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Preface

Outdoor air pollution creates a significant health burden across the world. 
Exposure to outdoor airborne pollutant particles, called fine particulate matter 
or PM2.5, leads to an estimated 4.2 million deaths a year.1 Most of those deaths 
occur in low- and middle-income countries (LMICs). Understanding the sever-
ity of air pollution is a fundamental step in reducing its health burden. Most 
LMICs, however, do not have any infrastructure for measuring air quality and 
monitoring air pollution. Budgetary constraints and lack of technical expertise 
pose additional challenges.

There is increasing interest in harnessing Earth-orbiting satellite technol-
ogy to fill critical gaps in air-quality data in LMICs. Satellite technology has 
been used with success in air-quality measuring applications in high-income 
countries, which typically have well-established, operational ground-level 
monitoring networks. 

This report investigates whether satellite observations could be used to 
improve the monitoring of outdoor PM2.5 in LMICs and, if so, to identify path-
ways for those countries to incorporate satellite data into their daily, city-scale 
PM2.5 monitoring. Specifically, the report evaluates the performance of satellite 
observations in predicting ground-level concentrations of PM2.5 in nine cities in 
LMICs.

The report’s findings indicate that satellite-derived estimates of surface PM2.5 
in LMICs are not reliable. The average errors in satellite-based estimates tend to 
be very large, and reliability was limited by cloudiness, snow cover, landscape 
features, satellite coverage, and topography. 

Consequently, satellites cannot be considered as a replacement for properly 
run and maintained ground-level monitoring networks in LMICs. This report 
shows that ground-level monitoring and satellite data are best thought of as 
complements to each other. For the purpose of protecting human health, govern-
ments of LMICs, and institutions such as the World Bank, should prioritize 
establishing or strengthening ground-level monitoring networks to measure 
PM2.5 air pollution and other harmful air pollutants.

The results of this report have been published in a special issue of the peer-
reviewed journal Atmospheric Environment: “Emerging Strategies to Fill the 
Gaps in Ground-level Air Quality Data in Low- and Middle-Income Countries” 
(Alvarado and others 2019; Awe and Hagler 2020).
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NOTE

1.	 https://www.who.int/health-topics/air-pollution#tab=tab_2.

REFERENCE

Alvarado, Matthew, J., A. E. McVey, J. D. Hegarty, E. S. Cross, C. A. Hasenkopf, R. Lynch, 
E. J. Kennelly, T. B. Onasch, Y. Awe, E. Sanchez-Triana, and G. Kleiman. 2019. “Evaluating 
the Use of Satellite Observations to Supplement Ground-Level Air Quality Data in Selected 
Cities in Low- and Middle-Income Countries.” Atmospheric Environment 218: 117016. 
https://doi.org/10.1016/j.atmosenv.2019.117016.

Awe, Yewande and Gayle Hagler, ed. 2020. “Emerging Strategies to Fill the Gaps in Ground-
level Air Quality Data in Low and Middle Income Countries.” https://www.sciencedirect​
.com/journal/atmospheric-environment/special-issue/10TGZBV0GCB.

https://www.who.int/health-topics/air-pollution#tab=tab_2�
https://doi.org/10.1016/j.atmosenv.2019.117016�
https://www.sciencedirect.com/journal/atmospheric-environment/special-issue/10TGZBV0GCB�
https://www.sciencedirect.com/journal/atmospheric-environment/special-issue/10TGZBV0GCB�


 xi

The analytical work in this report builds on a growing body of evidence that the 
World Bank is building to inform more effective and efficient pollution manage-
ment interventions and harness the transition to a circular economy in low- and 
middle-income countries (LMICs). This growing body of evidence focuses on 
strengthening the knowledge base that will prompt dedicated action to tackle 
the forms of pollution that cause the most significant health and social costs in 
LMICs. It also advances interdisciplinary approaches to assess the linkages 
between pollution management and the circular economy and the World Bank’s 
dual goals of eradicating poverty and promoting shared prosperity. Recent con-
tributions from this body of work include (1) the monetary valuation of the global 
cost of mortality and morbidity caused by exposure to ambient fine particulate 
matter air pollution, (2) the bolstering of the case for establishment and strength-
ening of ground-level air-quality monitoring networks in LMICs, (3) the devel-
opment of a systematic framework to support analysis of health impacts from 
land-based pollution, and (4) economic and financial instruments to support the 
transition to a circular economy.

About This Work
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Outdoor air pollution accounts for an estimated 4.2 million1 deaths around the 
globe, caused by exposure to fine, inhalable particles with an aerodynamic 
diameter less than or equal to 2.5 microns (PM2.5, also called fine particulate 
matter). Reducing PM2.5 air pollution is thus crucial for improving public-health 
outcomes.

Measuring and reducing the health impacts of PM2.5 is especially challenging 
in low- and middle-income countries (LMICs). This is because LMICs tend to 
have limited funds for air quality monitors and limited local expertise in air 
quality. These shortcomings can undermine the effectiveness of a country’s 
policies to improve its air quality.

Earth-orbiting satellites measure the amount of aerosols in the atmosphere 
with a metric called aerosol optical depth (AOD), which is based on the amount 
of light scattered and absorbed by all the aerosols over a given location (from the 
Earth’s surface to space). The global coverage of these satellites and their 
decades-long records can potentially complement the sparse ground-level 
monitoring networks in LMICs. However, the performance of the techniques 
used to convert the satellite observations of AOD into estimates of ground-level 
PM2.5 concentrations, and thus PM2.5 exposures, is not well established in LMICs, 
where ground-level monitoring (GLM) data on PM2.5 may be infrequent or 
absent. 

It can be difficult to accurately estimate surface PM2.5 concentration based on 
satellite data. The satellite is directly measuring the reflected sunlight from the 
Earth, which is affected not only by the aerosols in the atmosphere, but also by 
the amount of sunlight reflected by the ground (the surface reflectance). 
Furthermore, because the reflected sunlight is affected by all the aerosols in the 
atmosphere, determining the ground-level PM2.5 concentration requires making 
an estimate of how the AOD (from all levels of the atmosphere) is related to the 
ground-level PM2.5 concentration (that is, just the PM2.5 located at the surface). 
Thus, to calculate ground-level PM2.5 concentrations and exposures using 
satellite data, assumptions must be made regarding surface reflectance and the 
relationship between the AOD and ground-level PM2.5 concentration. Errors or 
uncertainties in these assumptions will lead to errors and uncertainties in the 
satellite-derived PM2.5 concentrations and exposures. 

Executive Summary
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The goal of this report is to investigate if satellite observations could be used 
to improve PM2.5 monitoring in LMICs and, if so, to identify pathways for LMICs 
to incorporate satellite data into their daily, city-scale PM2.5 monitoring. A review 
of the scientific literature was conducted to identify different approaches used 
to combine satellite observations with GLM of PM2.5 and to understand their 
reported performance. In addition, several methods for using satellite 
observations from publicly available sources to predict observed ground-level 
PM2.5 daily average concentrations (and thus exposures) were tested for use in 
cities in LMICs. These methods were then applied to nine cities within LMICs 
(table ES.1) to identify patterns in the satellite performance with respect to city 
altitude, location, and other variables.

LITERATURE REVIEW

Many groups have successfully used different approaches to estimate 
ground-level PM2.5 concentrations, and thus exposures, using satellite 
observations. These groups have generally looked at a continental-to-global 
scale (rather than the city-specific scale of interest to this work) and have 
predicted monthly and annual average PM2.5 concentrations and exposures 
(rather than the daily average estimates of interest in this work). However, 
the errors in these satellite estimates of PM2.5 concentrations can be large 
(about 50 percent).

Although many satellites measure AOD, only a smaller number of satellites 
cover the entire globe each day and provide free data, shortly after the observation 
is made, that are available for use in LMICs for daily observations. In addition, 
many satellite data sets of AOD can be difficult to access, either because the user 
must pay for the data or because the download process cannot be easily 
automated. Because the estimated errors in the satellite AOD products are 
similar, the satellite product that offers the best balance of AOD coverage and 
fine horizontal resolution for a given city should be used. For this report, the 
National Aeronautics and Space Administration’s (NASA) MODIS combined 
Deep Blue and Dark Target AOD data set was used, since it is free, available 

TABLE ES.1  Cities included in this analysis

CITY COUNTRY LOCATION INCOME GROUP

Accra Ghana Coastal, low altitude Lower middle

Addis Ababa Ethiopia Inland, high altitude Low

Dakar Senegal Coastal, low altitude Lower middle

Delhi India Inland, low altitude Lower middle

Hanoi Vietnam Inland, low altitude Lower middle

Kampala Uganda Inland but near lake, 
high altitude

Low

Kathmandu Nepal Inland, high altitude Lower middle

Lima Peru Coastal, low altitude Upper middle

Ulaanbaatar Mongolia Inland, high altitude Lower middle

Source: World Bank.
Note: Income groups correspond to World Bank Country Classifications by Income Level: 2021–22. 
Income classifications are affected by several factors and are subject to change over time.
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shortly after the observation is made, easy to access, has been extensively 
validated, and has good coverage over urban and coastal areas.

Previous studies have attempted to convert satellite AOD measurements to 
ground-level PM2.5 estimates using statistical techniques, chemical transport 
model (CTM)–based approaches, or hybrid approaches. 

•	 CTM-based approaches can be applied to any region of the globe and do not 
require any GLM data. Public global CTM data sets, such as the NASA 
MERRA-2 reanalysis, can be used for estimates of aerosol vertical profiles and 
other parameters. However, these CTM data sets can have significant errors 
in the CTM’s simulation of how aerosol concentrations change with altitude. 

•	 Statistical approaches do not depend on a CTM, but they require a multiyear, 
accurate GLM data record. Only some LMICs have sufficient GLM data to 
use these approaches. 

•	 Hybrid approaches that correct CTM-based approaches with statistical 
models tend to give the best performance. However, they also require 
a multiyear, accurate GLM data record over many different land-use types 
(for example, urban and rural sites, coastal and inland sites), which few 
LMICs have. 

Interpolation approaches, such as co-kriging and land-use regression, can be 
used to combine satellite PM2.5 estimates with GLM data to provide estimates of 
PM2.5 concentrations at a high horizontal resolution (100–500 meters) across 
urban areas. However, these approaches tend to work better as the satellite 
horizontal resolution is increased and as the GLM network covers a wider 
variety of sites. The highest horizontal resolution possible for current satellite 
AOD measurements is between 2 and 4 kilometers (for geostationary satellites) 
or 1 and 10 kilometers (for polar-orbiting satellites). Consequently, finer-scale 
predictions of ground-level PM2.5 will be possible only for areas where extensive, 
high-quality GLM data exist.

PERFORMANCE OF SATELLITE APPROACHES IN LMICs

This report found that satellites cannot be a complete replacement for a GLM 
network. The CTM-based and statistical approaches for converting satellite 
AOD to ground-level PM2.5 concentrations did a poor job of predicting the 
day-to-day or site-to-site variations in daily average PM2.5 values within a city. In 
addition, the average errors in all satellite-based estimates of the daily average 
PM2.5 concentration at a given location in a city tended to be very large 
(21–77 percent for the statistical methods, and 48–85 percent for the CTM-based 
methods), much larger than the 10 percent error that is usually considered 
acceptable for PM2.5 monitoring (Alvarado and others 2019). These large errors 
indicate that satellite-derived estimates of PM2.5 concentrations in LMICs are 
not reliable.

Many cities also had significant limitations in the availability of satellite 
observations of aerosols throughout the year. For example, no satellite 
observations are available in Ulaanbaatar, Mongolia, for the high-PM2.5 winter 
months of December to mid-March because of persistent snow cover. Thus, even 
a perfect method for converting satellite AOD measurements to ground-level 
PM2.5 estimates would underestimate the true annual average PM2.5 concentration 
for Ulaanbaatar by a factor of two. 
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The work reported here found some patterns in the performance of satellite 
methods in different cities. Satellite-based methods appear to work best for low-
altitude, inland cities such as Delhi, India, and Hanoi, Vietnam, but still have 
significant errors (43–60 percent) in predictions of daily average PM2.5 
concentrations at sites within these cities. Coastal cities (including cities near 
large lakes) have poor satellite coverage, either because of persistent clouds or 
the mixture of land and water surfaces in the satellite measurement of AOD. 
CTM-based satellite approaches tend to underestimate PM2.5 in high-altitude 
cities (except for Addis Ababa, Ethiopia, likely because of its location near the 
Sahara). Although this work found that, under some conditions, adding satellite 
data to GLM network data via co-kriging may reduce the number of GLM sites 
needed to characterize PM2.5 concentrations within a city, this ability varies from 
city to city and could result in large errors in annual average estimates for cities 
with a seasonal or persistent lack of satellite AOD coverage. 

The 2017 annual average PM2.5 concentrations in Delhi and Ulaanbaatar 
derived with the CTM-based method used in this project were similar to the 
2016 annual averages estimated in the uncorrected2 Global Burden of Disease 
(GBD) 2016 data set.3 However, at the city level, results are considerably less 
accurate. For example, in Ulaanbaatar the CTM-based method tested in this 
report and the uncorrected GBD 2016 data set each underestimates the true 
annual average PM2.5 concentration by a factor of 10. This is likely because cities 
in appreciably different air quality environments than their surroundings, such 
as cities in mountain valleys surrounded by rural land like Ulaanbaatar, will not 
get accurate relationships between satellite AOD and ground-level PM2.5 from 
the relatively coarse resolution of global CTMs.

The geographically weighted bias correction used in the GBD 2016 data set 
corrects for the fact that Ulaanbaatar is surrounded by a region that is much 
less polluted; but the corrected GBD 2016 data set still underestimates the true 
annual average by a factor of two. In addition, the correction requires the use 
of GLM data at a continental scale. If only the GLM data from a given city are 
used, the land-use parameters are not highly correlated with the PM2.5 
variations in the city. Estimating variations in annual average PM2.5 within a 
city is therefore unlikely to be possible with satellite AOD data alone, especially 
for cities affected by the satellite-coverage issues noted above. Estimating fine-
scale geographic variations of PM2.5 in a city has only been done using extensive 
GLM network data (covering both urban and rural sites) and land-use 
regression, with the satellite-based PM2.5 estimate used as a variable in the 
land-use regression.

RECOMMENDATIONS

Based on these results, GLM and satellite data are best thought of as comple-
ments to each other. Many GLM networks could be improved by considering 
satellite data, but all approaches using satellite data improve as the number of 
high-quality GLM sites is increased. Thus, it is important that LMICs strengthen 
support for the establishment of GLM networks to measure air pollutants that 
cause mortality, notably PM2.5, in LMICs in Sub-Saharan Africa and other 
regions. These GLM networks must have adequate quality assurance and quality 
control and follow standard operating procedures to ensure the data are of suffi-
cient quality to be used to estimate PM2.5 exposures for health studies and to be 
combined with the satellite estimates.
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In other words, satellite data may be useful for estimating average air quality 
for countries or large geographical areas. However, for the purpose of protecting 
human health, LMICs need to prioritize the establishment or strengthening of 
GLM networks where they are lacking or weak, to measure air quality at the 
level where human activity is typically carried out and people are exposed to air 
pollutants, notably PM2.5, that are harmful to health and cause death.

This work also provides the following recommendations for the use of 
satellite observations to supplement GLM data in LMICs (see proposed LMIC 
typology in chapter 1):

•	 For countries with no GLM data (Type I), the only possible approach 
to convert AOD to ground-level PM2.5 is a CTM-based approach. The 
satellite-derived ground-level PM2.5 values should be assigned a high uncer-
tainty that reflects not only the uncertainty in the AOD (about 20 percent) but 
also the estimated uncertainty in the CTM-derived AOD-to-PM2.5 relation-
ship (about 50 percent). 

•	 For countries with a small amount of GLM data with variable quality (Type 
II), it is possible to derive a bias estimate for the CTM-based estimates of 
ground-level PM2.5. However, it will not be possible to ascertain whether the 
bias-corrected estimate is truly more accurate than the raw CTM-based esti-
mate, and thus it is advisable to report and store both values. This will allow 
for reprocessing of the satellite estimates when more-rigorous quality assur-
ance procedures are developed. 

•	 Countries currently establishing GLM networks (Type III) can explore both 
statistical and bias-corrected CTM-based approaches for converting AOD to 
PM2.5. CTM-based approaches likely would be best for these countries, but 
statistical approaches should also be tested before making a final decision. 

•	 Countries with reliable, comprehensive GLM networks (Types IV and V) will 
be able to use satellite observations to fill in the gaps of the existing GLM 
networks. The more extensive GLM networks in these countries will allow 
for more-accurate estimates of the geographical and seasonal variation in the 
AOD-to-PM2.5 relationship, and thus purely statistical approaches may out-
perform CTM-based estimates.

In addition, the results of this work suggest the following recommendations 
for LMICs and the US State Department for reporting the metadata for their 
GLM measurements to ensure the data are sufficiently accurate to be usefully 
combined with satellite estimates of PM2.5:

•	 PM2.5 measurements need to be provided along with information on the 
instrument/technique type, estimates of measurement uncertainties, rele-
vant metadata, and operational history. It is important that each PM2.5 
measurement not only identifies the type of instrument used for the measure-
ment but also tracks the instrument’s relevant history of use and calibration. 
This includes all “meta” data from instrument data files, including 
“housekeeping” files. 

•	 Any recorded results from tests relating to standard operating procedures 
and quality-assurance protocols should be collected and disseminated along 
with the PM2.5 measurements to establish an instrument track record over 
time, providing a transparent, data-centric measure of instrument reliability 
and performance. 

•	 Currently, US embassies do not publish their full quality-assurance protocol 
metadata along with the PM2.5 levels, thereby reducing the use of these 
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measurements as well-established and controlled reference measurements. 
Thus, it is recommended that US embassies publish their full quality-
assurance protocol and relevant metadata along with the PM2.5 levels.

ADDED VALUE OF THIS WORK

The analytical added value of this report includes the following:

•	 A review and synthesis of the scientific literature on using satellites to esti-
mate ground-level PM2.5 concentrations, with a focus on the relevance of the 
approaches for city-scale, daily-average PM2.5 monitoring in LMICs

•	 An analysis of the performance of different satellite AOD measurements and 
methods for converting AOD to ground-level PM2.5 concentrations from a 
local, city-specific perspective, including a discussion of the patterns in the 
performance due to city location and

•	 Recommendations for practitioners and policy makers in LMICs on how to 
improve their estimates of PM2.5 exposure through expansion of their GLM 
networks, adoption of rigorous quality-assurance procedures, and incorpora-
tion of satellite data.

NOTES

1.	 https://www.who.int/health-topics/air-pollution#tab=tab_2.
2.	 The uncorrected GBD 2016 data set is the data set derived by relating satellite AOD to 

ground-level PM2.5 before correction for persistent errors (biases) using GLM data and 
geographically weighted regression. 

3.	 Downloaded from http://fizz.phys.dal.ca/~atmos/martin/?page_id=140.
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ABI	 Advanced Baseline Imager
AERONET	 Aerosol Robotic Network
AHI	 Advanced Himawari Imager 
AMDAR	 Aircraft Meteorological Data Relay 
AOD	 aerosol optical depth 
AOT	 aerosol optical thickness
AQ	 air quality 
BAM	 beta attenuation monitor
BAMM	 beta attenuation mass monitor 
CLASS 	 Comprehensive Large Array-Data Stewardship System 

(NOAA)
CTM 	 chemical transport model
DAAC	 Distributed Active Archive Center
ECMWF 	 European Centre for Medium-Range Weather Forecasts
EDGAR 	 Emission Database for Global Atmospheric Research
EDM 	 environmental dust monitor
EPA	 Environmental Protection Agency (US)
FEM 	 federal equivalent method
FRM	 federal reference method
GBD	 Global Burden of Disease
GEOS 	 Goddard Earth Observing System 
GFS 	 Global Forecast System 
GLM 	 ground-level monitoring
GOES 	 Geostationary Operational Environmental Satellite
GPS 	 global positioning system
GWR 	 geographically weighted regression
JMA 	 Japan Meteorology Agency
JPSS 	 Joint Polar Satellite System
LAADS	 Level-1 and Atmospheric Archive and Distribution System 

(NASA)
LEO	 low earth orbit
Lidar 	 light detection and ranging
LMICs 	 low- and middle-income countries
LUR 	 land-use regression
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LUT	 look-up table
MACC 	 Monitoring Atmospheric Chemistry and Climate
MAIAC 	 Multi-Angle Implementation of Atmospheric Correction
MERRA 	 Modern Era Retrospective-analysis for Research and 

Applications
MISR 	 Multi-angle Imaging Spectroradiometer
MNB	 mean normalized bias
MNGE	 mean normalized gross error
MODIS 	 Moderate-Resolution Imaging Spectroradiometer
MPL 	 micro-pulse lidar
MSG	 Meteosat Second Generation
NASA 	 National Aeronautics and Space Administration
NCEP 	 National Centers for Environmental Prediction
NDVI 	 normalized difference vegetation index 
NEMS 	 NOAA Environmental Modeling System
NGAC 	 NEMS GFS aerosol component
NIR 	 near-infrared
NOAA 	 National Oceanic and Atmospheric Administration
NRT	 near real-time
NWP 	 numerical weather prediction
PBL 	 planetary boundary layer
PBLH 	 planetary boundary layer height
PM2.5/PM10 	 particulate matter with an aerodynamic diameter less than or 

equal to 2.5 microns/10 microns, respectively
QA	 quality assurance
QC	 quality control
RMSE	 root-mean-square error
RT 	 radiative transfer
SEDAC 	 Socioeconomic Data and Applications Center
SEVIRI 	 Spinning Enhanced Visible and Infrared Imager
SMAOD	 suspended matter, aerosol optical depth
SMAOL 	 SEVIRI-MSG Aerosol Over Land
SPARTAN	 Surface Particulate Matter Network
TEOM	 tapered element oscillating microbalance
TOA 	 top of atmosphere
UN 	 United Nations
USGS 	 United States Geological Survey
UV 	 ultraviolet
VIIRS 	 Visible Infrared Imaging Radiometer Suite
VIS 	 visible
WMO 	 World Meteorological Organization
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Aerosol(s). Tiny solid and liquid particles suspended in the air. Windblown dust, 
sea salts, volcanic ash, smoke from wildfires, and pollution from factories are all 
examples of aerosols.

Aerosol optical depth (AOD) or aerosol optical thickness (AOT). A measure of 
the extinction (absorption and scattering) of light by aerosols in a column of air 
from the Earth’s surface up to space. Defined as the natural logarithm of the ratio 
of the incident light at the top of the atmosphere to the transmitted light at the 
surface, assuming the light travels straight down.

Bias or mean bias. The average (mean) difference between a measurement and 
the true value of the property being measured. An ideal measurement has a mean 
bias of zero. If this value is large, it suggests that there are consistent (nonrandom) 
errors in the measurement. 

Chemical transport model (CTM). A computer model that simulates the trans-
port and chemistry of gases and aerosols in the atmosphere and can aid in 
air-quality forecasting and planning. 

Co-kriging. An extension of kriging that uses a secondary data set to provide 
additional information on the spatial distribution of the air-quality variable 
being interpolated. 

Correlation coefficient (R). In statistics, the proportion of the variance in the 
dependent variable that is predictable from the independent variable(s). If two 
measurements of PM2.5 are well correlated such that they predict similar spatial 
and temporal patterns, then the R value will be near 1. If the values are uncor-
related, the value will be near 0. 

Data assimilation. A process for using observations of the atmosphere (weather 
and chemical composition) to improve computer-model representations of the 
atmosphere. 

Doppler wind profiler (DWP). A weather instrument that uses radar to detect 
the wind speed and direction at various elevations above the ground.

Generalized additive model (GAM). A statistical model of a system that is an 
extension of multiple linear regression models that allows the unknown func-
tional form for each of the predictor variables to be determined from the data.

Glossary
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Geographic information system (GIS). A system designed to capture, store, 
manipulate, analyze, manage, and present geographic data. Usually analyzed 
using specialized software packages such as ArcGIS.

Geographically weighted regression. A statistical model of a system that is an 
extension of multiple linear regression models that allows the coefficients to 
vary with location.

Geostationary satellite. A satellite for which the orbit remains stationary over a 
given point on the Earth’s equator. This type of satellite can continuously view 
the area underneath it but provides no data on other regions of the globe.

Global bias. Bias relative to a large set of observations, such as in several moni-
toring networks covering a continent.

Kriging. A method of data interpolation (that is, determining the value of a func-
tion at a given point by computing a weighted average of the known values of the 
function in the neighborhood of the point) used to provide estimates of air qual-
ity at locations without monitors, based on the measurements of, and distances 
from, surrounding air-quality monitors.

Land-use regression (LUR). A multiple linear regression model that uses differ-
ent land-use variables (for example, population density, percent of urban land 
cover, and traffic intensity) to predict the concentration of air pollutants at a high 
resolution across an area using a sparser measurement network. 

Lidar. Light detection and ranging; a measurement technique that uses reflected 
laser light to determine atmospheric properties such as the height of clouds and 
aerosol layers.

Local bias. Bias relative to a small set of nearby observations, such as the moni-
toring network within a city.

Look-up table (LUT). An approach to speeding up computer models that precal-
culates the values of many functions and stores them in a table for later use.

Mean normalized bias. Also called mean fractional bias, this is the average 
(mean) of the normalized bias, which is the difference between a measurement 
and the true value of the property being measured, divided by the true value. An 
ideal measurement has a mean normalized bias of zero. If this value is large, it 
suggests that there are consistent (nonrandom) errors in the measurement. 

Mean normalized gross error. Similar to mean normalized bias, but the abso-
lute value of the normalized bias is used so that positive and negative errors do 
not cancel out.

Near real-time (NRT) data. Model output or observational data that are pro-
cessed and distributed as quickly as possible after the time being modeled or the 
time of the measurement. 

Noise. In the context of a satellite measurement, noise refers to the random 
errors present in the measurement. Noise can generally be reduced by averaging 
over a larger area at the expense of a coarser horizontal resolution.

Particulate matter. See Aerosol(s).

Planetary boundary layer height (PBLH). The height of the well-mixed layer 
of air near the Earth’s surface. 
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Polar-orbiting satellite. A satellite that has an orbit passing over or near the 
poles and thus can provide observations of the entire globe with the trade-off 
that each location is observed only (at most) twice a day.

Root-mean-square error (RMSE). An estimate of the average error in a mea-
surement or model prediction that, unlike mean bias, does not allow positive and 
negative errors to cancel each other out. 

Satellite AOD products. The estimate of the aerosol optical depth (AOD) over a 
given area produced from a given satellite instrument. 

Surface reflectance. The fraction of sunlight that is reflected by the Earth’s 
surface at a given location. Vegetation and ocean water tend to have low surface 
reflectance, while snow, deserts, and many urban surfaces have high surface 
reflectance.
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Contextual Background and 
Objectives

This report was produced as part of a program of analytical work conducted 
under the framework of the World Bank’s multidonor-funded Pollution 
Management and Environmental Health program. The objectives of this report 
are to improve knowledge regarding the following:

•	 	How satellite measurements can best be used to enhance air-quality (AQ) 
monitoring, and thus improve human exposure assessment, in low- and 
middle-income countries (LMICs) and

•	 How satellite measurements can be brought into closer agreement with 
ground-level monitoring data, considering the shortcomings and advantages 
of satellite and ground-level measurements.

This report summarizes the findings of the three tasks: (1) a literature review 
of approaches used to combine satellite observations with ground-level moni-
toring measurements of particulate matter with an aerodynamic diameter less 
than or equal to 2.5 microns (PM2.5), (2) the effort to develop and evaluate meth-
ods for converting satellite aerosol optical depth readings into ground-level 
PM2.5 estimates in individual cities (Accra, Ghana; Delhi, India; Lima, Peru; and 
Ulaanbaatar, Mongolia), and (3) evaluation of the application of these methods 
to nine LMIC cities to identify geographic patterns in the performance of the 
satellite estimates.

Based on this work, recommendations are made for LMICs regarding how 
best to incorporate satellite data into their monitoring plans using the following 
proposed typology based on the country’s level of engagement in AQ 
monitoring:

•	 Type I: Countries with no existing measurements and no history of any kind 
of routine measurements of atmospheric composition. Some anecdotal mea-
surements or one-time sampling may have taken place. 

•	 Type II: Countries with some information on atmospheric composition avail-
able (perhaps PM10—particulate matter with an aerodynamic diameter of less 
than or equal to 10 microns—or total suspended particulates) but of variable 
quality without rigorous quality assurance procedures. 

1
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•	 Type III: Countries that possess reliable information but with poor spatial or 
temporal coverage; for example, monitoring may exist in only one city or rou-
tine monitoring may exist for a year or two but is no longer being collected 
because of equipment malfunction and/or lack of repairs. 

•	 Type IV: Good, reliable AQ monitoring underway or being established. 
•	 Type V: Routine, long-term AQ monitoring.



 3

Introduction

Ambient or outdoor air pollution has significant impacts on public health around 
the globe. According to the World Health Organization, an estimated 4.2 million1 
people die every year worldwide from exposure to tiny solid and liquid particles—
referred to as aerosols or fine particulate matter with an aerodynamic diameter 
less than or equal to 2.5 microns (PM2.5)—suspended in outdoor air. Reducing 
these impacts through air pollution controls is thus a major goal of environmen-
tal efforts to improve public health. However, quantifying and reducing the 
health impacts of PM2.5 is especially challenging in low- and middle-income 
countries (LMICs) because these countries tend to have limited air-quality (AQ) 
monitoring infrastructure, have insufficient quality assurance and quality con-
trol of their AQ monitoring data, and have limited local technical expertise in AQ 
monitoring, modeling, and planning. These shortcomings related to data and 
expertise can undermine the effectiveness of the design and implementation of 
policies to improve AQ in LMICs.

Earth-orbiting satellites can detect aerosols using observations of the sun-
light scattered by the aerosols (figure 2.1; Bernard and others 2011; Levy and oth-
ers 2013). This report examines whether the extensive spatial and temporal 
coverage of these satellites (figure 2.2) can potentially complement the sparse 
networks of ground-level monitors that typically exist in LMICs, thereby 
improving AQ monitoring and enforcement actions in these countries.

However, satellites are not able to measure ambient ground-level concentra-
tions of PM2.5 directly. Instead, satellites use the observations of the sunlight 
scattered by aerosols to estimate a parameter called aerosol optical depth (AOD), 
which represents the extinction (absorption and scattering) of light by all of the 
aerosols in a column of air from the Earth’s surface up to the top of the atmo-
sphere (for example, Levy and others 2013). As shown in figure 2.3, the reflected 
sunlight measured by the satellite depends on the intensity of sunlight reaching 
the Earth (Io), the fraction of the sunlight reflected by the ground (α, also called 
the “surface reflectance” or “albedo”), the AOD, and the aerosol light scattering 
and absorbing properties (also called aerosol optical properties, here repre-
sented by a single factor ω). Although the intensity of the incoming sunlight 
reaching Earth is well known, the other three properties are more uncertain. 

2
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To measure AOD, “retrieval algorithms” are designed that use tabulated esti-
mates of the surface reflectance and aerosol optical properties.

Radiative-transfer (RT) models enable accurate simulations of reflectance 
at the top of the atmosphere (TOA) in the presence of aerosol layers with a 
variety of optical properties. By properly accounting for surface reflectance 
from land and ocean backgrounds, it is possible to retrieve several important 
aerosol properties by comparing satellite-observed TOA reflectances to those 
calculated from an RT model. Typically, to optimize processing time, TOA 
reflectances are precalculated by the RT model for several combinations of 
aerosols and are stored in look-up tables accessed by the retrieval algorithm. 
The RT calculations are performed for a range of aerosol optical thicknesses, 
so each stored reflectance value in the look-up table corresponds to an aerosol 
optical thickness.

The estimates of all three parameters (surface reflectance, AOD, and aerosol 
optical properties) are then refined to provide the best match with the observed 
reflected sunlight at multiple wavelengths (that is, the satellite measurement of 
the different colors in the reflected sunlight). However, uncertainties or errors 
in the estimated surface reflectance and aerosol optical properties can lead to 
similar uncertainties and errors in the measured AOD. 

Source: World Bank.
Note: The white haze image is produced by the scattering of sunlight by the aerosols in the smoke. Image taken June 10, 
2015, 18:55 UTC. MODIS = Moderate-Resolution Imaging Spectroradiometer; UTC = Coordinated Universal Time.

FIGURE 2.1

MODIS Aqua image of wildfire smoke being transported eastward to the Chesapeake 
Bay, US
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The exact relationship between AOD and ground-level PM2.5 concentrations 
depends on the vertical distribution of aerosols above the observed location and 
their ability to scatter and absorb sunlight, which in turn depends on their size, 
shape, and chemical composition (van Donkelaar, Martin, and Park 2006). Two 
main approaches are used to estimate the relationship between AOD and 
ground-level PM2.5 concentrations: statistical approaches (for example, general-
ized additive models [GAMs]) and chemical transport model (CTM)–based 
approaches. Statistical techniques can be used to predict the relationship 
between AOD and ground-level PM2.5 using historical data sets for both param-
eters and other variables (for example, Hu and others 2014; Sorek-Hamer and 
others 2013, 2015; Strawa and others 2013). Alternatively, the relationship can be 
estimated by using a computer model of the chemistry of the atmosphere, called 
a chemical transport model (CTM) (for example, Geng and others 2015; van 
Donkelaar and others 2006, 2010, 2011, 2015a, 2015b). 

Several factors can limit the ability of satellites to obtain accurate AOD mea-
surements. Satellite observations of AOD generally require that the fraction of 
the sunlight reflected by the ground (that is, the surface reflectance) is relatively 
uniform across the satellite “footprint.” This “footprint” is the area covered by a 
single satellite AOD observation, which may include multiple satellite image pic-
ture elements or “pixels.” The horizontal extent of this footprint is referred to as 
the horizontal resolution of the AOD observation. Thus, mixed and reflective 
surfaces—including deserts, persistent snow cover, and mixed land and water 

Source: World Bank.
Note: The three bands in each panel illustrate three consecutive swaths from Moderate-Resolution Imaging Spectroradiometer (MODIS) in a polar orbit. 
Green, red, turquoise, magenta, and blue points represent coverage from geostationary satellites.

FIGURE 2.2

Current and future coverage provided by available polar and geostationary weather satellites

a. Current coverage provided by available polar
and geostationary satellites

b. Future coverage after planned updates of
geostationary satellites
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Source: World Bank.
Note: The reflected sunlight measured by the satellite includes that reflected by the aerosols (54 percent) and that 
reflected by the surface (2.7 percent). Here I

o
 represents the initial intensity of the sunlight, the surface reflectance is 

represented by one factor (α), and the aerosol scattering and absorbing properties are represented by a single combined 
factor (ω). The numbers are just to illustrate relative magnitudes and are not results from a radiative transfer model 
simulation. AOD = aerosol optical depth; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 

2.5 microns; μg/m3 = micrograms per cubic meter.

FIGURE 2.3

How satellites can measure aerosol optical depth from reflected sunlight
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surfaces near coastal cities—can reduce the ability of satellites to provide accu-
rate AOD observations for many cities. Clouds also prevent satellite AOD obser-
vations, and thus cities with seasonal persistent clouds will have reduced satellite 
observations during those periods. 

The statistical and CTM-based approaches for relating AOD to ground-level 
concentrations of PM2.5 also have important limitations. The vertical profile of 
the aerosols, and thus the relationship between AOD and ground-level PM2.5, 
depends strongly on the height of the well-mixed layer of air near the Earth’s 
surface called the planetary boundary layer (PBL). For example, a one-kilometer 
PBL height with a more concentrated aerosol layer near the Earth’s surface 
(green line in figure 2.4) may have the same AOD as a more dilute aerosol layer 
with a two-kilometer PBL height (blue line in figure 2.4). In addition, if there is 
a concentrated aerosol layer above the PBL—as can happen when wildfire, dust, 
or pollution is transported a long distance from its source—the AOD may be due 
mainly to this concentrated aerosol layer. In this case, the AOD observation does 
not provide much useful information about the aerosol concentration at the 
Earth’s surface (red line in figure 2.4).

Lack of satellite AOD products at night, or due to clouds, snow cover, and 
other problems, can limit the ability of satellites to be used to estimate expo-
sure to PM2.5 for health studies. Satellite AOD observations are obtainable only 
for one specific time during the day (for polar orbiting satellites) or during the 
cloud-free daylight times (for geostationary satellites). However, the daily 
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average PM2.5 concentration is the required metric for estimation of acute 
(short-term) health effects of PM2.5. Consequently, even if the relationship 
between satellite AOD and the ground-level PM2.5 at the satellite observation 
time were perfectly known, the relationship between the ground-level PM2.5 

concentration at the satellite observation time and the daily average PM2.5 con-
centration would have to be estimated as well. This estimation would be based 
on either the statistics of past ground-level PM2.5 observations or the output of 
a CTM. Errors in this relationship would lead to errors in the satellite-based 
estimate of PM2.5 exposure. 

In addition, investigations of the chronic (long-term) health effects of ground-
level PM2.5 require estimating the annual average PM2.5 concentration. Thus, any 
seasonal pattern that affects the probability of a successful AOD retrieval, from 
either seasonal patterns in clouds or surface properties (that is, winter 
snow  cover), will lead to a potentially incorrect annual average of 

Source: World Bank.
Note: The green profile shows a 1-kilometer planetary boundary layer (PBL) height. 
The blue profile shows a 2-kilometer PBL height. The red profile shows a 2-kilometer PBL 
height and an elevated aerosol layer between 3.5 and 5.5 kilometers in altitude. 
AOD = aerosol optical depth; PM

2.5
 = particulate matter with an aerodynamic diameter 

less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.

FIGURE 2.4

Highly idealized example of three different aerosol vertical profiles, 
each with different ground-level PM2.5 concentrations, that result 
in the same aerosol-optical-depth value of one when measured by 
satellites
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PM2.5 from satellite observations. This is so even if the relationship between 
AOD and ground-level PM2.5 concentrations is known. 

The ability of satellite observations to estimate ground-level PM2.5 has not 
been established in LMICs. In addition, most previous studies have provided 
global or continental-scale results on monthly or annual timescales, rather than 
the city-scale, daily average PM2.5 concentration estimates needed for routine AQ 
monitoring and for public health alert programs. Most previous validation work 
on the use of satellite observations to estimate ground-level PM2.5 has been per-
formed in developed countries with extensive, well-calibrated, long-term 
ground-level monitoring (GLM) observations of PM2.5 (for example, Geng and 
others 2015; Hu and others 2014; Sorek-Hamer and others 2013, 2015; Strawa 
and others 2013; van Donkelaar and others 2006, 2010, 2011, 2015a, 2015b). A few 
studies have evaluated the performance in some of the East Asia countries where 
GLM data are relatively new (for example, van Donkelaar, Martin, Brauer, and 
Boys 2015). However, the performance of the statistical models and CTMs used 
to derive these relationships has not been established in LMICs where GLM is 
infrequent or absent. 

Thus, the satellite estimates of ground-level PM2.5 in LMICs may be biased—that 
is, the average difference between the estimated ground-level PM2.5 and the true 
PM2.5 concentration may be large, suggesting consistent (nonrandom) errors in the 
satellite estimates. Techniques that attempt to remove these consistent errors 
are called bias-correction methods (for example, van Donkelaar, Martin, Spurr, 
and Burnett 2015), but these corrections depend on data from well-calibrated, 
long-term GLM networks and thus may not perform well in LMICs. Errors in the 
city-scale, daily average PM2.5 concentration estimates could cause significant 
problems for public health alert programs, such as “code red” days when self-
protective measures are advised for sensitive populations. This could result in sig-
nificant economic impacts through lost work or school (if PM2.5 is overestimated) 
or significant health, welfare, and productivity losses (if PM2.5 is underestimated).

The lack of GLM data in many LMICs also introduces difficulties in trying to 
relate the spatially averaged AOD observations to variations in PM2.5 within a city 
(due to distance from roadways and other pollution sources). This suggests the 
need to combine satellite observations with GLM observations and data on pol-
lution sources within a city using interpolation techniques (for example, Lee, 
Chatfield, and Strawa 2016; Millar and others 2010; Vienneau and others 2013).

REPORT METHODOLOGY

This report evaluates different approaches for using satellite AOD data in esti-
mating daily average ground-level PM2.5 concentrations within selected cities 
in LMICs, with the goal of improving estimates of human PM2.5 exposure. The 
methodological approach was, first, to conduct a literature review of previous 
approaches used to estimate PM2.5 exposures employing satellite data, with a 
focus on identifying those satellite instruments and approaches for PM2.5 esti-
mation best suited to provide city-scale, daily average PM2.5 concentrations 
and exposures. Nine LMIC cities with multiyear GLM data records were then 
identified to be used to test these approaches. Since the accuracy of these 
GLM data could affect the results of the analysis, the accuracy of the GLM 
instruments and the details of the quality-assurance procedures applied to 
these data were investigated. Finally, the identified satellite approaches 
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(one  statistical and one CTM-based) were applied to the nine cities to 
determine how the usefulness of satellite observations for estimating PM2.5 

concentrations and exposures varies across the geographic locations repre-
sented by the different cities.

OUTLINE OF THIS REPORT

This report discusses the results of a review of the literature on approaches used 
to combine satellite observations with GLM measurements of PM2.5 and dis-
cusses the strengths and limitations of these approaches (chapter 3). The quality 
of GLM data available in LMICs is also discussed, and recommendations for 
improving the GLM data are made (chapter 4). In addition, this report discusses 
the effort to develop and evaluate methods for converting satellite AOD into 
daily average, city-scale, ground-level PM2.5 estimates in nine cities in LMICs 
(chapter 5). Based on this work, recommendations are made for how LMICs could 
best incorporate satellite data into their ambient AQ monitoring efforts 
(chapter 6). The recommendations use the same typology proposed in chapter 1 
based on a given LMIC’s level of engagement with AQ monitoring. The appen-
dixes provide additional information on the literature review conducted for this 
report (appendix A); converting satellite AOD to ground-level PM2.5 (appendix B); 
evaluation of satellite approaches (appendix C); and quality considerations for 
GLM data in LMICs (appendix C).

NOTE

1.	 https://www.who.int/health-topics/air-pollution#tab=tab_2.
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Literature Review of 
Approaches Used to Combine 
Satellite Observations with 
Ground-Level Monitoring in 
Urban Areas

The review of the scientific literature focused on identifying approaches to using 
satellite aerosol-optical-depth (AOD) observations that could provide city-scale, 
daily average PM2.5 (particulate matter with an aerodynamic diameter less than 
or equal to 2.5 microns) monitoring in low- and middle-income countries 
(LMICs). This chapter discusses the approaches used in each of the three key 
steps in combining satellite observations with ground-level monitoring (GLM) 
of PM2.5 for estimating ground-level concentrations in a given city:

1.	 The retrieval of AOD from satellite observations of reflected solar radiation 
(figure 2.3)

2.	 The translation of the vertically integrated AOD observation into an estimate 
of the ground-level PM2.5 concentration, including any bias corrections 
(figure 2.4) and

3.	 Simultaneously interpolating these satellite-derived PM2.5 estimates and 
the available GLM data to high-resolution grids centered on selected cities 
(figure 3.1).

The major findings of the review are presented below (see also table 3.1). The 
full literature review is provided in appendix A. 

3
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RETRIEVAL OF AOD FROM SATELLITE OBSERVATIONS OF 
REFLECTED SOLAR RADIATION

Although many satellites provide AOD measurements using different 
approaches (the different estimates are referred to as “AOD products”), only a 
small number provide global coverage for each day free of charge shortly after 
the observation is made (that is, in near real-time [NRT]) at a horizontal reso-
lution of 10 kilometers or finer. Table 3.1 summarizes the strengths and limita-
tions of each of these identified NRT satellite AOD products with daily global 
coverage. The section “Available aerosol-optical-depth products” in appendix 
A presents a more comprehensive list of satellite products, including those not 
available in NRT and those that require subscription fees. For polar-orbiting 
satellites (that is, satellites that observe the entire globe, but at most twice a 
day), this includes the Moderate-Resolution Imaging Spectroradiometer 
(MODIS) Dark Target algorithm (10-kilometer and 3-kilometer resolution 
with daily global land and ocean coverage; Levy and others 2013; see figure 3.2); 
the MODIS Deep Blue algorithm (10-kilometer resolution with daily global 
land coverage; Hsu and others 2013); and the National Oceanic and Atmospheric 
Administration’s Visible Infrared Imaging Radiometer Suite (VIIRS) AOD 
product (6-kilometer and 750-meter resolution with daily global land and 
ocean coverage; Jackson and others 2013). Only the MODIS products have had 
a comprehensive review of their performance, but comparisons with MODIS 
suggest the VIIRS 750-meter product tends to be biased high in urban and 

a. London 

0 57 km

b. Rome

42 km

0

Source: Reproduced from Vienneau and others 2013. 
Note: These images were created by combining ground-layer-monitoring data, satellite aerosol-optical-depth observations, 
and land-use data in a land-use regression model. km = kilometer; PM

10 
= particulate matter with an aerodynamic diameter 

less than or equal to 10 microns.

FIGURE 3.1

Annual average ground-level PM10 concentrations, London, UK, and Rome, Italy
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TABLE 3.1  Strengths and weaknesses of the different daily satellite aerosol-optical-depth products publicly 
available in near real-time 

AOD PRODUCT
(AGENCY) ORBIT STRENGTHS WEAKNESSES

MODIS Dark 
Target 

(NASA)

Polar •• Extensively validated

•• Global coverage

•• Easy to access

•• Includes AOD over both land and 
ocean

•• Coarse horizontal resolution (10-kilometer—3-kilometer 
version much noisier)

•• Only two observations a day (10:30 and 13:30 local 
standard time)

•• No AOD over bright surfaces (deserts, cities)

MODIS Deep 
Blue 

(NASA)

Polar •• Extensively validated

•• Global coverage

•• Easy to access

•• Improved coverage over cities and 
deserts

•• Coarse horizontal resolution (10-kilometer—3-kilometer 
version much noisier)

•• Only two observations a day (10:30 and 13:30 local 
standard time)

•• Only includes AOD over land

MODIS 
Combined 

(NASA)

Polar •• Extensively validated

•• Global coverage

•• Easy to access

•• Improved coverage over cities and 
deserts

•• Includes AOD over both land and 
ocean

•• Coarse horizontal resolution (10-kilometer—3-kilometer 
version much noisier)

•• Only two observations a day (10:30 and 13:30 local 
standard time)

VIIRS 

(NOAA)

Polar •• Global coverage

•• Includes AOD over both land and 
ocean

•• Finest horizontal resolution for polar 
orbiting products (6-kilometer and 
0.75-kilometer)

•• Data difficult to access, download cannot be automated

•• 0.75-kilometer product very noisy and not yet 
extensively validated

•• Currently only one observation a day (13:30 local 
standard time)

•• No AOD over bright surfaces (deserts, cities)

MSG-SEVIRI 
SMAOL

(EUMETSAT)

Geostationary •• Extensively validated

•• High resolution (3-kilometer)

•• Multiple observations a day

•• Easy to access

•• Coverage only over Africa and Europe

•• AOD only over land; also excludes most coastal areas

GOES GASP

(NOAA)

Geostationary •• Extensively validated

•• High resolution (4-kilometer)

•• Multiple observations a day

•• Coverage only over North and South America

•• AOD only over land; also excludes most coastal areas

•• Data difficult to access, download cannot be automated

GOES SMAOD

(NOAA)

Geostationary •• High resolution (2-kilometer)

•• Multiple observations a day

•• Coverage only over North and South America

•• AOD only over land; also excludes most coastal areas

•• Data difficult to access, download cannot be automated

•• New product (starting 2018), needs further evaluation

Source: World Bank.
Note: In the context of a satellite measurement of AOD, noise refers to the random errors present in the measurement. Noise can generally be reduced 
by averaging over a larger area. AOD = aerosol optical depth; EUMETSAT = European Organisation for the Exploitation of Meteorological Satellites; 
GASP = GOES Aerosol/Smoke Product; GOES = Geostationary Operational Environmental Satellite; MODIS = Moderate-Resolution Imaging 
Spectroradiometer; MSG-SEVIRI = Meteosat Second Generation–Spinning Enhanced Visible and Infrared Imager; NASA = National Aeronautics and Space 
Administration; NOAA = National Oceanic and Atmospheric Administration; SMAOD = suspended matter, aerosol optical depth; SMAOL = SEVIRI-MSG 
Aerosol Over Land; VIIRS = Visible Infrared Imaging Radiometer Suite. 
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mountainous regions. However, since the MODIS instruments are aging and 
new VIIRS instruments continue to be launched, the VIIRS products are more 
likely to be available in the coming decade. There are also several research 
products, such as extensions of the MODIS Dark Target and Deep Blue 
algorithms to VIIRS and the MODIS MAIAC algorithm (one-kilometer 
resolution with daily global coverage; Emili and others 2011; Lyapustin and 
others 2011) that may become operational in the near future. However, at the 
time this report was prepared, these products were available only for specific 
test time periods and locations. 

For geostationary satellites (that is, satellites that continuously observe a 
fixed location; figure 3.3), the SMAOL (SEVIRI-MSG Aerosol Over Land) AOD 
product is available in NRT over Europe and Africa (three-kilometer resolution 
every 15 minutes; Bernard and others 2011; Mei and others 2012), and the GOES 
Aerosol/Smoke Product (GASP) AOD product is produced for the continental 
United States (four-kilometer resolution every hour; Knapp and others 2005). 
In  2018, the GASP product will be replaced with the GOES-16 SMAOD 
(suspended matter, aerosol optical depth) product1,2 covering North and South 
America (two-kilometer resolution every 15 minutes). Himawari provides AOD 
retrievals over East Asia using an instrument such as GOES-16,3,4 but the 
Himawari product is not freely available.5,6 

Seasonal limitations in satellite coverage may result in biased estimates 
of annual average PM2.5 concentrations from satellites. The potential 

Source: Munchak and others 2013. Note that these results used an older version of the MODIS surface reflectance scheme, 
and more recent versions (for example, Gupta and others 2016) show much better performance over urban areas. 
Note: AOD = aerosol optical depth; MODIS = Moderate-Resolution Imaging Spectroradiometer.

FIGURE 3.2

MODIS Dark Target 10-kilometer and 3-kilometer aerosol-optical-depth products 
retrieved for clear land and ocean fields of view and the local 5-kilometer average 
derived from the products, outer circle, compared to ground-based measurements, 
inner circle, over Baltimore, US

a. MODIS Dark Target 10-kilometer product b. MODIS Dark Target 3-kilometer product 
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application of the currently available AOD products to three example cities 
(Delhi, India; Ulaanbaatar, Mongolia; and Lima, Peru) was examined as part 
of the literature review. None of these cities is currently covered by geosta-
tionary satellites with freely available AOD products, but the upcoming geo-
stationary SMAOD product should cover Lima. In general, the MODIS Dark 
Target algorithm does not provide complete coverage over these cities 
because of highly reflective surfaces in urban areas, but the MODIS Deep 
Blue algorithm is able to provide AOD across the city. However, even with the 
Deep Blue algorithm, frequent clouds in Lima between May and November 
prevent AOD retrieval during much of this period (figure 3.4), and winter 
snow cover in Ulaanbaatar between December and March prevents AOD 
retrievals during this highly polluted season.

Source: World Bank.
Note: AOD = aerosol optical depth; GOES-R SMAOD = Geostationary Operational Environmental 
Satellite-R series–suspended matter, aerosol optical depth; nm = nanometer.

FIGURE 3.3

Example of good-quality aerosol optical depth 550 nm observations 
from a geostationary satellite from the US GOES-R SMAOD product
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THE TRANSLATION OF AOD TO GROUND-LEVEL PM2.5 
CONCENTRATIONS

Several studies have successfully converted satellite AOD to ground-level PM2.5 
estimates using statistical techniques, chemical transport model (CTM)–based 
approaches, or hybrid approaches, generally for continental-to-global spatial 
scales and monthly-to-annual time scales. Statistical approaches train statistical 
models, such as nonlinear generalized additive models (GAMs; Sorek-Hamer 
and others 2013; Strawa and others 2013), on historical GLM data to predict 
ground-level PM2.5 using satellite AOD measurements and other meteorological 
and geographic data. CTM-based approaches use computer models of air qual-
ity, called “chemical transport models,” to determine a time-varying relationship 
between ground-level PM2.5 concentrations and satellite AOD measurements. 
This relationship is then used to scale the CTM aerosol profile until the CTM-
calculated AOD matches the satellite AOD measurement, providing a better esti-
mate of the ground-level PM2.5 concentration than would be possible from the 
CTM alone. Hybrid methods combine statistical and CTM-based approaches by 
training a statistical model to correct the errors in the initial CTM-based satellite 
estimates of the ground-level PM2.5 concentrations. For example, recent work 

Source: World Bank, produced using Esri ArcGIS. 
Note: The blue diamonds = valid satellite AOD data and the green triangles = OpenAQ monitoring 
sites. MOD = MODIS Terra; MODIS = Moderate-Resolution Imaging Spectroradiometer; 
OpenAQ = openaq.org.

FIGURE 3.4

Valid MODIS Terra aerosol-optical-depth retrievals and Lima, Peru, 
monitoring sites in the OpenAQ database, 2016–17 

MOD satellite points
OpenAQ monitor sites

LimaLima
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has used a hybrid approach in which CTM-based approaches are followed by a 
second step that uses geographically weighted regression to correct for errors in 
the first-step estimates (van Donkelaar, Martin, Spurr, and Burnett 2015). These 
corrections require long-term (multiple years), reliable GLM data over a large 
region, including both urban and rural sites (see table 3.2).

Table 3.2 lists the strengths and weaknesses of these approaches. The statis-
tical approaches (for example, Hu and others 2014; Sorek-Hamer and others 
2013, 2015; Strawa and others 2013) can be more accurate if sufficient GLM 
data are available for the training. However, CTM-based approaches 
(for example, Geng and others 2015; van Donkelaar and others 2006, 2010, 
2011; van Donkelaar, Martin, Brauer, and Boys 2015) are required in areas with-
out GLM data or where available GLM data are of unreliable quality. Several 
potential sources of data are available for planetary boundary layer height and 
other meteorological parameters for the statistical approaches, as well as 
sources of CTM AOD and aerosol-profile data for the CTM-based approaches 
provided free of charge from global CTM run by high-income countries (see 
the section “Converting AOD to ground-level PM2.5” in appendix A). LMICs, 
which often face competing needs for limited budgetary resources, may find 
that the use of freely available data is preferable to the expense of running their 
own CTMs or paying for data. In that case, the forecasts of ground-level 
concentrations and vertical profiles of PM2.5 from the National Centers for 
Environmental Prediction Global Forecast System (Lu, da Silva, and others 
2016; Lu, Wei, and others 2016) can be used if NRT output is needed, and the 
optimized historical ground-level concentrations and vertical profiles of PM2.5 

from the National Aeronautics and Space Administration MERRA-2 reanalysis 
(Provençal and others 2017) can be used for historical studies. 

TABLE 3.2  Strengths and weaknesses of different approaches to converting satellite aerosol-optical-
depth data into estimates of ground-level PM2.5 concentrations

APPROACH STRENGTHS WEAKNESSES

CTM-based •• Easy to implement globally

•• Does not require any GLM data

•• Can remove cases with high-altitude aerosol 
plumes or low PBL heights from the analysis

•• Can have significant biases due to errors in the CTM’s 
simulation of the vertical profile and optical 
properties of the aerosols

•• Errors are likely larger for LMICs
, 
since estimates of 

PM
2.5

 emissions are more out-of-date or uncertain for 
these countries

•• Errors are larger if horizontal resolution of the CTM is 
too coarse and thus a single model PM

2.5
 value 

represents an average of PM
2.5

 in urban and rural air

Statistical •• Locally unbiased (since these methods fit to the 
average for a single city)

•• Estimates error in the fit automatically

•• Does not require an initial guess at the aerosol 
profile or optical properties

•• Requires a long-term (multiple years), reliable GLM 
data record with concurrent satellite observations

•• Cannot filter for high-altitude plumes

•• Determining appropriate statistical method for a 
given site can take many attempts

Hybrid •• Easy to implement globally

•• Globally unbiased (since these methods fit to the 
average for all cities and monitors considered)

•• Can filter the CTM results for high-altitude 
aerosol plumes or low PBL heights

•• Requires a long-term (multiple years), reliable GLM 
data record with concurrent satellite observations

•• Requires GLM data in many different land-use types 
(urban and rural sites)

•• Can still have significant biases at specific sites

Source: World Bank.
Note: CTM = chemical transport model; GLM = ground-level monitoring; LMICs = low- and middle-income countries; PBL = planetary boundary 
layer; PM

2.5 
= particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.
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COMBINING SATELLITE PM2.5 ESTIMATES AND GLM 
DATA INTO HIGH-RESOLUTION GRIDS CENTERED ON 
SELECTED CITIES

Co-kriging or land-use regression (LUR) can be used to combine satellite PM2.5 
estimates with GLM data to calculate estimates of PM2.5 concentrations at a 
neighborhood scale (100 to 500 meters) across urban areas. Ordinary kriging 
uses a weighted average of neighboring GLM measurements to predict PM2.5 
concentrations across an urban area. Co-kriging is an extension of ordinary krig-
ing that can take advantage of additional data sets or variables, using both the 
correlations between the monitors and the cross-correlations between the mon-
itor data and the additional data sets (that is, the satellite-derived PM2.5 esti-
mates) to make better predictions (for example, Millar and others 2010; Pearce 
and others 2009; Wu, Winer, and Delfino 2006). LUR spatially links GLM mea-
surements of PM2.5 with other associated variables such as elevation, distance 
from roads, population density, and land-use type to develop fine-scale estimates 
of long-term PM2.5 concentrations within an urban area that better represent 
gradients near highways and other pollution sources than is possible with krig-
ing (for example, Lee, Chatfield, and Strawa 2016; Millar and others 2010; 
Vienneau and others 2013). LUR can also be used to predict the bias in CTM-
based estimates of ground-level PM2.5 concentrations as part of a hybrid approach 
to using satellites to estimate PM2.5 exposures.

Co-kriging and LUR tend to work better as the satellite horizontal resolution 
is increased and as the GLM network covers a wider variety of sites (for example, 
urban and rural). Many GLM networks in LMICs are almost entirely in 
cities,  which makes LUR more difficult because of the lack of variation in 
land-use parameters (for example, urban land fraction, distance of coasts, and 
distance from highways) across the network. Co-kriging could be used with sat-
ellite PM2.5 estimates to reduce the number of GLM stations required to ade-
quately cover an urban area (see discussion in chapter 5) and can be used to 
obtain either daily average or annual average estimates of PM2.5. However, this 
study did not find any example in the literature where co-kriging had previously 
been used to combine satellite AOD and GLM PM2.5 data. LUR has been 
successfully used by several groups to provide high horizontal resolution 
(100- to 500-meter), annual average estimates on PM2.5 across regions and 
within cities using both satellite and GLM data (for example, Lee, Chatfield, and 
Strawa 2016; Vienneau and others 2013). Daily average estimates of PM2.5 are also 
possible if meteorological data that vary daily and other data are used in the 
LUR. The needed data for LUR at 500-meter resolution is freely available for 
the entire globe, and most LUR studies have used the ArcGIS software package 
to perform the regression with geographical information system data sets. 

NOTES

1.	 https://www.goes-r.gov/products/baseline-aerosol-opt-depth.html.
2.	 https://www.goes-r.gov/downloads/users/conferencesAndEvents/2014/GOES-R_Series​

_Program/04-Laszlo_abstract.pdf.
3.	 https://www.eorc.jaxa.jp/ptree/documents/Himawari_Monitor_Aerosol_Product_v5.pdf.
4.	 http://www.data.jma.go.jp/mscweb/technotes/msctechrep61-6.pdf.
5.	 http://www.jmbsc.or.jp/en/meteo-data.html.
6.	 http://www.jmbsc.or.jp/en/Data/Himawari-8-JMBSC-HP(2017.02.20).pdf.

https://www.goes-r.gov/products/baseline-aerosol-opt-depth.html�
https://www.goes-r.gov/downloads/users/conferencesAndEvents/2014/GOES-R_Series_Program/04-Laszlo_abstract.pdf�
https://www.goes-r.gov/downloads/users/conferencesAndEvents/2014/GOES-R_Series_Program/04-Laszlo_abstract.pdf�
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Quality-Assurance Procedures 
in Low- and Middle-Income 
Countries

To better estimate the exposure of their citizens to particulate matter with an 
aerodynamic diameter less than or equal to 2.5 microns (PM2.5 ) and the associ-
ated health effects, and to design policies to minimize these effects, low- and 
middle-income countries (LMICs) are working to begin, expand, and improve 
their air-quality monitoring efforts. However, some LMICs (Type I) currently 
have no air-quality data. Other LMICs (Type II) have air-quality data, but, 
because instrument maintenance and other “quality-assurance” procedures 
have not been fully followed, their data are potentially inaccurate. Still other 
LMICs (Type III) have accurate data but with insufficient spatial coverage. 
Satellites have been suggested as a way to reduce or eliminate the need for a 
ground-level-monitoring (GLM) network. However, accurate GLM data are 
needed to determine the performance of the satellite approaches to air-quality 
monitoring and to use the statistical and hybrid satellite approaches. 

Thus, to evaluate the ability of satellites to assist with air-quality monitoring 
in LMICs (chapter 5), this chapter discusses the issues affecting the availability 
and accuracy of GLM data in LMICs in the first main section, the potential of 
automated methods to flag potentially incorrect GLM data in the second, and the 
need to examine the metadata, warning files, and operator logs for the GLM 
instruments to ensure the data are of sufficient accuracy to be used to develop 
and evaluate satellite approaches to PM2.5 monitoring.

ISSUES AFFECTING THE AVAILABILITY AND ACCURACY OF 
GLM DATA IN LMICs

Recent high-air-pollution events in many LMICs have highlighted the need for 
improved dissemination of PM2.5 concentrations obtained via GLM. Currently, 
one of the most promising dissemination mechanisms for real-time air-quality 
information in LMICs is the open-access web platform OpenAQ (see box 4.1). In 
the research underlying this report, we used data from OpenAQ for several 
LMICs to evaluate the ability of satellites to estimate daily average ground-level 
PM2.5 concentrations in cities within LMICs. OpenAQ, and similar accessible 

4
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Open-access web platform for air quality data

OpenAQ (openaq.org) is an open-source platform and 
community that makes air-quality data accessible 
worldwide. The platform, launched in 2015, automati-
cally aggregates, at 10-minute intervals, ground-level, 
near real-time air-quality data, shared publicly in dis-
parate formats by government entities across the 
world. The data are synthesized into a universal format 
and made freely available via an application program-
ming interface (API). To date, OpenAQ is the only site 

in the world to freely access station-level, physical par-
ticulate matter (PM2.5, PM10, BC) and gaseous (O3, NO2, 
SO2, CO) air-quality data in aggregate, in near real-
time or historically, that transparently traces back to 
their originating sources (for example, a government 
air-quality agency website, ftp server, or API). The 
open-source system is built and maintained by a com-
munity of software developers, scientists, open-data 
enthusiasts, and others across the world.

Note: BC = black carbon; CO = carbon monoxide; NO
2
 = nitrogen dioxide; O

3
 = ozone; PM

2.5
/PM

10
 = particulate matter with an aerodynamic 

diameter less than or equal to 2.5 microns/10 microns, respectively; SO
2
 = sulfur dioxide.

BOX 4.1

air-quality web platforms, can provide LMIC governments and citizens with 
important and timely access to local PM2.5 concentrations.

However, simply rereporting PM2.5 levels reported by LMICs does not 
guarantee that those data are of sufficient accuracy and precision for air-quality 
monitoring, or that those data can be usefully combined with satellite measure-
ments to determine human exposures to PM2.5. Many different instruments and 
techniques provide a measure of PM2.5 with significantly different estimates of 
their accuracy (that is, how close they get to the true value) and precision (that 
is, how close two measurements of the same true concentration will be). 

In addition, poor instrument operation, lack of calibrations, and incomplete 
quality assurance and quality controls can reduce the accuracy of PM2.5 
measurements. Given the seriousness of the health effects of PM2.5, inaccurate 
measurements have the potential to mislead the public into a false sense of secu-
rity (if the monitors are underreporting mass concentration) or incite alarm 
(if they are overreporting). These errors would also have economic impacts, 
such as reduced labor productivity due to people staying home during false 
alarms or getting ill by going out in missed poor air-quality conditions. Thus, it is 
important that GLM in LMICs provide reliable PM2.5 measurements with 
well-understood uncertainties. 

The instruments commonly used to measure PM2.5 and report results to 
OpenAQ are approved by the US Environmental Protection Agency (EPA)1 as 
federal equivalent methods (FEMs) for PM2.5 characterization and thus are 
expected to provide daily average PM2.5 concentrations within 10 percent of the 
true value when properly operated and calibrated. However, other “low-cost” 
instruments can have much higher errors. Common instruments for measuring 
PM2.5 in use around world include (1) Met One Beta Attenuation Mass Monitor 
model BAM-1020; (2) Thermo Fisher Scientific model 5014i; (3) Thermo Fisher 
Scientific Tapered Element Oscillating Microbalance (TEOM, models 1400a, 
1400b, and 1405); and (4) Grimm Aerosol Environmental Dust Monitor (EDM 
model 180). All these instruments have been approved by the EPA as FEMs for 
PM2.5 characterization. To qualify as a “FEM,” the PM2.5 measurement technique 
must demonstrate differences of less than 10 percent relative to the federal ref-
erence method (FRM). In such head-to-head comparisons, the 10 percent 
threshold is applied to the intercept and slope of a correlation scatterplot of the 
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test method versus the FRM. The EPA defines the FRM as gravitational 
(weight-based) PM2.5 measurements, integrated or averaged over a 24-hour sam-
ple time. Figure 4.1 shows an example of the allowed uncertainties in the correla-
tion (red hexagon outline) for the test instrument to qualify as a FEM. It is 
important to note the 24-hour averaging interval in the FEM designation. 
Given the dynamic and spatially heterogeneous nature of ambient PM2.5 air pol-
lution, it is often necessary to characterize PM2.5 concentrations with faster time 
resolution (hourly or even one-minute data). Under these faster time-response 
conditions, the FEM status of a given PM2.5 instrument may not hold. 

Each of the common PM2.5 measurement methods (BAMM, TEOM) rely on 
different techniques for measuring PM2.5 (see appendix D) and thus have differ-
ent precisions and accuracies. Although they output PM2.5 mass concentrations, 
their measurement uncertainties vary for each device. Table 4.1 provides the 
manufacturer’s stated uncertainties for each PM2.5 instrument. Manufacturers 
provide precision uncertainties (µg/m3) for a 1- and/or 24-hour average(s), stat-
ing that any single measurement over that averaging interval should be that close 
to the true value 99.7 percent of the time. Measurement uncertainties (for a 
well-operated system under the EPA requirements) would be the greater of 
these uncertainties or the 10 percent FEM error estimate for a given measure-
ment. More details about the BAMM and TEOM methods are given in the sec-
tions “Operating methodologies and uncertainties associated with the BAMM 
technique” and “Operating methodologies and uncertainties associated with the 
TEOM technique,” respectively, in appendix D.

Although it is important to know and understand the manufacturer’s stated 
uncertainties, the true uncertainties of PM2.5 measurements will be significantly 
larger, due to uncontrolled and unknown factors including site-specific 
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sampling considerations, volatile PM losses, operator errors, and others. These 
considerations can lead to inaccurate PM2.5 data even when FEM instruments 
are used, and thus additional steps must be taken to ensure the accuracy of the 
GLM data. These steps can include the following:

•	 	Automated processing of the PM2.5 data to flag potentially erroneous data 
values (see the next section) and

•	 	Examining instrument metadata, warning or error files, and operation logs to 
ensure that proper calibration, maintenance, and other quality-assurance 
procedures are being followed (see the section “Examining metadata, warn-
ing files, and operator logs” in chapter 4).

USING AUTOMATED SCRIPTS TO FLAG POTENTIALLY 
INCORRECT GLM DATA

To provide more information about the uncertainties and reliability of dis-
seminated air-quality data (that is, in addition to manufacturers’ stated pre-
cision uncertainty), OpenAQ created a data-quality wrapper to establish a 
baseline approach toward flagging potentially erroneous data values within 
the OpenAQ database (see also the section “Co-kriging and kriging with sat-
ellite and OpenAQ data” in appendix C). Guidance points for the wrapper 
development are outlined below:

(1) �Develop flags on a per-measurement (rather than per-station) basis—Aim to 
justify “trustworthiness” on the basis of what is known or expected from a 
specific technique and avoid the negative political consequences of blacklist-
ing specific sites altogether.

(2)  �Repeat data flags—When consecutive data points in the OpenAQ database 
from one PM2.5 instrument repeat, generate a flag to examine the data 
more closely, since it is unlikely that identical data values are measured over 
time. Include the capacity for the user to input an adjustable parameter to 
define the number of repeat indexes necessary to trigger the flag.

(3)  �Zero points—If reported values are in fact 0.00000, generate a zero flag. 
Understand the extent to which the instrument is reporting zero due to an 
on-site zero calibration, instrument electronic glitch, or encountering PM2.5 
concentrations below the mass detection limits of the device. 

TABLE 4.1  PM2.5 instrument manufacturers’ stated uncertainties 

MANUFACTURER
INSTRUMENT/
MODEL

PRECISION 
(1 σ IN 1 HR) UNITS

ACCURACY 
(1 σ IN 1 HR) UNITS COMMENTS

Grimm EDM
180

— — — — Optical Particle Counter; provides 
only “reproducibility” value of ± 3%

MetOne BAMS
1020

2.4 μg/m3 — — No accuracy provided

Thermo Fisher 
Scientific

TEOM
1400

2 μg/m3 0.75 % None

Thermo Fisher 
Scientific

BAMS
5014i

2 μg/m3 5 % None

Source: World Bank.
Note: PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter; 

— = not available; σ = standard deviation.
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(4)  �Negative values—Typically, instrument manufacturers and/or instrument 
operators will generate −999 or −9999 error flags within the output data 
stream to indicate a broader context on what was happening with the instru-
ment at the time of the reported error code. This could correspond with 
on-site calibration (zero and span) or be an indicator that the system was 
off-line. Encourage OpenAQ users to flag and store these negative values 
within their initial QA/QC steps. 

(5)  �Missing data—Within the OpenAQ database, one often finds periods with 
missing data (data not found at a given interval). The fact that the data are 
simply removed leaves some open questions, such as the following: How (if at 
all) do the missing data affect the resultant “average” values reported? What 
is the start and stop time for each reported average, and what fraction of this 
time was removed? In this context, “missing” data should be flagged, but not 
necessarily as −999. Tracking the extent of missing data for a given instrument 
may also be a useful indicator of that instrument’s overall reliability.

EXAMINING METADATA, WARNING FILES, AND 
OPERATOR LOGS

To accurately evaluate satellite approaches and to combine satellite PM2.5 esti-
mates with GLM data, the GLM PM2.5 measurements need to be provided in 
parallel with information on the instrument or technique type, estimates of mea-
surement uncertainties, relevant metadata, and operational history. If the only 
publicly available information is the manufacturer and instrument type or 
model, one can identify rational lower-limit estimates of the expected uncertain-
ties (assuming standard operational protocols for instrument upkeep are main-
tained). However, as noted above, the true uncertainties of PM2.5 measurements 
can be significantly larger than the manufacturer’s stated uncertainties. Without 
the necessary metadata to assess the quality of the PM2.5 measurements, the sta-
tistical and hybrid approaches to satellite estimates of PM2.5 cannot be used, and 
combining the GLM data with the satellite estimates may result in inaccurate 
estimates of PM2.5 exposure and health effects.

Thus, it is important that each PM2.5 measurement not only identifies the type 
of instrument used for the measurement, but also tracks the instrument’s 
relevant history of use and calibration. This includes all “meta” data from instru-
ment data files, including “housekeeping” files. Housekeeping files are often 
autogenerated by manufacturers to help identify deviation from normal 
operation. Such files would include error codes for alarm states, loss of sample 
flow, pressure changes, or periods where the instrument was out-of-spec (for 
example, temperature exceedances). 

In addition, any recorded results from tests of standard operating procedures 
and quality-assurance protocols should be collected and disseminated along 
with the PM2.5 measurements to establish an instrument track record over time 
providing a transparent, data-centric measure of instrument reliability and 
performance. This is typically done by following established protocols, such as 
defined by the EPA. 

As determined during this project, US Diplomatic Posts are equipped to 
measure PM2.5 with Met One beta attenuation monitor systems and follow the 
current EPA guidelines for PM2.5 monitoring. However, their sampling location 
may not be representative of the typical air-quality conditions within a given city. 
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These EPA guidelines provide a well-established protocol for conducting PM2.5 
measurements with a high level of quality assurance and quality control. 
The US embassies typically provide these PM2.5 data to host governments, 
and these data are now being collected on OpenAQ. Although it is important 
that these measurements get disseminated, it is important to stress that each 
measurement should be backed up with open access to the quality assurance 
and control (QA/QC) protocol metadata used to conduct the measurements 
and to QA/QC the measurements. Currently, US embassies do not publish their 
full QA/QC protocol metadata along with the PM2.5 levels, thereby reducing the 
use of these measurements as well-established and controlled reference mea-
surements. It is recommended that the US Diplomatic Posts publish their full 
QA/QC protocol and relevant metadata along with the PM2.5 levels to make 
their data more useful.

NOTE

1.	 Other national air quality agencies do their own certification of methods. Most of the 
instruments listed are certified in multiple countries.
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Using Satellite Data for Daily, 
City-Scale PM2.5 Monitoring

As noted in chapter 2, many low- and middle-income countries (LMICs) do not 
have ground-level-monitoring (GLM) data of sufficient reliability for monitor-
ing concentrations of particulate matter with an aerodynamic diameter less than 
or equal to 2.5 microns (PM2.5 ). This leads to uncertainties related to the reliabil-
ity of GLM data for use in designing policies to protect public health. It has been 
suggested that satellites could be used instead of GLM in these countries to mon-
itor PM2.5 or that satellites could be used in combination with GLM networks to 
improve the estimates of human exposure to PM2.5. However, most previous 
studies of the potential of satellites to help with air-quality monitoring have been 
performed for countries with long-established, well-maintained GLM networks 
and have focused on global, annual average estimates of PM2.5 concentrations 
and exposures (chapter 3). Thus, there is a need to provide guidance to LMICs on 
how satellite data can best be used in city-scale, daily air-quality monitoring; 
what the uncertainties (that is, expected errors) and biases of the satellite esti-
mates of ground-level PM2.5 concentrations are; and what local conditions 
(altitude, distance from coast, and so forth) lead to larger errors in the satellite 
estimates of ground-level PM2.5 concentrations.

To address these needs, the results of the literature review (chapter 3) were 
used to identify promising new pathways for LMICs to use satellite observations 
in their city-scale, daily air-quality monitoring and forecasting. One of those 
novel approaches is statistical, and another is based on the chemical transport 
model (CTM); both approaches were tested. The statistical approach used the 
generalized additive model approach of Sorek-Hamer and others (2013), modi-
fied to use the ratio of the aerosol optical depth (AOD) to the planetary boundary 
layer (PBL) as the primary predictor of ground-level PM2.5 concentrations, as in 
Chatfield and others (2017). To our knowledge, this particular statistical 
approach has not been tested before. The CTM-based approach used AODs and 
aerosol vertical profiles from the MERRA-2 reanalysis to derive a ground-level 
PM2.5 estimate following the methods of van Donkelaar and others (2010). The 
use of standard CTM output freely provided by high-income countries for the 
CTM-based approach is novel, since most previous studies have invested signif-
icant effort in developing customized CTM simulations, and thus the 

5
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performance of these approaches when using the model output available to 
LMICs has not been previously tested. 

Subsequently, the GLM network data included in the OpenAQ database 
(chapter 4) was used to evaluate (1) the ability of satellites to predict daily aver-
age ground-level PM2.5 concentrations and (2) their variations within cities, 
using these promising new approaches. 

The next section describes the initial testing of the satellite approaches (using 
polar-orbiting satellite data) using 2017 GLM data sets for three cities: Delhi, 
India; Ulaanbaatar, Mongolia; and Lima, Peru. These cities were chosen because 
they have near real-time PM2.5 observations at multiple locations in each city 
from local government air-quality agencies and US Diplomatic Post PM2.5 data. 
A city in Africa (Accra, Ghana) was added to explore the ability of geostationary 
satellites to predict ground-level PM2.5 concentrations as compared with 
polar-orbiting satellites. This work was performed to answer the following 
questions:

•	 Are the GLM data from the local government consistent with the data from 
the US Diplomatic Posts?

•	 How do the CTM-based and statistical-satellite estimates of ground-level 
PM2.5 concentrations compare with the GLM data and with each other? Can 
either satellite approach correctly represent the day-to-day and site-to-site 
variation of PM2.5 concentrations within a city?

•	 Do the satellite estimates of surface PM2.5 improve when higher-resolution 
polar satellite or geostationary satellite data are used instead of the MODIS 
observations?

•	 Does a hybrid technique (using a statistical model to correct the biases in the 
CTM-based approach) perform better than a statistical or CTM-based 
approach alone? 

•	 Can satellites reduce the number of required monitoring sites in a GLM 
network?

The last section describes the results of evaluating the satellite approaches 
for nine cities in LMICs using GLM data from 2016–17 where available. This 
work was performed to answer the following questions:

•	 How well do the satellite estimates of ground-level PM2.5 concentrations 
compare with available GLM data in different cities?

•	 Can we identify patterns in the errors in the satellite estimates of ground-
level PM2.5 concentrations in the different cities based on their location 
(for example, distance from coasts, distance from deserts, and altitude)? 

INITIAL TESTING OF SATELLITE PRODUCTS IN 
SELECTED CITIES

A full description of the methodology and results for this study is included in 
appendix B. The selected satellite data sets were from the MODIS (Moderate-
Resolution Imaging Spectroradiometer) combined Deep Blue and Dark Target 
product (10-kilometer resolution, with data from the Aqua and Terra satellites 
tested separately), the standard VIIRS (Visible Infrared Imaging Radiometer 
Suite) AOD product (6-kilometer resolution), and the SEVIRI (Spinning 
Enhanced Visible and Infrared Imager) geostationary AOD product 
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(3-kilometer resolution, used as an example of the capability of next-generation 
geostationary satellites). Each satellite AOD data set also provides information 
about the quality of the AOD retrieval through a set of variables referred to as 
“quality flags” and provides recommendations for the minimum acceptable val-
ues for these flags. This is analogous to the quality filter for GLM data discussed 
in chapter 4. However, note that the quality flags only remove bad data; they do 
not provide information on the relative uncertainties in the remaining AOD 
measurements. All recommended quality flags were applied to filter the AOD 
data before analysis. 

One statistical approach and one CTM-based approach were tested for each 
city for 2017 (except in Accra and Lima, where only a CTM approach could be 
used due to limited 2017 GLM data for these cities). Geographically weighted 
regression (GWR) was then performed to relate the errors between the GLM 
PM2.5 observations and the two satellite-based estimates of ground-level PM2.5 
concentrations, as in van Donkelaar, Martin, Spurr, and Burnett (2015).

Consistency of local government and US Diplomatic Post data

In Delhi and Ulaanbaatar, the local GLM network data appear to be consistent 
with the US Diplomatic Post data, and thus the two data sets can be used together 
in the evaluation of the satellite methods. A test was performed in Delhi to deter-
mine if the US Diplomatic Post data were roughly consistent with the local GLM 
network data by using ordinary kriging of the local GLM network data to predict 
the annual average ground-level PM2.5 concentration at the US Diplomatic Post. 
Kriging the local GLM network data captures the measured value at the US 
Diplomatic Post well, suggesting the two data sets are consistent. Further analy-
sis (see the section “Interpreting ground-level PM2.5 data from LMICs with lim-
ited metadata” in appendix D) suggested that the US Diplomatic Post data were 
consistent with local government monitors in Delhi but showed differences in 
Lima, where the local government monitors reported concentrations 
30–50 percent lower than the US embassy data. Further investigation would be 
required to identify the sources of this difference.

Performance of different approaches for monitoring 
PM2.5 with satellites

All cities had significant limitations in the availability of satellite AOD data that 
resulted in biased satellite estimates of annual average ground-level PM2.5 con-
centrations. This is due to persistent clouds in Lima, wintertime snow cover in 
Ulaanbaatar, wet-season clouds in Delhi, and mixed water and land and bright 
surfaces in Accra. Satellite coverage was poorest in the coastal city of Lima and 
thus did not allow for a meaningful evaluation of a CTM-based approach for 
converting satellite AOD to ground-level PM2.5 concentrations. In Ulaanbaatar, 
no satellite measurements are available for the high PM2.5 winter months of 
December to mid-March, which would underestimate the true annual average 
PM2.5 concentration for this city by 50 percent, even if satellites were able to 
perfectly predict ground-level PM2.5 concentrations at other times. Delhi has sat-
ellite measurements in all months but substantially fewer observations in the 
peaks of the wet and dry seasons (December, January, July, and August), which 
would also result in a slight (about 10 percent) underestimate of the true annual 
average PM2.5 concentration. 
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The CTM-based approach provided an accurate estimate (within about 
10 percent) of the citywide annual average PM2.5 concentration (necessary for 
assessing chronic health effect impacts) in Delhi, but the CTM-based approach 
underestimated the citywide annual average PM2.5 concentration in Ulaanbaatar 
by a factor of 10. This is likely due to Ulaanbaatar’s location in a river valley sur-
rounded by mountains and mostly rural land. Thus, the coarse resolution of 
global CTMs (combined with likely inaccurate emission inventories for 
Ulaanbaatar) means that CTMs are not able to correctly represent the aerosol 
profile within the city, instead using an average profile that is more representa-
tive of the surrounding rural area. These same issues are present in the Global 
Burden of Disease (GBD) data set before the GWR correction with global GLM 
data is applied.1 Statistical approaches were generally able to correctly represent 
the annual average PM2.5 concentrations if the AOD data were available for the 
entire year.

The estimates of the ground-level daily average PM2.5 concentrations from 
the CTM-based and statistical approaches generally had a low correlation 
(R < 0.3; tables 5.1 and 5.2) with the true daily average PM2.5 concentrations 
within a city. Consequently, using satellite data alone would likely result in incor-
rect estimates of acute PM2.5 exposure and health effects. The techniques also 
showed little efficacy in representing the variability in annual average PM2.5 
between surface sites, and so these techniques generally will not be able to iden-
tify areas of persistent high air pollution (that is, “hot spots”) within a city. 

Site-specific annual average values were not represented well in Delhi, lim-
iting the usefulness of satellites to study variations in chronic health effects 
within the city (table 5.3). In addition, the lack of satellite AOD measurements 

TABLE 5.1  Statistics for the Delhi, India, satellite ground-level PM2.5 products tested in this work

MODIS TERRA MODIS AQUA VIIRS S-NPP

STAT. CTM STAT. CTM STAT. CTM

MB (micrograms per cubic meter) 0.045 −0.822 0.113 −29.275 −0.014 −58.102

MNB (%) 30.8 21.7 24.4 −7.5 32.3 −27.3

MNGE (%) 51.5 54.5 44.1 46.8 54.2 52.3

Correlation coefficient (R) 0.18 0.17 0.09 0.04 0.11 0.10

Source: Original calculations for this publication.
Note: CTM = chemical transport model–based method; MB = mean bias; MNB = mean normalized bias; MNGE = mean normalized gross error; 
MODIS = Moderate-Resolution Imaging Spectroradiometer; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; 

S-NPP = Suomi National Polar-Orbiting Partnership; STAT. = statistical method; VIIRS = Visible Infrared Imaging Radiometer Suite. 

TABLE 5.2  Statistics for the Ulaanbaatar, Mongolia, satellite ground-level PM2.5 products tested in this work 

MODIS TERRA MODIS AQUA

STAT. CTM STAT. CTM

MB (micrograms per cubic meter) 0.082 −31.174 0.443 −33.139

MNB (%) 54.0 −72.2 54.8 −73.1

MNGE (%) 78.5 78.2 78.3 78.8

Correlation coefficient (R) 0.17 0.00 0.30 0.01

Source: Original calculations for this publication.
Note: CTM = chemical transport model–based method; MB = mean bias; MNB = mean normalized bias; MNGE = mean normalized gross error; 
MODIS = Moderate-Resolution Imaging Spectroradiometer; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; 

STAT. = statistical method. 



Using Satellite Data for Daily, City-Scale PM2.5 Monitoring | 31

in several months means that the satellites did a poor job of representing the 
observed seasonal cycle of PM2.5 in Delhi.

Results of using alternative AOD products to estimate PM2.5 
concentrations

Using VIIRS instead of MODIS did not appreciably change the ability of the sat-
ellite approaches studied here to simulate the measured ground-level PM2.5 con-
centrations in Delhi (figure 5.1). However, for cities where the morning MODIS 
Terra product performed better than the afternoon MODIS Aqua product, using 
the afternoon VIIRS product will also likely result in poorer predictions than 
using the lower-resolution MODIS Terra product, but this was tested directly 
only for Delhi. 

The SEVIRI AOD product does provide a higher horizontal resolution than 
the MODIS product, but it appears to have lower coverage for coastal cities such 
as Accra, because of an AOD data quality filter that removes data near coastlines 
(to avoid mixed water and land surfaces; see figure 5.2) Thus, the SEVIRI AOD 
product is not suitable for use in coastal cities.

Using a hybrid technique to bias-correct CTM-based estimates

Land-use variables (percentage of urban land cover, elevation, and population 
density) had little ability to predict the bias in the CTM-based ground-level PM2.5 
estimates in Delhi or Ulaanbaatar (R < 0.01). This is likely because there are 10 or 
fewer GLM sites in each city within about 30 kilometers of each other, as opposed 
to the 1,440 sites used in the GWR bias correction of van Donkelaar, Martin, 
Spurr, and Burnett (2015) over the United States. 

Further analysis suggests that the limitations of the satellite techniques in 
Delhi and Ulaanbaatar cannot be easily addressed using post hoc bias correc-
tions. Applying a simple linear bias-correction model to the CTM-based PM2.5 

TABLE 5.3  Annual average PM2.5 surface concentrations for Delhi, India, 2017
Micrograms per cubic meter

GROUND AVERAGE CTM-BASED AVERAGE MERRA-2 AVERAGE

Anand Vihar 153.5 125.8 62.7

Delhi Technological University 123.9 113.5 58.5

Institute of Human Behavior and Allied Sciences 98.9 124.9 63.0

Income Tax Office 119.0 116.9 58.0

Mandir Marg 97.3 111.6 57.4

Netaji Subhas Institute of Technology Dwarka 140.2 112.9 62.4

Punjabi Bagh 103.6 117.0 55.8

Ramakrishna Puram 143.2 122.5 67.9

Shadipur 128.7 117.1 58.1

US Diplomatic Post 113.8 116.3 62.0

Urban average 122.2 117.9 60.6

Source: Original calculations for this publication.
Note: As determined by the ground-level-monitoring (GLM) data, the chemical transport model (CTM)–based satellite approach using MODIS 
(Moderate-Resolution Imaging Spectroradiometer) Terra aerosol optical depth (AOD), and the original MERRA-2 (Modern Era Retrospective-analysis 
for Research and Applications) output. Note these averages include only those days with both a valid AOD and a valid GLM daily average 
PM

2.5
 (particulate matter with an aerodynamic diameter less than or equal to 2.5 microns) value.
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Source: World Bank, produced with Esri ArcGIS.
Note: CTM = chemical transport model-based method; MOD = MODIS Terra; 
MODIS = Moderate-Resolution Imaging Spectroradiometer; NAN = not a number; PM

2.5 
= particulate 

matter with an aerodynamic diameter less than or equal to 2.5 microns; VIIRS = Visible Infrared 
Imaging Radiometer Suite.

FIGURE 5.1

Comparison of the chemical-transport-model–based estimates for daily 
average ground-level PM2.5 concentrations in micrograms per cubic 
meter over Delhi, India, using VIIRS and MODIS Terra, November 1, 2017

Delhi
VIIRS CTM PM2.5

Delhi MOD VIIRS Data November 1, 2017

a. Using VIIRS

79.241139–110.780485
110.780486–142.319832
142.319833–173.859178
173.859179–205.398525
205.398526–236.937871
NAN

Delhi MOD CTM Data November 1, 2017

b. Using MODIS Terra

Delhi
MOD CTM PM2.5

79.241139–110.780485
110.780486–142.319832
142.319833–173.859178
173.859179–205.398525
205.398526–236.937871
NAN
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Source: World Bank, produced with Esri ArcGIS. 
Note: CTM = chemical transport model-based method; MODIS = Moderate-Resolution Imaging 
Spectroradiometer; MYD = MODIS Aqua; NAN = not a number; PM

2.5
 = particulate matter with an 

aerodynamic diameter less than or equal to 2.5 microns; SEVIRI = Spinning Enhanced Visible and 
Infrared Imager.

FIGURE 5.2

Comparison of the chemical-transport-model–based estimates for 
daily average ground-level PM2.5 concentrations in micrograms 
per cubic meter over Accra, Ghana, using SEVIRI and MODIS Aqua, 
December 26, 2017

Cities

SEVIRI CTM PM2.5
11.674649–34.925684
34.925685–58.176718
58.176719–81.437752
81.437753–104.678786
104.678787–127.929820
NAN

Accra SEVIRI CTM Data December 26, 2017

a. Using SEVIRI

Cities

MYD CTM PM2.5
11.674649–34.925684
34.925685–58.176718
58.176719–81.437752
81.437753–104.678786
104.678787–127.929820
NAN

b. Using MODIS Aqua

Accra MYD CTM Data December 26, 2017
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estimates did improve the mean bias in Delhi and Ulaanbaatar but did not greatly 
improve the ability of the land-use regression approach to predict the daily and 
site-to-site variation of PM2.5 within an urban area. In Delhi, the Stage 1 CTM-
based estimate was not a significant predictor of the daily average of PM2.5 in the 
bias-correction model. In fact, a statistical model that included only the 
MERRA-2 speciated aerosol variable did as good a job at predicting the daily 
average of PM2.5 in Delhi as a model using those MERRA-2 variables and the 
satellite Stage 1 CTM-based estimate.

Can satellites reduce the number of required monitoring sites in 
a GLM network?

Another goal of this work was to determine if satellite data could be combined 
with GLM data in such a way as to reduce the number of GLM sites required to 
quantify exposure in an urban population (see the section “Co-kriging and krig-
ing with satellite and OpenAQ data” in appendix C). To test this, ordinary kriging 
was done for each day using the monitor station daily averages of PM2.5 in Delhi 
and Ulaanbaatar excluding the US Diplomatic Post. The concentration at the US 
Diplomatic Post for each day was then predicted with ordinary kriging. This 
tested how well the other GLM sites alone could characterize the PM2.5 concen-
trations at an unmeasured site. The CTM-based satellite PM2.5 estimates were 
then combined with the GLM data (minus the US Diplomatic Post) via co-kriging, 
and we again estimated the concentrations at the US Diplomatic Post to test if 
the satellite data could compensate for the loss of one GLM station.

The Delhi results suggest that adding in the satellite data would not help to 
reduce the number of GLM monitoring sites there, since the root-mean-square 
error (a measure of prediction accuracy calculated as the square root of the aver-
age of the squared differences between the predicted and observed PM2.5 con-
centrations at the US Diplomatic Post) increased above that for ordinary kriging 
when the CTM-based satellite data are added via co-kriging. This finding sug-
gests that including the CTM-based satellite data resulted in poorer interpola-
tion predictions than using GLM data alone. However, the Ulaanbaatar results 
suggest that the Diplomatic Post could be eliminated by adding satellite data to 
the rest of the GLM network in this city, but again only for the eight months each 
a year that satellites actually provide data. Overall, these results suggest that the 
use of satellite data may allow LMICs to reduce the number of GLM sites needed 
in an area, but that this ability varies from city to city and could result in large 
errors in annual average estimates for cities with a seasonal (Ulaanbaatar) or 
persistent (Lima) lack of satellite AOD coverage.

IDENTIFYING THE TYPE OF CITIES WHERE SATELLITES 
WORK BEST

We applied the CTM-based and statistical approaches discussed above to a set of 
nine cities in LMICs that represent a diversity of regimes (coastal versus inland, 
high versus low altitude, tropical versus temperate, and so forth), as shown in 
table 5.4. These cities also have GLM data needed for validation, through either 
US Diplomatic Posts, local monitoring networks, or both, although the amount 
of available GLM data varies significantly between cities. 
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For the nine cities, the satellite-based estimates of ground-level PM2.5 concen-
trations used the MODIS Combined (Deep Blue plus Dark Target) Product,2 
since this provides the most coverage for cities, is easy to access, has been exten-
sively validated, and has a long historical record. The tests above explored sev-
eral other publicly available satellite sources of AOD but did not find any that 
provided significant advantages over this product. Both the CTM-based and sta-
tistical approaches discussed in the first main section of this chapter were 
applied to each city in table 5.4, and the mean bias and error in the satellite esti-
mates for each city were calculated. The evaluation results are discussed in 
detail in appendix C and summarized below. 

Evaluating satellite methods in multiple cities in LMICs

Table 5.5 and figures 5.3 to 5.5 show the statistics for the evaluations of the sta-
tistical and CTM-based methods for whichever satellite (MODIS Terra or 
MODIS Aqua) gave the best performance for a given city. The statistical methods 
generally performed better than the CTM-based estimates, but this may be due 
to the low numbers of points available for model training. The cities with the 
highest R also had the lowest number of evaluation points—for example, 
Kathmandu had an R of 66 percent, mainly because there were only 50 days in 
the two-year evaluation period (2016–17) that had both valid daily PM2.5 averages 
from the GLM data and valid AOD retrievals from the satellite. This is an exam-
ple of statistical model “overfitting” where, due to the small number of data 
points relative to the degrees of freedom of the model, the model corresponds 
too closely to the data with which the model was created. Consequently, the 
model may fail to fit additional data or predict future observations reliably. Thus, 
the statistical approach in these cases is likely to have a much poorer perfor-
mance on future AOD data. 

The satellite-derived PM2.5 estimates from the CTM-based method tended to 
have low correlation (R < 0.5) with the observed daily average PM2.5 concentra-
tions. The highest R value obtained using a CTM-based method was in Delhi, 
with a value of 44 percent, but other cities had much lower R values. This low 

TABLE 5.4  Cities included in this work

CITY COUNTRY LOCATION INCOME GROUP NUMBER OF GLM SITES

Accra Ghana Coastal, low altitude Lower middle 4

Addis Ababa Ethiopia Inland, high altitude Low 2a

Dakar Senegal Coastal, low altitude Lower middle 4b

Delhi India Inland, low altitude Lower middle 10

Hanoi Vietnam Inland, low altitude Lower middle 1a

Kampala Uganda Inland but near lake, high 
altitude

Low 1a

Kathmandu Nepal Inland, high altitude Lower middle 4

Lima Peru Coastal, low altitude Upper middle 10

Ulaanbaatar Mongolia Inland, high altitude Lower middle 8

Source: World Bank.
Note: GLM = ground-level monitoring.
a. Only US Diplomatic Post data are available.
b. Dakar data are available only as an average of the four reporting sites. Income groups correspond to World Bank Country Classifications by Income 
Level: 2021–22. Income classifications are affected by several factors and are subject to change in time. 
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value of the correlation means that the CTM-based method was not able to pre-
dict more than 44 percent of the variation in daily average PM2.5 concentrations 
between sites in a city or between days. This implies that current satellite meth-
ods may not be able to estimate exposures for studies of the acute health effects 
of PM2.5 (which require knowledge of day-to-day variations) or of the changes in 
chronic exposure to PM2.5 within a city (which requires knowledge of site-to-site 
variation).

Satellite AOD coverage for some cities was too sparse to allow for its use in 
PM2.5 monitoring. Consistent with the results in this chapter, Lima had little 
valid AOD data coverage for the city. Consequently, satellite methods could not 
be used for this location. Ulaanbaatar had seasonal gaps in coverage, with no 
satellite AOD available in the winter months when PM2.5 concentrations are the 
highest. 

The uncertainty in all satellite-based estimates of the daily average PM2.5 con-
centration at a given location in a city (as estimated with the mean normalized 
gross error) tended to be very large (21–77 percent for the statistical methods, 
and 48–85 percent for the CTM-based methods). This is consistent with the 
results of van Donkelaar, Martin, Brauer, and Boys (2015), who found an error in 
monthly average PM2.5 concentrations over East Asia of about 50 percent. This 
error is much larger than usually allowed for “equivalent methods” for 

TABLE 5.5  Correlation coefficient, mean normalized bias, and mean normalized gross error for each city 

CITY COUNTRY LOCATION

MOST- 
CORRELATED 
SATELLITE

CORRELATION 
COEFFICIENT (R)

MEAN 
NORMALIZED 

BIAS

MEAN 
NORMALIZED 
GROSS ERROR 

Accra Ghana Coastal, low altitude Aqua —b

0.40

—

−23%

—

56%

Addis Ababa Ethiopia Inland, high altitude Terra 0.63c

0.40

7%

36%

24%

65%

Dakar Senegal Coastal, low altitude Aqua —b

0.52

—

68%

—

85%

Delhi India Inland, low altitude Terra 0.46

0.44

37%

27%

60%

60%

Hanoi Vietnam Inland, low altitude Terra 0.63

0.30

21%

22%

43%

53%

Kampala Uganda Inland near lake, high 
altitude 

Aqua 0.51c

0.14

6.5%

−70%

21%

70%

Kathmandu Nepal Inland, high altitude Aqua 0.66c

0.13

8%

−19%

24%

48%

Lima Peru Coastal, low altitude —a — — —

Ulaanbaatar Mongolia Inland, high altitude Aqua 0.44

0.15

54%

−70%

77%

78%

Source: Original calculations for this publication.
Note: The terms correlation coefficient, mean normalized bias, and mean normalized gross error are described in the glossary of technical terms. Only 
results for the satellite with the highest correlation with the GLM data are presented. Statistical method results are shown in the top row of each city entry 
in regular type. CTM-based estimates are in the bottom row in italics. — = not available. AOD = aerosol optical depth; CTM = chemical transport model; 
GLM = ground-level monitoring.
a. Not available; the satellite AOD coverage was too poor to perform an evaluation.
b. Not enough GLM data were available to attempt the statistical method.
c. High R for the statistical method may be an artifact of the low number of points with both valid AOD and GLM data. 
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Source: Original calculations for this publication.

FIGURE 5.3

Correlation coefficient R for the statistical and chemical-transport-model–based 
methods for the different low- and middle-income country cities
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Source: Original calculations for this publication.

FIGURE 5.4

Mean normalized bias for the statistical and chemical-transport-model–based 
methods for the different low- and middle-income country cities
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measuring PM2.5 by the US Environmental Protection Agency (chapter 4) and 
thus suggests that satellite methods are not a replacement for GLM data in 
LMICs. 

Patterns in satellite-method performance

A goal of the research presented in this report was to determine if there were 
patterns in the performance of satellite methods in predicting ground-level 
PM2.5 concentrations based on factors such as the distance of the city from a 
coast, the altitude of the city, and so forth. The results in table 5.5 and appendix 
C do suggest some patterns may be present in the performance of satellite meth-
ods in these cities.

CTM-based methods tend to underestimate PM2.5 concentrations in cities at 
high altitudes or in mountain valleys such as Ulaanbaatar (altitude 1.7 kilome-
ters), Kathmandu (altitude 1.4 kilometers), and Kampala (altitude 1.2 kilome-
ters). This is likely due to these cities being in small mountain valleys surrounded 
by rural land, and the aerosol profile from the CTM is more appropriate for rural 
land, which leads to an underestimate of PM2.5 in the city (see above). 

CTM-based methods may overestimate PM2.5 concentrations in cities where 
desert dust is a large fraction of the PM2.5. Although Addis Ababa is a high-
altitude city (altitude 2.4 kilometers), the CTM-based method tends to overesti-
mate in this city. This may be due to this high-altitude city being near the Sahara 

Source: Original calculations for this publication.

FIGURE 5.5

Mean normalized gross error for the statistical and chemical-transport-model–based 
methods for the different low- and middle-income country cities
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Desert, and the dust from this area could be leading to the CTM overestimate in 
this city. Dust makes up more than half of the CTM estimate of PM2.5 in Addis 
Ababa and Dakar, and both show significant overestimates when the CTM-based 
method is used. However, Accra also has a high percentage of PM2.5 from dust, 
but for this coastal city, the CTM-based method underestimates PM2.5.

Coastal cities (including cities near large lakes) appear to have poor satellite 
coverage, due to either persistent clouds or the mixture of land and water sur-
faces in the satellite retrieval of AOD. Accra, Dakar, and Lima all had too few 
matching GLM and satellite AOD points to perform the statistical method, and 
Kampala (near Lake Victoria) had very few points as well. 

Satellite-based methods appear to work best for low-altitude, inland cities 
such as Delhi and Hanoi, but still have significant errors (43–60 percent) in pre-
dictions of daily average PM2.5 concentrations at sites within the city.

The performance of the satellite approaches in estimating ground-level PM2.5 
did not appear to be affected by the type of instrument used to measure GLM 
data. Some cities had data only from GLM instruments at US Diplomatic Posts, 
which all used the beta attenuation mass monitor (BAMM) method. Accra used 
GLM instruments based on gravimetric methods, but the performance of satel-
lite methods in this city was not clearly better or worse than the BAMM method. 
Ulaanbaatar and Delhi also included the Grimm environmental dust monitor 
and gravimetric filters, respectively, but this did not have a noticeable impact on 
the performance of satellite methods.

Recommended next steps for each city

Table 5.6 summarizes the lessons learned for each city and the recommended 
next steps to improve the monitoring of PM2.5 in each to better understand and 
reduce the health impacts of PM2.5. 

The GLM networks in each of these cities should be expanded to better char-
acterize the variations of PM2.5 in the cities and surrounding suburban and rural 
areas, which will also allow for the derivation of better statistical models for 
translating satellite AOD to ground-level PM2.5 estimates. Only Delhi and 
Ulaanbaatar had sufficient GLM data to derive robust statistical models, although 
in Ulaanbaatar this was possible for only eight months of the year due to snow 
cover preventing the measurement of AOD by the satellites. Lima and Ulaanbaatar 
have sufficiently poor AOD coverage that preclude the use of satellite observa-
tions for annual PM2.5 monitoring, although satellites may still be useful in 
Ulaanbaatar for the eight months each year when AOD measurements can be 
taken. Similarly, the problems with poor AOD coverage near coastal regions 
make it unlikely that satellite methods would be successful in Accra, Dakar, or 
Kampala. 

For inland cities without persistent seasonal snow cover, satellite observa-
tions may provide some benefits to GLM monitoring, but the current CTM-
based approaches tend to underestimate significantly for the high-altitude 
cities. Thus, for inland cities without persistent seasonal snow (Addis Ababa, 
Delhi, Hanoi, and Kathmandu), a SPARTAN network site (see the section 
“Chemical transport model–based approaches” in appendix A) should be added 
to the local GLM network to directly measure the relationship between PM2.5 
and AOD using ground-based instruments, which will allow this relationship to 
be used instead of the CTM-based relationships in these cities.
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TABLE 5.6  Lessons learned and recommended next steps to improve monitoring of PM2.5 in each city to 
better understand and reduce the health impacts of PM2.5

CITY COUNTRY LOCATION LESSONS LEARNED RECOMMENDED NEXT STEPS

Accra Ghana Coastal, 
low 
altitude

•	 Insufficient GLM and AOD data 
for statistical approaches to be 
used

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument metadata

Addis 
Ababa

Ethiopia Inland, 
high 
altitude

•	 Low amount of GLM and AOD 
data may be resulting in an 
over-fitted statistical approach

•	 CTM-based approach biased 
high, apparently due to high dust 
impacts

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument metadata

•	 Add SPARTAN network site
•	 After the GLM network is expanded and multiple years 

of data are available, test combining the GLM data with 
the satellite data via co-kriging to see if this approach is 
useful for this city

Dakar Senegal Coastal, 
low 
altitude

•	 Insufficient GLM and AOD data 
for statistical approaches to be 
used 

•	 CTM-based approach biased very 
high

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument metadata

•	 Satellite approaches unlikely to be useful even with 
increased GLM data due to coastal location

Delhi India Inland, 
low 
altitude

•	 Satellites can provide a citywide 
annual average estimate, but do 
not represent day-to-day or 
site-to-site variability 

•	 Statistical and CTM-based 
approaches perform similarly

•	 Add rural sites to current GLM network to allow use of 
hybrid satellite approaches and land-use regression

•	 Add SPARTAN network site

Hanoi Vietnam Inland, 
low 
altitude 

•	 Statistical and CTM-based 
approaches perform similarly

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument metadata

•	 Add SPARTAN network site
•	 After the GLM network is expanded and multiple years 

of data are available, test combining the GLM data with 
the satellite data via co-kriging to see if this approach is 
useful for this city

Kampala Uganda Inland 
near lake, 
high 
altitude 

•	 Low amount of GLM and AOD 
data may be resulting in an 
over-fitted statistical approach 

•	 CTM approach biased very low

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument metadata

•	 Satellite approaches unlikely to be useful even with 
increased GLM data due to coastal location

Kathmandu Nepal Inland, 
high 
altitude

•	 Low amounts of GLM and AOD 
data may be resulting in an 
over-fitted statistical approach

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument metadata

•	 Add SPARTAN network site
•	 After the GLM network is expanded and multiple years 

of data are available, test combining the GLM data with 
the satellite data via co-kriging to see if this approach is 
useful for this city

Lima Peru Coastal, 
low 
altitude 

•	 Satellite AOD coverage is too 
poor, and thus satellite approach-
es cannot be used for PM

2.5 
moni-

toring in this city

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument metadata 

•	 Investigate inconsistency between local network and US 
Diplomatic Post data

Ulaanbaatar Mongolia Inland, 
high 
altitude

•	 Poor satellite coverage in winter 
means satellite approaches 
cannot be used for annual PM

2.5 

monitoring in this city but may 
be useful for the eight months a 
year when satellite AOD 
measurements exist

•	 Expand current GLM network and improve QA/QC 
practices, including public access to instrument 
metadata

•	 Add SPARTAN network site
•	 Combine satellite data during the eight-month 

snow-free period with GLM data via co-kriging to 
provide more-accurate neighborhood-scale exposure 
estimates

Source: World Bank.
Note: AOD = aerosol optical depth; CTM = chemical transport model; GLM = ground-level monitoring; PM

2.5 
= particulate matter with an aerodynamic 

diameter less than or equal to 2.5 microns; QA/QC = quality assurance/quality control; SPARTAN = Surface Particulate Matter Network.
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NOTES

1.	 Applying the GWR correction does improve the GBD estimate for Ulaanbaatar, because 
this correction uses GLM data in other urban areas to increase the satellite-derived PM2.5 

estimate for this city. However, the corrected value still underestimates the true annual 
average by a factor of two. 

2.	 Note that here the “combined” product refers to the combination of the Dark Target and 
Deep Blue algorithms for a given version of the MODIS instrument (either MODIS Terra 
or MODIS Aqua). Thus, there are separate “combined” products from MODIS Terra and 
MODIS Aqua.
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To accomplish the objectives of this report, a literature review of the approaches 
used to combine satellite observations with ground-level monitoring (GLM) 
measurements of particulate matter with an aerodynamic diameter less than or 
equal to 2.5 microns (PM2.5) was conducted. The GLM data provided by US 
Diplomatic Posts and other sources contained in the OpenAQ database were 
investigated to determine the level of quality assurance and likely uncertainties 
in the GLM data. Several methods for using satellite aerosol optical depth (AOD) 
from the publicly available sources to estimate ground-level daily average PM2.5 
concentrations within cities were then tested in nine cities in low- and 
middle-income countries (LMICs) to look for patterns in the performance of the 
satellite methods with the altitude and location of the city.

Based on the results of this work, GLM and satellite data are best thought of 
as complements to each other. Many GLM networks could be improved by con-
sidering satellite data, but all approaches using satellite data improve as the 
number of high-quality GLM sites is increased. Thus, it is important that LMICs 
continue to support the establishment of GLM networks to measure air pollut-
ants that cause mortality, notably fine particulate matter (PM2.5), in regions such 
as Sub-Saharan Africa and other regions with many LMICs before they can take 
full advantage of satellite data. The GLM data must have adequate quality assur-
ance and quality control and follow standard operating procedures to ensure the 
data are of sufficient quality to be used to estimate PM2.5 exposures for health 
studies and to be combined with the satellite estimates. 

Satellite data may be useful for estimating air quality for countries or large 
areas based on average estimates. However, for the purpose of protecting human 
health, LMICs need to prioritize establishment or strengthening of GLM net-
works where they are lacking or weak. These networks can measure air quality 
at the level where human activity is typically carried out and where people are 
exposed to air pollutants, notably PM2.5, that are harmful to health and can cause 
death.

The next section summarizes the conclusions of this report, and the final 
section provides recommendations for the use of satellite data and the improve-
ment of GLM in LMICs.

Conclusions and 
Recommendations6
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CONCLUSIONS

Literature review

The literature review covered the approaches used (and their strengths and lim-
itations) in each of the three key steps entailed in combining satellite observa-
tions with GLM measurements of PM2.5: (1) the retrieval of AOD from satellite 
observations of reflected solar radiation, (2) the translation of the vertically inte-
grated AOD observation into an estimate of the ground-level PM2.5 concentra-
tion, including any bias corrections, and (3) simultaneously interpolating these 
satellite-derived PM2.5 estimates and the available GLM data. The major findings 
of the review follow:

•	 Although many satellite AOD products exist, only a small number of daily 
products are currently freely available shortly after the observation is made at 
a horizontal resolution of 10 kilometers or finer.
▪▪ Some satellite AOD products that have been used in previous studies in 

the literature (for example, MAIAC [Multi-Angle Implementation of 
Atmospheric Correction] AOD) were not operational products as of the 
start of this work and thus are not available for all regions in near real-
time. Other satellite data (for example, the Himawari-8 and -9 data) must 
be purchased by the user and thus may be outside the budget for most 
LMICs.

▪▪ Polar-orbiting satellite instruments (for example, MODIS [Moderate-
Resolution Imaging Spectroradiometer] and VIIRS [Visible Infrared 
Imaging Radiometer Suite]) have the advantage of daily global coverage 
but tend to have relatively coarse horizontal resolution (6 to 10 kilometers). 
Geostationary satellites (for example, GOES and MSG-SEVIRI) make 
several observations each day at a higher horizontal resolution (2 to 
4  kilometers) but observe only one side of the globe, and their AOD 
retrievals tend to exclude coastal areas.

▪▪ Accessing the VIIRS and GOES products is difficult, since the download 
process cannot be easily automated. 

▪▪ The MODIS combined Deep Blue and Dark Target AOD retrieval is free, is 
available in near real-time, is easy to access, has been extensively validated, 
and has good coverage over urban and coastal areas.

•	 Several studies have successfully converted satellite AOD to monthly average 
and annual average ground-level PM2.5 estimates using statistical techniques, 
chemical transport model (CTM)–based approaches, or hybrid approaches 
with typical errors of 30–50 percent, but very few have tried to predict daily 
PM2.5 concentrations or their variation within a city.
▪▪ CTM-based approaches are easy to implement globally and do not require 

any GLM data. Consequently, CTM-based approaches can be imple-
mented for all LMICs. However, these approaches can have significant 
biases due to errors in the CTM’s simulation of the vertical profile of the 
aerosols, as well as in the mismatch between the horizontal resolution of 
the CTM and the distribution of population within a city.

▪▪ Statistical approaches are locally unbiased (since these methods train a 
statistical model to minimize the mean bias) and do not depend on an 
initial estimate of the aerosol vertical profile. However, statistical 
approaches require a multiyear GLM data record with concurrent satel-
lite observations to train the statistical model. Only a few LMICs 
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(for example, India or Mongolia) have sufficient GLM data to use these 
approaches.

▪▪ Hybrid approaches that correct CTM-based approaches with statistical 
models trained with GLM data tend to give the best performance. However, 
they also require a multiyear GLM data record with concurrent satellite 
observations over many different land-use types (for example, urban and 
rural sites or coastal and inland sites) before the statistical model can be 
trained. 

•	 Co-kriging and land-use regression (LUR) can be used to combine 
satellite-derived PM2.5 estimates with GLM data to provide estimates of PM2.5 
concentrations at a neighborhood scale across urban areas.
▪▪ Co-kriging can be used to estimate variations in daily average PM2.5 con-

centrations, whereas LUR can be used for annual or longer-term 
averages. 

▪▪ Co-kriging and LUR tend to work better as the satellite horizontal resolu-
tion is increased and as the GLM network covers a wider variety of sites 
(for example, urban and rural). 

Quality assurance of ground-level monitoring data in LMICs

All the cities evaluated in this project would benefit from expanding their GLM 
networks and enhancing their quality-assurance procedures, and this should be 
a key next step in monitoring PM2.5 in these cities.

Missing or unreliable GLM data prevent the use of statistical or hybrid 
approaches to incorporating satellites observations into PM2.5 monitoring. When 
GLM data are absent, only the CTM-based approaches can be applied. 
When GLM data are present but of poor quality (that is, unreliable), a bias 
correction can be calculated for the CTM-based approaches, but there is no 
assurance that the “corrected” satellite value is more accurate than the original 
estimate. Finally, poor maintenance of GLM instruments can lead to large data 
gaps, which either prevent the use of statistical methods or bias the statistical 
models trained with the data.

Most PM2.5 instruments in use around the world have been approved by the 
US Environmental Protection Agency (EPA) as federal equivalent methods 
(FEMs) for PM2.5 characterization and thus can provide reliable measurements 
of ground-level PM2.5 if they are properly maintained and calibrated. To qualify 
as a FEM, the PM2.5 measurement technique must demonstrate uncertainties 
less than 10 percent relative to the federal reference method for 24-hour average 
PM2.5 concentrations. However, the actual accuracy and precision of the data will 
depend on whether proper maintenance and procedures are followed, and if the 
instruments are monitored for errors.

US Diplomatic Posts are equipped to measure PM2.5 with Met One beta 
attenuation monitor (BAM) systems and abide by the current EPA guidelines 
for PM2.5 monitoring. Thus, these posts are sources of high-quality GLM data 
for the locations where they operate. However, these data may not be represen-
tative of average air quality in the city where these posts are located. Whereas 
the Delhi, India, local government GLM network appears to be consistent with 
the US Diplomatic Post data, the local network in Lima, Peru, is inconsistent. 
More details on the maintenance and quality-assurance procedures in the 
GLM network in Lima would be needed to determine the causes of the observed 
differences.
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Application of satellite approaches to cities in LMICs

The results of the application of satellite approaches to cities in LMICs suggest 
that satellites cannot be a replacement for a high-quality GLM network. This is 
because several limitations to the use of satellite AOD are found in the cities 
tested:

•	 Coastal cities (Accra, Dakar, Kampala, and Lima) and cities with persistent 
snow cover (Ulaanbaatar) have significant limitations in satellite AOD 
coverage.
▪▪ Satellite coverage was poorest in the coastal city of Lima, and thus an 

evaluation of CTM-based approaches with GLM network data was not 
possible. The other coastal cities (including cities near large lakes) 
examined in this study had poor satellite coverage, because of either 
persistent clouds or the mixture of land and water surfaces in the satellite 
retrieval of AOD. 

▪▪ In Ulaanbaatar, no satellite AOD products are available for the high PM2.5 
winter months of December to mid-March. 

•	 The ground-level PM2.5 estimates from the CTM-based and statistical 
approaches for converting satellite AOD generally had a low correlation with 
the true daily average PM2.5 values within a city over the year.

•	 The uncertainty (that is, the average error that is expected for a single esti-
mate) in all satellite-based estimates of the daily average PM2.5 concentration 
at a given location in a city tended to be very large (21–77 percent for the sta-
tistical methods, and 48–85 percent for the CTM-based methods), and thus 
these methods cannot be considered “equivalent methods” when compared 
with United States– or European Union–approved GLM techniques.1

•	 CTM-based satellite approaches tend to underestimate PM2.5 in high-altitude 
cities. For example, annual average PM2.5 concentrations in Ulaanbaatar were 
underestimated by a factor of 10.

•	 Estimating variations in annual average PM2.5 within a city (to estimate 
chronic health effects on a neighborhood scale) is unlikely to be possible with 
satellite AOD data using the approaches tested here. This will require GLM-
network data and LUR, with the satellite AOD product or the satellite-based 
PM2.5 estimate used as a variable in the LUR.

•	 Both the CTM-based and statistical approaches tested here showed little 
ability to represent the day-to-day variability in PM2.5 concentrations, with 
average absolute errors of ±50 percent for the best approaches within each 
city. Thus, studies of acute health effects will likely require GLM data.

However, a few cases and conditions are found where the use of satellite data 
may be appropriate as a complement (but not a replacement) for GLM networks. 
For example, satellite-based methods appear to work best for low-altitude, 
inland cities such as Delhi and Hanoi but still have significant errors 
(43–60 percent) in predictions of daily average PM2.5 concentrations at sites 
within these cities. In addition, the results suggest that under some conditions, 
adding satellite data to GLM network data via co-kriging may reduce the num-
ber of GLM sites needed to characterize PM2.5 concentrations and exposure 
within a city, although this ability varies from city to city and could lead to large 
errors in annual estimates for cities with a seasonal or persistent lack of satellite 
AOD coverage. 
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RECOMMENDATIONS

Use of satellite data in PM2.5 monitoring

Table 6.1 summarizes typical problems associated with the use of satellite data 
for PM2.5 monitoring in LMICs, the consequence of the problem, and the recom-
mended action to address each problem. 

Inland cities without persistent seasonal snow cover may be able to benefit 
from the use of satellite observations in their PM2.5 monitoring, and so a key next 
step should be establishing a SPARTAN network site within these cities to 
directly measure the relationship between AOD and ground-level PM2.5 concen-
trations, thus reducing the biases that come from using CTM-based estimates of 
this relationship. 

The research conducted for this report also suggests the following recom-
mendations for the use of satellite observations to supplement GLM data in 
LMICs based on the typology proposed in chapter 1 (see also table 6.2):

•	 For Type I countries, since no GLM data exist, the only possible approach to 
convert AOD to ground-level PM2.5 concentrations for these countries is a 
CTM-based approach. Thus, the raw CTM-based estimates of ground-level 
PM2.5 concentrations at the native resolution of the satellite AOD product 

should be used. However, the derived ground-level PM2.5 values should be 

TABLE 6.1  Summary of typical problems in using satellites in PM2.5 monitoring, the consequences, and the 
recommended actions to further the use of satellite data in PM2.5 monitoring to better understand and 
reduce the health impacts of PM2.5 in low- and middle-income countries

PROBLEM CONSEQUENCE RECOMMENDATION

Lack of GLM data 

(Type I LMICs).

Only CTM-based approaches can be 
used to monitor PM

2.5 
with satellites, 

and accuracy cannot be verified.

Install additional GLM sites and follow 
rigorous quality-assurance and mainte-
nance procedures.

GLM data exist but are of poor 
quality (Type II LMICs).

Only CTM-based approaches can be 
used to monitor PM

2.5 
with satellites, 

and accuracy cannot be verified.

Establish and follow rigorous 
quality-assurance and maintenance 
procedures for GLM data and report GLM 
metadata with actual measurements.

City is surrounded by rural land within 
typical resolution of global chemical 
transport models (that is, cities in 
mountain valleys).

CTM-based aerosol profile is incorrect, 
biasing satellite results.

Establish a SPARTAN network site to direct-
ly measure AOD and PM

2.5
 relationship.

City has seasonal persistent snow or 
cloud cover.

Satellite estimates will be unavailable 
during key seasons, biasing annual 
averages.

Satellite approaches should not be used 
for annual averages but may be used in 
certain seasons.

City is near a major body of water. Many AOD products will have poor 
coverage, since they filter out coastal 
regions.

Satellite coverage for city should be 
assessed on a case-by-case basis.

City has only urban GLM sites. Land-use-regression and hybrid 
approaches are not useful because of 
the lack of data on suburban and rural 
PM

2.5
 concentrations.

Establish a few nearby rural GLM sites 
to provide data on urban-rural variation 
of PM

2.5
.

Source: World Bank.
Note: AOD = aerosol optical depth; CTM = chemical transport model; GLM = ground-level monitoring; LMIC = low- and middle-income country; 
PM

2.5 
= particulate matter with an aerodynamic diameter less than or equal to 2.5 microns, SPARTAN = Surface Particulate Matter Network.
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assigned a high uncertainty that reflects not only the uncertainty in the AOD 
but also the estimated uncertainty in the CTM-derived AOD to PM2.5 relation-
ship (for example, about 50 percent based on van Donkelaar and others 2015 
or the 22–85 percent errors found by the research conducted for this report). 

•	 For Type II countries, the small amount of GLM data (with variable quality) 
that exists will provide at least some ability to derive a bias estimate for the 
raw CTM-based estimates of ground-level PM2.5 concentrations discussed 
above. However, without improvement in the quality-assurance procedures 
in these countries, it will not be possible to be certain that the bias-corrected 
estimate is truly more accurate than the raw estimate. Thus, it is advisable 
to report and store both values. This will allow for reprocessing of the sat-
ellite estimates when more-rigorous quality-assurance procedures are 
developed. 

TABLE 6.2  Recommendations for the use of satellite observations to 
supplement ground-level monitoring data in low- and middle-income 
countries

COUNTRY TYPE RECOMMENDATIONS

Type I: No air-quality data •	 The raw CTM-based estimates of ground-level 
PM

2.5
 concentrations at the native resolution of 

the satellite AOD product
 
should be used.

•	 The satellite estimates should be assigned a 
high uncertainty (at least 50 percent).

Type II: Countries with some 
air-quality data but of variable 
quality without rigorous QA 
procedures

•	 Both the raw and bias-corrected CTM-based 
estimates of ground-level PM

2.5
 concentrations 

at the native resolution of the satellite AOD 
product

 
should be reported and stored.

•	 The satellite estimates should be assigned a 
high uncertainty (at least 50 percent).

•	 As quality-assurance procedures improve (Type 
III), the satellite bias corrections should be recal-
culated.

Type III: Countries that possess 
reliable air-quality information 
but with poor spatial or tempo-
ral coverage 

•	 Both statistical and bias-corrected CTM-based 
approaches for converting AOD to PM

2.5
 should 

be tested, and the most reliable approach for a 
given city selected.

•	 Test combining these satellite estimates with 
GLM data via LUR and co-kriging.

Type IV: Good, reliable air-quality 
monitoring underway or being 
established

•	 Both statistical and bias-corrected CTM-based 
approaches for converting AOD to PM

2.5
 should 

be tested, and the most reliable approach for a 
given city selected.

•	 Test combining these satellite estimates with 
GLM data via LUR and co-kriging.

Type V: Routine, long-term 
air-quality monitoring

•	 Both statistical and bias-corrected CTM-based 
approaches for converting AOD to PM

2.5
 should 

be tested, and the most reliable approach for a 
given city selected.

•	 Test combining these satellite estimates with 
GLM data via LUR and co-kriging.

Source: World Bank.
Note: AOD = aerosol optical depth; CTM = chemical transport model; GLM = ground-level monitoring; 
LUR = land-use regression; PM

2.5 
= particulate matter with an aerodynamic diameter less than or equal 

to 2.5 microns; QA = quality assurance.
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•	 The GLM data in Type III countries potentially allow both statistical and 
bias-corrected CTM-based approaches for converting AOD to PM2.5 to be 
considered. CTM-based approaches likely would be the best approach for 
these countries, but statistical approaches should also be tested before mak-
ing a final decision. LUR can be combined with either technique to provide a 
finer-scale estimate of annual average ground-level PM2.5 concentrations 
(at about 0.5-kilometer resolution), and co-kriging can be used to derive 
high-resolution daily estimates across the city.

•	 Type IV and V countries will be able to take advantage of the same approaches 
outlined above for Type III countries to fill the gaps in the existing GLM net-
work to help cover more of the country’s population. The more extensive 
GLM networks in these countries will allow for more-accurate estimates of 
the geographical and seasonal variation in the AOD to PM2.5 relationship. 
Thus, at this point, purely statistical approaches may begin to outperform 
CTM-based estimates, especially for regions where the model’s emission 
inventories are out-of-date or otherwise inaccurate.

Presented below are this report’s recommendations on data sources and 
other methodological concerns for LMICs interested in using satellite data in 
their PM2.5 monitoring and exposure assessment:

•	 Since the uncertainties of the different standard satellite AOD products are 
similar, all countries should use the satellite product that offers the best bal-
ance of satellite AOD coverage and fine horizontal resolution for their coun-
try. The highest horizontal resolution possible for satellite AOD will likely be 
between 2 and 4 kilometers (for geostationary observations) or 1 and 10 kilo-
meters (for polar observations). Consequently, finer-scale predictions will be 
possible only for areas where extensive, high-quality GLM data exist.

•	 The satellite AOD coverage, both spatially and seasonally, should be assessed 
for the country before any attempt to integrate satellite data is performed. 
The physical limits of satellite AOD coverage will make their use in PM2.5 
monitoring difficult in many cities. 
▪▪ In cities with persistent wintertime snow cover, such as Ulaanbaatar, or 

seasonal persistent cloud cover, such as in Lima, all approaches using sat-
ellite AOD will likely not give accurate annual averages from current 
satellites. 

▪▪ In coastal cities, the mix of water and land surfaces within a satellite foot-
print and persistent clouds may also mean that using satellite AOD is not 
an option.

•	 For countries that do not have the capacity to perform their own meteorolog-
ical or chemical transport modeling, the freely available global model data sets 
provided by organizations in the United States for estimates of planetary 
boundary layer height, aerosol vertical profiles, and other parameters can be 
used in a CTM-based approach to estimating ground-level PM2.5 from satellite 
measurements. For long-term studies, the National Aeronautics and Space 
Administration’s MERRA-2 reanalysis can be used, because this will represent 
the best estimate of the historical atmospheric state. However, the reanalysis 
takes two months to produce, and thus for short-term forecasts and advisories, 
the National Centers for Environmental Prediction’s Global Forecast System 
(NCEP GFS) output (including the NEMS GFS Aerosol Component aerosol 
forecasts) can be used. The initial tests suggest that these data sets perform 
like the custom model data sets used in the GBD 2016 database for annual 
averages. 
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•	 Purchasing modeling data sets with higher resolution than the MERRA-2 and 
NCEP GFS products could address the errors seen in CTM-based methods 
for cities in appreciably different air-quality environments than their sur-
roundings, such as cities in mountain valleys surrounded by rural land such 
as Ulaanbaatar. 

Quality-assurance procedures for ground-level data

Based on the research conducted in preparing this report, it is important that 
LMICs continue to support the establishment of GLM networks in regions such 
as Sub-Saharan Africa and other regions where GLM networks are weak or non-
existent. These GLM data must have adequate quality assurance and quality 
control and follow standard operating procedures to ensure the data are of suffi-
cient quality. 

In addition, the results of the research conducted for this report suggest the 
following recommendations for LMICs and the US State Department for the 
quality-assurance procedures and the reporting of metadata for their GLM 
measurements:

•	 PM2.5 measurements need to be provided along with information on the 
instrument/technique type, estimates of measurement uncertainties, relevant 
metadata, and operational history. It is important that each PM2.5 measure-
ment not only identifies the type of instrument used for the measurement, but 
also tracks the instrument’s relevant history of use and calibration. This 
includes all “meta” data from instrument data files, including “housekeeping” 
files. 

•	 	Any recorded results from standard operating procedure and quality-assur-
ance procedures tests should be collected and disseminated along with the 
PM2.5 measurements to establish an instrument track record over time pro-
viding a transparent, data-centric measure of instrument reliability and 
performance. 

•	 Currently, US embassies do not publish their full quality-assurance protocol 
metadata along with the PM2.5 levels, thereby reducing the use of these 
measurements as well-established and controlled reference measurements. 
Thus, it is recommended that US embassies publish their full quality-assurance 
protocol and relevant metadata along with the PM2.5 levels.

•	 	Near real-time GLM data should be assessed using automated scripts such as 
the OpenAQ quality wrapper developed in this project to identify potential 
problems quickly so they can be addressed. This will help focus the time of 
air-quality staff in LMICs, allowing for higher-quality data while keeping the 
required number of trained technicians small.

NOTE

1.	 These percentages are the mean normalized gross error (average of the absolute value of 
the differences between the satellite estimate and the observations divided by the observa-
tions) for satellite-based predictions of daily average PM2.5 concentrations at each GLM site 
within a city and thus are an estimate of the error that could be expected when using the 
satellite methods to predict daily average PM2.5 concentrations at a location within the city 
that does not include a GLM site. 
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APPENDIX A

Literature Review

Current approaches to converting total column aerosol optical depth (AOD) 
retrieved from satellites into estimates of ground-level PM2.5 (particulate matter 
with an aerodynamic diameter less than or equal to 2.5 microns) concentrations 
have various limitations. First, retrieved total column AODs from satellites have 
errors associated with some issues. Such issues include excessive spatial averag-
ing that mixes urban and rural areas and thus underestimates AOD in the more 
polluted urban areas (for example, Hu, Waller, Lyapustin, Wang, Al-Hamdan, 
and others 2014; Hu, Waller, Lyapustin, Wang, and Liu 2014; Lyapustin and oth-
ers 2011); reflective surfaces, such as desert dust, that make it more difficult to 
separate the reflection of sunlight by aerosols from the surface reflection (for 
example, Sorek-Hamer and others 2015); “patchwork” surfaces in urban areas, 
where several different land-use types, each with different albedos, may all be 
present within a single satellite pixel (for example, Oo and others 2010); and the 
presence of undetected thin clouds, which can also create a positive bias in AOD 
retrievals (for example, Sun and others 2011). These limitations in satellite AOD 
products are consistent with some of the errors identified in using satellite 
observations to determine ground-level PM2.5 concentrations. For example, the 
high estimates in Egypt, Qatar, and Saudi Arabia are consistent with overesti-
mates of AOD in regions with highly reflective surfaces. These problems can be 
mitigated by careful analysis and identification of the satellite observations and 
retrieval algorithms that give the most accurate and precise estimates of AOD for 
a given region, rather than trying to find one satellite product that works suffi-
ciently well for all conditions around the globe. A deep understanding of the 
strengths and weaknesses of the different satellite AOD products is thus essen-
tial to determining which product will be most useful for a given set of geo-
graphic and meteorological conditions.

Most previous validation work on the use of satellite observations to estimate 
ground-level PM2.5 has been performed in developed countries with extensive, 
well-calibrated, long-term ground-level-monitoring (GLM) observations of 
PM2.5 (Type V countries, using the proposed typology in chapter 1). However, the 
performance of the statistical models and chemical transport models (CTMs) 
used to derive these relationships is not as well characterized in many low- and 
middle-income countries (LMICs), where GLM is infrequent or absent and few 
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field campaigns have been performed to make PM2.5 observations with which to 
train and test the models. In addition, any GLM observations that are available 
in LMICs may be difficult to access or may require significant effort to 
quality-assure the data. Being able to access these data sets and assess the quality 
of the measurements is thus a critical part of this project. The lack of GLM in 
many LMICs also introduces difficulties in trying to relate the spatially averaged 
AOD observations to variations in PM2.5 within a city (due to distance from road-
ways and other pollution sources), which suggests the need to combine satellite 
observations with GLM observations and data on pollution sources within a city 
using interpolation techniques (for example, de Hoogh and others 2016; 
Vienneau and others 2013).

This appendix contains a literature review that discusses the approaches 
used (and their strengths and limitations) in each of the three key steps in com-
bining satellite observations with GLM measurements of PM2.5:

•	 The retrieval of AOD from satellite observations of reflected solar radiation 
(second section)

•	 The translation of the vertically integrated AOD observation into an estimate 
of the ground-level PM2.5 concentration, including any bias corrections (third 
section)

•	 Simultaneously interpolating these satellite-derived PM2.5 estimates and the 
available GLM data (fourth section).

Based on this review, recommendations are made for LMICs on how best to 
incorporate satellite data into their monitoring plans (fifth section). The recom-
mendations use the following proposed typology of countries based on their 
levels of engagement with air-quality monitoring:

•	 Type I: Countries with no existing measurements and no history of routine 
measurements of atmospheric composition of any kind. Some anecdotal 
measurements or one-time sampling may have taken place.

•	 Type II: Countries with some information on atmospheric composition avail-
able (perhaps PM10 or total suspended particulates [TSPs]) but of variable 
quality without rigorous quality assurance (QA) procedures.

•	 Type III: Countries that possess reliable information but with poor spatial or 
temporal coverage. For example, monitoring may exist in only one city or rou-
tine monitoring may exist for a period of a year or two but is no longer being 
collected because of equipment malfunction or lack of repairs.

•	 Type IV: Good, reliable AQ monitoring underway or being established.
•	 Type V: Routine, long-term AQ monitoring.

AVAILABLE AEROSOL-OPTICAL-DEPTH PRODUCTS

Monitoring the distribution and properties of atmospheric aerosols from satel-
lites is a crucial component of establishing the radiative forcing of aerosols and 
their impact on climate, and it is of growing interest for regional and urban 
air-quality monitoring. The degree to which aerosol particles suspended in the 
atmosphere interact with light depends on the size and shape of the particles. 
Smaller particles that scatter light at visible (VIS) and shorter ultraviolet (UV) 
wavelengths have negligible effect at longer near-infrared (NIR) wavelengths 
where (in the absence of clouds) there is a relatively clear view to the surface. 
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These dependencies on spectral properties can be exploited through satellite 
observations in the VIS through NIR wavelengths to infer properties of the aero-
sols classified according to a limited set of models. The ability to measure aero-
sols is dependent on there being reasonably good contrast between the light 
scattered from the particles and that reflected from the surface at VIS wave-
lengths. For this reason, aerosol retrievals are often limited to darker surfaces 
(for example, ocean or vegetation). Integral to this approach is the need to infer 
the surface reflectance at VIS wavelengths in the absence of aerosols. This is 
typically achieved either by using observations from previous times (when aero-
sols were not present) or by relying on relationships with the signals at longer 
wavelengths unaffected by the aerosols. These methods tend to also work best 
for darker surfaces. The monitoring of aerosols based on reflected light is also 
restricted to daytime conditions.

Radiative-transfer (RT) models enable accurate simulations of reflectance at 
the top of the atmosphere (TOA) in the presence of aerosol layers with a variety 
of optical properties. By properly accounting for surface reflectance from land 
and ocean backgrounds, it is possible to retrieve several important aerosol prop-
erties by comparing satellite-observed TOA reflectances to those calculated 
from an RT model. Typically, to optimize processing time, TOA reflectances are 
precalculated by the RT model for several combinations of aerosols and are 
stored in look-up tables (LUTs) accessed by a retrieval algorithm. The RT calcu-
lations are performed for a range of aerosol optical thicknesses, so each stored 
reflectance value in the LUT corresponds to an aerosol optical thickness (AOT). 

Because the surface type plays such an important role in aerosol retrievals, 
and because concentrations of aerosols often correspond to land or ocean prov-
enance regions, somewhat different approaches are implemented over land and 
ocean. For land retrievals, specification of land surface reflectance is more diffi-
cult because of the greater heterogeneity of global land cover. For this reason, 
direct observations of land-surface reflectance are preferred over using simu-
lated land-surface reflectances. Threshold tests are typically applied to all land 
pixels to ensure that only dark vegetated pixels are processed. The total TOA 
reflectance is the sum of the observed land surface and atmospheric contribu-
tions. The matching aerosol model is one with a TOA reflectance that produces 
the smallest residual with respect to observed TOA reflectances in bands sensi-
tive to the presence of aerosols. The AOD and other properties associated with 
the selected model are reported.

Variations on this retrieval approach have been used to generate aerosol 
products from satellite observations. The World Meteorological Organization 
(WMO) maintains an online record of satellite technology and products related 
to weather, water, and climate called the Observing Systems Capability Analysis 
and Review Tool (OSCAR)1 that is a very good reference of all past, current, and 
future aerosol products. The operational and science remote sensing capabilities 
collected there provide different levels of information about the aerosol constit-
uents. Multispectral imaging radiometers (for example, Advanced Baseline 
Imager [ABI], Moderate-Resolution Imaging Spectroradiometer [MODIS], and 
Visible Infrared Imaging Radiometer Suite [VIIRS]) are capable of column AOD 
and aerosol particle size determinations. Multiangle radiometers (for example, 
Multi-angle Imaging Spectroradiometer [MISR]) and polarization imagers (for 
example, Multi-viewing, Multi-channel, Multi-Polarization Imaging mission 
[3MI] or Polarization and Directionality of the Earth’s Reflectances [POLDER]) 
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can provide more detail on aerosol size or type information, and space-based 
lidars (light detection and ranging devices) (for example, Cloud-Aerosol Lidar 
with Orthogonal Polarization [CALIOP]) are used for aerosol and cloud 
profiling. 

Aerosol products derived from instruments aboard polar satellites in 
low earth orbit (LEO) (for example, Advanced Very High Resolution 
Radiometer [AVHRR], MODIS, and VIIRS) provide global coverage roughly 
once per day, with spatial resolution on the order of 1 to 10 kilometers, and 
that depends on the orbit path. Products derived from instruments on geo-
stationary (GEO) satellites (for example, ABI, Advanced Himawari Imager 
[AHI], Geostationary Operational Environmental Satellite [GOES-Imager], 
and Spinning Enhanced Visible and Infrared Imager [SEVIRI]) provide cov-
erage over the full field of view (that is, Full Disk) at less than 30-minute 
frequency with a spatial resolution of roughly 2 to 4 kilometers, and that 
varies with the satellite zenith angle. As a resource for air-quality monitoring 
at specific locations around the world, it is necessary that remotely sensed 
aerosol-optical-depth products used to infer ground-level PM2.5 concentra-
tions are available in near real-time (NRT) and that the products provide 
adequate coverage for regions of interest. Figure A.1 illustrates the coverage 
provided by LEO and GEO satellites in the northern hemisphere. A summary 
of the aerosol products produced by the current series of LEO and GEO sat-
ellites is provided in table A.1.

Satellite-based AOD products typically undergo a very rigorous validation 
process before they are officially released. This process includes extensive com-
parisons to ground-based AOD measurements (for example, Aerosol Robotic 
Network [AERONET]; Holben and others 2001) as well as intercomparisons 
with other established AOD products and with other science missions that can 
provide more detailed aerosol information (for example, aerosol profiles via 
CALIOP). As a result, the errors are fairly well documented and are typically 
expressed as a bias from truth (that is, accuracy) and the scatter relative to this 
bias (that is, the precision), though the metrics used can vary from program to 
program. In addition, products are always accompanied by data quality flags that 
identify locations of good and degraded performance with strong recommenda-
tions to refer to these ratings when used in any application. For PM2.5 air-quality 
applications, these error specifications should be used to propagate uncertain-
ties in the satellite retrievals of AOD to the estimates of ground-level PM2.5 
concentrations.

The next two subsections provide an overview of satellite-based AOD retriev-
als from polar and geostationary platforms. One significant finding of this review 
is that alternative products have sometimes been developed by different organi-
zations, but not all AOD products described in the published literature are cur-
rently made available to users. The National Oceanic and Atmospheric 
Administration (NOAA) MODIS products are currently the most accessible, but 
the long-term status of MODIS is uncertain, with the Joint Polar Satellite System 
(JPSS) VIIRS instrument expected to provide continuing coverage into the 
future. The AOD products from GEO satellites can provide greater temporal 
coverage of aerosol events, but currently the only reliable coverage is from the 
the European Organisation for the Exploitation of Meteorological Satellites 
(EUMETSAT) Meteosat Second Generation (MSG) satellite providing coverage 
of Europe and Africa. The Geostationary Operational Environmental Satellite-R 



Literature Review | 57

TABLE A.1  Summary of operational aerosol products

AGENCY 
[DEVELOPER]

SATELLITE 
[INSTRUMENT]

ORBIT 
[TYPE] PRODUCT(S)

REFRESH 
[COVERAGE]

NEAR REAL-TIME 
AVAILABILITY

EUMETSAT

[CNRS-ICARE]

MSG

[SEVIRI]

0 E

[GEO]

SMAOL 15 minutes

[Europe, Africa]

Yes

EUMETSAT

[EUMETSAT]

Metop-A 
Metop-B 
[AVHRR, 
GOME-2, IASI]

9:30 dsc

9:30 dsc

[LEO]

Polar Multi-Sensor Aerosol 
Product

HSR 5 × 40 10 × 40 kilometer 
swath 960 × 1920 kilometer

Daily

[Global]

Yes

JMA

[JMA-MSC]

Himawari-8/9

[AHI]

141. E

[GEO]

AOD [East Asia, Indonesia, 
Australia]

TBD

NASA 

[NASA-GSFC]

Terra

Aqua

[MODIS]

10:30 dsc

13:30 asc

[LEO]

10 km Dark Target AOD Daily

[Global]

Yes 

10 km Deep Blue AOD

10 km combined AOD

3 km Dark Target AOD

NASA

[NASA-GSFC]

Terra

Aqua

[MODIS]

10:30 dsc

13:30 asc

[LEO]

MAIAC AOD (1 kilometer) 
gridded Amazon data set

Daily

[Global]

TBD

2000–12

continued

FIGURE A.1

Coverage provided by available polar and geostationary weather satellites

Source: World Bank.
Note: The three bands in each panel illustrate three consecutive swaths from the Moderate-Resolution Imaging Spectroradiometer in sun-synchronous 
orbit providing once per day coverage. Green, red, turquoise, magenta, and blue points represent coverage from the geostationary satellites. The left 
panel shows current coverage; the right panel shows future coverage with roughly two times higher spatial resolution.

a. Current coverage provided by available polar
and geostationary satellites

b. Future coverage after planned updates of
geostationary satellites
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series (GOES-R) products over North and South America were made available 
in 2018. However, the availability of Japan Meteorology Agency (JMA) Himawari 
data with coverage over East Asia and Indonesia is uncertain, and no current 
geostationary satellite mission is providing AOD products in the region of India 
and western Asia. Furthermore, the availability of satellite coverage does not 
ensure that AOD products will be produced, because the retrievals are limited by 
environmental conditions (for example, must be cloud-free) and surface condi-
tions (for example, must be snow-free). The third subsection looks at three 
urban locations to review how satellite-derived AOD coverage might be provided 
to support air-quality missions.

Polar-orbiting satellites

MODIS products
Aerosol products derived from observations by the MODIS aboard the National 
Aeronautics and Space Administration’s (NASA’s) Terra and Aqua satellites are 
among the most widely studied products in the aerosol remote sensing 

TABLE A.1, continued

AGENCY 
[DEVELOPER]

SATELLITE 
[INSTRUMENT]

ORBIT 
[TYPE] PRODUCT(S)

REFRESH 
[COVERAGE]

NEAR REAL-TIME 
AVAILABILITY

NOAA

[NASA-GSFC]

NOAA-20

[VIIRS]

13:30 asc

[LEO]

10 kilometer Dark Target AOD Daily

[Global]

TBD

10 kilometer Deep Blue AOD

10 kilometer Combined AOD

3 kilometer Dark Target AOD

NASA

[JPL]

Terra

[MISR]

10:30 dsc

[LEO]

AOD (MIL2ASAE) 9 days

[Global]

Yes

NOAA

[NOAA-NCEI]

NOAA-19

NOAA-15

NOAA-18

[AVHRR]

15:20 asc

18:15 asc

19:02 asc

[LEO]

AOT Daily

[Global; Ocean only]

Yes

NOAA

[NOAA-SPSD]

GOES-13

GOES-15

[IMAGER]

75. W

135. W

[GEO]

GASP-East AOD

GASP-West AOD

1 hour

[CONUS]

Yes

NOAA

[NOAA-STAR]

NOAA-20

[VIIRS]

13:30 asc

[LEO]

AOT Daily

[Global]

Yes

NOAA

[NOAA-STAR]

GOES-16

GOES-17

[ABI]

75. W

137. W

[GEO]

SMAOD 5, 10, or 15 minutes

[North and South 
America]

Yes

Source: World Bank. 
Note: In column 3, Low Earth orbits (LEOs) are all sun-synchronous and identified in terms of the daytime equator crossing time and direction (that is, 
ascending [asc] or descending [dsc]); Geostationary (GEO) orbits are identified by their satellite longitude. ABI = Advanced Baseline Imager; AOD = aerosol 
optical depth; AVHRR = Advanced Very High Resolution Radiometer; CNRS-ICARE = Centre National de la Recherché Scientific–Institut de Combustion, 
Réactivité et Environnement; CONUS = continental United States; EUMETSAT = European Organisation for the Exploitation of Meteorological Satellites; 
GASP = GOES Aerosol/Smoke Product; GOES = Geostationary Operational Environmental Satellite; GOME-2 = Global Ozone Monitoring Experiment-2; 
GSFC = Goddard Space Flight Center; IASI = Infrared Atmospheric Sounding Interferometer; IMAGER = GOES Imager; JMA = Japan Meteorology Agency; 
JPL = Jet Propulsion Laboratory; MAIAC = Multi-Angle Implementation of Atmospheric Correction; MIL2ASAE = MISR level 2 aerosol parameters; 
MISR = Multi-angle Imaging Spectroradiometer; MODIS = Moderate-Resolution Imaging Spectroradiometer; MSC = Meteorological Satellite Center; 
MSG = Meteosat Second Generation; NASA = National Aeronautics and Space Administration; NOAA = National Oceanic and Atmospheric Administration; 
SEVIRI = Spinning Enhanced Visible and Infrared Imager; SMAOD = suspended matter, aerosol optical depth; SMAOL = SEVIRI-MSG Aerosol Over Land; 
STAR = Center for Satellite Applications and Research; TBD = to be determined; VIIRS = Visible Infrared Imaging Radiometer Suite.
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community. This pair of instruments (MODIS-Terra and MODIS-Aqua) has 
created a climate record extending over 15 years. Although MODIS has already 
exceeded its design lifetime, calibration and validation efforts continue to 
maintain the calibration accuracy of the instruments to ensure the integrity of 
the ongoing observations. Studies based on MODIS data provide some of the 
best examples of the application of space-based AOD to the understanding of 
global climate and regional air-quality conditions (see the third section below). 

Two primary AOD products are produced from the MODIS observations 
based on the Dark Target2 and Deep Blue3 aerosol-retrieval algorithms. These 
two products are made readily available to users. A third research product from 
MODIS, Multi-Angle Implementation of Atmospheric Correction (MAIAC), 
has been used in many studies but is not yet processed operationally.

Dark Target: The NASA Dark Target algorithm produces AOD over ocean 
and other dark land (for example, vegetated) surfaces using two separate algo-
rithms for the different regimes. The standard product for climate studies is 
AOD aggregated at 10-kilometer resolution (Levy and others 2013). Over land, 
the retrieval produces AOD at 550 nanometers, the AOD model/weight, and sur-
face reflectance at 2,130 nanometers based on 500-meter resolution observa-
tions at 470, 650, and 2,130 nanometers and using a LUT of RT-model–computed 
reflectances as a function of aerosol and surface properties. Dark targets are 
identified as pixels where the 2,130-nanometer reflectance is between 0.01 and 
0.25. For these locations, the quality flag is set based on the goodness of the fit 
between the observed and modeled reflectance. Targets with reflectance up to 
0.4 are processed through a separate algorithm path but flagged as reduced qual-
ity. To meet the growing interest in AOD for regional studies, the product over 
land is now also produced at a 3-kilometer resolution (Remer and others 2013). 
The error estimate of the 10-kilometer AOD based only on good-quality retriev-
als has been assessed against AERONET measurements to be ±(0.05 + 0.15 
AODAERONET),4 whereas the error in the 3-kilometer product is ±(0.05 + 0.20 
AODAERONET). This product is available through the NASA Level-1 and Atmospheric 
Archive and Distribution System (LAADS) Distributed Active Archive Center 
(DAAC)5,6 or through the NASA WORLDVIEW website.7

Investigations of the use of the 3-kilometer Dark Target product to provide 
better definition of local aerosol gradients (Munchak and others 2013) suggest 
that the 3-kilometer product does provide better spatial coverage (see 
figure A.2). However, this product tends to overestimate the aerosol loading 
and can be susceptible to noise problems in urban areas, likely because of inad-
equate characterization of surface features. For such applications, some cau-
tion is advised.

Deep Blue: The Deep Blue aerosol algorithm explicitly models surface reflec-
tance, rather than estimating it from observations at 2,130 nanometers as in the 
Dark Target algorithm. This explicit modeling allows the Deep Blue algorithm to 
be applied to bright surfaces such as desert, semiarid, and urban regions (Hsu 
and others 2013). To enable retrievals over brighter surfaces, the algorithm uses 
the 412-nanometer or “deep blue” band on MODIS (where the surface reflec-
tance over land is much lower than in low-frequency visible bands), thus provid-
ing better contrast with the aerosol signal. This product is computed over land at 
1-kilometer resolution and aggregated to 10 kilometers. Surface reflectance is 
determined by one of several methods depending on the surface type, including 
use of a database that takes account of seasonal changes and the variability of 
urban landscapes based on the normalized difference vegetation index (NDVI). 
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The (prognostic) uncertainty derived by Deep Blue is comparable to the error 
estimate of the Dark Target product for typical aerosol levels in the range from 
0.1 to 0.5, ± 0.03 + 0.2τDB. 

The combined Deep Blue and Dark Target aerosol product was developed to 
provide users with the alternative of a single merged MODIS product (Sayer and 
others 2014). It applies NDVI criteria based on a monthly composite to select 
either the Dark Target or Deep Blue AOD for a given 10-kilometer pixel 
location:

•	 NDVI ≤ 0.2 	 Use Deep Blue
•	 NDVI ≥ 0.3 	 Use Dark Target
•	 0.2 < NDVI < 0.3 	� Use product with highest quality or report 

mean value.

As a result, Deep Blue is reported over desert regions, Dark Target is selected 
over permanent vegetation, and in other areas the selection of Deep Blue or Dark 
Target varies with the season. Comparison of the two products to AERONET 
indicates that neither Deep Blue nor Dark Target consistently outperforms the 
other (see map A.1). Dark Target tends to have slightly smaller overall errors 
compared to AERONET, but Deep Blue provides additional coverage and tends 
to perform better for low-AOD conditions. Both the Deep Blue and the com-
bined product are available through the NASA LAADS DAAC or through the 
NASA WORLDVIEW website.

MAIAC: The Multi-Angle Implementation of Atmospheric Correction 
(MAIAC) algorithm8 is an atmospheric correction algorithm designed for 

a. MODIS Dark Target 10-kilometer product b. MODIS Dark Target 3-kilometer product 

AOD at 0.55 µm

-0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

FIGURE A.2

MODIS Dark Target 10-kilometer and 3-kilometer aerosol-optical-depth products 
retrieved for clear land and ocean fields of view and the local 5-kilometer average 
derived from the products, outer circle, compared to ground-based measurements, 
inner circle, over Baltimore, US 

Source: Munchak and others 2013. Note that these results used an older version of the MODIS surface reflectance scheme, 
and more recent versions (for example, Gupta and others 2016) show much better performance over urban areas.
Note: AOD = aerosol optical depth; MODIS = Moderate-Resolution Imaging Spectroradiometer.
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MODIS that performs simultaneous retrievals of atmospheric aerosols and bidi-
rectional surface reflectance (Emili and others 2011; Lyapustin and others 2011). 
Unlike the Dark Target and Deep Blue algorithms, the MAIAC algorithm does 
not rely on any predetermined relationships with the shortwave information to 
constrain the surface retrieval but instead invokes a multiangle, multitemporal 
retrieval of the surface bidirectional reflectance distribution function and aero-
sol loading, based on assumptions that the surface reflectance does not change 
over a 16-day period and that AOD changes little over 25-kilometer distances. 
The resulting AOD product is generated on a one-kilometer sinusoidal grid. 
Over vegetated regions (forest, cropland, grassland, and savanna), more than 
66 percent of retrievals are within the expected error ±(0.05 + 0.05t) with a cor-
relation coefficient to AERONET better than 0.86 (Martins and others 2017). 
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Fraction of retrievals that passed QA checks (range 0–1)

MAP A.1

Fraction of good-quality attempted retrievals from Deep Blue and 
Dark Target algorithms showing differences in coverage over desert 
regions, and showing differences in coverage due to the quality 
checks applied in each algorithm

Source: Sayer and others 2014. 
Note: QA = quality assurance.
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Results over other bright backgrounds were less precise, especially for low aero-
sol signals where the retrieval problem is not as well constrained (for example, 
55 percent of retrievals within the expected error for urban regions).

The MAIAC aerosol product is nominally distributed through the NASA 
LAADS DAAC9,10 but appears to be currently unavailable except for a limited 
data set over the Amazon basin in South America from 2000 to 2012.11,12 Online 
information indicates support of the product is ongoing13,14,15 with a potential 
extension to process VIIRS data in the works.16

VIIRS products
The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is a scanning 
radiometer on Suomi-National Polar-orbiting Partnership (Suomi-NPP) and 
the Joint Polar Satellite System (JPSS) satellites operated by NOAA and 
NASA. Over land, the NOAA VIIRS AOD product17 is generated with a LUT-
based retrieval of AOD, based on five aerosol models using observed reflec-
tance in 750-meter moderate-resolution bands at 412, 445, 488, 672, and 
2,250 nanometers (Jackson and others 2013). The surface reflectance in the 
red (672 nanometers) and blue (488 nanometers) bands is inferred based on 
an empirical relationship with the shortwave infrared (2,250 nanometers) 
band that holds mainly for dark surfaces. The AOD is then determined from 
observed blue-to-red reflectance ratios by matching the observed signal to 
computed values for a given aerosol model. AOD retrievals are not performed 
for clouds, snow, fire, glint, and other bright surfaces identified, based on a 
shortwave infrared NDVI threshold (NDVISWIR < 0.05 with a 2,250-nanometer 
reflectance > 0.3). NDVISWIR > 0.2, consistent with vegetation backgrounds, is 
required for high-quality retrievals.

The AOD output is available as an intermediate product at 750-meter resolu-
tion and as a 6-kilometer (eight-by-eight aggregated) product, thus providing 
some advantage over the MODIS 3- and 10-kilometer products for analysis of 
the localized aerosol distribution. While studies of regional applications of 
VIIRS AOD products have been presented as conference papers, no compre-
hensive review of the product has been published. The overall performance of 
the VIIRS product has been validated against requirements with uncertainties 
similar to that of MODIS Dark Target (Huang and others 2016). However, com-
parisons of the 1-kilometer MAIAC AOD product to the high-resolution VIIRS 
product (see figure A.3) found that the VIIRS product was biased to higher AOD 
in urban and mountainous regions and was susceptible to errors in regions of 
snowmelt (Superczynski, Kondragunta, and Lyapustin 2017). The official NOAA 
VIIRS products are distributed through the Comprehensive Large Array-Data 
Stewardship System (CLASS)18 and with the most recent 90 days available via 
file transport protocol (FTP).19

Alternatives to the operational NOAA VIIRS AOD product are in develop-
ment. For example, the NASA Dark Target algorithm was applied to VIIRS 
data, and results were compared with the operation NOAA algorithm and to 
MODIS (Levy and others 2015). The NASA Deep Blue algorithm20 also has been 
applied to VIIRS data. In addition, the NOAA Center for Satellite Applications 
and Research (STAR) has published work describing an enhanced AOD algo-
rithm capable of retrieving aerosols over brighter surfaces and comparable to 
the Deep Blue product (Zhang and others 2016). Finally, VIIRS products based 
on the MAIAC algorithm have been referenced in online presentations, but the 
status of such products is unclear. Once available, these alternative products 

FTP�
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may provide improved coverage, in particular for urban areas, potentially 
increasing their utility for regional air-quality applications.

MISR products
The Multi-angle Imaging Spectroradiometer (MISR) instrument uses multian-
gle techniques in the VIS and NIR to acquire stereoscopically resolved observa-
tions of AOD under sunlit conditions (Diner and others 1998). All 36 channels 
(nine cameras and four spectral bands) are used when performing aerosol 
retrievals over land (Martonchik and others 2004). MISR measurements 
(between 70.5° forward and 70.5° aft) span a wide range of scattering angles and 

a. VIIRS 750-meter AOD product

b. MAIAC one-kilometer AOD product

AOD

0.10.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE A.3

Comparison of VIIRS 750-meter and MAIAC one-kilometer aerosol-
optical-depth products during western US fires, 2013

Source: Superczynski, Kondragunta, and Lyapustin 2017. 
Note: AOD = aerosol optical depth; MAIAC = Multi-Angle Implementation of Atmospheric Correction; 
VIIRS = Visible Infrared Imaging Radiometer Suite.
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air mass factors providing information on aerosol microphysical properties and 
yielding sensitivity to optically thin aerosols. The MISR retrieval approach relies 
on describing the change in surface contrast with view (camera) angle over a 
region 17.6 kilometers by 17.6 kilometers in size, composed of 16 by 16 (256) sub-
regions, each 1.1 kilometer by 1.1 kilometer. This subregion size is the nominal 
spatial resolution of MISR when observing in Global Mode, and 17.6 kilometers 
is the spatial resolution of MISR’s retrieved aerosol product. Aerosol retrievals 
are performed on only a regional and not a subregional basis, because the entire 
region is used to determine the surface contribution to the reflectance. In addi-
tion to having a lower horizontal resolution than the MODIS and VIIRS prod-
ucts, the MISR instrument has a smaller swath than MODIS (400 kilometers 
versus 2,330 kilometers) and thus only observes a given location once every nine 
days, unlike once a day for MODIS and VIIRS.

The performance of AOD retrievals from MISR is comparable to that of 
MODIS. Martonchik and others (2004) compared MISR AOD with AERONET 
observations and found that at 17.6-kilometer spatial resolution, the estimated 
uncertainty is about 0.08. When the spatial resolution was degraded to 52.8 kilo-
meters, the estimated MISR AOD uncertainty decreased to about 0.05. Khan and 
others (2005) found that 66 percent of the measurements agreed with AERONET 
within ±(0.05 + 0.2τ). Kahn and others (2009) compared MISR with MODIS 
AOD and found that where coincident AOD retrievals are obtained over the 
ocean, the MISR-MODIS correlation coefficient is about 0.9 with a slope of 0.75; 
over land, the correlation coefficient is about 0.7 with a slope of 0.60. MISR AOD 
data are available from the Jet Propulsion Laboratory.21

AVHRR products
The Advanced Very High Resolution Radiometer (AVHRR/3) instrument pro-
vides visible-through-IR remote sensing observations on the LEO satellites 
flown by NOAA (for example, NOAA-15) and by the European Organisation for 
the Exploitation of Meteorological Satellites (EUMETSAT) (for example, 
Metop-A). However, the operational NOAA AOD product22 is produced only 
over oceans, though the application for AOD retrievals over land has also been 
investigated (Li and others 2013). The NASA Deep Blue algorithm has been 
applied to the NOAA data to produce an aggregated 8.8-kilometer product over 
land and ocean with an expected error over land of ±(0.05 + 0.25τ) (Sayer and 
others 2017). This application of Deep Blue uses a database of surface 
reflectance for retrievals over bright surfaces, but because AVHRR lacks a 
412-nanometer band, the red band at 620 nanometers is used instead. Because 
the surface at 630 nanometers is not as dark as 412 nanometers, the sensitivity 
of the aerosol retrieval is limited compared to MODIS and VIIRS. AVHRR also 
lacks a shortwave band that is used in the MODIS/VIIRS algorithms to derive 
the surface reflectance for dark targets. For AVHRR, the surface is modeled as 
an empirical function of NDVI. However, this product was available online 
only through 2011.23

EUMETSAT produces an operational multisensor aerosol product based 
on observations from AVHRR, the Global Ozone Monitoring Experiment 
(GOME; a medium-resolution double UV-VIS spectrometer), and the infrared 
atmospheric sounding interferometer (IASI)–Fourier transform spectrome-
ter.24,25 However, the primary input for the AOD retrieval is derived from 
GOME, and the resolution of the product (5 kilometers by 40 kilometers for 
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Metop-A or 10 kilometers by 40 kilometers for Metop-B) is dictated by this 
instrument.

Geostationary satellites

GOES-NOP imager products
The GOES-N series geostationary satellites (GOES-NOP; for example, GOES-
13 East at 75° W and GOES-15 West at 135° W) operated by NOAA are able to 
provide Full Disk imagery of the Earth covering North and South America in a 
single VIS band and four IR bands with a refresh rate of 30 minutes. For over 
15 years, NOAA has supported the generation of an operational AOD product 
based on the GOES observations. Being limited to a single (uncalibrated) VIS 
band, the accuracy of this product is somewhat less than other, more advanced 
products, but the GOES product is still of significant value owing to its unique 
temporal information. The GOES Aerosol/Smoke Product (GASP)26 is derived 
using a surface reflectance based on a 28-day composite (converted to albedo 
using an RT model) and AOD retrieved using an RT-model–computed LUT 
and comparing observations to model reflectances in the VIS band (Knapp 
and others 2005). The retrieval is limited to a single continental aerosol model 
and restricted to regions with dark vegetation. GASP is produced at four-
kilometer resolution (at nadir) with a quoted precision of ±0.13 and a correla-
tion of R of 0.72 with AERONET. The current product is limited to the 
continental United States, and products are available in binary format in NRT 
from the NOAA Satellite Products and Services Division website.27 This prod-
uct was discontinued in 2018 from GOES-13 (East) when the GOES-16 prod-
ucts became operational.

SEVIRI-MSG products
The SEVIRI-MSG Aerosol Over Land (SMAOL) product28 (based on observa-
tions from the Spinning Enhanced Visible and Infrared Imager [SEVIRI] on 
Meteosat Second Generation [MSG]) was developed by HYGEOS for the Centre 
National de la Recherché Scientific (CNRS). SMAOL is distributed in NRT 
though the ICARE Data and Services Center (Bernard and others 2011; Mei and 
others 2012). The algorithm approach is similar to that of the GOES GASP 
product but with greater sensitivity. SEVIRI observations at 630, 810, and 1640 
nanometers (corrected for gas absorption and molecular scattering) are used to 
derive AOD at 550 nanometers chosen from between five aerosol models using 
a LUT approach to minimize the differences at the three wavelengths. The 
product is generated at the three-kilometer (at nadir) resolution and produced 
every 15 minutes during daytime/cloud-free conditions and subject to some 
viewing and scattering angle restrictions. With the MSG satellite at 0° longi-
tude, the product provides coverage of Europe and Africa. The surface reflec-
tance used in the retrieval is based on a fit to the minimum reflectance over a 
14-day period. This methodology is valid only for dark targets; therefore, desert 
regions (such as the Sahara, Sahel, and Namib) are excluded. The product has 
been validated with comparisons to AERONET and to the MODIS Dark Target 
AOD product and found to provide good estimates of both diurnal and daily 
variations in AOD (see figure A.4). Error sources include possible subpixel 
cloud contamination, errors in surface reflectance estimation, and possible 
temporal noise in model selection. 
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GOES-R ABI products
GOES-R is the first in a series of next-generation geostationary environ-
mental satellites covering the western hemisphere.29 It was launched as 
GOES-16 in November 2016. For earth remote sensing, observations are col-
lected by the Advanced Baseline Imager (ABI), which offers much-improved 
spatial, temporal, and spectral information over the preceding GOES-NOP 
Imager series. For the past year, the ABI instrument products have under-
gone an intensive validation process. In December 2017, the satellite was 
moved to the GOES East position, with products scheduled to become oper-
ational in 2018. 

The GOES-R AOD and aerosol-particle–sized products30,31 are derived from 
ABI reflectance measurements through physical retrievals that utilize a LUT of 
TOA reflectance that is precalculated using an RT model. Retrievals are per-
formed separately over land (for dark surfaces) and ocean. The baseline AOD 
product is generated at two-kilometer resolution (at nadir) for Full Disk and 
continental United States (CONUS) geographic coverage areas. The Full Disk 
AOD output product is generated at 15-minute intervals (see figure A.5), whereas 
the CONUS product is generated at five-minute intervals. The GOES-R product 
performance specification is a function of AOD value. For intermediate AOD 
loading between 0.04 and 0.8, the accuracy over land is ± 0.04 and the precision 
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FIGURE A.4

Detection of temporal variations in aerosol optical depth with the SEVIRI-MSG aerosol 
over land product compared to AERONET measurements at Palaiseau, France, and to 
MODIS, July 14, 2006

Source: ©Bernard and others 2011; CC BY 3.0.
Note: AERONET = Aerosol Robotic Network; AOT = aerosol optical thickness; MODIS = Moderate-Resolution 
Imaging Spectroradiometer; MSG = Meteosat Second Generation; nm = nanometer; SEVIRI = Spinning Enhanced 
Visible and Infrared Imager; UT = Universal Time.
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is ± 0.25, which is similar to the equivalent polar products. Once approved, the 
GOES-R AOD product will be distributed through the NOAA’s Comprehensive 
Large Array-Data Stewardship System.32,33

Although the GOES-R program product is the official operational AOD 
product, alternative algorithms have been developed to also measure aerosol 
properties from GOES-R data. For example, the Enterprise Processing System 
(EPS) AOD algorithm34 is an algorithm from NOAA STAR intended to support 
the generation of an AOD product from GOES-R ABI and JPSS VIIRS with a 
common methodology.35 The status of the NOAA EPS product is uncertain at 
this time.

Himawari-8/9 AHI products
Himawari-8/9 is a new series of geostationary weather satellites operated by the 
JMA. The imagery collected by Himawari-8/9 is produced by the Advanced 
Himawari Imager (AHI), which is very similar in design to the ABI instrument 
flown on GOES-16. Although the MODIS Deep Blue, GOES-R, and EPS 

0.500.00 1.00 1.50 2.00

AOD

FIGURE A.5

Full disk coverage at 550 nanometers of GOES-R SMAOD product over 
ocean and land

Source: World Bank.
Note: AOD = aerosol optical depth; GOES = Geostationary Operational Environmental Satellite 
R series; SMAOD = suspended matter, aerosol optical depth.
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algorithms have been applied and tested on AHI data, these products are not 
currently available. The JMA advertises their own environmental products,36,37 
but these are also not freely available.38,39 

Case studies

In table A.2 three urban locations with poor air quality are reviewed to evaluate 
the available satellite AOD products and to assess the utility and limitations of 
these products for the regions. Each location includes a link to the NASA 
WORLDVIEW website with visualizations of the Dark Target and Deep Blue 
aerosol products from MODIS-Terra and MODIS-Aqua.

In Delhi, India, the air quality in late fall is affected by widespread smoke 
from rural crop fires combined with the localized urban smog trapped in the 

TABLE A.2  Case study of satellite aerosol-optical-depth applicability for three representative low- and 
middle-income country urban areas

LOCATION COORDINATES LAND TYPE/CLIMATE COVERAGE

Delhi, India 28°36′36″N, 

77°13′48″E

Land type: Semivegetated, desert, urban

Topography: Yamuna River basin

Climate: Rain Jun to Oct

Air quality: Widespread smoke from rural crop fires 
mixed with urban smog

MODIS

VIIRS

MISR

WORLDVIEWa

Lima, Peru 12°2′36″S, 

77°1′42″W

Land type: Coastal desert, urban, semivegetated

Topography: Andes foothills

Climate: Persistent clouds/fog May to Nov

Air quality: Urban (localized) smog

MODIS

VIIRS

MISR

ABI

WORLDVIEWb

Ulaanbaatar, Mongolia 47°55′N, 

106°55′E

Land type: Grasslands (steppes)

Topography: Tuul River valley

Climate: Seasonal snow cover

Air quality: Desert dust, urban smog, coal/wood fires 
(winter)

MODIS

VIIRS

MISR

AHI

WORLDVIEWc

Source: World Bank, produced with Esri ArcGIS.
Note: AHI = Advanced Himawari Imager; MISR = Multi-angle Imaging Spectroradiometer; MODIS = Moderate-Resolution Imaging Spectroradiometer; 
VIIRS = Visible Infrared Imaging Radiometer Suite.
a. �https://worldview.earthdata.nasa.gov/?p=geographic&l=MODIS_Aqua_SurfaceReflectance_Bands143(hidden),MODIS_Terra_SurfaceReflectance​

_Bands143(hidden),MODIS_Aqua_CorrectedReflectance_TrueColor(hidden),MODIS_Terra_CorrectedReflectance_TrueColor,MODIS_Terra​
_NDVI_8Day(hidden),MODIS_Terra_AOD_Deep_Blue_Combined(hidden),MODIS_Terra_AOD_Deep_Blue_Land(hidden),MODIS_Terra​
_Aerosol(hidden),MODIS_Terra_Aerosol_Optical_Depth_3km(hidden),MODIS_Aqua_Aerosol(hidden),MODIS_Aqua_AOD_Deep_Blue​
_Combined(hidden),MODIS_Aqua_Aerosol_Optical_Depth_3km(hidden),MODIS_Aqua_AOD_Deep_Blue_Land(hidden),Reference_Labels,Reference​
_Features(hidden),Coastlines&t=2017-03-04&z=3&v=75.58614905641733,27.64425081916523,78.66232093141733,29.24825472541523&ab=off&
as=2017-03-04&ae=2017-03-11&av=3&al=true.

b. �https://worldview.earthdata.nasa.gov/?p=geographic&l=MODIS_Aqua_SurfaceReflectance_Bands143(hidden),MODIS_Terra_SurfaceReflectance​
_Bands143(hidden),MODIS_Aqua_CorrectedReflectance_TrueColor(hidden),MODIS_Terra_CorrectedReflectance_TrueColor,MODIS_Terra​
_NDVI_8Day(hidden),MODIS_Terra_AOD_Deep_Blue_Combined(hidden),MODIS_Terra_AOD_Deep_Blue_Land(hidden),MODIS_Terra​
_Aerosol(hidden),MODIS_Terra_Aerosol_Optical_Depth_3km(hidden),MODIS_Aqua_Aerosol(hidden),MODIS_Aqua_AOD_Deep_Blue​
_Combined(hidden),MODIS_Aqua_Aerosol_Optical_Depth_3km,MODIS_Aqua_AOD_Deep_Blue_Land(hidden),Reference_Labels,Reference_Features​
(hidden),Coastlines&t=2017-05-25&z=3&v=-77.91445867492484,-12.577473819870836,-76.37857000304984,-
11.608479679245836&ab=off&as=2017-03-04&ae=2017-03-11&av=3&al=true.

c. �https://worldview.earthdata.nasa.gov/?p=geographic&l=MODIS_Aqua_SurfaceReflectance_Bands143(hidden),MODIS_Terra_SurfaceReflectance​
_Bands143(hidden),MODIS_Aqua_CorrectedReflectance_TrueColor(hidden),MODIS_Terra_CorrectedReflectance_TrueColor,MODIS_Terra​
_NDVI_8Day(hidden),MODIS_Terra_AOD_Deep_Blue_Combined(hidden),MODIS_Terra_AOD_Deep_Blue_Land(hidden),MODIS_Terra​
_Aerosol(hidden),MODIS_Terra_Aerosol_Optical_Depth_3km(hidden),MODIS_Aqua_Aerosol(hidden),MODIS_Aqua_AOD_Deep_Blue​
_Combined(hidden),MODIS_Aqua_Aerosol_Optical_Depth_3km(hidden),MODIS_Aqua_AOD_Deep_Blue_Land(hidden),Reference_Labels,Reference​
_Features(hidden),Coastlines&t=2017-04-25&z=3&v=106.0165808187288,47.38272533863788,107.5524694906038,48.35171947926288&ab=off&
as=2017-03-04&ae=2017-03-11&av=3&al=true.

https://worldview.earthdata.nasa.gov�
https://worldview.earthdata.nasa.gov�
https://worldview.earthdata.nasa.gov�
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Yamuna River basin around the city. When conditions are clear, the MODIS 
Deep Blue product typically provides complete coverage across the region, but 
the Dark Target product is excluded from parts of the urban area where the 
background signal is high. Also, the coverage from the Dark Target algorithm 
varies with the season depending on the stage of vegetation growth in the sur-
rounding rural area. On very bad days the smoke can be so widespread and thick 
that localized variations in air quality cannot be determined. During these peri-
ods, the Dark Target product is sometimes not produced at all for the region.

The pollution in Lima, Peru, is largely due to localized urban smog. Lima is 
located on the west coast of South America with weather patterns greatly influ-
enced by the Humboldt Current and its location just west of the foothills of the 
Andes mountains. For significant portions of the year (May to November), Lima is 
often engulfed in fog, and during these periods the remote sensing of AOD is not 
possible. In addition, the background signal from the city and the surrounding des-
ert is relatively bright, such that the coverage from the Dark Target product is min-
imal. The Deep Blue product does provide coverage over the urban environment 
but with frequent gaps due to clouds. In addition, as Lima is situated on the coast, 
AOD retrievals are not produced for any pixels with a mix of land and water, fur-
ther reducing the coverage of the Deep Blue product for this city.

Ulaanbaatar, Mongolia, is in the Tuul River valley at the foot of the heavily 
forested Bogd Kahn Uul mountains and is surrounded by a steppe ecoregion 
where the largely grassland vegetation varies with the seasons. In winters, the 
entire region is covered with snow. The air-quality problems in Ulaanbaatar are 
highest in the winter months when use of coal and wood for heat gives rise to 
significant smoke emissions that couple with the local smog from cars and other 
sources. Because satellite-based AOD retrievals are not capable of distinguishing 
aerosol from the bright background of snow, neither the Dark Target nor Deep 
Blue products are useful under these conditions. At other times of year on clear 
days, the Deep Blue product does provide fairly good coverage over the region, 
but the coverage from the Dark Target algorithm is spotty, often limited only to 
the nearby vegetated mountainous areas and not providing information in the 
urban and steppe environments.

CONVERTING AOD TO GROUND-LEVEL PM2.5 

Many studies have attempted to convert satellite AOD to ground-level PM2.5 con-
centration estimates using either statistical techniques (the first subsection 
below), approaches based on the chemical transport model (CTM) (discussed in 
the second subsection), or hybrid approaches that mix the two (discussed in the 
third subsection).

Statistical approaches

Several studies have used a purely statistical approach, where linear mixed 
effects models (for example, Hu, Waller, Lyapustin, Wang, Al-Hamdan, and oth-
ers 2014; Sorek-Hamer and others 2015) or nonlinear generalized additive mod-
els (GAMs; Sorek-Hamer and others 2013; Strawa and others 2013) have been 
trained on historical GLM data to predict ground-level PM2.5 using AOD and 
other meteorological and geographic variables as input variables. The advan-
tages of statistical approaches are that the statistical models can be trained for 
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specific areas and are easier to run than CTMs. However, unlike CTM approaches, 
statistical models require a substantial amount of GLM data for the model train-
ing and can be used only in the region in which they were trained.

Statistical approaches also provide an estimate of the uncertainty in their pre-
dictions. In addition, the uncertainty in AOD, planetary boundary layer (PBL) 
height, and other variables can be propagated to the ground-level PM2.5 esti-
mates by running the statistical model for the high and low error bounds of the 
variable, and then combining that uncertainty with the estimated uncertainty of 
the statistical fit itself.

Linear mixed-effects models
Linear mixed-effects models assume a linear relationship between the predic-
tors and the modeled variable but allow the intercepts and slopes to vary with 
the day by fitting fixed (that is, constant) and random (that is, daily varying) val-
ues for those parameters, with the limitation that the random values cannot also 
vary with location. Routines for training these models are included in the open 
source R statistical program.

Hu, Waller, Lyapustin, Wang, Al-Hamdan, and others (2014) used a two-stage 
linear mixed-effects model to estimate ground-level PM2.5 concentrations at 
one-kilometer resolution from MAIAC AOD data over the Southeast United 
States. In the first stage the predictors included MAIAC AOD, wind speed, and 
elevation, as well as the length of major roads, percent forest cover, and point 
emissions of PM2.5 within one kilometer of the site. The second stage used geo-
graphically weighted regression (GWR) to predict the residuals from the first-
stage model using the MAIAC AOD. GWR is an extension of least-squares 
regression that allows predictor coefficients to vary spatially by weighting the 
estimate-observation pairs according to the inverse-squared distance from indi-
vidual observation sites, resulting in a spatially continuous prediction of PM2.5 

over an area at one-kilometer resolution. 
The GLM data used in the training had 166 monitors over a domain of 800 by 

1,200 square kilometers. Hu, Waller, Lyapustin, Wang, Al-Hamdan, and others 
(2014) found that all of the first-stage predictors were significant at an α = 0.05 
level. The first-stage model explained 64 percent of the variability with a mean 
error of 2.8 micrograms per cubic meter and a root-mean-square error (RMSE) 
of 3.9 micrograms per cubic meter. The second-stage GWR model increased the 
variability explained to 67 percent and reduced the mean error to 2.5 micro-
grams per cubic meter but had little impact on the RMSE.

Sorek-Hamer and others (2015) used a linear mixed-effects model to predict 
ground-level PM2.5 at 10-kilometer resolution over Israel, using MODIS Deep 
Blue AOD data to provide better retrievals over the desert surfaces in the area. 
The MODIS AOD was the only predictor variable used in the model. Over Israel, 
this model explained 45 percent of the variability in PM2.5 and 69 percent of the 
variability in PM10, with RMSE of 12.1 and 27.9 micrograms per cubic meter, 
respectively.

Lv and others (2016) developed a method to account for the spatial and tem-
poral variations in PM2.5 and missing AOD observations before applying a 
Bayesian hierarchical mixed-effects model. This gap-filling approach uses the 
observed seasonal mean AOD/PM2.5 ratio at a given site and the measured PM2.5 
concentration to produce an estimated AOD for the site even on days when 
clouds or other effects prevent AOD retrieval. Ordinary kriging (see the section 
“Co-kriging” in this appendix) is then applied to the retrieved and estimate AOD 
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values to provide a daily AOD field over the entire region. Temperature, relative 
humidity, and planetary boundary layer height (PBLH) were taken from NCEP 
forecast data, and MODIS land cover and USGS elevation data were also used as 
spatial predictors. The final model explained 78 percent of the variability in 
PM2.5 in north China and provided ground-level PM2.5 concentration fields at 
12-kilometer resolution with complete spatial coverage. 

Generalized additive models
Generalized additive models (GAMs) are a generalization of linear regression 
models that are able to account for the potentially nonlinear dependence of the 
modeled variable on the values of the predictors. The functional dependence of 
each predictor is determined during the fit as a linear combination of basis func-
tions, with a penalty applied for the number of degrees of freedom included in 
each functional form. Routines for training GAMs are included in the open 
source R statistical program.

Strawa and others (2013) used a weighted GAM to predict daily PM2.5 concen-
trations at sites in the San Joaquin Valley in California. They found that a 
weighted GAM including MODIS dark-target AOD, ozone-monitoring instru-
ment (OMI) AOD, OMI tropospheric nitrogen dioxide (NO2) columns, and a day-
of-year variable explained 74 percent of the variability in PM2.5, as compared to 
17 percent from a linear model. 

Sorek-Hamer and others (2013) also used MODIS and OMI data to predict 
daily PM2.5 concentrations in the San Joaquin Valley. Their GAM used MODIS 
Dark Target AOD, MODIS Deep Blue AOD, OMI tropospheric NO2 columns, and 
a day-of-year variable. This explained 61 percent of the variability in PM2.5 with 
an RMSE of 13.0 micrograms per cubic meter. 

Sources of planetary boundary layer height data
A key property in determining the relationship between total column AOD and 
ground-level PM2.5 is the height of the planetary boundary layer (PBL; for exam-
ple, Alexeeff and others 2015; Chatfield and others 2017; Lee, Chatfield, and 
Strawa 2016), which varies significantly with time of day, geography, season, and 
meteorological conditions. For example, PBLH can vary on an urban scale with 
distance from the city center, distance from coastlines, and other factors, as 
shown in figure A.6. Including predicted PBLH from meteorological model sim-
ulations (especially as an AOD/PBLH ratio) has been shown to significantly 
increase the performance of the statistical approaches (for example, Chatfield 
and others 2017).

When there is a well-mixed convective PBL and the aerosols in the PBL dom-
inate the total AOD, there should be a nearly linear relationship between ground-
level PM2.5 and the AOD/PBLH ratio, and thus for PBL variability to account for 
much of the variability in the relationship of AOD to PM2.5. However, for areas 
with very shallow PBLs, or when a smoke or dust plume is present above the 
PBL, the total column AOD may have no relationship to the ground-level PM2.5 

at all. Thus, in those circumstances, the PBLH along with other parameters can 
be used to filter suspect estimates of ground-level PM2.5 concentrations.

Public sources of PBLH data include in situ radiosonde and aircraft vertical 
profiles, ground-based and satellite remote sensing retrievals, and numerical 
weather prediction model data. These sources are discussed further below.

Radiosonde and aircraft profiles: Various methods are available for calcu-
lating the PBLH from radiosonde profiles of temperature, relative humidity, and 
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wind (for example, Seidel, Ao, and Li 2010). Though considered the gold stan-
dard for observing the vertical structure of the atmosphere, radiosondes in global 
operational networks are generally launched only twice daily and often not at 
ideal times to estimate the peak daytime PBLH. Furthermore, as shown in 
map A.2, the radiosonde launch locations are concentrated in higher-income 
countries in Europe, North America, and Southeast Asia, and there is notably 
poorer coverage in Africa, Central Asia, and Central and South America. 
Therefore, the measured profiles and PBLH may not be representative of the 
cities in LMICs.

The Aircraft Meteorological Data Relay (AMDAR), which includes data from 
US aircraft from the Meteorological Data Collection and Reporting System 
(MDCRS), is a global data set produced by commercial aircraft equipped with 
instruments to measure meteorological data during flights (for example, Drüe 
and others 2008; Fleming 1996; Zhu and others 2015). Meteorological data 
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FIGURE A.6

Planetary boundary layer height in areas surrounding Washington, DC, US, 
on July 14, 2011, at 21:00 UTC

Source: World Bank, using Python software.
Note: Planetary-boundary-layer (PBL) height was calculated using the Weather Research and Forecasting (WRF) model. 
UTC = Coordinated Universal Time.
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measured at different heights during takeoff and landing have been used to cal-
culate PBLH around the globe (McGrath-Spangler and Denning 2012, 2013). 
The AMDAR coverage is more variable than that of radiosondes but also tends 
to be concentrated in the higher income regions (map A.3).

Ground-based remote sensing: Ground-based remote sensing systems, 
including lidar, ceilometer, sonic detection and ranging (SODAR), and Doppler 
wind profilers (DWPs), are capable of providing observations of the PBLH for 
field campaigns or as part of operational networks. Of these, currently only 
lidar networks routinely produce PBLH products available for public use. 
There are three networks contributing to WMO’s Global Atmospheric Watch 
(GAW) Aerosol Lidar Observations Network (GALION)40 that provide PBLH 
data: 

•	 The European Aerosol Research Lidar Network (EARLINET)41 consists of 
28 stations distributed over Europe. 

•	 The Asian Dust and Aerosol Lidar Observation Network (AD-Net) includes 
20 stations in Asia including Ulaanbaatar, Mongolia, and Phimai, Thailand, 
with NRT coverage (map A.3).

•	 The NASA Micro-Pulse Lidar Network (MPLNET) is a federated network of 
currently 23 active Micro-Pulse Lidar (MPL) systems located around the 
globe, including stations at Kanpur, India; Omkoi, Thailand; and Windpoort, 
Namibia (map A.3). An improved PBLH retrieval algorithm has recently been 
incorporated into the latest version (version 3) of the operational product that 
is less susceptible to contamination by clouds and residual layers that can 
result in errors (Lewis and others 2013). Retrievals of PBLH with this new 
algorithm have been validated with PBLH calculated from ozonesonde 

MAP A.2

Radiosonde launch locations for 00:00 UTC, December 8, 2017
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MAP A.3

Aircraft observation coverage from AMDAR and MDCRS, December 8, 2017

Source: Generated from an application on the Naval Research Laboratory (NRL) website: http://www.usgodae.
org/cgi-bin​/cvrg_con.cgi.
Note: AMDAR = Aircraft Meteorological Data Relay; MDCRS = Meteorological Data Collection and Reporting 
System. Red lines = Canadian AMDAR data; green lines = other AMDAR data; blue lines = MDCRS data.
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soundings produced during the DISCOVER-AQ field campaign and compared 
to high-resolution Weather Research and Forecasting (WRF) model simula-
tions (Hegarty and others 2018; Lewis and others 2013). The data are available 
in NRT (approximately one-hour processing delay).

Satellite data: Only a few studies have examined PBLH using satellite data 
(Martins and others 2010). Radio occultation data from global positioning sys-
tem (GPS) satellites have been used to determine PBLH but because of the long 
tangential path of the GPS signal through the atmosphere the horizontal resolu-
tion is coarse ranging from tens to hundreds of kilometers (Ao and others 2012; 
Guo and others 2011). PBLH retrievals from the Cloud-Aerosol Lidar with 
Orthogonal Polarization (CALIOP; Winker, Hunt, and McGill 2007; Winker and 
others 2009) onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observations (CALIPSO) satellite have been used to evaluate numerical weather 
prediction model reanalysis data (Jordan, Hoff, and Bacmeister 2010) during 
2006. More recently, a global data set of CALIPSO PBLH retrievals was gener-
ated for June 2006 to December 2012, evaluated with PBLHs calculated with 
AMDAR meteorological data, and used to examine global seasonal variability in 
the midday PBLH (McGrath-Spangler and Denning 2012, 2013). In addition, 
CALIPSO PBLHs were compared favorably with radiosondes over China during 
2011 to 2014 (Zhang and others 2016). The CALIPSO cloud and aerosol products 
used to derive the PBLHs for these studies are available through the NASA 
Langley Data Archive Center (DARC).42 Unfortunately, the PBLHs were pro-
duced independently for only these limited research projects and currently are 
not yet produced regularly for public dissemination. However, no continuous 
data sets of satellite-derived PBLHs are publicly available. 

NWP model data: Numerical weather prediction (NWP) models assimi-
late all types of meteorological and environmental observations to produce 
three-dimensional meteorological fields that are as accurate a representation 
of the true atmospheric state as possible at a given time. There are two types 
of NWP data: operational and reanalysis. Operational forecast centers run 
NWP models several times per day to provide numerical guidance to human 
weather forecasters and inputs to air-quality forecast models. Operational 
NWP data have the advantage of being available in near real-time, often within 
three to four hours of the beginning of a forecast cycle, whereas reanalysis 
NWP data have a latency period of several months. However, operational 
NWP models are continuously being updated to correct bugs and address 
problems in physical parameterization schemes, complicating long-term his-
torical analysis. On the other hand, reanalysis NWP data are generated with 
models similar to those used in operational centers but frozen in development. 
When enough changes in the state of NWP modeling accumulates, a new ver-
sion of the reanalysis, usually with the same starting date as the previous ver-
sion, is generated with an updated model. Thus, reanalysis data are more 
appropriate for looking at temporal trends and are also subject to more thor-
ough evaluations and analysis. Both types of NWP data could be used depend-
ing on the time requirements on data availability of a particular research task. 
The observational data described above when available will be used to com-
plement the NWP data, particularly for situations in which the observational 
data provide a better representation of the local conditions than the grid-aver-
aged NWP data.
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Operational NWP: The National Centers for Environmental Prediction 
(NCEP) Global Forecast System (GFS) is a global model with four daily run 
cycles beginning at 0000, 0600, 1200, and 1800 UTC (Coordinated Universal 
Time). For each cycle the GFS model is run for 384 hours, and the initial analysis 
and forecast fields are available on global latitude-longitude grids of 0.25°, 0.5°, 
and 1.0° resolution in grib2 format.43 Forecast output is available at each hour for 
the first 180 forecast hours, every 3 hours from 180 to 240 hours, and then every 
12 hours until 384 hours. The analysis and forecast fields include PBLH and tem-
perature, horizontal winds, vertical velocity, specific and relative humidity, geo-
potential height, and cloud water mixing ratios at the surface and 30 pressure 
levels with 25 hecto Pascals (about 200 meters) spacing up to 900 hecto Pascals. 
The model output is available from the NOAA NCEP ftp server generally within 
5 hours after the beginning of the forecast cycle. 

The Canadian Meteorological Center (CMC) produces a global NWP forecast 
twice daily at 0000 and 1200 UTC for 240 hours called the Global Deterministic 
Prediction System (GDPS).44 The CMC GDPS initial analysis and forecast data 
are available on a 0.24° latitude-longitude grid in grib2 format.45 The data are 
available every 3 hours out to 140 hours and every 6 hours to 240 hours. The 
variables include temperature, winds, and relative humidity at the surface and 23 
pressure levels. A PBLH diagnostic is not included but could be calculated from 
vertical model profiles; however, the vertical resolution is coarse ranging from 15 
hecto Pascals (about 120 meters) from the surface to 50 hecto Pascals (more than 
450 meters) above 900 hecto Pascals, and this would affect the accuracy of the 
PBLH calculation. The latency time between the beginning of the model cycle 
and model data availability is approximately 4 to 5 hours.

The JMA runs a Global Spectral Model (GSM) four times a day. The runs at 
0000, 0600, and 1800 UTC are for 84 hours, and the 1200 UTC run is for 264 
hours. Output data are available in grib2 format on a 0.5° latitude-longitude grid 
at 3-hour intervals up to 84 hours and then 6-hour intervals up to 264 hours from 
the WMO Global Information System Centres (GISCs) website. The PBLH diag-
nostic is not included in the available output fields but could be calculated from 
temperature, wind, and moisture variables. The data latency time and specific 
access procedures were not clearly documented on the GISC website. The JMA 
also produces a mesoscale model forecast with five-kilometer resolution for a 
domain centered over Japan but including eastern Mongolia. However, only 
graphical outputs seem to be available in the public domain. 

The Fleet Numerical Oceanographic Center produces a global NWP forecast 
with the Navy Global Environmental Model (Hogan and others 2014) four times 
per day with a horizontal resolution of about 37 kilometers. However, the grid-
ded output fields are not readily accessible and may be restricted to organiza-
tions within the United States. 

The European Center for Medium Range Weather Forecasts (ECMWF) and 
United Kingdom Meteorological Office (UKMET) also produce global NWP 
forecasts,46 but the output data are only provided for a licensing fee based on the 
amount and type of data being requested.

Operational models such as the NCEP GFS are continuously being updated 
with new physical parameterization schemes (for example, Han and Pan 2011) 
and new sources of observational data to be assimilated through observing sys-
tem experiments and observing system simulation experiments (for example, 
Atlaskin and Vihma 2012). The improvements are often evaluated at the 
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continental to hemispheric scale using geopotential height anomaly correlations 
and at regional and local scales against temperature, winds, and moisture obser-
vations (for example, Cucurull and Derber 2008) but not PBLH. A Google 
Scholar search for evaluations of operational model PBLH outputs over land 
produced no results, perhaps because of the general lack of continuous PBLH 
observations in most locations. Nevertheless, data from operational models are 
used in satellite algorithms; for example, the MODIS cloud height algorithm 
uses GFS temperature profile data (for example, Holtz and others 2008). Thus, 
given the general lack of observations, it seems to be a reasonable procedure to 
use GFS PBLHs as an estimate of the PBLH in LMICs to determine PM2.5 from 
column AOD measurements. Furthermore, in 2016 NOAA announced the devel-
opment of a new model to replace the current GFS. The model will still be called 
the GFS and but will feature a new dynamic core, the Finite Volume on a Cubed 
Sphere (FV3), that is expected to increase the model’s accuracy and numerical 
efficiency.47 The new GFS model is projected to be operational in 2019 (Schneider 
2016).

MERRA reanalysis: The Modern Era Retrospective-analysis for Research 
and Applications (Bosilovich 2008; MERRA) is a NASA reanalysis from 1979 to 
the present day produced using the Goddard Earth Observing System (GEOS) 
Data Assimilation System (DAS) Version 5 (GEOS-5 DAS; Rienecker and others 
2008). The reanalysis data are on the GEOS-5 native 576 by 361 grid with 0.625° 
by 0.5° resolution at the surface and include PBLH and temperature, winds, rel-
ative humidity at the surface, and either 42 pressure levels at three hourly inter-
vals or 72 pressure levels at six-hour intervals. The 42-level product has 8 levels 
below 800 hecto Pascals, while the 72-level product has 12. An updated version 
of the reanalysis (Bosilovich and others 2015; Gelaro and others 2017; MERRA-
2) extends from 1980 to the present with a latency time of approximately one to 
two months.

MERRA PBLH data have been evaluated using PBLH retrievals from the 
CALIPSO satellite (Winker, Hunt, and McGill 2007; Winker and others 2009) 
over a western hemisphere domain from 60° S to 60° N for August and 
December 2006 and Africa in August 2006 (Jordan, Hoff, and Bacmeister 
2010). The evaluation indicated a better MERRA-CALIPSO correlation in 
August in both domains (R of 0.73) than in December (R of 0.47). Over the 
Sahara Desert the MERRA PBLHs were clustered around 1 to 3 kilometers 
above ground level and generally lower than those of CALIPSO that had sev-
eral clusters around 1 to 2 kilometers, 3.5 to 4.5 kilometers, and 5 to 6 kilome-
ters above ground level. 

The PBLHs from the atmospheric modeling component of GEOS-5 
(Atmospheric General Circulation Model) used to derive MERRA have also been 
evaluated with micro-MPL retrievals at the NASA Goddard Space Flight Center 
(GSFC) in Maryland for the period of 2001 to 2008 (Lewis and others 2013). The 
model and MPL diurnal cycles agreed well but the model underestimated the 
maximum daily PBLH compared to the MPL retrievals by about 0.4 kilometers.

There is inherent uncertainty in any source of PBLH data. This uncer-
tainty can be attributed to three sources: (1) the methods used to calculate it 
from in situ observations (for example, Hegarty and others 2018; Seidel, Ao, 
and Li 2010), (2) the retrieval method (for example, Lewis and others 2013; 
Winker, Hunt, and McGill 2007), or (3) error in the NWP model (for example 
Jordan, Hoff, and Bacmeister 2010; Lewis and others 2013; McGrath-Spangler 
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and Denning 2012, 2013). This uncertainty can be near to 50 percent (for 
example, Lewis and others 2013; Seidel and others 2012). The uncertainty 
can also be dependent on the synoptic weather conditions. Hegarty and oth-
ers (2018) found poor agreement between PBLHs calculated from ozone-
sondes with different methods, MPL retrievals, and mesoscale model outputs 
on days with southerly and southwesterly flow in the Baltimore–Washington, 
DC, area, but good agreement between PBLHs calculated with all methods, 
MPL retrievals, and model data on days with northerly winds. This suggests 
that, whenever possible, data from both observations and models should be 
compared to quantify the uncertainty of the PBLH inputs to the algorithms 
used to determine the ground-level PM2.5 concentrations for satellite AOD 
retrievals.

Chemical transport model–based approaches

Several studies (for example, van Donkelaar, Martin, and Park 2006) have used 
CTMs to determine a time-varying relationship between ground-level PM2.5 
concentrations and satellite AOD observations. This relationship is then used to 
scale the CTM aerosol profile to match the satellite-observed AOD, providing an 
improved estimate of the ground-level PM2.5 concentration than would be possi-
ble from the CTM alone. The advantages of this approach include that it can be 
generalized to apply to any region of the globe, can provide daily estimates of the 
relationship between AOD and PM2.5 (similar to mixed effects models) (see the 
section “Statistical approaches” in this appendix), and can account for the impact 
of elevated PM2.5 layers on this relationship, thereby identifying periods where 
the AOD is likely dominated by aerosols above the PBL and thus do not provide 
good data on ground-level PM2.5 concentrations. The disadvantages are that it 
requires the running of a CTM, which can be a complicated and labor-intensive 
process, and that it is highly dependent on the ability of the CTM to correctly 
predict aerosol vertical profiles, even when the CTM predictions of AOD are off. 
However, the use of publicly available CTM output (see the section “Chemical 
transport model–based approaches” in this appendix) could reduce the labor 
issues for LMICs.

Errors in AOD can be propagated through the CTM methods by repeating the 
process for the high and low error bounds on the AOD. However, quantifying the 
uncertainty in the CTM estimate of the relationship between AOD and surface 
concentrations is not straightforward, since this relationship is sensitive to 
errors in multiple aerosol components at multiple vertical levels, as well as errors 
in relative humidity. Thus, the method used here to account for this error is to 
assume a constant relative error based on post hoc validation of the CTM PM2.5 
estimates (for example, ±47 percent, based on the “rest of world” results of van 
Donkelaar, Martin, Brauer, and Boys 2015).

Van Donkelaar, Martin, and Park (2006) used MODIS Dark Target AOD and 
MISR AOD separately to predict annual mean ground-level PM2.5 concentrations 
over North America using the GEOS-Chem model (v7-02-01, 1° by 1° nested reso-
lution over North America, driven with GEOS-3 meteorology) to predict the rela-
tionship between AOD and PM2.5. Using MISR AOD explained 34 percent of the 
variability, and the MISR-predicted values had a mean bias of 3.1 micrograms per 
cubic meter and a slope of 0.57. Using MODIS Dark Target explained 48 percent 
of the variability with a mean bias of 5.1 micrograms per cubic meter and a slope 
of 0.82.
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Van Donkelaar and others (2010) used MODIS Dark Target AOD and MISR 
AOD together to provide long-term average (2001–06) global estimates of 
ground-level PM2.5 concentrations at about 10 kilometers (0.1° by 0.1°) resolution 
using the GEOS-Chem model (v8-01-04, 2° by 2.5° resolution, driven with 
GEOS-4 meteorology) to predict the relationship between AOD and PM2.5. In the 
present study, the MODIS and MISR data were filtered to remove observations 
that had an anticipated bias greater than the larger of ±0.1 or ±20 percent. 
Remaining MODIS and MISR AOD retrievals were averaged to produce a single 
value for a grid cell. Over North America, the model explained 59 percent of the 
observed variability with a slope of 1.07 and a mean bias of −1.75 micrograms per 
cubic meter, both substantial improvements over the estimates of van Donkelaar, 
Martin, and Park (2006). 

Van Donkelaar and others (2011) used MODIS Dark Target AOD and the 
GEOS-Chem model (v8-03-01, 2° by 2.5° resolution, driven with GEOS-5 
meteorology) to estimate daily PM2.5 concentrations during a major biomass 
burning event around Moscow in the summer of 2010. During this event, the 
standard MODIS retrieval incorrectly identified some of the aerosol as cloud due 
to the large AOD values. Relaxing the cloud screening increased MODIS coverage 
by 21 percent with no evidence of false aerosol detection. GLM PM2.5 data were 
estimated from PM10 observations for several nearby sites, because only two sites 
had PM2.5 observations. The satellite product explained 85 percent of the 
variability in these estimated PM2.5 observations with a slope of 1.06.

Geng and others (2015) used the combined MODIS Dark Target and MISR 
AOD product of van Donkelaar and others (2010) to determine long-term aver-
age (2006–12) PM2.5 concentrations over China at about 10 km (0.1° by 0.1°) res-
olution using the GEOS-Chem model (version 9-01-02, 0.5° by 0.667° nested 
resolution over China, driven with GEOS-5 meteorology) to predict the relation-
ship between AOD and PM2.5. Comparison with ground-level PM2.5 concentra-
tions observations showed the satellite-based product explained 55 percent of 
the variability in PM2.5 with a slope of 0.77. 

Van Donkelaar and others (2015) used satellite AOD observations and the 
GEOS-Chem model to produce annual average PM2.5 estimates (1998–2012) 
over the globe. The MODIS radiance observations were used in an optimal esti-
mation framework (van Donkelaar and others 2013) to derive PM2.5 estimates 
that were consistent with the GEOS-Chem aerosol scheme for 2004–10, which 
were then combined with the product of van Donkelaar and others (2010) for 
2001–03 to produce a global, decadal average PM2.5 estimate at about 10-kilome-
ter resolution. The work of Boys and others (2014), which used AOD from the 
SeaWIFS and MISR satellites and the GEOS-Chem model to estimate the tem-
poral variation in PM2.5, was then applied to this decadal average to produce a 
15-year global estimate of ground-level PM2.5. Comparisons with decadal mean 
GLM data over North America gave an R of 58 percent with a slope of 0.96 and 
a 1−σ error of −1 microgram per cubic meter + 16 percent. Over Europe, the com-
parison gave an R of 53 percent with a slope of 0.78 and a 1−σ error of 1 micro-
gram per cubic meter +21 percent, whereas over the rest of the world the R was 
0.66, the slope was 0.68, and the 1−σ error was −1 microgram per cubic meter + 
47 percent.

Sources of AOD-PM2.5 relationships from observations
Until recently, few data were available from colocated observations of AOD and 
ground-level PM2.5. The Surface Particulate Matter Network (SPARTAN) was 
established to address this need (Snider and others 2015). The network includes 
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a global federation of ground-level monitors of hourly PM2.5, primarily in highly 
populated regions in proximity to existing ground-based sun photometers (for 
example, AERONET sites) that measure AOD. Together, these instruments pro-
vide an empirical measure of the AOD/PM2.5 ratio that is used to relate satellite 
AOD retrievals to ground-level PM2.5. 

The current SPARTAN network is fairly sparse, but adding an AERONET and 
SPARTAN site to a given city would provide valuable data on the local variation 
of the AOD/PM2.5 ratio at a relatively low cost. However, in the absence of these 
data, this ratio can be estimated from CTM output. 

Sources of aerosol profile data from CTMs
For LMICs to use the CTM approach without having to run CTMs themselves, 
they need publicly available CTM data sets that can be used to match aerosol 
profiles with AOD observations. Several potential sources of these data for 
LMICs are discussed below.

MERRA-2 Reanalysis: The NASA MERRA-2 reanalysis (Provençal and oth-
ers 2017) provides hourly average AOD at 550 nm both by total and by aerosol 
component, as well as the surface mass concentration for each component, at a 
horizontal resolution of 0.5° by 0.625°. However, aerosol vertical profiles are 
only provided every three hours as instantaneous (snapshot) profiles. MERRA-2 
uses the NASA GEOS-5 atmospheric general circulation model (Colarco and 
others 2014). The aerosol component of MERRA-2 is based on the Goddard 
Chemistry Aerosol Radiation and Transport Model (GOCART; Chin and others 
2000; Colarco and others 2010, 2014; Kim and others 2013). Funded mainly by 
NASA Earth Science programs, the GOCART model was developed to simulate 
atmospheric aerosols (including sulfate, black carbon, organic carbon, dust, and 
sea salt), carbon monoxide, and sulfur gases. The reanalysis has about a two-
month latency. All of the data are freely available for download from NASA via 
MDISC,48 managed by the NASA Goddard Earth Sciences (GES) Data and 
Information Services Center (DISC).

NCEP NGAC forecasts: NEMS GFS Aerosol Component (NGAC; Lu, da 
Silva, and others 2016) is a global inline aerosol forecast system. The forecast 
model component of the NGAC is the GFS based on the NOAA Environmental 
Modeling System (NEMS; Black and others 2007, 2009) which, in turn, is based 
on the common modeling framework using Earth System Modeling Framework 
(ESMF). The aerosol component of the NGAC is GOCART (Chin and others 
2000; Kim and others 2013). 

The initial production implementation of NGAC with global-dust-only 
forecast was implemented in September 2012 (Lu, da Silva, and others 2016). 
The current NGAC operational forecast produces 120-hour global multispe-
cies forecasts including dust, sea salt, sulfate, and carbonaceous aerosols. 
The system runs twice daily within the NCEP Production Job Suite at the 
0000Z cycle and 1200Z cycle. Although no satellite data assimilation is cur-
rently performed, research is underway to add the assimilation of the NOAA 
VIIRS AOD product to NGAC (Lu, Wei, and others 2016). Output is posted to 
a 1° by 1° longitude/latitude grid with a 3-hour forecast interval to 120 hours. 
The files (in grib2 format) include three-dimensional profiles of individual 
aerosol components (dust, sea salt, sulfate, organic carbon, and black car-
bon), temperature, and relative humidity, as well as two-dimensional fields 
including the model-calculated total AOD and the AOD from each aerosol 
component. 
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NCAR MOZART-4/GEOS-5 forecasts: NCAR provides output from their 
MOZART-4/GEOS-5 global air-quality simulations (Emmons and others 2010) 
for public use, both in NRT and in a historical archive going back to 2007.49 The 
representation of tropospheric aerosols in MOZART-4 is based on the work of 
Tie and others (2001, 2005) and includes the calculation of sulfate, black carbon, 
primary organic, secondary organic aerosols (SOAs), ammonium nitrate, and sea 
salt (Lamarque and others 2005). Because only the bulk mass is calculated, a 
lognormal number distribution is assumed for all aerosols to calculate the sur-
face area (and thus AOD), using a different geometric mean radius and standard 
deviation for each type of aerosol (based on Chin and others 2002). Sea salt aero-
sols are included in the model with four size bins (0.1–0.5, 0.5–1.5, 1.5–5, and 5–10 
micrometers), and emissions are calculated online (Mahowald, Lamarque, and 
others 2006). However, the distributions of four sizes of dust (0.05–0.5, 0.5–1.25, 
1.25–2.5, and 2.5–5.0 micrometers) are set from monthly mean distributions 
taken from online calculations in the Community Atmosphere Model (CAM) 
(Mahowald, Muhs, and others 2006), and thus the model does not include prog-
nostic dust. Hygroscopic growth of the aerosols is determined from the ambient 
relative humidity, with different rates for each type of aerosol (Chin and others 
2002). Washout of all aerosols, except hydrophobic black carbon and organic 
carbon, is set to 20 percent of the washout rate of nitric acid (HNO3) (Horowitz 
2006; Tie and others 2005). Comparisons of calculated AOD over the ocean to 
AOD retrievals from the MODIS satellite instrument indicate this is a reasonable 
washout rate.

The NCAR MOZART-4/GEOS-5 aerosol profiles are provided at a horizontal 
resolution of 1.875° by 2.5° every six hours. However, the output files include 
only the bulk mass for each size bin, and so the model AOD has to be calculated 
from these data by the user.

UK Met Office research ensemble forecast: The UK Met Office provides an 
operational global forecast at 17-kilometer resolution that includes prognostic 
and interactive dust for a four-member hybrid ensemble. An additional aerosol 
forecasting global model, including carbonaceous aerosols and sulfate aerosols, 
is run as a research product using a copy of the operational model, with aerosol 
chemistry using the CLASSIC scheme (Bellouin and others 2011; Mulcahy and 
others 2014). However, the additional aerosols do not feed back to the dynamics. 
This research product is available only via the principal investigator (Malcolm 
Brooks, malcolm.e.brooks@metoffice.gov.uk).

ECMWF Copernicus Atmospheric Monitoring Service: The ECMWF 
Copernicus Atmospheric Monitoring Service (CAMS) produces twice-daily 
120-hour global forecasts of total aerosols, aerosol components (dust, sea salt, 
biomass burning, sulfate), and AOD at about 40-kilometer spatial resolution 
(0.5625° by 0.5625°) at a three-hour temporal resolution. CAMS also produces 
the Monitoring Atmospheric Chemistry and Climate (MACC) reanalysis (Toll 
and others 2015) of AOD and component AOD at about 80-kilometer resolution 
(1.125° by 1.125°). However, both products currently require purchasing a license 
from ECMWF and thus may not be the correct solution for many LMICs.

CAMS currently uses a simple bin scheme (IFS-LMD [Integrated Forecast 
System–Laboratoire de Météorologie Dynamique]) for its near real-time fore-
casts and the MACC reanalysis. IFS-LMD mainly follows the aerosol treatment 
in the Laboratoire d’Optique Atmosphérique / LMD-Z Laboratoire de 
Météorologie Dynamique–Zoom (LOA/LMD-Z) model (Boucher and others 
2003; Reddy and others 2005). Five types of tropospheric aerosols are 
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considered: sea salt, dust, organic carbon, black carbon, and sulfate aerosols. 
Prognostic aerosols of natural origin, such as mineral dust and sea salt, are 
described using three size bins. Emissions of dust depend on the 10-meter wind, 
soil moisture, the UV-VIS component of the surface albedo, and the fraction of 
land covered by vegetation when the surface is snow-free. A correction to the 
10-meter wind to account for gustiness is also included (Morcrette and others 
2009). Sea-salt emissions are diagnosed using a source function based on work 
by Guelle and others (2001) and Schulz, de Leeuw, and Balkanski (2004). Sources 
for the other aerosol types are taken from the Speciated Particulate Emission 
Wizard (SPEW) and the Emission Database for Global Atmospheric Research 
(EDGAR) annual or monthly mean climatologies (Dentener and others 2006). 
Emissions of organic matter, black carbon, and SO2 linked to fire emissions are 
obtained using the Global Fire Assimilation System based on MODIS satellite 
observations of fire radiative power, as described in Kaiser and others (2012).

In addition, the ECMWF forecasts assimilate MODIS AOD data at 550 nano-
meters in a 4D-Var framework that has been extended to include the aerosol 
total mixing ratio as an extra control variable (Benedetti and others 2009).

Hybrid approaches

Hybrid approaches are those in which both the output from CTMs and statisti-
cal models are used to convert satellite AOD retrievals into predictions of 
ground-level PM2.5. For example, van Donkelaar, Martin, Spurr, and Burnett 
(2015) used geographically weighted regression (GWR) to relate the errors 
between the GLM PM2.5 observations and their estimate of ground-level PM2.5 

based on MODIS AOD observations and GEOS-Chem simulations (van 
Donkelaar and others 2013). They used the Matlab function glmfit, but open-
source options in Python are available (for example, the pyglmnet library).

The spatial predictors used were the percentage of urban land cover (at 
one-kilometer resolution) and the subgrid elevation difference (that is, the dif-
ference between the mean elevation for a 0.5° by 0.67° GEOS-Chem grid box, the 
local elevation from high-resolution maps). In addition, the GEOS-Chem pre-
dictions for the relative contributions of nitrate, primary carbonaceous, and sec-
ondary organic aerosol to the total PM2.5 were used as additional predictors. 

GWR was then used to predict the bias between monthly mean ground-level 
PM2.5 estimates and the satellite-derived estimate of ground-level PM2.5. This 
gave spatially varying, but constant with time, bias-correction estimates at a fine 
resolution (one kilometer) over North America. However, although the bias-cor-
rection is constant with time, the uncorrected values vary with time (daily for 
areas with MODIS coverage) and thus provide daily estimates of ground-level 
PM2.5. The bias-corrected satellite product showed a much higher correlation 
with surface observation and a better regression slope but had similar RMSE 
with respect to surface monitors as the uncorrected product.

COMBINING GLM AND SATELLITE DATA 

The two most common methods that have been used to simultaneously interpo-
late satellite-derived PM2.5 estimates and GLM data to obtain city-scale PM2.5 esti-
mates are co-kriging and simultaneous land-use regression (for example, Alexeeff 
and others 2015; de Hoogh and others 2016; Lee, Chatfield, and Strawa 2016). 
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Co-kriging

Like most spatial interpolation schemes, ordinary kriging uses a weighted aver-
age of neighboring samples (that is, from a spatially distributed set of ground-
level monitors of PM2.5) to predict PM2.5 concentrations across an urban area. 
However, in ordinary kriging the weights depend not only on the distance 
between the prediction location and the measured points, but also on the spatial 
autocorrelation in the data (Millar and others 2010). Kriging also provides error 
estimates for its predictions. 

Co-kriging is an extension of ordinary kriging that can take advantage of 
additional data sets or variables, using both the correlations between the 
monitors and the cross-correlations between the monitor data and the addi-
tional data sets to make better predictions. In the application of interest here, 
the second data set would be the satellite-derived ground-level PM2.5 esti-
mates produced using one of the methods outlined earlier in this appendix, 
but additional data sets, such as meteorological data, can be incorporated via 
co-kriging (Millar and others 2010; Pearce and others 2009; Wu, Winer, and 
Delfino 2006). Kriging is generally done using licensed software such as 
ArcGIS, but open source options (for example, the pyKrige toolkit in Python) 
also are available.

For LMICs, the advantage of combining satellite data with GLM data via 
co-kriging is that it potentially reduces the number of GLM stations required to 
adequately cover an urban area via ordinary kriging. Kriging is most suitable for 
cases where the GLM network (1) is spatially dense, (2) captures the general 
spatial variation of PM2.5, and (3) adequately covers the edges of the study area. 
Applying kriging to sparse data will either result in over-smoothed surfaces or 
over-fitted predictions. Using the more spatially dense satellite estimates of sur-
face level PM2.5 in co-kriging could thus address these limitations of kriging for 
urban areas with sparse GLM networks. 

Co-kriging has other potential advantages. It does not require any data 
beyond the GLM network data and the satellite-derived ground-level PM2.5 esti-
mates. In contrast, land-use regression requires substantial additional data (see 
the sections “Co-kriging” and “Land-use regression” in this appendix). 
Furthermore, co-kriging can be applied independently at each time point, so that 
the temporal resolution of the maps produced can be the same as the initial GLM 
and satellite data, allowing for short-term average (that is, daily) predictions of 
PM2.5 concentrations. In fact, Alexeeff and others (2015) showed that to estimate 
chronic (annual) exposure to PM2.5, kriging applied to annual average data was 
insufficient to capture the exposure accurately, and thus kriging had to be 
applied to the daily data and then averaged to provide annual estimates. However, 
the spatial resolution of the predictions is limited by the spatial density and res-
olution of the input data sets, making predictions on a one-kilometer scale or 
finer difficult. 

An example of the use of co-kriging to supplement a sparse GLM network 
was provided by Singh and others (2011), who demonstrated how CTM predic-
tions of ground-level PM2.5 concentrations could be used as a secondary vari-
able in a co-kriging interpolation of GLM data to predict PM10 concentration 
over northern Italy. They used 14 PM10 monitors and five-kilometer resolution 
CTM predictions over a 60-kilometer by 60-kilometer domain. Their co-krig-
ing models were able to explain 88–90 percent of the variability in PM10 with 
an RMSE of 16 micrograms per cubic meter, which was lower than the kriging 
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value (20 micrograms per cubic meter). In addition, they found that the pre-
dicted maps of PM10 concentration were substantially different between krig-
ing and co-kriging, with the co-kriging map capturing more of the expected 
special variation of PM10 in the domain. In addition, Singh, Venkatachalam, 
and Gautam (2017) used co-kriging to fill in missing MISR AOD data using 
observations from the MODIS instruments. However, there is no example of 
co-kriging with satellite-based PM2.5 products in the literature. 

Land-use regression

Land-use regression (LUR) spatially links GLM network data of PM2.5 with other 
associated variables (such as elevation, distance from roads, population density, 
and land-use type) to develop finer-scale and more accurate estimates of long-
term PM2.5 concentrations within an urban area than is possible with kriging 
(Millar and others 2010). The most predictive variables are identified through 
least-squares linear regression (Briggs and others 1997). Other studies (for exam-
ple, Vienneau and others 2013) have incorporated data on meteorology (for 
example, wind direction; Arain and others 2007; Ryan and others 2008) and sat-
ellite observations of aerosols, NO2, and other pollutants (for example, Lee, 
Chatfield, and Strawa 2016) into the regression as well. The development of pre-
dictor variables from geographic information system (GIS) files is generally per-
formed using licensed software such as ArcGIS, but the regression can be 
performed using open-source software such as R.

LUR is an attractive option for estimating PM2.5 concentrations at a neighbor-
hood scale within urban areas with sparse measurement networks, since the 
regression can be used to predict concentration at the scale of the land-use data 
in unmonitored areas. However, the method assesses only spatial variation and 
thus can predict only long-term average concentrations (for example, monthly 
or annual). In addition, the method generally requires a significant amount of 
GIS skill to apply and requires much more input data than co-kriging (see the 
section “Co-kriging” in this appendix).

Several studies have used satellite estimates of ground-level PM2.5 within LUR 
models. For example, Vienneau and others (2013) used MODIS-derived ground-
level PM2.5 estimates (at 10-kilometer resolution) as a predictor in a land-use 
regression model to estimate annual average PM10 concentrations over Europe at 
a resolution of 100 meters. The LUR models using the satellite data had consis-
tently higher correlations and generally lower mean bias and mean absolute 
errors (MAEs) than the LUR models that did not use satellite data. The models 
using satellite data to predict annual average PM10 generally explained between 
35 and 50 percent of the variability in PM10 (mean absolute error of 4.6 to 6.0 
micrograms per cubic meter).

Lee, Chatfield, and Strawa (2016) adopted a different approach in which LUR 
is included in the linear mixed-effects statistical model used to relate MODIS 
Deep Blue AOD to ground-level PM2.5 estimates for California (see, for example, 
the section “Statistical approaches” in this appendix). Separate LUR models 
were built for each season and trained using three years of data from 142 GLM 
sites. The land-use predictors included distance from major highways, popula-
tion density, estimated pollutant emissions from the US EPA National Emission 
Inventory, elevation, percentage of developed land, distance from the coast, and 
the air basin in which each measurement site was located. In addition, daily val-
ues for AOD, wind speed, relative humidity, temperature, and PBLH from the 
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weather stations nearest to the site were also used as predictors. This addition of 
temporally varying data with land-use data allows for predictions of daily and 
annual average PM2.5 at the fine spatial scales possible with land-use regression. 
Lee, Chatfield, and Strawa (2016) found that the model was able to explain 
66 percent of the variability of PM2.5 over California (MAE of 3.7 micrograms per 
cubic meter, RMSE of 5.7 micrograms per cubic meter) and that the modeled 
relationship between AOD and PM2.5 varied significantly by day.

De Hoogh and others (2016) used the 10-kilometer resolution satellite-
derived estimated of ground-level PM2.5 from van Donkelaar, Martin, Spurr, and 
Burnett (2015) as a predictor in a land-use regression model of PM2.5 over west-
ern Europe, predicting annual average PM2.5 concentrations at a resolution of 
100 meters. The model also included satellite estimates of tropospheric NO2 col-
umns at a 10-kilometer resolution, as well as independent CTM predictions of 
ground-level PM2.5 and NO2 from the MACC-II ENSEMBLE model, which was 
the median value of seven individual regional CTMs (CHIMERE, EMEP, 
EURAD, LOTOS-EUROS, MATCH, MOCAGE, and SILAM). Additional predic-
tors included high-resolution data on land cover, roads, and altitude. They found 
that the PM2.5 LUR models that included both the satellite and CTM estimates of 
ground-level PM2.5 explained about 60 percent of the spatial variation in mea-
sured (annual average) PM2.5 concentrations, substantially more than was 
explained by the LUR model without satellite or CTM data (33–38 percent).

Data sets for land-use regression

If an LMIC has detailed GIS data on land use, population density, roads, pollut-
ant emissions, and other fields needed for LUR, those should be used, because 
they would reflect the best local knowledge regarding the conditions likely to 
lead to high levels of PM2.5. However, since some LMICs may not have these data 
freely available, high-resolution, global data sets for the predictors used in the 
LUR studies discussed above were identified in this review: 

•	 Land-cover type can be determined from the 0.5-kilometer MODIS-based 
Global Land Cover Climatology provided by USGS.50 This map is based on 
based on 10 years (2001–10) of Collection 5.1 MCD12Q1 land-cover–type data 
and used 17 land-cover categories. The map is generated by choosing, for each 
pixel, the land cover classification with the highest overall confidence from 
2001 to 2010 (Broxton and others 2014). These data can also be used to calcu-
late parameters such as the percentage of developed land within a given 
radius of the site.

•	 Distance from coasts can be determined using the World Water Bodies GIS 
layer.51

•	 GIS data on population density52 and major roads53 are available through the 
NASA Socioeconomic Data and Applications Center (SEDAC) hosted at 
Columbia University. 

•	 The SEDAC Gridded Population of the World, version 4 (GPWv4) Population 
Density product (CIESIN 2016) consists of estimates of human population 
density, based on counts consistent with national censuses and population 
registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allo-
cation gridding algorithm, utilizing approximately 12.5 million national and 
subnational administrative units, is used to assign population values to 
30-arc-second (about one-kilometer) grid cells. 
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•	 The SEDAC Global Roads Open Access Data Set (CIESIN and ITOS 2013; 
gROADS) combines the best available roads data by country into a global 
roads data set, using the UN Spatial Data Infrastructure Transport (UNSDI-T) 
version 2 as a common data model. Because the data are compiled from mul-
tiple sources, the date range for road network representations ranges from 
the 1980s to 2010 depending on the country (most countries have no con-
firmed date), and spatial accuracy varies. 

•	 In addition, OpenStreetMap54 is an open source, community project that 
maintains data about roads, trails, railway stations, and other landmarks, all 
over the world. OpenStreetMap emphasizes local knowledge, and contribu-
tors use aerial imagery, GPS devices, and low-tech field maps to verify that 
OpenStreetMap is accurate and up to date. The inspection of these data sug-
gests that the data are more detailed and occasionally more accurate than the 
gROADS database, but the data sources are also less well documented.

•	 Topography data can be obtained from the Global Multi-resolution Terrain 
Elevation Data 2010 (GMTED2010)55 created by the USGS and the National 
Geospatial-Intelligence Agency (NGA). This data set has multiple spatial res-
olutions, 30, 15, and 7.5 arcseconds, and is a replacement for the previous 
GTOPO30 data.

•	 Spatially resolved global air pollutant emissions at a 0.1° by 0.1° resolution 
(about 10 kilometers) are available for the years 2008 and 2010 from the 
EDGAR-HTAP_V2 emission inventory for several pollutants (CH4, CO, SO2, 
NOx, nonmethane volatile organic compounds, NH3, PM10, PM2.5, black car-
bon, and organic carbon). 

RECOMMENDATIONS FOR LMICS

These recommendations for the use of satellite observations to supplement 
GLM data in LMICs (using the typology proposed in chapter 1 and reproduced 
at the beginning of this appendix) are based on the literature review above:

•	 For Type I countries, since no GLM data are available, the only possible 
approach to convert AOD to ground-level PM2.5 for these countries is a CTM-
based approach. Bias correction of the CTM-based estimates is also not pos-
sible for these countries, because there are no data with which to characterize 
the model bias. Thus, the raw CTM-based estimates of ground-level PM2.5 at 
the native resolution of the satellite AOD product should be used, but the 
derived ground-level PM2.5 values should be assigned a high uncertainty that 
reflects not only the uncertainty in the AOD but also the estimated uncer-
tainty in the CTM-derived AOD to PM2.5 relationship (for example, about 
50 percent based on van Donkelaar, Martin, Brauer, and Boys 2015). It is likely 
in this case that only city-average estimates will be possible, and that the 
annual estimates will be more reliable than the daily estimates.

•	 For Type II countries, the small amount of available GLM data (with variable 
quality) will provide at least some ability to derive a bias estimate for the raw 
CTM-based estimates of ground-level PM2.5 discussed above. However, with-
out improvement in the QA procedures in these countries, it will not be pos-
sible to be certain that the bias-corrected estimate is truly more accurate than 
the raw estimate, and thus both values should be reported and stored. This 
will allow for reprocessing of the satellite estimates when more rigorous QA 
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procedures are developed. Similar to Type I countries, it is likely that only 
city-average estimates will be possible, and that the annual estimates will be 
more reliable than the daily estimates.

•	 The GLM data in Type III countries allow both statistical and bias-
corrected CTM-based approaches for converting AOD to PM2.5 to be con-
sidered. CTM-based approaches may still be the best approach for these 
countries, but statistical approaches should also be tested before making 
a final decision. If GLM data from several sites exist, but only for a short 
period, those data can be used to develop seasonally and geographically 
varying statistical models and/or seasonally and geographically varying 
bias corrections for CTM-based approaches. If only a single site exists in 
the urban area, a seasonally varying statistical model and/or bias correc-
tion is still possible, but both the model and the bias correction would 
have to be applied uniformly across the urban area. Land-use regression 
(LUR; see the section “Land-use regression” in this appendix) can be 
combined with either technique to provide a finer-scale estimate of 
annual average ground-level PM2.5 (at about 0.5-kilometer resolution) 
using the data sets described in the section “Data sets for land-use regres-
sion” in this appendix, and co-kriging (see the section “Co-kriging” in 
this appendix) can be used to derive daily estimates across the city. 

•	 Type IV countries will be able to take advantage of the same approaches out-
lined above for Type III countries. However, the more extensive measure-
ment networks will allow for more accurate estimates of the geographical and 
seasonal variation in the AOD to PM2.5 relationship. Thus, at this point, purely 
statistical approaches may begin to outperform CTM-based estimates, espe-
cially for regions where the model’s emission inventories are out of date or 
otherwise inaccurate.

•	 In Type V countries, the main use of satellite observations is to help fill in the 
gaps of the existing monitoring network to cover more of the country’s popu-
lation. These countries also tend to have access to higher-resolution, regional 
CTM simulations that are customized for their region. Thus, both statistical 
and CTM-based approaches can be used. 

In addition, the following recommendations on data sources and other meth-
odological concerns are made for all countries interested in using satellite data 
to supplement GLM data:

•	 All countries should use the satellite product that offers the best balance of 
accurate AOD and spatial resolution for their country. For example, regions 
near bright urban or desert surfaces should prefer the MODIS Deep Blue 
product (see the section “Polar-orbiting satellites” in this appendix), since 
this has been demonstrated to give better performance in these regions. The 
extension of this algorithm to VIIRS will help maintain this capability over 
the next two decades. However, the MAIAC algorithm or the application of 
the Deep Blue algorithm to geostationary observations may provide better 
AOD observations in the near future.

•	 The highest-possible spatial resolution for satellite AOD will likely be 
between 2 and 4 kilometers (for geostationary observations) or 1 and 10 
kilometers (for polar observations). Consequently, finer predictions will be 
possible only for cases where GLM data exist (via LUR; see the section 
“Land-use regression” in this appendix).
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•	 Some cities may have poor satellite coverage due to clouds or snow-covered 
surfaces regardless of the choice of the AOD product. This will reduce the 
number of days for which a daily estimate is possible and will need to be 
accounted for in the annual averages.

•	 If local data on PBLH are available in a city (for example, Ulaanbaatar, 
Mongolia), the measured PBLH should be used in statistical approaches. 

•	 	For countries without the capacity to perform their own meteorological or 
chemical transport modeling, the freely available global model data sets pro-
vided by organizations in the United States for estimates of PBL height (see 
the section “Statistical approaches” in this appendix), aerosol vertical profiles 
(see the section “Chemical transport model–based approaches” in this appen-
dix), and other parameters should be used. For long-term studies, the NASA 
MERRA-2 reanalysis should be used, because this will represent the best esti-
mate of the historical atmospheric state. However, the reanalysis takes two 
months to produce, and thus for short-term forecasts and advisories the 
NCEP GFS output (including the NGAC aerosol forecasts) should be used. 

•	 In all cases, the errors from the AOD retrieval, the CTM estimate of the aero-
sol profiles, and the statistical models used (either directly or for bias correc-
tion) should be quantified and used to quantify the error in the derived PM2.5 
estimate.

•	 In addition, cases where the NCEP NGAC forecasts and/or the MERRA-2 
reanalyses suggest that the AOD is dominated (more than 70 percent) by 
aerosols above the PBL height should be flagged as potentially poor-quality 
satellite data, and thus poor-quality ground-level PM2.5 estimates.

NOTES

 1.	 https://www.wmo-sat.info/oscar/gapanalyses?variable=6.
 2.	https://darktarget.gsfc.nasa.gov/.
 3.	https://deepblue.gsfc.nasa.gov/.
 4.	This is a formula for the total error, which depends on the AERONET AOD value. At low 

AOD values, the error will be at least 0.05 whereas at high AOD values the error will be at 
15 percent.

 5.	https://ladsweb.modaps.eosdis.nasa.gov/tools-and-services/#stage_MODIS.pl.
 6.	https://ladsweb.modaps.eosdis.nasa.gov/search/order/2/MOD04_L2--6,MYD04_L2​

--6,MOD04_3K--6,MYD04_3K--6.
 7.	 https://worldview.earthdata.nasa.gov.
 8.	https:// ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/modis​

/MAIAC_ATBD_v1.pdf.
 9.	 https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/science-domain​

/maiac/.
10.	 https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products​

/MCD19A2/.
11.	 https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MCD19A2/.
12.	 https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MCD19A2/.
13.	 https://landweb.modaps.eosdis.nasa.gov/cgi-bin/QA_WWW/newPage.cgi.
14.	 https://landweb.modaps.eosdis.nasa.gov/cgi-bin/QA_WWW/newPage.cgi?fileName​

=sciTestMenu_C6.
15.	 https://landweb.modaps.eosdis.nasa.gov/QA_WWW/forPage/C6_test_MOD19.html.
16.	 https://modis.gsfc.nasa.gov/sci_team/meetings/201606/presentations/land/devadiga.pdf.
17.	 https://www.star.nesdis.noaa.gov/smcd/emb/viirs_aerosol/index.php/.
18.	 https://www.avl.class.noaa.gov/saa/products/search?datatype_family=VIIRS_EDR.
19.	 https://www.avl.class.noaa.gov/saa/products/search?datatype_family=VIIRS_EDR.
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20.	https://deepblue.gsfc.nasa.gov/data.
21.	 https://misr.jpl.nasa.gov/getData/accessData/.
22.	https://www.ncdc.noaa.gov/cdr/atmospheric/avhrr-aerosol-optical-thickness.
23.	https://portal.nccs.nasa.gov/datashare/AVHRRDeepBlue/.
24.	https://www.eumetsat.int/what-we-monitor/atmosphere.
25.	https://www.eumetsat.int/what-we-monitor/atmosphere.
26.	https://www.star.nesdis.noaa.gov/smcd/emb/aerosols/products_geo.php.
27.	 http://www.ssd.noaa.gov/PS/FIRE/GASP/gasp.html.
28.	http://www.icare.univ-lille1.fr/projects/seviri-aerosols.
29.	https://www.goes-r.gov.
30.	https://www.goes-r.gov/products/baseline-aerosol-opt-depth.html.
31.	 https://www.goes-r.gov/downloads/users/conferencesAndEvents/2014/GOES-R_Series​

_Program/04-Laszlo_pres.pdf.
32.	https://www.avl.class.noaa.gov/saa/products/welcome.
33.	https://www.ncdc.noaa.gov/goes-r-series-satellites/goes-r-series-frequently​

-asked-questions.
34.	https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_EPS_Aerosol​

_AOD_v3.0.1.pdf.
35.	https://www.star.nesdis.noaa.gov/star/documents/meetings/2015JPSSAnnual​

/dayFive/06_Session9_Wolf_STAREnterpriseAlgorithmsPlanJPSSAnnualMeeting​
082815.pdf.

36.	https://www.jma.go.jp/jma/jma-eng/satellite/index.html.
37.	 http://www.data.jma.go.jp/mscweb/technotes/msctechrep61-6.pdf.
38.	http://www.jmbsc.or.jp/en/meteo-data.html. 
39.	 http://www.jmbsc.or.jp/en/Data/Himawari-8-JMBSC-HP(2017.02.20).pdf.
40.	https://www.gaw-wdca.org/.
41.	https://www.earlinet.org/index.php?id=earlinet_homepage.
42.	http://www-calipso.larc.nasa.gov.
43.	http://www.nco.ncep.noaa.gov/pmb/products/gfs.
44.	https://weather.gc.ca.
45.	https://weather.gc.ca/grib/grib2_glb_25km_e.html.
46.	https://www.metoffice.gov.uk/services/data.
47.	 http://www.noaa.gov/media-release/noaa-to-develop-new-global-weather-model.
48.	https://disc.sci.gsfc.nasa.gov/datasets?page=1&keywords=MERRA-2.
49.	https://www.acom.ucar.edu/wrf-chem/mozart.shtml.
50.	https://lpdaac.usgs.gov/products/mcd12q1v006/.
51.	 https://www.arcgis.com/home/item.html?id=e750071279bf450cbd510454a80f2e63.
52.	http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density/data-download.
53.	http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1​

/data-download.
54.	http://www.openstreetmap.org.
55.	https://www.usgs.gov/core-science-systems/eros/coastal-changes-and-impacts​

/gmted2010?qt-science_support_page_related_con=0#qt-science_support_page_related​
_con. 
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APPENDIX B

Converting Satellite Aerosol Optical 
Depth to Ground-Level PM2.5

In this task of the research underlying this report, data from publicly available 
ground-level-monitoring (GLM) networks (as included in the OpenAQ database) 
were used to identify promising new pathways for low- and middle-income 
countries (LMICs) to use satellite observations in their air-quality monitoring 
and forecasting. As called for in the Terms of Reference for this report, this work 
“(i) compare[d] and contrast[ed] GLMs in selected LMICs; and (ii) examine[d] 
novel methods for improving the conversion of aerosol optical depth (AOD) and 
other remotely sensed data to concentration estimates of surface-level particu-
late matter with an aerodynamic diameter less than or equal to 2.5 microns 
(PM2.5) in environments typical of LMIC conditions.” 

The GLM data sets for testing the satellite approaches were data for three 
cities currently included in the OpenAQ database, which include near real-time 
(NRT) PM2.5 observations from local government air-quality agencies and US 
embassy and consulate PM2.5 data (table B.1). Kriging of the local government 
data was used to estimate PM2.5 values for comparison with the US embassy and 
consulate PM2.5 values, and discrepancy between these estimates was used as a 
quality check on the local government data.

The use of various satellite data sets was examined for these three cities. The 
literature review (appendix A) suggested that the Moderate-Resolution Imaging 
Spectroradiometer (MODIS) combined Deep Blue–Dark Target product was 
likely the best in terms of the coverage in urban areas, the public availability of 
the data set, and the long-term global record for training statistical models. The 
Aqua and Terra data sets were tested separately because they have different 
overhead crossing times, and the one that gave the best fit with the GLM net-
work data was determined. Two other satellite data sets were also tested. In 
Delhi, India, the Visible Infrared Imaging Radiometer Suite (VIIRS) six-
kilometer resolution AOD retrievals was tested as a potential alternative to the 
MODIS data. Both MODIS instruments are well past their design lifetimes, and 
new VIIRS instruments will be launched over the next decade as part of the US 
JPSS program, so the VIIRS product is more likely to be available in the future 
than MODIS. The Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
data set was also used as an example of the capability of next-generation geosta-
tionary satellites. Because SEVIRI did not cover the three initially selected test 
cities, Accra, Ghana, was added as an additional test city for this satellite. 
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However, the GLM data for Accra are not yet available in OpenAQ, and thus this 
work merely compared the SEVIRI results with those using the MODIS prod-
ucts for this city. For each satellite data source, all recommended quality flags 
were applied to filter the AOD data, accepting only the highest quality data from 
each source. 

One statistical approach and one chemical-transport-model (CTM) –based 
approach were tested for each city (except Accra and Lima, where only the 
CTM-based approaches were possible). The statistical approach used the gener-
alized additive model (GAM) approach of Sorek-Hamer and others (2013), mod-
ified to use the ratio of the AOD to planetary boundary layer (PBL) as the primary 
predictor, as in Chatfield and others (2017). The CTM approach used AODs and 
aerosol vertical profiles from the Modern Era Retrospective-analysis for 
Research and Applications (MERRA-2) reanalysis to derive a ground-level PM2.5 
estimate following the methods of van Donkelaar and others (2010). 
Geographically weighted regression (GWR) was then attempted to relate the 
errors between the GLM PM2.5 observations and the two satellite-based esti-
mates of ground-level PM2.5, as in van Donkelaar and others (2015).

METHODOLOGY

Satellite data

MODIS and VIIRS data
MODIS and VIIRS products were collected for a two-year period (2016 and 
2017) for Delhi, India; Lima, Peru; and Ulaanbaatar, Mongolia. The MODIS data 
are available through the National Aeronautics and Space Administration’s 
(NASA’s) Distributed Active Archive Center (DAAC),1 where all the MODIS 
product files for each year and for the Aqua and Terra platforms are available for 
download. These files are simple to download and inspect, check the spatial 
range covered in the granule, and keep the granules that cover the region(s) of 
interest. This is very time consuming but can be automated, as was done for this 
work. 

For VIIRS, the Comprehensive Large Array-Data Stewardship System 
(CLASS)2 web-based system was used for ordering data. Here the user has to 
work through the CLASS graphical user interface and wait for the order to be 
available; the process cannot be automated further. The process is the following: 

TABLE B.1  Three focus cities where OpenAQ aggregates real-time local government particulate matter 
data overlap with US Diplomatic Post measurements

CITY COUNTRY
NUMBER OF 
STATIONS ORIGINATING DATA SOURCE

Delhi India 11 Central Pollution Control Board

http://www.cpcb.gov.in/CAAQM/mapPage/frmindiamap.aspx

Lima Peru 10 Servicio Nacional de Meteorología e Hidrología del Perú

http://peruclima.pe/?p=calidad-de-aire

Ulaanbaatar Mongolia 7 Agaar.mn/National Agency of Meteorology and Environment Monitoring

http://agaar.mn/

Source: World Bank.

http://www.cpcb.gov.in/CAAQM/mapPage/frmindiamap.aspx�
http://peruclima.pe/?p=calidad-de-aire�
http://agaar.mn/�
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assign a date range and draw a box around the region of interest (note the box 
configuration can be saved to be reloaded for future use to ensure the same 
region is being searched for each time range). Note that for VIIRS to specifically 
request that the Earth location data be included (that is, the latitudes and longi-
tudes are not included with the aerosol product), the user must request a final 
product file that is a merger of the VIIRS geolocation product (GAERO) and the 
aerosol product (VAOOO).

The AOD data files for the MODIS product contain several different “prod-
ucts” based on the Dark Target and Deep Blue algorithms. The combined Dark 
Target–Deep Blue product was chosen for this project. This seems to satisfy the 
requirements and needs of this project the best by providing the greatest possi-
ble coverage over urban areas. For VIIRS there is only a single AOD product.

For both VIIRS and MODIS, a region around the focus sites is extracted and 
a subset database is created for further study. The region extracted is defined for 
a 2° by 2° region surrounding the center of each city. Table B.2 lists the variables 
included in the postprocessed MODIS and VIIRS files. Table B.3 discusses how 
these variables were mapped from the variables in the MODIS and VIIRS files 
from the NASA DAAC and CLASS, respectively. Note the different definitions for 
the MODIS and VIIRS products for some of the data products in the focus site 
files. An uncertainty estimate was also added to the subset files based on the 
analysis of Remer and others (2013) following the equation

AOTUNC = AOTBIAS + AOTRMS × AOT,	 (B.1) 

where AOTBIAS = 0.03 over ocean and 0.05 over land, and AOTRMS = 0.05 over 
ocean and 0.15 over land, and BIAS = bias, RMS = root mean square, and 
UNC = uncertainty.

Figure B.1 illustrates the geographic coverage for an approximately 1° by 1°  
box around each of the focus regions, which was the area used for the analysis. 

TABLE B.2  Contents of the subsampled aerosol-optical-depth product files

PRODUCT NAME DESCRIPTION

Algorithm_Flag MODIS: Defines the algorithm used for generating the product, 0: Dark Target, 1: Deep Blue, 2: Mixed

VIIRS: 0: Dark Target 

AOD_550 MODIS: AOD at 0.55 µm for combined Dark Target–Deep Blue products

VIIRS: Dark Target product

Error_Estimate The expected error for each product 

Land_Sea_Flag [0,1,2]: Land/sea/coast flag, 0: ocean, 1: land, 2: coastal

Latitude Pixel latitude degree

Longitude Pixel longitude degree

nPix Number of pixels in file

ObsTimeInSec Observation time in seconds from start of day

QA_Flag MODIS: Combined Dark Target–Deep Blue confidence flag (0: no confidence, 1: marginal, 2: good, 3: very good) 

VIIRS: Dark Target aerosol confidence–quality flag (0: not produced, 1: low, 2: medium, 3: high)

Scan_Start_Time Start time of scan: the pixel is in seconds since January 1, 1993

Source: World Bank.
Note: Note the different product meaning for VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS (Moderate-Resolution Imaging 
Spectroradiometer) products. AOD = aerosol optical depth; QA = quality assurance.
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The image presented for each city covers approximately the circa 2° by 2° box in 
the subset files.

SEVIRI data
The SEVIRI–Meteosat Second Generation (MSG) Aerosol Over Land (SMAOL) 
product data were provided through ICARE.3 Using a Python script to access the 
ICARE FTP server, the HDF4-formatted, near real-time SMAOL v.1.3.6 product 
files were collected and data values within ±2° in latitude and longitude of 
Accra  were extracted. The extracted information (72 by 69 pixels at 

FIGURE B.1

Illustration of the regions covered by a 1° by 1° box around each focus region

Source: World Bank, produced using Google Maps and Esri ArcGIS.
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TABLE B.3  Mapping between the parsed data file variable names and the aerosol-optical-depth products in 
the L2 files

PRODUCT NAME INSTRUMENT IN INSTRUMENT FILE

Algorithm_Flag MODIS AOD_550_Dark_Target_Deep_Blue_Combined_Algorithm_Flag

VIIRS Algorithm_Flag_Land

AOD_550 MODIS AOD_550_Dark_Target_Deep_Blue_Combined

VIIRS AerosolOpticalDepth_at_550 nm

QA_Flag MODIS AOD_550_Dark_Target_Deep_Blue_Combined_QA_Flag

VIIRS QF1_VIIRSAEROEDR: first 2 bits, AOT Quality

High: Number of good-quality pixel AOT retrievals more than 16 (1/4 the total 
number of pixels in aggregated horizontal cell) 

Medium: Number of good-quality retrievals less than or equal to 16 and the 
number of good/degraded quality retrievals greater than or equal to 16 

Low: Number of good/degraded-quality retrievals less than 16

Not produced: No good/degraded-quality retrievals, neither land nor seawater 
dominant (number of land or ocean pixels less than half the number of good/
degraded pixels in the horizontal cell), ellipsoid fill in the geolocation, night scan, 
has a pixel with a solar zenith angle between 80° and 85° but no pixel with a solar 
zenith angle between 65° and 80°

Source: World Bank.
Note: AOD = aerosol optical depth; AOT = aerosol optical thickness; L2 = level 2; MODIS = Moderate-Resolution Imaging Spectroradiometer; QA = quality 
assurance; VIIRS = Visible Infrared Imaging Radiometer Suite.
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three-kilometer resolution) was saved in netCDF4 files (see table B.4). The lati-
tude and longitude for the SEVIRI grid was obtained from the file 
“MSG+0000.3km.hdf.” The SMAOL product files “SMAOL-AOT-NRT_V1.3.6_*.
hdf” include the AOD retrievals for each of six aerosol models (1: Continental 
WMO, 2: Moderately Absorbing, 3: Urban Industrial, 4: Smoke, 5: Spheroidal 
Dust, and 6: Maritime) in addition to the best model AOD and 

TABLE B.4  Region of interest data fields in the SEVIRI netCDF output files

STANDARD FIELDS DESCRIPTION/SOURCE

AOT_DQF AOT quality flag: 0 = Clean AOT, 1 = Best AOT, 2 = No AOT

(derived from AOT550_clean from SMAOL-AOT-NRT_V1.3.6_*.hdf)

AOT_LND AOT over land

from AOT550_Best_Model_unfiltered from

SMAOL-AOT-NRT_V1.3.6_*.hdf

AOT_UNC AOT uncertainty estimated based on published performance

CloudMask Four-Level Cloud Mask from SMAOL quality flags

(extracted from Quality_Flags from SMAOL-AOT-NRT_V1.3.6_*.hdf)

Landmask Landmask: 0 = Land, 1 = Ocean, from SMAOL quality flags

(extracted from Quality_Flags from SMAOL-AOT-NRT_V1.3.6_*.hdf)

Latitude Latitude from MSG+0000.3km.hdf

Longitude Longitude from MSG+0000.3km.hdf

SMAOL DIAGNOSTIC FIELDS DESCRIPTION/SOURCE

_AOT_LND_Aerosol_Model Aerosol_Model from SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Model1 AOT550_model_1_unfiltered from

SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Model2 AOT550_model_2_unfiltered from

SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Model3 AOT550_model_3_unfiltered from

SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Model4 AOT550_model_4_unfiltered from

SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Model5 AOT550_model_5_unfiltered from

SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Model6 AOT550_model_6_unfiltered from

SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Processing_Summary Processing_Summary from SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Quality_Flags Quality_Flags from SMAOL-AOT-NRT_V1.3.6_*.hdf

_AOT_LND_Surf_Refl_VIS06 Surf_Refl_VIS06 from SMAOL-AOT-NRT_V1.3.6_*.hdf

OPTIONAL OCEAN DIAGNOSTIC FIELDS DESCRIPTION/SOURCE

_AOT_OCN Aerosol_Optical_Depth from SEV_AER-OC-L2_*_V1-04.hdf 

_AOT_OCN_Angstrom_Exponent Angstrom_Exponent from SEV_AER-OC-L2_*_V1-04.hdf 

_AOT_OCN_DQX DQX from SEV_AER-OC-L2_*_V1-04.hdf 

_AOT_OCN_Model_Number Model_Number from SEV_AER-OC-L2_*_V1-04.hdf 

Source: World Bank.
Note: AOT = aerosol optical thickness; MSG = Meteosat Second Generation; NRT = near real-time; SEVIRI = Spinning Enhanced Visible and 
Infrared Imager; SMAOL = SEVIRI-MSG Aerosol Over Land.



102 | Getting Down to Earth

model  identification and the clean AOD product that reports AOD only for 
high-quality pixels. Also included in the product is the near-clear-sky reflec-
tance at 630 nanometers, quality flags (including land and water and cloud mask 
identification), and processing information. Each of these fields was extracted 
for the region of interest. All information was preserved for the region as poten-
tial diagnostic information. 

An additional field representing an estimate of the nominal AOD uncertainty 
was generated based on

AOTUNC = AOTBIAS + AOTRMS × SMAOL� (B.2)

with values of AOTBIAS = 0.017 and AOTRMS = 0.63 estimated based on published 
performance. This formulation does not consider errors due to undetected cloud 
and other degenerate conditions that might lead to larger errors.

A separate AOD product is available through ICARE over ocean: “SEV_AER-
OC-L2_*_V1-04.hdf.” Because many regions of interest are located on the coast, 
the AOD values from the ocean product were optionally included in the 
extraction process to be used as potential diagnostic information (that is, for 
nearby coastal pixels). This product includes the AOD, Angstrom Exponent, 
aerosol model, and quality flags.

The SEVIRI AOD product(s) are reported with a 15-minute refresh for day-
time conditions. For the Accra region, SMAOL products were collected between 
08Z and 17Z for the period from January 2017 to December 2017. The product 
was not available through ICARE for only a few days during this period. The 
ICARE Data and Services Center provided access to the data used in this study. 

MERRA CTM data

The MERRA-2 data were downloaded through the Goddard Earth Sciences 
(GES) Data and Information Services Center (DISC).4 The MERRA-2 reanalysis 
product is organized into 26 file collections of instantaneous or time-averaged 
fields on three-dimensional native, pressure, or edge-level vertical grids or 
two-dimensional grids of related meteorological, ground surface, chemical, or 
aerosol variables. To provide inputs to the CTM and statistical approaches, sub-
sets of five data file collections were downloaded in netCDF4 format. The file 
collections were the inst3_2d_gas_Nx for instantaneous three-hourly aerosol 
optical depth, tavg1_2d_flx_Nx for time-averaged hourly planetary boundary 
layer height (PBLH), surface temperature, and surface horizontal wind compo-
nents (U and V), inst3_3d_aer_Nv for instantaneous three-hourly vertical profile 
on the 72 model native levels of speciated aerosol, tavg1_2d_aer_Nx for time-av-
eraged hourly speciated surface aerosol and column mass density, and inst3_3d_
asm_Nv for surface geopotential and mid-layer height of the 71 model layers. 
The data file collections and extracted variables from each are summarized in 
table B.5. The data from all these file collections were processed and combined 
with satellite optical depths in a Python script and then written to a comma-
separated values file for input to the CTM and statistical approach R scripts.

Ground-level monitoring data and land-use variables

2017 GLM data for each city were extracted from the OpenAQ database. Several 
surface sites had slightly different names in the database because of capitaliza-
tion and spacing differences, even though they represented data from the same 
site. Data from these sites were combined before further processing.
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The GLM data generally included 1-hour average PM2.5 data, or 15-minute 
average data for Delhi. These data were used to calculate daily average PM2.5 

concentrations. Negative values were presumed to be errors and were removed 
from the data set. Only days with at least 19 hours of valid data at a given site were 
used to calculate daily averages.

Land-use variables (including percentage of land that was classified as 
urban, grassland/wetland/natural, water, barren, or trees; distance to coast; 
major and minor road length; elevation; and average population density) were 
calculated for different buffer distances around each GLM network site (100, 
200, 500, 750, 100, 1,500, 2,000, 2,500, 3,000, and 3,500 meters) using the data 
sets for land-use regression in appendix A. Each variable and buffer distance 
were then used one at a time in a simple linear regression to predict the ground-
level PM2.5 concentrations. The buffer distance that gave the best overall fit for 
each variable (measured with the R correlation statistic) was used for all further 
tests of land-use variables.

TABLE B.5  MERRA-2 data file collections and extracted variables for input into the chemical 
transport model and statistical approach scripts

COLLECTION VARIABLES TIME GRID

inst3_2d_gas_Nx Aerosol optical depth Instantaneous, three-hourly 2D

inst3_3d_aer_Nv Air density

Mixing ratio of:

Hydrophilic black carbon

Hydrophobic black carbon

Hydrophilic organic carbon

Hydrophobic organic carbon

Dust mixing ratio in five size bins

Sea salt in five size bins

Sulfate aerosol

Instantaneous, three-hourly 3D

Inst3_3d_asm_Nv Surface geopotential

Midlayer height

Instantaneous, three-hourly 3D

tavg1_2d_aer_Nx Surface mass concentration and 
column mass density of:

Black carbon

Organic carbon

Sulfate

Dust

Dust PM
2.5

Sea Salt

Sea Salt PM
2.5

Time-averaged, one-hourly 2D

tavg1_2d_flx_Nx PBLH

Surface temperature

Surface U and V

Time-averaged, one-hourly 2D

Source:
 
World Bank.

Note: 2D = two-dimensional; 3D = three-dimensional; MERRA = Modern Era Retrospective–Analysis for Research and Applications; 
PBLH = planetary boundary layer height; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 

2.5 microns.



104 | Getting Down to Earth

CTM-based approach

The CTM-based approach used the instantaneous three-hourly MERRA-2 
AODs closest to the satellite overpass time and the daily average surface (dry) 
PM2.5 values. This approach assumes that there is a conversion factor of 1.4 to 
go from organic carbon to organic matter. Ground-level PM2.5 values were cal-
culated using the MERRA-2 output for the PM2.5 contribution of dust and sea 
salt aerosols and assuming that all other aerosol components were in the PM2.5 

fraction. Ground-level PM10 was also calculated by including all modeled aero-
sol species. Other variables, such as the PBL height, the percentage contribu-
tion of different aerosol species to the ground-level PM2.5, and the percentage 
of aerosol mass present above the PBL were also calculated based on the 
MERRA-2 output. The CTM results included for this report did not use the 
percentage of aerosol mass present above the PBL metric due to computational 
time constraints, but this screening metric will be included in the final deliv-
ered products.

Statistical approach

The statistical approach fitted a GAM using the R software package to predict 
the ground-level PM2.5 concentrations at all the available GLM network sites 
within a given city. The initial fit used day of week and the satellite AOD divided 
by the PBL height (AOD/PBLH) as the primary predictors and a log link 
function.

RESULTS

Local government versus US Diplomatic Post data

A test was performed to determine if the US Diplomatic Post data were roughly 
consistent with the local GLM network data. The approach used kriging of the 
local GLM network data to predict the annual average ground-level PM2.5 

concentration at the US Diplomatic Post and to compare this with the measured 
annual average at the post. An example of this analysis is shown in the top panel 
of figure B.2 for Ulaanbaatar. The gridded field produced via kriging the local 
GLM network data captures the measured value at the US Diplomatic Post well 
and somewhat captures the large gradient between the post and the Bukhiin 
Urguu monitoring site. The bottom panel of figure B.2 shows the kriging esti-
mate when the US Diplomatic Post is included. The predictions near the post do 
not change much, but the combined kriging estimate suggests a more general 
region of low PM2.5 concentrations between Bukhiin Urguu and Amgalan. Based 
on this analysis, the local GLM network data can be used in combination with 
the US Diplomatic Post data in the training and evaluation of the satellite PM2.5 
approaches.

CTM-based approaches versus statistical approaches

The CTM-based and statistical approaches were applied to the MODIS com-
bined product (10-km resolution) to try to predict the daily average PM2.5 con-
centration in Delhi, Lima, and Ulaanbaatar. 
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FIGURE B.2

Local Ulaanbaatar, Mongolia, ground-level-monitoring network and US 
Diplomatic Post annual average PM2.5 concentrations as well as a gridded 
estimate produced via ordinary kriging
Micrograms per cubic meter

Source: World Bank, produced using Esri ArcGIS.
Note: Spacing between kriging points is 0.01° latitude-longitude (about one kilometer). In panel a, the kriging 
estimate was produced using local ground-level-monitoring (GLM) network data only. In panel b, the kriging 
estimate was produced using local GLM data and US Diplomatic Post data. MNB = mean normalized bias; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns. 
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After filtering for valid AOD values over surface sites from OpenAQ with valid 
daily average PM2.5 measurements, there were no matching observations for the 
city of Lima, Peru (figure B.3). This is because of the presence of persistent 
clouds over the region, the fact that this is a coastal city and thus many satellite 
footprints will have a mix of land and water surfaces, and the relative lack of 
GLM network data currently in OpenAQ for this city. Thus, Lima could not be 
evaluated any further in this initial work, but CTM-based ground-level PM2.5 

estimates were produced for it. Future work will determine if this coverage issue 
is likely to be a large problem for all coastal cities.

Similarly, in Ulaanbaatar, there were no valid MODIS AOD values for the 
entire winter (December, January, February, and most of March) because of per-
sistent snow cover. This limits the ability of satellites to represent the true annual 
average ground-level PM2.5 concentrations in this city, as discussed further 
below.

Statistical approach
In Delhi, the statistical method AOD/PBLH was a statistically significant (at the 
α = 0.001 level), but fairly poor, predictor of daily average ground-level PM2.5 
values, with R of 0.09 (for MODIS Aqua, 13:30 local standard time overpass) and 
0.18 (for MODIS Terra, 13:30 local standard time overpass). Sensitivity studies 
fitting AOD and PBLH separately slightly increased the correlation (R of 0.21), 
but in general there was little correlation of MODIS combined product (Deep 
Blue plus Dark Target) AOD with ground-level PM2.5 estimates.

AOD/PBLH was a slightly better predictor in Ulaanbaatar, with R values of 
0.30 and 0.18 for MODIS Aqua and Terra, respectively. However, the overall cor-
relation was still fairly poor. In addition, note that there was not a consistent 
pattern in which the MODIS satellite gave the better correlation with ground-
level data, with the afternoon Aqua values performing better in Ulaanbaatar and 
the morning Terra values performing better in Delhi.

Assessing the GAM fits by examining the residuals showed significant issues. 
The residuals deviated significantly from a normal distribution and showed a 
strong dependence on the predicted value—both indications of a poor statistical 
fit. An example for Ulaanbaatar using MODIS Aqua is shown in figure B.4, which 
was the best performing statistical fit. Performing simple linear fits of daily aver-
age PM2.5 and AOD also gave poor correlations, and thus the poor fit is likely not 
due to the chosen statistical approach (that is, choice of GAM link function), but 
rather is representative of the low correlation between daily MODIS AOD values 
and daily average ground-level PM2.5 values.

Figure B.5 shows a scatterplot of the observed and GAM-predicted daily aver-
age PM2.5 values for the Income Tax Office at Delhi (left) and the US Diplomatic 
Post at Ulaanbaatar (right) for both Aqua (top) and Terra (bottom). The US 
Diplomatic Post at Delhi was not plotted because a couple of extreme values 
make it difficult to evaluate the plots. Also note that as only days with a valid 
AOD value were used, the days plotted for Aqua and Terra were not the same 
subset of days. The GAM-predicted values tend to have a smaller range of vari-
ability than the observed values and exhibit a high level of scatter about the 1:1 
line. Tables B.6 and B.7 give the 2017 mean bias (MB), mean normalized bias 
(MNB), mean normalized gross error (MNGE), and R statistics for all satellite 
AOD methods tested for Delhi and Ulaanbaatar, respectively. As expected, the 
statistical approach tends to have a low MB, because the GAM fitting procedure 
attempts to minimize the bias. However, the MNGE can still be very large 
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FIGURE B.3

Example of satellite coverage showing the CTM–based estimates for daily 
average ground-level PM2.5 concentrations for all valid MODIS Terra and Aqua 
aerosol-optical-depth retrievals, Lima, Peru, May 12, 2017
Micrograms per cubic meter

Source: World Bank, produced using Esri ArcGIS.
Note: CTM = chemical transport model; MOD = MODIS Terra; MODIS = Moderate-Resolution Imaging 
Spectroradiometer; MYD = MODIS Aqua; NAN = not a number; PM

2.5
 = particulate matter with an aerodynamic 

diameter less than or equal to 2.5 microns.

a. MODIS Terra

MOD CTM PM2.5

2.201392–5.856531

5.856832–9.512269

9.512270–13.167708

13.167709–16.823146

16.823147–20.478584

Cities

NAN

b. MODIS Aqua

MYD CTM PM2.5

2.201392–5.856531

5.856832–9.512269

9.512270–13.167708

13.167709–16.823146

16.823147–20.478584

Cities

NAN



108 | Getting Down to Earth

FIGURE B.4

Residual evaluation plots for Ulaanbaatar, Mongolia, using the MODIS Aqua aerosol-
optical-depth product

Source: World Bank.
Note: Panel a shows the residual percentiles (y) plotted against the predicted quantiles if the residuals were 
following a normal distribution (x). Panel b shows the residuals (y) plotted against the value of the linear 
predictor. The cone shape of the plot suggests a poor statistical fit. Panel c shows the histogram of the residuals. 
Panel d shows the plot of the generalized additive model response (y) versus the measurements (fitted values). 
MODIS = Moderate-Resolution Imaging Spectroradiometer; μg/m3 = micrograms per cubic meter.
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TABLE B.6  Statistics for the Delhi, India, satellite ground-level PM2.5 products tested in this work

STATISTIC

MODIS TERRA MODIS AQUA VIIRS SUOMI-NPP

STAT. CTM STAT. CTM STAT. CTM

MB (micrograms per cubic meter) 0.045 −0.822 0.113 −29.275 −0.014 −58.102

MNB (%) 30.8 21.7 24.4 −7.5 32.3 −27.3

MNGE (%) 51.5 54.5 44.1 46.8 54.2 52.3

Correlation coefficient (R) 0.18 0.17 0.09 0.04 0.11 0.10

Source: World Bank.
Note: “STAT.” is the statistical method, and “CTM” is the chemical transport model-based method. MB = mean bias; MNB = mean 
normalized bias; MNGE = mean normalized gross error; MODIS = Moderate-Resolution Imaging Spectroradiometer; PM

2.5
 = particulate 

matter with an aerodynamic diameter less than or equal to 2.5 microns; Suomi-NPP = Suomi-National Polar-Orbiting Partnership; 
VIIRS = Visible Infrared Imaging Radiometer Suite.
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(44–78 percent), again showing that the statistical models have little skill in 
capturing daily variability or the variability between sites in these cities.

CTM-based approach
Figure B.6 shows a scatterplot of the observed and CTM-based estimates of daily 
average PM2.5 values for the Income Tax Office at Delhi (left) and the US 
Diplomatic Post at Ulaanbaatar (right) for both the MODIS Aqua (top) and Terra 
(bottom). The CTM-based estimate for Delhi does a reasonable job representing 
the mean and variability of the observed values, but individual daily predictions 
can have significant errors. In contrast, in Ulaanbaatar, the CTM-based estimate 

FIGURE B.5

Observed and GAM–predicted daily average PM2.5 values for the US Diplomatic Posts 
in Delhi, India, and Ulaanbaatar, Mongolia, for both MODIS Aqua and Terra 
Micrograms per cubic meter

Source: World Bank.
Note: GAM = generalized additive model; MODIS = Moderate-Resolution Imaging Spectroradiometer; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms 

per cubic meter.
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TABLE B.7  Statistics for the Ulaanbaatar, Mongolia, satellite ground-level PM2.5 
products tested in this work

STATISTIC
MODIS TERRA MODIS AQUA

STAT. CTM STAT. CTM

MB (micrograms per cubic meter) 0.082 −31.174 0.443 −33.139

MNB (%) 54.0 −72.2 54.8 −73.1

MNGE (%) 78.5 78.2 78.3 78.8

Correlation coefficient (R) 0.17 0.0 0.30 0.01

Source: World Bank.
Note: “STAT.” is the statistical method, and “CTM” is the chemical transport model-based method. MB = mean bias; 
MNB = mean normalized bias; MNGE = mean normalized gross error; MODIS = Moderate-Resolution Imaging 
Spectroradiometer; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.

FIGURE B.6

Observed and CTM–based estimates daily average PM2.5 values for the US Diplomatic 
Posts in Delhi, India, and Ulaanbaatar, Mongolia, for both MODIS Aqua and Terra
Micrograms per cubic meter

Source: World Bank.
Note: CTM = chemical transport model; MODIS = Moderate-Resolution Imaging Spectroradiometer; 
OpenAQ = openaq.org; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal 

to 2.5 microns; μg/m3 = micrograms per cubic meter.
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almost always underestimates the observed values and appears to be doing a 
poorer job than the statistical approach. 

This is consistent with the statistics shown in tables B.6 and B.7. The R sta-
tistics for the CTM-based approaches using MODIS data tend to be very low 
(0.01–0.17), which combined with the high MNGE values suggests that the 
CTM-based method also has little skill in capturing daily variability or the 
variability between sites in these cities. However, in contrast to the statistical 
models, MODIS Terra AOD seems to perform better for Ulaanbaatar in the 
CTM-based approach.

The CTM-based approach has difficulty reproducing daily average values. 
However, further examination of the CTM-based results for Delhi shows that 
the scaling of the MERRA-2 daily average PM2.5 surface concentrations by the 
MODIS Terra AOD did result in reasonable values for the annual averages at 
each surface site. Table B.8 shows the comparison between the observed annual 
average at each surface site (averaged only over those days with both a valid AOD 
and a valid daily average PM2.5 value, and with the outliers—greater than 600 
micrograms per cubic meter—filtered for the US Diplomatic Post), the CTM-
based estimate of this annual average, and the annual average predicted by the 
MERRA-2 model. Using the satellite AOD tends to increase the MERRA-2 
ground-level PM2.5 concentration by about a factor of two, bringing it much 
closer to the observed annual averages at each surface site for those days where 
the surface sites had a valid satellite AOD. However, the low spatial resolution of 
MODIS AOD product and the MERRA-2 data mean that the CTM-based prod-
uct has little skill in predicting the variations in the annual average PM2.5 values 
at each site. 

TABLE B.8  Annual average PM2.5 surface concentrations for Delhi, India, 2017 

Micrograms per cubic meter

LOCATION GROUND AVERAGE CTM-BASED AVERAGE MERRA-2 AVERAGE

Anand Vihar 153.5 125.8 62.7

Delhi Technological University 123.9 113.5 58.5

Institute of Human Behavior and Allied Sciences 98.9 124.9 63.0

Income Tax Office 119.0 116.9 58.0

Mandir Marg 97.3 111.6 57.4

Netaji Subhas Institute of Technology Dwarka 140.2 112.9 62.4

Punjabi Bagh 103.6 117.0 55.8

Ramakrishna Puram 143.2 122.5 67.9

Shadipur 128.7 117.1 58.1

US Diplomatic Post 113.8 116.3 62.0

Urban average 122.2 117.9 60.6

Source: World Bank.
Note: Annual average surface concentrations are as determined by the GLM data from OpenAQ, the CTM-based satellite approach using 
MODIS (Moderate-Resolution Imaging Spectroradiometer) Terra AOD, and the original MERRA-2 (Modern Era Retrospective-analysis for 
Research and Applications) output. These averages include only those days with both a valid AOD and a valid GLM daily average PM

2.5
 value. 

AOD = aerosol optical depth; CTM = chemical transport model; GLM = ground-level monitoring; PM
2.5

 = particulate matter with an 
aerodynamic diameter less than or equal to 2.5 microns.
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In addition, the uneven satellite AOD coverage over the year could potentially 
bias the urban annual averages, since some months would be weighted more 
heavily than others. Thus, the annual average for all GLM network sites in Delhi 
was calculated as well, not just those with valid satellite AODs. For Delhi, this 
true GLM average (133.8 micrograms per cubic meter) is 9.5 percent higher than 
that calculated using only those sites with valid AOD observations, likely because 
of the poor satellite coverage during the dry season when PM2.5 concentrations 
are expected to peak. This suggests that, even if the conversion of satellite AOD 
to ground-level PM2.5 were perfected for this city, the uneven coverage would 
bias the satellite-based annual average about 10 percent lower than the true 
average. 

The research conducted for this report tested whether the CTM-based 
approach in Delhi could be used to estimate monthly averages at a given site. The 
US Diplomatic Post site was used for this comparison. The monthly average con-
centrations are shown in figure B.7 for the GLM data, the CTM-based estimate, 
and the monthly average predicted by the MERRA-2 model. As before, the scaling 
with the satellite AOD improves upon the MERRA-2 prediction, but neither the 
MERRA-2 output nor the CTM-based estimate captures the observed seasonal 
cycle of PM2.5 at this location, tending to overestimate during the wet season and 
underestimate during the dry. Several of these months (December, January, July, 

FIGURE B.7

Monthly average PM2.5 surface concentration, 2017
Micrograms per cubic meter

Source: World Bank.
Note: Monthly average PM

2.5
 surface concentration is as determined by the GLM data, the 

CTM-based satellite approach using MODIS Terra AOD, and the original MERRA-2 output. 
These averages include only those days with both a valid AOD and a valid GLM daily 
average PM

2.5
 value. AOD = aerosol optical depth; CTM = chemical transport model; 

GLM = ground-level monitoring; MERRA = Modern Era Retrospective–analysis for Research 
and Applications; OpenAQ = openaq.org; PM

2.5
 = particulate matter with an aerodynamic 

diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.

0

100

200

300

400

500

600

700

800

Jan Feb Mar Apr May Jun Jul Aug Sep Oct DecNov

P
M

2
.5
 (

µ
g

/m
3
)

Month

OpenAQ (AOD) OpenAQ (All)CTM GAM predict



Converting Satellite Aerosol Optical Depth to Ground-Level PM2.5 | 113

and August) also had fewer than 10 valid matches with the MODIS Terra AOD, 
which may contribute to the errors. Thus, although the CTM-based approach 
appears to do a reasonable job for a citywide annual average in Delhi, it does not 
show any skill in determining the spatial or seasonal variation of PM2.5.

The situation is worse for Ulaanbaatar. The use of satellite AOD to scale the 
MERRA-2 predictions of ground-level PM2.5 does improve upon the raw MERRA-2 
output for citywide annual averages. However, the initial MERRA-2 estimate is so 
low (6.1 micrograms per cubic meter) that the scaled value (7.1 micrograms per 
cubic meter) is still a dramatic underprediction of the observed value (40.3 micro-
grams per cubic meter) for days when there is a valid satellite AOD. This suggests 
that in Ulaanbaatar, the relationship between ground-level PM2.5 and the AOD is 
so different from the MERRA-2 estimate that the CTM-based approach does not 
appear to add any value to the existing GLM data set. Thus, using the CTM-based 
approach in Ulaanbaatar would require running a CTM that gives a better initial 
estimate of the vertical profile and optical properties of the aerosol in this region. 
Further progress in using satellite observations in Ulaanbaatar would likely bene-
fit from adding a SPARTAN network site to the city.

However, due to the lack of satellite AOD during the winter months, the true 
annual average PM2.5 concentration (88.1 micrograms per cubic meter) is much 
higher than that calculated when only the ground sites with valid AOD observa-
tions are used (40.3 micrograms per cubic meter). This suggests that, even if the 
conversion of satellite AOD to ground-level PM2.5 were perfected for Ulaanbaatar, 
the lack of satellite AOD values in winter would bias the satellite-based annual 
average about 50 percent lower than the true average.

Comparison with GBD 2016 estimates
In Delhi, the Global Burden of Disease (GBD) 2016 data set5 gives 2016 annual 
averages of about 135 micrograms per cubic meter at both 0.1° by 0.1° resolution 
and 0.01° by 0.01° resolution after GWR bias correction. However, the GBD 2016 
estimate before GWR bias correction is 105 micrograms per cubic meter, consis-
tent with the 2017 CTM-based estimate for Delhi of 112 micrograms per cubic 
meter, and with the explanation of how the relative lack of valid satellite AOD 
data during December–January could bias the satellite-derived annual average 
low for these cities.

In Ulaanbaatar, the GBD 2016 data set interestingly gives 2016 annual averages 
of 30 micrograms per cubic meter at 0.1° by 0.1° resolution and 42 micrograms 
per cubic meter at 0.01° by 0.01° resolution (after GWR bias correction). These 
results are pretty close to the “best possible” satellite estimate of 40.3 micrograms 
per cubic meter, given the lack of wintertime AOD data. However, the GBD 2016 
estimate before GWR bias correction is 7 micrograms per cubic meter, consistent 
with the 2017 CTM-based estimate for this city. Thus, it appears that (1) the GBD 
2016 data set also has difficulty representing the annual average in this city, 
(2) most of the improvement in Ulaanbaatar in GBD 2016 is coming from the 
global GWR bias correction, and (3) even with this correction, the annual aver-
age is underestimated by about a factor of two. Thus, both the GBD 2016 results 
and our results suggest that GLM is required to get an accurate annual average 
PM2.5 concentration in Ulaanbaatar.
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Comparing satellite AOD data sets

VIIRS versus MODIS in Delhi, India
Using the VIIRS AOD retrievals instead of the MODIS products in both the 
CTM-based and statistical approaches was attempted for Delhi. In the statistical 
approach, the quality of fit using the VIIRS AOD was not appreciably better than 
that using MODIS Aqua (which has a similar afternoon equator crossing time). 
With VIIRS the R was 0.1, as opposed to 0.08 for MODIS Aqua, and there was 
similar evidence of a poor statistical fit. The scatterplot of the GAM predictions 
versus the observed daily average values at the Income Tax Office site (panel a of 
figure B.8) also does not indicate any improved performance relative to using 
MODIS Aqua or Terra data. The MNB and MNGE are slightly worse when 
VIIRS is used instead of MODIS Aqua (table B.6).

Using the CTM-based approach with VIIRS AOD data does result in greater 
spatial coverage over a city (figure B.9), but it results in poorer performance rel-
ative to using MODIS (panel b of figure B.8). When the VIIRS data are used, the 
CTM approach tends to underestimate the ground-level PM2.5 concentration, 
leading to an underestimate of about a factor of two of the annual average 
ground-level PM2.5 concentration (that is, VIIRS-based prediction of 74.8 micro-
grams per cubic meter versus an observed value of 140.3 micrograms per cubic 
meter). Thus, unlike the case when the MODIS Terra AOD was used, using the 
afternoon VIIRS AOD does not significantly improve the MERRA-2 predicted 
annual average (62.9 micrograms per cubic meter). This is reflected in the large 
mean bias for this approach in table B.6.

MODIS versus SEVIRI in Accra, Ghana
The predictions of the CTM-based method using the geostationary SEVIRI 
instrument were compared with those from the polar-orbiting MODIS 

FIGURE B.8

Observed values and VIIRS-based estimates of daily average PM2.5 concentrations for 
the Income Tax Office in Delhi, India, using GAM and CTM–based approaches
Micrograms per cubic meter

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; 

μg/m3 = micrograms per cubic meter; VIIRS = Visible Infrared Imaging Radiometer Suite.
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FIGURE B.9

A comparison of the CTM–based estimates for daily-average ground-
level PM2.5 concentrations over Delhi, India, using VIIRS and MODIS Terra, 
November 1, 2017
Micrograms per cubic meter

Source: World Bank, produced using Esri ArcGIS. 
Note: CTM = chemical transport model; MOD = MODIS Terra; MODIS = Moderate-Resolution Imaging 
Spectroradiometer; NAN = not a number; PM

2.5
 = particulate matter with an aerodynamic diameter less than or 

equal to 2.5 microns; VIIRS = Visible Infrared Imaging Radiometer Suite.
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FIGURE B.10

A comparison of the CTM–based estimates for daily-average ground-level 
PM2.5 concentrations over Accra, Ghana, using SEVIRI and MODIS Aqua, 
December 26, 2017
Micrograms per cubic meter

Source: World Bank, produced using Esri ArcGIS.
Note: CTM = chemical transport model; MODIS = Moderate-Resolution Imaging Spectroradiometer; 
MYD = MODIS Aqua; NAN = not a number; PM

2.5
 = particulate matter with an aerodynamic diameter less than 

or equal to 2.5 microns; SEVIRI = Spinning Enhanced Visible and Infrared Imager; VIIRS = Visible Infrared Imaging 
Radiometer Suite.
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instrument, using the coastal city of Accra as the test case. The results are shown 
in figure B.10 for a single day in December. The SEVIRI product has a much 
higher spatial resolution, as expected, but also has less coverage near the coast. 
Thus, the SEVIRI product has limited coverage near the city of Accra itself, 
although it does have reasonable coverage for the area further inland. In con-
trast, the MODIS combined (Deep Blue and Dark Target) AOD product has 
much better coverage for this period, although the over-ocean CTM-based val-
ues appear higher than expected. The low coastal coverage of the SEVIRI prod-
uct suggests that it likely would not improve the ability of satellites to monitor 
PM2.5 in Accra over using the MODIS product.

Bias corrections of the CTM-based estimates

A GWR correction to the Stage 1 CTM-based ground-level PM2.5 estimates in 
Delhi was attempted with the spgwr software package in the R statistical soft-
ware platform using only the in-city data. A GWR is like a simple linear regres-
sion except the coefficients are allowed to vary with latitude and longitude. The 
first attempt tried to fit the daily bias in the Stage 1 estimates to land-use vari-
ables (percentage of urban land cover, elevation, and population density) using a 
simple linear regression model. This showed that these variables have little abil-
ity to predict the bias in the Stage 1 estimates (R less than 0.01). However, the 
MERRA-2 predicted values of the concentration (micrograms per cubic meter) 
of ground-level PM2.5 due to organic carbon, sulfate, dust, and sea salt had some 
skill in predicting the bias, with an R value of 0.37 for a simple linear model fit, 
but implementing this regression equation as a GWR model instead does not 
appreciably improve the model fit (R of 0.37). This is likely because Delhi has 
only 10 GLM sites, as opposed to the 1,440 sites used in van Donkelaar and others 
(2015), and thus allowing the coefficients to vary with location does not provide 
much of a benefit. Allowing the regression coefficients to vary with location 
likely will not provide much of a benefit on a city scale, but this approach could 
be useful when using high-quality, harmonized GLM measurement networks on 
country or continent scales, such as exist in North America (van Donkelaar and 
others 2015) and western Europe (Vienneau and others 2013).

Using the simple linear model to predict the bias and applying this bias correc-
tion did improve the correlation of the daily average CTM-based satellite predic-
tions (R of 0.23 compared to 0.15 before bias correction). However, this simple 
bias correction results in several data points predicted to have negative values, 
and thus the bias-corrected value produced a much lower citywide annual 
average (85.4 micrograms per cubic meter) than the initial CTM-based estimate. 

Training a simple linear model to predict the actual PM2.5 daily average con-
centration using the above MERRA-2 variables and the Stage 1 CTM-based 
estimate was then attempted. This did remove the model mean bias for the 
urban-scale annual average and gave an R value of 0.33, an MNB of 20 percent, 
and an MNGE of 38 percent. However, the Stage 1 CTM-based estimate was 
not  a significant predictor in this model, and a similar fit can be found by 
removing the satellite AOD-derived estimate entirely and just fitting the 
MERRA-2–speciated aerosol variables. 

Similarly, applying a bias correction to the Ulaanbaatar data does fix the mean 
bias in the citywide annual average, but the CTM-based estimate was still unable 
to predict daily and site-to-site variability (R of 0.07). Thus, the statistical bias 
corrections of the CTM-based estimates attempted here do not significantly 
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improve the ability of the satellite data to represent the daily and site-to-site 
variability of PM2.5 in either Delhi or Ulaanbaatar.

CONCLUSIONS AND RECOMMENDATIONS

Several novel methods for using satellite AOD from publicly available sources to 
predict observed ground-level PM2.5 daily averages in Lima, Delhi, Ulaanbaatar, 
and Accra, for 2017 were tested. The research conducted for this report found 
several limitations in the use of satellite AOD in these cities. For example, all 
cities had significant limitations in satellite AOD coverage due to persistent 
clouds, wintertime snow cover, or mixed water-land and other bright surfaces. 
Satellite coverage was poorest in the coastal city of Lima, and thus a meaningful 
evaluation of a CTM-based method or the creation of a statistical method was 
not possible for this city. In Ulaanbaatar, no satellite observations are available 
for the high PM2.5 winter months of December to mid-March, and thus even a 
perfect method for converting satellite AOD to ground-level PM2.5 would under-
estimate the true annual average PM2.5 concentration for this city by 50 percent. 
Delhi has observations in all months, but substantially fewer observations in the 
peaks of the wet and dry seasons (December, January, July, and August), which 
would also result in a slight (about 10 percent) underestimate of the true annual 
average. 

A CTM-based approach could provide a reasonable citywide annual average 
in Delhi, but the CTM-based approach leads to dramatic underestimates of the 
citywide annual average in Ulaanbaatar. Similar results were seen in the GBD 
2016 data set before GWR bias correction. This is likely due to Ulaanbaatar being 
in a river valley surrounded by mountains and mostly rural land. Thus, the coarse 
resolution of global CTMs (combined with likely inaccurate emission invento-
ries for Ulaanbaatar) means that CTMs are not able to correctly represent the 
aerosol profile within the city, instead using an average profile more representa-
tive of the surrounding rural area. 

However, neither the CTM-based approach nor the statistical approach 
tested here were able to represent more than 30 percent of the variability in the 
daily average PM2.5 values within a city over the year, and many techniques had 
little correlation with the corresponding daily averages. Site-specific monthly 
average values were more reasonable in Delhi, but the lack of data during several 
months means that the satellites did a poor job of representing the observed sea-
sonal cycle of PM2.5.

Using VIIRS instead of MODIS did not appreciably change the overall evalu-
ation results in Delhi, but the VIIRS product does provide a slightly higher spa-
tial resolution than MODIS (6-kilometer versus 10-kilometer). Although the 
SEVIRI AOD product does provide a higher spatial resolution, it appears to have 
lower coverage for coastal cities such as Accra. 

The following recommendations are made for LMICs considering the use of 
satellite AOD in their PM2.5 monitoring:

•	 The physical limits of satellite AOD coverage will make their use in PM2.5 
monitoring difficult in many cities.
■	 In cities with persistent wintertime snow cover, like Ulaanbaatar, it is 

likely not possible to get accurate annual averages from current satellites. 
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■	 In coastal cities, the mix of water and land surfaces within a satellite foot-
print and persistent clouds may also mean that using satellite AOD is not 
an option.

•	 CTM-based methods are also likely to fail for cities that are in apprecia-
bly different air-quality environments than their surroundings, such as 
cities in mountain valleys surrounded by rural land. This means that 
such cities in Tier I and II countries (that lack the GLM data for statisti-
cal approaches) will likely not be able to use satellites in their PM2.5 
monitoring. 

•	 Estimating variations in annual average PM2.5 within a city (to estimate 
chronic health effects) is unlikely to be possible with satellite AOD data using 
the approaches tested here. This will require GLM network data and land-use 
regression, with the satellite AOD product or the satellite-based PM2.5 esti-
mate used as a predictor variable in the LUR.

•	 Both the CTM-based and statistical approaches tested here showed little 
ability to represent the day-to-day variability in PM2.5 concentrations, with 
average errors (MNGE) of ±50 percent for the best approaches within each 
city. Thus, studies of acute health effects will likely require GLM data.

•	 For cities interested in using satellite AOD in their PM2.5 monitoring, estab-
lishing at least one SPARTAN network site within the city to directly measure 
the relationship between AOD and ground-level PM2.5 will likely help to 
reduce the errors in the approaches tested here.

NOTES

1.	 https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/6/MOD04_L2.
2.	 https://www.avl.class.noaa.gov/saa/products/welcome. 
3.	 http://www.icare.univ-lille1.fr.
4.	 https://disc.gsfc.nasa.gov/.
5.	 Downloaded from http://fizz.phys.dal.ca/~atmos/martin/?page_id=140.
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APPENDIX C

Evaluation of Satellite Approaches

The methods (discussed in appendix B) for using satellite observations to 
determine ground-level particulate matter with an aerodynamic diameter 
less than or equal to 2.5 microns (PM2.5) were applied to nine selected low- 
and middle-income country (LMIC) cities (table C.1) that cover a mixture of 
regimes (coastal versus inland, high versus low altitude, tropical versus 
temperate, and so forth). These cities also have available the ground-level-
monitoring (GLM) data needed for validation, through either US Diplomatic 
Posts, local monitoring networks, or both. This appendix presents the results 
of the evaluation of the satellite approaches for each city in table C.1.

A 1° by 1° latitude-longitude swath of Moderate-Resolution Imaging 
Spectroradiometer (MODIS) afternoon Aqua (MYD) and morning Terra (MOD) 
data was downloaded for each city, centered on the coordinates listed in table C.2. 
Modern Era Retrospective-analysis for Research and Applications (MERRA) 
data were also downloaded for each site. For PM2.5 monitor data, OpenAQ data 
from 2016 and 2017 were used and processed for the cities. In addition, individ-
ual PM2.5 data sets for Accra, Ghana, and Dakar, Senegal, were provided respec-
tively by the Environmental Protection Agency of the Ghana Ministry of 
Environment, Science, Technology and Innovation (EPA Ghana) and the Center 
for Air Quality Management, a part of the Senegal Ministry of the Environment 
and Sustainable Development. The analyses of the data sets for Accra and Dakar 
focused on the years 2015 and 2011, respectively, since these years had the 
most-recent fairly continuous PM2.5 data for each city. As noted in table C.2, not 
all cities had GLM sites, and some had only a few.

For each city, both the statistical and chemical-transport-model (CTM)–
based approaches described in appendix B were attempted to determine ground-
level PM2.5 concentrations. Some cities had too few GLM observations to allow a 
statistical approach to be performed; for these, only the CTM-based approach 
was evaluated. The statistical and CTM-based PM2.5 estimates were then com-
pared with the GLM values for the cases where a valid satellite aerosol optical 
depth (AOD) existed for the GLM site, and a statistical and graphical evaluation 
of the match between the satellite estimates and the GLM observations was 
performed.
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In addition, for cities with hourly PM2.5 data from the GLM monitoring per-
formed at US Diplomatic Posts, the average ground-level PM2.5 concentrations 
during the two-hour window around the satellite overpass time (about 10:30 and 
13:30 local solar time at the equator for Terra and Aqua, respectively) were com-
pared to the daily average concentrations. This was done to estimate how well a 
“perfect” polar-orbiting satellite, which is able to observe a location only once 
per day, would be able to determine the daily average PM2.5 concentration 
in a city. This evaluation, which requires only GLM data, provides an upper limit 
on the ability of polar-orbiting satellites to determine ground-level PM2.5 
concentrations in each city and can be used by LMICs to assess whether satellite 
data will be appropriate for their monitoring plans.

The second section contains the evaluations for each city. In addition, the 
third section has data on the changes that can be introduced by applying the 
OpenAQ-developed Quality Filter to the OpenAQ GLM data. The last section 
describes an experiment to see if the use of satellite data could allow for a reduc-
tion in the number of GLM sites needed to characterize ground-level PM2.5 con-
centrations and exposure within a city, using Delhi, India, and Ulaanbaatar, 
Mongolia, as test cases. 

TABLE C.1  Cities included in this study

CITY COUNTRY LOCATION INCOME GROUP

Accra Ghana Coastal, low altitude Lower middle

Addis Ababa Ethiopia Inland, high altitude Low

Dakar Senegal Coastal, low altitude Low

Delhi India Inland, low altitude Lower middle

Hanoi Vietnam Inland, low altitude Lower middle

Kampala Uganda Inland but near lake, high altitude Low

Kathmandu Nepal Inland, high altitude Low

Lima Peru Coastal, low altitude Upper middle

Ulaanbaatar Mongolia Inland, high altitude Lower middle

Source: World Bank.

TABLE C.2  Coordinates and number of ground-level monitoring sites, 
by city

CITY COUNTRY LATITUDE (°) LONGITUDE (°) SITES

Accra Ghana 5.55° −0.2° 1

Addis Ababa Ethiopia 9.03 38.74 2

Dakar Senegal 14.6928 −17.4467 4a

Delhi India 28.61 77.23 10

Hanoi Vietnam 21.0283 105.854 1

Kampala Uganda 0.313611 32.5811 1

Kathmandu Nepal 27.7114 85.3086 4

Lima Peru −12.0433 −77.0283 10

Ulaanbaatar Mongolia 47.9167 106.917 8

Source: World Bank. 
a. Dakar data are available only as an average of the four reporting sites.
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EVALUATION FOR EACH CITY

Delhi, India

Delhi, India, was one of the few cities that had enough data to train a statistical 
(generalized additive model or GAM; see appendix B) model with both Aqua 
and Terra satellite data. Figure C.1 shows the evaluation plots for the residuals 
of the GAM trained on the Terra data. The response residuals do not follow a 
normal distribution, which indicates that the statistical fit is fairly poor. 
Figure C.2 shows that the statistical estimate of ground-level PM2.5 increases 
monotonically with the ratio of the satellite aerosol optical depth (AOD) to the 
planetary boundary layer (PBL) height, as expected, but the slope of the fit 
appears to be dominated by two high values of AOD / boundary layer height 
(PBLH).

Figure C.3 shows a scatterplot of the ground-level PM2.5 estimate from the 
CTM-based method and the statistical method, respectively, against the OpenAQ 
data for the US Diplomatic Post monitor site. The other OpenAQ sites have sim-
ilar scatterplots (not shown). Table C.3 shows the evaluation statistics from both 

FIGURE C.1

Residual evaluation plots for the generalized additive model trained on the Terra 
satellite data, Delhi, India

Source: World Bank.
Note: μg/m3 = micrograms per cubic meter.
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FIGURE C.2

Plot of the dependence of the ground-level PM2.5 estimate 
from the generalized additive model on the ratio of the Terra 
aerosol optical depth and the MERRA planetary-boundary-layer 
height, Delhi, India 

Source: World Bank.
Note: Green dots = individual observations; red bar = uncertainty of the fit; MERRA = Modern 
Era Retrospective-analysis for Research and Applications; PM

2.5
 = particulate matter with an 

aerodynamic diameter less than or equal to 2.5 microns.
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FIGURE C.3

Scatterplots of the Terra satellite estimate of PM2.5 from the generalized additive 
model and the chemical transport model versus the OpenAQ data, US Diplomatic Post 
in Delhi, India

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; 

μg/m3 = micrograms per cubic meter.
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TABLE C.3  Delhi, India, evaluation statistics for the generalized-additive-model– and 
chemical-transport-model–based methods

STATISTIC

TERRA AQUA

GAM CTM GAM CTM

Correlation coefficient (R) 0.456 0.437 0.328 0.273

Mean bias (micrograme percubic meter) −0.475 −0.884 0.079 −30.267

Mean normalized bias (%) 36.9 26.9 29.4 −6.1

Mean normalized gross error (%) 59.8 60.4 50.1 49.3

Root-mean-square error (micrograms per cubic meter) 89.4 98.3 83.5 95.5

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model.

the statistical and CTM-based methods with respect to the OpenAQ data. The 
correlation coefficients are fairly low (maximum R of 0.46) but the statistical and 
CTM-based methods using the Terra data have low mean biases (less than 
1 microgram per cubic meter). 

Comparing these correlation coefficients with the correlation coefficients 
between the GLM PM2.5 concentrations averaged around the satellite over-
pass time (two-hour window) and the daily average PM2.5 concentrations 
provides an upper limit on the correlation between the once-daily polar-or-
biting satellite observations and the GLM data. For Delhi, these correlations 
are 55 percent at the Terra overpass time and 64 percent at the Aqua overpass 
time. Interestingly, these are the opposite of the results in table C.3, which 
imply that Terra AOD has a better correlation than Aqua AOD. The current 
performance of the Terra AOD (R of 44–46 percent for the daily average 
PM2.5) is fairly close to the “upper limit” of 55 percent expected for this sat-
ellite based on the GLM data correlations. 

Figure C.4 shows the monthly averages calculated using the CTM-based and 
statistical methods and compares them to the values calculated using the 
OpenAQ data, either using all the available data (OpenAQ All) or only the data 
on days with a valid AOD retrieval (OpenAQ AOD). During the summer months 
(wet season), both the CTM-based and statistical methods overestimate the 
PM2.5 values, and they tend to underestimate in the winter months (dry season). 
Figure C.5 shows the annual average PM2.5 estimated for each method by mon-
itoring site. As noted in appendix B, the satellite methods generally do a poor 
job of representing the site-to-site variations of the annual average PM2.5 within 
the city.

Ulaanbaatar, Mongolia

Ulaanbaatar was another city with several monitor sites, and so generalized 
additive models (GAMs) were fitted for both the Terra and Aqua data, both gen-
erally indicating a poor fit. Figure C.6 shows the evaluation plots for the residu-
als of the GAM trained on the Aqua data. The response residuals do not follow a 
normal distribution, which indicates that the statistical fit is fairly poor. 
Figure C.7 shows that the statistical estimate of ground-level PM2.5 increases 
with the ratio of the satellite AOD to the PBL height for low values of AOD/
PBLH, as expected, but the fit is highly unconstrained at larger values, showing 
what are likely false maxima and minima. 
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FIGURE C.5

Annual average PM2.5 for each method, by monitor site, Delhi, India

Source: World Bank.
Note: AOD = aerosol optical depth; CTM = chemical transport model; GAM = generalized additive model; 
NSIT = Netaji Subhas Institute of Technology; OpenAQ = openaq.org; PM

2.5
 = particulate matter with an 

aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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FIGURE C.4

Monthly average PM2.5 for each method, Delhi, India

Source: World Bank.
Note: AOD = aerosol optical depth; CTM = chemical transport model; GAM = generalized 
additive model; OpenAQ = openaq.org; PM

2.5
 = particulate matter with an aerodynamic 

diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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Table C.4 shows the evaluation statistics from both the statistical and 
CTM-based methods with respect to the OpenAQ data. It is important to 
note that no satellite data were available for the winter months in Ulaanbaatar 
because of persistent snow cover. This means no data were available in 
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December–February for the GAM fits or CTM methods to use in the evalua-
tion. The correlation coefficients are fairly low (maximum R of 0.44), and 
although the mean bias is fairly low for the statistical method as expected, 
the CTM-based method is consistently biased low, consistent with the results 
from appendix B. 

For Ulaanbaatar, the correlations (R) between the GLM PM2.5 concentra-
tions averaged around the satellite overpass time (two-hour window) and the 
daily average PM2.5 concentrations are 66 percent at the Terra overpass time 
and only 31 percent at the Aqua overpass time. This correlation at the Aqua 
overpass time is lower than the R for the Aqua GAM in table C.4, which sug-
gests that the statistical approach may be overfitting the data for this case. The 
high correlation with the Terra overpass time suggests that a better satellite 
instrument or analysis approach may be possible for this city, but it is unlikely 
that any new approach or instrument will overcome the loss of data during the 
snow-covered winter months.

FIGURE C.6

Residual evaluation plots for the generalized additive model trained on the Aqua 
satellite data, Ulaanbaatar, Mongolia

Source: World Bank.
Note: μg/m3 = micrograms per cubic meter.
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FIGURE C.7

Plot of the dependence of the ground-level PM2.5 estimate from the 
generalized additive model on the ratio of the Aqua aerosol optical 
depth and the MERRA planetary-boundary-layer height, Ulaanbaatar, 
Mongolia

Source: World Bank. 
Note: Green dots = individual observations; red bar = uncertainty of the fit; 
MERRA = Modern Era Retrospective-analysis for Research and Applications; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.

TABLE C.4  Evaluation statistics for the generalized-additive-model– and 
chemical-transport-model–based methods, Ulaanbaatar, Mongolia

STATISTIC 

TERRA AQUA

GAM CTM GAM CTM

Correlation coefficient (R) 0.379 0.12 0.442 0.15

Mean bias (micrograms per cubic meter) 0.088 −28.473 0.232 −30.521

Mean normalized bias (%) 52.7 −66.5 53.9 −69.7

Mean normalized gross error (%) 77.2 78.6 78.5 78.1

Root-mean-square error (micrograms per cubic meter) 33.2 48.7 28.9 46.7

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model.

Figure C.8 shows a scatterplot of the GAM prediction method and the CTM 
method against the OpenAQ data, respectively, for the US Diplomatic Post mon-
itor site. The CTM-based method is substantially overestimating the concentra-
tion. For the statistical method, the bias is lower, but it still shows a very poor fit 
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to the data, also reflected in the large mean normalized bias and mean normal-
ized gross error in table C.4.

Figure C.9 shows the citywide monthly averages calculated using each 
method. This plot shows only the months March through November as stated 
earlier because of the lack of satellite data during the winter months. Except for 
July, the CTM-based method greatly underestimates PM2.5. The statistical 
method does a better job of tracking the seasonal cycle of the citywide monthly 
average, except for November, likely because of low satellite coverage in this 
month. 

Figure C.10 shows the annual average PM2.5 for each method by monitor-
ing site. It is reinforced here how the CTM-based method grossly underesti-
mates PM2.5 for each site. The statistical method does well except for the sites 
with the highest values: Bayankhoshuu, Mongolia National Broadcaster, and 
Tolgoit. This may be due to the influence of local sources of PM2.5 at these 
sites.

Lima, Peru

Lima, Peru, had 10 monitoring sites in the OpenAQ database. However, because 
of persistent cloud cover over Lima and the exclusion of mixed water and land 
pixels in the satellite retrieval process, only about 10 valid data points were 
available over OpenAQ monitors for Aqua and 12 for Terra in the years 2016–17. 
Figure C.11 shows an aerial view of the Lima area with the OpenAQ monitoring 
sites in green and the valid satellite AOD data for the two years in blue. Little to 
no data are available along the coast or over most of Lima, and thus satellite 
data cannot be used to monitor PM2.5 in this city.
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FIGURE C.8

Scatterplots of the generalized-additive-model– and chemical-transport-model–based 
concentrations using the Aqua aerosol-optical-depth data, versus OpenAQ data, 
US Diplomatic Post in Ulaanbaatar, Mongolia

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; 
μg/m3 = micrograms per cubic meter.
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FIGURE C.10

Annual average (March–November) PM2.5 for each method by monitor site, Ulaanbaatar, 
Mongolia

Source: World Bank.
Note: AOD = aerosol optical depth; CTM = chemical transport model; GAM = generalized additive model; 
OpenAQ = openaq.org; PM = particulate matter. PM

2.5
 = particulate matter with an aerodynamic diameter less 

than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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FIGURE C.9

Monthly average PM2.5 for each method, Ulaanbaatar, Mongolia

Source: World Bank.
Note: AOD = aerosol optical depth; CTM = chemical transport mode; GAM = generalized 
additive model; OpenAQ = openaq.org; PM

2.5
 = particulate matter with an aerodynamic 

diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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Accra, Ghana

Accra had no monitoring sites in the OpenAQ database, but data for PM2.5 con-
centrations at several sites in 2015 were provided by the Environmental 
Protection Agency of the Ghana Ministry of Environment, Science, Technology 
and Innovation and were compared to the CTM-based estimates at these 
locations.

Table C.5 shows the evaluation statistics for the CTM-based Terra estimates 
at each site. The correlation coefficients are fairly low (maximum R of 0.4, but for 
a site where the results are negatively correlated), with significant underesti-
mates of PM2.5 at each site and large mean absolute errors. In addition, as shown 
in the scatterplot in figure C.12, there are very few data points with both valid 
AOD retrievals and GLM daily averages, and thus attempting a statistical method 
is unlikely to give much benefit for this city.

Source: World Bank, produced using Esri ArcGIS.
Note: OpenAQ = openaq.org.

FIGURE C.11

Valid Terra aerosol-optical-depth retrievals for monitoring sites in the OpenAQ 
database, Lima, Peru, 2016–17

LimaLima

Valid satellite AOD data
OpenAQ Monitor Sites
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Kathmandu, Nepal

Kathmandu, Nepal, had two OpenAQ monitoring sites, both of which are US 
Diplomatic Posts, and these sites had data only for 2017. These sites had enough 
data for the statistical method to be used, but there were only a total of 50 
matching satellite-GLM data points, and so monthly and annual averages could 
not be investigated. Figure C.13 shows the evaluation plots for the residuals of 
the GAM trained on the Aqua data. The response residuals do follow a normal 
distribution, which indicates that this statistical fit may be more realistic than 
those for Delhi and Ulaanbaatar. However, figure C.14 shows that the statistical 
estimate of ground-level PM2.5 does not strongly depend on the ratio of the sat-
ellite AOD to the PBL height, with likely unphysical maxima and minima 
around the relatively low response. This suggests that the statistical fit may be 

TABLE C.5  Evaluation statistics for the chemical-transport-model–based method using Terra data, 
Accra, Ghana

STATISTIC

WEIJA
TETTEH QUARSHIE 

INTERCHANGE MALAM JUNCTION GRAPHIC

TERRA AQUA TERRA AQUA TERRA AQUA TERRA AQUA

Correlation coefficient (R) 0.04 0.40 0.05 0.04 0.12 0.06 0.06 0.04

Mean bias (micrograms per cubic 
meter)

−44.5 −38.5 −6.7 −16.9 −50.7 −56.4 −25.4 −37.4

Mean normalized bias (%) −33.3 −22.6 −40.8 −2.9 −46.9 −18.4 −28.5 −15.8

Mean normalized gross error (%) 79.5 55.5 92.3 68.0 51.2 82.5 55.0 71.1

Root-mean-square error 
(micrograms per cubic meter)

76.1 71.1 63.3 50.0 72.5 84.6 49.3 75.0

Source: World Bank.

FIGURE C.12

Scatterplot of the chemical-transport-model–based PM2.5 
concentrations using the Terra aerosol-optical-depth data, versus 
ground-level-monitoring PM2.5 data, Malam Junction site in Accra, 
Ghana

Source: World Bank.
Note: CTM = chemical transport model; PM

2.5
 = particulate matter with an aerodynamic 

diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.

200

180

160

140

120

100

80

60

40

20

0
0 50 100

Malam Junction PM
2.5

 (µg/m3) 

150 200

C
T
M

 P
M

2
.5
 (

µ
g

/m
3
) 



Evaluation of Satellite Approaches | 133

FIGURE C.13

Residual evaluation plots for the generalized additive model trained on the Aqua 
satellite data, Kathmandu, Nepal

Source: World Bank.
Note: μg/m3 = micrograms per cubic meter.
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primarily fitting the errors in the comparison between the AOD/PBLH and the 
ground-level PM2.5 concentrations.

Figure C.15 shows a scatterplot of the statistical (GAM) method and the 
CTM-based method against the OpenAQ data, respectively, for one of the US 
Diplomatic Post monitor sites. The statistical method seems to overestimate the 
monitored values, while the CTM-based method seems to be distributed better 
but tends to underestimate the values.

Table C.6 shows the evaluation statistics from both the statistical and 
CTM-based methods with respect to the OpenAQ data. The correlation coef-
ficient for the statistical model trained on the Aqua data is fairly high (R of 
0.66), but this is likely an artifact of the relatively low number of matching 
satellite and GLM data points. This is supported by the fairly low correlation 
between the GLM data measured at the Aqua overpass time and the GLM 
daily average PM2.5 (R of 32  percent; value of Terra overpass time is 
43  percent). The CTM-based method is biased low, similar to the results 
for  Ulaanbaatar, another high-altitude urban site in a mountain valley 
surrounded by relatively rural land.
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FIGURE C.15

Scatterplots of the generalized-additive-model– and chemical-transport-model–based concentrations using 
the Aqua aerosol-optical-depth data, versus OpenAQ data, US Diplomatic Post in Kathmandu, Nepal

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; μg/m3 = micrograms per cubic meter.
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FIGURE C.14

Plot of the dependence of the ground-level PM2.5 estimate from the 
generalized additive model on the ratio of the Aqua aerosol optical 
depth and the MERRA planetary-boundary-layer height, Kathmandu, 
Nepal

Source: World Bank.
Note: Green dots = individual observations; red bar = uncertainty of the fit; 
MERRA = Modern Era Retrospective-analysis for Research and Applications; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.
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Addis Ababa, Ethiopia

Addis Ababa, Ethiopia, had two sites in the OpenAQ database. Figure C.16 shows 
the evaluation plots for the residuals of the GAM trained on the Terra data. The 
response residuals do follow a normal distribution. Figure C.17 shows that 
the statistical estimate of ground-level PM2.5 is linear with the ratio of the satel-
lite AOD to the PBL height, as expected. 

TABLE C.6  Evaluation statistics for the generalized-additive-model– and chemical-transport-model–based 
methods, Kathmandu, Nepal

STATISTIC 

TERRA AQUA

GAM CTM GAM CTM

Correlation coefficient (R) 0.479 0.256 0.656 0.130

Mean bias (micrograms per cubic meter) 0.179 −19.768 0.255 −15.801

Mean normalized bias (%) 19.3 −30.1 8.4 −18.5

Mean normalized gross error (%) 39.1 52.1 24.4 47.8

Root-mean-square error (micrograms per cubic meter) 19.1 33.6 14.9 30.1

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model.

FIGURE C.16

Residual evaluation plots for the generalized additive model trained on the Terra 
satellite data, Addis Ababa, Ethiopia

Source: World Bank.
Note: μg/m3 = micrograms per cubic meter.
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TABLE C.7  Evaluation statistics for the generalized-additive-model– and chemical-transport-model–based 
methods, Addis Ababa, Ethiopia

STATISTIC 

TERRA AQUA

GAM CTM GAM CTM

Correlation coefficient (R) 0.63 0.399 0.441 0.054

Mean bias (micrograms per cubic meter) −0.051 6.463 0.0003 15.786

Mean normalized bias (%) 6.9 35.5 7.4 92.2

Mean normalized gross error (%) 23.5 64.8 21.3 104.5

Root-mean-square error (micrograms per cubic meter) 7.0 17.5 6.2 28.9

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model.
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FIGURE C.17

Plot of the dependence of the ground-level PM2.5 estimate from the 
generalized additive model on the ratio of the Terra aerosol optical 
depth and the MERRA planetary-boundary-layer height, Addis Ababa, 
Ethiopia

Source: World Bank.
Note: Green dots = individual observations; red bar = uncertainty of the fit; 
MERRA = Modern Era Retrospective-analysis for Research and Applications; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.

Figure C.18 shows the scatterplot of the statistical and CTM-based satellite 
estimates versus the OpenAQ data, and table C.7 shows the statistics from both 
the statistical and CTM-based methods with respect to the OpenAQ data. 
The CTM-based estimates tend to be biased high. The GAM trained on Terra 
data gives a fairly high value for the correlation coefficient, which is slightly 
higher than the correlation between the GLM data at the Terra overpass time 
and the GLM daily average PM2.5 (59 percent; 81 percent for Aqua overpass time), 
suggesting that the fit may be due to the low number of points with a valid AOD 
estimate. 
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b. CTM results
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FIGURE C.18

Scatterplots of the generalized-additive-model– and chemical-transport-model–based 
concentrations, using the Aqua aerosol-optical-depth data, versus OpenAQ Data, 
US Diplomatic Post in Addis Ababa, Ethiopia

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; 
μg/m3 = micrograms per cubic meter.

FIGURE C.19

Scatterplot of the chemical-transport-model–based PM2.5 concentrations using the 
Terra aerosol-optical-depth data versus citywide average PM2.5 data, Dakar, Senegal

Source: World Bank.
Note: CTM = chemical transport model; PM

2.5
 = particulate matter with an aerodynamic diameter less than or 

equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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Figure C.19 shows a scatterplot of the Dakar PM2.5 data for 2011 versus the CTM-
based satellite estimate using the Terra data. Since the Dakar GLM PM2.5 data are 
the average of four sites, the CTM-based estimates were calculated for each site 
and then averaged before comparing them with the GLM data. Two valid AOD 
values (and thus valid CTM-based PM2.5 estimates) were required to consider 
the satellite average as a valid data point. 
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TABLE C.8  Evaluation statistics for the chemical-transport-model–based method, 
Dakar, Senegal

STATISTIC TERRA AQUA

Correlation coefficient (R) 0.35 0.52

Mean bias (micrograms per cubic meter) 24.3 23.0

Mean normalized bias (%) 86.0 67.5

Mean normalized gross error (%) 101.6 85.3

Root-mean-square error (micrograms per cubic meter) 45.3 41.4

Source: World Bank.

Table C.8 shows the statistics for the comparison. The correlation coefficient 
is fairly high (R of 52 percent), but the CTM-based approach tends to overesti-
mate the PM2.5 concentrations and has very large values for mean normalized 
bias and mean normalized gross error (86 percent and 101 percent), indicating 
fairly poor performance in this city.

Kampala, Uganda

Kampala, Uganda, has one OpenAQ site, but there were very few valid daily aver-
ages in the OpenAQ data, which combined with the relatively low coverage of 
the AOD retrievals left few matching points for evaluation. There were only 14 
matching points for the Terra data, and only 22 for Aqua, so only the Aqua data 
are discussed further here. The low number of points in the statistical fit for the 
Aqua data do not give us confidence in the results. The GAM evaluation plots in 
figure C.20 look reasonable, as does the linear dependence of the ground-level 
PM2.5 estimate on AOD/PBLH in figure C.21, but the low number of valid AOD 
points suggests that this may be coincidental. 

Figure C.22 shows the scatterplot of the statistical and CTM-based satellite 
estimates versus the OpenAQ data, and table C.9 shows the statistics from both 
the statistical and CTM-based methods with respect to the OpenAQ data. The 
GAM seems to perform well, but this is likely due to the low number of points 
with a valid AOD. The correlation coefficient for the GAM is larger than the cor-
relations between the GLM PM2.5 data at the Aqua overpass time and the daily 
average PM2.5 (45 percent). In contrast, the CTM-based estimates appear to be 
biased low even for the small number of points available, and the correlation 
coefficient is very poor (14 percent).
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FIGURE C.20

Residual evaluation plots for the generalized additive model trained on the Aqua 
satellite data, Kampala, Uganda

Source: World Bank.
Note: μg/m3 = micrograms per cubic meter.
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FIGURE C.22

Scatterplots of the generalized-additive-model– and chemical-transport-model–based 
PM2.5 concentrations, using the Aqua aerosol-optical-depth data, versus OpenAQ data, 
US Diplomatic Post, Kampala, Uganda
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Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; 
μg/m3 = micrograms per cubic meter.

FIGURE C.21

Plot of the dependence of the ground-level PM2.5 estimate from the 
generalized additive model on the ratio of the Aqua aerosol optical 
depth and the MERRA planetary-boundary-layer height, Kampala, 
Uganda
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Source: World Bank.
Note: Green dots = individual observations; red bar = uncertainty of the fit; 
MERRA = Modern Era Retrospective-analysis for Research and Applications; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.
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Hanoi, Vietnam

Hanoi, Vietnam, had one site in the OpenAQ data; it was possible to complete 
both Terra and Aqua GAM fits. The GAM evaluation plots in figure C.23 look 
reasonable, as does the near linear dependence of the ground-level PM2.5 estimate 

TABLE C.9  Evaluation statistics for the generalized-additive-model– and 
chemical-transport-model–based methods, Kampala, Uganda

STATISTIC 

AQUA

GAM CTM

Correlation coefficient (R) 0.514 0.139

Mean bias (micrograms per cubic meter) 0.018 −36.16

Mean normalized bias (%) 6.5 −69.5

Mean normalized gross error (%) 20.5 69.5

Root-mean-square error (micrograms per cubic meter) 11.3 39

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model.

FIGURE C.23

Residual evaluation plots for the generalized additive model trained on the Terra 
satellite data, Hanoi, Vietnam

Source: World Bank.
Note: μg/m3 = micrograms per cubic meter.
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FIGURE C.24

Plot of the dependence of the ground-level PM2.5 estimate from the 
generalized additive model on the ratio of the Terra aerosol optical 
depth and the MERRA planetary-boundary-layer height, Hanoi, 
Vietnam

Source: World Bank.
Note: Green dots = individual observations; red bar = uncertainty of the fit; 
MERRA = Modern Era Retrospective-analysis for Research and Applications; 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.

4

2

0

-2lo
g

 o
f 

P
M

2
.5
 c

o
n
ce

n
tr

at
io

n

-4

0.0005

Aerosol optical depth divided by planetary boundary layer height

0.0010 0.0015

on AOD/PBLH in figure C.24, but the low number of valid matching GLM and 
AOD points (less than 33 for all cases) suggests that this may be coincidental.

Figure C.25 shows the scatterplot of the statistical and CTM-based satellite 
estimates versus the OpenAQ data, and table C.10 shows the statistics from both 
the statistical and CTM-based methods with respect to the OpenAQ data. The 
GAM seems to perform well, but this may be due to the low number of points 
with a valid AOD. However, the correlation coefficient for the GAM is smaller 
than the correlations between the GLM PM2.5 data at the Terra overpass time 
and the daily average PM2.5 (R of 73 percent; 71 percent for Aqua). The CTM-
based estimates are also relatively unbiased, although the correlation coefficient 
is low (30 percent).
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FIGURE C.25

Scatterplots of the generalized-additive-model– and chemical-transport-model–
based concentrations using Terra aerosol-optical-depth data, versus OpenAQ data, 
US Diplomatic Post in Hanoi, Vietnam

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; 
μg/m3 = micrograms per cubic meter.
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TABLE C.10  Evaluation statistics for the generalized-additive-model– and chemical-
transport-model–based methods, Hanoi, Vietnam

STATISTIC 

TERRA AQUA

GAM CTM GAM CTM

Correlation coefficient (R) 0.634 0.302 0.626 0.259

Mean bias (micrograms per cubic meter) 0.347 0.175 0.76 6.367

Mean normalized bias (%) 20.9 21.8 22.2 39.6

Mean normalized gross error (%) 42.5 53.4 39.1 67.8

Root-mean-square error (micrograms per cubic meter) 22.0 34.3 21.0 31.0

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model.

OPENAQ QUALITY CHECK TOOL

OpenAQ worked with the organization Development Seed to create a command 
line tool1 that can aid in quality checking the OpenAQ data. This tool, called open-
aq-quality-checks (QA [quality assurance] Tool), can flag each data point based on 
metrics given by the user, for example, missing values, negative values, or values 
greater than some user-provided threshold. This tool was applied to the Delhi data 
to see the change in results when additional quality measures are applied. The tool 
was used to remove values noted as missing (−999), values less than 1, values over 
a provided threshold, and data points where the same value was repeated for mul-
tiple consecutive hours at the same site. The data for this city is subhourly. At 
15-minute intervals, it makes sense that the concentration values may be the same. 
Therefore, the repeat option for this tool is not valid for this data set. For this exer-
cise the tool was run to remove only values less than 1 (including missing values) 
and values over a calculated threshold. This threshold was derived by finding the 
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standard deviation of the log of hourly values for all sites for the two years and the 
mean of the log for all hourly values. The concentration threshold was calculated 
as three times this standard deviation plus the mean of the log. The QA Tool then 
removes any values over this threshold. For Delhi the threshold is 1,223 micro-
grams per cubic meter. This does not prove that points above this threshold actu-
ally represent poor data but instead merely tests the impact of applying this 
threshold to the analysis. Furthermore, the initial processing already removed 
negative and zero values, and so the main impact of the QA Tool is expected to be 
from applying this upper threshold.

Figure C.26 shows the difference in the monthly averages of the base process-
ing done to all sites (here for Delhi) and the QA Tool equivalent. It is apparent 
the US Diplomatic Post had unusually high values during a few months that the 
QA Tool removed. Table C.11 shows the 2016–17 average PM2.5 concentrations for 
each OpenAQ site in Delhi. Consistent with figure C.26, the only significant 
changes are for the US Diplomatic Post, where large values were filtered. 

FIGURE C.26

Difference in base processing monthly average versus monthly 
averages after the quality assurance tool is applied

Source: World Bank.
Note: IHBAS = Institute of Human Behavior and Allied Sciences; NSIT = Netaji Subhas Institute 
of Technology; RK Puram = Ramakrishna Puram; μg/m3 = micrograms per cubic meter.
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TABLE C.11  Average PM2.5 concentrations for each monitor site in Delhi, India, 2016–17

SITE QUALITY ASSURANCE TOOL BASE PROCESSING

Anand Vihar 159.2 160.7

Delhi Technological University 156.3 152.2

Institute of Human Behavior and Allied Sciences 94.7 102.2

Income Tax Office 144.4 141.4

Mandir Marg 115.6 112.8

Netaji Subhas Institute of Technology Dwarka 132.0 134.6

Punjabi Bagh 129.8 128.4

Ramakrishna Puram 136.6 138.3

Shadipur 127.2 125.7

US Diplomatic Post: New Delhi 116.3 132.0

Source: World Bank.
Note: PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.
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However, the investigation into the quality assurance and control (QA/QC) pro-
cesses for the US Diplomatic Post data showed that they are following US EPA 
procedures for QA/QC and instrument maintenance, so it would seem unlikely 
that these points truly represent poor quality data.

Using these data from the QA Tool, the same analysis scripts as before were 
run to merge the satellite data and train a GAM. Table C.12 shows the fit statis-
tics of the GAM using the QA Tool data versus the data used in the base pro-
cessing. Both runs with the QA Tool (Terra and Aqua) show a better fit than the 
base processing runs; however, an R value of 0.3 is still a poor fit. Figure C.27 

TABLE C.12  Generalized-additive-model output statistics of quality 
assurance tool versus base processing, Delhi, India

STATISTIC

BASE PROCESSING QUALITY ASSURANCE TOOL

TERRA AQUA TERRA AQUA

Correlation coefficient (R) 0.204 0.102 0.3 0.196

Deviance explained 20.8% 10.7% 30.5% 20.0%

Source: World Bank.

FIGURE C.27

Generalized-additive-model residual evaluation plots from Terra quality assurance tool

Source: World Bank.
Note: μg/m3 = micrograms per cubic meter.
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shows the GAM residual evaluation plots from the Terra QA Tool run, which 
can be compared to figure C.1 from the base processing run. The residuals are 
much closer to a normal distribution after the QA filter is applied. 

Figure C.28 shows a scatterplot of the ground-level PM2.5 estimate from the 
CTM-based method and the statistical method, respectively, against the 
filtered OpenAQ data for the US Diplomatic Post monitor site (compare with 
figure C.3). Table C.13 shows the evaluation statistics from both the statistical 
and CTM-based methods with respect to the filtered OpenAQ data (compare 
with table C.3). The correlation coefficients have increased somewhat (maxi-
mum R from 0.46 to 0.55) but that the overall bias and error statistics have not 
significantly changed.

TABLE C.13  Evaluation statistics (using the filtered OpenAQ data) for the statistical and 
chemical-transport-model–based methods, Delhi, India

STATISTIC

TERRA AQUA

GAM CTM GAM CTM

Correlation coefficient (R) 0.552 0.537 0.447 0.354

Mean bias (micrograms per cubic meter) −0.349 2.642 0.078 −27.483

Mean normalized bias (%) 34.2 28.0 26.1 −6.1

Mean normalized gross error (%) 57.5 60.2 47.7 48.1

Root-mean-square error 
(micrograms per cubic meter)

68.2 78.8 56.5 71.8

Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org.

FIGURE C.28

Scatterplots of the statistical and chemical-transport-model–based concentrations 
using the Aqua aerosol-optical-depth data versus the QA filtered OpenAQ data, 
US Diplomatic Post in Ulaanbaatar, Mongolia

a. GAM results b. CTM results
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Source: World Bank.
Note: CTM = chemical transport model; GAM = generalized additive model; OpenAQ = openaq.org; 
QA = quality assurance; μg/m3 = micrograms per cubic meter.
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CO-KRIGING AND KRIGING WITH SATELLITE AND 
OPENAQ DATA

The goal of this test was to determine if satellite data, although not a replacement 
for GLM data, could be combined with GLM data in a way that reduces the num-
ber of GLM sites required to quantify exposure in an urban population. To test 
this, ordinary kriging was done for each day using the monitor station daily aver-
ages, excluding the US Diplomatic Post. The concentration at the US Diplomatic 
Post for each day was then predicted with ordinary kriging. This tested how well 
the other GLM sites alone could characterize the PM2.5 concentrations at an 
unmeasured site. The CTM-based satellite PM2.5 estimates were then combined 
with the GLM data (minus the US Diplomatic Post) via co-kriging and again esti-
mated the concentrations at the US Diplomatic Post. The results for Delhi and 
Ulaanbaatar are shown in tables C.14 and C.15, respectively. 

The Delhi results suggest that adding in the satellite data would not reduce 
the number of monitoring sites there, because the root mean square is actually 
higher when the CTM-based satellite data are added. The Ulaanbaatar result 
suggests that the Diplomatic Post could be eliminated by adding satellite data to 
the rest of the GLM network in this city, but again only for the eight months a 
year that satellites actually produce data.

NOTE

	1.	 https://github.com/openaq/openaq-quality-checks. 

TABLE C.14  Kriging and co-kriging statistics, Delhi, India

STATISTIC CO-KRIGING KRIGING

Mean bias (micrograms per cubic meter) −4.330 −5.935

Root-mean-square error (micrograms per cubic meter) 148.527 134.374

Source: World Bank.

TABLE C.15  Kriging and co-kriging statistics, Ulaanbaatar, Mongolia

STATISTIC CO-KRIGING KRIGING

Mean bias (micrograms per cubic meter) −1.670 −12.400

Root-mean-square error (micrograms per cubic meter) 27.558 55.204

Source: World Bank.

https://github.com/openaq/openaq-quality-checks�
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APPENDIX D

Quality Considerations for Ground-
Level-Monitoring Data in Low- and 
Middle-Income Countries

This appendix provides further details on the uncertainties in ground-level-
monitoring (GLM) data in low- and middle-income countries (LMICs). There 
are two points of focus here: (1) a focus on the uncertainties associated with two 
commonly used measurement techniques; that is, the beta attenuation mass 
monitors (first section) and the tapered element oscillating microbalance (sec-
ond section), and (2) a focus on evaluation of the consistency between the GLM 
data collected by the US Diplomatic Posts and the GLM data collected by local 
authorities in Delhi, India (third section) and Lima, Peru (final section).

OPERATING METHODOLOGIES AND UNCERTAINTIES 
ASSOCIATED WITH THE BAMM TECHNIQUE 

Beta attenuation mass monitors (BAMMs), including the Met One model 
BAM-1020 and the Thermo Fisher Scientific BAMM model 5014i, are the most 
common instruments for monitoring particulate matter with an aerodynamic 
diameter less than or equal to 2.5 microns (PM2.5) across the globe. US Diplomatic 
Posts deploy these instruments for PM2.5 measurements. 

A PM2.5 measurement system typically includes a sample inlet, a PM cyclone, 
a sample conditioning unit (such as a heater to ensure modest relative humidity 
inside the instrument), the PM2.5 instrument, and a pump to draw a sample 
through the system. 

The beta attenuation monitor (BAM) technique samples ambient PM onto a 
filter and measures the attenuation of beta rays (high-energy electrons) through 
the PM-loaded filter in time. The beta rays emitted from a radioactive source 
(14C) are attenuated (absorbed) by PM collected on a filter:

	 I I e x
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x oand
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where I is the measured beta ray intensity (counts per unit of time) of the atten-
uated beta ray (particle-laden filter tape), I0 is the measured beta ray intensity of 
the nonattenuated beta ray (clean filter tape), μ is the beta ray attenuation cross 
section of the PM (square meters per kilogram), and x is the mass density of the 
PM (kilograms per square meter) on the filter. Key to the success of the beta 
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attenuation monitor is, in part, that μ, the absorption cross section, varies little 
among commonly sampled PM such as C, Fe2O3, NH4NO3, NH4(SO4)2, or SiO2. 
This permits the device to be calibrated during the manufacturing process and 
permits the user to measure PM concentrations without having to know the 
chemical composition of the sampled PM in advance.

PM2.5 mass concentrations are calculated from the measured attenuation. The 
ambient PM concentration of particulate matter (kilograms per cubic meter) is
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where C is the ambient PM concentration (kilograms per cubic meter), A is the 
cross-sectional area of the tape spot over which PM is being deposited (m2), 
Q is the rate at which ambient air is being sampled (cubic meters per second), 
t is the sampling time (s), and D is the ratio of A/(Q × t) and unit conversion 
constant (109). 

The BAM-1020 operates on a one-hour cycle starting at the top of each hour 
with filter movement between each of the following: (1) measurements starting 
with an 8-minute beta measurement on a clean filter spot at the beginning of 
each hour; (2) a sampling period of 42 minutes; (3) an 8-minute beta measure-
ment of a particle loaded filter spot; and (4) an explicit cycle taking a total of 58 
minutes with the other 2 minutes of the hour used for tape and nozzle move-
ments during the cycle. Figure D.1 shows a detailed picture of the BAM’s sample 
head, filter tape, and beta source and detector. 

Source: © Antelope Valley Air Quality Management District 2021. Reproduced from https://avaqmd.ca.gov/43ffdbb.
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FIGURE D.1

Picture of the Met One beta attenuation monitor unit showing the beta source and 
the filter tape used to collect the particulate matter samples

https://avaqmd.ca.gov/43ffdbb�
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Measurement uncertainties in the BAM’s PM2.5 can be obtained from 
estimates of uncertainties, the equation for PM2.5 mass concentrations given 
above, and standard error propagation. The random (precision) uncertainties in 
the BAM’s PM2.5 calculation include (1) flow rate, sample time, spot size 
(minor, about 2 percent); (2) calibration (μ) and span values (10 percent); 
(3) counting statistics (I and Io) (about 2.5 micrograms per square meter); and 
(4) baseline and electronic drift (minor, about 2 percent). Other uncertainties 
and systematic bias are more difficult to assess because they are operationally 
dependent on relative humidity changes during sampling, site-location factors, 
operator error, and volatile PM components that may evaporate from the filter 
during sampling. The manufacturer states an uncertainty (σ) of 2.4 micrograms 
per cubic meter (variance of 72 one-hour averages of zero particle measure-
ments). Thus, any single hourly measurement should fall within 3σ = 7.2 micro-
grams per cubic meter of the expected value. 

OPERATING METHODOLOGIES AND UNCERTAINTIES 
ASSOCIATED WITH THE TAPERED ELEMENT OSCILLATING 
MICROBALANCE TECHNIQUE 

Tapered element oscillating microbalance (TEOM) measurement principle: Sample 
air is drawn through a filter cartridge (Teflon-coated glass fiber) mounted on the 
tip of a hollow glass tube (the tapered element) at 3 liters per minute (split from 
a total 16.67 liters per minute flow through a size-cut sampling inlet; figure D.2). 
The base of the tube cannot move, but the tip is free to vibrate at its natural fre-
quency. Thus, the tube acts as a tuning fork or a hollow cantilever beam with an 
associated spring rate and mass. Any additional weight from particles that col-
lect on the filter changes the frequency at which the tube oscillates. The elec-
tronic circuitry senses this change and calculates the particle mass rate from the 
magnitude of the frequency change. The instrument then returns the vibrating 
glass tube to its natural frequency ready for the next measurement. The TEOM 
maintains a constant temperature and flow rate and electronically smooths the 
readings to reduce noise. Dividing the mass rate by the flow rate provides a con-
tinuous output of the particle mass concentration.

Measurement of mass: The frequency of a spring-mass system follows the 
equation
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where f is the frequency of oscillation of the tapered element with the particle 
filter, K is the spring constant, and M is the mass of the tapered element.

To measure the particulate matter (PM) collected on the particle filter, differ-
ences in mass are obtained by
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where dm is the change in mass of the tapered element due to collected PM, K0 
is the spring constant and unit conversion constants (calibrated using known 
masses), and f0 and f1 are the initial and final frequencies (hertz) for a 
measurement.
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The ambient concentration of particulate matter (micrograms per cubic 
meter) is then
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where C is the ambient PM concentration (micrograms per cubic meter), dm is 
the change in mass of the tapered element due to collected PM (micrograms), 
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FIGURE D.2

Schematic diagram of a tapered element oscillating microbalance 

Source: © The State of Queensland 2021 (CC BY 4.0). https://www.qld.gov.au/environment/pollution​
/monitoring/air-pollution/oscillating-microbalance.
Note: L/min = liters per minute; PM = particulate matter; TSP = total suspended particulate.

https://www.qld.gov.au/environment/pollution/monitoring/air-pollution/oscillating-microbalance�
https://www.qld.gov.au/environment/pollution/monitoring/air-pollution/oscillating-microbalance�
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Q is the rate at which ambient air is being sampled (cubic meters per second), 
and t is the sampling time (seconds). 

TEOM measurement uncertainties:

	 C
dm

Q t
g / m3( ) ( )µ =

×
� (D.6)

Random (precision):

•	 Flow rate, (minor, about 2 percent)
•	 Calibration (K0) and span values (10 percent)
•	 Baseline and electronic drift (minor, about 2 percent)
•	 Noise due to difference measurements (significant at short time frames)

Systematic (bias):

•	 RH dependence (addressed via sample heating)
•	 Environmental vibrations (affect stability of oscillations) 
•	 Volatile PM (specifically nitrates and semivolatile organics)
•	 Operator error 

Uncertainties typically are combined via “root-sum-of-squares”:
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The manufacturer states precision uncertainty of ±2.0 micrograms per cubic 
meter for a one-hour average:

•	 If this is a single σ precision, any single measurement should fall within 3σ = 
6.0 micrograms per cubic meter of the expected value

•	 The TEOM stated accuracy uncertainty of ±0.75 percent for a one-hour aver-
age on the mass measurement (dm)

•	 If this is a single σ accuracy, any single one-hour measurement should fall 
within 3σ = 2.25 percent of the expected value (this needs to be combined 
with flow rate–measurement uncertainties)

•	 Thus, TEOM measurement uncertainty (for a well-operated system under 
the Environmental Protection Agency protocols and requirements) would be 
the greater of these uncertainties

•	 The unknown factors include site location, volatile PM losses, and operator 
errors.

There are several TEOM base models (1400a, 1400b, 1405) and methods 
(standard and FDMS). The base TEOM instrument is the same instrument 
detection scheme using the same tapered element oscillating microbalance. The 
various TEOM model numbers refer to the following:

•	 Model 1400a: Sampling with PM2.5 cyclone 
•	 Model 1400b: Sampling with PM10 cyclone
•	 Model 1405: Sampling with a virtual impactor that separates particles into 

fine (PM2.5) and coarse particle modes (PM10–PM2.5)
•	 Models with –F or –DF: include a Filter Dynamics Measurement System 

(FDMS) upstream of the TEOM (see schematic in figure D.3).

The TEOM 1405-DF Dichotomous Ambient Particulate Monitor with FDMS 
is designated as federal equivalent method EQPM-0609-182 for PM2.5. In this 
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Source: Standard Operating Procedure for the Continuous Measurement of Particulate Matter Thermo Scientific TEOM® 1405-DF Dichotomous Ambient 
Particulate Monitor with FDMS® Federal Equivalent Method EQPM-0609-182 for PM

2.5
 STI-905505.03-3657-SOP, available at https://www3.epa.gov​

/ttnamti1/files/ambient/pm25/sop_project/905505_TEOM_SOP_Draft_Final_Sept09.pdf (pages 3-3 and 3-4).
Note: FDMS = Filter Dynamics Measurement System; lmp = liters per minute; MC = mass concentration; mm = millimeters; PM = particulate matter.
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FIGURE D.3

Tapered element oscillating microbalance–filter dynamics measurement system schematic

version of the instrument, all sample flows are passed through a diffusion dryer 
to remove water vapor. Every six minutes, a switching valve alternates the sam-
ple flows between the base- and reference-sample periods. During the base 
period, the PM sample is collected normally, and the differential mass is mea-
sured at 30° Celsius (C). At this temperature, volatile PM will possibly evaporate 
and not be measured. During the reference period, the sample flow is diverted 
through a chilled filter (4°C to 10°C) to remove and retain both the nonvolatile 
and volatile PM prior to passing through the particle filter of the TEOM. Thus, 
the reference period is when dry, particle-free air is passed through the particle 
filter of the TEOM. The “PM” mass measurement during this period is a differ-
ential mass measurement that is either near zero or negative, providing an 
approximate measure of the amount of volatile PM that evaporates from the 
TEOM particle filter. Ambient PM concentrations are calculated from 
base-reference mass measurements. Logging parameters, recommended main-
tenance, and calibration details are shown below:1

https://www3.epa.gov/ttnamti1/files/ambient/pm25/sop_project/905505_TEOM_SOP_Draft_Final_Sept09.pdf�
https://www3.epa.gov/ttnamti1/files/ambient/pm25/sop_project/905505_TEOM_SOP_Draft_Final_Sept09.pdf�
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•	 1405-F/DF TEOM recommended logging parameters:2

	 ■	 FEM MC
	 ■	 PM2.5 Base MC
	 ■	 PM2.5 Ref MC
	 ■	 PMc MC
	 ■	 PMc Base MC
	 ■	 PMc Ref MC
	 ■	 Ambient temperature
	 ■	 Ambient humidity
	 ■	 Ambient pressure
	 ■	 Vacuum pump pressure
	 ■	 Status
	 ■	 TEOM A filter loading
	 ■	 TEOM A dryer temperature
	 ■	 TEOM A dryer dew point
	 ■	 TEOM B filter loading
	 ■	 TEOM B dryer temperature
	 ■	 TEOM B dryer dew point
	 ■	 Three additional available for user selection (20 total)

•	 Recommended maintenance intervals:
	 ■	R eplace TEOM filter: Filter loading nears 75 percent or every 30 days
	 ■	R eplace chilled filter: When you exchange the TEOM filter
	 ■	 Clean PM10 inlet: With every TEOM filter exchange
	 ■	 Clean virtual impactor (1405-DF): With every TEOM filter exchange
	 ■	R eplace in-line filter: Every 6 months
	 ■	 Clean coolers: Once a year
	 ■	 Clean switching valve: Once a year
	 ■	 Clean air inlet system: Once a year
	 ■	R ebuild vacuum pump: 12 to 18 months
	 ■	 Dryer refurbishment: Once a year

•	 	Recommended interval of frequency:
	 ■	 Ambient temperature: Audit monthly/calibration yearly
	 ■	 Ambient pressure: Audit monthly/calibration yearly
	 ■	 Flow (PM2.5, coarse, bypass): Audit monthly/calibration yearly
	 ■	 Leak check: Monthly
	 ■	 Analog outputs: Once a year
	 ■	 Mass transducer: Audit once a Year

INTERPRETING GROUND-LEVEL PM2.5 DATA FROM 
LOW- AND MIDDLE-INCOME COUNTRIES WITH 
LIMITED METADATA 

In many low- and middle-income countries (LMICs), there are organizations, 
researchers, scientists, and members of the general public who are keenly 
interested in understanding their local air quality, especially if air pollution epi-
sodes occur with any regularity and in turn directly affect the way people feel. 
Nearly all publicly accessible information on real-time air pollution concentra-
tions is just that—a single data point, often a PM2.5 mass concentration. Little to 
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no metadata are available with which to draw additional concrete expectations 
for instrument performance, accuracy, precision, or reliability. In such situa-
tions, one way to evaluate the legitimacy of the reported PM2.5 levels is to com-
pare measurements from different monitoring stations across a given area of 
interest. More populous LMICs often have multiple government-run air-quality 
monitoring stations spread across each city. In recent years, US Diplomatic Posts 
throughout these same LMICs have established a PM2.5 monitoring capacity 
(equipped with BAM instruments) on embassy roofs. Accessible data from local 
and US government sites within the same city present the opportunity to evalu-
ate the consistency of reported PM2.5 concentrations in the area. This concept is 
demonstrated below by examining seasonal, monthly, weekly, and diurnal trends 
in PM2.5 data across Delhi, India, and Lima, Peru, throughout the years 2016–17. 

Delhi, India

Map D.1 reveals a shaded area of about 50 square miles, the perimeter of which 
is defined with air-quality monitoring sites in Delhi. Site 1 corresponds to the 
location of the US Diplomatic Post, and sites 2–7 are government-run monitoring 
stations equipped to measure PM2.5 mass concentrations. Working with the 
OpenAQ online database, PM2.5 data measured in 2016 and 2017 were retrieved 
for each of the stations shown on the map. The series of plots displayed below 
show the time-series, seasonal, monthly, weekly, and diurnal profiles in PM2.5 for 
each monitoring location. In this metadata “blind” scenario, the US Diplomatic 
Post represents slightly higher reliability than the local government stations 
based on the fact that embassy staff employ the same standard operating proce-
dure as recommended by the EPA to keep the BAM system maintained and in 

Source: World Bank, produced using Google Maps.
Note: CPCB = Central Pollution Control Board; DPCC = Delhi Pollution Control Committee.

MAP D.1

Proximity and distribution of government-run air-quality monitoring stations around the US Diplomatic 
Post in Delhi, India
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good working order. These same assurances are not necessarily present in the 
local government data feeds, and thus the direct head-to-head comparisons with 
embassy data can be a useful tool for validating the government PM2.5 trends. 
The top panel of the analysis frame (figure D.4) shows the PM2.5 time series, 
season-average PM2.5, monthly average PM2.5, and weekly average PM2.5. The 
lower panel in each analysis frame breaks down the PM2.5 trends further, reveal-
ing diurnal (hourly) profiles for the overall data set and then each of the four 
seasons. One should take careful notice of not only the relative trends observed 
at each location but also the magnitudes of the peaks and valleys in PM2.5. In each 
series of graphs, the PM2.5 concentration axes (all y-axes in the graph series) are 
normalized to the maximum observed concentration (or error bar) in that graph.

The embassy BAM data reveal the strong seasonal dependence of Delhi’s 
PM2.5 concentrations, with extremely high (greater than 200 micrograms per 
cubic meter) levels observed between November and January. There is virtually 
zero weekday versus weekend difference in PM2.5 loadings, and hourly diurnal 
profiles demonstrate the pronounced influence of boundary layer dynamics 
comingled with pollution source intensity and activity profiles: higher PM2.5 
concentrations overnight and into the morning hours when the boundary layer 
is lowest with a significant decrease in pollutant concentration in the mid-to-late 
afternoon as the boundary layer rises, diluting the PM2.5 levels. To provide an 
empirical basis to assess the consistency of ground-level PM2.5 measurements 
throughout Delhi, the same series of graphs are plotted in figures D.5 through 
D.10. Each figure corresponds to a different government-run air-quality moni-
toring location (marked as 2–7 on map D.1). Generally, the observed seasonal, 
monthly, and weekly trends in PM2.5 levels from the government stations are 
consistent with the PM2.5 data acquired at the embassy. There are some 

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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FIGURE D.4

Time-series, seasonal, monthly, weekly, and diurnal PM2.5 mass concentration data measured from the US 
Diplomatic Post in Delhi, India
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FIGURE D.5

PM2.5 trends from data acquired at the Mandir Marg, New Delhi, India–DPCC monitoring site, 1.45 miles west 
of US Diplomatic Post

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. DPCC = Delhi 
Pollution Control Committee; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per 

cubic meter.
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FIGURE D.6

PM2.5 trends from data acquired at the Shadipur, New Delhi, India–CPCB monitoring site, 4.75 miles 
northwest of US Diplomatic Post

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. CPCB = Central 
Pollution Control Board; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic 

meter.
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FIGURE D.7

PM2.5 trends from data acquired at the Punjabi Bagh, Delhi, India–DPCC monitoring site, 6.91 miles 
northwest of US Diplomatic Post

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. DPCC = Delhi 
Pollution Control Committee; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per 

cubic meter.

e. Diurnal overall

350

250

300

100

50

150

200

0
0 2 4 6 8 10 12 14 16 18 20 22

P
M

2
.5
 (

µ
g

/m
3
)

f. Diurnal DJF

400

300

100

200

0
0 2 4 6 8 10 12 14 16 18 20 22

P
M

2
.5
 (

µ
g

/m
3
)

g. Diurnal MAM

0 2 4 6 8 10 12 14 16 18 20 22

250

350

300

100

50

200

150

0

P
M

2
.5
 (

µ
g

/m
3
)

h. Diurnal JJA

0 2 4 6 8 10 12 14 16 18 20 22

P
M

2
.5
 (

µ
g

/m
3
)

100

50

200

150

0

i. Diurnal SON

0 2 4 6 8 10 12 14 16 18 20 22

400

300

200

100

0

P
M

2
.5
 (

µ
g

/m
3
)

800

3/1/2017 6/1/2017 9/1/2017 12/1/2017

600

400

200

0

a. Time-series

P
M

2
.5
 (

µ
g

/m
3
)

300

250

200

150

100

50

0
DJF MAM JJA SON

P
M

2
.5
 (

µ
g

/m
3
)

b. Seasonal

400

300

200

100

0

P
M

2
.5
 (

µ
g

/m
3
)

c. Monthly

Ja
n

Fe
b

M
ar Apr

M
ay Ju

n Ju
l
Aug Se

p
Oct

Nov Dec

250

200

150

100

50

0

P
M

2
.5
 (

µ
g

/m
3
)

d. Weekly

Su
n

M
on

Tu
es

W
ed

Th
ur Fr

i
Sa

t

FIGURE D.8

PM2.5 trends from data acquired at the NSIT Dwarka, Delhi, India–CPCB monitoring site, 11 miles southwest 
of US Diplomatic Post

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. CPCB = Central 
Pollution Control Board; NSIT = Netaji Subhas Institute of Technology; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 

2.5 microns; μg/m3 = micrograms per cubic meter.
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FIGURE D.9

PM2.5 trends from data acquired at the Ramakrishna Puram, Delhi, India–DPCC monitoring site, 5.69 miles 
south-southwest of US Diplomatic Post

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. DPCC = Delhi 
Pollution Control Committee; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per 

cubic meter.

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. DPCC = Delhi 
Pollution Control Committee; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per 

cubic meter.

FIGURE D.10

PM2.5 trends from data acquired at the Anand Vihar, Delhi, India–DPCC monitoring site, 4.6 miles 
east-northeast of US Diplomatic Post
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differences in the reported data between stations, but no egregiously disparate 
values are found that would be indicative of instrument malfunction or data tam-
pering across this subset of monitoring locations. 

Lima, Peru

The embassy BAM data from Lima, Peru, reveal nearly an order of magnitude 
lower PM2.5 concentrations than observed in Delhi, with a far less pronounced 
seasonal dependence. There is little to no weekday-versus-weekend difference 
in PM2.5 loadings, and hourly diurnal profiles indicate that PM2.5 pollution source 
intensity and activity profiles result in highest PM2.5 concentrations in the mid-
morning hours (except for June, July, and August in the embassy data, when 
peak PM2.5 concentrations shift to early afternoon). To provide an empirical basis 
to assess the consistency of ground-level PM2.5 measurements throughout Lima, 
the same series of graphs are plotted in figures D.11 through D.15. Each figure 
corresponds to a different government-run air-quality monitoring location 
(marked as 2–5 on map D.2).  Generally, the observed seasonal, monthly, and 
weekly trends in PM2.5 levels from the government stations are reasonably con-
sistent with the PM2.5 data acquired at the embassy, but important differences 
are seen in the magnitude of the PM2.5 concentrations reported at different loca-
tions. A moderately polluted area such as Lima highlights the need for accurate, 
reproducible measurements in a manner that is often lost in the much more 
heavily polluted LMICs (such as Delhi). The embassy data shown in figure D.12 
also highlight the importance of having complete data sets over which the PM2.5 
trends can be analyzed. Missing data from the embassy site complicates the 
head-to-head intercomparisons somewhat, especially if the surrounding sta-
tions had more complete data sets (which is the case for most of the government 
locations examined here). Nevertheless, inferences can be drawn by completing 
head-to-head analyses focused on the times of year where data are available. 

Year-round, the embassy PM2.5 concentrations are about 30 ± 10 micrograms 
per cubic meter. In comparison, San Borja, Peru (2.7 miles southwest of the 
embassy) reports concentrations on average about 30 percent lower throughout 
the year, and Campo de Marte, Peru, reports concentrations about 50 percent 
lower than the embassy. In contrast, the other two stations, Santa Anita, Peru, 
and Ate, Peru, report concentrations about 10–30 percent higher than the 
embassy. In this way, the Lima data sets begin to reveal the complexity of com-
bining PM2.5 measurements from different agencies at different locations with 
minimal metadata. Closer inspection of the prevailing meteorology alongside 
the pollution source activity profiles and density within the city would further 
elucidate the extent to which the differences observed across the monitoring 
stations are derived from atmospheric conditions or instrument performance. 
The diurnal analyses presented here represent a first step toward building a 
more comprehensive approach to validating ground-level PM2.5 concentrations 
in LMICs.
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FIGURE D.11

Time-series, seasonal, monthly, weekly, and diurnal PM2.5 mass concentration data measured from the 
US Diplomatic Post in Lima, Peru

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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FIGURE D.12

PM2.5 trends from data acquired at the San Borja, Peru, monitoring site, 2.7 miles southwest of 
US Diplomatic Post

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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FIGURE D.13

PM2.5 trends from data acquired at the Campo de Marte, Peru, monitoring site, 5.4 miles northwest of 
US Diplomatic Post

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.

FIGURE D.14

PM2.5 trends from data acquired at the Santa Anita, Peru, monitoring site, 3.9 miles north of 
US Diplomatic Post
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PM
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 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.



164 | Getting Down to Earth

Source: World Bank.
Note: DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November. 
PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns; μg/m3 = micrograms per cubic meter.
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FIGURE D.15

PM2.5 trends from data acquired at the Ate, Peru, monitoring site, 6.1 miles northeast of US Diplomatic Post

Source: World Bank, produced using Google Maps.
Note: Government assurance quality stations ranged between about 2.5 to 6 miles from the US Diplomatic Post, covering an area of about 20.8 square 
miles (blue shaded area). OpenAQ = openaq.org; PM

2.5
 = particulate matter with an aerodynamic diameter less than or equal to 2.5 microns.

MAP D.2

Illustration of the proximity of the US Diplomatic Post in Lima, Peru, relative to a subset of the nearest 
government-run assurance quality monitoring stations for which OpenAQ PM2.5 data were available
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NOTES

1.	 https://www3.epa.gov/ttnamti1/files/ambient/pm25/sop_project/905505_TEOM_SOP​
_Draft_Final_Sept09.pdf.

2.	 Bold text represents additional parameters logged for the 1045-DF TEOM; other text rep-
resents the parameters logged  for both the 1045-F and 1045-DF TEOM.

https://www3.epa.gov/ttnamti1/files/ambient/pm25/sop_project/905505_TEOM_SOP_Draft_Final_Sept09.pdf�
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Outdoor air pollution accounts for an estimated 4.2 million deaths 
worldwide, the majority of which are caused by exposure to fine 

particulate matter (or PM
2.5

) air pollution. Most of these deaths occur in 
low- and middle-income countries (LMICs). Reducing PM

2.5
 air pollution is 

thus crucial for improving public-health outcomes in those countries.
Measuring and reducing the health impacts of PM

2.5
 is especially 

challenging in many LMICs because ground-level air-quality monitoring 
networks are typically nonexistent. Where they are in place, they are often 
not properly operated and maintained and are thus unreliable. Limited 
local expertise in air-quality measurement presents additional challenges. 
These shortcomings can undermine a country’s ability to design and 
implement effective policies to improve outdoor air quality. 

Satellite technology has been used successfully for measuring air 
quality in high-income countries where operation of ground-level 
air-quality monitoring networks is well established. However, Getting 
Down to Earth: Are Satellites Reliable for Measuring Air Pollutants That 
Cause Mortality in Low- and Middle-Income Countries? investigates the 
performance of satellites in LMICs for predicting outdoor concentrations of 
PM

2.5
, based on case studies in nine cities in different regions representing 

a range of environmental conditions (including mountainous, dusty, and 
coastal). The report finds that the satellite-derived estimates of PM

2.5
 in 

LMICs are associated with very large uncertainty, ranging from 21 percent 
to 85 percent depending on the model used for translating satellite 
measurements of aerosol optical depth—the parameter measured by 
satellites—to surface-level outdoor PM

2.5
 concentrations. 

This report shows that satellites are unreliable for estimating 
ambient concentrations of PM

2.5
 in LMICs. Furthermore, satellite-derived 

measurements cannot replace properly operated and maintained 
ground-level monitoring networks for measuring the concentrations of 
PM

2.5
 that human beings are typically exposed to daily. Thus, it is important 

that LMICs strengthen support for the establishment of ground-level 
monitoring networks to measure air pollutants, notably PM

2.5
, that cause 

mortality in Sub-Saharan Africa and other regions with LMICs.
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