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Abstract

This paper developes structures for multiproduct demand sets
which permit determination of alternative market forms in linear optimiza-
tion models. In these structures, market equilibrium prices become endo-
genous, as functions of the primal solution. The approach permits
constraints on a measure of income which is evaluated at the endogenous
prices. Some properties of the linearized demand set are proven.
Numerical solutions are obtained with linear programming via approximation
techniques in convex programming; the techniques permit arbitrzrily close
approximation to non-linear forms without increasing the number of rows in

the linear program. The sane structures are applicable to factor markets..

* Revised version of a paper presented at the Summer Meeting of the
Econometric Society, Boulder, Colorado, August 1971. The duthors wish
to acknowledge their indebtedness to Mr. Gary Kutcher of the World Bank,
who has designed and carried out the computations and has provided use-
ful comments on the paper. Luciano Barraza, Wilfred Candler, and Alan
Manne also have offered helpful insights.



1. Introduction

In the classic linear programming models of an economy or sub-
economy, goods are assumed either to face infinitely elastic demand functions
or to be traded in bounded quantities. Modifications sometimes are made for
exports which constitute a significant share of the world marxeZ, leading
to a formulation in which the optimizing unit equates marginal revenue and
marginal cost on the export markets. However, the existence of international
markets frequently is used to justify the price-taker assumption. But,
for a large class of products, particularly agricultural commodities, the
spread between c.i.f. and f.o.b. prices nay be twventy percent or more, and
for another group of products trading opportunities effectively do not exist.
In these cases, domestic product demand functions are relevant in price
determination.

Incorporating product demand functions into a planning model
designed for the purpose of analyzing policy alternatives, rather than
assuming exogenously determined product prices, has three principal
auvantages: First, it allows the model to correspond to a market equili-
brium. The effects of various policies, e.g.; subsidizing or taxirg product
or input prices, or varying the exchange rate, can then be investigated.
Second, it allows the modek greater flexibility. For instance, substitutionl
bctween capital and labor, corresponding to #fferent factor price ratios,
can occur not only directly through the technology set or thrpugh changes

i J

in the commodity mix of output, but also through substitutior in demand due

-

to changigag relative prices of products which are more or legs labor or
capital intensive. Third, it permits an appraisal of the distribution
between consumers and producers of benefits acruing from changes in out put.

Fov example, in the common situation of agricultural production for the



Jdomestic market In the face of price-inelastic demand, the returns from

incraased output are negative to producers as a whole and positive to

B,

chrnsumers,

Cempetitive equilibrium under downWard—sIoping product demand
curves can be attained via maximization of the sum of producer and
consumer surpluses. This is the tradition of Samuelson (1952) and Takayama
and Judge (1364, 1971). The mo.opolistic case is one of net revenue maxi-

sization. This paper develcps approximation methods for handling either

torm of market equilibruim in a linear programming planning model. The
procedure has particular application to sectoral planning models, and one
such application is given. The exposition is in the context of a static

mocdel (althcugh it can readiiy be extended to a dynamic model).

?. (Competitive and Noncompetitive Product Markets under Optimization

+ne specification of the objective function follows from the

war<et form to be incorporated in the model. In the competitive
rucoers act as price takers ana equate marginal costs to the prices

sruducts . in the monopolistic case, the sector maximizes its net income

\ ,it,np sarginal cests te the marginal revenues of prcducts.

y  cdmplicity of exmpésition, it is assumed that NO cxtcrnnl

tah re . Import-cxperl opportunities can readily be introduced.

thene advantages obiain whe ga model is specified with fixed
Cyion targets and marginal sungly prices for products are

orived jreom the duas solution.
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The set of domestic narket demand functions is written, assuming linearity, as
P = AT Bg vivrreerrienniocnreceanronaerenenas (1)
where pisacC x 1vector of prices
ais a C x 1 vector of constants
B is a C X C negative definite matrix of demand coefficients
qgisaC Xx Cvector of quantities
Defining <¢(q) as a C x 1 vector of total cost functions, L the objective
function for the competitive case becomes:
Z=9g (@t .5Bq) - c(q) vevieruinnnennnnnn. .. (2
where the first term of the RHS is the area under the demand fun_ctiq’n, i.e.,

the integral of (1) w.r.t. the vector q. Setting the derivative of (2)

w.r. t. q equal to zero yields:

p =dcla) ' (3)

dq T

which is the equilibrium condition of price equals marginal cost.

The objective function, Z, can be decomposed into components which

correspond to consumer surplus and producer surplus: 2/
cS = .5 q' (a-p) =-.5q" Bg weeiiiiiiain (4)
PS =

q'p.— c(q) =q' (a+Bq) - c(q) veviurnnn (5)

1/ The supply functions of a programming model usually arc endogenous, but

that does not affect the generality of this exposition for the product
demand side.

2/ of course, the function (2) may be interpreted merely as amr equilibrium-
seeking device, thus side-stepping the controversies sorrougding the
Marshallian surpluses. (See, for example, Mishan (1968).) = However, if
it is accepted as a social utility function, some interesting prograrming
experiments are possible, as outlined later in this paper. An alterna-
tive interpretation of the objective function is possible; it can be
interpreted as the profit function of a discriminating monopolist. Such
an interpretation, of course, is hardly tenable for a sector planning
modei, partly on account of problems of separability of markets, but
also because of the fact that the demand functions would require some
re-formulation on account of income effects.



ror any differentiazble set «v de:ieand functiosns a similar result holds:
the zppropriate maximand for the competitive equilibrium solution is

1/ .
the sum of producer and consumer surpluses. = Of course, in mathe-
maticel programming formulations, maximization is generally constrained.

. . _— . 2
The appropriate objective for the monopolistic case is: 2/

Y =q" (@4 Bg) = c{@)eeevereracnranesesnnanana (6)
which yields the equilibrium conditioa that

a+ 2 Bq 29_2_((131 (7

where the left-hand term is a vector of marginal revenues.

In both cases, the maximand involves a quadratic £orm in q.
Problems arise in practice because nor-.linear programming models rapidly
approach the bounds of computer technology as the models become large.
For this reason, approximation procedures were sought in order to take
advantage of the computational efficiencies of linear programming. Two
such procedures have been developed; the first for the case where
cstvimates of the coefficients of B are available, and the second where

less information is to be had on the structure of demand interrelationships.

1/ This cbjective Function is essentially identical to Samuelson's 'net
social payof{" function, except that he includes interregional trans-
serrarion costs whereas here only a single point in space is treated.
Sce Samuelson (1952). The same objective Function is elaborated in
oo mul®~product case by Takayama and Judge (1964). Possible applica-
siens t@ agriculture have been discussed by Yaron, Plessner, and Heady
Li¥pv) aid an actual apjplication (in a different form than presented
{n this waper) was made by Farhi and Vercueil (1969). An application
to achieve competitive equilibrium in the market for irrigation water
was made by Guise and Flinn (1970).

/ 3% ;i {
L Srlessaer (L
4

this maximand with quadratic programming. te
"leading firm'" market form.

LS deve

1 t ts
icps structures for the
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In this exposition, it is assumed that costs are accounted for in the
factor-supply activities of a programming model, so that the demand activities
account only for the areas under the demand function (in tne competitive case)
or the area under the marginal revenue function (in the monopolistic case).

For one product, in the competitive case, this area is:

W=gq (;-% .5 Bq)....;;;..;..}............ﬁ....(S)

and the corresponding revenue function is
R=0 (@4 89) sossnsnsasnnnnsnsasnnansnsassns (9)

These are the functions, together with the corresponding demand functions,

sketched in Figure 1, assuming only three segments in the approximation.
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The convexity of either function follows from the convexity of
a well-behaved demard set. This in turn may be demonstrated by reference

to the properties of the Hessian ratrix of detached coeificients of the

iezand functions. For linear demand functions, W and R are nonlinear.

ing €%

-

Coie
[0}

o ¥

iowever, direct segmentation of W (or R), rather than the demand function,
parmits arbitrarily close approximation to the nonlinearity in a linear
1/

programing nodei, without increasing the number of rows in the model. =

This is shown in the foliowing section.

3. 7The 1P Tableau for the Separable Case

In the single-product case, the linear programing tableau
corresponding to the segmented approximation of the functions W and R for
one product is the following, taking equation (8) as the maximand and equa-

ticn (9) as an income constraint, or income accounting equation:

Tableau |

Production activities Selling activities  RHS

Obiective function ® - R w W Wo aas W Max
i [« J i C2 m 1 2 3 S ( )
Tncome constraint -c ~C. v.. —=C r, .r L. ... T 3> Y*
1 2%, m 1 "2 3770 s
Commydity balance b Yg eve - - - Y > 0
v )72 ym ql q.2 q3 qs -
Derand constraine o 1 1 ...1 g1
YL, are ¢2sts assoclated with the production activities; 2

are phygical outputs of the production activities at unit Tevel;
- .

-
v

Wo 7@ values of W co-responding to (g1

rization technique of separable

z
Hadley (1964).




rS are values of R corresponding to 9

q  are the total quantities sold at the limit of each segment
of the function W;

Y*> Q is the target level of producer's incomes, which is set
equal to zero (or at any non-negative value such that the
constraint is non-binding), for the competitive case. It
becomes the objective function in the monopolistic case; aad

sS=1, 2, .«x, S is the segment index.

Note that in Tableau 1, no more than two activities from the set

of selling activities (each ccrresponding to one segment in the approxima-
tion) will enter the optimal basis at positive levels. This may be seen by

reference to the W-function in figure 1: a linear combination of more than

two points is a line interior to the piece-wise efficiency frontier OABC,

Tableau 1 is a transformaticn (using elementary row and column
operations) of an initial tableau which embodies additively separable
cz2gments with a separate bound for each segment. This initial tableau is
as follows:

Tableau 2

Production activities Selling activities RHS

Objective function “Cy TGy eer mCo Py Py P3 -+ P (Max)
Income constraint -cl '-c:2 cesmCo m, W, My o... | ms 2 _Y*
Commodity balance Yy Y, Yo -1 -1 -la...-1 <0
- <
. 1 $ K
= b i
Demand segment 1 <Ry

constraints

Fu—
N
=

vy

———————— -
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where p and mgare prices and marginal revenues correspoading to segments

s of the demand function. |1t will be noted that Tableau 2 corresponds to
segrmenting the demand and marginal revenue functions as step function;,
rather than to the linearization of the W and R functions which underlies
Tableau 1. ;/

The principal advantage of Tableau 1 over Tableau 2 is that the
demand function (or area function W) can be approximated as closely as
desired without requiring additional constraints in the program. The
nunber cf selling activities increases as the number of linear segments
increases, but the number of rows remains constant.

The approach is readily extended to two or more products which are
additively separable in demand, with one commodity balance per product and
one convex combination constraint per product. For example, with the
first commodity's W-function being segmented into two parts only, correspoad-
ing to 471 and 9y and the second commodity's WH unction being segmented
inte three parts, corresponding to 9597 9990 and dog the approximation in

. saople rincar program takes the form of the following tableau:

Table 3
Producticn activities Selling activities RHS
Geod 1 Good 2
OV entive fuhction ) fclj - -c2J ”1] w12, w21 w22 wz3 (Max)
Cme conét}aint bplj | | —Ezj rll_ rlZ rél r22 r23 ZIY*
Unmmudiiy hnlance i ‘Yij | | ;qll ;qu ; 0
Cnmmodizy hnlanc¢ 2 iyzj ‘ RUIERYY) fq23' 2 0
Semand ceastraiat 1T | 1 1 <1
Armand>gmustraint'2 . _ _ 1 1 1 ¢1
i, the extent that ;—on-iinear iunctioms arc incorporated into planning

de g, theilr inciusicn as step functions is a common procedure. For
ricent cxanplie, see MacEwan (1971) pp 66-69.



where C'j are costs for the ith product in the jth activity producing it:
are unit outputs of the ith prodcct in the jth activity producing it;
q.. define the quantities of the ith product. correszonding to the jth
segment;
. .th .th
w., are values of W corresponding to the j level of the i

commodity; and

are the values of R corresponding to the jth level of the ith

commodity.

4. Substitution i n Demand

In the event that two or more produtts are not separable in

demand, the nonlinear demand set can be linearized directly, to an

arbitrarily close approxisation, by specificaltion of activity vectors
representing points on the demand surface and by incorporating an appropriate
convex combination constraint. An example of the tableau in such a case,

for two products and six segments per term in the objective functiun, is

as follows:

Table 4

Production activities Selling activities RHS
Good 1 Good 2

Objective function = -c,, T3 Y11 Y12 V13 Y21 w22 w23 (Max)
. . . _

Income constraint 1 Clj CZj 1 r12 13 To1 Too Tog 2 yx
Commodity balance 1 = - - -a - - -

y e 1 111 "1 "1 "2 T912 "2 o
Commodity balance 2 - - - -a - -

Y Y23 921 "932 "923 T921 "2 "923 30
Convex combination constrnint 1 1 1 1 1 1 61

where the symbols are defined as in Tableau 3.



in the above trearment, it IS assumed that the elements of the
matrix 3, incluaing off-diagonai elements, in equation (1) are known or can
te estinated. Frequently, the available information consists only of

estimates of cwn-price elasticities for a number of icdividual commodities
The basis of the approximation procedure developed for this situa—

tion of iimited information is the assumption that commodities can be

classified into groups, such that the marginal rate of substitution (MRS}

is z-ro between all grh ups but non-zero and constant within each group.

Clearly tliis assumption iS only an approximation to realicy. A group may

consist of one or more commodities, and Iimits are defined on the varia—

bility of the commodity mix within each group. The relevant portions ef

the indifference surface with respect to two commodities in a group arc

shown in figure 2. The rays OC and OD in the figure define the |imits om

the composition of the commodity bundle.

Figure Z~
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If sifficient information is available the zpproach can be extesnded tO more

linear segments per indifference cu:ve, each segment representing a different

value of the MRS,

Consider a group consiscing of C commodities. The appropriate

LP tableau may be represented as follows:

Tableau 5

Production

ST Selling activities RHS
activities -
Objective function - C ‘41 WS ver Wo was (Max)
Income constraint -C Rl RS RS 5 Y
Commodity balances Y —Ql ...—Qé ...—QS . > 0
Convex combination
constraint 1 ... 1 ...1 ... <1

where s = 1, 2, ..., $ is a segment index;
C is a row vector of production costs;

Y is a C-rowed matrix of production coefficients entering the

commodity balances;
|

W_, Ry are 1 x C vectors ¢f areas under the demand function and gross
S

revonues respectively; and

W

QS isaC x C matrix of adjusted quantities as defined below'

In Tazleau 5, each of the block of activities E'S RS - lej
corstitutes a set of "nixing™ activities for one segment of the composite

cemand function for the commodity group. This biock of activities can be

written as:



T-Wh‘ A W
o o] S
| .
s
' = -q -q_
sll sl2
\.AQS ‘ ! |
i T9s21 T9522
LT
_J qscl tse2
g -q
. sC2
| —

where the elements are as de

een w w

s : s
T r

'S s
“9. 1 ~q 1y veaaa. (10)
°ec “d5om R T
e T9%em vt Tdsen
aaw "q e

Cm -

S oo |

fined below.

The derivation of fonr:ulae for the elements of (10) is tedious,

because they take account of

starting point is a set of o

guantities {ql, o5 G,

group aere assumed fixed, bot

A=

-

P

[ela]

pc‘/> c

Correésponding to the observe

suantity index,

= 7.4 5
¢ e

q
and 2 »rice ipdex,,

Pe

whe ro

It is assumed that

up with & price Index

{22} md (13). Assume ror a

commodities (i.e., that they

he demand function

corresponds to Tableau 5, wh

case. Only the sell np

Yo«

Y

shifts both between and among segments. The

bserved prices {1_)1, ceas E s tees SC} and of

c

Relative prices of commodities in the

h within and betweensegments, and are defined by

N R G & &

d sets of prices and quantities are a

(13)

................. ceeen. (14)

a

n estimate exists ¢f a demand function for

as a function'®f a quantity index, as in equations
-

woment that no substitution occurs among

are consumed in the fixed observed proportions),

Then this case

is segmented iN S segmerts.

ich IS a simple extension of the single product

activities are shown.



Table 4: C Commodities in Fixed Proportions

Selling Activities

Ovjective function .wl ws, ...,ws ( Max)

Income constraint R, ... R ... R > Y*
1 s S

Commodity balances dypeemdgqe "0, 2 0

T912° 7920+ 79 >0

~q1c . -qsh...—qSc > 0

1. 1., 1 <1

In Tableau 6, it is evident that

q. = a V. iiverenniaaf15)

sc c s
th

where a. - q. / \—/_S, the observed proporiion in physical units of the ¢
- C

commodity and VS is the total quantity sold in the sth segment. in
physical units. Ws and RS are, of course, computed from the demand function

with appropriate price and quantity indexes, although in Tableau 6, the

weights are all constant. The price-weighted total quantity is:
g * = =V . 'Ta PR LX)
qS é pC qSC 5 z aC pC ) ,( 6)

To extend the case of demand in fixed proportions within a group,

if is supposed that, for C commodities, the set of feasible alternative

mixes, as proportions in physical terms, is given by the matrix A, assumed
. -

for simplicity to be invariant across segments. »
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A--—-[acm] i erererenes (17

where ¢ =1, ,.., C commodities in the group;

=.5; ..., mixes of the commodities; and

a_ _ is the proporrion in physical terms of the cth commodity in the
C
=" mix, scch that

Ca =1.

ci

-1

(@]

The eleneats, a.. define the rays shown in Figure 2.

The elements in matrix QS in equation set (10) can now be defined as:

g =a R - ceee -
scm cm Vs gacyc / ta  oc (i8)
which> differs from the expression for A, (consumption in fixed proportions)

in equation (15) by the factor Laf, / Eacmpc which reflects the changing

commodity weights. Using equation (16), equation (18) can be re-written as

4

: U LA A - T T
Ueen ¥ / La P (19)

The price-weighted total quantity, q;m, is given by:

*
. qsm

i
"o
je)
a

QX e (20)’

pat is, tie price weighted quantity of the aggregate commodity is independent

al_the commodity nix, and it cnn be writteu as gy Using this result,

cqustion (t8) can be simplified as follows:

o = Q o* / Ca r
S50 cm » ¢ cnMm ¢

e i

N a';-' i\
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This completes the definition of the elements of the matrix Qs in equation
set (10). 7By equation (20), q; is invariant with respexz to the commodity
mix, sSo that the elements of Wg and r,are invariant over the mixing activi-
ties. They are computed exactly as in the single product case, using,
however, q*S in place of a. To re— capitulate, if the demand function is
linear, then: w, = q’; (a - 1/2 bq’;) and
ro =43 (@- bq:)
The demand side of a planning model may be constructed to

incorporate a number of product groups, some of which can consist of a

single commodity. Betweer product groups, the MRS is zero, and within, it

"is constant, and given by the inverse of the price ratio. It is this last

property which leads to the constancy of consumer surplus (wS - rs) and
of consumer expenditure (rS) within a commodity group.

The constancy of the MRS can readily be shown for the case of

" two products, shown in Tableau 7, where again only the selling activities

are included.

Tableau 7¢c Two Comodities in a Segment
[

Activity level X

1 X2
Objective function W W Max) .
Income constraint r re 3y 2
Copmodity balances ~d.11 “9.1, 30 o
- - - E
9521 9522 >0
Convex combination
constraint 1 1 g 1

By the constancy of W and re» movement along a given indifference

function requires changes in the activity levels, X1 and X o which are

equal but of opposite sign. Without lack of generality, consider the two



cases (x, = 1, %y = 0) anti (x1 = 0, X, = 1) Then the MRS is given by

cquation (22), dropping the subscript s, and q*s which is common to all terms.

vRS = C1 = %11~ 912
2 921 7 922

a, /I a .p -a / T a .o
_ 1l coele 12 €27°C i (22)
a / I. a

01 By agype T Ay, /T a0,

By expanding and re- arranging (22),

Al/AZ:-QZ/Ol ...... ....‘..'(23)

which is the required result,

Conparative Statics

This specificntifon of commodity demand structures incorporates
one characteristic which makes it particularly convenient for obtaining
tomrarative statics solutlons. This is that the demand function, for
anv commodity group, can |(. rotated merely by an appropriate change in the
constraint value of the cenvex combination ine.quality, i.e., the matrices

W., R, Q_are invariant under this class of trarsformations of the commodity.
3 G S : J

donand function,

b

The transformation of the demand function, for a single product
llusirated in Flgure %, gssuming that the function is linear.

N
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Figure 3
W
kql qu kq3
Quantity Quantity
The original demand function and corresponding W function is shown as Dl Dl
and OJV1 respectively, and the rotated demand function and corresponding
W function by Dl D2 and O\N2 respectively. |If the original demand function is
p=f(q) eoveenennn eeees (24)

it is required that the transformed function can be expressed as

p = (kG s . (25)
Such a formulation readily accomodates shifts in the demand function due e.g.,
to changes in population and/or per capita incomes. The rotation upwards
of the demand function is expressed as a proportional lengthening of the
segments, With price held constant. For the segmented W function, the
slope of the linearized function in each segment, being the approximation

to price within that segment, is equal for both wl and W_ for corresponding

2
segments. A similar condition holds for the Iinearize'd R function, where
the slopes are approximations to marginal revenue within the segment.

Given linearity, and the constancy of the slopes of the segmented functions
within each segment, the coefficients in the Ws and RS matrices can bc

expresséd as simple multiples of the corresponding quantities. This is lone,

for the transformed demand function, in Tableau 8. where again only the



selling activities zppear.

Tablzauv 8: Transformed Demsnd Function

Objective function kg W' +.. kg w' ...kqg W' Max
Je { Ry S PARPEEEEC B (Max)
‘ircome constraint " kg.r'., ... kagr' ..kq r' > Y*
pheome conser SR 9T g+ 5Tg 2 17
Commodity balance -kq, ... kg ... ~kq >0
- 1 : S S.

Convex combination

constraint 1 - 1 ... 1 g1

where w’S and rv‘S are simply W and re divided by qg5 and

k is the factor ofi proportionality by which the quantity demanded
increases at a given pvice.

Simply by dividing ail the elements of each activity by k, and
nultiplying through the convex combination constraint by k, the program
with the transformed demand function in Tableau 8 can be seen to reduce to
a program with coeificients in the coustraint matrix identical to those

bherore the demand cransformation, but with k replacing unity on the

A
-
I~
m

hand side -7 the convex combination constraint. This result is readily
exteonded te the conmodity group case, as can be seen by replacing 4q wiih

-qi, :n the wojective fdnction and income constraint, by replacing wé ana-

. : . 1/, . .

T ae corvespentiidy vectors WQ and Ré =" "and by recalling that the

ratyiee L in the conmodity bulances can be written as scalar multiples of

wr *Q;s tharacteristle ot the demand structure permits computationally
<

vEe grumeivic YIpiation of ine position of the demand function. It -

-

o mpg%g the possibilivy, in a larger system, of endogenously determining -

both the position of the demand functions and tne position on it.

- .over mixing activities,i s a scalar.
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Intercational Trade

A representation of international trade can readily be incorporated
into the structures developed in this article in the usual way in which it
is incorporated into planning models, that is, by adding commodity-specific
importing activities as additional "production™ activities and similarly
by adding exporting activities as additional selling activities. Again,
as usual, it is possible to specify import supply (export demand) as
being infinitely elastic, as being infinitely elastic but bounded, or as
being represented by an upward sloping supply (downward sloping demand)
schedule. In this last case, it is possible to approximate the non-
linearities involved by the methods developed above. Notice, however,
that it is oanly possible to specify a monopolistic formulation of export
supply, or a monopsonistic formulation of import demand, unless the
objective function and the scope of the model represents multi-country welfare.

When trading opportunities are included as outlined above, the
model captures the different trading positions posited by price theory and
depending on relative domestic and foreign supply and demand functions and
.on whether the objective function is chosen to ,reflect competitive or mono- ,
polistic behaviour. For cxamplc, in the monopolist case, final product
,importing activities never enter the optimal basis, and the model reprzduces
the expected two-price behaviour \;%en the foreign marginal revenue function

-

lies above the domestic marginal rivenue function. 1/

1/ One case which the structure will not handle is the monopolist case where

either of the demand functions is of the double-log form and where the
elasticity of demand is less than unity in absolute value. In this case,

marginal revenue is negative, but increasing, i.e. the function is non-
convex.



An Anplication

Some nuzerical results with these demand structures were obtained
with the model for Mexican agriculture, CHAC Y Here it is relevant to
note the trade-offs between sector income and consumers' "welfare” which
occurs in moving frem the conpetitive to the monopolistic solution. 1In
CHAC, two definitions of gains to producers were used: farmers' income
and farmers' profits. The former includes own-wages, whereas the latter
does not. Proper representation of monopolistic behaviour requires
maximizaticn of producers' profics rather than total income.

Successively higher lower bounds were place on farmers' profits

ro simulate supply control regimes, and finally, at the extreme, farmers'

profits were maximized. The following table shows the numerical results:

Table 1.

| eroentage Supply Control Solutions Monopolistic
change in: a/ [ Il III solution
Chiective function -0.1 -0.1 -0.1 -0.2
Farmors' srofits 10.0 b/ 30.0 b/ 50.0;2/ 93.0
Farmers ! incone 6.3 19,3 32,2 57.0
Consuxer surplus -1.5 -4.3 -7.3 -13.1

_ B . I '
Production: ' -0.3 ~-0.6 -0.9 ' -.1.3
4/ helative to competitive solution,

(Y W

b/ mindios constraint on tarmers' profits.

gr¢ the tatlc, it may be seen that there IS very lggtle "welfare

ios ' as nmeasured crudelv bv aggregating the sun of consumer and producer

L/ See UDuloy and NWorvon (1972 (8) and (b)).
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surpluses, in moving froa the competitive to the monopolistic solution.—ll

There is , however, a marked increase in farmers' income and a corresponcing

decrease in consumer surplus.

Conclusions

First, this paper has devzloped a practical procedure for |
enforcing both competitive and noncompetitive market st -uctures by means
of the optimization inherent in linear programming. The procedure has the
property that arbitrarily close approximations to nonlinear forms = in both
the objective function and constraint set = can be made without much loss of
the computational efficiency of the simplex algorithm. In this respect,
the paper extends the ideas of Miller (1963) and integrates them with the
work on market forms in mathematical programming by Samuelson (1952) and
Takayama and Judge (1964, 1971).

Second, it has shown that the noncompetitive market structure
nay be used for measuring income at endogenous prices in a competitive
model, and thus may serve as a constraint on that measure of income to
represent certain classes of economic policies. Third, it has developed
a procedure for approximating product substitution effects in demand in a
linear program. Alternative procedures are present‘ed for the cases of full
and pertial information on the matrix of own- and cross-price elasticities.
The demand structure can very simply be transformed to take account of any
shift in demand which can be représented by a rotation of the demand function.

3
Fourth, international t¥ade can be integrated into the structure.

.g_)o WL

1/ Plessner (1971) finds that rather more significant welfares losses
would be implied by monopoly in the apple and pear markets in Israel.
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