(I)

dM

1−M︸ ︷︷ ︸
Substitution and income effects

An inelastic supply of capital ( 1
η ) magnifies the employment effect, while an inelastic supply of

labor reduces it ( 1
φ ). For example, a large fall in labor demand due to automation could significantly

reduce wages and the supply of labor in other sectors if labor supply is highly elastic, but this effect

is dulled if labor supply is inelastic.
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C Appendix: Country employment impact results

In this appendix, individual scaled employment responses to technology shocks are shown for each

economy in the sample. The responses are scaled to a technology shock which boosts labor pro-

ductivity growth by 10 percent. Dashed lines show the median impulse response for the effects of

technology shocks on employment when the VARs are estimated individually, with lines with circles

reflecting the 16th and 84th percentile error bands. Solid lines and shaded regions show the results

of the VARs estimated using hierarchical priors.

Figure 12: Advanced economy employment impacts
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Figure 13: Advanced economy employment impacts
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Figure 14: Advanced economy employment impacts
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Figure 15: EMDE employment impacts
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Figure 16: EMDE employment impacts
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Figure 17: EMDE employment impacts
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Figure 18: EMDE employment impacts
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Figure 19: EMDE employment impacts
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Figure 20: EMDE employment impacts
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Figure 21: EMDE employment impacts

54



Figure 22: EMDE employment impacts
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