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on-farm cash profits by 53–71 percent. Second, adoption is 
constrained: access to irrigation causes farmers to substitute 
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1 Introduction

Limited adoption of productive technologies is a prominent explanation of low agri-
cultural productivity in sub-Saharan Africa (World Bank, 2007). Existing productive
technologies may be underutilized due to inefficiencies in the markets faced by farmer
households (Udry, 1997). A recent literature has provided robust evidence that these
market failures distort technology adoption, most commonly through experimental
manipulation of markets for risk, credit, and information (De Janvry et al., 2017).

Evidence is thinner on the role of constraints to adoption generated by failures
in factor markets for land and labor. Land and labor markets are characterized by
substantial frictions in developing countries (Fafchamps, 1993; Udry, 1997; LaFave
& Thomas, 2016), even where these markets are particularly active (Kaur, 2014;
Breza et al., 2018). Economic theory suggests land and labor market failures reduce
agricultural productivity by generating inefficient allocations of labor and land across
farms (Fei & Ranis, 1961; Benjamin, 1992). More recent empirical work has found
that these inefficiencies are quantitatively important (Udry, 1997; Adamopoulos &
Restuccia, 2014; Adamopoulos et al., 2017; Foster & Rosenzweig, 2017; Adamopoulos
& Restuccia, 2018).

In this paper, we demonstrate that incomplete land and labor markets contribute
to the productivity gap by distorting technology adoption.1 We do so in the context of
a potentially transformative technology: irrigation. Irrigation increases agricultural
productivity in several ways: it adds additional agricultural seasons, enables cultiva-
tion of water-intensive crops, and reduces production uncertainty. However, irrigation
is also costly: it requires large construction and maintenance costs, and is associated
with increased usage of complementary inputs, such as labor, fertilizer, and improved
seeds. Market failures, including in factor markets, therefore have the potential to
cause inefficient irrigation adoption as they induce a wedge between shadow prices
and market prices of these inputs.

We proceed in 3 steps. First, we establish that irrigation is a productive technol-
ogy, but adoption is partial. Second, we demonstrate that this partial adoption is

1A related question is explored in papers which evaluate the effects of land titling and other
formalized property rights on farm investment (Besley, 1995; Goldstein & Udry, 2008; Deininger
& Feder, 2009; Besley & Ghatak, 2010; Ali et al., 2014; Goldstein et al., 2018). In our context,
farmers have been assigned formal titles to our plots and so we identify the influence of factor
market frictions on technology adoption in the presence of formalized rights. Our emphasis on the
role of labor market frictions is also distinct.
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inefficient. Third, we show that labor market failures generate constraints to adoption
of irrigation.

We begin by estimating the returns to irrigation in Rwanda. We identify these
returns using a plot-level spatial discontinuity design in newly constructed hillside
irrigation schemes. We sample plots within 50 meters of gravity fed canals, which
originate from a distant water source and must maintain a consistent gradient along
the hillside. We survey 969 cultivators on 1,753 plots for 4 years.2 We then compare
plots just inside the command area, which have access to water for irrigation, to plots
just outside the command area, which do not. Treatment on the treated estimates
reveal that irrigation enables the transition to dry season cultivation of horticulture.
While we find no effects on rainy season yields, labor, or inputs, dry season estimates
correspond to 53% - 71% growth in annual cash profits. To our knowledge, this is
the first study to use a natural experiment to estimate the returns to irrigation in
sub-Saharan Africa; our estimate is almost identical to an estimate from Duflo &
Pande (2007) in India.3 Despite the large effects we estimate, adoption is low: only
30% of plots are irrigated 4 years after canals became operational. At this level of
adoption, the sustainability of hillside irrigation systems is in doubt: even the large
gains in cash profits to adopters are unable to generate enough surplus to pay for
routine maintenance costs.4

We investigate the effect of irrigation on inputs to shed light on what might de-
termine farmers’ decisions to adopt irrigation. In this context, the dominant input
associated with irrigation is households’ own labor. The shadow wage that prices
household labor is notoriously difficult to value, but if this labor were valued at the
market wage, estimated effects on household labor would be 6 times as large as esti-
mated effects on expenditures on hired labor and other inputs, and estimated effects

2These numbers are only for the sample of households whose sampled plot is within 50 meters
of the associated discontinuity; in full we survey 1,695 cultivators on 3,332 plots.

3Existing work that estimates the returns to irrigation using natural experiments is predomi-
nantly from groundwater irrigation in South Asia, leveraging variation in slope characteristics of
river basins (Duflo & Pande, 2007), aquifer characteristics (Sekhri, 2014), or well-failures (Jacoby,
2017) for identification. Estimates of the return to irrigation in Africa include Dillon (2011), who
estimates the returns to irrigation using propensity score matching in Mali. More broadly, Dillon &
Fishman (2019) review the literature on the impacts of surface water irrigation infrastructure.

4This is distinct from the collective action failures discussed in (Ostrom, 1990). Low adoption
of irrigation as a threat to sustainability has also been documented by Attwood (2005), who argues
that cost recovery was a challenge for canal irrigation systems in nineteenth and early twentieth
century India until the introduction of sugarcane.
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on profits would fall from 53% - 71% to -12% - 38%. Valuing household labor at
the market wage may not be appropriate: rural market wages are likely to be in-
efficiently high in developing countries (Kaur, 2014; Breza et al., 2018), and labor
market failures in rural areas may generate heterogeneity in the shadow wage (Singh
et al., 1986; Benjamin, 1992; LaFave & Thomas, 2016). Heterogeneity in the shadow
wage would then cause inefficient adoption of irrigation across households.5 Alterna-
tively, these results could also be consistent with unconstrained profit maximization
if farmers have heterogeneous returns to or costs of adopting irrigation (Suri, 2011)
and optimize at market wages.

We derive a test for inefficient adoption of irrigation caused by market failures.
To produce this test, we build on seminal agricultural household models (Singh et al.,
1986; Benjamin, 1992) and model households’ production decisions, incorporating
uncertainty, plot-level heterogeneity, and failures in insurance, credit, and labor mar-
kets. Consistent with our reduced form results, we model access to irrigation as a
labor- and input-complementing increase in plot-level productivity. Our test is as
follows. With complete markets, farmers maximize profits on each plot and access to
irrigation on one plot does not affect production decisions on other plots. In contrast,
when there are failures in land and other markets, access to irrigation on one plot
causes substitution of labor and inputs away from other plots.6 This test is joint for
the null of frictionless land markets: if land markets are frictionless, then markets
should reallocate land to farmers who can cultivate most profitably.

We implement our test for inefficient adoption caused by market failures, exploit-
ing the plot-level discontinuity in access to irrigation. We test whether farmers who
have a plot just inside the command area reduce their input use on their other plots
compared to farmers who have a plot just outside the command area. We find large
substitution effects, strongly rejecting complete markets: an additional irrigated plot
caused by access to irrigation is associated with a 54 - 60 percentage point decrease in
the probability of irrigating a second command area plot. We find similarly large ef-
fects for adoption of horticulture, household labor, and inputs. These results confirm a

5This heterogeneity could only exist if there were frictions in at least one other market in addition
to labor markets.

6The mechanism is straightforward: access to irrigation on one plot increases input use on
that plot. That increase does not affect input demand on the farmers’ other plots; however, if the
farmer faces binding constraints in input, risk, or labor markets, that increase in input use must be
associated with a decrease in input use on other plots.
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simple descriptive analysis, which shows that few households are able to irrigate more
than one command area plot. Applying these results, a simple back-of-the-envelope
calculation implies that, absent this substitution, adoption of irrigation would be at
least 30% higher. Moreover, the presence of this substitution implies current adop-
tion of irrigation is inefficient: different households make different adoption decisions
on technologically identical plots because of their access to irrigation on their other
plots.7

The previous test shows that inefficient adoption of irrigation is caused by failures
of land markets, and at least one other market; however, it does not establish which
other market fails. We produce two tests that suggest that labor market constraints,
as opposed to financial constraints, bind in our context.

First, we extend the model and propose a test for whether labor market frictions
contribute to inefficient adoption in this context. To produce this test, we consider
the effects of household size and wealth on input substitution across plots, in the
presence of insurance, credit, and labor market failures. We demonstrate that, while
many patterns of differential substitution are possible, only labor market failures
can explain irrigation access on one plot leading to greater input substitution across
plots for richer households, and decreased input substitution across plots for larger
households. We then estimate differential substitution with respect to household size
and wealth to test for labor market failures. We find exactly this pattern: households
with two additional members substitute 50% - 94% less than average size households,
while one standard deviation wealthier households substitute 41% - 97% more than
average wealth households. As these patterns of differential substitution can only
be explained by labor market failures, and not credit or insurance market failures,
these results imply that labor market failures cause substitution and contribute to
inefficient adoption of irrigation.

We then complement this result with experimental evidence. We conduct three
randomized controlled trials with the farmers who have access to irrigation. Two
of these trials focus on characteristics peculiar to irrigation systems: usage fees and

7With sufficient time, these sites could reach an equilibrium in which this misallocation would
have slowly been corrected by markets (Gollin & Udry, 2019). However, we note that our results
are 4 years after initial access to irrigation, and we do not observe dynamics after 2 years. This
is sufficient for our results to have meaningful implications for the long run sustainability of these
schemes. Our results also complement evidence from the United States which suggests that initial
allocations can persist for many decades even with seemingly well functioning land markets (Bleakley
& Ferrie, 2014; Smith, 2019).
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failures of operations and maintenance; we find neither plausibly affects farmers’
adoption decisions in our context. In the third experiment, we distribute minikits
which contain all necessary inputs for horticulture cultivation to randomly selected
farmers. Previous work has shown providing free minikits targets credit, risk, and
information constraints: it reduces costs of growing horticulture under irrigation,
basis risk, and costs of experimentation, respectively (Emerick et al., 2016; Jones
et al., 2018). We find no effects of receiving minikits on adoption of horticulture in
our context, in contrast to existing work. A closer analysis indicates that the farmers
who take up the minikits are the same farmers who would have been likely to cultivate
horticulture absent the intervention. Combining this evidence with the model-based
test above, we conclude that financial and informational constraints are unlikely to
be a primary explanation for low and inefficient adoption of irrigation.

This paper demonstrates that frictions in land and labor markets cause inefficient
adoption of hillside irrigation in Rwanda. This result integrates key findings from
three large literatures in development economics. First, our result provides some
ground-level evidence for the mechanisms underlying misallocation (Adamopoulos &
Restuccia, 2014; Adamopoulos et al., 2017; Foster & Rosenzweig, 2017; Adamopou-
los & Restuccia, 2018). We document that land misallocation hinders technology
adoption, and that frictions in labor markets are one reason why land market fail-
ures generate production inefficiencies. The intuition for our test expands on a deep
literature on separation failures which empirically demonstrates that factor market
failures affect the allocation of land and labor across households (Singh et al., 1986;
Benjamin, 1992; LaFave & Thomas, 2016; Dillon & Barrett, 2017; Dillon et al., 2019).8

Our context allows us to innovate by demonstrating that separation failures induce
differential adoption of irrigation on technologically identical plots. In doing so, we
also contribute to a literature leveraging production function estimates to document
misallocation of labor and inputs by inferring their marginal products from their allo-
cations across plots or households (Jacoby, 1993; Skoufias, 1994; Udry, 1996; Shenoy,
2017; Restuccia & Santaeulalia-Llopis, 2017).9 Our test for inefficient technology

8The existing literature does so by testing whether households with different characteristics use
different levels of inputs; however, this type of test stops short of showing that these allocations are
inefficient (Udry, 1997). In particular, it can only conclude that one market has failed; because it can
not conclude that at least two markets have failed, by Walras’ Law it is insufficient to demonstrate
an inefficiency.

9Although demonstrating heterogeneity in the marginal product of labor is sufficient to show that
labor market failures generate inefficiencies, the methods employed by this literature are typically
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adoption caused by land and labor market failures therefore complements this lit-
erature, by both imposing less structure and leveraging our plot-level discontinuity
in access to irrigation as an exogenous labor- and input-complementing productivity
shock.

This paper is organized as follows. Section 2 describes the context we study and
our sources of data. Section 3 presents our estimates of the impacts of irrigation
in Rwanda. Section 4 presents our model of adoption of irrigation in the presence
of market failures. We implement tests of constraints to adoption and labor market
failures suggested by the model in Section 5, and experimental tests in Section 6.
Section 7 concludes.

2 Data and context

2.1 Irrigation in Rwanda

We study 3 hillside irrigation schemes, located in Karongi and Nyanza districts of
Rwanda, that were constructed by the government in 2014; a timeline of construction
and our surveys is presented in Figure 1. Rainfed irrigation in and around these
sites is seasonal, with three potential seasons per year. During the main rainy season
(“Rainy 1”; September - January), rainfall is sufficient for production in most years.
In the second rainy season (“Rainy 2”; February - May), rainfall is sufficient in an
average year but insufficient in dry years. In the dry season (“Dry”; June - August),
rainfall is insufficient for agricultural production for seasonal crops. Absent irrigation,
agricultural production in these sites consists of a mix of staples (primarily maize and
beans) which are cultivated seasonally and primarily consumed by the cultivator, as
well as perennial bananas which are sold commercially;10 most farmers adopt either
a rotation of staples, fallowing land in the dry season, or cultivate bananas.

Irrigation in these schemes is expected to increase yields by reducing risk in the
second rainy season and enabling cultivation in the short dry season. As the dry season
is relatively short, cultivating the primary staple crops is not possible for households

not robust to the presence of unobserved heterogeneity across plots or measurement error (Gollin &
Udry, 2019).

10Staple rotations also include smaller amounts of sorghum and tubers, while there is also some
cultivation of the perennial cassava, along with other minor crops. In our data, maize, beans, or
bananas are the main crop for 85% of observations excluding horticulture.
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Figure 1: Timeline

Notes: Black lines indicate when (or the period during which) events took place, while pink lines
are used to indicate survey recall periods.

that cultivate during the two rainy seasons, even with irrigation. Instead, cultivating
shorter cycle horticulture during the dry season becomes a possibility with irrigation.
Horticulture production (most commonly eggplant, cabbage, carrots, tomatoes, and
onions) can be sold at local markets where it is both consumed locally and traded for
consumption in Kigali.11 As horticultural production is relatively uncommon during
the dry season in Rwanda due to limited availability of irrigation, finding buyers for
these crops is relatively easy during this time. At baseline 3.2% of plots outside of
the command area are planted with at least some horticulture, primarily during the
rainy seasons.

The three schemes we study were constructed by the government from 2009 -
2014, with water beginning to flow to some parts of the schemes in 2014 Dry and
becoming fully operational by 2015 Rainy 1 (August 2014 - January 2015). A repre-
sentative picture from one of the schemes is presented in Figure 2. In each site, land
was terraced in preparation for the irrigation works (as hillside irrigation would be
infeasible on non-terraced land). Construction and rehabilitation of terraces in these
sites began in 2009 - 2010. The schemes are all gravity fed, and use surface water
as the source. From these water sources, a main canal (visible in Figure 2) was con-
structed along a contour of the hillside; engineering specifications required the canal
to be sufficiently steep so as to allow water to flow, but sufficiently gradual to control
the speed of the flow, preventing manipulation of the path of the canal. Underground

11Kigali is less than a 3 hour drive from these markets, facilitating trade.
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secondary pipes run down the terraces from the canal every 200 meters, with valves
on the main canal controlling the flow of water into these secondary pipes. Farmers
draw water from tertiary valves on these pipes located on every third terrace, from
which flexible hoses and dug furrows enable irrigation on all plots below the canal.
The “command area” for these schemes, the land that receives access to irrigation, is
made up of all the plots which are below the canal and located within 100 meters of
one of these tertiary valves.12

In all sites, sufficient water is available to enable irrigation year-round. To the
extent that there is heterogeneity in plot-level water pressure, the plots nearest to
the canal face the lowest pressure, as the pressure available at an individual valve
is determined by the volume of water in the pipe above that valve. The primary
cost to farmers of irrigating a plot in this context is the labor associated with the
actual irrigation, including maintaining the dug furrows and using the hoses to apply
water from the valves to their plots. At the time of the study, there are no fees
associated with the use of irrigation water.13 As we document in Section 6 there were
not significant challenges in operations and maintenance during the sample period,
perhaps due to governmental oversight and the youth of these schemes.

We exploit a spatial discontinuity in irrigation coverage to estimate the impacts
of irrigation. Because the main canals must conform to prescribed slopes relative to
a distant and originally inaccessible water source, the geologic accident of altitude
relative to this source determines which plots will and will not receive access to
irrigation water. Hence, before construction, plots just above the canal should be
similar to plots just below the canal, and importantly, should be managed by similar
farmers. Following construction, however, the plots just below the canal fall inside
the command area and have access to irrigation, while the plots just above the canal
fall outside the command area and do not have access to irrigation.14

12We define clusters of plots that share the same secondary pipe as water user groups. In addition,
water user groups can be grouped into zones. The secondary pipes in each zone are located along
a single segment of the canal, and the flow of water into each of these segments is regulated by a
single large valve located on the canal.

13In 2017, an attempt was made to collect taxes unconditional on the use of irrigation, to avoid
influencing cultivation decisions. The taxes are small in magnitude compared to potential farmer
yields, as they are meant to fund only ongoing operations and maintenance costs, and compliance
was very low (4%). The research team conducted a randomized controlled trial to pay these taxes
described in Appendix I and found no evidence that farmers responded to these taxes.

14One might be concerned that during construction, the command area could be manipulated
in order to cover particularly influential or productive farmers. In one of the sites, we have the
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Figure 2: Karongi 12 hillside irrigation scheme

2.2 Data

2.2.1 Spatial sampling

To take advantage of the spatial discontinuity in access generated by the command
area boundary, we randomly sampled plots in close proximity to this discontinuity.
In practice, we constructed this sample of plots by dropping a uniform grid of points
across the site at 2-meter resolution, and then randomly sampling points within the
grid within 50m of the command area boundary.15,16 After each point was sampled,

georeferenced engineering layout plan that specifies the command area, in addition to the maps
of the actually constructed command area. In results available upon request, our estimates are
qualitatively similar when we use either the engineering layout plan or the actual map. This is
consistent with the engineering layout plan closely aligning with the actual map, which in turn is
consistent with the high costs of construction of these schemes.

15This procedure will produce a sample of plots that is more representative of land than of
households. In Supplementary Appendix A, we reproduce our analysis in Section 3 but weighting
households inversely proportionally to their number of plots, and find that our results are qualita-
tively similar with this alternative weighting.

16In all three irrigation sites, we additionally sampled some points further from the canal inside
the command area. We use these points primarily to examine experimental treatments described
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we excluded all points within 10m of that point (to avoid selecting multiple points too
close together). Enumerators visited each of these points, and identified when a point
fell on cultivable land.17 With the help of a key informant (often the village leader),
they then recorded the name of the cultivator of the plot, their contact information,
as well as a sufficiently detailed description of the plot. These listed cultivators form
our main household survey sample. For each cultivator, one of their identified plots
was randomly selected, which we refer to as the sample plot.

2.2.2 Survey

Our baseline survey covered 1,695 spatially sampled cultivators in August - October
2015. The survey includes detailed agricultural production data (season-by-season)
for seasons 2014 Dry through 2015 Rainy 2 (June 2014 - May 2015). The dates of this
survey and follow up surveys, along with the agricultural seasons they cover, are pre-
sented in Figure 1. Details of the construction of key variables we use for the analysis
are presented in Appendix A. As mentioned above, this is not a “true” baseline as
some farmers had already gained access to irrigation in 2014 Dry. However, relatively
small parts of the site had access to irrigation at this point; in Section 3.2.1 we high-
light that 2014 Dry adoption of irrigation is less than 25% of adoption in subsequent
dry seasons, and in Section 3.1.1 we show balance across the command area boundary
in household and plot characteristics. A panel of plot-level production and input data
are maintained for two plots, which were mapped using GPS devices for precise loca-
tion and area measurement. The two plots on which panel data is collected represent
the primary data for analysis; they include the sample plot (described above) and the
farmer’s next most important plot (defined at baseline; we refer to this as the “most
important plot” or “MIP”). We also collected data on household characteristics, labor
force behavior, and a short consumption and food security module. In analysis, we
will focus on the sample plots to learn about the effects of the irrigation itself, and
the most important plot to learn about how the presence of irrigation on the sample
plot impacts households’ productive decisions on their other plots.

Three follow up household surveys were conducted in May - June 2017, November

below in Section 6. Additionally, only two of the three sites have a viable boundary of cultivable
land both just inside and just outside the command area; we use only these sites for our analysis of
the impacts of access to irrigation in Section 3 and Section 5.

17This was to discard forest, swamps, thick bushes, bodies of water, or other terrain which would
make cultivation impossible.
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- December 2017, and November 2018 - February 2019. In each survey, we asked
for up to a year of recall data on agricultural production; based on the timing of
our surveys we therefore have production for all agricultural seasons from June 2014
through August 2018, with the exception of 2015 Dry (June - August 2015) and 2016
Rainy 1 (September 2015 - February 2016).

The household sample for the follow up surveys consists of all the baseline respon-
dents, while the plot sample for the follow up surveys consists of the sample plots and
most important plots. To maintain a panel of plots, we ran a “tracking survey”. This
survey was triggered whenever a household’s sample plot or most important plot was
sold or rented out to another household, or a household stopped renting in that plot
if it was not the owner (“transacted”). Specifically, we tracked and interviewed the
new household responsible for cultivation decisions on that plot to record information
about cultivation and production, along with household characteristics when the new
household was not already in our baseline sample. Data from this tracking survey is
incorporated in all our plot level analysis, limiting plot attrition.

Attrition in our survey is low, and details on attrition are presented in Table
A8. Only 6.0% (6.4%) of plot-by-season observations for sample plots outside the
command area in our primary analysis sample (defined in Section 3.1) are missing
during the dry season (rainy season). There are three sources of attrition: household
attrition, plots transacted to other farmers that we were not successful in tracking,
and plots rented out to commercial farmers who were based in the capital or interna-
tionally (from whom we were unable to collect agricultural production data). We do
not find evidence of differential attrition of sample plots due to household attrition or
plots transacted to other farmers that we did not track, however we do find access to
irrigation causes an additional 6.4 - 10.2pp of plots to be rented out to a commercial
farmer. We interpret the lack of data on these plots as biasing our primary estimates
of the impacts of irrigation downwards, as these plots are cultivated with productive
export crops, and we discuss attrition further in Appendix F.

2.3 Stylized facts

To motivate our analysis of the impacts of hillside irrigation, we first introduce some
stylized facts about irrigation in this context. Table 1 presents summary statistics
for agricultural production from our four years of data, pooled across seasons.
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Table 1: Summary statistics on agricultural production

Staples Horticulture
Staples Maize Beans Bananas All Rainy Dry
(1) (2) (3) (4) (5) (6) (7)

Yield 302 318 285 273 575 588 566
Hired labor (days) 37 37 37 9 61 66 57
Hired labor expenditures 28 28 28 7 45 49 42
HH labor (days) 266 248 260 101 417 414 420
Inputs 19 35 16 3 50 50 50
Profits
Shadow wage = 0 RwF/day 256 255 241 263 481 489 475
Shadow wage = 480 RwF/day 128 136 117 214 280 290 273
Shadow wage = 800 RwF/day 43 56 34 182 147 158 139

Sales share 0.19 0.30 0.14 0.46 0.62 0.60 0.63
Irrigated 0.02 0.02 0.02 0.02 0.65 0.25 0.93
Rainy 0.99 1.00 1.00 0.50 0.42 1.00 0.00
log area -2.44 -2.26 -2.47 -2.10 -2.71 -2.83 -2.62
Share of obs. 0.65 0.13 0.42 0.19 0.12 0.05 0.07

Notes: Sample averages of outcomes by crop per agricultural season are presented in this table.
Yield, inputs, hired labor expenditures, and profits are reported in units of ’000 RwF/ha, labor
variables are reported in units of person-days/ha, and log area is in units of log hectares. All other
variables are shares or indicators. For reference, the median wage in our data is 800 RwF/person-day.

Stylized Fact 1. Irrigation in Rwanda is primarily used to cultivate horticulture in
the dry season.

Farmers in our data rarely irrigate their plots in the rainy seasons, and almost
never use irrigation when cultivating staples or bananas (only 2% of plots cultivated
with staples or bananas use irrigation in our data). In contrast, 93% of plots cultivated
with horticulture in the dry season use irrigation. This stylized fact makes agronomic
sense as the rainfall in rainy seasons in this part of Rwanda is usually sufficient for
either staple or horticultural production (and in wet years may be harmfully excessive
for horticulture). Additionally, as staples do not have a sufficiently short cycle to
permit cultivation during the relatively short dry season (while horticulture does),
it is not agronomically feasible to use irrigation to cultivate staples during the dry
season.

Stylized Fact 2. Horticultural production is more input intensive than staple culti-
vation, which in turn is (much) more input intensive than banana cultivation.

The mean horticultural plot uses about 420 days/ha of household labor, 60 days/ha
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of hired labor, and 50,000 RwF/ha of inputs, regardless of the season in which it is
planted.18 This contrasts to staple plots (260 days/ha of household labor, 40 days/ha
of hired labor, 20,000 - 40,000 RwF/ha of inputs), and bananas (100 days/ha of
household labor, 10 days/ha of hired labor, 3,000 RwF/ha of inputs).

Stylized Fact 3. Horticultural production produces much higher cash profits than
other forms of agriculture.

Horticultural production produces much higher cash profits (defined as yields net
of expenditures on inputs and hired labor) than other forms of agricultural production
in and around these sites. Plots planted to horticulture yield about 500,000 RwF/ha
in cash profits, in both rainy and dry seasons. This contrasts with about 250,000
RwF/ha of cash profits producing either staples or bananas.

Stylized Fact 4. Household labor is the primary input to production of any crop,
and the economic profitability of horticulture depends critically on the shadow wage.

A large existing literature examines separation failures in labor markets faced by
agricultural households (e.g., Singh et al. (1986); Benjamin (1992); LaFave & Thomas
(2016)). If households are constrained in the quantity of labor they are able to sell on
the labor market, they may work within the household at a marginal product of labor
well below the market wage. Here, we see that if we value household labor allocated
to horticulture at market wages, then cultivating horticulture appears less profitable
than cultivating bananas. As a result, ultimately the economic profitability of hor-
ticulture relative to bananas will depend critically on the constraints on household
labor supply decisions. It is worth noting that both horticulture and bananas appear
more profitable than cultivating staples, which would be unprofitable if labor were
valued at market wages; the ubiquity of staple cultivation in and around these sites
is a first piece of evidence that farmers face a shadow wage below the market wage.19

18For reference, in the study period, the exchange rate was approximately 800 RwF = 1 USD
19Both horticulture and bananas are also primarily commercial crops, unlike staples. Farmers

may place higher value on staples if consumer prices are higher than producer prices (Key et al.,
2000), or if there is price risk in production and consumption, both of which may contribute to
cultivation decisions as well.

14



3 Impacts of irrigation

3.1 Empirical strategy

We start our analysis with a regression discontinuity design. We restrict this and
subsequent analysis to sample plots within 50 meters of the discontinuity, consistent
with our sampling strategy. We regress

y1ist = β1CA1is + β2Dist1is + β3Dist1is ∗ CA1is + αst + γX1is + ε1ist (1)

Where ykist is outcome y for plot k of household i located in site s in season t, CAkis

is an indicator for that plot being in the command area, and αst are site-by-season
fixed effects meant to control for any differences across sites (including market access
or prices). We use k = 1 to indicate the household’s sample plot, as opposed to the
household’s most important plot. Dist1is is the distance of plot 1 from the command
area boundary (positive for plots within the command area, negative for plots outside
the command area) and X1is is the log plot area.20 Our coefficient of interest is β1,
the effect of the command area on outcome y.

We include controls for distance to the boundary and log plot area to address two
primary potential sources of omitted variable bias. First, the canal sits at a particular
contour of the hillside. Plots that are positioned relatively higher on the hillside may
have different agronomic characteristics; accordingly, farmers may differentially sort
into these plots. We therefore follow convention by controlling for the running variable
(Dist1is) and its interaction with treatment (CA1is). Second, as the construction of
the canal slices through plots on the hillside, this may differentially change the area
of plots that are positioned above or below the canal. For example, roads are more
often located higher on the hillside, leaving less room for plots to extend above the
canal relative to below the canal. We anticipate this will cause plots to be relatively
larger just inside the command area. As plots exhibit strong evidence of diminishing
returns to scale in this context, this effect would likely bias β1 downwards absent
control.21

20We calculate distance using the distance of the plot boundary to the command area boundary.
21In Appendix C, we estimate specification (A1) that omits controls for distance to the command

area boundary, its interaction with the command area indicator, and log plot area. All our results
are qualitatively similar in this alternative specification, suggesting these potential sources of bias do
not meaningfully affect our results. In Supplementary Appendix A, we estimate a specification that
also includes controls for distance to the command area boundary squared, and its interaction with
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Next, we consider additional concerns related to selection into our sample caused
by access to irrigation. This may arise for two reasons. First, during the construction
of the hillside irrigation schemes, forest was deliberately preserved or planted just
outside of the command area in order to protect the new investment from erosion.
As these forested plots are not agricultural, they are not included in our sampling
strategy.22 Second, marginal plots which would have been too unproductive to culti-
vate absent irrigation, and would thus have been left permanently fallow, may now
be sufficiently productive to be worth cultivating with access to irrigation. While our
sampling strategy selected both cultivated and uncultivated plots, it did not select
plots which had been left overgrown with thick bushes, as it would have been diffi-
cult to identify the household responsible for those plots. In practice, the latter is
likely uncommon, as typical household landholdings are small in the hillside irrigation
schemes we study (around 0.3 ha), and agricultural land is highly valued – median
annual rental prices in our data are 150,000 RwF/ha, approximately 25% of annual
yields.

We account for this potential source of bias using spatial fixed effects (SFE; see
Goldstein & Udry (2008); Conley & Udry (2010); Magruder (2012, 2013)), which use
a spatial demeaning procedure to eliminate spatially correlated unobservables, such
as unobserved heterogeneity in productivity caused by soil characteristics. This spa-
tial demeaning ensures that comparisons are made only over proximate plots. For
example, if some areas of low productivity are left forested outside of the command
area, but not inside, then plots inside the command area will be systematically (un-
observably) less productive than plots outside the command area. However, because
SFE estimators only compare neighboring plots, the low productivity plots inside the
command area that are near forested low productivity areas will not have nearby
comparison plots outside the command area, and therefore will not contribute to the
estimation of the effect of the command area.23

In practice, we define a set Nkist to be the group of five closest plots to plot k

the command area indicator. All our results are qualitatively similar in this alternative specification,
suggesting choice of functional form for the distance control does not meaningfully affect our results.

22Typically, forests were planted or preserved in areas of low productivity, where the slope of
the hillside was relatively high and erosion was relatively common. Therefore, this amounts to
selection out of our sample of low productivity plots outside the command area, which would bias
β1 downwards.

23Formally, SFE estimators leverage the identification assumption lim||k−k′||→0 E[εkist|Xkist] =
E[εk′i′st|Xk′i′st], where ||k − k′|| represents the distance between plot k and plot k′.
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observed in season t, including the plot itself. Then, for any variable zkist, define
zkist = (1/|Nkist|)

∑
k′∈Nkist

zk′i′st. The SFE specification then estimates

y1ist − y1ist = β1(CA1is − CA1is) + (V1is − V 1is)
′γ + (ε1ist − ε1ist) (2)

where Vkis includes all controls from Equation (1), except the subsumed site-by-season
fixed effects.

Our sampling strategy yields the following plot proximity: restricting to the sam-
ple plots in our main sample for regression discontinuity analysis, 49% of plots have
their nearest 3 plots (self inclusive) within 50 meters, and 87% have 3 plots within
100m; 60% of plots have all their nearest 5 plots (self inclusive) within 100m, while
83% have all 5 plots within 150m. As reference, Conley & Udry (2010) use 500m as
the bandwidth for their estimator, while Goldstein & Udry (2008) use 250m as the
bandwidth; we therefore anticipate that underlying land characteristics are likely to
be quite similar between each plot and its comparison plots.

When estimating Specification (1), we cluster standard errors at the level of the
nearest water user group, the group of plots that can source water from the same
secondary pipe.24 When estimating Specification (2), the spatial fixed effects generate
correlation between the errors of close observations. To allow for this, we calculate
Conley (1999) standard errors.25

3.1.1 Balance

We now use specifications (1) and (2) to examine whether the plots in our sample
and the households who cultivate them are comparable at baseline. For each of
these specifications, we show balance both with key controls omitted (Columns 3 and
4), and our preferred specifications which we use in our analysis with key controls
included (Columns 5 and 6).

First, our sample plots are balanced in terms of ownership and rentals. Addi-
tionally, 89% of sample plot owners on both sides of the canal owned the land over

24As described in Section 2.1, water user groups are grouped into zones. In Supplementary
Appendix A, we report estimates from specification (1) with standard errors clustered at the zone
level, instead of the water user group level. The patterns of statistical significance we describe in
Section 3 are unaffected by clustering at the zone level.

25Specifically, we allow plot ` managed by household j and plot `′ managed by household j′ to
have correlated errors if there exists a plot k such that ` ∈ Nkist or k ∈ N`jst, and `′ ∈ Nkist or
k ∈ N`′j′st.
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5 years, or prior to the start of the irrigation construction. There is, however, some
imbalance on plot size; as discussed in Section 3.1, log area (measured in hectares) is
larger inside the command area than outside the command area. This imbalance is
weaker in the SFE specification than in the RDD specification, such that the omnibus
test fails to reject the null of balance for the SFE specification (although we reject for
the RDD specification). However, we note that this imbalance would bias us against
finding the effects we see in Section 3.2 on horticulture, input use, labor use, and
yields, as all of these variables are larger in smaller plots in both the command area
and outside the command area.

Table 2: Balance: Sample plot characteristics

Full sample RD sample

Coef. (SE) [p] Dep. var. Coef. (SE) [p]

(1) (2) (3) (4) (5) (6)
log area 0.045 -2.515 0.425 0.200

(0.077) (1.179) (0.121) (0.128)
[0.554] 969 [0.000] [0.118]

Own plot -0.012 0.894 0.004 -0.004 -0.001 -0.006
(0.020) (0.309) (0.032) (0.038) (0.032) (0.038)
[0.535] 969 [0.907] [0.921] [0.972] [0.877]

Owned plot >5 years 0.045 0.880 0.019 0.012 0.007 0.010
(0.019) (0.326) (0.037) (0.035) (0.036) (0.034)
[0.020] 686 [0.613] [0.723] [0.834] [0.767]

Rented out, farmer 0.027 0.032 -0.003 0.009 -0.009 0.007
(0.012) (0.177) (0.023) (0.027) (0.023) (0.027)
[0.022] 969 [0.884] [0.726] [0.699] [0.796]

Slope -0.006 0.290 -0.007 0.007 -0.011 0.007
(0.013) (0.183) (0.019) (0.024) (0.019) (0.024)
[0.655] 969 [0.695] [0.769] [0.559] [0.781]

Omnibus F-stat [p] 2.1 2.6 0.5 0.1 0.1
[0.066] [0.025] [0.756] [0.971] [0.993]

Site FE X X
Distance to boundary X X X X
log area X X
Spatial FE X X

Notes: Column 2 presents the mean of the dependent variable and the standard deviation of the
dependent variable in parentheses, for sample plots in the main discontinuity sample that are outside
the command area, and the total number of observations. Columns 1 and 3 through 6 present
regression coefficients on a command area indicator, with standard errors in parentheses, and p-
values in brackets. Column 1 uses the full sample, while Columns 2 through 6 use the discontinuity
sample. Columns 5 and 6 use specifications (1) and (2), respectively.

Following the ownership results, Table 3 examines the characteristics of house-
holds whose sample plots are just inside or just outside the command area. First,
note that Column 1, which does not restrict to the discontinuity sample, performs
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poorly here; we find significant imbalance on half of our variables, and the omnibus
test rejects the null of balance. However, balance improves substantially in our two
preferred specifications (Columns 5 and 6, Table 3) which restrict to the discontinuity
sample; households with sample plots just inside the command area appear similar to
households with sample plots just outside the command area. For Specification (1)
in Column (5), we reject the null of balance at the 10% significance level, as there is
a significant difference in whether the household head has completed primary school-
ing or not and an almost significant difference in the number of household members
(15-64). In Supplementary Appendix A, we estimate specifications (1) and (2) with
controls included for household head completed primary schooling and number of
household members (15-64), and our results are unaffected by the inclusion of these
controls. We also note that 1 out of 10 variables significant at the 10% level is what
one would expect due to chance.26

Lastly, in Section 5.1.1, we consider the characteristics of households’ most im-
portant plots; we show that these appear similarly balanced.

3.2 Estimating the effects of irrigation

3.2.1 Adoption Dynamics

Figure 3 presents the share of plots irrigated by season for sample plots just inside the
command area and sample plots outside the command area. First, as the irrigation
sites were already partially online at the time of our baseline, we already observe
some increased adoption of irrigation in the command area in 2014 Dry: sample plots
in the command area are approximately 5pp more likely to be irrigated than sample
plots outside the command area. We present results from 2014 Dry and 2015 Rainy
1 and 2 in Appendix B; consistent with this low adoption, we do not find significant
impacts of access to irrigation on inputs or output in these seasons. Second, starting

26That the coefficient on household head primary completion in our test for balance is positive
might be particularly concerning if education strongly predicted decisions to adopt irrigation, as
this would be suggestive of endogenous selection rather than sampling noise. In contexts where
information is a first order constraint to adoption, more educated farmers have been shown to be
significantly more likely to adopt new technologies (Foster & Rosenzweig, 1996). Throughout this
paper, we argue that information is unlikely to be a first order constraint to adoption of irrigation
in this context; consistent with this, in results available upon request we find that household head
primary completion is weakly negatively correlated with adoption of irrigation. To the extent that
more educated household heads have a higher shadow wage, this is also consistent with our argument
that labor market failures drive heterogeneous decisions to adopt irrigation in this context.
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Table 3: Balance: Household characteristics

Full sample RD sample

Coef. (SE) [p] Dep. var. Coef. (SE) [p]

(1) (2) (3) (4) (5) (6)
HHH female 0.041 0.221 0.045 0.044 0.043 0.041

(0.025) (0.416) (0.046) (0.050) (0.046) (0.050)
[0.094] 969 [0.326] [0.378] [0.345] [0.412]

HHH age 0.5 47.5 2.1 0.7 1.4 0.3
(0.8) (14.5) (1.4) (1.8) (1.4) (1.9)

[0.497] 967 [0.127] [0.694] [0.298] [0.863]
HHH completed primary 0.069 0.287 0.128 0.102 0.119 0.099

(0.025) (0.453) (0.047) (0.062) (0.047) (0.062)
[0.005] 966 [0.006] [0.097] [0.012] [0.111]

HHH worked off farm 0.023 0.410 -0.039 -0.019 -0.024 -0.011
(0.027) (0.493) (0.051) (0.064) (0.050) (0.064)
[0.392] 969 [0.441] [0.763] [0.631] [0.868]

# of plots 0.61 5.19 0.20 0.35 0.36 0.40
(0.18) (3.38) (0.36) (0.46) (0.36) (0.46)
[0.001] 969 [0.582] [0.448] [0.319] [0.382]

# of HH members 0.17 4.89 -0.00 -0.03 -0.01 -0.03
(0.11) (2.16) (0.21) (0.25) (0.22) (0.25)
[0.104] 969 [0.985] [0.917] [0.971] [0.908]

# who worked off farm 0.10 0.77 0.01 0.03 0.01 0.04
(0.05) (0.85) (0.08) (0.10) (0.08) (0.10)
[0.039] 969 [0.909] [0.799] [0.906] [0.722]

# of HH members (15-64) 0.20 2.60 0.26 0.17 0.24 0.15
(0.08) (1.45) (0.15) (0.16) (0.16) (0.16)
[0.007] 969 [0.090] [0.300] [0.128] [0.349]

Housing expenditures -2.3 49.2 -5.6 -16.7 -6.5 -18.6
(6.9) (127.4) (14.9) (19.0) (14.7) (19.1)

[0.739] 962 [0.707] [0.380] [0.658] [0.328]
Asset index 0.11 -0.12 0.15 0.06 0.13 0.04

(0.05) (0.99) (0.12) (0.13) (0.12) (0.13)
[0.034] 967 [0.215] [0.647] [0.291] [0.738]

Omnibus F-stat [p] 3.9 2.1 0.9 1.7 0.9
[0.000] [0.028] [0.536] [0.073] [0.514]

Site FE X X
Distance to boundary X X X X
log area X X
Spatial FE X X

Notes: Column 2 presents the mean of the dependent variable and the standard deviation of the
dependent variable in parentheses, for sample plots in the main discontinuity sample that are outside
the command area, and the total number of observations. Columns 1 and 3 through 6 present
regression coefficients on a command area indicator, with standard errors in parentheses, and p-
values in brackets. Column 1 uses the full sample, while Columns 2 through 6 use the discontinuity
sample. Columns 5 and 6 use specifications (1) and (2), respectively.

with 2015, adoption of irrigation does not appear to trend, but exhibits meaningful
seasonality. Differences remain around 3pp - 6pp in the rainy seasons, and 19pp -
26pp in the dry seasons.
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Figure 3: Adoption dynamics

Notes: Average adoption of irrigation by season on sample plots in the main discontinuity sample,
inside and outside the command area, is presented in this figure. Averages outside the command
area are in black, while averages inside the command area and 95% confidence intervals for the
difference are in pink. Robust standard errors are clustered at the nearest water user group level.

Given the limited changes in adoption dynamics after 2014 and the stark differ-
ences in adoption across dry and rainy seasons, for the remainder of our analysis we
estimate (1) and (2) pooling across our three years of follow up surveys, splitting our
results across dry and rainy seasons.

3.2.2 Impacts of irrigation

We now present our results on the impact of access to irrigation on crop choices, on
input use, and on production. First, we present graphical evidence of the regression
discontinuity in Figure 4; for parsimony, we do so only for the dry seasons (2016 Dry,
2017 Dry, and 2018 Dry).27 In each of the regression discontinuity figures, distance
to the canal in meters is represented on the horizontal axis, with a positive sign
indicating that the plot is on the command area side of the boundary. Second, we

27Rainy season differences are always smaller and generally not visually noteworthy; we focus
most of our discussion on the dry season results.
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present regression evidence in Table 4. In the discussion below, we focus on results
from the tables, but we note that these results are consistent with visual intuition
from Figure 4.28

Figure 4: Regression discontinuity estimates of impacts of irrigation

28We also note that the RDD graphs in Figure 4 typically demonstrate a relatively strong spatial
slope within the command area, where plots further away from the canal are more likely to irrigate,
cultivate horticulture, and have higher yields. There are several plausible explanations for this trend:
further away from the canal, more of the land is marshland, where growing horticulture is more
traditional, plots may be selected differently (for example, smaller); and the system also has greater
water pressure. The first two of these explanations emphasize the value of the regression discontinuity
estimator while the last means that our local estimates at the canal may be conservative.
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Table 4: Access to irrigation enables transition to dry season horticulture from perennial bananas, causes large increases
in dry season labor and input use, yields, and sales; profitability depends on household’s shadow wage

(a) Dry season

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA 0.005 0.162 0.137 -0.133 70.8 6.3 3.7 73.1 55.5 63.9 9.3
(0.041) (0.024) (0.024) (0.037) (17.5) (1.5) (2.1) (23.2) (14.5) (21.0) (16.5)
[0.909] [0.000] [0.000] [0.000] [0.000] [0.000] [0.082] [0.002] [0.000] [0.002] [0.573]

SFE (Spatial FE, Specification 2)

CA 0.022 0.171 0.156 -0.142 76.9 4.3 3.2 55.0 49.3 49.1 -3.0
(0.044) (0.030) (0.029) (0.035) (20.7) (1.8) (2.6) (28.5) (19.2) (25.7) (20.8)
[0.610] [0.000] [0.000] [0.000] [0.000] [0.019] [0.221] [0.054] [0.010] [0.057] [0.886]

# of observations 2,537 2,537 2,536 2,536 2,523 2,527 2,527 2,402 2,527 2,402 2,400
# of clusters 196 196 196 196 196 196 196 196 196 196 196
Control mean 0.391 0.058 0.065 0.245 59.5 2.5 3.7 82.3 49.7 76.1 32.8

(b) Rainy seasons

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.092 0.035 0.016 -0.158 8.5 1.1 3.7 -22.6 -13.3 -26.4 -31.8
(0.025) (0.009) (0.018) (0.038) (23.1) (2.9) (3.4) (30.8) (18.5) (28.5) (26.4)
[0.000] [0.000] [0.371] [0.000] [0.714] [0.710] [0.276] [0.462] [0.472] [0.354] [0.228]

SFE (Spatial FE, Specification 2)

CA -0.053 0.059 0.048 -0.168 9.9 2.1 3.1 -15.4 5.6 -19.4 -27.3
(0.027) (0.012) (0.025) (0.034) (24.7) (3.1) (4.5) (30.8) (21.6) (27.5) (31.9)
[0.051] [0.000] [0.056] [0.000] [0.689] [0.511] [0.490] [0.617] [0.793] [0.480] [0.393]

# of observations 4,236 4,236 4,235 4,235 4,215 4,223 4,223 4,085 4,223 4,085 4,078
# of clusters 196 196 196 196 196 196 196 196 196 196 196
Control mean 0.838 0.016 0.073 0.274 226.7 16.1 15.9 271.5 85.1 239.8 59.5

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are presented above. Specifications control for distance
to the command area boundary, its interaction with CA, and log area of the sample plot. RDD specification includes site-by-season fixed
effects, and SFE specification includes spatial fixed effects. Standard errors are in parentheses, and p-values in brackets.
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First, in line with results from Section 3.2.1, command area plots are 16pp - 17pp
more likely to be irrigated during the dry season than plots outside the command area,
and almost all of this increase is explained by the transition to cultivation of high
value horticulture during this dry season. In contrast, adoption of irrigation during
the rainy season is much lower, with increases of just 4pp - 6pp. This transition to dry
season horticulture substitutes for cultivation of perennial bananas, a less productive
but less input intensive commercial crop; we estimate a decrease of 13pp - 14pp in the
command area, and as a consequence we observe no impacts on overall cultivation in
the dry season.29

Second, we find large increases in dry season input use, which are dominated by
increases in household labor. These results are consistent with the transition from
perennial bananas, which require little inputs and labor, into horticulture, which is
highly input and labor intensive. To interpret these results, we conduct a treatment
on the treated analysis under the assumption that the command area increases input
use only through its effect on irrigation. Doing so, we find that adoption of irrigation
increases household labor use, input expenditures, and hired labor expenditures by
440 - 450 person-days/ha, 25,000 - 39,000 RwF/ha, and 19,000 - 23,000 RwF/ha,
respectively; these numbers are similar to differences in input intensity of dry season
horticulture and bananas reported in Table 1. The impacts on household labor are
particularly large — valued at a typical wage of 800 RwF/person-day, this labor
would be priced at 350,000 - 360,000 RwF/ha, an order of magnitude larger than the
effects on input expenditures or hired labor expenditures. Applying this labor to 0.3
ha (median household landholdings) of command area land would require roughly
4 person-months of labor during the 3 month dry season. In contrast to these dry
season results, we find no effects on input use during the rainy seasons.

Third, consistent with our estimates of impacts on input use, we find large in-
creases in dry season agricultural production. Treatment on the treated analysis
suggests adoption of irrigation increases yields by 320,000 - 450,000 RwF/ha, 51 -
72% of annual agricultural production. As horticulture is primarily commercial: each
1 RwF/ha increase in yields is associated with a 0.76 - 0.90 RwF/ha increase in sales.
Once again, these results on outputs are consistent with differences between bananas

29As bananas are perennials, plots cultivated with bananas typically have harvests in each season.
In contrast, the rotations of staples and horticulture (or simply horticulture) that replace bananas
may only involve two plantings and harvests, and we therefore see a modest decrease in cultivation
during the rainy seasons of 5pp - 9pp on a baseline of 84%.
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and horticulture production reported in Table 1. Additionally, these impacts on yields
are much larger than our estimates of impacts on input and hired labor expenditures;
our results suggest irrigation increases yields net of expenditures by 290,000 - 390,000
RwF/ha, a 53 - 71% increase in annual yields net of expenditures. However, we should
not interpret this as impacts on profits, as it implicitly places no value on the large
increases in household labor. If we instead value household labor at 800 RwF/person-
day, the median wage we observe, these impacts vanish completely. Therefore, the
profitability of the transition to dry season horticulture enabled by irrigation depends
crucially on the shadow wage at which household labor is valued.30

We anticipate three categories of spillovers in our context: across household
spillovers, within plot (across season) spillovers, and within household (across plot)
spillovers. First, the across household spillovers we anticipate are general equilibrium
effects, as the increased demand for labor and increased production of horticulture
caused by the sample plot shock drive up wages and down horticultural prices. We
test for these effects in Appendix E and find no evidence that wages or staple prices
changed over time, though prices of horticultural crops did decrease in one of the sites,
reducing our estimated effects on revenues. Second, the within plot (across season)
spillovers we anticipate are driven by the shift out of perennial bananas, which causes
a change in patterns of cultivation during the rainy season, while adoption of irriga-
tion is primarily during the dry season. However, we failed to find strong evidence of
impacts on rainy season labor, inputs, yields, or profits. Third, the within household
(across plot) spillovers we anticipate are driven by the increase in demand for labor
and inputs we observe on the sample plot, which may lead households to substitute
labor and inputs away from their other plots. To address this spillover, in Section 4
we model a household’s agricultural production decisions and how they can generate
substitution across plots, and in Section 5 we estimate these spillovers and quantify
their implications for our estimates and for efficiency.

Taken together, these results suggest that irrigation leads to a large change in
production practices for a minority of farmers. Those farmers cultivate horticulture
in the dry season and a mix of horticulture, staples, and fallowing in the rainy seasons,
they have substantially higher earnings in the dry season but similar earnings in the

30In Appendix D, we estimate impacts of access to irrigation on household welfare. Although
these estimates are imprecise, all point estimates are positive and some are statistically significant.
These results are consistent with positive impacts of access to irrigation on profits, although smaller
impacts than implied by estimates that do not value household labor.
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other seasons, and they invest more in inputs and much more in household labor
in the dry seasons. Our estimates suggest that irrigation has the potential to be
transformative in Africa, in light of the 53 - 71% increases in yields net of expenditures
that we document from just three months of cultivation. At the same time, we observe
a minority (30%) of farmers ultimately making use of the irrigation system. These
results suggest that the shadow wage, and therefore labor market frictions, are likely
to be important for the decision to cultivate horticulture.31 Building on this result, we
next adapt the classical agricultural household model (Singh et al., 1986; Benjamin,
1992) to develop formal tests for the role of market failures in adoption of irrigation.

4 Testing for binding constraint

In this section, we describe a model of a farmer household that chooses input and
household labor allocations across multiple plots, subject to constraints in markets
for labor, inputs, and risk. We use this model to generate testable predictions of the
farmer household’s responses to the sample plot shock for the presence of constraints
and the nature of the constraints the farmer household faces. The formal setup of
the model, motivating assumptions, and additional details are in Appendix G.

The farmer household has two plots: consistent with our data, we call these their
sample plot and their most important plot. Production on each plot is a function of
input and household labor allocations on that plot, of the plot’s productivity, and of
a common productivity shock. While we abstract from the choice of crops or decision
to irrigate in this framework, we interpret this production function as the envelope
of production functions from cultivating different fractions of bananas and irrigated
horticulture during the dry season, with cultivating horticulture as optimizing at
a high labor and input intensity.32 The household maximizes expected utility over
consumption and leisure, choosing its off-farm labor supply and its allocations of
inputs and household labor on each plot.

31Testing the role of the shadow wage, by estimating the impacts of access to irrigation on profits
under different assumed shadow wages, has a number of limitations. First, all results above could
be fully explained by heterogeneity in the returns to adoption of irrigation (Suri, 2011). Second,
person days may be a clumsy measure for comparing hired labor and household labor, as household
labor may be less intense, require fewer hours per day, or be preferred by households to working for
others.

32We formalize this interpretation by extending the model to feature crop choice in Supplementary
Appendix B.
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We build on Benjamin (1992) and allow farmers to face three crucial constraints
that cause deviations from expected profit maximization. First, access to insurance
may be limited, so farmers may reduce labor and input use to avoid basis risk. Sec-
ond, credit or access constraints may limit input use. Third, farmers’ off farm labor
allocations may be constrained from above, resulting in overutilization of labor on
the household farm.33,34

We model access to irrigation on the sample plot (the “sample plot shock”) as
a labor- and input-complementing increase in the productivity of the sample plot.
This offers predictions consistent with our results in Section 3: the sample plot shock
increases production, labor allocations, and input allocations on the sample plot.

Next, we consider the impacts of the sample plot shock on production decisions
on the most important plot in this framework.

Proposition 1. If no constraint binds, separation holds and input and labor use on
the most important plot does not respond to the sample plot shock.

In the absence of the three constraints listed above, households maximize expected
profits. As access to irrigation on the sample plot does not impact marginal prod-
ucts or prices on the most important plot, labor and input allocations on the most
important plot do not respond to the sample plot shock.

Proposition 2. If input, labor, or insurance constraints bind, then input and labor
use are reduced on the most important plot in response to the sample plot shock.

The logic case-by-case is as follows. First, if input constraints bind, then the in-
crease in inputs on the sample plot caused by access to irrigation must be associated
with a reduction in inputs on the most important plot. Second, if labor constraints
bind, then the increase in labor on the sample plot caused by access to irrigation
must be associated with a reduction in the sum of labor on the most important plot

33These constraints correspond with those most commonly cited by farmers in focus groups as
driving crop choice. In particular, farmers frequently cite imbaraga, or strength, of the household
head (corresponding to labor market constraints), igishoro, or access to capital (corresponding to
credit or input market constraints), and isoko, or access to markets (corresponding to price risk, or
insurance market constraints).

34We model labor constraints as a constraint on off farm labor allocations from above because
this generates a shadow wage that is below the market wage, and we note this generalizes a model
without an off farm labor market. Agness et al. (2020) provide evidence in Kenya that households’
shadow wages are almost always below the market wage. In addition, as we discuss in Section 3.2.2,
our results on profits are consistent with a shadow wage that is below the market wage.
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and leisure. Third, absent insurance, the increase in agricultural production caused
by access to irrigation reduces the marginal utility from agricultural production rel-
ative to the marginal utility from consumption. In turn, this causes labor and input
allocations on the most important plot to fall.

An implicit assumption we make that generates this result is the absence of func-
tioning land markets. With perfectly functioning land markets, shocks to the house-
hold’s land endowment, such as the sample plot shock, should not affect productive
decisions on the household’s most important plot. Instead, both the sample plot and
the most important plot would flow to the household with the highest willingness-to-
pay for them. In practice, land transactions do occur; as discussed in Section 2.2.2,
our survey tracks plots across transactions in land markets, so we are able to directly
test the prediction that the sample plot shock does not affect the productive decisions
on the most important plot.

Rejecting separation with the test suggested by Proposition 2 implies that the
levels of irrigation adoption are inefficient and that land market failures contribute to
this inefficiency. At the same time, this test does not allow us to test for which of the
three constraints above interacts with land market frictions to generate separation
failures.

To shed light on which other constraints generate separation failures, we consider
how households with different characteristics should differentially respond to the sam-
ple plot shock. We focus on two important household characteristics: household size,
which determines the availability of household labor, and wealth, which determines
the ability to purchase inputs.35

Proposition 3. If input or insurance constraints bind, then the input and labor
allocations on the most important plot of larger households (wealthier households)
should be less (less) responsive to the sample plot shock.

The intuition for this result is that both insurance and input constraints are ul-
timately financial constraints, which causes household size and wealth to enter the
problem symmetrically. Under insurance constraints, both household size (by increas-
ing the amount of labor income) and wealth increase household consumption. If we
additionally assume that risk aversion is decreasing sufficiently quickly in consump-
tion, then the allocations of wealthier and larger households will be closer to those

35In Section 5.1, we further discuss the choice of household size and wealth as shifters of avail-
ability of household labor and ability to purchase inputs, respectively.
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maximizing expected profits, and therefore allocations on the most important plot
will be less responsive to the sample plot shock. Second, under input constraints,
wealthier households are less likely to see the constraint bind. As the allocations on
the most important plot of unconstrained households do not respond to the sam-
ple plot shock, wealthier households should be less responsive. Similarly, if larger
households could finance input purchases from labor income, larger households would
be less likely to see the constraint bind. Therefore, their allocations on the most
important plot would be less responsive to the sample plot shock.

Proposition 4. If labor constraints bind, then the relative responsiveness of input and
labor allocations on the most important plot of larger households (wealthier households)
to the sample plot shock cannot be signed without further assumptions. If larger
households and poorer households have more elastic on farm labor supply schedules,
and if on farm labor supply exhibits sufficient curvature, then the input and labor
allocations on the most important plot of larger households (wealthier households)
should be less (more) responsive to the sample plot shock.

When labor constraints bind, the household responds to the sample plot shock
by allocating additional labor to the sample plot, but they may withdraw labor from
either the most important plot or from leisure. In general, the differential responses
of wealthier and larger households cannot be signed. However, we focus on the case
where larger households have more elastic on farm labor supply, while wealthier house-
holds have less elastic labor supply; this relationship has been posited as far back as
Lewis (1954), and is discussed in depth in Sen (1966). These differences in on farm
labor supply generate the prediction that larger households should be less responsive
to the sample plot shock, as they draw labor to the sample plot primarily from leisure,
while wealthier households should be more responsive to the sample plot shock, as
they draw labor primarily from the most important plot.

These four propositions, summarized in Table 5, generate two sets of tests. First,
Propositions 1 and 2 imply that substitution away from the most important plot
in response to the sample plot shock allows us to reject the absence of constraints.
Second, Propositions 3 and 4 produce a test of the absence of labor constraints. If
the input and labor allocations of larger households are less responsive to the sample
plot shock, while those of wealthier households are more responsive to the sample
plot shock, then we would reject the absence of labor constraints.
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We note that while it is unambiguous that constraints on selling labor would
lead to inefficient adoption of irrigation, it is not clear whether they would result in
adoption which is inefficiently low or inefficiently high. That result will depend on
how wages would respond to the removal of those constraints. We return to this point
in the conclusions.

Table 5: Model predictions

dL2

dA1

d

dL

dL2

dA1

d

dM

dL2

dA1

No constraints 0 0 0

Constraints
Insurance − + +
Inputs − 0/+ +
Labor − +∗ −∗

Notes: Predicted signs from the model for key comparative statics of interest are presented in this
table. dL2

dA1
is the effect of the sample plot shock on labor allocations on the most important plot,

and d
dL

dL2

dA1
and d

dM
dL2

dA1
are the impact of increased household size and wealth, respectively, on

this effect. Predictions in the no constraints case correspond to Proposition 1. Predictions on dL2

dA1

correspond to Proposition 2. Predictions on d
dL

dL2

dA1
and d

dM
dL2

dA1
when insurance or input constraints

bind correspond to Proposition 3, and when labor constraints bind correspond to Proposition 4. *
is used to indicate predictions that hold when additional assumptions are made.

5 Separation failures and adoption of irrigation

5.1 Empirical strategy

Our first specification to test for separation failures mirrors Equation 1, which we use
to estimate the impacts of irrigation. We still make use of the discontinuity across the
command area boundary, but outcomes are now on the household’s most important
plot (plot 2) instead of the sample plot (plot 1).

y2ist = β1CA1is+β2Dist1is+β3CA1is∗Dist1is+β4CA2is+γ1X1is+γ2X2is+αst+ε2ist (3)

Equation 3 also includes controls CA2is, an indicator for whether the most important
plot is in the command area, andX1is andX2is, the log area of the sample plot and the
most important plot, respectively. We report β1, the effect of the sample plot shock
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on outcomes on the most important plot. In other specifications, we also consider
heterogeneity with respect to the location of the most important plot, and include
CA1is ∗ CA2is to test for this. In these specifications, we also report this difference
in differences coefficient. For both this coefficient and β1, in line with the model
predictions in Table 5, we interpret negative coefficients on labor, inputs, irrigation
use, and horticulture, as evidence of separation failures.36

As in Section 3, we include a specification with spatial fixed effects.37 Specifically,
we estimate

y2ist−y2ist = β1(CA1is−CA1is)+(V1is−V 1is)
′γ1+(V2is−V 2is)

′γ2+(ε2ist− ε2ist) (4)

Our benchmark specification to test for which constraints drive the separation
failures is similar, but also includes the interaction of households characteristics with
the sample plot shock.38 We estimate

y2ist = β1CA1is +W ′
iβ2 + CA1is ∗W ′

iβ3 + β4Dist1is + β5CA1is ∗Dist1is
+β6CA2is + γ1X1is + γ2X2is + αst + ε2ist (5)

where Wi is a vector of household characteristics, which includes household size and
an asset index in our primary specifications.39 We focus on β3: the heterogeneity,

36Although we do not explicitly model the location of the most important plot in Section 4,
in Supplementary Appendix B.1 we provide an extension of the model featuring crop choice and
demonstrate these predictions hold for heterogeneity of substitution with respect to the location of
the most important plot.

37Note that all differencing in this specification is done using the location of sample plot. In other
words, most important plots whose associated sample plots are near each other are compared, as
opposed to most important plots which are near each other.

38For parsimony, we only present the specification of the interaction for the specification without
spatial fixed effects; all tables also present results with interactions included with spatial fixed effects,
similar to Equation 4.

39Through the lens of our model, household size and the asset index act as shifters of the house-
hold’s availability of labor and the household’s ability to purchase inputs, respectively. First, this
requires that we have meaningful variation in household size and wealth in the cross-section. In our
sample, household size has a standard deviation of 2.2 members (see Table 3), and a one standard
deviation increase in the asset index corresponds to an additional 30,000 RwF of liquid assets (goats
and chickens). For comparison, our estimates in Section 3.2 suggest that 1.3 members worth of
labor and 10,000 RwF of inputs are necessary to cultivate median household landholdings with hor-
ticulture during the dry season. Second, it requires that household size and the asset index are not
correlated with other household or plot characteristics that might affect patterns of substitution. In
Appendix H, we justify our choice of shifters by showing that household size and asset index explain
agricultural production decisions in the expected manner, and that this correlation is unaffected by
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with respect to household characteristics, of the impacts of the sample plot shock
on outcomes on the most important plot. The signs on β3 produce our main test of
which market failures cause separation failures; Table 5 presents which signs map to
which market failures.

We present results only for the dry seasons (2016 Dry, 2017 Dry, and 2018 Dry),
because these are the primary seasons for irrigation use, during which we anticipate
substitution effects. Additionally, we present results only on cultivation decisions and
input use, because we expect these substitution effects to be smaller than the direct
effects and therefore we do not anticipate being able to detect effects on output.40

5.1.1 Balance

We now use specifications (3) and (4) to examine whether the most important plots
in our sample are comparable for households whose sample plot is just inside or just
outside the command area. As in Section 3.1.1, for each of these specifications, we
show balance both with key controls omitted (Columns 3 and 4), and our preferred
specifications which we use in our analysis with key controls included (Columns 5 and
6). Balance tests for most important plots are reported in Table 6. First, note that
specifications that do not restrict to the discontinuity sample perform particularly
poorly here. Most notably, most important plots are more likely to be located in
the command area when sample plots are also located in the command area, as
households’ plots tend to be located near each other. In contrast, our preferred
specifications (Columns 5 and 6) which restrict to the discontinuity sample correct
for this imbalance. For both specifications, the omnibus test fails to reject the null of
balance.

As an additional check, in Appendix B, we estimate for 2014 Dry specifications (3)
and (4), and specifications with heterogeneity following Equation 5. As the command
area, as of the baseline, had not yet caused a large increase in demand for labor or
inputs, or caused large increases in agricultural production, we would not anticipate
any effects on MIPs. In line with this prediction, we fail to find any consistent

the inclusion of key household covariates. In addition, in results available upon request, we have
included other household and plot characteristics in the interaction that might affect these patterns
– number of plots and number of command area plots (if households with more land are more price
risk averse), and plot area (as a proxy for quality, if smaller plots are typically higher quality). None
of these added controls affect the significance of our results.

40Results for the rainy seasons and with output as an outcome are available upon request.
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Table 6: Balance: Most important plot characteristics

Full sample RD sample

Coef. (SE) [p] Dep. var. Coef. (SE) [p]

(1) (2) (3) (4) (5) (6)
log area -0.108 -2.381 0.094 0.074

(0.068) (1.041) (0.128) (0.136)
[0.114] 784 [0.460] [0.588]

Own plot 0.025 0.875 0.040 0.033 0.039 0.029
(0.019) (0.331) (0.033) (0.039) (0.032) (0.037)
[0.174] 784 [0.226] [0.392] [0.232] [0.436]

Owned plot >5 years 0.005 0.960 0.012 0.033 0.011 0.030
(0.014) (0.197) (0.024) (0.024) (0.023) (0.025)
[0.728] 585 [0.617] [0.175] [0.617] [0.233]

Rented out, farmer 0.013 0.033 -0.026 -0.040 -0.029 -0.041
(0.010) (0.179) (0.022) (0.025) (0.023) (0.026)
[0.224] 784 [0.249] [0.114] [0.222] [0.116]

Slope 0.024 0.268 0.011 -0.004 0.011 -0.006
(0.009) (0.144) (0.016) (0.018) (0.015) (0.018)
[0.012] 784 [0.497] [0.806] [0.496] [0.730]

Command area 0.187 0.399 -0.053 -0.079
(0.032) (0.491) (0.058) (0.059)
[0.000] 784 [0.360] [0.183]

Omnibus F-stat [p] 7.1 0.7 1.4 0.9 1.3
[0.000] [0.627] [0.220] [0.458] [0.279]

Site FE X X
Distance to boundary X X X X
log area X X
MIP log area X X
MIP CA X X
Spatial FE X X

Notes: Column 2 presents the mean of the dependent variable and the standard deviation of the
dependent variable in parentheses, for sample plots in the main discontinuity sample that are outside
the command area, and the total number of observations. Columns 1 and 3 through 6 present
regression coefficients on a command area indicator, with standard errors in parentheses, and p-
values in brackets. Column 1 uses the full sample, while Columns 2 through 6 use the discontinuity
sample. Columns 5 and 6 use specifications (3) and (4), respectively.

significant effects on MIPs, either in our main specifications or for heterogeneity.

5.2 Results

5.2.1 A test for separation failures

We now present results on separation failures, demonstrating that the sample plot
shock causes farmers to substitute away from their most important plot. First, we
present graphical evidence of this substitution in Figure 5. As in earlier figures,
distance of the sample plot to the canal in meters is represented on the horizontal
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axis, with a positive sign indicating that the plot is on the command area side of the
boundary. However, we now plot outcomes on both the sample plot and the most
important plot. In this figure, substitution will manifest as decreases in input and
labor use on the most important plot when the sample plot is in the command area,
while input and labor use increase on the sample plot. Second, we present regression
evidence in Tables 7 and 8. In the discussion below, we focus on results from the
tables, but we note that these results are consistent with visual intuition from Figure
5.

Table 7: Sample plot shock causes households to substitute labor and input intensive
irrigated horticulture away from most important plot

Culti- Irri- Horti- Banana HH Input Hired
vated gated culture labor/ exp./ha labor

ha exp./ha

(1) (2) (3) (4) (5) (6) (7)
RDD (Site-by-season FE, Specification 3)

CA 0.038 -0.044 -0.038 0.092 -32.2 -6.0 -1.8
(0.040) (0.026) (0.024) (0.032) (20.0) (2.7) (2.1)
[0.344] [0.087] [0.110] [0.004] [0.107] [0.028] [0.404]

Sample plot effect 0.005 0.162 0.137 -0.133 70.8 6.3 3.7

SFE (Spatial FE, Specification 4)

CA 0.004 -0.036 -0.037 0.065 -33.2 -6.7 -0.5
(0.049) (0.033) (0.029) (0.036) (23.8) (2.8) (2.3)
[0.930] [0.270] [0.206] [0.072] [0.162] [0.017] [0.825]

Sample plot effect 0.022 0.171 0.156 -0.142 76.9 4.3 3.2
# of observations 2,179 2,179 2,179 2,179 2,166 2,169 2,169
# of clusters 182 182 182 182 182 182 182
Control mean 0.368 0.114 0.109 0.199 66.8 5.6 3.9

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are presented
above. Specifications control for distance to the command area boundary, its interaction with CA,
log area of the sample plot and the most important plot, and a command area indicator for the
most important plot. RDD specification includes site-by-season fixed effects, and SFE specification
includes spatial fixed effects. Standard errors are in parentheses, and p-values in brackets. “Sample
plot effect” estimates are from Table 4.

First, consistent with the presence of separation failures, we find households sub-
stitute labor and inputs away from their most important plot. Households decrease
allocations of household labor (32 - 33 person-days/ha) and inputs (6,000 - 6,700
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Figure 5: Regression discontinuity estimates of most important plot responses to
sample plot shock

RwF/ha) on their most important plot in response to the sample plot shock. Addi-
tionally, they substitute away from labor and input intensive technologies, consistent
with our interpretation of the production function as the envelope of production
functions across crop choices. Households decrease use of irrigation (3.6 - 4.4pp) and
cultivation of horticulture (3.7 - 3.8pp), while increasing cultivation of bananas (6.5
- 9.2pp).41

41While these results are not consistently statistically significant, the specifications used lose
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Table 8: Sample plot shock causes households to substitute labor and input intensive
irrigated horticulture away from most important plot

Culti- Irri- Horti- Banana HH Input Hired
vated gated culture labor/ exp./ha labor

ha exp./ha

(1) (2) (3) (4) (5) (6) (7)
RDD (Site-by-season FE, Specification 3)

CA 0.076 -0.004 -0.004 0.096 -13.6 -3.3 0.2
(0.043) (0.020) (0.018) (0.041) (14.1) (1.8) (2.1)
[0.079] [0.836] [0.813] [0.019] [0.338] [0.070] [0.922]

CA * MIP CA -0.089 -0.094 -0.080 -0.009 -44.1 -6.3 -4.7
(0.052) (0.035) (0.035) (0.042) (23.5) (3.2) (2.5)
[0.089] [0.007] [0.021] [0.824] [0.060] [0.044] [0.066]

Joint F-stat [p] 2.1 3.6 2.7 4.5 1.8 2.6 1.8
[0.122] [0.028] [0.070] [0.013] [0.164] [0.078] [0.175]

Sample plot effect 0.005 0.162 0.137 -0.133 70.8 6.3 3.7
Average effect 0.038 -0.044 -0.038 0.092 -32.2 -6.0 -1.8

SFE (Spatial FE, Specification 4)

CA 0.059 0.010 -0.007 0.087 -15.4 -3.8 1.5
(0.048) (0.026) (0.023) (0.044) (19.2) (2.1) (2.6)
[0.215] [0.686] [0.771] [0.047] [0.422] [0.076] [0.546]

CA * MIP CA -0.121 -0.103 -0.066 -0.048 -39.7 -6.5 -4.5
(0.056) (0.045) (0.044) (0.044) (31.2) (3.7) (3.1)
[0.030] [0.021] [0.133] [0.275] [0.204] [0.079] [0.146]

Joint F-stat [p] 2.7 2.7 1.3 2.0 1.1 3.0 1.1
[0.070] [0.069] [0.286] [0.139] [0.324] [0.050] [0.345]

Sample plot effect 0.022 0.171 0.156 -0.142 76.9 4.3 3.2
Average effect 0.004 -0.036 -0.037 0.065 -33.2 -6.7 -0.5
# of observations 2,179 2,179 2,179 2,179 2,166 2,169 2,169
# of clusters 182 182 182 182 182 182 182
Control mean 0.368 0.114 0.109 0.199 66.8 5.6 3.9

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) and its
interaction with a command area indicator for the most important plot (“CA * MIP CA”) are
presented above. Specifications control for distance to the command area boundary, its interaction
with CA, log area of the sample plot and the most important plot, and a command area indicator
for the most important plot (“MIP CA”). RDD specification includes site-by-season fixed effects,
and SFE specification includes spatial fixed effects. Standard errors are in parentheses, and p-values
in brackets. “Sample plot effect” estimates are from Table 4, and “Average effect” is the coefficient
on CA from a specification that omits CA * MIP CA.

power by including most important plots outside the command area, which are almost never irrigated
and have small allocations of labor and inputs during the dry season. As discussed in the next
paragraph, specifications which include the interaction of the sample plot command area indicator
with a most important plot command area indicator are more precise for irrigation use, horticulture
cultivation, and labor and input use.
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Next, we expect the results above to be driven primarily by most important plots
located in the command area for most outcomes. This is because there is limited
irrigation, and therefore input use or horticulture during the dry season, on plots
that cannot be irrigated. Consistent with this, we find our results on irrigation,
horticulture, and inputs are all driven by plots located in the command area. When
the most important plot is located in the command area, the 16 - 17pp increase in
irrigation use on sample plots in the command area coincides with a 9 - 10pp decrease
in irrigation use on the most important plot; these relative magnitudes suggest that
separation failures cause few households to be able to use irrigation on more than one
plot in the command area.

As discussed in Section 3, the direct effects of the command area appear driven by
enabling the transition to dry season horticultural cultivation and substitution away
from lower value banana cultivation. However, the model in Section 4 is agnostic
about whether decreases in labor and input allocations on the most important plot
are driven by extensive margin responses (i.e., decreases in horticulture) or intensive
margin responses (i.e., decreases in labor and input allocations conditional on crop
choice). To test this, in Table A6, we present results of the sample plot shock on
sample plots and most important plots, controlling for cultivation and crop choice.42

Table A6 confirms that the effects we document in Section 3 are driven by the shift
to dry season horticulture, as effects on sample plots all but disappear controlling for
crop choice. Shifting to most important plots, Table A6 suggests that much of the
effect of the sample plot shock on labor and input use on most important plots is
driven by intensive margin responses, as coefficients on household labor and inputs
fall by only 23% - 36%. Combined with our results on irrigation use and horticulture,
this suggests that households respond to the sample plot shock on both the intensive
and extensive margins on their most important plot.

These results on separation failures imply the existence of a within-household
negative spillover, as they show that having one additional plot in the command area
causes a household to substitute away from their other plots, reducing their use of
irrigation, labor, and inputs on those plots. In principle, this means that our estimates

42As crop fixed effects are a “bad control” (Angrist & Pischke, 2008), which introduces selection
bias, we interpret these results as suggestive. However, we anticipate that selection conditional on
crop choice should bias us towards finding no intensive margin effect on most important plots, as
the particularly constrained households switching out of horticulture in response to the sample plot
shock are likely to be the households who used less labor and inputs.
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of the impacts of irrigation are the impacts of irrigating one of a farmers’ plots, gross of
any input reallocations made by the farmers across plots in response to that irrigation.
We would be particularly concerned about the bias generated by these reallocations
if inputs were being shifted out of production on non-irrigated plots: in that case,
our estimated impacts of access to irrigation would include reduced farming intensity
on non-irrigated plots. However, the substitution of inputs we estimate from most
important plots outside the command area is generally not significantly different from
zero, and the largest point estimate implies it is 37% as large as substitution away from
command area plots.43 We therefore conclude that the dominant within-household
spillover is a reduced intensity of cultivation on irrigated plots. This suggests any
bias in our estimates caused by spillovers onto plots outside the command area is
likely to be small, and that spillovers onto plots inside the command area decreases
our estimates in Section 3.

5.2.2 Impacts of separation failures on adoption of irrigation

We now quantify the impact of separation failures on adoption of irrigation. We ask
what would happen to adoption of irrigation if all households with two or more plots
in the command area only had one plot in the command area. This counterfactual
follows naturally from our estimates of the effect of the sample plot shock on adoption
of irrigation on the most important plot, which we can interpret as the effect of a
household’s second plot (the sample plot) being moved to the command area on
adoption of irrigation on its first plot in the command area (the most important
plot).

Specifically, we calculate

(# of HH with 2 CA plots) ∗ 2 ∗ (β1 + β3,CA)

(# of HH with 2 CA plots) ∗ 2 + (# of HH with 1 CA plot)
(6)

First, (β1 + β3,CA) (from Equation 5) is the total effect of the sample plot shock on
adoption of irrigation on most important plots in the command area. Second, in the
denominator, we count the total number of command area plots among households’
sample plots and most important plots.44 Third, in the numerator, we apply the

43We calculate this using β1/(β1 + β3,CA) from Equation 5, the impact of the sample plot shock
on input allocations on most important plots outside the command area divided by the impact on
most important plots inside the command area. Estimates come from Table 8.

44We implicitly ignores households’ other plots; we do so because our research design has little to

38



estimated substitution caused by the sample plot shock to both the sample plot and
the most important plot, as households are also substituting away from their sample
plot when the most important plot is in the command area.

We find adoption of irrigation would be 4.8pp higher under this counterfactual,
which represents a 30% increase.45 This counterfactual relates to land market fric-
tions – absent these frictions, we would expect that the increased adoption of irri-
gation caused by this reallocation would be achieved by land markets. Intuitively,
under perfect land markets, characteristics of the household that manages a partic-
ular command area plot at baseline, including the number of other command area
plots that household managed at baseline, should not affect equilibrium adoption of
irrigation on that plot. Relatedly, as shown in the model, this would also be true if
all markets (except potentially land markets) were frictionless.

5.2.3 Separating constraints

We now provide evidence on the source of the separation failure by estimating hetero-
geneous impacts of the sample plot shock on outcomes on the most important plot.
Recall that for this analysis, the model makes two key predictions. First, if only insur-
ance or input constraints bind, wealthier households and larger households should be
less responsive. Second, if only labor constraints bind, the differential responsiveness
of wealthier households and larger households cannot in general be signed. However,
under additional assumptions, households with more elastic on farm labor supply
(likely poorer households and larger households) should be less responsive. Note that
this test does not allow us to reject a null that a particular constraint exists; any
pattern of differential responses is consistent with all constraints binding. However,
if we observe that wealthier households are more responsive, we can reject the null of
no labor constraints. Additionally, we would interpret observing wealthier households
to be more responsive and larger households to be less responsive as the strongest
evidence of the presence of labor constraints from this test.

We present the results of this test in Table 9. First, larger households are less

say about the impacts of additional command area plots, or on households’ behavior on these plots,
so we interpret this exercise as estimating a lower bound on the impact of reallocation on adoption
of irrigation.

45The p-value on this estimate is 0.077, which we calculate using block bootstrapped standard
errors at the nearest water user group level to account for uncertainty in both the numerator and
denominator of Equation 6.
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responsive to the sample plot shock across every outcome. A household with 2 ad-
ditional members, approximately one standard deviation of household size, is less
responsive to the sample plot shock on its most important plot by 50% - 94% for
irrigation use, 74% - 103% for horticulture, 63% - 75% for household labor, and
20% - 21% for inputs, with all but the input coefficient statistically significant. In
contrast, wealthier households are more responsive to the sample shock across these
same outcomes. A household with a one standard deviation higher asset index is
more responsive to the sample plot shock on its most important plot by 41% - 97%
for irrigation use, 39% - 81% for horticulture, 39% - 72% for household labor, and
42% - 58% for input use; however, these results are less precise. In effect, these results
suggest that our estimates of separation failures are driven by the behavior of small,
rich households, while large, poor households do not change their allocations on their
most important plot in response to the sample plot shock. As discussed in Section 4,
these results are very difficult to reconcile with a model that does not feature labor
market failures.

In sum, these results provide strong evidence for the existence of labor market
failures that generate separation failures, which in turn cause inefficient adoption of
irrigation.

6 Experimental evidence

Our results leveraging the discontinuity suggest that land and labor market frictions
combine to constrain the adoption of hillside irrigation in Rwanda. In this section, we
provide evidence from randomized controlled trials on the presence of other competing
constraints to adoption of irrigation: management challenges of irrigation schemes,
and financial and informational constraints. Additional details on the motivation,
treatment assignment protocols, and logistics of implementation of each of these ex-
periments are presented in Appendix I.

First, we test whether failures of scheme management limit farmers’ adoption of
irrigation. If farmers faced limited access to water due to problems in the centralized
operations and maintenance (O&M) system, this could constrain adoption of irriga-
tion. We sought to alleviate this potential constraint by randomizing empowerment
of local monitors to assist system operators and report maintenance needs. We find
no evidence this experiment changed cultivation practices. This result is likely be-
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Table 9: Larger and poorer households do not substitute away from most important
plot in response to sample plot shock

Culti- Irri- Horti- Banana HH Input Hired
vated gated culture labor/ exp./ha labor

ha exp./ha
(1) (2) (3) (4) (5) (6) (7)

RDD (Site-by-season FE, Specification 5)
CA -0.069 -0.097 -0.107 0.052 -82.7 -9.1 -4.5

(0.086) (0.048) (0.046) (0.065) (34.8) (4.2) (3.6)
[0.424] [0.046] [0.020] [0.418] [0.018] [0.031] [0.216]

CA * # of HH members 0.021 0.011 0.014 0.008 10.1 0.6 0.5
(0.013) (0.007) (0.007) (0.011) (4.5) (0.5) (0.5)
[0.112] [0.155] [0.061] [0.485] [0.025] [0.237] [0.273]

CA * Asset index -0.013 -0.018 -0.015 -0.003 -12.4 -2.5 0.3
(0.027) (0.016) (0.017) (0.023) (10.2) (1.6) (1.4)
[0.620] [0.277] [0.384] [0.900] [0.226] [0.117] [0.856]

Joint F-stat [p] 1.5 1.5 1.8 3.1 2.0 1.9 0.6
[0.213] [0.214] [0.147] [0.026] [0.122] [0.128] [0.592]

Average effect 0.038 -0.044 -0.038 0.092 -32.2 -6.0 -1.8

SFE (Spatial FE, Specification 5)
CA -0.188 -0.121 -0.129 -0.052 -94.6 -10.3 -2.1

(0.098) (0.051) (0.047) (0.083) (38.9) (4.1) (3.5)
[0.056] [0.017] [0.006] [0.532] [0.015] [0.013] [0.551]

CA * # of HH members 0.039 0.017 0.019 0.023 12.5 0.7 0.3
(0.014) (0.008) (0.007) (0.015) (4.5) (0.5) (0.5)
[0.007] [0.030] [0.012] [0.110] [0.006] [0.185] [0.539]

CA * Asset index -0.043 -0.035 -0.030 -0.012 -24.0 -3.9 -0.3
(0.032) (0.020) (0.021) (0.026) (12.7) (1.7) (1.4)
[0.181] [0.077] [0.156] [0.661] [0.060] [0.025] [0.813]

Joint F-stat [p] 3.5 2.3 2.6 2.1 2.9 2.6 0.1
[0.015] [0.079] [0.050] [0.094] [0.033] [0.051] [0.937]

Average effect 0.004 -0.036 -0.037 0.065 -33.2 -6.7 -0.5
# of observations 2,176 2,176 2,176 2,176 2,163 2,166 2,166
# of clusters 182 182 182 182 182 182 182
Control mean 0.368 0.114 0.109 0.199 66.8 5.6 3.9

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) and its inter-
action with W (“CA * W”) are presented above. Specifications control for distance to the command
area boundary, its interaction with CA, log area of the sample plot and the most important plot,
a command area indicator for the most important plot (“MIP CA”), and all W. RDD specification
includes site-by-season fixed effects, and SFE specification includes spatial fixed effects. Standard
errors are in parentheses, and p-values in brackets. “Average effect” estimates are from Table 8.
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cause very few farmers report any challenges related to operations and maintenance
over the four years of survey data collection. Second, the government planned to
charge farmers in the command area land taxes, which were unconditional on cul-
tivation decisions, to fund O&M in the schemes. To test whether these taxes limit
farmers adoption of irrigation, we randomized tax subsidies for farmers. We find no
evidence this experiment changed cultivation practices. This result is likely because
compliance with the fees was extremely low (4%), so collected fees were too low to
plausibly constrain farmers. We discuss these experiments further in Appendix I.2,
and conclude here that these issues were not relevant in this context.

Third, we test whether financial and informational constraints limit adoption of
irrigation. We assigned horticultural minikits to randomly selected farmers from
water user group member lists. Each minikit included horticultural seeds, chemical
fertilizer, and insecticide, in sufficient quantities to cultivate 0.02 ha. In principle,
these minikits should resolve constraints related to input access, including credit
constraints. In addition, they should reduce basis risk which may resolve insurance
constraints and facilitate experimentation if information is a constraint. In other
contexts, minikits of similar size relative to median landholdings have been shown
to increase adoption of new crop varieties or varieties with low levels of adoption
(Emerick et al., 2016; Jones et al., 2018). To test for spillovers, water user groups were
randomly assigned to 20%, 60%, or 100% minikit saturation, with rerandomization
for balance on Zone and O&M treatment status. Minikits were offered to assigned
individuals prior to 2017 Rainy 1 and 2017 Dry.46

6.1 Empirical strategy and results

We estimate the impact of minikits using the specification

y1ist = β1Assigned minikiti + β2Minikit saturationi +X ′
1isγ + ε1ist (7)

46Each of these three interventions exist only in the command area. As such, the effects of irriga-
tion estimated throughout this paper are averages across the experimental treatments. Overall, this
concern is mitigated by the fact that all three experimental treatments had very limited impacts on
cultivation practices. In addition, the first two of these treatments (fee subsidies and monitoring
systems) vary characteristics which would be heterogeneous across different irrigation systems; we
are therefore comfortable with the interpretation that estimates above exist for the average of these
treatments. Readers may be most concerned about interpretations of treatment effects in the pres-
ence of the minikit treatment; in addition to the modest effects on cultivation described below, we
have also conducted analysis excluding minikit winners and conclusions are qualitatively unaffected.
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Primary outcomes y are whether households used a minikit (in 2017 Rainy 1 or in
2017 Dry) and adoption of horticulture. Assigned minikiti is an indicator for whether
household i was randomly assigned to receive a minikit, Minikit saturationi is the
probability of receiving a minikit for households in the water user group of house-
hold i’s sample plot, and X1is includes the stratification variables (Zone fixed effects
and O&M treatment status), as well as indicator variables reflecting the probability
that a household would receive a minikit,47 and in some specifications 2016 Dry hor-
ticulture adoption. For precision, we restrict to command area plots, and for plot
level outcomes we focus on the 2017 and 2018 Dry seasons; these are the plots and
seasons in which we expect households receiving minikits to adopt horticulture. As
minikit saturation is assigned at the water user group level, robust standard errors
are clustered at the water user group level.

We present the results of this analysis in Table 10. First, we find a strong first
stage; households assigned to receive a minikit are 40pp more likely to use a minikit
than households not assigned to receive a minikit. Almost all non-compliance is
driven by households who were assigned to receive a minikit but did not pick it up
— 4.8% of households not assigned to received a minikit used one, while 43.8% of
households assigned to receive a minikit used one. Second, we find no effects of
minikits on horticulture use, and we have sufficient precision to reject estimates from
other contexts of the effect of minikits on technology adoption (Emerick et al., 2016;
Jones et al., 2018). Third, we find no effects of minikit saturation, although these
estimates are less precise than those of the impacts of assignment to receive a minikit;
we note that we also fail to reject that the sum of the coefficients on assigned minikit
and minikit saturation (the effect on adoption in a fully treated compared to an
untreated water user group) is zero. Fourth, we find strong positive selection into
using a minikit: farmers who grew horticulture in 2016 Dry, who are 30.6pp more
likely to grow horticulture in 2017 and 2018 Dry, are 13.1pp more likely to use a
minikit in response to assignment to receieve a minikit receipt.

We interpret these results as corroborating evidence that information and financial
constraints are not dominant constraints to adoption of irrigation. Most farmers
assigned to receive a minikit do not pick it up and use it, and the farmers who do

47After matching names from the lists of water user group members to our baseline survey, we
found that 32% of households either had multiple household members on the lists of water user
group members or had a single household member listed multiple times; these households are more
likely to be assigned to receive a minikit and may differ from other households.
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Table 10: Minikits do not cause increased adoption of horticulture, strong positive
selection into minikit takeup

Minikit takeup Horticulture

(1) (2) (3) (4)
Assigned minikit 0.398 0.395 0.035 0.052

(0.038) (0.044) (0.041) (0.042)
[0.000] [0.000] [0.396] [0.221]

Minikit saturation -0.047 -0.064 -0.078 -0.067
(0.056) (0.057) (0.054) (0.054)
[0.394] [0.260] [0.149] [0.218]

Horticulture (2016 Dry) 0.046 0.306
(0.049) (0.053)
[0.345] [0.000]

Assigned minikit * Horticulture (2016 Dry) 0.131 -0.019
(0.068) (0.070)
[0.052] [0.788]

# of lotteries entered X X X X
O&M treatment X X X X
Zone FE X X X X
# of observations 910 762 838 727
# of clusters 187 170 182 167

Notes: Regression analysis is presented in this table. All columns use outcomes on sample plots.
Each row presents coefficients, with robust standard errors clustered at the water user group level in
parentheses, and p-values in brackets. “Assigned minikit” is an indicator for whether the household
was assigned to receive a minikit, “Minikit saturation” is the probability of minikit assignment that
was assigned to the water user group of the household’s sample plot, and “Horticulture (2016 Dry)”
is an indicator that the household planted horticulture on their sample plot in 2016 Dry.

pick it up typically would have grown horticulture even if not assigned to receive a
minikit. We similarly find no evidence that saturation of minikits lead to increased
adoption, as we might expect if learning was important.48 Our experimental evidence
therefore supports the conclusion that, in this context, financial and informational
frictions are not the primary explanations for the low and inefficient irrigation use.

48That information is not a binding constraint is also consistent with the stability in levels of
irrigation adoption that we observe over time, in contrast to an S-curve of adoption which would be
consistent with learning.
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7 Conclusion

This paper provides evidence that irrigation has the potential to be a transformative
technology in sub-Saharan Africa. Using data from very proximate plots which receive
differential access to irrigation, we show the construction of an irrigation system leads
to a 53% - 71% increase in cash profits. These profits are generated by a switch in
cropping patterns from perennial bananas towards a more input-intensive rotation of
dry-season horticulture and rainy-season staples.

At the same time, we observe only a minority of farmers adopting this technology
four years after introduction. We further document that frictions in land and labor
markets cause inefficient adoption of irrigation. This result provides novel evidence
that separation failures in agricultural household production lead to land misalloca-
tion and inefficient adoption of a new technology in Rwanda. This result has stark
policy relevance: without greater adoption, these irrigation systems will not be able
to generate sufficient revenue to be sustainable.

While our results highlight the presence of constraints on land and labor markets
and demonstrate those constraints generate inefficiencies in an important technology
adoption context, they can not provide evidence as to whether those inefficiencies
lead to too much or too little adoption of irrigation. If farmers faced no constraints
in the amount of labor they could sell at the market wage, the model would suggest
they would irrigate even less; indeed, based on the stylized facts in Section 2.3, the
model would predict nearly all of these farmers would either cultivate low-intensity
bananas or exit farming altogether. Of course, a labor supply shift of this magnitude
is likely to put downward pressure on the wage. If the ability to sell labor without
frictions led to a substantial reduction in the wage rate, we may see many more
farmers hiring labor and cultivating horticulture on more of their plots: this shift
could allow irrigation systems to realize their transformative potential.

These results underscore the need for more evidence on both the role of factor
markets in technology adoption, and the identification of particular institutions which
contribute to or which can smooth those market failures. In some cases, these market
failures may pose a competing constraint which coexists with other, more conventional
constraints to production: if frictions in factor markets similarly constrain adoption
of new technologies in other environments, then incomplete factor markets may limit
the effectiveness of financial and information interventions in improving agricultural
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productivity. This is a fruitful area for future research.
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Appendix A Main variable appendix

Household variables: All household variables are constructed from the baseline.
• HHH female: Indicator that the household head is female.
• HHH age: Age of the household head.
• HHH completed primary: Indicator that the household head completed primary.
• HHH worked off farm: Indicator that the household head worked off farm.
• # of plots: Number of plots reported as managed by the household. Includes

plots rented in, plots owned and cultivated in the past year, and plots rented
out.

• # of HH members: Number of members of the household.
• # of HH members (15-64): Number of members of the household between age

15 and 64.
• # of HH members who worked off farm: Number of members of the household

who worked off farm.
• Housing expenditures: Expenditures over the past year on housing and furnish-

ing. Winsorized at the 99th percentile.
• Asset index: First principal component of log number of assets-by-category

owned and an indicator for positive number of assets-by-category owned, where
the categories are cows, goats, pigs, chickens, radios, mobile phones, pieces
of furniture, bicycles, and shovels. Standardized to be mean 0 and standard
deviation 1, with positive values indicating more assets.

• Food security index: First principal component of log days in the past week of
consumption of food item-by-category and an indicator for any consumption of
food item-by-category. In baseline, categories are flour, bread, rice, meat and
fish, poultry and eggs, dairy products, cooking oil, fruits, beans, vegetables,
plantains and cassava and potatoes, juice and soda, sugar and honey, salt and
spices, meals prepared outside home, and groundnut and other oilseed flour. In
follow up surveys, categories are flour, bread, cakes and chapati and mandazi,
rice, small fish, meats and other fish, poultry and eggs, dairy products, peanut
oil, palm oil and other cooking oil, avocados, other fruits, beans, tomato, onion,
other vegetables, plantains, Irish potatoes, sweet potatoes, sugar, salt, local
banana beer at home, groundnut flour. Standardized to be mean 0 and standard
deviation 1, with positive values indicating more consumption.
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• Overall index: Index constructed following Anderson (2008) using housing ex-
penditures, asset index, and food security index.

Plot variables: All plot variables are constructed from the baseline.
• Command area: Indicator that plot located in command area, equal 1 if any

share of the plot is inside of the command area. Calculated from plot map.
• Distance to boundary: Distance from plot boundary to command area boundary,

0 for plots whose plot map intersects the boundary. Positive for plots that are
inside the command area, negative for plots that are outside the command area.
Calculated from plot map.

• Area: Area in hectares. Calculated from plot map.
• Water user group: Water user groups that the plot is located in, calculated from

plot map. If the plot intersects multiple water user group boundaries, the water
user group in which the largest share of the plot’s area is contained. Missing
for plots that are outside the command area.

• Nearest water user group: For plots inside the command area, the water user
group. For plots outside the command area, the water user group whose bound-
ary the boundary of the plot is the shortest distance from. Calculated from plot
map.

• Terraced: Indicator that the plot was terraced.
• Elevation: Elevation of plot in meters. Calculated from plot map.
• Slope: Maximum plot grade. Calculated from plot map.

Plot-season variables: All plot-season variables are constructed from the baseline
when used in balance tables. Variables related to attrition are observed at plot-season
level when used as outcomes in regressions testing for differential attrition.

• Own plot: Indicator that the surveyed cultivator owns the plot. 0 when the
surveyed cultivator rents in the plot.

• Owned plot >5 years: Indicator that the surveyed cultivator had owned the
plot for at least 5 years.

• Rented out to farmer : Indicator that the surveyed cultivator rented out the plot
to another farmer.

• Rented out to commercial farmer : Indicator that the plot was rented out to a
commercial farmer.

• HH attrition: Plot-season indicator that the household associated with the plot
was not reached for the survey.
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• Transaction (not tracked): Plot-season indicator that the plot was sold, rented
out, or no longer rented in, and the new household responsible for the plot was
not successfully followed up with.

• Tracked: Plot-season indicator that the plot was sold, rented out, or no longer
rented in, and the new household responsible for the plot was successfully fol-
lowed up with and asked questions on agricultural production on the plot.

• Missing: Plot-season indicator that agricultural production data is missing for
that plot. Sum of variables HH attrition, Rented out to commercial farmer,
and Transaction (not tracked).

Agricultural variables
• Cultivated: Plot-season indicator for any cultivation. All other agricultural

variables are set to 0 when no cultivation takes place.
• Irrigated: Plot-season indicator for any irrigation use.
• Horticulture: Plot-season indicator for any horticulture cultivated. As horti-

cultural crops are annuals, this will include activities associated with planting,
growing, and harvesting.49

• Banana: Plot-season indicator for any bananas cultivated. As bananas are
perennials, this refers to any activities associated with planting, growing, or
harvesting, and need not include all three.

• HH labor/ha: Plot-season sum of household labor use, divided by plot area.
Winsorized at the 99th percentile.

• Input expenditures/ha: Plot-season sum of expenditures on non-labor inputs,
divided by plot area. Winsorized at the 99th percentile.

• Hired labor expenditures/ha: Plot-season sum of expenditures on hired labor,
divided by plot area. Winsorized at the 99th percentile.

• Hired labor (days)/ha: Plot-season sum of hired labor use, divided by plot area.
Winsorized at the 99th percentile.

• Price: Prices are calculated at the District-crop-season level, as the median of
plot-crop-season reported sales divided by reported kilograms sold. Prices are
set to missing when there are less than 10 observations that District-crop-season
and either more than two District-crop-seasons with at least 10 observations
that District-crop-survey or at least 30 observations that District-crop-survey;

49In Table 1, an alternative definition of crop choice is used, where a crop indicator indicates that
crop is the primary crop cultivated that plot-season.
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these cut-off points were chosen to maximize inclusion of prices judged subjec-
tively to be reasonable, and maximize exclusion of prices judged subjectively to
be not reasonable.

• Yield: Plot-season sum of prices times harvested quantities. Yields are miss-
ing when all crops cultivated that plot-season have missing prices or missing
harvested quantities. When multiple crops are grown on a plot-season and
some have observed prices and harvested quantities, those with missing prices
or quantities are treated as 0 production. After this procedure 3.6% of rainy
season observations and 5.3% of dry season observations in our discontinuity
sample have missing yields. Winsorized at the 99th percentile.

• Sales/ha: Plot-season total reported sales, divided by area. Winsorized at the
99th percentile.

• Sales share: Sales/ha divided by yield, equal to 1 when reported sales/ha is
greater than yield.

• Profits/ha (Shadow wage = 0 RwF/day): Yield minus hired labor expendi-
tures/ha minus input expenditures/ha.

• Profits/ha (Shadow wage = 800 RwF/day): Yield minus hired labor expendi-
tures/ha minus input expenditures/ha minus 800 times HH labor/ha.

Experimental variables: Additional details on these variables are in Appendix I.
• Assigned minikit: Indicator that household was assigned to receive a minikit.
• Minikit saturation: Saturation of minikits assigned for the Water User Group

of the plot.
• Minikit takeup: Indicator that the household reported using a minikit.
• Zone: The Zone in which the plot’s Water User Group is located in. The plots

in our survey are located in 239 Water User Groups grouped into 33 Zones.
• O&M treatment: O&M treatment status of the Water User Group of the plot.
• # of lotteries entered, minikits: Number of lotteries for minikits the household

was entered into.

Appendix B Baseline results

We present results from 2014 Dry, when the hillside irrigation systems were online
in only a small part of the sites, and from 2015 Rainy 1 and Rainy 2, when hillside
irrigation was just beginning to come online. These surveys were just a few years
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after terracing occurred, and shortly after the construction of the hillside irrigation
schemes was completed.

To begin, we estimate specifications (1) and (2) in Tables A1 and A2.
First, in Table A1, we consider two additional impacts of command area construc-

tion. First, terracing occurred jointly with hillside irrigation. Although there was also
meaningful terracing outside the command area to protect against erosion, there was
much more terracing inside the command area, as it is impossible to have hillside
irrigation without terracing (as water would run off the sloped hillsides). We there-
fore note that our effects are the combined effect of terracing and access to irrigation.
However, we also note that irrigation is used almost exclusively for dry season horti-
culture, and our results in Section 3 are fully explained by crop fixed effects, providing
suggestive evidence that the transition to dry season horticulture enabled by access
to irrigation, as opposed to any direct productivity effects conditional on crop choice
caused by terracing, drives our results. Second, rentals out to commercial farmers
occurred inside the command area, as these commercial farmers were keen to take
advantage of access to irrigation. These commercial farmers were private businesses
exporting vegetables and they had negotiated land lease rates with the government,
and as such they were not willing to share detailed data on their profitability. We
discuss the implications of this differential attrition for our results in Appendix F.

In addition, plots inside the command area are discretely lower in elevation than
plots outside the command area – this is mechanical, as the command area is below the
canal. While controlling for distance to the command area boundary and restricting
to plots within 50 meters of the command area boundary partially eliminate these
differences, some difference remains. Consistent with this, in Table A1 we find that
command area plots are 33 meters lower than plots outside the command area using
specification 1. However, by restricting comparisons only to plots that are very close
to one another, using the spatial fixed effects specification we find that command area
plots are 9 meters lower than plots outside the command area. As our results from
both of these specifications are quite similar in Section 3, this should assuage concerns
that elevation is an important omitted variable in our analysis. In Supplementary
Appendix A, we also include elevation as a control, and find the patterns in the results
that we describe in Section 3 are robust to its inclusion.

Moreover, while our primarily agricultural outcomes for analysis are from recall
over the past three completed agricultural seasons, our measure of food security comes
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Table A1: Terracing, baseline rentals to commercial farmer, elevation, and baseline
food security in command area

Sample plot

Terraced Rented out, Elevation Food security
comm. farmer index

(1) (2) (3) (4)
RDD (Site FE, Specification 1)

CA 0.407 0.173 -32.7 0.19
(0.055) (0.031) (5.6) (0.10)
[0.000] [0.000] [0.000] [0.053]

SFE (Spatial FE, Specification 2)

CA 0.450 0.168 -8.6 0.15
(0.053) (0.044) (1.2) (0.10)
[0.000] [0.000] [0.000] [0.122]

# of observations 969 969 969 968
# of clusters 197 197 197 197
Control mean 0.484 0.018 1741.0 -0.13

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are presented
above. Specifications control for distance to the command area boundary, its interaction with CA,
and log area of the sample plot. RDD specification includes site fixed effects, and SFE specification
includes spatial fixed effects. Standard errors are in parentheses, and p-values in brackets.

from the past week of food consumption. Our baseline survey was conducted from
August - October 2015, so most irrigating households would have just recently har-
vested and sold any 2015 Dry horticultural production. Consistent with this, in Table
A1 we find significant impacts of the command area on food security at baseline.

Second, in Table A2, we estimate impacts on cultivation, irrigation, and crop
choice decisions; consistent with irrigation not having come fully online, we observe
limited adoption of irrigation. In contrast to our main results from follow up surveys,
at baseline cultivation is lower in the dry season inside the command area. This is
driven by a combination of low adoption of irrigation and horticulture (only 2 - 5pp
higher in the command area than outside the command area), and lower cultivation of
bananas (8 - 10pp lower). These banana effects are partially explained by terracing,
during which bananas were torn up to construct the terraces. These banana effects
are smaller than in follow up surveys, and the share of plots cultivated with bananas
is also lower outside the command area than in follow up surveys. Together, we

6



appendix – for online publication

interpret these results as farmers beginning to replant bananas following terracing,
but less replanting occurring inside the command area than outside. As irrigation had
come online by 2015 Rainy 1 and 2, rainy season results look similar to rainy season
results in subsequent seasons – modestly lower cultivation, and significant but modest
increases in adoption of irrigation and horticulture, and reduced banana cultivation.
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Table A2: Access to irrigation in the command area is limited at baseline

(a) Dry season

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.128 0.029 0.019 -0.103 -26.9 1.6 0.7 -30.4 -26.2 -31.7 -16.4
(0.046) (0.016) (0.019) (0.036) (23.6) (2.1) (1.4) (23.5) (21.7) (22.1) (13.9)
[0.005] [0.068] [0.304] [0.005] [0.255] [0.437] [0.623] [0.197] [0.227] [0.153] [0.240]

SFE (Spatial FE, Specification 2)

CA -0.120 0.029 0.014 -0.077 -39.5 1.5 -0.1 -31.4 -37.2 -32.6 -7.9
(0.051) (0.016) (0.018) (0.041) (28.2) (2.0) (1.6) (30.4) (28.7) (29.2) (19.2)
[0.020] [0.067] [0.454] [0.060] [0.162] [0.458] [0.930] [0.302] [0.194] [0.264] [0.682]

# of observations 894 894 894 894 890 894 894 868 894 868 864
# of clusters 196 196 196 196 196 196 196 195 196 195 195
Control mean 0.211 0.009 0.012 0.145 41.3 1.9 0.8 46.5 27.1 45.0 13.4

(b) Rainy seasons

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.067 0.043 0.057 -0.104 -5.5 2.3 3.0 5.7 9.5 0.5 2.8
(0.038) (0.011) (0.022) (0.037) (23.5) (3.4) (4.2) (22.8) (13.8) (23.2) (24.0)
[0.076] [0.000] [0.008] [0.005] [0.815] [0.492] [0.480] [0.804] [0.491] [0.984] [0.906]

SFE (Spatial FE, Specification 2)

CA -0.048 0.041 0.064 -0.093 -7.3 4.4 3.9 -1.6 24.5 -9.6 -6.5
(0.042) (0.015) (0.029) (0.038) (34.4) (3.9) (6.0) (29.0) (17.9) (28.9) (35.0)
[0.261] [0.006] [0.029] [0.015] [0.831] [0.265] [0.518] [0.957] [0.170] [0.739] [0.853]

# of observations 1,632 1,632 1,632 1,632 1,621 1,632 1,632 1,585 1,632 1,585 1,575
# of clusters 192 192 192 192 192 192 192 192 192 192 192
Control mean 0.756 0.011 0.042 0.162 225.4 12.5 12.8 171.2 45.0 146.2 -30.0

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are presented above. Specifications control for distance
to the command area boundary, its interaction with CA, and log area of the sample plot. RDD specification includes site-by-season fixed
effects, and SFE specification includes spatial fixed effects. Standard errors are in parentheses, and p-values in brackets.
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Third, we also estimate impacts on inputs and output in Table A2. Consistent
with the small increases in horticulture and modestly larger decreases in low input
intensive bananas, we do not find consistent significant effects on input use, yields,
sales, or measures of profits in the dry season or rainy season.

Lastly, as the command area, as of the baseline, had not yet caused a large increase
in demand for labor or inputs, or caused large increases in agricultural production,
we do not anticipate any most important plot effects. As a placebo check, we present
most important plot results, estimating specifications (3) and (4), and specification
(5) with heterogeneity. We present these results in Tables A3 and A4. In line with
our prediction, we fail to find any consistent significant effects on most important
plots, either in our main specifications or for heterogeneity.

Appendix C Robustness

To complement the analysis in Section 3, we estimate the impacts of access to ir-
rigation using a specification that omits controls for distance to the boundary, its
interaction with a command area indicator, and log plot area.

y1ist = β1CA1is + αst + ε1ist (A1)

Specification A1 compares samples plots inside the command area within 50 meters
of the command area boundary to sample plots outside the command area within 50
meters of the command area boundary. Results are presented in Table A5 and are
qualitatively similar to the results in Table 4.

9
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Table A3: No effects of sample plot shock on most important plots at baseline

Culti- Irri- Horti- Banana HH Input Hired
vated gated culture labor/ exp./ha labor

ha exp./ha

(1) (2) (3) (4) (5) (6) (7)
RDD (Site-by-season FE, Specification 3)

CA 0.015 0.020 0.021 0.016 -2.4 3.8 -6.3
(0.058) (0.016) (0.016) (0.050) (26.2) (1.9) (5.4)
[0.800] [0.196] [0.195] [0.752] [0.927] [0.039] [0.240]

CA * MIP CA 0.046 -0.005 -0.009 0.051 -16.9 -0.6 -2.8
(0.062) (0.030) (0.030) (0.050) (27.4) (3.2) (4.7)
[0.461] [0.869] [0.773] [0.311] [0.538] [0.859] [0.554]

Joint F-stat [p] 0.6 0.8 0.9 1.6 0.4 3.0 2.6
[0.541] [0.430] [0.429] [0.214] [0.663] [0.053] [0.079]

Sample plot effect -0.128 0.029 0.019 -0.103 -26.9 1.6 0.7
Average effect 0.034 0.018 0.017 0.037 -9.5 3.6 -7.5

SFE (Spatial FE, Specification 4)

CA 0.039 0.009 0.022 0.056 -23.5 1.2 -10.0
(0.068) (0.017) (0.015) (0.057) (31.2) (1.2) (6.8)
[0.566] [0.624] [0.140] [0.325] [0.452] [0.292] [0.142]

CA * MIP CA -0.046 -0.011 -0.018 -0.018 -31.0 -2.6 -3.6
(0.069) (0.029) (0.031) (0.058) (28.8) (3.7) (5.6)
[0.512] [0.700] [0.549] [0.759] [0.281] [0.478] [0.524]

Joint F-stat [p] 0.2 0.2 1.1 0.6 1.7 0.6 2.8
[0.779] [0.854] [0.337] [0.572] [0.177] [0.573] [0.059]

Sample plot effect -0.120 0.029 0.014 -0.077 -39.5 1.5 -0.1
Average effect 0.018 0.004 0.014 0.048 -37.5 0.1 -11.6
# of observations 751 751 751 751 747 751 751
# of clusters 182 182 182 182 182 182 182
Control mean 0.186 0.030 0.027 0.129 40.6 1.4 5.1

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) and its
interaction with a command area indicator for the most important plot (“CA * MIP CA”) are
presented above. Specifications control for distance to the command area boundary, its interaction
with CA, log area of the sample plot and the most important plot, and a command area indicator
for the most important plot (“MIP CA”). RDD specification includes site-by-season fixed effects,
and SFE specification includes spatial fixed effects. Standard errors are in parentheses, and p-values
in brackets. “Sample plot effect” estimates are from Table A2, and “Average effect” is the coefficient
on CA from a specification that omits CA * MIP CA.
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Table A4: No heterogeneous effects of sample plot shock on most important plots at
baseline

Culti- Irri- Horti- Banana HH Input Hired
vated gated culture labor/ exp./ha labor

ha exp./ha
(1) (2) (3) (4) (5) (6) (7)

RDD (Site-by-season FE, Specification 5)
CA 0.135 0.045 0.013 0.067 19.3 0.3 -9.8

(0.085) (0.046) (0.040) (0.065) (29.8) (3.8) (6.0)
[0.113] [0.333] [0.741] [0.300] [0.518] [0.935] [0.099]

CA * # of HH members -0.021 -0.005 0.001 -0.007 -6.3 0.6 0.3
(0.016) (0.008) (0.007) (0.013) (5.5) (0.8) (0.9)
[0.185] [0.498] [0.940] [0.611] [0.255] [0.426] [0.750]

CA * Asset index -0.003 0.008 -0.003 0.002 -10.8 -2.7 -6.4
(0.037) (0.017) (0.016) (0.030) (16.4) (2.2) (3.8)
[0.940] [0.656] [0.857] [0.959] [0.507] [0.222] [0.093]

Joint F-stat [p] 1.2 0.4 0.3 0.5 1.2 2.5 1.5
[0.306] [0.736] [0.810] [0.658] [0.311] [0.057] [0.224]

Average effect 0.034 0.018 0.017 0.037 -9.5 3.6 -7.5

SFE (Spatial FE, Specification 5)
CA 0.079 0.013 -0.002 0.051 -20.7 -3.0 -12.4

(0.104) (0.045) (0.037) (0.082) (31.6) (3.5) (6.1)
[0.446] [0.776] [0.957] [0.531] [0.512] [0.386] [0.044]

CA * # of HH members -0.013 -0.002 0.003 -0.000 -3.8 0.6 0.0
(0.019) (0.008) (0.008) (0.015) (6.1) (0.6) (0.9)
[0.507] [0.811] [0.687] [0.988] [0.532] [0.325] [0.977]

CA * Asset index 0.033 0.010 0.000 0.043 -11.9 -1.9 -6.8
(0.047) (0.018) (0.018) (0.041) (15.9) (2.0) (3.3)
[0.482] [0.587] [0.992] [0.284] [0.454] [0.343] [0.039]

Joint F-stat [p] 0.2 0.1 0.3 0.7 0.7 0.7 1.9
[0.867] [0.933] [0.852] [0.527] [0.541] [0.575] [0.133]

Average effect 0.018 0.004 0.014 0.048 -37.5 0.1 -11.6
# of observations 750 750 750 750 746 750 750
# of clusters 182 182 182 182 182 182 182
Control mean 0.186 0.030 0.027 0.129 40.6 1.4 5.1

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) and its inter-
action with W (“CA * W”) are presented above. Specifications control for distance to the command
area boundary, its interaction with CA, log area of the sample plot and the most important plot,
a command area indicator for the most important plot (“MIP CA”), and all W. RDD specification
includes site-by-season fixed effects, and SFE specification includes spatial fixed effects. Standard
errors are in parentheses, and p-values in brackets. “Average effect” estimates are from Table A3.
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Table A5: Estimated effects of access to irrigation are robust to omission of key controls

(a) Dry season

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Base (Specification A1)

CA 0.033 0.202 0.180 -0.134 69.6 7.4 5.6 61.2 52.3 49.6 -0.3
(0.031) (0.019) (0.020) (0.024) (14.7) (1.3) (1.9) (20.7) (13.3) (18.6) (12.0)
[0.289] [0.000] [0.000] [0.000] [0.000] [0.000] [0.003] [0.003] [0.000] [0.008] [0.978]

# of observations 2,537 2,537 2,536 2,536 2,523 2,527 2,527 2,402 2,527 2,402 2,400
# of clusters 196 196 196 196 196 196 196 196 196 196 196
RDD estimate 0.005 0.162 0.137 -0.133 70.8 6.3 3.7 73.1 55.5 63.9 9.3
SFE estimate 0.022 0.171 0.156 -0.142 76.9 4.3 3.2 55.0 49.3 49.1 -3.0
Control mean 0.391 0.058 0.065 0.245 59.5 2.5 3.7 82.3 49.7 76.1 32.8

(b) Rainy seasons

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Base (Specification A1)

CA -0.054 0.044 0.044 -0.149 -7.7 2.5 7.1 -45.1 -4.8 -53.4 -47.2
(0.020) (0.007) (0.011) (0.024) (18.3) (2.0) (2.4) (22.0) (10.8) (20.5) (16.5)
[0.006] [0.000] [0.000] [0.000] [0.671] [0.205] [0.003] [0.041] [0.660] [0.009] [0.004]

# of observations 4,236 4,236 4,235 4,235 4,215 4,223 4,223 4,085 4,223 4,085 4,078
# of clusters 196 196 196 196 196 196 196 196 196 196 196
RDD estimate -0.092 0.035 0.016 -0.158 8.5 1.1 3.7 -22.6 -13.3 -26.4 -31.8
SFE estimate -0.053 0.059 0.048 -0.168 9.9 2.1 3.1 -15.4 5.6 -19.4 -27.3
Control mean 0.838 0.016 0.073 0.274 226.7 16.1 15.9 271.5 85.1 239.8 59.5

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are presented above. Specifications control for site-
by-season fixed effects. Standard errors are in parentheses, and p-values in brackets. “RDD estimate” and “SFE estimate” are from Table
4.
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Next, we separate the impacts of sample plot access to irrigation, on both sample
plots and most important plots, into intensive and extensive margin effects. To do so,
we compare estimated coefficients in Tables 4 and 8 to the same specifications with
the inclusion of controls for cultivation, horticulture, and bananas. These results are
presented in Table A6. These controls for crop choice almost fully explain the effects
on sample plots, but only partially explain the effects on most important plots.

Table A6: Impacts of access to irrigation are mostly explained by transition to horti-
culture from bananas, but impacts of sample plot shock on most important plot are
on both extensive and intensive margins

Sample plot Most important plot

HH Input Hired Yield Sales Profits/ha HH Input Hired
labor/ exp./ha labor /ha Shadow wage labor/ exp./ha labor

ha exp./ha = 0 = 800 ha exp./ha

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
RDD (Site-by-season FE, Specifications 1 & 3) with Crop FE

CA 30.0 1.2 0.8 32.0 23.8 31.4 12.6 -25.0 -4.6 -1.4
(13.2) (1.2) (2.0) (18.0) (11.4) (16.7) (15.7) (14.1) (2.1) (1.9)
[0.023] [0.330] [0.681] [0.075] [0.037] [0.060] [0.422] [0.077] [0.032] [0.482]

Effect without Crop FE 70.8 6.3 3.7 73.1 55.5 63.9 9.3 -32.2 -6.0 -1.8

SFE (Spatial FE, Specifications 2 & 4) with Crop FE

CA 29.0 -1.5 0.3 13.8 10.9 16.4 1.3 -21.4 -4.9 0.2
(14.8) (1.4) (2.5) (23.9) (14.9) (22.2) (20.0) (16.8) (2.2) (2.1)
[0.051] [0.302] [0.894] [0.565] [0.466] [0.460] [0.949] [0.203] [0.023] [0.915]

Effect without Crop FE 76.9 4.3 3.2 55.0 49.3 49.1 -3.0 -33.2 -6.7 -0.5
# of observations 2,522 2,526 2,526 2,402 2,526 2,402 2,400 2,166 2,169 2,169
# of clusters 196 196 196 196 196 196 196 182 182 182

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are pre-
sented above. Specifications with sample plot outcomes control for distance to the command area
boundary, its interaction with CA, cultivation, horticulture, bananas, and log area of the sample
plot. Specifications with most important plot outcomes also include controls for log area of the
most important plot and a command area indicator for the most important plot. RDD specification
includes site-by-season fixed effects, and SFE specification includes spatial fixed effects. Standard
errors are in parentheses, and p-values in brackets. “Effect without Crop FE” are from Table 4 for
sample plot outcomes and Table 8 for most important plot outcomes.

Appendix D Household results

We present results of the impacts of access to irrigation on household welfare outcomes
in Table A7. We estimate specifications similar to Equations (1) and (2), but now
use annual outcomes at the household level (instead of outcomes on sample plots).
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Table A7: Household welfare

Housing Asset Food Overall
expenditures index security index

index

(1) (2) (3) (4)
RDD (Site-by-survey FE, Specification 1)

CA 12.10 0.13 0.07 0.12
(6.73) (0.11) (0.08) (0.07)
[0.072] [0.224] [0.372] [0.077]

SFE (Spatial FE, Specification 2)

CA 13.91 0.05 0.07 0.11
(8.25) (0.12) (0.10) (0.08)
[0.092] [0.668] [0.509] [0.191]

# of observations 2,771 2,776 2,772 2,764
# of clusters 196 196 196 196
Control mean 28.03 -0.14 -0.12 -0.08

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are presented
above. Specifications control for distance to the command area boundary, its interaction with
CA, and log area of the sample plot. RDD specification includes site-by-survey fixed effects, and
SFE specification includes spatial fixed effects. Standard errors are in parentheses, and p-values in
brackets.

We find suggestive evidence of positive impacts on household welfare. All point
estimates are positive, and impacts on housing expenditures and an Anderson (2008)
index of household welfare are each significantly different from zero in two specifica-
tions. The implied treatment on the treated estimates are large. However, as impacts
on households are imprecisely estimated, we interpret these results with caution.

Appendix E Prices and wages

We present figures showing the evolution of wages (Figure A1) and sale prices (Figure
A2) across the 3 hillside irrigation schemes. In Figure A1, average wages do not appear
to change after the hillside irrigation schemes became fully operational.50 In Figure
A2, median sale prices appear to display more meaningful trends. In Karongi, there do
not appear to be any trends in sale prices of horticultural crops. However, in Nyanza,
sale prices of both tomatoes and eggplants appear lower after the hillside irrigation
schemes became fully operational than before. We discuss the interpretation of these
changes, if one believes they are causal, in Section 3.2.

50Median wages (not presented here) remain constant within both of the sites used for the re-
gression discontinuity analysis, and are slightly higher in the third site after the hillside irrigation
schemes became fully operational.
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Figure A1: Wages

Notes: Average wages by season across the three hillside irrigation schemes are presented in this
figure. Average wages are calculated across household-by-plot-by-season observations within site-by-
season and are weighted by person days of hired labor.

Appendix F Attrition

We present results on attrition for our sample plot regressions for specifications (1)
and (2) in Table A8; we do not find significant differential attrition on the most
important plot.51 Additionally, we break attrition down into three causes: household
attrition (typically caused by the household having moved), transactions to other
local farmers where we failed to track the plot across the transaction, and rentals out
to commercial farmers.

We find significant differential attrition, but this differential attrition is driven
almost entirely by rentals out to commercial farmers in one of the two sites. These
were private businesses exporting vegetables and they had negotiated land lease rates
with the government, and as such they were not willing to share detailed data on

51Results on attrition on the most important plot are available upon request.
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Figure A2: Prices

(a) Karongi (b) Nyanza

Notes: Median sale prices by season are presented in this figure. Prices are calculated separately
for Karongi district (Karongi 12 and Karongi 13) and for Nyanza district (Nyanza 23). For each
district, prices are calculated for the most commonly sold banana crop, the two most commonly sold
staple crops, and the two most commonly sold horticultural crops.

their profitability. Because they were producing chillies and stevia for export, land
rented out to commercial farmers is likely to have much higher production and to
be farmed more intensively, and therefore not having it in our data biases our main
estimates downwards. Additionally, the commercial farmers preferred to rent land in
the most productive areas of the sites, and therefore our estimates are if anything
biased downward relative to the effect of access to irrigation on production for local
farmers.

Some discussion of the two other sources of attrition is potentially warranted.
First, excluding rentals out to commercial farmers, attrition is low, at 4.8% outside
the command area, and is a non statistically significant 0.9 - 3.5pp higher inside the
command area. However, in one specification we do find 3.2pp higher household at-
trition statistically significant at the 10% level. Lastly, tracking plots was important
to correct for differential attrition – although command area plots were not differen-
tially likely to be transacted to other farmers and not tracked, they were significantly
more likely to be transacted to other farmers and tracked during the dry season (1.8
- 3.5pp).
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Table A8: Sample plots

Dry season Rainy seasons

Dep. var. Coef. (SE) [p] Dep. var. Coef. (SE) [p]

(1) (2) (3) (4) (5) (6) (7) (8)
Tracked 0.032 0.018 0.023 0.035 0.047 0.011 0.019 0.036

(0.177) (0.010) (0.014) (0.019) (0.211) (0.011) (0.016) (0.023)
2,907 [0.056] [0.083] [0.069] 4,845 [0.306] [0.224] [0.114]

Missing 0.060 0.111 0.127 0.103 0.064 0.102 0.121 0.094
(0.238) (0.020) (0.025) (0.028) (0.244) (0.020) (0.026) (0.028)
2,907 [0.000] [0.000] [0.000] 4,845 [0.000] [0.000] [0.001]

Reason data is missing

HH attrition 0.038 0.007 0.032 0.034 0.039 0.007 0.032 0.035
(0.192) (0.014) (0.019) (0.022) (0.194) (0.014) (0.019) (0.022)
2,907 [0.590] [0.096] [0.129] 4,845 [0.601] [0.096] [0.121]

Rented out comm. farmer 0.012 0.102 0.092 0.069 0.011 0.099 0.089 0.064
(0.108) (0.017) (0.019) (0.015) (0.105) (0.016) (0.019) (0.015)
2,907 [0.000] [0.000] [0.000] 4,845 [0.000] [0.000] [0.000]

Transaction (not tracked) 0.010 0.002 0.003 0.001 0.014 -0.004 0.000 -0.005
(0.099) (0.005) (0.005) (0.007) (0.116) (0.005) (0.006) (0.008)
2,907 [0.681] [0.539] [0.921] 4,845 [0.465] [0.945] [0.542]

Site-by-season FE X X X X
Distance to boundary X X X X
log area X X X X
Spatial FE X X

Notes: Regression coefficients on a command area indicator for the sample plot (“CA”) are presented
above. Specifications control for distance to the command area boundary, its interaction with
CA, and log area of the sample plot. RDD specification includes site-by-season fixed effects, and
SFE specification includes spatial fixed effects. Standard errors are in parentheses, and p-values in
brackets.

Appendix G Testing for binding constraint

Appendix G.1 Model

Households have 2 plots, indexed by k: k = 1 indicates the sample plot, while k = 2

indicates the most important plot. On each plot k, they have access to a simple
production technology σAkFk(Mk, Lk) where Ak is plot productivity, Mk is the inputs
applied to plot k and Lk is the household labor applied to plot k. The common
production shock σ is a random variable such that σ ∼ Ψ(σ), E[σ] = 1.52 While this
specification assumes a single production function on each plot, in Supplementary
Appendix B we demonstrate that we can interpret Fk(Mk, Lk) as the envelope of
production functions from cultivating different fractions of bananas and horticulture

52While we refer to σ as a production shock, this incorporates general uncertainty in the value
of production which includes joint price and production risk.
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on the dry season; thus we will think of cultivating bananas as optimizing at a low
input intensity. Utilizing subscripts to indicate partial derivatives and subsuming
arguments we assume FkM > 0, FkL > 0, FkML > 0, FkMM < 0, FkLL < 0.53

Households have a budget of M which, if not utilized for inputs, can be invested
in a risk-free asset which appreciates at rate r. In this context, households maximize
expected utility over consumption c and leisure l, considering their budget constraint
and a labor constraint L which is allocated to labor on each plot, leisure, and up to
LO units of off farm labor LO.54 Finally, we model irrigation access as an increase
in A1. As we consider the role of each different constraint, we develop the necessary
assumptions to produce the results from Section 3: that this increase in A1 generates
an increase in demand for inputs and labor on plot A1.

Households maximize expected utility

max
M1,M2,L1,L2,l,LO

E[u(c, l)]

subject to the constraints enumerated above

σA1F (M1, L1) + σA2F (M2, L2) + wLO + r(M −M1 −M2) = c

M1 +M2 ≤ M

L1 + L2 + l + LO = L

LO ≤ LO

After substituting in the constraints which bind with equality, we derive the fol-
53Among these, FkML > 0 is the most controversial. Existing evidence on FkML in developing

country agriculture is mixed (see Heisey & Norton (2007) for discussion). In our context, we expect
FkML > 0 primarily because Fk(·, ·) encompasses the transition from bananas to horticulture, which
should be associated with increased labor and input demands according to Stylized Fact 2.

54We follow Benjamin (1992) in modeling incomplete labor markets as driven by an off farm labor
constraint. As in Benjamin (1992), we do so to match the observation that rural wages appear to be
higher than the productivity of on-farm labor. However, for the predictions that follow it is sufficient
that the household farm face an upward sloping residual labor supply. This holds if households face
a downward sloping labor demand curve (implied by Benjamin (1992); alternatively, Breza et al.
(2018) demonstrate the existence of norms driven wage floors), or if households incur convex costs
from working off farm (due to distaste from working for others). Alternatively, the market failure
may only apply to a particular task, such as managerial labor.
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lowing first order conditions55

(Mk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkM = (1 + λM)r (A2)

(Lk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkL = (1− λL)w (A3)

(`) E[u`]
E[uc]

= (1− λL)w (A4)

Intuitively, the first order conditions for inputs and labor include three parts. First,
each contains the marginal product of the factor, AkFkM and AkFkL respectively,
on the left hand side, and the market price of the factor, r and w respectively, on
the right hand side. The second piece, 1 + cov(σ,uc)

E[uc]
, is the ratio of the marginal

utility from agricultural production to the marginal utility from certain consumption.
This ratio scales down the marginal product of the factor. It is less than 1 because
agricultural production is uncertain, and higher in periods in which marginal utility
is lower, so cov(σ, uc) < 0. With perfect insurance, cov(σ, uc) = 0, and this piece
disappears. Without it, however, farmers will underinvest in both inputs and labor
relative to the perfect insurance optimum.56 Third, there are the Lagrange multipliers
associated with the input constraint λM and with the labor constraint λL, which scale
the associated factor prices up and down, respectively.

When these constraints do not bind, and with perfect insurance, we have the
familiar result that marginal products equal marginal prices. However, if any of these
constraints bind, then separation fails: farmer characteristics will cause variation in
λL, λM , or cov(σ, uc) and in turn inefficient input allocations.

Appendix G.2 A test for separation failures

Proposition 1 Showing this result is straightforward: with perfect markets for
inputs, labor, and insurance, cov(σ,uc)

E[uc]
= 0, λL = 0, and λM = 0, respectively. The

55The derivation is in Supplementary Appendix B.
56This result does not generically hold in models of agricultural households, as when consumption

is separately modeled, households that are net buyers of an agricultural good may overinvest in inputs
and labor relative to the perfect insurance optimum (Barrett, 1996). This is unlikely to be first order
in our context, as we sampled cultivators and our results are driven by production of commercial
crops.
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first order conditions then simplify to

(Mk) AkFkM = r

(Lk) AkFkL = w

(`) E[u`]
E[uc]

= w

The household’s labor and input allocations on plot 2 depend only on plot 2 produc-
tivity A2, the price of inputs r, and the wage w, and not on access to irrigation on
plot 1 (A1).

Proposition 257 The logic case-by-case is as follows. First, if input constraints
bind, then the increase in inputs on the sample plot caused by access to irrigation
must be associated with a reduction in inputs on the most important plot. As inputs
and labor are complements, this causes labor allocations on the most important plot
to fall as well. Second, if labor constraints bind, then the increase in labor on the
sample plot caused by access to irrigation must be associated with a reduction in the
sum of leisure and labor on the most important plot. Under standard restrictions
on the household’s on farm labor supply, this must be associated with a reduction in
labor on the most important plot.58 As inputs and labor are complements, this causes
input allocations on the most important plot to fall as well. Third, absent insurance,
then the increase in agricultural production caused by access to irrigation reduces
the marginal utility from agricultural production relative to the marginal utility from
consumption.59 In turn, this causes labor and input allocations to the most important
plot to fall.

Appendix G.3 Separating constraints

To shed light on which other constraints generate separation failures, we leverage the
fact that our model offers predictions about how households with different charac-
teristics should differentially respond to the sample plot shock. Roughly speaking,

57See proof in Supplementary Appendix B.
58Specifically, we assume that leisure demand is increasing in consumption; this assumption is

not necessary but is sufficient.
59This does not generically hold; however, restrictions on the distribution of σ are sufficient

to imply that marginal utility from agricultural production relative to the marginal utility from
consumption is falling in agricultural production. Details are in Supplementary Appendix B.
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depending on which constraint binds, changes in different household characteristics
may slacken or tighten the binding constraint. We focus on two important household
characteristics in our model: we use household size to shift L, the household’s total
available labor, and wealth to shift M , the household’s exogenous income available
for input expenditures. We present these predictions below.

Proposition 360 Under insurance constraints, both wealth and household size enter
the model symmetrically by increasing consumption; therefore, in all cases, wealthier
and larger households will respond similarly to the sample plot shock. If we addition-
ally assume that risk aversion is decreasing sufficiently quickly in consumption, then
the allocations of wealthier and larger households will be closer to those maximizing
expected profits, and therefore allocations on the most important plot will be less
responsive to the sample plot shock.

Under input constraints, wealthier households are less likely to see the constraint
bind. As the allocations on the most important plot of unconstrained households do
not respond to the sample plot shock, wealthier households should be less responsive.
Now, note that in this model, households cannot use labor income to purchase addi-
tional inputs; we could interpret this as consistent either with households receiving
labor income after inputs are purchased, or with the constraint as a constraint to
availability of inputs. In a more general model with borrowing, they may be able to;
in that case, both wealthier households and larger households are less likely to see the
constraint bind, and therefore will both be less responsive to the sample plot shock
on their most important plots.61

Proposition 462 When labor constraints bind, the household responds to the sam-
ple plot shock by allocating additional labor to the sample plot, but they may with-
draw that labor from either the most important plot or from leisure. Whether wealth-
ier or larger households withdraw relatively more labor from the most important plot
depends on the higher order derivatives of the utility and production functions; in

60See proof in Supplementary Appendix B.
61If all households are input constrained, then the effect of the sample plot shock on input

allocations on the most important plot depends on characteristics of the production function. Note
that in this case, larger households will still exhibit a response in the same direction as wealthier
households as both effects enter only through the wealth channel.

62See proof in Supplementary Appendix B.
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general, these differential responses can not be signed.63 Additionally, one key dif-
ference from the insurance case and input case is that household size and wealth no
longer enter the model symmetrically. In one sense, household size and wealth instead
enter the model as opposing forces: wealthier households allocate less labor to their
plots, as they value leisure relatively more than consumption, while larger households
allocate more labor to their plots.

We focus on one particular case that builds on this intuition, presented in Fig-
ure A3. When on farm labor supply exhibits sufficient curvature, then changes in
responsiveness to the sample plot shock of allocations on the most important plot are
dominated by changes in the elasticity of on farm labor supply. Suppose this to be
the case, and further suppose that the elasticity of on farm labor supply is decreasing
in the shadow wage. As we can think of household size as shifting out on farm labor
supply (by increasing L), and wealth as shifting in on farm labor supply (by increasing
the marginal utility of leisure relative to the marginal utility of consumption), then
larger households are located on a more elastic portion of their on farm labor supply
schedule, while wealthier households are located on a less elastic portion of their on
farm labor supply schedule. As a result, larger households will be less responsive to
the sample plot shock, as they will primarily draw labor on the sample plot from
leisure, while wealthier households will be more responsive to the sample plot shock,
as they will primarily draw labor on the sample plot from the most important plot.

Appendix H Household size, wealth, and agricul-
tural production decisions

In Section 5, we assume that household size and the asset index act as shifters of
the household’s availability of labor and ability to purchase inputs, respectively. Al-
ternatively phrased, they decrease the household’s shadow wage and shadow price
of inputs, respectively. We should therefore expect larger households to use more
household labor and less hired labor. We should also expect wealthier households to
use more inputs and more hired labor.

We test this assumption by correlating household size and the asset index with
household labor use, input expenditures, and hired labor expenditures. Specifically,

63Of course, the potential for ambiguous responses is heightened further if other forms of labor
constraints, for example on hiring labor, are also considered.
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Figure A3: Differential responses to sample plot shock under labor constraints

Shadow wage

On-farm labor

L2 L1 + L2 L
SM − LO − lL′

1 + L2

dL2/dA1

L
BIG − LO − l

dL2/dA1

Notes: Households’ labor allocations under a binding off farm labor constraint are presented in this
figure. Lk and l are the household’s labor allocation on plot k and choice of leisure, respectively,
as a function of the shadow wage, with the argument suppressed. L1 + L2 is total household on
farm labor demand; if the household’s sample plot (k = 1) is in the command area (“sample plot
shock”), on farm labor demand shifts out to L′

1 + L2. L
SM − LO − l is household on farm labor

supply; for large households, on farm labor supply is shifted out to L
BIG − LO − l. The shadow

wage is determined by the intersection of on farm labor demand and on farm labor supply, and labor
allocations on the most important plot are L2 evaluated at this shadow wage. In this figure, larger
households are on a more elastic portion of their on farm labor supply schedule; as a result, the
sample plot shock causes a smaller increase in the shadow wage, and in turn a smaller decrease in
labor allocations on the most important plot (smaller in magnitude dL2/dA1).

we estimate

ypist = β1# of HH membersi + β2Asset indexi +X ′
pisγ + αst + εpist (A5)

where y is either household labor use, input expenditures, or hired labor expenditures,
on plot p of household i in site s in season t, and αst is a site-by-season fixed effect.
We vary the set of controls and fixed effects across specifications to test the robustness
of these correlations to omitted household characteristics.

We present estimates of specification A5 in Table A9. Consistent with our pre-
dictions, we find that larger households use more household labor and less hired
labor, while wealthier households use inputs and more hired labor. These correla-
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Table A9: Household size and wealth shift agricultural production decisions in a
manner consistent with them shifting the shadow wage and shadow price of inputs

HH labor/ha Input exp./ha Hired labor exp./ha
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

# of HH members 7.2 5.0 4.8 0.4 -0.0 0.0 0.6 -1.1 -0.9
(1.2) (1.7) (1.5) (0.2) (0.3) (0.2) (0.3) (0.4) (0.4)
[0.000] [0.003] [0.001] [0.013] [0.899] [0.969] [0.065] [0.010] [0.021]

Asset index 9.4 4.0 1.6 2.4 1.8 1.4 9.0 9.1 8.6
(2.6) (3.0) (2.6) (0.4) (0.5) (0.4) (0.7) (0.8) (0.7)
[0.000] [0.190] [0.530] [0.000] [0.000] [0.001] [0.000] [0.000] [0.000]

log area -114.0 -113.7 -114.2 -116.3 -5.2 -5.4 -5.3 -5.9 -3.8 -4.8 -4.6 -5.3
(3.8) (3.8) (3.8) (3.4) (0.5) (0.5) (0.5) (0.4) (0.5) (0.5) (0.5) (0.5)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

# of HH members (15-64) 2.1 2.2 -0.4 -0.5 -0.5 -0.8
(2.3) (2.0) (0.4) (0.3) (0.7) (0.6)
[0.359] [0.280] [0.280] [0.088] [0.470] [0.177]

HHH female -3.8 1.9 -3.4 -2.3 0.8 1.1
(6.1) (5.5) (0.9) (0.8) (1.3) (1.3)
[0.534] [0.723] [0.000] [0.003] [0.556] [0.414]

# of plots -1.1 -0.0 -0.0 0.2 0.1 0.2
(0.9) (0.8) (0.2) (0.1) (0.2) (0.2)
[0.207] [0.971] [0.986] [0.214] [0.627] [0.322]

Site-by-season FE X X X X X X X X X X X X
Site-by-season-by-crop FE X X X
# of observations 28,750 28,717 28,578 28,576 28,823 28,790 28,651 28,649 28,823 28,790 28,651 28,649
# of clusters 1,637 1,635 1,628 1,628 1,637 1,635 1,628 1,628 1,637 1,635 1,628 1,628

tions change somewhat when both household size and the asset index are not both
included, as household size and the asset index are correlated. This highlights the
importance of controlling for the asset index and household size when estimating co-
efficients on household size and the asset index, respectively, as we do in Section 5. In
addition, these correlations are robust to the inclusion of other important household
covariates (number of household members (15-64), gender of the household head, and
number of plots), and also to the inclusion of site-by-season-by-crop fixed effects. We
interpret these results as consistent with household size shifting the shadow wage,
and the asset index shifting the shadow price of inputs. In turn, these are consistent
with household size shifting the household’s availability of labor, and the asset index
shifting the household’s ability to purchase inputs.

Appendix I Experimental Appendix

Appendix I.1 Experimental design

We conducted three randomized controlled trials in these hillside irrigation schemes.
First, we manipulated operations and maintenance (O&M) in the hillside irrigation
schemes, by randomly assigning water user groups to different approaches to moni-
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toring. Qualitative work raised concerns that the water user groups as established
would not be sufficient to enforce water usage schedules and that routine mainte-
nance tasks would not be performed adequately, as has been documented by Ostrom
(1990). Second, we subsidized water usage fees the government had planned to col-
lect from farmers, which were as high as 77,000 RwF/ha/year. For reference, this is
roughly 20% of our dry season treatment on the treated estimates, and roughly 50%
of median land rental prices. If farmers believed that they were more likely to be
required to pay the fees if they used the irrigation infrastructure, then these fees had
the potential to influence farmers production decisions, (even though they are small
relative to potential yield gains from irrigation use). Third, we provided agricultural
minikits, which included 0.02 ha of seeds, chemical fertilizer, and insecticide, which
could be used for horticulture cultivation. In other contexts, minikits of similar size
relative to median landholdings have been shown to increase adoption of new crop
varieties or varieties with low levels of adoption (Emerick et al., 2016; Jones et al.,
2018). Although horticulture is not unfamiliar in these areas, at baseline 3.2% of
plots outside the command area were planted with at least some horticulture, and
primarily during the rainy seasons.

Assignment to experimental arms for O&M, minikits, and subsidies were as fol-
lows. First, for the O&M intervention, 251 water user groups across three irrigation
sites were randomized, stratified across the 33 Zones these irrigation sites are divided
into, into three arms.64 Second, for the minikit intervention, water user groups were
randomly assigned to 20%, 60%, or 100% saturation, with rerandomization for bal-
ance on Zone and O&M treatment status. Following this assignment, individuals
on the lists of water user group members provided to us by the sites were randomly
assigned to receive minikits with probabilities equal to that water user group’s satu-
ration. Minikits were offered to assigned individuals prior to 2017 Rainy 1 and 2017
Dry. Third, for the subsidy intervention, our implementing partner was concerned

6440% were assigned to a status quo arm where the irrigator/operators employed by the site were
responsible for enforcing water usage schedules and reporting O&M problems to the local Water
User Association. 30% were assigned to an arm where the water user group elected a monitor who
was tasked with these responsibilities, trained in implementing them, and given worksheets to fill
and return to the Water User Association reporting challenges with enforcement of the water usage
schedule and any O&M concerns. In an additional 30%, the elected monitor was required to have a
plot near the top of the water user group, where the flow of water is most negatively impacted when
too many farmers try to irrigate at once. Monitors were trained just before the 2016 Dry season,
with refresher trainings during 2016 Dry and 2017 Rainy 1.
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with the perception of an assignment rule that might be perceived as hidden, so public
lotteries for subsidies were conducted at the Zone level.65

Appendix I.2 O&M and Fee Subsidies

We find no effects of empowering monitors and fee subsidies on agricultural decisions
in our context; we offer some qualitative evidence and simple descriptives from our
data that explain these null effects.66

First, we find no impact of empowering monitors. This is because O&M was
highly effective in these irrigation schemes, and empowering monitors therefore had
limited scope for changing O&M practices. Farmers reported 14% as many days
without enough water during the dry seasons as they reported days using irrigation.
Any event where conflict among water user group members caused insufficient water
at some point during the dry season was reported for 3% of irrigated plots.67 This
success was far from guaranteed in the early years of the schemes; site engineers have
suggested that the combination of lower adoption of irrigation than the schemes are
designed for and high compliance with water usage schedules among farmers have
been the cause of this. Moreover, during the 2018 Dry season we found evidence that
control water user groups adopted the intervention, as some members of control water
user groups adopted the roles that were assigned to monitors.

Second, we find no impact of fee subsidies. The reason for this is clear – although
we have a strong and large first stage on fees owed by farmers in administrative
data, the impacts of subsidies on feed paid by farmers were 10% of the size of the
impacts on fees owed, both in administrative data and self reports. Moreover, the
fees were implemented as land taxes and not charged based on irrigation use so as
not to discourage adoption. In sum, at the low levels of enforcement observed during
the 2017 Rainy seasons, they should not have affected farmers’ production decisions,
consistent with the results we find.

65At these public lotteries, 40% of farmers received no subsidy, 20% received a 50% subsidy for
one season, 20% received a 100% subsidy for one season, and 20% received a 100% subsidy for two
seasons. The lotteries took place at the start of the 2017 Rainy 1, and subsidies were for 2017 Rainy
1 and 2017 Rainy 2; at the time the Water User Associations did not plan to collect fees during the
Dry season.

66Results are available upon request.
67This magnitude is small; as reference, Sekhri (2014) finds the share of farmers reporting disputes

over ground water in India increases by 29pp when water tables become sufficiently low.
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Supplementary Appendix A Additional robustness

To complement the analysis in Section 3, we estimate the impacts of access to irriga-
tion using specifications similar to specifications 1 and 2, but with additional controls
or using alternative weights. We present these estimates similarly to Table 4, and
compare estimated coefficients to those in Table 4.

First, as described in Section 2.2.1, our sampling strategy oversamples households
who managed relatively more plots at baseline, and these households are therefore
likely to be overrepresented in our analysis relative to their share of the population.
To test the robustness of our main results to changes in sampling, we estimate Spec-
ifications 1 and 2 reweighting by the inverse number of plots, and we present these
estimates in Table S1. The patterns in the results we describe in Section 3 are robust
to this alternative weighting.
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Table S1: Estimated effects of access to irrigation are robust to reweighting by the inverse of # of plots

(a) Dry season

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA 0.004 0.165 0.141 -0.125 63.8 6.1 4.0 68.4 48.4 58.2 8.0
(0.046) (0.026) (0.024) (0.045) (15.6) (1.7) (1.9) (21.0) (14.6) (18.4) (14.4)
[0.923] [0.000] [0.000] [0.006] [0.000] [0.000] [0.038] [0.001] [0.001] [0.002] [0.581]

# of observations 2,537 2,537 2,536 2,536 2,523 2,527 2,527 2,402 2,527 2,402 2,400
# of clusters 196 196 196 196 196 196 196 196 196 196 196
Unweighted estimate 0.005 0.162 0.137 -0.133 70.8 6.3 3.7 73.1 55.5 63.9 9.3

(b) Rainy seasons

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.091 0.039 0.009 -0.149 8.7 3.2 5.9 -5.9 -3.6 -14.3 -20.4
(0.027) (0.009) (0.020) (0.050) (23.2) (2.8) (4.2) (28.8) (17.7) (25.6) (22.4)
[0.001] [0.000] [0.664] [0.003] [0.707] [0.244] [0.161] [0.839] [0.837] [0.575] [0.362]

# of observations 4,236 4,236 4,235 4,235 4,215 4,223 4,223 4,085 4,223 4,085 4,078
# of clusters 196 196 196 196 196 196 196 196 196 196 196
Unweighted estimate -0.092 0.035 0.016 -0.158 8.5 1.1 3.7 -22.6 -13.3 -26.4 -31.8
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Second, as described in Section 3.1, our primary specifications 1 and 2 control for
distance to the command area boundary and its interaction with the command area
indicator. As an alternative, we consider the robustness of these specification to this
functional form on the control for distance to the command area boundary. In Section
Appendix C, we showed that our main results were robust to omitting controls for
distance to the command area boundary and its interaction with the command area
indicator. We now estimate specifications 1 and 2 with additional controls distance
to the command area boundary squared and its interaction with the command area
indicator, and we present these estimates in Table S2. The patterns in the results we
describe in Section 3 are robust to the inclusion of these controls.

3



supplem
entary

appendix
–

not
intended

for
publication

Table S2: Estimated effects of access to irrigation are robust to controlling for distance to the command area boundary
squared and its interaction with the command area indicator

(a) Dry season
Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA 0.027 0.142 0.135 -0.126 60.9 7.0 8.3 49.0 42.1 33.8 -11.4
(0.057) (0.031) (0.029) (0.055) (21.6) (2.0) (2.5) (35.2) (25.8) (33.4) (28.2)
[0.632] [0.000] [0.000] [0.022] [0.005] [0.000] [0.001] [0.165] [0.103] [0.312] [0.685]

Effect w/o quadratic RV 0.005 0.162 0.137 -0.133 70.8 6.3 3.7 73.1 55.5 63.9 9.3

SFE (Spatial FE, Specification 2)

CA 0.082 0.126 0.129 -0.062 59.9 5.1 6.6 54.0 35.4 42.0 0.9
(0.055) (0.035) (0.035) (0.052) (21.0) (2.5) (3.0) (34.7) (23.2) (32.2) (27.5)
[0.134] [0.000] [0.000] [0.234] [0.004] [0.043] [0.026] [0.119] [0.127] [0.193] [0.974]

Effect w/o quadratic RV 0.022 0.171 0.156 -0.142 76.9 4.3 3.2 55.0 49.3 49.1 -3.0
# of observations 2,537 2,537 2,536 2,536 2,523 2,527 2,527 2,402 2,527 2,402 2,400
# of clusters 196 196 196 196 196 196 196 196 196 196 196

(b) Rainy seasons
Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.064 0.035 0.001 -0.136 7.5 1.4 4.7 -30.8 -48.0 -36.0 -41.3
(0.033) (0.014) (0.031) (0.057) (26.0) (3.9) (4.4) (49.4) (31.4) (46.1) (46.5)
[0.057] [0.010] [0.978] [0.017] [0.774] [0.716] [0.281] [0.533] [0.127] [0.436] [0.375]

Effect w/o quadratic RV -0.092 0.035 0.016 -0.158 8.5 1.1 3.7 -22.6 -13.3 -26.4 -31.8

SFE (Spatial FE, Specification 2)

CA -0.022 0.051 0.021 -0.083 -0.5 -0.4 -0.3 -48.5 -38.4 -47.5 -49.3
(0.038) (0.015) (0.038) (0.050) (29.8) (3.8) (4.8) (39.5) (26.2) (37.5) (38.9)
[0.557] [0.001] [0.587] [0.098] [0.988] [0.923] [0.944] [0.219] [0.143] [0.206] [0.206]

Effect w/o quadratic RV -0.053 0.059 0.048 -0.168 9.9 2.1 3.1 -15.4 5.6 -19.4 -27.3
# of observations 4,236 4,236 4,235 4,235 4,215 4,223 4,223 4,085 4,223 4,085 4,078
# of clusters 196 196 196 196 196 196 196 196 196 196 196
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Third, as described in Section 3.1, we estimate specification 1 with standard errors
clustered at the water user group level. As an alternative, we estimate this specifica-
tion with standard errors clustered at the zone level instead of the water user group
level, and we present these estimates in Table S3; we describe differences between
zones and water user groups in Section 2.1. The patterns of statistical significance
we describe in Section 3 are unaffected by instead clustering at the zone level.
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Table S3: Patterns of statistical significance of the effects of access to irrigation are robust to alternative clustering

(a) Dry season

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA 0.005 0.162 0.137 -0.133 70.8 6.3 3.7 73.1 55.5 63.9 9.3
(0.053) (0.040) (0.034) (0.041) (23.9) (1.7) (3.0) (39.2) (23.4) (35.3) (22.4)
[0.930] [0.000] [0.000] [0.001] [0.003] [0.000] [0.210] [0.062] [0.018] [0.071] [0.677]

# of observations 2,537 2,537 2,536 2,536 2,523 2,527 2,527 2,402 2,527 2,402 2,400
# of clusters 31 31 31 31 31 31 31 31 31 31 31
SE w/ WUG cluster (0.041) (0.024) (0.024) (0.037) (17.5) (1.5) (2.1) (23.2) (14.5) (21.0) (16.5)
p w/ WUG cluster [0.909] [0.000] [0.000] [0.000] [0.000] [0.000] [0.082] [0.002] [0.000] [0.002] [0.573]

(b) Rainy seasons

Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.092 0.035 0.016 -0.158 8.5 1.1 3.7 -22.6 -13.3 -26.4 -31.8
(0.025) (0.011) (0.019) (0.050) (18.1) (2.4) (3.8) (29.8) (19.4) (26.5) (31.8)
[0.000] [0.002] [0.386] [0.002] [0.640] [0.652] [0.325] [0.448] [0.493] [0.319] [0.317]

# of observations 4,236 4,236 4,235 4,235 4,215 4,223 4,223 4,085 4,223 4,085 4,078
# of clusters 31 31 31 31 31 31 31 31 31 31 31
SE w/ WUG cluster (0.025) (0.009) (0.018) (0.038) (23.1) (2.9) (3.4) (30.8) (18.5) (28.5) (26.4)
p w/ WUG cluster [0.000] [0.000] [0.371] [0.000] [0.714] [0.710] [0.276] [0.462] [0.472] [0.354] [0.228]
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Fourth, as described in Section 3.1.1, the coefficients on household head completed
primary and number of household members (15-64) in the balance test in Table 3
may appear economically significant, although only the coefficient on household head
completed primary is statistically significant and only in some specifications. To
test the robustness of our main results, we therefore estimate specifications 1 and 2
with household head completed primary and number of household members (15-64)
included as controls, and we present these estimates in Table S4. The patterns in the
results we describe in Section 3 are robust to the inclusion of these controls.
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Table S4: Estimated effects of access to irrigation are robust to controlling for household head completed primary and
number of household members (15-64)

(a) Dry season
Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA 0.002 0.157 0.134 -0.131 67.9 5.9 3.4 70.1 51.9 61.2 8.2
(0.041) (0.024) (0.024) (0.036) (18.0) (1.5) (2.3) (23.9) (14.8) (21.6) (17.0)
[0.962] [0.000] [0.000] [0.000] [0.000] [0.000] [0.139] [0.003] [0.000] [0.005] [0.631]

Effect w/o household controls 0.005 0.162 0.137 -0.133 70.8 6.3 3.7 73.1 55.5 63.9 9.3

SFE (Spatial FE, Specification 2)

CA 0.019 0.167 0.153 -0.140 75.6 4.1 3.1 55.3 47.8 49.2 -2.4
(0.044) (0.031) (0.029) (0.034) (21.7) (1.9) (2.7) (28.7) (19.2) (25.9) (21.0)
[0.657] [0.000] [0.000] [0.000] [0.000] [0.031] [0.248] [0.054] [0.013] [0.057] [0.908]

Effect w/o household controls 0.022 0.171 0.156 -0.142 76.9 4.3 3.2 55.0 49.3 49.1 -3.0
# of observations 2,529 2,529 2,528 2,528 2,515 2,519 2,519 2,395 2,519 2,395 2,393
# of clusters 194 194 194 194 194 194 194 194 194 194 194

(b) Rainy seasons
Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.091 0.033 0.011 -0.155 3.8 0.7 2.9 -28.8 -16.3 -31.7 -33.1
(0.025) (0.009) (0.018) (0.038) (23.6) (2.9) (3.4) (31.3) (18.4) (29.0) (26.6)
[0.000] [0.000] [0.517] [0.000] [0.872] [0.821] [0.390] [0.359] [0.376] [0.274] [0.213]

Effect w/o household controls -0.092 0.035 0.016 -0.158 8.5 1.1 3.7 -22.6 -13.3 -26.4 -31.8

SFE (Spatial FE, Specification 2)

CA -0.056 0.056 0.042 -0.165 5.6 1.5 2.4 -19.4 2.1 -22.5 -27.1
(0.027) (0.012) (0.025) (0.033) (24.5) (3.1) (4.5) (30.7) (21.3) (27.7) (32.0)
[0.035] [0.000] [0.092] [0.000] [0.818] [0.618] [0.597] [0.528] [0.920] [0.417] [0.397]

Effect w/o household controls -0.053 0.059 0.048 -0.168 9.9 2.1 3.1 -15.4 5.6 -19.4 -27.3
# of observations 4,223 4,223 4,222 4,222 4,202 4,210 4,210 4,073 4,210 4,073 4,066
# of clusters 194 194 194 194 194 194 194 194 194 194 194
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Fifth, as described in Section Appendix B, command area plots are significantly
lower in elevation than plots outside the command area, although this difference is
much smaller when we use a spatial fixed effects specification. To test the robustness of
our main results, we therefore estimate specifications 1 and 2 with elevation included
as a control, and we present these estimates in Table S5. The patterns in the results
we describe in Section 3 are robust to the inclusion of elevation as a control.
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Table S5: Estimated effects of access to irrigation are robust to controlling for elevation

(a) Dry season
Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.007 0.159 0.135 -0.141 69.0 5.4 0.5 55.5 43.5 50.6 -1.2
(0.041) (0.025) (0.025) (0.037) (18.2) (1.6) (2.1) (23.5) (15.3) (21.4) (16.9)
[0.864] [0.000] [0.000] [0.000] [0.000] [0.001] [0.809] [0.018] [0.005] [0.018] [0.946]

Effect w/o elevation control 0.005 0.162 0.137 -0.133 70.8 6.3 3.7 73.1 55.5 63.9 9.3

SFE (Spatial FE, Specification 2)

CA 0.022 0.157 0.147 -0.119 71.7 2.6 1.3 48.7 49.3 46.2 0.1
(0.045) (0.031) (0.030) (0.035) (23.0) (1.9) (2.7) (29.8) (21.4) (27.0) (22.8)
[0.620] [0.000] [0.000] [0.001] [0.002] [0.173] [0.636] [0.102] [0.021] [0.087] [0.995]

Effect w/o elevation control 0.022 0.171 0.156 -0.142 76.9 4.3 3.2 55.0 49.3 49.1 -3.0
# of observations 2,537 2,537 2,536 2,536 2,523 2,527 2,527 2,402 2,527 2,402 2,400
# of clusters 196 196 196 196 196 196 196 196 196 196 196

(b) Rainy seasons
Culti- Irri- Horti- Banana HH Input Hired Yield Sales Profits/ha
vated gated culture labor/ exp./ha labor /ha Shadow wage

ha exp./ha = 0 = 800

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RDD (Site-by-season FE, Specification 1)

CA -0.079 0.037 0.024 -0.167 17.6 2.7 2.5 -14.8 -12.0 -18.6 -31.3
(0.026) (0.010) (0.018) (0.038) (23.2) (2.8) (3.7) (31.6) (18.6) (29.4) (27.8)
[0.002] [0.000] [0.188] [0.000] [0.448] [0.339] [0.499] [0.640] [0.520] [0.528] [0.260]

Effect w/o elevation control -0.092 0.035 0.016 -0.158 8.5 1.1 3.7 -22.6 -13.3 -26.4 -31.8

SFE (Spatial FE, Specification 2)

CA -0.050 0.053 0.044 -0.144 5.3 0.6 2.3 -21.2 4.1 -23.1 -26.6
(0.028) (0.013) (0.026) (0.035) (26.4) (3.2) (4.8) (33.4) (23.0) (30.2) (34.7)
[0.076] [0.000] [0.091] [0.000] [0.841] [0.852] [0.629] [0.525] [0.858] [0.445] [0.442]

Effect w/o elevation control -0.053 0.059 0.048 -0.168 9.9 2.1 3.1 -15.4 5.6 -19.4 -27.3
# of observations 4,236 4,236 4,235 4,235 4,215 4,223 4,223 4,085 4,223 4,085 4,078
# of clusters 196 196 196 196 196 196 196 196 196 196 196

10
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Supplementary Appendix B Model appendix

Derivation of first order conditions. Substitute for LO using the household labor
constraint, L1+L2+`+LO = L, and substitute for c in the household’s maximization
problem. This leaves two constraints, M1 + M2 ≤ M , and L − L1 − L2 − ` ≤ LO;
call the multipliers on these constraints λ̃M and λ̃L, respectively. Taking first order
conditions yields

(Mk) E[ucσ]AkFkM − E[uc]r = λ̃M

(Lk) E[ucσ]AkFkL − E[uc]w = −λ̃L

(`) E[u`]− E[uc]w = −λ̃L

To ease interpretation, normalize λM ≡ λ̃M/rE[uc] and λL ≡ λ̃L/wE[uc], and substi-
tute cov(σ, uc) = E[ucσ]− E[uc]E[σ] = E[ucσ]− E[uc]. This yields

(Mk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkM = (1 + λM)r

(Lk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkL = (1− λL)w

(`) E[u`]
E[uc]

= (1− λL)w

No constraints. When no constraints bind, as discussed the first order conditions
simplify to

(Mk) AkFkM = r

(Lk) AkFkL = w

(`) u`

uc
= w

Note that the first order conditions for M2 and L2 are functions only of (M2, L2), and
exogenous (A2, r, w). Therefore, dM2

dA1
= dL2

dA1
= 0.

Insurance market failure. Consider the case when insurance markets fail. To
abstract fully from labor supply, we temporarily remove leisure from the model. To
further simplify, we drop other inputs from the production function; when the pro-
duction function is homogeneous in labor and other inputs, this is without loss of
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generality. Households solve

max
L1,L2

E[u(c)]

σ(A1F1(L1) + A2F2(L2))− w(L1 + L2) + wL+ rM = c

To simplify the analysis, this can be rewritten as the two step optimization problem

max
L

E[u(c)]

σG(L;A1)− wL+ wL+ rM = c

max
L2

aF1(L− L2) + A2F2(L2) = G(L; a)

Next, let γ(g, c) = E[uc(σg+c)]
E[σuc(σg+c)]

; γ ≥ 1 is the ratio of the marginal utility from con-
sumption to the marginal utility from agricultural production. As above, to represent
derivatives of G and γ we use subscripts to indicate partial derivatives and subsume
arguments. This yields the first order condition

(L) GL − γ(G(L;A1), w(L− L) + rM)w = 0

The central intuition for this case can be captured from just the first order con-
dition: L and M enter symmetrically into the model, so larger households should
respond similarly to richer households. If absolute risk aversion decreases sufficiently
quickly (e.g., with CRRA preferences), then for sufficiently high levels of consumption
E[σuc] = E[σ]E[uc] = E[uc] ⇒ γ = 1. Therefore, sufficiently wealthy or sufficiently
large households should not respond to the sample plot shock. Below, we will main-
tain the assumption that preferences exhibit decreasing absolute risk aversion, and
that limc→∞ γ(g, c) = 1.

Let FOCL be the left hand side of the first order condition for the utility max-
imization problem. Then, an application of the implicit function theorem yields

12
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dL
dA1

= −dFOCL/dA1

dFOCL/dL
. Evaluating these derivatives yields

dFOCL

dL
= GLL + γcw

2 − γgGLw

dFOCL

dA1

= GLa − γGGa

dL

dA1

= − GLa − γgGa

GLL + γcw2 − γgGLw

Next, we use the first order condition for constrained production maximization.
Some applications of the envelope theorem and taking derivatives yields

GL = A1F1L

Ga = F1

GLa = F1L(1− dL2/dL)

GLL = A1F1LL(1− dL2/dL)

Lastly, note that dL2

dA1
= dL2

dL
dL
dA1

+ dL2

da
, as the increase in A1 shifts both arguments

to G. Let FOCL2 denote the left hand side of the first order condition for constrained
production maximization. Then, applications of the implicit function theorem yield
dL2

dL
= − dFOCL2

/dL

dFOCL2
/dL2

and dL2

da
= − dFOCL2

/da

dFOCL2
/dL2

. Additional math yields

FOCL2 = −aF1L + A2F2L

dFOCL2

da
= F1L

dFOCL2

dL
= −aF1LL

dFOCL2

dL2

= aF1LL + A2F2LL

dL2

dL
=

aF1LL

aF1LL + A2F2LL

dL2

da
= − F1L

aF1LL + A2F2LL

substituting these into our expression for dL2

dA1
, and in turn our expressions for deriva-
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tives of G (in the numerator), yields

dL2

dA1

=
−A1F1LL(GLa − γgGa) + F1L(GLL + γcw

2 − γgGLw)

(A1F1LL + A2F2LL)(GLL + γcw2 − γgGLw)

=
(F1Lw

2)γc − (F1Lw − F1LLF1)A1γg
(A1F1LL + A2F2LL)(GLL + γcw2 − γgGLw)

To sign this expression, note that the denominator is the product of two second
order conditions, for utility maximization and for maximization of production subject
to L1 = L − L2; each of these is negative, so the product is positive. Therefore
sign(dL2/dA1) = sign((F1Lw

2)γc−(F1Lw−F1LLF1)A1γg). Next, note that F1Lw
2 > 0

and −(F1Lw − F1LLF1)A1 < 0; therefore one sufficient condition for this derivative
to be negative is that γc < 0 and γg > 0; in other words, increasing consumption
reduces the marginal utility from consumption relative to the marginal utility from
agricultural production, and increasing agricultural production increases the marginal
utility from consumption relative to the marginal utility from agricultural production.
The former generically holds under decreasing absolute risk aversion, while the latter
holds under some restrictions; under these restrictions, dL2

dA1
< 0.

For one sufficient restriction, we follow Karlan et al. (2014) and make restrictions
on the distribution of σ. We assume that, for some k > 1, σ = k with probability 1

k

(“the good state”) and σ = 0 with probability k−1
k

(“the bad state”); i.e., there is a
crop failure with probability k−1

k
. Under this assumption. Next, define R = −E[uc

ucc
uc

]

E[uc]

to be the household’s average risk aversion, and Rk = −E[ucc

uc
|σ = k] to be the

household’s risk aversion in the good state. Note that by decreasing absolute risk
aversion, Rk < R. From this, it follows that

γc =
E[ucc]

E[σuc]
− E[σucc]E[uc]

E[σuc]2
= γ(Rk −R) < 0

γg =
E[σucc]

E[σuc]
− E[σ2ucc]E[uc]

E[σuc]2
= (k − 1)

E[uc|σ = 0]

E[uc|σ = k]
Rk = (kγ − 1)Rk > 0

Finally, consider the limit as household wealth increases, and assume that agri-
cultural production will not grow infinitely with household wealth; this holds when
the marginal product of labor on each plot falls sufficiently quickly and is true of
typical decreasing returns to scale production functions. Then, limM→∞ γ = 1 and
limM→∞ γc = limM→∞ γg = 0, and therefore limM→∞

dL2

dA1
= 0. We therefore expect
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that, heuristically on average, d2L2

dA1dM
> 0, as dL2

dA1
< 0 and dL2

dA1
approaches 0 for large

M . As L and M enter symmetrically, the same results hold for L.

Input constraint. When only the input constraint binds, the first order conditions
simplify to

(Mk) AkFkM = (1 + λM)r

(Lk) AkFkL = w

(`) E[u`]
E[uc]

= w

Note that the choice of leisure does not enter into the first order conditions for Mk

or Lk. Substituting M2 = M −M1 yields the following system of equations

A1F1M(M1, L1)− (1 + λM)r = 0

A1F1L(M1, L1)− w = 0

A2F2M(M −M1, L2)− (1 + λM)r = 0

A2F2L(M −M1, L2)− w = 0

Stack the left hand sides into the vector FOCM . Define the Jacobian JM ≡ D(M1,L1,λM ,L2)FOCM .
Applying the implicit function theorem yieldsD(A1)(M1, L1, λM , L2)

′ = −J−1
M D(A1)FOCM .

Some algebra yields

JM =


A1F1MM A1F1ML −r 0

A1F1ML A1F1LL 0 0

−A2F2MM 0 −r A2F2ML

−A2F2ML 0 0 A2F2LL


D(A1)FOCM = (F1M , F1L, 0, 0)

′

dM2

dA1

= kMA2F2LLA1(F1LF1ML − F1MF1LL)

dL2

dA1

= −kMA2F2MLA1(F1LF1ML − F1MF1LL)

where kM is positive.68 As F2LL < 0, sign
(

dM2

dA1

)
= −sign (F1LF1ML − F1MF1LL).

68kM = − 1
(A1F1LL)A2

2(F2MMF2LL−F 2
2ML)+(A2F2LL)A2

1(F1MMF1LL−F 2
1ML)

. We make standard assump-
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This is negative whenever productivity growth on plot 1 would cause optimal input
allocations, holding fixed the shadow price of inputs, to increase on plot 1. Similarly,
sign

(
dL2

dA1

)
= sign(F2LM)sign

(
dM2

dA1

)
. The labor response and input response on the

second plot have the same sign whenever labor and inputs are complements on the
second plot.

Labor constraint. When only the labor constraint binds, the first order conditions
simplify to

(Mk) AkFkM = r

(Lk) AkFkL = (1− λL)w

(`) u`

uc
= (1− λL)w

Substituting ` = L− LO − L1 − L2 and LO = LO, and some rearranging yields

A1F1M(M1, L1)− r = 0

A1F1L(M1, L1)− (1 + λL)w = 0

A2F2M(M2, L2)− r = 0

A2F2L(M2, L2)− (1 + λL)w = 0

u`

 ∑
k∈{1,2}

AkFk(Mk, Lk) + r(M −M1 −M2) + wLO, L− LO − L1 − L2

−

(1 + λL)wuc

 ∑
k∈{1,2}

AkFk(Mk, Lk) + r(M −M1 −M2) + wLO, L− LO − L1 − L2

 = 0

Stack the left hand sides into the vector FOCL.
Additionally, it will be convenient to define the following derivatives of on farm

labor demand on plot k, LDk, with respect to the shadow wage w∗ and productivity
Ak, on farm input demand on plot k, MDk, with respect to productivity Ak, and on
farm labor supply, LS, with respect to the shadow wage w∗ and consumption (through

tions required for unconstrained optimization; second order conditions for unconstrained optimiza-
tion imply kM is positive.
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shifts to wealth) c. Let

LDkw∗ =
AkFkMM

A2
k(FkMMFkLL − F 2

kML)

LDkAk
=

AkFkMFkML − AkFkLFkMM

A2
k(FkMMFkLL − F 2

kML)

MDkAk
=

AkFkLFkML − AkFkMFkLL

A2
k(FkMMFkLL − F 2

kML)

LSw∗ = − uc

u`` − (1 + λL)wuc`

LSc = −uc` − (1 + λL)wucc

u`` − (1 + λL)wuc`

We make standard assumptions required for unconstrained optimization; these imply
LDkw∗ is negative (labor demand decreasing in shadow wage), and LSw∗ is positive
(labor supply increasing in shadow wage). We further assume LDkAk

and MDkAk
are

positive (labor demand and input demand are increasing in productivity); an addi-
tional sufficient assumption for this is that F is homogeneous. We further assume LSc

is negative (labor supply is decreasing in wealth); an additional sufficient assumption
for this is that u is additively separable in c and `.

Next, define the Jacobian JL ≡ D(M1,L1,M2,L2,λL)FOCL. Some algebra yields

JL =


A1F1MM A1F1ML 0 0 0

A1F1ML A1F1LL 0 0 −w

0 0 A2F2MM A2F2ML 0

0 0 A2F2ML A2F2LL −w
dFOCL,`

dM1

dFOCL,`

dL1

dFOCL,`

dM2

dFOCL,`

dL2
−wuc


dFOCL,`

dM1

= A1F1M(uc` − (1 + λL)wucc)

dFOCL,`

dL1

= A1F1L(uc` − (1 + λL)wucc)− (u`` − (1 + λL)wuc`)

dFOCL,`

dM2

= A2F2M(uc` − (1 + λL)wucc)

dFOCL,`

dL2

= A2F2L(uc` − (1 + λL)wucc)− (u`` − (1 + λL)wuc`)

Applying the implicit function theorem yieldsD(A1)(M1, L1,M2, L2, λL)
′ = −J−1

L D(A1)FOCL.
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Some further algebra, and substitution, yields

D(A1)FOCL = (F1M , F1L, 0, 0, (uc` − (1 + λL)wucc)F1)
′

dL2

dA1

= LD2w∗
LD1A1 − LSc(F1MMD1A1 + F1LLD1A1 + F1)

LSw∗ − (LD1w∗ + LD2w∗)− LSc(LD1A1 + LD2A2)

dL2

dL
= LD2w∗

1

LSw∗ − (LD1w∗ + LD2w∗)− LSc(LD1A1 + LD2A2)

dL2

dM
= LD2w∗

rLSc

LSw∗ − (LD1w∗ + LD2w∗)− LSc(LD1A1 + LD2A2)

dL2

dA1
< 0; for interpretation, note that this expression is the derivative of labor demand

on plot 2 with respect to the shadow wage, times the effect of the shock to A1 on
the shadow wage. The numerator of the latter is the effect the shock on negative
residual labor supply through direct effects (LD1A1) and wealth effects, including
through adjustments of labor and inputs (−LSc(F1MMD1A1 + F1LLD1A1 + F1)). The
denominator of the latter is the derivative of residual labor supply with respect to
the shadow wage, adjusted for wealth effects (LSw∗ − (LD1w∗ +LD2w∗)−LSc(LD1A1 +

LD2A2)).
The signs of d2L2

dLdA1
and d2L2

dMdA1
are ambiguous. However, unlike the cases of input

market failures or insurance market failures, here these second derivatives may have
opposite signs. To see one example of this, consider a case where on farm labor and
input demands are approximately linear in the shadow wage and productivity, and on
farm labor supply is approximately linear in consumption, but exhibits meaningful
curvature with respect to the shadow wage. In this case, sign( d2L2

dLdA1
) = sign

(
d
dL
LSw∗

)
and sign( d2L2

dLdA1
) = sign

(
d

dM
LSw∗

)
. To focus on one case, larger households are less

responsive to the A1 shock ( d2L2

dLdA1
> 0) if and only if they are on a more elastic

portion of their labor supply curve ( d
dL
LSw∗ > 0). That larger households, with more

labor available for agriculture, or poorer households, who likely have fewer productive
opportunities outside agriculture, would be on a more elastic portion of their labor
supply curve is consistent with proposed models of household labor supply dating back
to Lewis (1954). This motivates the prediction we focus on: that larger households
should be less responsive to the A1 shock, and richer households should be more
responsive to the A1 shock.
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Supplementary Appendix B.1 Testing for binding constraint
with crop choice

Supplementary Appendix B.1.1 Model featuring crop choice

Households have 2 plots, indexed by k: k = 1 indicates the sample plot, while k = 2

indicates the most important plot. On each plot k, they have access to two production
technologies, corresponding to horticulture and bananas. The technology for horticul-
ture production is σAH

k F
H
k (Mk, Lk, zk), where AH

k is plot horticulture productivity,
Mk is inputs applied to horticulture on plot k, and Lk is household labor applied
to plot k. The production shock σ is a random variable with mean normalized to
1.69 Utilizing subscripts to indicate partial derivatives and subsuming arguments we
assume marginal products are strictly positive (FH

kM > 0, FH
kL > 0, FH

kz > 0), marginal
products are increasing in the use of other inputs (FH

kML > 0, FH
kMz > 0, FH

kLz > 0),
and the production technology is strictly concave (FH

kMM < 0, FH
kLL < 0, FH

kzz <

0, FH
kMMFH

kLL−(FH
kLM)2 > 0, …). The technology for banana production is FB

k (1−zk).
We make the simplifying assumption that banana production only uses land as an in-
put, consistent with the very low input and labor use associated with banana produc-
tion that we document. We make the additional simplifying assumption that banana
production is riskless, consistent with qualitative work suggesting that horticultural
production is particularly risky because of both production risk and marketing risk.
In addition, we allow other costs and benefits of allocating land to bananas relative
to horticulture, CB

k (1− zk), which includes rainy season production of bananas. We
further assume FB

kz > 0, FB
kzz < 0, CB

kz > 0, CB
kzz > 0. Within this framework, we

model irrigation access on plot k as an increase in horticultural productivity AH
k from

0.70 Note that this implies that during the dry season, households will not cultivate
horticulture, use labor, or use inputs on plots outside the command area, consistent
with our results in Section 3.

Households have a budget of M which, if not utilized for inputs, can be invested
in a risk-free asset which appreciates at rate r. In this context, households maximize
expected utility over consumption c and leisure l, considering their budget constraint

69While we refer to σ as a production shock, this incorporates general uncertainty in the value
of production which includes joint price and production risk.

70One microfoundation of this is that production of horticulture is Leontief in water and the com-
posite FH(Mk, Lk, zk). Access to irrigation provides free access to water, which is not traditionally
available during the dry season.
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and a labor constraint L which is allocated to labor on each plot, leisure, and up to
LO units of off farm labor LO.71

Households maximize expected utility

M1,M2, L1, L2, z1, z2, l, L
OE[u(c, l)]

subject to the constraints enumerated above

σ(AH
1 F

H
1 (M1, L1, z1) + AH

2 F
H
2 (M2, L2, z2)) + FB

1 (1− z1)− CB
1 (1− z1)+

FB
2 (1− z1)− CB

2 (1− z2) + wLO + r(M −M1 −M2) = c

M1 +M2 ≤ M

L1 + L2 + l + LO = L

LO ≤ LO

After substituting in the constraints which bind with equality, we derive the fol-
lowing first order conditions

(Mk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkM = (1 + λM)r (S1)

(Lk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkL = (1− λL)w (S2)

(zk)
(
1 + cov(σ,uc)

E[uc]

)
AkFkz = FB

kz − CB
kz (S3)

(`) E[u`]
E[uc]

= (1− λL)w (S4)

Supplementary Appendix B.1.2 Model featuring crop choice yields the
same predictions

Input or labor constraints To show that the model featuring crop choice yields
the same predictions as the model without crop choice, we proceed in 3 steps. First,
we define the plot level production function as the envelope of allocations of land

71We follow Benjamin (1992) in modeling incomplete labor markets as driven by an off farm labor
constraint. As in Benjamin (1992), we do so to match the observation that rural wages appear to be
higher than the productivity of on-farm labor. However, for the predictions that follow it is sufficient
that the household farm face an upward sloping residual labor supply. This holds if households face
a downward sloping labor demand curve (implied by Benjamin (1992); alternatively, Breza et al.
(2018) demonstrate the existence of norms driven wage floors), or if households incur convex costs
from working off farm (due to distaste from working for others). Alternatively, the market failure
may only apply to a particular task, such as managerial labor.
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across horticulture and bananas, conditional on input and labor choices. Second, we
show that second derivatives of this envelope have the same signs as second derivatives
of the plot level production function. Third, we note that our results on input and
labor constraints in Supplementary Appendix B did not depend on properties of
second derivatives of the plot level production function except their sign. Therefore,
establishing that the second derivatives of the plot level production function are the
same with and without crop choice is sufficient for results in Supplementary Appendix
B on input and labor constraints to hold in a model featuring crop choice.

First, let Fk(Mk, Lk; a) ≡ maxz aF
H
k (Mk, Lk, z) + FB

k (1 − z) − CB
k (1 − z). Ap-

plications of the envelope theorem then yield FkM = AH
k F

H
M , FkL = AH

k F
H
L , and

Fka = FH .
Second, in three steps we work through each of the second derivatives of F that

appear in Supplementary Appendix B. First, we show FkLL < 0 and FkMM < 0.
FkLL = AH

k F
H
kLL+AH

k F
H
kLz

dzk
dLk

. An application of the implicit function theorem yields
dzk
dLk

= − AH
k FH

kLz

AH
k FH

kzz+FB
kzz−CB

kzz
. We now make three substitutions. First, we substitute for

dzk
dLk

in our expression for FkLL. Second, we substitute FH
kLL < (FH

kLz)
2/FH

1zz. Third,
we substitute FB

kzz −CB
kzz < 0. These substitutions and simplification yield FkLL < 0.

An identical argument implies FkMM < 0.
Second, we show that FkLa > 0 and FkMa > 0. FkLa = FH

kL + AH
k F

H
kLz

dzk
dAH

k
. An

application of the implicit function theorem yields dzk
dAH

k
= − FH

kz

AH
k FH

kzz+FB
kzz−CB

kzz
> 0.

This yields that FkLa > 0. An identical argument implies FkMa > 0.
Third, we show that FkLM > 0. FkLM = AH

k F
H
kLM + AH

k F
H
kLz

dzk
dMk

. An application
of the implicit function theorem yields dzk

dMk
= − AH

k FH
kMz

AH
k FH

kzz+FB
kzz−CB

kzz
> 0. This yields

that FkLM > 0. As these are all the second derivatives of the plot level production
function that entered into our results in Supplementary Appendix B, as noted above
this completes the proof.

Insurance constraints Absent perfect insurance and incorporating crop choice
into the model, households may now respond to changes in productivity on the sam-
ple plot by either shifting land allocated to horticulture or shifting labor allocated to
horticulture on each plot. This significantly complicates expressions, so we simplify by
abstracting from the choice of inputs and labor and assuming FH

k (m, l, z) = FH
k (z).

We therefore focus only on statics of substitution related to land allocated to horticul-
ture. As land and labor are complements in the production of horticulture, we expect
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these results to be robust to allowing for labor and inputs to enter the production
function for horticulture. Lastly, to simplify notation, we write ΠB

k ≡ FB
k − CkB.

As in Supplementary Appendix B, we abstract from labor supply and remove leisure
from the model. Households therefore solve

max
z1,z2

E[u(c)]

σ(AH
1 F

H
1 (z1) + AH

2 F
H
2 (z2)) + ΠB

1 (1− z1) + ΠB
2 (1− z2) + wL+ rM = c

Next, we define Zk = −ΠB
k (1− zk). Further, define FH∗

k (Z) = FH
k (1− (ΠB

k )
−1(−Z)).

As ΠB
k is concave, its inverse is convex, so one minus its inverse is concave. FH

k is
concave and increasing. Therefore, FH∗

k is concave and increasing. We then rewrite
the above problem as

max
Z1,Z2

E[u(c)]

σ(AH
1 F

H∗
1 (Z1) + AH

2 F
H∗
2 (Z2))− (Z1 + Z2) + wL+ rM = c

However, this is identical to the setup for insurance constraints in Supplementary Ap-
pendix B. Therefore, all results for insurance constraints still hold under the additional
assumptions made in Supplementary Appendix B: dZ2

dAH
1

< 0, and limM→inf
dZ2

dAH
1

= 0.
Lastly, note that dZk = ΠB

kzdzk. As ΠB
kz > 0, and limM→∞ ΠB

kz > 0, it holds that
dz2
dAH

1
< 0 and limM→∞

dz2
dAH

1
= 0. This completes the proof for allocations to horti-

culture. Lastly, as noted above, we expect these results to be robust to allowing for
labors and inputs to enter the production function for horticulture.

Supplementary Appendix B.1.3 Extensions in model with crop choice

We note two extensions in the model with crop choice. First, as dry season productiv-
ity under horticulture is 0 on plots outside the command area, during the dry season
households do not cultivate horticulture, apply labor, or apply inputs to plots outside
the command area. As a result, we do not expect to see any substitution from most
important plots that are outside the command area, a test we implement in Section
5. Second, that our predictions are robust to flexibly modeling the costs associated
with adopting bananas implies our model predictions are robust to any within-plot
across-season spillovers caused by the fact that bananas are a perennial crop. Third,
predictions on across-plot substitution labor and inputs in Section 4 now also hold
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for land allocated to horticulture; intuitively, this is because horticulture is strongly
complementary to labor and inputs. This provides an additional theoretical justifi-
cation our consideration of horticulture and irrigation as outcomes in our analysis of
substitution in Section 5.
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