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Abstract
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of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper estimates a model of household-level demand 
for electricity services and electricity demand in the Indian 
state of Rajasthan using a combination of household-level 
survey and administrative data.  The model incorporates 
customer-level demographic characteristics, billing cycle-
level weather variables, and the fact that households face 
increasing block prices of electricity. The model allows 
estimating consumer response to price changes by four 
categories of energy services demand, namely, heating and 
cooling, lighting, and for domestic and business end-uses. 
The knowledge of demand response across different end-use 
helps in differentiating the impact of price changes along 
the income distribution. The model finds that the demand 
for heating and cooling energy is the most price inelastic 
and income elastic service, whereas the demand for domes-
tic end-use is the most price elastic and income inelastic 
service of all four categories. The structural demand model 

also helps in comparing the welfare implications of current 
energy tariffs to those based on normative principles of 
efficient retail electricity pricing. For this analysis, first, the 
social marginal cost of electricity is calculated using publicly 
available data on generation, transmission, and distribution 
losses and emissions. The social marginal cost estimate, in 
combination with observable household characteristics, is 
then used to examine alternative tariff structures that are 
more affordable, equitable, and revenue sufficient for the 
utility than current price structure. An alternative tariff 
design, comprising of an energy price set to the social 
marginal cost of electricity and a fixed cost component 
determined by proxy indicators of household willingness 
to pay, performs better on the above parameters than the 
current schedule. Other sources of technical losses, related 
to transmission or distribution, are not studied in this paper.
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Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The authors may be contacted 
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SECTION I: Introduction 

This paper specifies a model of household demand for electricity services and demand in the 
Indian state of Rajasthan using a combination of survey data, conducted in two districts of Rajasthan, 
and administrative data, comprising of billing cycle level consumption and charges. This model 
incorporates customer-level demographic characteristics and weather variables. The model also 
accounts for the fact that households face increasing block price schedules to recover the parameters 
of the household’s indirect utility function, which is subsequently used to evaluate the welfare impacts 
of alternative retail pricing structures. 

 Our model of the household-level electricity demand embodies the fact that electricity 
consumption is the result of a household’s demand for hours of service from all electricity-consuming 
capital goods that it owns. For example, a household does not directly consume electricity, but instead 
consumes lighting services, which combines electricity use with an electricity-consuming lighting 
device.  The amount of electricity that an hour of lighting service consumption depends on the number 
of lighting devices a household owns.  Combining household-level survey data on electricity appliance 
holdings and the monthly hours of use of each appliance with the household’s billing cycle electricity 
consumption and total bill, allows us to recover an estimate of the household’s demand for the 
following electricity services: (1) lighting, (2) general appliances for domestic end-uses, (3) heating and 
cooling and (4) business end-uses of electricity.  

A two-step estimation procedure is employed that first recovers a household-level “electricity 
production function” which characterizes the relationship between the household’s billing cycle 
electricity consumption in kilowatt-hours (kWh) and hours of use of each of four electricity services 
during that billing cycle. The partial derivative of this “electricity production function” with respect to 
an electricity service times the marginal price of electricity faced by the household is the effective rupees 
per hour of use price that the household pays for the last hour consumed of that electricity service.  
These effective prices and the hours of electricity services consumed along with information on the 
customer’s monthly electricity bill are used to estimate the household’s billing cycle-level demand for 
each electricity service.  The demand for each electricity service is derived from an underlying model 
of utility-maximizing behavior subject to a nonlinear budget constraint that arises because the 
household faces an increasing block price schedule for their electricity consumption. Moreover, there 
is a nonlinear relationship between a household’s demand for each electricity service and its total 
electricity consumption for the billing cycle.  This structural demand system also offers an estimate of 
a range of own-price elasticities that can be used to assess the household-level welfare implications of 
facing different tariff schedules for their monthly electricity consumption. 

Our electricity service demand model recovers separate price and income responsiveness for 
different uses of electricity by the household, as well as cross-price elasticities between the different 
electricity services.  These measures can provide valuable input to the tariff design process.  If certain 
energy services are more inelastically demanded, there are greater opportunities to recover revenues for 
the distribution utility through price increases to households that consume significant amounts of these 
services.  Alternatively, if certain electricity services are elastically demanded, then providing subsidies 
to purchase the capital goods necessary to consume these electricity services will increase the 
willingness to pay of households for electricity.  Understanding which of the four energy services has 
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the highest income elasticity will allow the rate designer to tailor tariffs to recover more revenues from 
customers that consume these services. It also allows us to unpack the heterogenous effects of price 
changes on household consumption across the income distribution. 

Our estimate of the electricity production function implies significant price heterogeneity 
across customers for the same energy service.  There are two main reasons for this result.  First, there 
is heterogeneity in the rate at which appliances consume electricity across customers.  For example, 
depending on what kind of television, washing machine, or microwave oven a household owns, the 
electricity consumption per hour of use of each appliance can vary across customers.  How intensively 
the various appliances within each energy service category are used can vary depending on weather 
conditions. For example, when it is extremely hot outside a household might stay inside and watch 
more television and wash clothes, rather than use other appliances in that energy service category.  
Second, a given appliance can consume more electricity depending on weather conditions. For example, 
one hour of use of an air conditioner when it is extremely hot outside consumes more electricity than 
it does during milder days.   

Results from our energy services demand system finds significant differences in the own-price 
elasticity of demand across the four energy services. The own-price elasticity of demand for these 
energy services vary from -2.7 for domestic end-use appliances to -0.3 for heating and cooling services. 
There is also considerable heterogeneity in the income elasticity of demand across these four services 
with the highest and lowest income elasticity for heating and cooling end-uses and for domestic 
appliance end-uses, respectively observed in the data. 

These estimates from the structural model are then used to analyze the performance of a tariff 
schedule recently proposed by India’s central power ministry. The results show that the proposed tariff 
structure will increase consumption for all households in Rajasthan by reducing the retail cost of energy. 
However, consumption gains will be regressive: the average gains for households in the top income 
quintiles will be significantly more than the poorest ones. Moreover, the proposed tariff structure will 
reduce revenues for the utility by 32 percent relative to current levels. 

Moving away from ad-hoc determination of tariffs, we then examine if normative principles of 
electricity pricing can be used to set revenue-sufficient prices that are progressive and efficient. These 
principles recommend a two-part tariff comprising of variable and fixed costs. The variable cost of 
energy should be set to the social marginal cost of electricity (the cost of producing an extra unit of 
energy) for all households. The fixed cost should however vary across households and should be based 
on their willingness to pay for power.  

 The social marginal cost of electricity in Rajasthan is calculated using publicly available data on 
energy generated by power stations at 15-minute block intervals. The marginal cost of generating power 
is estimated using bidding data from a segment of the wholesale electricity market. The marginal cost 
of transmission and distribution losses and the external cost of carbon dioxide emissions as a result of 
thermal power generation is also calculated to estimate the overall social marginal cost of power in 
Rajasthan. In calculating these costs, the paper shows that including the marginal cost of carbon 
emissions in the retail price of energy can increase electricity prices by approximately 50%. This result 
indicates that given India’s current electricity generation mix, passing the full cost of carbon 
externalities to the retail price of electricity may lead to an impractical rise in the price of power.  
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Finally, the paper demonstrates how a utility can leverage its administrative billing database to 
recover estimates of household willingness to pay for power and use this information to set fixed prices. 
Based on the social marginal cost estimate and the historical consumption data from the administrative 
data set, the paper propose a two-part tariff which allows the utility to fully break-even on its costs. As 
variable costs are set to the social marginal cost for all households, the recommended tariff does not 
distort consumption by charging some households more than others, achieving the goal of economic 
efficiency. The recommended tariff design leads to progressive prices: it generates an average gain of 
Rs. 4.5 to Rs. 10 for households at the lowest quintile of the income distribution and an average loss 
of Rs. 20 per month for households in the top quintile.  

The proposed schedule aims to stem losses from the residential sector and is likely to benefit 
both consumers and utilities. Other sources of technical losses, either related to transmission or 
distribution, are not studied in this paper. 

 The remainder of the paper proceeds as follows.  Section II sets the context by describing the 
current challenges facing the Indian power sector and summarizes previous topically or 
methodologically related research.  Section III describes the data sets used in our analysis and presents 
descriptive statistics to provide background for our analysis. Section IV describes the two-step 
econometric model of energy services demand. Section V describes the estimation procedure and 
results. Section VI estimates the social marginal cost for electricity in Rajasthan and describes 
counterfactual tariff experiments using own-price elasticity estimates from the demand model. Section 
VII concludes the paper. 

 

SECTION II:  Residential Electricity Prices and Policies in India and Rajasthan 

Electricity for household consumption accounts for approximately a quarter of all electricity 
sales in India. As shown in Figure 1, the share of residential end-use of electricity was approximately 
27 percent of all sales in 2014-15 and varied between 50 to 17 percent in the larger states. A sizable 
portion of these sales made by publicly-owned electricity distribution companies (“discoms”), were at 
prices significantly lower than the average revenue required to recover discoms’ costs. The resulting 
losses on discoms’ balance sheets, account for 83 to 90 percent of all financial losses in the power 
sector.1 

In Figure 2, discoms’ losses are decomposed into losses due to collections, distribution and 
underpricing of electricity. In 2003, the average price charged by discoms was well over the average 
cost of supply, but by 2011 this trend had reversed: underpricing accounted for 16 percent of the annual 
losses in the sector.  Instead of addressing mispricing directly, discoms have attempted to cover their 
revenue shortfall by (i) raising external debt to finance operational expenditures (ii) charging a higher 
price of electricity for industrial and commercial end-uses to cross-subsidize agricultural and domestic 
consumers as shown in Figure 32 (iii) rationing the supply of power to only a few hours of the day to 

 
1 Khurana, Mani, and Sudeshna G. Banerjee. 2013. “Beyond Crisis: Financial and Operational Performance of India’s Power Sector.” 
2 Pargal, Sheoli; Banerjee, Sudeshna Ghosh. 2014. More Power to India: The Challenge of Electricity Distribution. Directions in 
Development--Energy and Mining. http://openknowledge.worldbank.org/handle/10986/18726   

http://openknowledge.worldbank.org/handle/10986/18726
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bring down their total power purchase cost; and (iv) developing a complex tariff structure made up of 
several increasing block-tariff (IBTs) rates, fixed costs, surcharges and duties.  

Recent developments indicate that policy attention is now turning towards addressing issues of 
pricing electricity. The central Ministry of Finance through its annual Economic Survey 2015-16 has 
recently proposed a strategy to make residential price schedules equitable and easier for consumers to 
comprehend and respond to.  The Power Ministry has proposed a draft amendment to simplify tariff 
categories and rationalize retail prices.3 At the state level, other regulators, such as Andhra Pradesh’s 
State Electricity Regulatory Commission (APERC), have undertaken studies to design better residential 
electricity pricing.4 Like APERC, Rajasthan’s Electricity Regulatory Commission is also evaluating 
efficient strategies to better price their residential electricity consumers.  

A better understanding of the relationship between socioeconomic and demographic 
characteristics of households and their willingness to pay for electricity is an important input into the 
process of designing tariff schedules that can achieve revenue sufficiency for the discoms. 
Understanding the economic determinants of a household’s monthly electricity consumption, 
especially for low-income consumers, is also essential for meeting the affordability and equity objectives 
of the government, regulator and the utility.  

This paper uses a structural demand model to propose an alternative tariff structure that can 
achieve these three objectives. Even though the demand model and welfare analysis outlined in this 
paper can be used to set prices for any discom in India, the paper uses data from the state of Rajasthan 
to illustrate the methodology to set tariff levels. The average revenue generated by domestic consumers 
of a utility in Rajasthan in FY2016-17 was Rs. 6.31 per kWh as against an average revenue requirement 
of Rs. 7.74 per kWh of energy for the utility. This suggests that domestic consumers of the utility were 
undercharged by Rs. 1.43 per kWh on average, a shortfall that is cross-subsidized by commercial and 
industrial consumers of the discom. By achieving cost-neutrality, the proposed alternative tariff design 
aims to remove the need to cross-subsidize residential users and reduce the higher cost of power 
currently borne by other consumer categories. However, addressing challenges known to be endemic 
to India’s power sector, such as low-collection efficiency, high transmission and distribution losses, 
ineffective dispatch mechanisms, etc., will require policy interventions that are outside the scope of this 
paper.  

Electricity prices in Rajasthan, like much of rest of India, follow an increasing block tariff (IBT) 
structure, consisting of a marginal price component called an energy charge, and a fixed charge.5 As 
shown in Figure 4, the marginal price is the same for all consumption on a block or range of monthly 
consumption but increases for higher amounts of consumption. Rajasthan’s tariff schedule also has a 
lower first-block energy charge for households possessing a below poverty line (BPL) card. The utility 
provides an energy price subsidy of rupees 1.9/kWh and rupees 1.3/kWh for households below and 
above the poverty line (APL) consuming less than 50 kWhs per month, respectively. An additional 
fixed charge subsidy of rupees 30 per connection is also provided to households below the poverty 

 
3https://powermin.nic.in/sites/default/files/webform/notices/Seeking_comments_on_revised_provision_at_Para.p
df  
4 APERC, Public Notice, October 4th , 2016. http://www.aperc.gov.in/aperc1/assets/uploads/files/6581e-
pn_tariffcategories_goi_mop_04102016.pdf 
5 There are several other charges, subsidies, incentives and taxes in the tariff schedule. We describe these charges in further sections of 
the paper. 

https://powermin.nic.in/sites/default/files/webform/notices/Seeking_comments_on_revised_provision_at_Para.pdf
https://powermin.nic.in/sites/default/files/webform/notices/Seeking_comments_on_revised_provision_at_Para.pdf
http://www.aperc.gov.in/aperc1/assets/uploads/files/6581e-pn_tariffcategories_goi_mop_04102016.pdf
http://www.aperc.gov.in/aperc1/assets/uploads/files/6581e-pn_tariffcategories_goi_mop_04102016.pdf
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line. BPL households are APL energy and fixed charges if their consumption exceeds 50 kWh of 
consumption during a billing cycle.   

 The IBT schedule seeks to provide a minimum amount of electricity at an affordable cost to 
low-income/low-consumption households. IBTs also enable a utility to achieve its revenue goals, by 
deriving a larger share of its revenue from high-income and high-consumption households.  From the 
perspective of balancing affordability and revenue sufficiency goals, designing an efficient IBT schedule 
amounts to separating households into distinct groups based on their willingness and ability to pay for 
electricity and using observable household characteristics to optimally setting consumption blocks at 
an appropriate marginal price. 

 IBTs are not unique to India and the estimation of residential electricity demand under IBT 
schedules has been studied extensively in developed country settings. Reiss and White (2001) use a 
representative sample of California households, and summarize how the structure of electricity demand 
varies across customers.6  The model is then used to analyze the effect of tariff changes on changes in 
consumption and the share total monthly expenditure a household spends on electricity.  

 McRae (2015) is one of the few papers that conducts a similar exercise in a developing country 
setting,7 by building an asset ownership model using Colombian census data and pairing it with a 
utility’s administrative billing data, to show that government subsidies for electricity programs 
disincentivizes greater investments in electricity infrastructure and ensnares poorer households in a 
low-level subsidy trap. McRae (2015) uses the demand estimation under non-linear pricing econometric 
modeling framework developed by Hanemann (1984)8 to recover the parameters of household-level 
preference functions.  

 More recently, Wolak (2016) applies an enriched version of this modeling framework to water 
utility customers in California and uses it to find price schedules that ‘’optimally’’ balance the revenue 
and conservation goals of water utilities.9 Households choose their consumption level to maximize a 
utility function which depends on their demographic characteristics. Despite the household’s best 
intentions to use only utility a maximizing level of water, each water service demand has technological 
uncertainty in the exact amount of water consumed. For example, running water for a hot shower on 
a cold day takes longer than on a warm day and therefore uses more water. Therefore, it is practically 
impossible for a household to precisely adjust their consumption to arrive at the utility-maximizing 
consumption, i.e., the kink points on their piecewise linear budget set. For this reason, in addition to 
the usual error term capturing the unobservable household characteristics in econometric models, a 
second stochastic unobservable called the optimization error is introduced into the demand model in 
Wolak (2016). This term accounts for uncertainty in the actual amount of water consumed by the 
household relative to their intended water service consumption level. 

 In the Indian context, two data sources that have been previously used to study electricity 
demand are the National Sample Survey Office’s (NSSO) consumption expenditure rounds and panels 

 
6 Household Electricity Demand, Revisited. Reiss and White. 2001. http://www.nber.org/papers/w8687.pdf  
7 Infrastructure quality and Subsidy Trap. Shawn McRae. 2015. https://www.aeaweb.org/articles?id=10.1257/aer.20110572 
8 Hanemann, W. Michael. "Discrete/continuous models of consumer demand." Econometrica: Journal of the Econometric Society 
(1984): 541-561. 
9 Wolak, Frank. 2016. Designing Non-linear Price Schedules for Urban Water Utilities to Balance Revenue and Conservation Goals. 
http://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/water_paper_wolak_draft-9.pdf 

http://www.nber.org/papers/w8687.pdf
https://www.aeaweb.org/articles?id=10.1257/aer.20110572
http://web.stanford.edu/group/fwolak/cgi-bin/sites/default/files/water_paper_wolak_draft-9.pdf
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of the India Human Development Survey. Both sources are known to miss the top of the income 
distributions and report electricity consumption based on self-reported figures.  These surveys are not 
designed to accurately measure residential electricity consumption and therefore do not capture the full 
distribution of electricity consumed in a region. Figure 5 compares the consumption distribution from 
the administrative billing data from one of Rajasthan’s power utilities from 2015-16 to NSSO’s 
consumption expenditure survey of 2011-12 for districts served by this utility. The figure highlights the 
fact that, assuming distribution neutrality between these sets of years, NSSO consumption data is 
particularly imprecise in capturing the top ends of the consumption distribution and therefore 
unsuitable to conduct counterfactual pricing analysis. 

 This paper uses appliance level ownership from a household survey and household’s billing 
cycle-level electricity consumption from administrative billing data to estimate a demand model for 
energy services. Consumption-specific charges under the IBT schedule and variation in weather 
conditions within a household’s billing cycle are accounted for in the estimation of this model. The 
model also incorporates heterogeneity in residential demand due to observable socio-economic 
characteristics-–such as, income, family sizes and other observable factors that differ across customers. 
This allows us to recover the price-responsiveness of demand into four categories of energy services 
demand as well as the overall responsiveness of electricity demand to the price of electricity.  

SECTION III: Data and Descriptive Background 

The data used in this paper are from three different sources:  

(i) administrative data on billing cycle-level electricity consumption and bills issued for every household 
in two districts of Rajasthan – Jaipur and Alwar and served by a local electricity utility called JVVNL10 
for four years.  

 (ii) detailed household demographic characteristics and appliance ownership and use from a survey 
designed and implemented in 2017; and,  

(iii) spatially disaggregated daily temperature and precipitation data from Indian Meteorological 
Department.   

Each of these data sources is described below with additional details offered in Appendix 2. 

2.1 Electricity consumption and prices data 

Administrative cycle-level billing data for residential consumers were collected directly from 
JVVNL. The data set contains a unique billing code identifier which is used to match households across 
survey and administrative data sets. The administrative data provides information on the total energy 
consumed during the billing cycle, the calendar dates on which the meter was read, the total energy 
charges and fixed charges, electricity duties, subsidies, and other charges included in the bill. However, 
it does not record the tier of the IBT schedule corresponding to the monthly consumption and the 
corresponding marginal price of electricity. These are backed out by calculating the energy price implicit 

 
10 JVVNL is one of the three electricity distribution companies in Rajasthan. JVVNL serves approximately 40 percent of total demand 
for power in Rajasthan. The entire state of Rajasthan is divided into three distinct service areas which are served by each utility. As 
geographic areas are demarcated across utilities, there is no retail competition across utilities. 
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in the billing data and comparing it to the IBT structure publicly issued by the utility. Appendix 2 
contains an example of how this exercise is carried out. 

In general, JVVNL generates a new bill once every two months. In some cases, however, bills 
are delivered before or after the two-month interval based on the route taken by the utility’s roving 
meter readers to visit respective households. Observations for which the billing interval is more than 
180 days are excluded from the analysis. If the meter reader is unable to establish contact with the 
household or if the meter appears to be malfunctioning at the time of reading, the consumption figures 
for the household are not captured in the billing data set. In such cases, JVVNL makes an imputation 
based on the average consumption of the household over the past six months. Such observations are 
dropped from the sample resulting in exclusion of an additional 1,250 observations (13% of the data). 

To provide an overview of prices and consumption variables in the data set, Table 1 shows the 
summary statistics for all households over 2014-2017 period. The average monthly per capita 
consumption of electricity in the sample is 39.7 kWhs – more than double the per capita residential 
usage of 15 kWh in Rajasthan in 2012.11 The increase in the per capita electricity consumption reflects 
robust economic growth and rapid rates of electrification in the region.  

Policy induced changes in prices are key to recovering model estimates.  Marginal prices on the 
increasing block tariff for residential consumption were revised twice within the sample period. Figure 
6 shows the distribution of average daily household consumption by the month of bill issuances,12 with 
red labels in the horizontal axis indicating the periods in which these price changes occurred. There is 
considerable heterogeneity in consumption across households within a month which provides the 
household-level variation required to estimate the parameters of the model. Expectedly, there is 
seasonality in the consumption levels – with peak and lows during the summer and winter months 
respectively. Appendix 2 contains additional validation checks. 

2.2 Household characteristics 

Household characteristics were collected through a survey carried out in two districts of 
Rajasthan. The survey, conducted as part of World Bank electricity lending program in the state, was 
administered by a local team of fieldworkers with extensive experience working and residing in these 
areas. The goal of the survey was to collect household demographics, socio-economic data, appliance 
ownership and use, and unique household level billing codes to match survey data to the billing 
database. The survey enumerated approximately 2,000 households.13  

 
11 Prayas (Energy Group), Residential Electricity Consumption in India: What do we know? December 2016. 
http://www.prayaspune.org/peg/publications/item/download/709_95c95aa4a9ad64d4f944fc8dcd78000c.html   
12 Average daily household consumption by month of issuance = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
13 The sampling for the survey was done in two stages. The first stage picked a representative population of villages for rural areas, and 
enumeration blocks (EBs) for urban areas, stratified by district. In the second stage, all structures within a village or EB were enumerated, 
and then a representative sample was drawn from this listing. In rural areas, a single household was randomly drawn from each structure, 
stratifying on three strata: (i) Households with no electricity bills, (ii) Households receiving electricity bills and below the poverty line, (iii) 
Households receiving electricity bills and above the poverty line. In urban areas, households were sampled randomly without stratification. 
In all 67 enumeration blocks and 60 villages were listed and 4,755 structures were selected for sampling of households at the second 
stage. The total population in our sample was approximately 11% more than the total census-2011 population. The population growth 
reflects an annualized growth rate of 1.8% in this region. 

http://www.prayaspune.org/peg/publications/item/download/709_95c95aa4a9ad64d4f944fc8dcd78000c.html
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The survey reveals a near complete electrification rate in urban areas and 92 and 94 percent 
electrification rates in rural areas of Alwar and Jaipur respectively. The National Family Health Survey 
(NFHS) of 2015-16 closely reflects these findings, reporting 99 and 96 percent electrification in urban 
and rural areas of Jaipur, and 97 percent electrification in rural areas of Alwar. Of 2,027 households 
surveyed in the sample, 1,637 households had a metered electricity connection; 904 of these households 
had complete socioeconomic information and matched to the administrative billing data. Table 2 shows 
that the consumption distribution of the sampled households is able replicate the consumption 
distribution from the billing cycle-level data set over the selected period.14 These matching patterns 
allay concerns related to sample selection in the overall distribution, except from the 95th percentile 
onwards of the consumption distribution - where our sample appears to represent a lower fraction of 
households than in utility’s customer database. 

To capture household-level income, the survey contained modules pertaining to farming, 
livestock, self-employment, casual labor activities, salaries jobs and remittance earnings for each adult 
member of the household. Total household income was calculated as the sum of incomes across each 
of these modules and household members. The survey had a non-response rate of approximately 9% 
on income questions -- these non-responsive households were also excluded from the sample. To keep 
the survey tractable and short, data on household consumption expenditure or assets and liabilities 
information was not collected. As a result, household disposable income cannot be calculated separately 
from total household income. Finally, household-bills for which the annualized electricity bill amount 
was greater than 75% of annual reported household income were excluded.  This restriction is imposed 
to account for the fact that households also need to pay for food and other essentials besides electricity 
throughout the year. 

After excluding observations based on the income criteria and after matching household survey 
data to the administrative data, the final sample contained 7,615 billing-cycle level observations 
comprising of 805 unique customers with an average of 13.4 billing cycles per customer in the data set. 
Ninety-six percent of these observations are from consecutive cycles, implying that a majority of 
households do not sort in and out of the panel.  Tables 3 summarizes socioeconomic characteristics of 
the sampled households and shows the share of households by various employment categories. 

The survey also collected information on ownership and intensity of use of electrical appliances, 
to estimate the demand for residential energy services. Detailed usage information in the survey 
combined with official wattage statistics of common household appliances, are used to calculate the 
demand for household energy services.15  The demand for energy at the appliance level is computed by 
summing the total hours for which an appliance is used over all days in the billing cycle multiplied by 
its standard wattage information and divided by the number days in the billing cycle. Each of the 24 

 
14 We selected the consumption distribution from January and February 2017 to produce this graph as these are the last two months in 
the administrative data that is closest to the period that we began survey data collection (April 2017). This allows us to best compare the 
consumption distribution across the two data sets. 
15 We obtain wattage information of common household appliances from Bureau of Energy Efficiency standards for 2012-13 and online 
load calculators provided by Tamil Nadu Generation and Distribution Corporation 
(https://www.tangedco.gov.in/load_calculato.html) and Paschim Gujarat Vij Company Limited 
(http://www.pgvcl.com/consumer/CONSUMER/calculate_n.php ) 

https://www.tangedco.gov.in/load_calculato.html
http://www.pgvcl.com/consumer/CONSUMER/calculate_n.php
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appliances covered in the survey is categorized into one of four energy services: heating and cooling, 
lighting, domestic end-use appliances, and business-end use appliances (the assignment is provided in 
Appendix 1, table 1). The energy demand for the four energy services is calculated by totaling the 
energy services demand for all appliances categorized under each group. Similarly, the total household 
level energy services demand is the sum of energy services for all appliances owned by the household.16 

The household demand for energy services based on survey data is expected to be close to the 
electricity consumed by the household as observed in the billing data.17 To check this relationship, the 
(log of) household demand for energy services per day from the survey is regressed on the (log of) per-
day electricity consumption observed in the billing data.18 Results in Table 5 show that the household 
demand for energy services demand calculations based on appliance ownership and usage is a better 
predictor of households observed daily demand at levels more than 0.67 kWhs per day (~20 kWhs per 
month). Therefore, we expect our demand estimation models to fit better for customers above that 
threshold.  

The data on household income and appliance ownership is based on self-reported household 
surveys. To the extent that the errors in these self-reported measures are independent of the latent true 
variable (i.e., classical measurement error), the instrumentation approach in GMM estimation allows us 
to obtain consistent point estimates of parameters of interest. 

2.3 Temperature and precipitation data 

The daily temperature and rainfall data are at a 1x1 degree and 0.25x0.25-degree gridded 
resolution from Srivastava, et. al (2009) and Pai, et al. (2014), respectively. The locations of the villages 
and census enumeration blocks are matched to these grids to obtain household-level measures of 
temperature and rainfall. Figure 9 shows deviations of daily temperature and rainfall in an area from its 
three-year period average (2014-2017). The precipitation curve shows that there is little variation in 
rainfall across time and regions. The low average precipitation levels in the region also explains the high 
ownership rates of air coolers (a device for precipitative cooling) as observed in the survey data. The 
temperature curve meanwhile highlights the wide heterogeneity in climatic conditions across villages 
and enumeration blocks even within the same month. This heterogeneity in temperatures across 

 
16 The minimum amount of household energy services demand based on appliance ownership and usage that we incorporate in our 
sample is 11.1 kWhs per month. This corresponds to ownership of 1 CFL light (of 20 W) and 1 mobile phone (of 6 W), used daily for 
1.5 and 1 hour respectively over 30 days. Households reporting less than this subsistence level of energy services, through ownership or 
hours of usage, are excluded from the sample. 
17 In section IV, we describe the actual model of energy consumed over a billing cycle (E) as a function of demand for energy services 
based on ownership and intensity of appliance use (s), weather and household characteristics. In this section, we are interested in checking 
for the average unconditional correlation between E and s, to establish some basic stylized facts about the data used in our sample. 
18 Let, 𝑒𝑒 =  𝛼𝛼 ∗ 𝑑𝑑, where 𝑒𝑒 is household energy services demanded per day based on the survey data (𝑒𝑒 = ∑ (𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 ∗𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖) where i denotes the type of appliance and 
𝑑𝑑 is the total annual energy demand based on the billing data set (𝑑𝑑 =

(𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦𝑦𝑦𝑎𝑎𝑎𝑎)

). Taking logs, ln(𝑒𝑒) = ln(𝛼𝛼) + ln (𝑑𝑑), implying that if we 

were to linearly regress the energy demand based on survey data to that of the billing data in per-day terms, and if appliance ownership 
were to capture energy demand well, we would expect the constant term of the regression to be zero (ln( 𝛼𝛼) ~0, implying 𝛼𝛼~1) and 
beta coefficient of ln (𝑑𝑑) to be positive and close to 1.   
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regions is exploited in later sections to estimate household-level demand. We refer the reader to 
Appendix 2 for additional validations conducted on the temperature and rainfall data. 

SECTION IV: Modeling Demand for Energy Services 

The model makes use of the data from the household survey of electricity-consuming appliance 
ownership and use in order to estimate a model of the demand for energy services. It captures the well-
known fact that electricity is a derived demand. Specifically, a household’s overall demand for electricity 
is derived from the demand for an energy service provided by an electricity-consuming capital good 
such as a light bulb, fan, air conditioner, etc. Moreover, the amount of electricity consumed to provide 
a fixed quantity of electricity services, say an hour computer use, is uncertain because of back- ground 
factors such as the background temperature and intensity of use of the appliance. Let 𝑠𝑠𝑖𝑖 equal the 
households demand for energy service 𝑖𝑖 in hours of use per day within the billing cycle, and 𝒔𝒔 =
(𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑁𝑁)′equal the vector of energy services demand for the N services that the household 
consumes. Let 𝐸𝐸 equal the household’s electricity consumption in kilowatt-hours (kWh) per day during 
the billing cycle. 

A household’s demand for a vector of energy services is related to its use of electricity during 
the bill cycle through the electricity production function, 𝐸𝐸 =  𝑓𝑓 (𝒔𝒔,𝐴𝐴, 𝜖𝜖).  This function characterizes 
the technological relationship between the vector of energy services a household consumes and the 
electricity use they require.  This function also depends on 𝐴𝐴, a vector of weather and household 
characteristics that impacts how the vector of energy services demand translates into electricity 
consumption, and 𝜖𝜖, a random variable that is unobserved by the household and the researcher that 
captures the uncertain amount of electricity, 𝐸𝐸, used by a household that consumes the vector of energy 
services, 𝒔𝒔. 

Let 𝑝𝑝(𝑒𝑒) equal the potentially nonlinear price schedule that the household faces, where 𝑝𝑝(𝑒𝑒) is 
the marginal price paid at electricity consumption level 𝑒𝑒. Let 𝑇𝑇 (𝐸𝐸)  =  ∫ 𝑝𝑝(𝑒𝑒) 𝑑𝑑𝑑𝑑𝐸𝐸

0   equal household’s 
total bill for the billing cycle under the nonlinear price schedule 𝑝𝑝(𝑒𝑒) for consumption level, 𝐸𝐸.  Note 
the 𝑝𝑝(𝑒𝑒) includes the fixed charge, if one exists, that must be paid regardless of the household’s billing 
cycle-level consumption of electricity.  

Assume the household consumes a composite “outside” good beside electricity, 𝑥𝑥, and that the 
household has a preference function, 𝑈𝑈 (𝒔𝒔, 𝑥𝑥,𝐴𝐴, 𝜐𝜐) which depends on the vector of energy services 
demanded by the household, its daily demand for 𝑥𝑥 during the billing cycle and observable 
characteristics of the household and the weather conditions the household faces, 𝐴𝐴, and υ is a vector 
of unobservable household characteristics.  Note that different elements of 𝐴𝐴 are likely to enter 
𝑈𝑈 (𝒔𝒔, 𝑥𝑥,𝐴𝐴, 𝜐𝜐) and 𝑓𝑓 (𝒔𝒔,𝐴𝐴, 𝜖𝜖).  The household’s budget constraint is equal to T(𝐸𝐸)  +  𝑝𝑝𝑥𝑥𝑥𝑥 ≤  𝑀𝑀 , 
where 𝑝𝑝𝑥𝑥 is the price of 𝑥𝑥 and 𝑀𝑀 is the household’s daily income during the billing cycle. We normalize 
all magnitudes to daily values in within the billing cycle because billing cycles have different lengths. 

The household’s budget constraint is nonlinear for two reasons. The first is because of the 
increasing block price schedule 𝑝𝑝(𝑒𝑒). The second is because the household consumes a vector of 
electricity-consuming services, 𝒔𝒔, which translates into the household’s billing cycle-level electricity use, 
E, through a potentially nonlinear function, 𝐸𝐸 =  𝑓𝑓 (𝒔𝒔,𝐴𝐴, 𝜖𝜖).   
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The household is assumed to maximize expected utility (where the expectation with respect to 
the technological uncertainty ϵ).  The problem takes the form: 

max
𝒔𝒔,𝑥𝑥

𝐸𝐸𝜖𝜖[𝑈𝑈 (𝒔𝒔, 𝑥𝑥,𝐴𝐴, 𝜐𝜐)]  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑇𝑇(𝑓𝑓 (𝒔𝒔,𝐴𝐴, 𝜖𝜖))  +  𝑝𝑝𝑥𝑥𝑥𝑥 ≤  𝑀𝑀   (1) 

where 𝐸𝐸𝜖𝜖[. ] implies taking the expectation with respect to the distribution of 𝜖𝜖.  Using the budget 
constraint to solve for the demand for 𝑥𝑥 given the demand for 𝒔𝒔 yields: 

𝑥𝑥 =  (𝑀𝑀−𝑇𝑇(𝑓𝑓 (𝒔𝒔,𝐴𝐴,𝜖𝜖)) 
𝑝𝑝𝑥𝑥

        (2) 

 Substituting into the household’s utility function yields the equivalent problem to (1): 

 max
𝒔𝒔

𝐸𝐸𝜖𝜖[𝑈𝑈 �𝒔𝒔, (𝑀𝑀−𝑇𝑇(𝑓𝑓 (𝒔𝒔,𝐴𝐴,𝜖𝜖)) 
𝑝𝑝𝑥𝑥

,𝐴𝐴, 𝜐𝜐�]          (3) 

which has the first-order conditions: 

𝜕𝜕𝐸𝐸𝜖𝜖[𝑈𝑈 �𝒔𝒔,(𝑀𝑀−𝑇𝑇(𝑓𝑓 (𝒔𝒔,𝐴𝐴,𝜖𝜖)) 
𝑝𝑝𝑥𝑥

,𝐴𝐴,𝜐𝜐�]

𝜕𝜕𝑠𝑠𝑘𝑘
= 0  𝑘𝑘 = 1,2, … ,𝑁𝑁                 (4) 

Switching the order of differential and integral yields 

𝜕𝜕𝐸𝐸𝜖𝜖[𝑈𝑈 �𝒔𝒔,(𝑀𝑀−𝑇𝑇(𝑓𝑓 (𝒔𝒔,𝐴𝐴,𝜖𝜖)) 
𝑝𝑝𝑥𝑥

,𝐴𝐴,𝜐𝜐�]

𝜕𝜕𝑠𝑠𝑘𝑘
= 𝐸𝐸𝜖𝜖[𝜕𝜕𝜕𝜕

𝜕𝜕𝑠𝑠𝑘𝑘
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘

 1𝑝𝑝𝑥𝑥
] = 0  (5) 

Note that 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕�  is equal to 𝑝𝑝(𝐸𝐸), the marginal price at electricity consumption level 𝐸𝐸. The other 
terms in (5) can computed once functional forms are chosen for 𝑈𝑈(𝒔𝒔, 𝑥𝑥,𝐴𝐴, 𝜐𝜐) and 𝑓𝑓(𝒔𝒔,𝐴𝐴, 𝜖𝜖). 

 The system of equations in (5) gives rise to a demand system for the vector (𝑠𝑠, 𝑥𝑥) that depends 

the price 𝑝𝑝𝑥𝑥, marginal prices for electricity services, 𝑝𝑝𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘

  and net income 𝑀𝑀𝑁𝑁  =  𝑀𝑀 +  𝐷𝐷.  𝐷𝐷 =

 𝑝𝑝(𝐸𝐸)𝐸𝐸 –  𝑇𝑇(𝐸𝐸) is the difference between the household’s billing cycle level consumption, 𝐸𝐸, valued at 
the billing cycle level marginal price paid by the household, 𝑝𝑝(𝐸𝐸), and the household’s electricity bill 
𝑇𝑇(𝐸𝐸).  𝐷𝐷 is the additional income or reduction in income the household receives because it pays for 
its billing cycle-level electricity consumption according to nonlinear prices. If 𝑝𝑝(𝐸𝐸) is an increasing 
block price schedule, 𝐷𝐷 can be either positive or negative depending on the magnitude of the monthly 
fixed charge paid by the household. 

 

SECTION V: Estimation Procedure and Results  

Let 𝑠𝑠𝑖𝑖(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴, 𝜂𝜂),  𝑖𝑖 = 1,2,3,4 and 𝑥𝑥(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴, 𝜂𝜂) where 𝑝𝑝 =  (𝑝𝑝1,𝑝𝑝2 𝑝𝑝3,𝑝𝑝4)′ 
and 𝜂𝜂 is function of the unobserved variables, 𝜐𝜐, in the household-level utility function, equal the energy 
service and composite good demand functions that result from solving (5).  Substituting these demand 
functions into the direct utility function, 𝑈𝑈(𝒔𝒔,𝑥𝑥,𝐴𝐴, 𝜐𝜐), yields the indirect utility function  
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𝑉𝑉(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴, 𝜂𝜂)  =
 𝑈𝑈(𝑠𝑠1(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴, 𝜂𝜂), … , 𝑠𝑠4(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴, 𝜂𝜂), 𝑥𝑥(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴, 𝜂𝜂),𝐴𝐴, 𝜐𝜐).     (6) 

We assume a translog indirect utility functional form for (6).  Let 𝑤𝑤𝑖𝑖𝑖𝑖  =  𝑝𝑝𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖/𝑀𝑀𝑁𝑁(𝑡𝑡) equal the 
expenditure share for good 𝑖𝑖 = 1,2, … ,5, where good 5 is the composite good, so that 𝑝𝑝𝑥𝑥  =  𝑝𝑝5 and 
𝑠𝑠5  =  𝑥𝑥.  Apply Roy’s Identity to this indirect utility function to derive the expenditure share equations: 

    𝑤𝑤𝑖𝑖𝑖𝑖 = 1
𝐷𝐷�𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴�

(𝛼𝛼𝑖𝑖 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ln � 𝑝𝑝𝑖𝑖𝑖𝑖
𝑀𝑀𝑁𝑁(𝑡𝑡)

� +  ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘) +  𝜐𝜐𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘=1

5
𝑗𝑗=1     (7) 

where 𝐷𝐷�𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁,𝐴𝐴� = −1 +  ∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ln � 𝑝𝑝𝑖𝑖𝑖𝑖
𝑀𝑀𝑁𝑁(𝑖𝑖,𝑡𝑡)

� +  ∑ ∑ 𝛾𝛾𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1

5
𝑖𝑖=1

5
𝑗𝑗=1

5
𝑖𝑖=1  for i=1,2,…,5. 

The 𝜐𝜐𝑖𝑖𝑖𝑖 are assumed to be zero mean random variables that are orthogonal to, 𝑍𝑍𝑖𝑖𝑖𝑖, a vector of 
instruments composed of household characteristics, weather variables within the billing cycle, and 
interactions of these two sets of variables. The weather variables include average temperature and 
rainfall in the first stage unit that the household belongs to. The household characteristics included in 
the instrument are age and years of schooling of the head of the household, household size, urban or 
rural classification, number of rooms in the house and average daily income. 

Operationalizing the estimation of the parameters of the indirect utility function requires an 

estimate of the electricity production function 𝑓𝑓(𝒔𝒔,𝐴𝐴, 𝜖𝜖) to compute estimates of 𝑝𝑝𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

(𝒔𝒔,𝐴𝐴, 𝜖𝜖)𝑝𝑝(𝐸𝐸) 

for 𝑖𝑖 = 1,2,3,4 for each household and billing cycle. We assume the following functional form 
𝑓𝑓(𝒔𝒔,𝐴𝐴, 𝜖𝜖) 

𝐸𝐸𝑡𝑡  =  𝛿𝛿 + ∑ exp (∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑊𝑊𝑡𝑡)𝑠𝑠𝑗𝑗𝑗𝑗 +  𝜖𝜖𝑖𝑖𝑖𝑖𝑀𝑀
𝑚𝑚=1

4
𝑗𝑗=1                (8) 

where  𝜖𝜖𝑖𝑖𝑖𝑖 are zero mean regression errors and the 𝑊𝑊𝑡𝑡 are a vector of weather characteristics for the 
household during billing cycle 𝑡𝑡.  This specification imposes the restriction that all marginal prices are 
positive, because 𝑝𝑝𝑗𝑗  =  𝑒𝑒𝑒𝑒𝑒𝑒(∑ 𝜆𝜆𝑗𝑗𝑗𝑗𝑊𝑊𝑡𝑡)𝑀𝑀

𝑚𝑚=1  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2,3,4. The elements of 𝑊𝑊𝑡𝑡 are a constant, 
average daily temperature in the billing cycle, and average daily rainfall in the billing cycle.  These 
weather variables are included to account for the fact that different combinations of appliances within 
each of the four energy service categories are likely to be used in different combinations, depending on 
temperature and rainfall conditions within the billing cycle.  For example, warmer weather with less 
rainfall, may cause the household to use different lights in the household with different intensities and 
each of these lights consume electricity at a different rate. Cooler and rainy weather may cause the 
household different combinations of general appliances that hotter and drier weather.  For instance, 
the household may be less likely to use an iron and run their refrigerator more intensively during hot 
weather than during cooler and more rainy weather. 

Table 8 contains the nonlinear least equations estimates of equation (8) with the standard errors 
clustered at the household level.  Figures 10-13 contains the distribution of billing cycle-level marginal 
prices for each of the four classes of energy services computing using the estimated parameters of 
equation (8), so that 𝑝𝑝𝑗𝑗  =  𝑒𝑒𝑒𝑒𝑒𝑒(∑ 𝜆̂𝜆𝑗𝑗𝑗𝑗𝑊𝑊𝑡𝑡)𝑀𝑀

𝑚𝑚=1  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,2,3,4 where the 𝜆̂𝜆𝑗𝑗𝑗𝑗 are the nonlinear least 
squares estimates of the 𝜆𝜆𝑖𝑖𝑖𝑖. 
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Given these prices, the expenditure shares for each energy service and the composite good can 
be computed, which completes the data necessary to estimate the translog model. Table 9 contains 
Generalized Methods Moments (GMM) estimates of the translog demand system with standard errors 
clustered at the household level.   

Table 10 presents the sample mean own-price elasticity of demand and expenditure elasticity 
for each energy service and the composite good. Heating and cooling are the most inelastically 
demanded energy service and general appliance use is the most elastically demanded energy service.  
All energy services have positive net income elasticities.   

The translog parameter estimates can also be used to compute a household’s elasticity of the 
demand for electricity.  Let 𝑝𝑝(𝐸𝐸) equal the marginal price at the customer’s actual level of consumption. 
The own-price elasticity of the demand for electricity with respect to this marginal price is equal to 

𝜀𝜀𝐸𝐸 =  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑(𝐸𝐸)

𝑝𝑝(𝐸𝐸)
𝐸𝐸 

= ∑ 𝜃𝜃𝑖𝑖  ∑ 𝜖𝜖𝑖𝑖𝑖𝑖4
𝑗𝑗=1

4
𝑖𝑖=1 , where 𝜃𝜃𝑖𝑖 =  𝜕𝜕𝜕𝜕

𝜕𝜕𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖
𝑓𝑓

 and 𝜖𝜖𝑖𝑖𝑖𝑖 =  𝜕𝜕𝑠𝑠𝑖𝑖
𝜕𝜕𝑝𝑝𝑗𝑗

𝑝𝑝𝑗𝑗
𝑠𝑠𝑖𝑖

 

The 𝜃𝜃𝑖𝑖  is elasticity of electricity use with respect to the 𝑖𝑖𝑡𝑡ℎ electricity service and 𝜖𝜖𝑖𝑖𝑖𝑖 is the cross-price 
elasticity of the demand for the ith energy service with respect to the price of the jth energy service. 

 

SECTION VI: Counterfactual Price Simulations and Welfare Analysis 

 Under the assumption that the estimated parameters of translog demand system are consistent 
with theory of utility maximizing behavior, the indirect utility function 𝑉𝑉(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁 ,𝐴𝐴, 𝜂𝜂) can be used 
to evaluate the household-level welfare implications of alternative nonlinear pricing plans. Define 
𝑉𝑉0  =  𝑉𝑉(𝑝𝑝𝑥𝑥,𝑝𝑝,𝑀𝑀𝑁𝑁 ,𝐴𝐴, 𝜂𝜂), indirect utility at the observed nonlinear pricing plan.   

 Consider an alternative pricing plan 𝑝𝑝∗(𝑒𝑒) with 𝑁𝑁 >  0 price steps, 𝑝𝑝𝑛𝑛∗ ,𝑛𝑛 = 1,2, …𝑁𝑁. Define 
𝐷𝐷𝑛𝑛 =  (𝑝𝑝𝑛𝑛∗)𝐸𝐸∗  −  𝑇𝑇∗(𝐸𝐸∗), where 𝐸𝐸∗ is the household’s electricity use under pricing plan 𝑝𝑝∗(𝑒𝑒).  
Solving the following equation in CV, 

𝑉𝑉0  =  𝑚𝑚𝑚𝑚𝑚𝑚 {𝑛𝑛≤𝑁𝑁}𝑉𝑉(𝑝𝑝𝑥𝑥,𝑝𝑝𝑛𝑛,𝑀𝑀 +  𝐷𝐷𝑛𝑛 –  𝐶𝐶𝐶𝐶,𝐴𝐴, 𝜂𝜂) 

yields the compensating variation associated with moving from the initial price schedule 𝑝𝑝(𝐸𝐸) to the 
new price schedule 𝑝𝑝∗(𝐸𝐸) for a household with income 𝑀𝑀, observable attributes, 𝐴𝐴, and unobservable 
attributes, 𝜂𝜂.  This compensating variation can be computed for each household in the data set. If the 
sum of compensating variations across all customers is positive, then it is theoretically possible to 
improve the welfare of households moving from 𝑝𝑝(𝐸𝐸) to 𝑝𝑝∗(𝐸𝐸) with the appropriate lump-sum 
transfers among households. 

 A strength of the energy services demand approach is that it considerably expands the set of 
counterfactual tariffs that we can consider. For example, a tariff that subsidizes the purchases of any 
single or group of electricity consuming appliances can be assessed using demand for these energy 
services. However, the utility and the regulator does not have access to demand parameter estimates 
for all households in its administrative data set. Therefore, in order to practically use our estimates to 
study the welfare consequences of alternative tariff structures, own-price elasticity estimates in the 
range of -0.1 to -0.4 from the structural demand model are used to calculate household level 
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counterfactual consumption under the assumption of a linear price elasticity of electricity demand. The 
range of these elasticities serve as bounds for the welfare estimates under counterfactual schedule, as 
the structural demand model suggests that household level own-price elasticities will be within this 
range.  

Finally, the short-run welfare consequences of tariff reforms can be studied using changes in 
consumer surplus as a proxy for household level compensating variation. In the short-run, household 
level demand is assumed to be constant and changes in prices cause the consumer to move up or down 
its demand curve. With changes in incomes in the long-run, the household may adjust its bundle of 
consumer durable appliances. Ownership of these new appliances can considerably expand the 
household’s energy choices and lead to a shift in the household’s short-run demand curve. Therefore, 
in the short-run, changes in consumer surplus serves as a sufficient indicator for studying household-
level welfare changes (Wilig (1976)19). 

• COUNTERFACTUAL 1: Tariff schedule proposed by the Ministry of Power 

In 2018, India’s Central Ministry of Power (MOP) issued a notification to simplify tariff 
categories and rationalize tariff rates across states. The notification proposed an IBT structure 
consisting of fixed and energy charges. The energy charges in the plan varied over five consumption 
tiers: 0 to 200, 201 to 400, 401 to 800, 801 to 1200 and greater than 1201 units. The fixed charges varied 
by the sanctioned load of the household under the following categories: 0 to 2 kW, 2 to 5 kW, 5 to 10 
kW, 10 to 25 kW and greater than 25 kW. The proposal however did not specify the level of the energy 
and fixed charges and left the determination of these prices to state level regulators.  

The paper uses the consumption categories proposed in MOP’s notification to construct the 
first counterfactual tariff schedule. To illustrate the welfare impacts of this tariff schedule, we assign 
energy charges from JVVNL’s 2016-17 tariff order to the consumption tiers in the notification. This 
illustration also uses the consumption tiers of the notification to assign fixed charges instead load 
categories varying by the sanctioned load. This is because the sanctioned load variable in JVVNL’s data 
set is either missing or noisily estimated, rendering it unusable for fixed cost imputations at the 
household level. Since the range of consumption in each tier of MOP’s notification is larger than the 
range in JVVNL’s tariff order (for instance, the first tier of consumption in JVVNL’s tariff order ends 
at 50 units, whereas the first tier in MOP’s proposal ends 200 units) for the same energy and fixed 
charge, one can expect this tariff design to result in higher consumer surpluses across all households 
but also lead to a revenue shortfall compared to the current tariff. 

 To study the welfare impacts of this tariff schedule and all other counterfactual schedules 
thereafter, the following methodology is used. A short-run linear demand curve is calibrated for each 
household using estimates of electricity demand own-price elasticities in the range of -0.1 to -0.4, which 
are consistent with the magnitudes estimated from our structural demand model. The calibrated 
household demand curve passes through the household consumption observed in household level 
billing data set and the corresponding marginal prices observed in JVVNL’s 2016-17 tariff order. Using 
this demand curve, consumer surplus at current tariff rates and under counterfactual tariffs can be 
calculated as the area under the short-run demand curve and above the step-wise marginal price curve, 
less the applicable fixed charges. The marginal price faced by a household includes the energy charges, 

 
19 Willig, R. (1976). Consumer's Surplus Without Apology. The American Economic Review, 66(4), 589-597. 
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electricity duty and urban cess. Fixed and energy charges are adjusted for subsidies provided to the 
household.  

The difference between current and alternative tariff measures the welfare impact of 
counterfactual tariffs. If consumer surplus under the counterfactual tariff is greater than JVVNL’s 
current tariff order, the counterfactual price design to be welfare enhancing over the current tariff 
order. Conversely, a lower consumer surplus indicates loss of welfare relative to the current tariff order. 

Next, JVVNL’s FY16-17 financial disclosure statements are used to calculate the average 
revenue requirement per unit of energy sales. This metric is used to test for the revenue sufficiency 
implications of the alternative tariff schedule for the utility. JVVNL sold 19.48 billion kilowatt-hours 
(kWh) with an annual revenue requirement of rupees 150.76 billion across all consumers in FY16-17. 
This translates to an average revenue requirement of Rs. 7.74 per kWh of energy sold (inclusive of 
taxes, subsidies and cess). A counterfactual design that achieves this price for each unit sold to the 
residential sector will be revenue neutral and will eliminate cross-subsidization of power from 
commercial or industrial consumers. 

 Figure 14 shows the difference in average monthly consumer surplus over the income 
distribution using MOP’s proposed prices and JVVNL’s current tariff schedule. As expected, MOP’s 
recommended price schedule increases welfare for all households across the income distribution. Table 
11 shows the gain in consumer surplus in rupees per month for a median household in each quintile. 
Expectedly, welfare gains are higher when demand is more price-elastic. Even though all households 
are better off under MOP’s proposed tariff design, welfare gains are regressive over the income 
distribution. This is because the per-unit price reduction under the MOP’s tariff is higher for top 
quintiles than the bottom ones. 

In addition to being regressive, the schedule also results in significant revenue losses. The 
reduction in marginal prices under MOP’s design reduces the gross revenue generated from the 
residential sector to Rs. 3.017 billion (at an own-price elasticity of -0.1). This represents a 31.2% loss in 
revenue under the current tariff (which is currently at 4.465 billion rupees). Adapting MOP’s pricing 
proposal would therefore require cross-subsidy transfers from commercial and industrial consumers. 
At more elastic demand levels, the amount of revenue shortfall and cross-subsidy requirements will be 
even larger. 

• COUNTERFACTUAL 2: An efficient retail price of electricity 
 

Under an efficient price schedule, the amount a consumer pays for an additional unit of 
consumption (her marginal price) is equal to the cost of supplying the additional unit of energy incurred 
(the utility’s marginal cost). The cost of supplying the additional unit of energy includes the cost of 
power purchase, the technical losses incurred in transmitting electricity through power lines and the 
social cost of carbon embedded in the generation of power. In Rajasthan, this cost also includes the 
state level taxes and cess incurred by the utility that are passed through to the final consumer. In 
situations where the marginal price of residential energy exceeds its social marginal cost (SMC), 
households consume too little energy and vice-versa. The determination of an efficient retail pricing 
structure in Rajasthan therefore requires an estimate of SMC in the state. This section with the 
estimation of Rajasthan’s SMC, followed by a dead-weight loss analysis to quantify the distortionary 
effects of current energy prices. It concludes by analyzing alternative schedules that set marginal prices 
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to SMC across all households and distributes fixed costs disproportionately across households to meet 
the three goals of economically efficient consumption, revenue neutrality and equity. 

 
(i) Calculating the SMC for Rajasthan 

 
The marginal cost of electricity is the price at which a utility buys an additional unit of electricity 

from power generating companies to meet an additional unit of demand. Because electricity cannot be 
stored over the grid, the demand for electricity is instantaneously matched with supply. The marginal 
price of electricity at time 𝑡𝑡 (𝑃𝑃𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) is calculated using the following formula: 

𝑃𝑃𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑃𝑃𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� �1 +
1

(1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑇𝑇 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝐷𝐷)�  + 𝜏𝜏𝑡𝑡 

where, 𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the marginal cost of producing an additional unit of electricity, 𝑃𝑃𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the 

marginal cost of emissions due to the additional unit of electricity generated, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑇𝑇 and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝐷𝐷 are 
technical losses over the transmission and distribution network and 𝜏𝜏𝑡𝑡 are the duties and cess per hWh 
levied by the utility.  

The four components of the marginal price of power are calculated as follows: 

• Marginal price of generation  

The market to match the instantaneous demand to supply is managed by a system operator. In 
an ideal setting, the operator meets total demand by cumulatively discharging energy from generating 
companies in an increasing order of their cost of generation, until supply matches demand. The variable 
cost of the infra-marginal plant is therefore the marginal cost of the system. However, in practice, the 
order of dispatching generators (also called the merit order) that is followed by the system operator in 
Rajasthan is a function not only of the variable cost of the infra-general generator but also of the 
transmission capacity of the grid, the stability of the grid at any time and the structure and regulations 
governing different electricity markets. Like Rajasthan, most states in India dispatch generators based 
on a combination of these factors. 

The total instantaneous demand for electricity in India is classified under two categories: 
scheduled and unscheduled demand. Scheduled demand is a utility’s forecast for a day’s worth of 
demand. There are two trading mechanisms available to the utility to meet its estimate of scheduled 
power: bilateral contracts and the day-ahead market. Bilateral contracts – set more than one year before 
dispatch are called long-term contracts and supply 90% of overall demand (Ryan (2018)20). Bilateral 
contracts – set less than one year from the moment of dispatch are called the short-term markets and 
supply 5% of the total demand. The last avenue to trade in scheduled power is the day ahead market 
which serves approximately 2% of the market. The prices and quantum of electricity in the day-ahead 
market at each 15-minute block in a day are determined through a double-sided closed bidding process. 

Utilities and generators hold positions in all three segments of the wholesale market to meet 
their demand and supply requirements. The system operator plays a key role in reconciling these 
positions across markets. Demand projections from a utility at each 15-minute block for each generator 

 
20 Ryan, Nick. “The Competitive Effects of Transmission Infrastructure in the Indian Electricity Market”. 2018. 
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is intimated to the system operator (also called the state load dispatch center (SLDC)), one-day prior 
to dispatch.21 The SLDC verifies this demand against supply-side information provided by generators, 
such as, capacity at 15-minute intervals, machine maintenance schedule and overall expected congestion 
in the system. Based on these factors, the SLDC notifies the final drawl schedule for the next day to 
the generating company and the utility.  

Finally, unscheduled power is the difference between forecasted (i.e., scheduled) and real-time 
demand. The market for unscheduled demand, also called the unscheduled interexchange (UI), is a 
real-time balancing mechanism that allows utilities and generators to adjust the scheduled demand to 
the instantaneous demand and supply of power.  

Given that utilities and generators can take arbitrage positions across all the different segments 
of the short-term market, the prices in these sequential markets are expected to be closely correlated. 
As price determination in the day-ahead market occurs through an auctioning process, we consider the 
market clearing price of this market segment to be the best economic measure of marginal cost of 
generation at each 15-minute interval that best encapsulates the marginal cost of generation and 
transmission constraints.  

To test if the market clearing price (MCP) from the India Energy Exchange (IEX) wholesale 
market22 reflects the instantaneous price of power in the UI market, the generator-wise dispatch 
information from Rajasthan’s SLDC is compared to the MCP information of the N2 region of IEX 
(comprising the state of Rajasthan) for January to December 2018. Aggregating all prices to daily 
frequency, the correlation between average prices in the two markets to be 0.76. Ryan (2018) using data 
for 2009-2010, finds a correlation of prices in these two markets to be 0.808 – supporting the view that 
even though the wholesale electricity market in India comprises of different segments with separate 
rules and regulatory limits on market participation, the prices discovered in the short-term segments of 
the wholesale market appear to move closely together. Moreover, the strong correlation of prices also 
suggests that the cost of transmission constraints as measured through MCP in the IEX market reflects 
the cost of constraints in other segments of the market.  

Given these features of India’s short-term wholesale markets, this paper uses IEX’s N2 regional 
price at every 15-minute interval to be marginal cost of power generation for Rajasthan. The average 
market clearing price in the N2 region for FY2016-17 is Rs. 3.93 with a standard deviation of 1.55. 

 
• Transmission losses 

The marginal price of energy delivered to a household will be higher due to transmission losses. 
Transmission losses imply that for each unit of energy delivered to the consumer, the utility must buy 
an extra amount of energy from the generator that is lost over wires. This energy is lost in the form of 
heat dissipated as a natural consequence of electrical resistance. Electrical resistance increases with the 
square of electricity flowing through the wire, meaning that loss per unit of additional energy is highest 
during hours of peak-demand. Moreover, transmission losses are lower when electricity is transmitted 

 
21 The utility does not have to inform the operator about the variable cost of each generator. As a result, the system operator does not 
have to necessarily follow a merit order dispatch schedule. 
22 India also has another wholesale market named Power Exchange India. Given that bidders can freely move between the two 
exchanges, prices discovered in IEX and PEI are highly correlated: 0.92 and 0.98 at hourly and weekly frequency (Ryan (2018)). 
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through a high-voltage line. A greater share of losses therefore occurs over the distribution network, 
maintained at a lower-voltage (at 11kV), compared to transmission lines (for example, at 142kV).  

To calculate transmission losses, a data set from Rajasthan’s state transmission company 
containing the total energy generated and total transmission losses for each day between May 2016 to 
March 2018 is used. Following McRae and Wolak (2019), this information is used to first fit a quadratic 
relationship between input energy and energy losses, as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 =  𝛽𝛽0 + 𝛽𝛽1𝑄𝑄𝑡𝑡𝑑𝑑 + 𝛽𝛽2(𝑄𝑄𝑡𝑡𝑑𝑑)2 +  𝜀𝜀𝑡𝑡 

where, 𝑄𝑄𝑡𝑡𝑑𝑑 is the energy inserted into the transmission network and 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 are technical losses at time 𝑡𝑡. 
We differentiate the above equation to calculate marginal transmission loss, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡

𝑇𝑇 = 𝛽𝛽1 + 2 𝛽𝛽2 ∗
∑ 𝑄𝑄𝑅𝑅,𝑡𝑡

𝑖𝑖𝑛𝑛
𝑖𝑖=1  , where ∑ 𝑄𝑄𝑅𝑅,𝑡𝑡

𝑖𝑖𝑛𝑛
𝑖𝑖=1   is the electricity dispatched by all generators at 15-minute intervals (𝑡𝑡). 

Data on generator-wise energy dispatched at 15-minute time intervals (𝑄𝑄𝑅𝑅,𝑡𝑡
𝑖𝑖 ) comes from Rajasthan’s 

SLDC. Although this high-frequency data set captures the impact of peak load on technical losses, the 
data set suffers from three limitations, for which we make certain assumptions and adjustments.  

First, the data is available only for the calendar year 2018. We use this data under the assumption that 
the distribution of marginal transmission losses at 15-minute intervals in financial year 2016-17 is not 
different from calendar year 2018. Second, the SLDC data set provides electricity dispatch information 
for the entire state of Rajasthan. The state of Rajasthan is serviced by three utility companies, only one 
of which is JVVNL. The latter serves approximately 40 percent23 of the total state-level demand. We 
rescale the state-wide dispatch figures by 40% to estimate JVVNL’s share of dispatch at 15-minute 
intervals. Finally, this data set contains dispatch information from state owned generator units only. 
State-owned generators serve 57.1 percent of JVVNL’s annual demand. The residual portion of the 
demand is met through a portfolio of centrally-owned generators, renewable sources and captive power 
plants. Real-time dispatch information from these other generation sources are unavailable. As a result, 
the total dispatch in the SLDC data are scaled by a factor of 1.7513 (=100/57.1) to estimate energy 
dispatched across all generation units at 15-minute intervals. Based on these adjustments, the marginal 
transmission level losses are estimated to be 5.2% with a standard deviation of 1%. 

• Distribution losses 

The total energy entering the distribution network (𝑄𝑄𝑡𝑡𝐷𝐷) is calculated as the difference between 
energy dispatched by all generators (∑ 𝑄𝑄𝑅𝑅,𝑡𝑡

𝑖𝑖𝑛𝑛
𝑖𝑖=1 ) and the marginal transmission losses at 15-minute 

intervals (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡
𝑇𝑇): 𝑄𝑄𝑡𝑡𝐷𝐷 = ∑ 𝑄𝑄𝑅𝑅,𝑡𝑡

𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡

𝑇𝑇 . Marginal losses in the distribution network can be 
calculated by first estimating the quadratic relationship between losses and input energy, and then 
calculating the marginal distribution losses as 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡

𝐷𝐷 = 𝛽𝛽1 + 2 𝛽𝛽2 ∗ 𝑄𝑄𝑡𝑡𝐷𝐷 .  

A cross-sectional data set on feeder level losses is used to estimate the quadratic relationship 
between energy entering the distribution network and network level losses. This data was collected 
under an audit conducted by the World Bank’s Energy Practice as part of a lending program in 
Rajasthan. The data set contains information on total losses for the period April to December 2017 

 
23 Source: 
http://www.pfcindia.com/DocumentRepository/ckfinder/files/Operations/Performance_Reports_of_State_Power_Utilities/1_Repo
rt%20on%20the%20Performance%20of%20State%20Power%20Utilities%202013-14%20to%202015-16.pdf (page 126). 

http://www.pfcindia.com/DocumentRepository/ckfinder/files/Operations/Performance_Reports_of_State_Power_Utilities/1_Report%20on%20the%20Performance%20of%20State%20Power%20Utilities%202013-14%20to%202015-16.pdf
http://www.pfcindia.com/DocumentRepository/ckfinder/files/Operations/Performance_Reports_of_State_Power_Utilities/1_Report%20on%20the%20Performance%20of%20State%20Power%20Utilities%202013-14%20to%202015-16.pdf
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from 3,954 randomly sampled feeders within JVVNL’s network. The data set separates technical losses 
from losses due to commercial and billing inefficiencies. The former component leads to an overall 
reductional in society’s welfare, while the latter represents a welfare transfer from households that are 
billed for their consumption, to household that consume electricity without a bill. We use technical 
losses at the feeder level to estimate the quadratic relation. Using 𝑄𝑄𝑡𝑡𝐷𝐷 calculations for each 15-minute 
period and the parameter estimates of fitted quadratic equation, we estimate marginal distribution 
losses. The average marginal distribution losses in our sample is 18.4% with a standard deviation of 
3%. Figure 15 shows the frequency distribution of marginal transmission and distribution losses based 
on these calculations.24  

 
• Marginal cost of emissions 

  
The final component of SMC is the external cost associated with emissions from generating 

plants that increase their output in response to an increase in demand. Ideally, the cost of emissions 
should be calculated separately for all pollutants such as carbon dioxide, nitrogen oxide, sulfur dioxide 
and particulate matter. However, this paper calculates only the cost carbon dioxide emissions, as 
generator-wise emissions data for other pollutants is unavailable in India. Moreover, to precisely 
estimate the marginal cost of carbon, emissions data at 15-minute or hourly intervals for each generator 
are required. Such detailed data sets are unavailable in the Indian context. 

Facing these limitations, the marginal cost of emissions is proxied by the average carbon dioxide 
emissions per unit of energy produced by each generator. A data set25 that contains information on 
annual carbon dioxide emissions for FY2016-17 for each power generating company in India is used 
for this purpose. The data set uses plant-level information on the type of fuel used, the calorific value 
of the fuel mix and its emission and oxidation factors to calculate the total carbon dioxide emitted by 
the plant in a year. The annual tons of carbon dioxide divided by the total units of energy produced by 
a plant in a year gives a plant-level estimate of average tons of carbon dioxide per unit of energy 
generated. The social cost of carbon per unit of energy generated by a plant is estimated by multiplying 
the average tons of carbon dioxide per kWh by Rs. 2184 (Nordhaus (2018) cost estimate for a ton of 
carbon emission is $33.60; at approximately Rs. 65/USD this amounts to Rs. 2184 per ton of carbon 
dioxide). Finally, using the SLDC high-frequency data set on generator-wise energy dispatch at 15-
minute time intervals from Rajasthan’s system operator, the price of emission at each period26 (𝑃𝑃𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
is calculated as: 

 
24 The average marginal transmission loss estimate is comparable to the average annual transmission 3.95% reported by JVVNL in its 
FY2016-17 financial petition to the regulator: 
http://energy.rajasthan.gov.in/content/dam/raj/energy/jaipurdiscom/pdf/tariff/2018/true/additional_submission.pdf . In reporting, 
the average annual distribution loss, JVVNL pools commercial losses (that occur due to billing inefficiencies) with physical losses over 
the wire. For the estimation of social marginal costs, we are interested in measuring the physical losses that occur over the distribution 
network. This estimate can be found in a report by the Forum of Regulators (2012) that shows the average distribution losses over a 
three-month period at a representative feeder within JVVNL’s network to be 9.2%. This is lower than the 13.4% average marginal 
losses calculated using our methodology. 
25 CO2 baseline database for the Indian power sector produced by the Central Electricity Authority (Version 14), available at: 
http://www.cea.nic.in/tpeandce.html.  
26 Because we are using high-frequency plant-wise data, the carbon cost of emission in our calculation for each 15-minute interval is 
based only on state-owned generators.  

http://energy.rajasthan.gov.in/content/dam/raj/energy/jaipurdiscom/pdf/tariff/2018/true/additional_submission.pdf
http://www.cea.nic.in/tpeandce.html
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𝑃𝑃𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
∑ 𝑃𝑃𝑡𝑡,𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑄𝑄𝑅𝑅,𝑡𝑡
𝑖𝑖𝑛𝑛

𝑖𝑖=1

∑ 𝑄𝑄𝑅𝑅,𝑡𝑡
𝑖𝑖𝑛𝑛

𝑖𝑖=1
 

where, 𝑃𝑃𝑡𝑡,𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the average cost of emission for generator 𝑖𝑖, 𝑄𝑄𝑅𝑅,𝑡𝑡

𝑖𝑖  are the unit dispatched by a generator 
𝑖𝑖 generator at a 15-minute interval and ∑ 𝑄𝑄𝑅𝑅,𝑡𝑡

𝑖𝑖𝑛𝑛
𝑖𝑖=1  are total units generated by all units. The mean cost 

of carbon using these calculations is Rs. 2.08 with a standard deviation of 0.08. 

Combining the four components of the marginal cost of electricity consumption: the area 
clearing price from the wholesale market, the emission costs, and the transmission and distribution 
losses at 15-minute intervals estimates the SMC for Rajasthan. Electricity duty and urban cess charges 
are also added to this value. Figure 16 shows the distribution of social marginal cost (SMC) across all 
periods in the sample. The mean value of marginal cost of electricity inclusive of the social cost of 
carbon is Rs. 8.2/kWh. Excluding the social cost of carbon reduces the mean marginal price to Rs. 
5.5/kWh. The latter price (i.e, Rs. 5.5/kWh) is used for counterfactual tariff calculations, as the high 
share of thermal generation in Rajasthan’s energy mix27 makes the carbon-inclusive SMC to be 
practically infeasible. In the following sections, we analyze the welfare implications of setting the energy 
price at this price.  

(i) Distortionary effects of current retail prices 

The deadweight loss of pricing above or below the SMC can be calculated using the range of 
elasticities from the structural demand model. The deadweight loss represents the difference between 
the marginal benefit and the marginal cost of consuming an extra unit of electricity. Figure 17 illustrates 
the procedure for calculating the deadweight losses based on the demand curve, the current energy 
prices, the SMC and the own-price elasticity. The deadweight loss is the area of the shaded triangle 
indicated in the figure. Since the SMC is below the current marginal prices (and therefore 𝑄𝑄𝑑𝑑<𝑄𝑄opt) 
in this illustration, the deadweight loss for this household is indicative of loss of consumption even 
though the marginal benefit of consuming an additional unit for the household would have been more 
than its marginal cost. Conversely, for households that have their current energy prices below the SMC 
(households in the first consumption tier for example), the deadweight loss will indicate excess 
consumption.  

Table 12 summarizes the deadweight losses across income quintiles for FY16-17. The columns 
show the results over the range of own-price elasticities. A more elastic demand response implies 
greater sensitivity of consumption to price distortions from SMC. As a result, the deadweight loss 
estimates are greater for more elastic demand. Estimates of average deadweight loss for households in 
the first quintile are in the range of Rs. 3.1 to Rs. 12.4 per month and highest across all other categories. 

 
27 Existing literature suggests that there are significant differences between domestic and global values of the social cost of carbon 
(SCC) exists, but these papers provide limited agreement on the distribution of the global SCC by countries. Moreover, the existing 
literature appears to suggest a range of carbon costs: from Nordhaus (2018) estimate of $33.60 / tCo2 to EPA’s estimate of $12, $42 
and $62 per tCO2 at 5, 3 and 2.5% discount rates. Reconciling the calculations undertaken in the past literature (using a combination of 
IAM models and growth assumptions) to calculate a robust SCC estimate for India is outside the scope of this paper. However, in a 
recent paper Ricke, Drought, Caldeira and Tavoni (2018), estimate that India’s share of global SCC is 21%. Our best approximation 
would be to use Nordhaus’ estimate of $33.60 / tCo2 to calculate India’s share of global SCC = .21*33.60 = Rs. 458.64/ tCo2. Back-
of-the envelope calculations suggest that this will increase the SMC to approximately Rs. 6.13/kWh (a 11.4% increase from the current 
estimate of Rs. 5.5/kWh). We do not consider this as a separate counterfactual exercise but show the welfare impact of including the 
domestic cost of SCC into SMC in footnote 31. 
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This is because the difference between the current marginal price and SMC is the largest for households 
in the first quintile, given their low energy prices under the current schedule. 

Table 13 shows the same estimates but scaled as a proportion of the household’s expenditure 
on electricity purchases. At the own-price elasticity of -0.3 and under a linear demand curve, deadweight 
losses are approximately 4.3 to 5 percent of total household expenditure on electricity. These results 
are close to the other estimates in the literature in other country contexts. For example, McRae and 
Wolak (2018)28 estimate deadweight losses in Colombia as a share of household’s total expenditure to 
be around 4.3 to 7.1 percent across socioeconomic stratum using similar own-price elasticity 
assumption of -0.3 and under a linear demand curve.  

Deadweight loss estimates would be zero and a socially optimal level of consumption would be 
achieved if energy charges were set to the SMC. However, revenues collected from just a SMC energy 
price would be insufficient to cover the fixed costs incurred by the utility. These costs are incurred due 
to activities such as transmission of power, distribution, retailing, returns on invested capital, debt 
servicing, etc. As these costs do not vary by per-unit of energy supplied, they are not incorporated in 
the SMC calculation. 

Using a combination of energy charges (set to SMC) and fixed charges (to recover utility’s fixed 
costs) under a two-part tariff can achieve the twin-goals of optimal consumption and revenue neutrality. 
Fixed charges distributed across all residential consumers would enable the utility to cover its fixed 
costs. The way these fixed charges are apportioned across households however introduces equity 
considerations in the design of the two-part tariff, as households that benefit the most from consuming 
electricity (i.e., have the highest willingness to pay for it) should be expected to pay a greater share of 
the fixed cost requirements. The fixed cost per connection should also be designed in away so that it 
does not serve as a barrier for poor and vulnerable households to enter the grid. 

(ii) Designing an efficient, revenue neutral and equitable two-part tariff schedule 
for residential consumers 

To calculate the total fixed cost requirements for JVVNL in FY16-17, recall that the average 
revenue requirement of Rs. 7.74 covers both the variable and fixed costs of the utility. The variable 
cost of electricity each month is the per unit cost of power purchase, transmission losses and duties 
levied. As noted in the earlier section, these costs are embedded in the SMC calculations. Thus, the 
total variable cost to be recovered by the utility can be calculated by multiplying the SMC with the 
aggregate annual residential demand (i.e, ∑𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜). The aggregate annual revenue requirement is the 
average revenue requirement (Rs. 7.74) multiplied by aggregate residential demand. Finally, the total 
fixed cost to be recovered by the utility is the difference between the total annual revenue requirement 
and the total variable cost recovered through energy prices set to SMC.  

The simplest counterfactual tariff schedules consists of a two-part tariff design: energy prices 
set to SMC and fixed costs requirements distributed equally across all households. The distributional 
effects observed under this tariff design will provide a useful benchmark for comparing other 
alternative tariff designs. The welfare implication of switching from current energy prices to an 
alternative tariff design can be studied through changes in consumer surplus. If counterfactual 

 
28 Shaun D. McRae and Frank A. Wolak (2018). “Retail Price Regulation in Colombia to Support the Efficient Deployment of 
Distributed Generation and Storage and Electric Vehicles”. available at http://www.stanford/edu/~wolak. 
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consumer surplus is greater than the surplus under current tariff schedule, the counterfactual schedule 
is considered to be welfare enhancing. Other variants of counterfactual tariff design will consider 
variants where the fixed charge requirements can be distributed unequally across households (while 
keeping the energy price pegged to the SMC), so that the consumer surplus under the alternative 
options is greater than the current surplus. 

The first counterfactual tariff design is where all subsidies are eliminated, and the fixed costs 
are distributed equally across all households in the sample. This benchmark scenario raises energy and 
fixed prices for all households relative to current levels and will result in loss in consumer surplus across 
the distribution. Figure 18 quantifies this result. The median household in the bottom quintile will face 
an average loss between Rs. 248 to 254 rupees per month, while median household at the top quintile 
will loose on average Rs. 70 to 76 per month. Households in the top income quintile currently pay a 
price higher than the SMC. As a result, under this benchmark scenario, their consumer losses are 
smaller than other households in the distribution. 

Given the regressive nature of this design and the practical infeasibility of the benchmark 
scenario, the next counterfactual explores if household level subsidies paid directly to the utility as a 
lump-sum transfer can produce welfare gains. In this scenario, the total household-wise energy and 
fixed cost subsidies for FY16-17 are transferred by the state government to the utility directly. While 
marginal prices are still set to SMC, the lump-sum transfer of subsidies to the utility (instead of 
transferring it to the household) helps in defraying the fixed cost burden on the households. The 
subsidy adjusted fixed cost requirement is then distributed equally among all residential consumers. 

Figure 19 shows that even with a lump-sum subsidy transfer to the utility, there are distribution-
wide welfare losses. Expectedly, these losses are lower than the benchmark case, as transfers help in 
reducing the fixed cost burden. A median household at the lowest and top income quintile will 
respectively lose on average Rs. 205 to 210 and Rs. 27 and 32 per month. Even though this scenario 
results in welfare losses, lump-sum subsidy transfers to the utility, prevents distortions away from 
optimal consumption levels and circumvents the issue of targeting transfers to intended beneficiaries. 

Other counterfactual tariff designs build further on the lump-sum subsidy transfer to the utility 
and relax the assumption of equal allocation of fixed cost across households. Ideally, households with 
greater willingness to pay of electricity should be allocated a larger share of the overall fixed cost 
requirement. However, calculating fixed costs based on current levels of consumption is practically 
infeasible because these charges do not vary per-unit of consumption by definition. Therefore, a 
household’s willingness to pay requires identifying certain proxy indicators that are not related to 
cotemporaneous consumption. 

The first approach is to spatially aggregate households into groups that have similar 
characteristics. The group level characteristics can then serve as a proxy for household level willingness 
to pay for electricity. In other developing country contexts such as Colombia, distribution areas of a 
utility are divided into different socio-economic strata. This geographic classification of neighborhoods 
is then used as a proxy to set tariff rates. In the Rajasthan context, the coarsest form of a spatial 
distinction available is the urban or rural classification of the household’s location. Average rural 
household incomes are about a quarter of the mean urban income and the total electricity consumed 
in rural areas as a fraction of all residential sales is about 27.2 percent. Given these differential 
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characteristics, the urban and rural shares of consumption can be used as weights to proportionately 
allocate fixed costs across households.  

More specifically, 27.8% and 72.2% of the utility’s total annual fixed cost requirements (after 
adjusting for lump-sum transfer of subsidies) are divided equally across all rural and urban households 
respectively. Figure 20 shows the results of this exercise. In contrast to Figure 19, the consumer welfare 
goes up in all quartiles but change in surplus relative to the current schedule persists to be negative.  

To further improve the targeting of fixed costs, and especially to defray the fixed costs borne 
by households in the lowest quintile, the next counterfactual explores the use of historical household-
level consumption data as a proxy for household’s willingness to pay for electricity. Historical 
consumption data is indicative of the level of investment made by households in buying electrical 
appliances. Households with greater ownership of these appliances (and therefore greater consumption 
in the past periods) will have a higher demand for energy and may potentially be willing to pay more 
for electricity. Following this rationale, fixed costs across households are allocated using the following 
formula: 

𝐹𝐹𝐹𝐹𝑖𝑖 = (𝐹𝐹𝐹𝐹 − 1) ∗ �1 +
𝑄𝑄𝑖𝑖2 −  (∑ 𝑄𝑄𝑖𝑖2𝑛𝑛 𝑁𝑁⁄ )

�∑ 𝑄𝑄𝑖𝑖2𝑛𝑛 𝑁𝑁⁄ �
� +  1 

where, 𝐹𝐹𝐹𝐹𝑖𝑖 denotes the fixed cost allocated to household 𝑖𝑖 for each day in the billing cycle, 𝐹𝐹𝐹𝐹 is the 
per household per day fixed cost requirement of the utility,29 𝑄𝑄𝑖𝑖2 is the square of historical consumption 
across all billing cycles in a year and 𝑁𝑁 is the total number of residential consumers served by the utility. 
The term ∑ 𝑄𝑄𝑖𝑖2𝑛𝑛 𝑁𝑁⁄  is the mean of the square of annualized consumption across all residential 
consumers. The deviation of household’s annual consumption from the mean is used as a weighting 
factor to allocate fixed costs. Households with low levels of yearly consumption have a larger negative 
deviation from the mean and therefore pay a smaller share of the total fixed cost requirement. In 
contrast, large consumers pay a larger share due to a larger positive deviation from the mean. The 
square of consumption term allocates larger weights on observations that further from the mean – 
implying lower fixed cost charges for households with historically low levels of consumption and vice-
versa. Finally, the constant 1 is included in the equation to ensure that irrespective of the weighting 
factor, all households pay at least 1 rupee per day as their contribution to fixed cost requirements.  

Figure 21 shows that median households in the first to the third income quintile are expected 
to achieve positive gains in consumer surplus under this scenario. The welfare loss for the median 
household in the fourth and fifth quintile is approximately Rs. 9 and Rs. 21 per month respectively.30 
Welfare gains in the first three quintile are achieved by transferring a greater share of fixed cost 
requirements to historically high consuming households in the richest quintiles. To illustrate the fixed 
cost burden on households implicit under this scenario, Figure 22 compares the allocation of fixed 
costs under JVVNL’s current tariff schedule to the counterfactual scenario. The figure shows that the 

 
29 𝐹𝐹𝐹𝐹 = (𝐴𝐴𝐴𝐴𝐴𝐴−𝑆𝑆𝑆𝑆𝑆𝑆∗𝑄𝑄)

(365∗𝑁𝑁)
 , where 𝐴𝐴𝐴𝐴𝐴𝐴 is the annual revenue requirement in rupees per unit, 𝑆𝑆𝑆𝑆𝑆𝑆 is the social marginal cost in rupees 

per unit, 𝑄𝑄 is the cotemporaneous total residential energy demand in kWh across all households under a given marginal price and 𝑁𝑁 is 
the total number of residential consumers.  
30 Based on footnote 28, if we included the domestic SCC into SMC, the energy cost of power would rise to Rs. 6.13/kWh. The 
welfare gains for each quintile using this methodology and updated SMC would be Rs. –4.2, Rs.7, Rs. –9.3, Rs. –30 and Rs. –44 per 
month, at an elasticity of -0.3 (negative sign indicates welfare losses). 
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median monthly fixed cost for households consuming less than 200 units per month under the 
counterfactual schedule is lower than JVVNL’s current tariff schedule. The fixed charge for households 
consuming more than 500 units per month are however significantly greater than the current schedule, 
and ranges between Rs. 1,600 to 2,800 per month.  

If fixed cost allocations for households are too high, there is a risk of consumer surplus turning 
negative. Theoretically, at negative consumer surplus, the household would be better-off disconnecting 
from the grid rather than continuing to pay fixed charges at any level of consumption. In Figure 23, we 
check if annual consumer surplus under counterfactual tariff is negative at any quintile. The figure 
shows that the consumer surpluses are positive for almost all households in the sample, except for 
households in the fifth quintile with the most elastic response to price. These households are at the 
greatest risk of disconnecting from the grid under the recommended tariff schedule. In a less extreme 
scenario, these households can be expected to adopt energy efficient appliances or energy conservation 
practices so that their annual consumption moves in the direction of the mean and the fixed cost 
allocations can be reduced. Another possibility is that high consumption households may substitute 
away from grid-based electricity to captive generation. To assess the chances of substituting away from 
grid-based energy, more information on the private marginal cost of running a small generating unit to 
meet household’s base load requirements is required. As this information is not readily available, we 
are unable to test for this potential substitution away from the grid and propose this as an interesting 
future topic of research. 

Given the overall welfare gains, economic efficiency of consumption and revenue neutral 
properties, this design is our preferred schedule for residential consumers of JVVNL. 

SECTION VII: CONCLUSION 

This paper calibrates the extent to which residential consumption responds to changes in power 
prices. The findings suggest that a 10 percent increase in power prices reduces household consumption 
by about 1 to 4 percent. Changes in prices however heterogeneously affect demand response across 
end-uses. Consumption for heating and cooling purposes is least affected by price changes, while 
consumption for domestic end-uses of power (such as for lighting) is most affected by these changes. 
These results suggest that holding current income levels constant, rationalizing residential tariff rates 
will lead households to adjust their domestic end-use of electricity more than others.  

Using these model estimates, the paper tests if normative principles of electricity pricing can be 
used to produce a progressive and efficient tariff design. These principles recommend a two-part tariff 
with the variable cost of energy set to the social marginal cost of electricity, with fixed costs varying 
across households based on their willingness to pay. 

The social marginal cost of power is estimated as the sum of marginal cost of generating power, 
the marginal cost of distribution and transmission losses, and the external cost of carbon emissions. 
Calculations suggest that including the marginal cost of carbon emissions in the retail price of energy 
can increase electricity prices by approximately 50%. The means that given India’s current electricity 
generation mix, passing the full cost of carbon externalities to the retail price of electricity may lead to 
an impractical rise in the price of power. 

Next, the welfare enhancing consequences of adopting a two-part tariff which allows the utility 
to fully break-even on its costs is studied. As per-unit costs are set to the social marginal cost for all 
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households under this design, prices do not distort consumption by charging some households more 
than others, achieving the goal of economic efficiency. The recommended tariff design also leads to 
progressive prices: it generates an average gain of Rs. 4.5 to Rs. 10 for households at the lowest quintile 
of the income distribution and an average loss of Rs. 20 per month for households in the top quintile.  

 Due to the poor quality of outages information maintained by the utility, the relationship 
between household demand and supply quality is not considered in this paper. Although a future line 
of research can explore this relationship in greater detail, the proposed tariff design addresses a key 
feature of how supply is rationed across consumers during periods of load-shedding. Under current 
prices, a utility has a greater incentive to supply power to larger consumers during periods of rationing. 
As the per-unit price of electricity is higher for these users, during periods of scarcity, the utility earns 
more per unit of dispatch by supplying to these consumers rather than smaller consumers situated at 
lower consumption brackets. In contrast, a uniform energy price across consumers under the 
recommended design, takes away the incentive of dispatching power to larger consumers and 
rebalances the existing disparities in dispatch across users. To the extent that the utility does offer 
greater dispatch to high consumption households during periods of scarcity, under the recommended 
tariff plan, the share of power supply to rural areas will likely increase as rural consumption share is 
lower than urban areas. Thus, rebalancing of supply dispatches across households is an additional virtue 
of our proposed plan in addition to its efficiency, equity and cost-neutral properties. 

 Finally, the simulated results in this paper are only as good as the utility’s ability to send bills 
and collect revenues from households based on their actual monthly consumption. The analysis of the 
utility’s billing data set suggests recurring cases of “average billing”, in which the household’s bill 
amount was imputed based on its average half-yearly consumption rather than the cotemporaneous 
consumption. There could be several reasons for why these bills had to be generated, including the 
possibility of faulty meters or meters being inaccessible to the meter reader or, in the worst case, a 
potential collusion between the meter reader and the consumer to deflate the cost of electricity 
consumption. Designing incentives to prevent the issuance of such imputed bills and modeling the 
impact of their strategic position on household level demand is outside the scope of this paper. 
However, an increase in the incidence of average billing cases will result in greater fixed cost burden 
per household. As a result, households that pay their bills based on their actual contemporaneous 
consumption face significant welfare losses.  
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Figure 1: Residential power consumed as a share of all power sold in the state 

 
Notes: Compiled by the authors using data end-use consumption data from Central Electricity Authority for FY14-15 
 
Figure 2: Decomposition of losses in the power sector 

 
Notes: Source: Khurana and Banerjee (2013) 
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Figure 3: Effective Tariffs by Consumer Groups 

 
Notes: Reference year is 2012. Source is Pargal and Banerjee (2014) 

Figure 4: Energy Charges applicable on residential consumers of Rajasthan over the same 
period 

 
Notes: Energy and fixed prices obtained from various tariff orders issued by JVVNL 
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Figure 5: Consumption distributions from NSS survey and administrative billing data 
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Figure 6: Daily consumption distribution by month – red labels indicate months in which 
price revisions occurred 

 
Notes: Daily consumption is calculated as the total consumption over the billing cycle divided by the number of days in 
the billing cycle. The monthly distribution of daily consumption is weighted by the sampling probabilities. The labels 
on the horizontal axis denote the month of bill issuance. Red diamonds indicate the median daily consumption over the 
month and red monthly labels indicate the period at which a revision in tariff schedule occurred. 
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Figure 7: Changes in the fraction of household bills and energy prices by consumption tiers

 
Notes: The graph indicates the correlation between changes in the fraction of bills by consumption tiers and the changes 
in energy prices. These changes are calculated over two periods: September-2016 to March-2017 and February-2015 to 
September 2016. The fraction of bills in a period is calculated as the number of bills in a consumption tier divided by the 
total number of bills across all tiers in that period. The price changes are calculated using the energy prices as prescribed 
in tariff schedules. The six consumption tiers indicated in the graph respectively correspond to 0-50 kWhs (BPL), 0-50 
kWhs (APL), 51-150 kWhs, 151-300 kWhs, 301-500 kWhs, and greater than 500 kWhs. 
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Figure 8: Consumption transitions across tiers over consecutive billing cycle

 
Notes: The graph compares the probability of transitioning across consumption tiers over consecutive billing cycles. The 
consumption tiers from the previous period (𝑡𝑡0) are indicated in the horizontal axis. The percentage of household-bills is 
calculated as the total number of bills that were in consumption tier i in the previous period 𝑡𝑡0 divided by all household-
bills that are in consumption tier j in current period (𝑡𝑡1) (consumption tier j in period 𝑡𝑡1 is denoted as “Current tier: X-Y” 
in the figure). The percentages are weighted by sampling weights. 
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Figure 9: Changes in temperature and precipitation from three year (2014-2017) average levels 

 

 
Notes: The vertical axis shows the deviation of daily temperature and rainfall in a region from the local four-year period 
(2013-2017) means of temperature and rainfall  
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Figure 10: Histogram of Marginal Prices for Heating and Cooling Services 

 
 

Figure 11: Histogram of Marginal Prices for Lighting

 

Figure 12: Histogram of Marginal Prices for Appliances
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Figure 13: Histogram of Marginal Prices for Business Equipment
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Figure 14: Changes in consumer surplus due to MOP’s recommended tariff schedule 

 
Notes: Income quintiles denoted in the horizontal axis. The vertical axis is the difference between the consumer surplus 
calculated at the counterfactual price and the JVVNL 2016-17 tariff order. The counterfactual price in this scenario is 
MOP’s recommended tariff. e denotes the own-price elasticity of demand. The graph excludes outside values, i.e., 
observations that outside a range of 1.5 times the interquartile range of the distribution. 
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Figure 15: Distribution of marginal transmission and distribution losses 

 
Notes: Marginal transmission network are calculated as a share of total energy generated over 15-minute blocks. Marginal 
distribution losses are calculated as a share of total energy in the distribution network over 15-minute blocks. The total 
energy in the distribution network in a 15-minute block is the total energy generated net of marginal transmission losses. 
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Figure 16: Distribution of Social Marginal Cost 

 

Notes: The figure shows the distribution of social marginal cost of electricity for all 15-minute in the sample. The social 
marginal cost includes the market clearing price of the wholesale electricity market, transmission and distribution losses 
and duties and cess levied by the utility. The distribution of total marginal cost is shown separately for calculating 
including and excluding the social cost of carbon dioxide emissions.  
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Figure 17: Distortions in current pricing schedule: deadweight loss analysis 

 
Notes: 𝑄𝑄𝑑𝑑 indicates the consumption under the current prices (𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) using the calibrated linear demand for electricity. 
𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜  indicates the consumption of the household under a uniform energy price set to SMC. The deadweight loss is the 
area of the triangle as shaded in the figure. The area of the triangle can be calculated as 𝐷𝐷𝐷𝐷𝐷𝐷 = 1

2
(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑆𝑆𝑆𝑆𝑆𝑆) ∗

(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑆𝑆𝑆𝑆𝑆𝑆)
𝑏𝑏

= 1
2𝑏𝑏

(𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑆𝑆𝑆𝑆𝑆𝑆)2   where 𝑏𝑏 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑄𝑄𝑑𝑑∗𝜀𝜀
  the slope of the inverse demand curve and ε if the own-price 

elasticity of consumption 

  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑆𝑆𝑆𝑆𝑆𝑆 

𝑄𝑄 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 𝑄𝑄𝑑𝑑 

𝑃𝑃 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
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Figure 18: Distributional consequences of equal energy and fixed charges (without subsidy 
transfers) 

 
Notes: Income quintiles denoted in the horizontal axis. The vertical axis is the difference between the consumer surplus 
calculated at the counterfactual price and current prices. Fixed costs are divided equally amongst households with no 
transfer. e denotes the own-price elasticity of demand. The graph excludes outside values, i.e., observations that outside a 
range of 1.5 times the interquartile range of the distribution. 
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Figure 19: Distributional consequences of equal energy and fixed charges (with subsidy 
transfers) 

 

Notes: Income quintiles denoted in the horizontal axis. The vertical axis is the difference between the consumer surplus 
calculated at the counterfactual price and current prices. The total fixed cost requirement is net of total energy and fixed 
cost subsidies paid by the state in FY16-17. The fixed cost has been divided equally amongst all households. e denotes the 
own-price elasticity of demand. The graph excludes outside values, i.e., observations that are outside a range of 1.5 times 
the interquartile range of the distribution. 
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Figure 20: Distributional consequences of equal energy charges and proportional fixed 
charges based on shares of rural and urban consumption  

 
Notes: Income quintiles denoted in the horizontal axis. The vertical axis is the difference between the consumer surplus 
calculated at the counterfactual price and current prices. The total fixed cost requirement is net of total energy and fixed 
cost subsidy paid by the state in FY16-17. 37 percent of this fixed cost is divided equally among all rural households; 63 
percent of the remaining cost is distributed equally among urban households. e denotes the own-price elasticity of 
demand. The graph excludes outside values, i.e., observations that outside a range of 1.5 times the interquartile range of 
the distribution. 
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Figure 21: Distributional consequences of equal energy charges and proportional fixed 
charges based on deviation of historical consumption from them mean  

 
Notes: Income quintiles denoted in the horizontal axis. The vertical axis is the difference between the consumer surplus 
calculated at the counterfactual price and current prices. The total fixed cost requirement is calculated as net of total 
energy and fixed cost subsidy paid by the state in FY16-17. The net fixed cost charges are distributed unequally across 
households using the difference between a household’s squared annual consumption and mean squared consumption 
across all households. e denotes the own-price elasticity of demand. The graph excludes outside values, i.e., observations 
that outside a range of 1.5 times the interquartile range of the distribution. 
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Figure 22: Comparison of fixed cost allocation across consumption groups based on current 
JVVNL tariff schedule and counterfactual scenario 

 
Notes: Fixed cost in rupees per month per connection denoted in the horizontal axis. The vertical axis is the average 
monthly consumption of a household. The counterfactual fixed costs are calculated using the deviation of squared annual 
consumption from the mean of squared consumption. These are calculated after assuming a lump-sum transfer of current 
subsidies to the utility. The current fixed costs are based on JVVNL’s current tariff schedule. The graph excludes outside 
values, i.e., observations that outside a range of 1.5 times the interquartile range of the distribution. 
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Figure 23: Consumer surplus under counterfactual tariffs 

 
Notes: Income quintiles denoted in the horizontal axis. The vertical axis is total between the consumer surplus calculated 
at energy price set to SMC and fixed cost allocated in proportion to the deviation from the mean of squared 
consumption. e denotes the own-price elasticity of demand. The graph does not exclude outside values, i.e., observations 
that outside a range of 1.5 times the interquartile range of the distribution. 
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Table 1: The distribution of various charges in the data set 
  Mean 10th percentile 90th percentile 
    
monthly consumption 166.3 kWh 24.7 kWh 374.5 kWh 
monthly consumption 
per capita 39.7 kWh 4.4 kWh 87.6 kWh 

energy charges ₹ 1729 ₹ 181 ₹ 4086 
fixed charges ₹ 348 ₹ 180 ₹ 480 
electricity duty ₹ 138 ₹ 20 ₹  310 
tariff subsidy ₹ -15.1 ₹ -66.3 ₹ 0 

Notes: Total number of observations in the sample are 7,615. The distribution was weighted by sampling probabilities. 

Table 2: Comparing the consumption distribution of sampled households to billing data set 
Percentiles Admin billing data 

(all HH) 
Admin billing data 
(surveyed HH) 

1% 1 1 
5% 15 14 
10% 30 28 
25% 62 58 
50% 115 119 
75% 240 263 
90% 452 436 
95% 645 562 
99% 1283 762 

Mean Value 208 189 
Notes: This table compares the distribution of consumption for all households in the two district of Rajasthan in the 
administrative data to the consumption distribution obtained from the survey using sampling probabilities. The sample 
period for both data sets is restricted to January and February 2017. 
 
Table 3: Socioeconomic profile of the households 

Variable Proportion of households 
Proportion of general caste 29% 
Pukka Wall 97.1% 
Pukka Roof 99% 
Pukka Floor 44.4% 
Tap water connection 63.4% 
Top Income Source: Farming 15.8% 
Top Income Source: Livestock 3.4% 
Top Income Source: Own Business 19.5% 
Top Income Source: Casual Labour 23.2% 
Top Income Source: Salaried Work 36.2% 
Top Income Source: Remittances 2.8% 
Living in a tented house 5.5% 
Ownership of Below Poverty Line Card 18.2% 
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Table 4: Proportion of households owning at least one appliance  
Appliance Ownership 

share 
Appliance Ownership 

share 
Air cooler 68.9% Television 73.5% 
Air conditioner 7.4% Refrigerator 60.1% 
Room heater 1.2% Water purifier 7.6% 
Warm air blower 0.3% Microwave oven 2.9% 
Ceiling fan 92.8% Mobile charger 97.2% 
Table fan 16.3% Desktop computer 4.7% 
Immersion rod 4% Laptop computer 10.7% 
Water heater (geyser) 10.5% Electric iron 33.2% 
CFL  78.1% Sewing machine 1.5% 
Bulbs 39.6% Water pump 37.4% 
Tube lights 34% Washing machine 19.2% 

Notes: Proportions are calculated using sampling probabilities 
 
Table 5: Proportion of households owning at least one appliance  

Dependent Variable: log(daily energy services demand 
based on survey data) (1) (2) (3) (4) (5) 

log(observed daily consumption) 0.546*** 
(0.0557) 

0.6*** 
(0.0624) 

0.603*** 
(0.0636) 

0.602*** 
(0.0656) 

0.606*** 
(0.0678) 

  
Constant 0.225*** 0.148* 0.144* 0.145* 0.138 

 (0.0723) (0.0797) (0.0819) (0.0854) (0.0901) 
Observations 805 780 769 760 749 
R-squared 0.294 0.293 0.291 0.282 0.277 

Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  

Notes: Observed daily consumption is calculated as 
(𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝑎𝑎 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )

(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) based on the billing data set. The daily energy 

services demand based on survey data is calculated as 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
365

. 
Model (1) comprises of the entire sample of 805 households, whereas models (2), (3), (4) and (5) correspond to trimmed 
samples, comprising of households with monthly consumption above 14.9, 16.5, 18.2 and 20.1 units in the billing data 
respectively. 
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Table 6: Relationship between temperature, humidity and observed demand 
Dependent var: Log (consumption per day over billing cycle) 
Log (average temperature over billing cycle) 1.219*** 

 (0.134) 
Log (average rainfall over billing cycle) -0.0268** 

 (0.0119) 
Constant -3.002*** 

 (0.462) 
Observations 7,613 
R-squared 0.041 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  

Notes: Averages of temperature and rainfall are calculated at the household level for each billing cycle in the data set. The 
regression is weighted by sampling probabilities and clustered at the town and village level. 
 
Table 7: Relationship between temperature, humidity and demand for energy services based 
on appliance ownership and usage data 

Dependent var: log(predicted daily consumption) 
Log (average temperature over billing cycle) 0.262*** 

 (0.0624) 
Log (average rainfall over billing cycle) -0.0554*** 

 (0.0134) 
Constant -0.0154 

 (0.233) 
  

Observations 3,828 
R-squared 0.010 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  

Notes: Averages of temperature and rainfall are calculated at the household level for each billing cycle in the data set. The 
regression is weighted by sampling probabilities and clustered at the town and village level. The sample is trimmed to 
include approximately 365 days of temperature and rainfall data for each household.  
 

Table 8: Nonlinear Least Squares Estimates Electricity Production Function  

δ  2.971 
 (0.23) 

Lamba: Heating and Cooling energy services Lamba: Lighting energy services 

Constant -3.287 
(0.30) 

Constant -3.481 
(0.34) 

Temperature 0.0642 
(0.04) 

Temperature 0.081 
(0.02) 

Rain 0.0376 
(0.04) 

Rain -0.061 
(0.05) 

Lambdas: Domestic end-use energy services Lambdas: Business end-use energy services 

Constant -1.938 
(0.27) 

Constant -2.977 
(0.63) 
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Temperature 0.0945 
(0.03) 

Temperature 0.0566 
(0.02) 

Rain 0.0647 
(0.03) 

Rain -0.046 
(0.09) 

Notes: Standard errors clustered on households in parentheses. Total number of observations in the sample is 7451. Refer 
to equation (8) for the functional form used to estimate 𝐸𝐸 =  𝑓𝑓 (𝒔𝒔,𝐴𝐴, 𝜖𝜖) 
 

 

Table 9:  Instrumental Variables Estimates of Parameters of Translog Demand System 

α  
Heating and cooling -0.0412 

(0.022) 

Lighting 0.0164 
(0.018) 

Domestic end-use  -0.0734 
(0.010) 

Business end-use 0.0167 
(0.010) 

β 
Heating and cooling * Heating and cooling -0.0343 

(0.0051) 
Heating and cooling * Lighting 0.0083 

(0.0021) 
Heating and cooling * Domestic end-use -0.00369 

(0.0041) 
Heating and cooling * Business end-use 0.00194 

(0.0065) 
Heating and cooling * Composite goods 0.0257 

(0.0047) 
Lighting * Lighting 0.00367 

(0.0028) 
Lighting * Domestic end-use -0.0138 

0.00012  
Lighting * Business end-use 0.00357 

(0.0037) 
Lighting * Composite goods -0.00318 

(0.0044) 
Domestic end-use * Domestic end-use 0.0244 

(0.0015) 
Domestic end-use * Business end-use -0.00602 

(0.0034) 
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Domestic end-use * Composite goods -0.00781 
(0.0061) 

Business end-use * Business end-use 0.00124 
(0.00020) 

Business end-use * Composite goods -0.00142 
(0.00251) 

Composite goods * Composite goods -0.11 
(0.0227) 

γ 
Heating and cooling * Household fixed effects -0.000020 

(0.00039) 
Heating and cooling * Temperature -0.00081 

(0.00004) 

Heating and cooling * Urban  0.00915 
(0.00505) 

Lighting * Household fixed effects 0.00003 
(0.00011) 

Lighting * Temperature -0.000386 
(0.00028) 

Lighting * Urban  0.00243 
(0.00152) 

Domestic end-use * Household fixed effects 0.000678 
(0.00052) 

Domestic end-use * Temperature -0.00058 
(0.00021) 

Domestic end-use * Urban  0.00624 
(0.00323) 

Business end-use * Household fixed effects -0.00002 
(0.00007) 

Business end-use * Temperature -0.00039 
(0.0002) 

Business end-use * Urban  -0.00252 
(0.00089) 

Composite goods * Household fixed effects -0.011 
(0.00379) 

Composite goods * Temperature 0.00328 
(0.00029) 

Composite goods * Urban  0.0518 
(0.02609) 

Notes: Standard errors clustered on households in parentheses. Total number of observations in the sample is 7451. Refer 
to equation (7) in the text for the demand equation under translog indirect utility functional form. 
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Table 10: Mean Customer and Billing Cycle Level Own-Price and Net Income Elasticities 

Service Own-Price Elasticity Net Income Elasticity  
Heating and Cooling -0.344 1.336 
Lighting -1.378 1.167 
Domestic end-use -2.719 0.794 
Business end-use -1.194 1.341 
Composite good -0.947 1.012 

 

Table 11: Average marginal prices in FY2016-17 under current price schedule and MOP’s 
recommended tariff 

Income 
quintile e=-0.1 e=-0.2 e=-0.3 e=-0.4 

1 12.21 14.24 16.27 18.30 
2 140.59 142.19 143.65 146.26 
3 172.06 175.24 204.59 208.00 
4 171.31 173.38 173.45 177.52 
5 213.35 214.88 226.03 230.99 

 

Table 12: Deadweight loss estimates (in rupees per month) by income quintile 

Income 
quintile e=-0.1 e=-0.2 e=-0.3 e=-0.4 

1 3.10 6.19 9.29 12.39 
2 2.57 5.14 7.71 10.28 
3 3.22 6.43 9.65 12.86 
4 1.97 3.94 5.91 7.88 
5 3.03 6.06 9.09 12.12 

 

Table 13: Deadweight loss estimates (as a share of total expenditure) by income quintile 

Income 
quintile e=-0.1 e=-0.2 e=-0.3 e=-0.4 

1 1.4% 2.8% 4.3% 5.7% 
2 1.0% 2.1% 3.1% 4.2% 
3 1.6% 3.3% 4.9% 6.6% 
4 1.0% 2.1% 3.1% 4.2% 
5 1.7% 3.3% 5.0% 6.6% 
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Appendix 1 

Category of energy services Appliances 
Standard Appliance 

Wattage  
Heating or Cooling Air cooler 200 W 

 Air conditioner 2000 W 

 Room heater 2000 W 

 Warm air blower 2000 W 

 Ceiling fan 80 W 

 Table fan 80 W 

 Immersion rod 1000 W 

 Geyser 2000 W 
Lighting Cfl/leds 20 W 

 Bulbs 100 W 

 Tube lights 40 W 
Domestic end-use appliances Television 200 W 

 Refrigerator 60 W 

 Water purifier 60 W 

 Microwave 800 W 

 Electric iron 1000 W 

 Sewing machine 100 W 

 Water pump 740 W 

 Washing machine 700 W 

 
Others: Flour grinder, juicer, milk 
churner, mixer 

200 W 

Business end-use appliances Cell phone charging 6 W 

 Desktop computer 200 W 

 Laptop computer 65 W 
Notes: Standard wattage information of common household appliances from Bureau of Energy Efficiency standards for 
2012-13 and online load calculators provided by Tamil Nadu Generation and Distribution Corporation 
(https://www.tangedco.gov.in/load_calculato.html) and Paschim Gujarat Vij Company Limited 
(http://www.pgvcl.com/consumer/CONSUMER/calculate_n.php) 
  

https://www.tangedco.gov.in/load_calculato.html
http://www.pgvcl.com/consumer/CONSUMER/calculate_n.php
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Appendix 2: Data Appendix 
 
(1) An example illustrating backing out the applicable energy price of electricity based on 

observed consumption 
 

Consider for example, a billing cycle for a customer starting on 1st June to 1st August 2015, with a 
total bi-monthly consumption of 310 kWhs and total energy cost of Rs. 1,497. Given 310 kWhs 
consumed over two months, we expect this consumer to fall in the fourth consumption tier 
(corresponding to 150 to 300 kWhs of monthly consumption tier in the tariff schedule). Based on 
the prevailing electricity prices at the time, the total energy cost for the customer for this cycle is 
calculated as: Rs. 3.50 per kWh for first the 100 kWhs of consumption (i.e., the first tier of the tariff 
schedule) + Rs. 5.45 per kWh for the next 200 kWhs of consumption (i.e., the second tier) + Rs. 
5.7 for the remaining 10 kWhs of consumption (i.e., the third tier). The total energy cost based on 
this calculation is the same as that appears in the data set (i.e., Rs. 1,497). For such bills, we attribute 
the Rs. 5.7 per unit figure (i.e., the energy charge of the consumption tier on which the household 
lies) as the marginal price for this customer-billing cycle. Additional duties, surcharges and cess, 
levied on per-unit of consumption are then added to this marginal price to arrive at the gross final 
marginal price faced by the customer in this cycle.  

Comparing the per-kWh energy cost derived from the billing data set to per-unit prices prescribed 
in tariff schedule is straightforward, except for the months during which tariff revisions occur. If 
new tariff schedules are issued mid-cycle, JVVNL prorates the total consumption by the number 
of days of the billing cycle that falls under each of the tariff schedules. For instance, tariff revisions 
occurred on 1st September 2016. Consider a billing cycle, starting 1st August to 1st October 2016. 
To calculate the energy charges, first, the total consumption over the billing cycle is divided into 
two, weighted by the fraction of days in the cycle that falls under each tariff schedule (1st Aug – 
1st Sept = 31 days and 1st Sept – 1st October = 30 days). The total energy charge is then calculated 
by applying the energy charges prescribed under each tariff schedule and on basis of the prorated 
consumption. The marginal price of consumption for each half of consumption is then calculated 
using the same formulas as noted in the text above. In such cases of mid-cycle tariff revisions, we 
have split the cycle into two, starting 1st Aug to 1st Sept and 1st Sept to 1st October, prorating 
consumption, fixed costs, total electricity prices, etc. for each of the two cycles. 

 
(2) Additional validation checks conducted on the administrative billing data 

 

We validate if the household consumption, in general, reacts inversely to changes in prices. Figure 
7 illustrates the changes in the density of consumption and energy prices for periods between the 
first and second price revisions (September-2016 to March-2017 and February-2015 to 
September-2016 respectively). The figure indicates a sharper increase in prices for consumers at 
top-most tiers. This higher increase in prices also appears to be correlated with a leftward 
movement along the consumption distribution. Between September 2016 and March 2017, the 
fraction of bills31 in the 0-50 kWhs above poverty line (APL) category increased by more than 10 

 
31 Share of household-bills in tier i in price period t is =  ∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑜𝑜−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖
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percentage points while price increased by Rs. 0.4. Price increase for greater than 500 kWhs of 
consumption category was about double that amount and was associated with fall of about 3 
percentage points in the fraction of bills. More generally, the share of household-bills in the top 
three consumption tiers (for which prices have risen the most) has fallen, while it has increased in 
the bottom two tiers (for which prices rose moderately).  

The shift in the density of consumption could also be due to selection, wherein, large numbers of 
newly connected households with low initial levels of consumption could have added mass to the 
left of the distribution during September 2016 to March 2017. However, we do not find evidence 
of selection in the data--only 1 percent of sample comprises of consumers-bills that were newly 
added to the data set during this period, insignificant enough to have moved the distribution so 
sharply to the left. To be sure, we exclude these households from the data set to find the leftward 
shift in consumption to persist. We interpret this result to be the first indication that consumers 
in our sample show a negative response to rising prices.  

The consumption data for a given household in our sample also appears to be stable over 
consecutive billing periods.  Figure 8 compares the consumption tier of a household in the 
previous cycle (in the horizontal axes) to the consumption tier in the current cycle (in boxes). 
Households below the poverty line have low demand for energy services and therefore may not 
transition to higher consumption tiers. The opposite is true for some consumers in the higher 
tiers.  A large proportion of both groups therefore are observed to reside within their own tier 
over consecutive billing cycles. For others, transitions to one-tier above or below their current 
consumption tier is more likely. Transitions to more than two tiers away over consecutive cycles, 
reassuringly, appears to be rare in the data. 

 

(3) Additional validation checks conducted on the temperature and rainfall data 
 

We check to see if increasing temperatures and low rainfall is associated positively with higher 
electricity demand. To describe this relationship, we regress the log of average temperatures and 
rainfall to the log of average daily household consumption over a billing cycle. Table 6 shows the 
positive and negative relationship between daily household consumption and temperature and 
rainfall, respectively. A 10 percent increase in average temperature and rainfall is associated with 
12 percent increase and 0.3 percent decrease in daily consumption, on average.  

Finally, we check if households in locations with higher average temperatures and rainfall over 
billing cycles are associated with a higher demand for energy services based on their ownership 
and use of electrical appliances. We regress the log of daily energy services demanded by the 
household based on the survey data to the average temperature and rainfall across all billing cycles. 
Table 7 shows a 10 increase in average temperatures across billing cycles increases the predicted 
energy demand of a household by 2.6 percent. In contrast, a 10 percent increase in rainfall in the 
area reduces the demand for energy services by 0.5 percent.  

 


