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Forest-related greenhouse gas (GHG) emissions, 
emission reductions, and enhanced removals (carbon 
sequestration) are estimated by measurement, 
reporting, and verification (MRV) systems, usually 
based on a combination of remote sensing data, field 
or in situ measurements, and modeling approaches. 
Operationalizing the MRV process, is lengthy, however, 
often taking years even in countries with currently high 
capacities for such a task, and once it is operational, 
it relies on a complex, nonstandardized, uncertain, and 
lengthy process of integrating remote sensing and in 
situ measurements. This negatively affects the ability 
to address the drivers of these emissions, and at the 
same time apply and access climate finance in a timely 
manner. 

Under the United Nations Framework Convention on 
Climate Change (UNFCCC), the lack of consistency limits 
the comparability between countries and makes the 
reconciliation of national reports and global estimates 
that are needed for the 2023 Global Stocktake under 
the Paris Agreements difficult. Moreover, the ongoing 
costs of MRV systems can be high, while the accuracy of 
the estimates is often low, and thus not able to unlock 
the full potential of climate finance. Traditionally, MRV 
processes have been based on land use and land cover 
change (LULCC) approaches, which are heavily reliant 
on satellite optical imagery. New developments in 
technology are improving our capabilities for mapping 
carbon (C) stocks, and C-stock change with improved 
accuracy. In particular, biomass, which can be obtained 
through in situ measurements, remote sensing, and 
models, is an essential climate variable (ECV) that 
provides a direct measurement of C changes and 
impacts on other ECV, such as land cover. Upcoming 
satellites and the ever-falling costs of airborne data 
(especially from drones) will result in unprecedented 
availability of data to support biomass estimation. The 
combination of innovative approaches and increased 
availability of data is expected to overcome several 
major challenges to estimating C stocks by: 

·	 Enabling the monitoring of C stocks with increased 
frequency (<1 year frequency, compared to the 
current lower frequency of the reporting cycle);

·	 Standardizing C-stock estimation so that data from 
different sources are compatible and can be easily 
integrated, and uncertainties can be quantified; and

·	 Decreasing the time needed to generate estimates, 
because MRV systems can become operational in 
months, not years, and there is a much smaller 
time lag between the end of a monitoring period, 
and the availability of data.

In this context, the World Bank launched a study to assess 
the readiness of various innovative technologies—
including remote sensing (RS), geostatistics (GS), 
artificial intelligence (AI), and cloud computing (CC)—
to identify how these can be combined and leveraged 
to foster a next-generation MRV, which would help 
to unlock climate finance and enable governments 
and stakeholders to monitor the implementation of 
environmental policies and assess the status of the 
world’s forests.

The study began with a review of the current and 
potential innovative technologies in order to gain a 
comprehensive understanding of the readiness of these 
technologies, and the challenges to rolling out their 
implementation. 

Following the review of the technologies, the World 
Bank hosted a virtual two-day international workshop 
of experts with the objective of deepening the overall 
understanding of existing gaps through discussions 
of the methodological issues and limits, as well as the 
disruptive technologies and data management tools 
that could contribute to overcoming these obstacles. 
During the workshop, specific sessions also covered 
the policy and institutional barriers that will need to be 
addressed in order to deploy these technologies and 
offer solutions on how to disrupt the MRV process.

As a result, a set of the main technological challenges, and 
recommendations for overcoming them, were identified. 
The technological challenges can be grouped into four 
areas: data availability and access; processing and 
computational performance; uncertainty management; 
and standardization and protocols. 

EXECUTIVE SUMMARY
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The major challenges identified are related to the 
lack of free and open access to data, tools, and cloud 
computing systems. There is a need for transparent 
methods and algorithms for turning remotely sensed 
variables into accurate aboveground biomass (AGB) 
estimates. Establishing sustainable long-term in 
situ monitoring networks is a challenging task with 
multiple contributing factors. To start with, the lack 
of secured funding exacerbates the issues with the 
limited availability of representative data and metadata 
to estimate and reduce uncertainty, and the difficulty 
of establishing standardized and universally accepted 
measurement protocols. Government reluctance to 
share and exchange local data that are currently located 
on national servers with centralized cloud computing 
systems, and the low bandwidth in many regions, which 
makes building distributed systems challenging, are 
additional complications. Finally, innovative methods 
can be difficult to implement owing to the lack of 
communication among domains, which hinders the 
integration of GS and AI solutions into the process of 
estimating C stock and dynamics.

A set of recommendations was developed to make 
better use of current and upcoming remote sensing 
technologies through the smart combination of 
geostatistics and AI, deployed to the cloud, and 
anchored on traditional forest inventory data sets. 
Implementing the proposed technologies into 

comprehensive methodological frameworks would 
contribute to overcoming some of the challenges and 
achieving the main goal of this analysis, which is to 
improve the MRV process, reducing the time needed 
for MRV implementation, and consequently speeding 
up the mobilization of GHG emission reduction-based 
payment in the short term; and to foster sustainability, 
and build an operational service to carry out carbon 
stock based finance at global scale in the long term. 

To do so, we have outlined a nonexhaustive list of 
recommendations for the short term (1—2 years) 
and for the longer term (3—5 years) and have also 
identified potential coordinators and actors to the best 
of our knowledge, and based on the state-of-the-art 
review and the feedback received from experts. It is 
clear from both the review and the discussions held 
during the virtual workshop that a “one size fits all” 
method for AGB mapping and monitoring is unlikely 
to be achievable, or even desirable, given the different 
requirements, geographic locations, and types of forest 
under observation; therefore, a new generation of MRV 
processes will need to be flexible in order to enable its 
adaptation to various conditions. The recommendations 
we have devised allow for this flexibility and, if 
implemented, will lead to an enhancement and 
simplification of the MRV process by setting up and 
running systems in individual countries.
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Short Term 
(1—2 years)

Areas of Needed Improvement

Data Availability and Access

• Seek international partnerships with remote 
sensing data providers; support existing efforts 
in in situ data collection; and build on existing 
infrastructure so as to facilitate reliable, free, and 
open access to data, algorithms, and centralized 
cloud computing services through sustainable 
funding.

• Foster partnerships with research groups and 
institutions developing and maintaining forest 
plot networks and support them in additional data 
collection or access (that is, build a Global Forest 
Biomass Reference System).

Processing and Computational Performance

• Support the integration of new approaches (such 
as AI and GS) into traditional ones.

• Support the convergence of techniques between 
research groups (RS, AI/computer vision, GS, 
CC) as this will enable the enhancement of the 
developed tools.

Uncertainty Management

• Pilot the implementation of geostatistical (GS) and 
AI solutions through demonstration activities and 
pilots to link in situ and RS data, harnessing the 
potential of CC.

• Include estimates of error propagation from the 
input data to the final output in MRV systems.

Standardization and Protocols

• Establish a common understanding of how 
data will be used and processed to address 
various needs, through the collection of users’ 
requirements. 

• Develop standards and protocols for data 
collection and development of the components of 
the system.

• Promote data protection and security protocols 
for data migrations and protection.

Enabling Environments

• Support data policies in situ and RS data) for 
access and sharing.

• Engage with stakeholders to inform them about 
how local data will be used to build confidence 
throughout the MRV system.

• Create mechanisms for incentivization, such 
as rewards for establishing public-private 
partnerships to promote communication and 
collaboration among relevant institutions and 
stakeholders.

Data Availability and Access

• Group on Earth Observations (GEO).

• e agencies: European Space Agency (ESA), 
National Aeronautics and Space Administration 
(NASA), Japan Aerospace Exploration Agency 
(JAXA).

• Committee on Earth Observation Satellites 
(CEOS).

• In situ data collection networks and coordination 
mechanisms: GEO-TREES, AfriTRON, CTFS-
ForestGEO, ForestPlots.net, RAINFOR, SEOSAW.

Processing and Computational Performance

• RS, GS, AI, and CC research centers and groups. 

Uncertainty Management

• RS, GS, AI, and CC research centers and groups, 
national agencies.

Standardization and Protocols

• CEOS, GFOI.

• International Organization for Standardization 
(ISO), Cloud Security Alliance (CSA), European 
AI Alliance, World Economic Forum Global AI 
Action Alliance.

Enabling Environments

• GEO, FAO, GFOI, space agencies, plot networks, 
national authorities, research groups.

• Financial institutions, donors.

• UNFCCC, IPCC, World Bank 

• Climate AI, European AI Alliance, World 
Economic Forum Global AI Action Alliance,  
Global Partnership on AI, International 
Association of Mathematical Geosciences 
(IAMG), geoENVia.

Potential Coordinators and Actors
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Long 
Term 

(3—5 years)

Areas of Needed Improvement

• Create the necessary financial support 
mechanisms seeking public and private 
investments, such as impact investing, blended 
finance, and voluntary markets.

• Create SMART KPIs (Specific, Measurable, 
Attainable, Relevant, Time-bound Key 
Performance Indicators) to monitor system 
implementation. 

• Designate a perceived neutral entity that 
coordinates these actions, especially on the 
quality control of the in situ data, making it 
available and accessible to stakeholders (similar 
to the World Meteorological Organization 
network).

• Establish communication among experts and 
users, which would help to generate confidence 
and encourage data sharing as well as building on 
ongoing efforts.

Data Availability and Access

• Support plans for the future follow-up to the 
GEDI and BIOMASS missions, and/or plans for 
alternative missions with similar characteristics.

• Continue supporting and reinforce the 
continuation of international partnerships by 
making satellite data publicly available and 
the long-term maintenance of a Global Forest 
Biomass Reference System.

Processing and Computational Performance

• Build distributed systems with local micro-
clouds in regions without local data migration 
possibilities.

• Promote interoperability between local data 
centers and central servers.

Uncertainty Management

• Continue exploring innovations such as the 
automation of processing through GS with “meta-
models.”

• Enhance quantification of spatial patterns from 
training images and combine input data for AGB 
estimation using high spatial resolution satellite 
imagery, possibly selected via AI methods.

• Estimate the impact of overestimating and 
underestimating carbon stocks on results-based 
payments.

Potential Coordinators and Actors

Data Availability and Access

• Space agencies (NASA, ESA).

• GEO, CEOS.

Processing and Computational Performance

• National AI and CC research centers, national 
and local authorities.

Uncertainty Management

• RS, GS, and AI research centers and groups.

• In situ data collection networks and 
coordination mechanisms: GEO-TREES, 
AfriTRON, CTFS-ForestGEO, ForestPlots.net, , 
RAINFOR, SEOSAW.
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Long 
Term 

(3—5 years)

Areas of Needed Improvement

Standardization and Protocols

• Establish an international framework for adopting 
standard data management and processing 
approaches deployed in cloud computing systems 
located in different regions. 

Enabling Environments

• Analyze whether new data and tools could create 
ethical issues, keeping in mind the risk of “dual 
uses” that do not occur in current approaches.

• Invest in research, training, and knowledge 
generation in user countries.

• Support policy frameworks for AI solutions and 
cloud security.

• Foster collaboration among space agencies, 
international organizations, and governments.

• Carry out a full data and capacity-building 
needs assessment, based on identified target 
audiences and stakeholders in specific countries 
before developing a complete strategy to build 
distributed systems. 

• Allocate funding to support the regular acquisition 
of unmanned aerial vehicles (UAVs) and LiDAR 
data through CEOS and the private sector.

Potential Coordinators and Actors

Standardization and Protocols

• International alliances and partnerships, and 
organizations for standardization. 

Enabling Environments

• RS, AI, research centers and groups.

• World Bank, FAO. 

• National governments and offices. 

• Financial institutions, donors. 
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1.1 BACKGROUND 
In 2005, the parties to the United Nations Framework 
Convention on Climate Change (UNFCCC) began to 
formally set up a framework for financially incentivizing 
emissions reduction due to deforestation and forest 
degradation through conservation, the sustainable 
management of forests, and enhancement of forest 
carbon (C) stocks in developing countries. 

In 2013, the Warsaw Framework for REDD+,  which 
was adopted at the 19th Conference of the Parties 
(COP19), provided a comprehensive methodological 
and financing guideline for implementing activities 
for Reducing Emissions from Deforestation and 
forest Degradation (REDD+). According to the Warsaw 
Framework, activities aimed at reducing greenhouse 
gas (GHG) emissions from deforestation and forest 
degradation, and fostering sustainable management 
practices in developing countries are to be implemented 
in three phases (UNFCCC 2021):

(i) Development of national strategies, policies, and 
measures (PAMs), and identification of capacity 
building needs (readiness phase);

(ii) Implementation of demonstration activities, 
national PAMs, strategies, or action plans that could 
involve further capacity building and technology 
development; and

(iii) Monitoring and assessing the performance of PAMs 
at the national scale, allowing countries to obtain 
results-based payments.

In 2015, Article 5 of the Paris Agreement, which was 
adopted by 196 parties at COP 21, highlighted the 
pivotal role of results-based financing mechanisms 
in reducing GHG emissions, deforestation, and forest 
degradation. Although REDD+ is not considered a 
market-based mechanism (one in which credits are 
generated and transacted to compensate for GHG 
emissions) under Article 5, it is expected to be part of 
the Article 6 transactions. Moreover, voluntary markets 
and offsetting programs (for example, ICAO’s CORSIA) 
include the generation of credits from REDD+. These 
market transactions require more robust monitoring, 
reporting, and verification (MRV) systems, and 

assurance of environmental integrity.

Financing mechanisms are provided by various 
institutions: For example, the World Bank’s Climate 
Change Fund Management Unit includes two funds—
the Forest Carbon Partnership Facility (FCPF), and the 
Initiative of Sustainable Forest Landscapes (ISFL)—
both of which aim to pilot results-based payments and 
market-based mechanisms of land use interventions 
at a large scale. These funds have capitalized more 
than $1 billion dollars for result-based financing 
against emissions reduction (ER) units. In particular, 
the FCPF is an ambitious program working with 47 
REDD+ country participants and 17 donors; it includes 
a Readiness Fund and a Carbon Fund, both focused on 
the implementation of REDD+ programs.

To obtain these funds, countries need to first define 
their forest reference levels (FRLs) and forest 
reference emission levels (FRELs) (FCPF 2020). Parties 
are required to assess FRELs and/or FRLs—which 
measure the amount of emissions from deforestation 
and forest degradation—as well as removals due to 
the enhancement of C stocks in a given area within a 
reference period. Actual results are then compared with 
the assessed FRELs in order to mobilize payments for 
actions that prove consistency between the FRELs and 
FRLs; include transparent information that will allow 
for recalculation of estimates; and provide a description 
of the National Forest Monitoring System (NFMS) (FAO 
2013).

Under the UNFCCC, as well as under other standards, 
it is required that the methodologies for estimating 
GHG emissions are consistent with the guidelines 
developed by the Intergovernmental Panel on Climate 
Change (IPCC), and that they comply with the following 
principles (FAO 2013):

	 Adequate to represent C-stock changes 
(representing land use classes and conversions);

	 Consistent over time (without discontinuities in 
time-series data);

	 Complete (all the land of a country should be 
included); and

	 Transparent (data, tools, and methods should all 
be thoroughly described).

1. INTRODUCTION 
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The IPCC has identified five types of carbon pools: (i) 
aboveground biomass (AGB); (ii) belowground biomass 
(BGB); (iii) dead wood; (iv) litter (that is, dissolved 
organic matter; and (v) soil organic carbon (SOC), which 
can be measured and reported as part of national GHG 
inventories (FAO 2013).

When submitting their national GHG inventories, 
parties are encouraged to report on as many of their 
significant C pools as possible, according to their 
national circumstances, and with methodological 
consistency. AGB is the most visible and dynamic pool, 
and a key component in C inventories, representing 
30 percent of the total terrestrial ecosystems (Kumar 
and Mutanga 2017). SOC is also an important pool, 
especially in some regions. For example, in peatlands 
it is estimated that the carbon stored in soils could be 
twice as much as that stored in all the world’s forests 
(UNEP 2019), and peat C is released rapidly following 
drainage and/or clearance of the overlying forest. In 
moist, tropical forests, SOC represents less than 50 
percent of the total C stock (that is, terrestrial living 
plant material—(AGB and BGB)—and soil carbon stock) 
(Scharlemann et al.. 2014). SOC and BGB are difficult 
to monitor via satellite-based approaches (FAO 2009); 
thus, BGB is usually inferred from the AGB, via ratios or 
specific functions.

The choice of methodologies for collecting data and 
compiling GHG inventories follows the MRV approach, 
which is based on three “pillars” (FAO 2013):

	 Satellite Land Monitoring Systems, which estimate 
the activity data (AD);1

	 Terrestrial forest inventory, such as a National 
Forest Inventory (NFI), which estimates emission 
factors (EF);2 and

	 GHG inventory, which combines ADs and EFs to 
estimate GHG emissions and removals.

Traditionally, the production of AD relied upon 
small ground-data sets and classical classification 
algorithms, partially due to the lack of satellite  
imagery, and sufficient computing power to process 
these images. EFs have been often estimated through 
costly traditional forest inventories, which may or may 
not be repeated and provide estimates at a coarse scale. 
The availability of free optical data, and the possibility 
of implementing straightforward methods to derive AD 
from land use and land cover change (LULCC) have 

resulted in MRV frameworks that are primarily based on 
optical data. However, biomass, which can be obtained 
through in situ measurements, remote sensing (RS), 
and models, is an essential climate variable (ECV) that 
provides a direct measurement of carbon changes and 
impacts on other ECV, such as land cover (FAO 2009). 
As discussed during the virtual workshop, the RS of 
vegetation methods based on optical and C-band SAR 
data sets are not ideal for applying existing biomass 
mapping algorithms. Fundamentally, these data sets 
tend to describe only the top of the canopy, and they 
struggle to obtain information on forest biomass, 
particularly in dense forests. In addition, persistent 
cloud cover over the tropics hinders the use of optical 
imagery. 

Over the past decade there have, for the first time, 
emerged continuous RS-based maps of aboveground 
forest carbon storage (Saatchi et al.. 2011; Baccini et al.. 
2012; Avitabile et al.. 2016). These were made possible 
through an innovative spaceborne LiDAR sensor called 
ICESat that was launched by NASA in 2003, which, 
despite its primary mission being about the thickness 
of ice, collected sparse footprints across the globe from 
2003 to 2009, giving information on tree density and 
height that could be related directly to forest biomass 
(Lefsky 2010). These individual LiDAR footprints could 
not themselves be used to create biomass or biomass 
change maps because they only sampled a tiny fraction 
of 1 percent of the world’s land surface. However, they 
could be used to train machine-learning algorithms 
based on other optical and radar remote-sensing layers 
to effectively fill in the gaps, and create biomass maps 
without the cost and logistical challenge of collecting 
LiDAR data across a whole region, for example, 
Colombia (Asner et al.. 2012).

2  The emission factor (EF) provides an estimation of carbon stocks (i.e., emissions or removals per activity data) such as emitted due to deforestation.
1  Activity data (AD) refers to trends in land use change (i.e., area changes) 
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While these biomass maps represent a massive step 
forward for carbon accounting and tropical ecology, 
enabling for the first time an accurate estimate of the 
biomass in each region, and biomass gradients, they 
have very high uncertainty on a pixel level. Indeed, 
evidence from independent in situ plots suggests that 
they did not even correctly map large-scale regional 
gradients (Mitchard et al.. 2014), and did not agree 
with each other well in many areas. In particular, it has 
become clear that repeating the same method each 
year will not lead to reliable biomass change estimates: 
Since individual pixels have errors of 30—40 percent, 
changes related to forest growth or degradation (which 
typically have smaller percentage changes) will not 
be captured this way. One study attempted to repeat 
these methods (Baccini et al.. 2017), creating annual 
maps of forest carbon stock change over a decade, 
but the results are not  widely considered credible in 
the scientific community (Hansen et al.. 2019), and it 
is accepted that extrapolated maps based on passive 
optical remote sensing will not produce accurate 
enough change data for this method to work. Therefore, 
innovative methods and data should be used to provide 
accurate AGB estimations and carbon stock changes. 
However, the production of biomass maps and the 
estimation of C-stock change based on RS data have not 
been taken to an operational stage, and MRV systems 
rely on traditional methods that combine AD and EF. 
Therefore, the mechanism for calculating emissions for 
MRV is:

	 Slow due to a lack of automation, computing 
power, adequate infrastructure, know-how, 
and standardization. Even if MRV systems 
are operational and sustainable, the time for 
conducting the measuring and reporting varies 
from 3 to 16 months, depending on the country, and 
for verification, 6—12 months is required;

	 Costly in terms of the time and money required 
for field campaigns. MRV systems are complex, and 
they depend on the existence of sustained capacity 
and capabilities in key institutions during the 
reporting period (5 years); and 

	 Uncertain: The sources of uncertainty are 
related to the following: the quality and suitability 
of satellite data; data pre-processing and post-
processing; the definition of land cover classes; in 
situ data measurement; and emissions calculations 
using an integration of AD and EF, which 
oversimplifies reality. 

Some of the challenges associated with the estimation 
of GHG emissions for results-based payments for 
REDD+ could be overcome by using and combining new 
technologies and other data sets that present better 
relationships with forest structure and biomass, such 
as long-wavelength SAR missions (L -and P-band SAR). 
Innovative approaches will help: 

	 Reduce the cost of national or subnational-wide 
ground-data surveys by a fraction of the original 
cost.

	 Substantially decrease the time needed  
to implement the MRV cycle (from years/months  
to weeks). (Figure 1-2).

	 Improve deforestation and afforestation 
estimates, and therefore GHG emissions 
and removals through satellite-based AGB 
measurements, and information about the 
associated uncertainty.

In order to analyze the possibilities for overcoming 
the existing challenges that are hindering the current 
REDD+ MRV approach, the World Bank hired a 
consortium led by GMV Aerospace and Defence (GMV)  
to assess the readiness of innovative technologies and 
approaches in fields such as geostatistics (GS), artificial 

Figure 1-1 Example of a Pantropical Biomass Map.

Source: Saatchi et al.. 2011
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intelligence (AI), and cloud computing (CC) to boost the 
use of remote sensing of vegetation to estimate forest 
carbon stocks and dynamics. The consortium, led by 
GMV and formed by the University of Edinburgh, the 
Insight Centre for Data Analytics-University College 
Cork, and GS consultants from the Cyprus University of 
Technology and Aristotle University of Thessaloniki, and 
enabling environments (provided by Federica Chiappe 
Consulting Ltd.) performed a state-of-the-art review 
on current and potential innovative technologies. The 
results of this review were shared during a virtual 
International Workshop of Experts on “Disrupting 
Carbon Stock Dynamics Estimation for Results-Based 

Payments” held November 16—17, 2020. An online 
survey was also conducted to receive feedback and 
recommendations on how to improve and disrupt the 
current MRV process (Figure 1-2).

The workshop participants analyzed five key areas 
that play a relevant role in building a REDD+ enabling 
environment for rolling out innovative technologies:

i. Policy, regulatory, and institutional frameworks
ii. Finance and economics
iii. Technology and markets
iv. Information and capacity
v. Social, cultural, and behavioral factors

Figure 1-2 Traditional M & MRV Approach for Results-Based Payments and Time Frames

VALIDATION
1. Project validation

M+R: 
3–16 months

V: 
6–12 months

REPORTING
3. Periodic emissions 

reportVERIFICATION
4. Verification against an 

international standard

MEASUREMENT
2. Measurement and 
estimation of funds

RESULTS-BASED 
FINANCE

5. Payments of carbon 
credits / label issuance
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1.2 OBJECTIVES 
The objective of this report is to assess the feasibility of 
improving and enhancing the role of RS and emerging 
technologies such as GS, AI/machine learning, and CC, 
in order to estimate GHG emissions and to achieve more 
rapid mobilization of results-based payments.

The specific objectives of the report are to: 

i. Analyze the results of a state-of-the-art review on 
innovative technologies, and feedback collected 
during the virtual International Workshop of 
Experts on “Disrupting Carbon Stock Dynamics 
Estimation for Results-Based Payments.”

ii. Gain a comprehensive understanding of the 
readiness of RS of vegetation, and GS, AI, and CC 
technologies for disrupting the MRV process and 
overcoming the aforementioned challenges.

iii. Present the identified frontier technologies and 
state-of-the-art approaches for disrupting the 

MRV process, and map AGB, using RS-based 
technologies.

iv. Define an implementation framework leading 
to the disruption of the MRV process based on 
recommendations for rolling out innovative 
technologies and identified enablers (institutional 
frameworks, mandates, and incentives) to ensure 
the operationalization of RS-based technologies 
and processing approaches.

The report is structured as follows: First, we present 
the results of the state-of-the art review and the 
feedback received from experts. Second, we identify 
the challenges associated with the implementation of 
these technologies and provide recommendations for 
ways to disrupt the MRV process. Finally, we discuss 
the enabling environments that will be required in 
order to potentially reduce the time needed for MRV 
implementation, and therefore speed up mobilization of 
results-based payments.
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Remote sensing (RS) refers to a technology that employs 
active or passive sensors that can scan the Earth’s 
surface and process the data captured to infer spatially 
continuous, meaningful data, and information that is 
directly usable for understanding and monitoring (at 
various scales) many of the natural and anthropogenic 
activities taking place on our planet.

We are now entering a golden age of RS, with a plethora 
of spaceborne, airborne, and ground-based platforms 
and sensors that are either currently operating or 
scheduled to become operational within the next 1—5 
years (Figure 2-1). The launch of new missions by 
space agencies is causing an unprecedented increase 
in imagery availability and revisit rates. The availability 
of new spaceborne platforms specifically designed for 
forest aboveground biomass (AGB) mapping has the 
potential to greatly enhance our capacity to develop 
a monitoring system capable of reporting changes 
within the time frame of the monitoring, reporting, and 
verification (MRV) process. 

However, it is important to acknowledge that, 
because of the wide range and sensitivity of 
available sensors, a “one size fits all” method of 
AGB mapping and monitoring is unlikely to be 
achievable. Moreover, methods will depend on user 
requirements, such as the geographic extent, the type 
of vegetation, the AGB densities under consideration, 
and the objective of the report—for example, whether 
the need is for the most recent up-to-date AGB estimate, 
or for a long-term AGB trend for establishing baselines. 
From our state-of-the-art review and the subsequent 
discussions held during the International Workshop 
of Experts on “Disrupting Carbon Stock Dynamics 
Estimation for Results-Based Payments,” it is clear 
that achieving global and temporally consistent carbon 
stock estimations annually, and with errors below 20 
percent, as required by the Intergovernmental Panel on 
Climate Change (IPCC) and the RS community,3 remains 
a significant technological and logistical challenge, 
particularly in the short to medium term (2-3 years).

2. INNOVATIVE 
TECHNOLOGIES FOR 
IMPROVING THE MRV 
PROCESS

a -100-50 meter resolution, with relative errors < 20 % in areas with AGB densities >50 Mg ha1-, and a fixed error of 10 Mg ha1- in lower-density areas.
3  The target set by the IPCC and GCOS (Global Climate Observing System) is for a global and temporally consistent AGB monitoring system, with data sets generated annually at
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RS systems can be located on the ground, but in this 
report, when discussing RS, we will refer to either 
airborne sensors (onboard a plane or unmanned aerial 
vehicle, or UAV), or spaceborne sensors (onboard 
satellites). These systems are defined depending on the 
source of the energy they detect. Passive sensors detect 
the radiation that objects naturally emit or reflect (for 
example, reflected sunlight). Active sensors emit their 
own source of energy, and thus operate independently 
of solar illumination, which is then scattered from 
the target and received back at the sensor. Synthetic 
aperture radar (SAR), which emits microwave pulses, 

and LiDAR, which emits laser beams, are examples of 
active sensors. Active sensors are key to monitoring 
forests because they have the capacity to penetrate 
the forest canopy, and in some cases clouds, which is 
useful since most tropical forests are located in areas 
with frequent continuous cloud cover, which represents 
a major problem for passive sensors. SAR can penetrate 
clouds and provide volume and height estimates to 
measure biomass and LiDAR instruments are able to 
accurately map the 3D structure of stands of trees, 
even identifying the size and shape of individual trees; 
however, unlike SAR, they cannot penetrate clouds.

Note: This summary of spaceborne satellite platforms and sensors that are either dedicated to the measurement of AGB and its dynamics, 
or have been demonstrated as useful in its derivation, either in isolation, or as part of a multi-sensor approach, is based on our state-of-the-
art review. The launch date of future missions should be considered nominal, and subject to change. The $ symbol indicates that the full data 
catalog is not free to access; $* indicates free products are available. The spatial resolution refers to the scale at which these products are 
typically aggregated for wider use. 

Figure 2-1 Spaceborne Satellite Platforms and Sensors Relevant to the Measurement of Aboveground  
Biomass and Its Dynamics

(1—100 m)

(100—1,000 m)

(1,000+ m)
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A major feature of SAR systems is that radiation 
penetrates more or less through the canopy, depending 
on the specific wavelength at which the system is 
operating. For instance, X-band (short wavelength) 
radiation interacts with the surface of the forest canopy 
and is backscattered by small-scale components such 
as foliage and small branches, whereas P-band (long 
wavelength) radiation penetrates deeper into the 
canopy and is scattered back by larger components, 
such as large branches, tree stems, and the surface 
of the terrain. Since most of the biomass is contained 
in the stems and largest branches, P-band SAR is the 
preferred sensor for mapping AGB; however, there has 
never been a spaceborne SAR sensor operating at this 
wavelength, meaning that for many years AGB has been 
modeled instead, with relative success, using L-band 
(the next shortest wavelength from P) and C-band 
(Bouvet et al.. 2018; McNicol et al.. 2018; Rodríguez-
Veiga et al.. 2019). The challenge with C-band and 
L-band SAR systems is that when used in isolation, their 
signal saturates at relatively low AGB levels,4 estimated 
to be at around 50 Mg ha-1 for C-band, and 150 Mg ha-1 
for L-band,  values that that preclude the measurement 
of AGB in most intact tropical forests, where densities 
exceed 200 Mg ha-1. This means that above this point, 
differences in AGB are no longer captured. Conversely, 
P-band airborne data is shown to respond to AGB 
changes in forests well over 200 Mg ha-1, and indeed 
above 500 Mg ha-1 in French Guiana (Minh et al.. 2016). 

ESA’s BIOMASS mission, which will operate on P-band, 
is scheduled to launch in 2023, and is expected to 
be a game changer in this regard, by improving AGB 
estimates, particularly over tropical areas (which have 
high AGB densities) and overcoming the saturation 
issues with shorter wavelength systems. It is worth 
noting that spaceborne SAR sensors do not measure 
biomass or carbon stocks directly, but rather 
parameters that correlate with biomass, such as forest 
structure and volume, and canopy height. Overall, SAR 
and LiDAR sensors have proven to be more suitable 
for accurate AGB modeling because of their capability 
for penetrating the canopy and providing information 
about the forest 3D structure. Optical sensors, which 
are limited to measurements of the visible (2D) surface, 
can provide no information on the vertical structure or 
density of the forest.

Along with the ESA BIOMASS mission, two spaceborne 
missions are now collecting LiDAR data at global scales: 

4  Estimated to be around 50 Mg ha1- for C-band, and 150 Mg ha1- for L-band, values that preclude the measurement of AGB in most intact tropical forests, where densities 

exceed 200 Mg ha1-

NASA’s Global Ecosystems Dynamics Investigation 
(GEDI), onboard the International Space Station 
(Dubayah et al.. 2020), and their Ice, Clouds and Land 
Elevation Satellite (ICESat-2). The GEDI mission is 
the first spaceborne LiDAR specifically tasked with 
collecting data on tree canopy height, canopy cover, and 
various other metrics of the vertical forest structure, all 
within 25-meter footprints, much smaller than ICESat’s 
70 meters. A global network of coincident in situ field 
and airborne LiDAR data sets will be used to develop 
and refine calibration models for converting GEDI-
derived metrics of forest structure to AGB density, 
both at the footprint level (25 meters) and as part of a 
continuous, but coarser-resolution 1-kilometer product 
(Duncanson et al.. 2020; Patterson et al.. 2019). These 
data will only ever cover a small percentage of the 
world’s surface (4 percent for GEDI), and thus need 
to be combined with other RS data, namely SAR, and 
to a lesser extent multispectral optical imagery, to 
extrapolate the data contained in these small footprints 
to the wider region. Such a multisensor approach—
leveraging discrete LiDAR samples as a basis for 
creating wall-to-wall data sets—has formed the basis of 
several national and regional products created over the 
last decade, including the benchmark pantropical AGB 
maps of Saatchi et al.. (2011) and Baccini et al.. (2012). 
With a new generation of platforms and sensors now 
available, innovative methods and data are emerging, 
including those that combine GEDI with SAR data, such 
as TanDEM-X, to produce contiguous forest biomass 
maps at both 1-kilometer and 1-hectare resolution, 
with the latter achieving accuracies ranging from 11 to 
27 percent (Qi et al.. 2019). Despite clear promise, the 
challenge for MRV is that TanDEM-X, along with many 
other SAR data, is currently a commercial product, 
meaning that the costs associated with obtaining a 
global annual data set is likely to hinder widespread 
fusion attempts in support of this process. (See Figure 
2-2.)

The vast amount of optical satellite imagery now 
available, which is in many cases free of charge, has 
the potential to contribute to the overall process of 
integrating innovative approaches analyzed in this 
report, possibly by discovering new patterns and 
correlations between satellite imagery and forest 
AGB (Figure 2-2). Indeed, several recent studies have 
already explored the possibility of combining LiDAR 
with freely available optical data from Planet, Landsat, 
and Sentinel using machine-learning approaches, 
both to estimate AGB (Csillik et al.. 2019) and, more 

exceed 200 Mg ha1-.
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prevalently, to measure tree height (Ploton et al.. 2017; 
Lang et al.. 2019), a reliable proxy for AGB for which 
several calibration models exist (Asner and Mascaro 
2014; Jucker et al.. 2017). Despite these advances, these 
methods remain very much in the proof-of-concept 
stage and require independent validation before they 
can be considered suitable for wider application. 
However, the main barrier to developing reliable and 
temporally consistent monitoring strategies based on 
LiDAR is that our current spaceborne LiDAR sensors, 
GEDI and ICESat-2, both of which are likely to underpin 
future mapping efforts, are not operational satellites, 
and have no guarantee of long-term coverage. 
Airborne data collection using aircraft, while capable of 
replicating discrete LiDAR coverage at the regional to 
national scales, is prohibitively expensive ($200—$500 
per square kilometer), and is unlikely to be part of any 
long-term monitoring regime. 

It is therefore clear from both the literature review 

and the evidence obtained from the expert panel 
that SAR is the remote sensing technology with the 
greatest maturity in terms of readiness to address the 
challenges of the MRV process, particularly sensors 
operating at L-band (Figure 2—2), which have provided 
relatively accurate estimates of AGB in areas with low 
to moderate AGB density (0—150 Mg ha-1) (Bouvet et al.. 
2018; McNicol et al.. 2018). 

Crucially, these areas comprise about 90 percent of 
the land surface globally, which shows the significant 
potential of the SAR data sets for operational AGB 
mapping in many regions. However, tropical forests and 
other areas with AGB densities that are considerably 
greater than 150 Mg ha-1 will remain challenging to 
measure due to the saturation of the SAR signal. There 
is no clear and readily available method for operational 
large-scale AGB mapping and monitoring within the 
next 2 years, at least until the launch of BIOMASS. 

Figure 2-2 Percentage of Biomass Change, Derived from L-band SAR
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Source: McNicol et al.. 2018. 
Note: Areas where seasonal differences prohibited data analysis are shown in white. SAR = synthetic aperture radar.
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Current state-of-the-art regional to global mapping 
efforts necessarily rely on freely available RS data, 
prominent among which are the ALOS PALSAR annual 
mosaic products available from the Japan Aerospace 
Exploration Agency (JAXA), which are delivered fully 
processed with a latency period of 1—2 years and are 
available through Google Earth Engine (GEE) (Bouvet 
et al.. 2018; McNicol et al.. 2018; Santoro et al.. 2020). 
The ESA Climate Change Initiative (CCI) ESA DUE 
GlobBiomass project targets the creation of consistent 
global AGB maps at 1-hectare resolution for three 
epochs (2010, 2017, and 2018), which are theoretically 

5  To generate maps of AGB and AGB change, the project uses data from past, current, and future satellite missions, including optical sensors (for example, Sentinel 2A/B), C-band (Sentinel 1A & B), and 
L-band (ALOS-2 PALSAR-2) SAR data, and spaceborne LiDAR (for example, NASA's GEDI). https://climate.esa.int/en/projects/biomass/about/ 
6  Reducing the uncertainties on per-pixel estimates may be possible if aggregated to coarser resolution, assuming that errors are random, and the product does not contain systematic biases. However, 
such data sets are more difficult to validate using standard comparisons, as there exists little ground data with a spatial resolution larger than 1 hectare.

capable of supporting quantification of AGB change in 
support of MRV in the short term (1—2 years).5 The 
data sets for 2010 and 2017 have already been created 
and are available for public use. However, per-pixel 
uncertainties on these products are high, around 40— 
50 percent—values which, at present, should preclude 
their use in AGB change mapping.6 Furthermore, as 
previously noted, despite their global coverage, these 
Biomass CCI data sets cannot be used to estimate AGB 
in forests with densities >150—200 Mg ha-1 due to the 
saturation of L-band SAR.

Figure 2-3 Aboveground Biomass (AGB) Stocks for 2010 from the ESA DUE GlobBiomass Project

Note: The ESA DUE GlobBiomass project is a precursor to the ESA Biomass CCI project (Santoro et al.. 2020). The 47 countries delineated 
in red form part of the Forest Carbon Partnership Facility (FCPF), of which 33 have at least 75 percent of forested areas with AGB densities 
 < 150 Mg ha-1.

https://climate.esa.int/en/projects/biomass/about/
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There are other open issues related to the quality of 
the input SAR data itself that may be contributing to 
increasing the uncertainties in the AGB estimations. 
One of the most obvious is that the “mosaics” comprise 
images collected throughout the year, meaning that 
they are subject to the variable influence of surface 
moisture, which can enhance the backscatter intensity 
in dry conditions. Mitigating the seasonal and 
weather-related effects on SAR data will likely require 
a complete regeneration of the products; however, 
to date, the cost of acquiring the necessary number 
of ALOS PALSAR images required to generate the 
mosaics over large areas for a given year has been 
considered prohibitively expensive ($2,300 for a single 
70 x 70 kilometer acquisition). Certainly, for global 
mapping, cost may not be an issue if implemented by 
groups of nations, for example the 47 countries that 
are part of the Forest Carbon Partnership Facility 
(FCPF). New opportunities may also arise with the 
recent announcement that JAXA will provide free 
and open access to the ScanSAR observation data 
from ALOS and ALOS-2 (60- to 100-meter resolution); 
however, the time frame of this release has yet to 
be established. The launch of NASA-ISRO’s synthetic 
aperture radar (NISAR), an L-band mission scheduled 
for launch in 2022 at the earliest, will change this 
situation, by distributing L-band SAR data for free 
and providing AGB data with an accuracy of up to 20 
percent. 

As a result of these open issues, the currently 
available global AGB products have a high level of 
discrepancies (Saatchi et al.. 2011; Baccini et al.. 2012). 
However, promising data sets for AGB estimation have 
been recently made available, and more will shortly be 
made available through various space missions that 
are soon to launch. As shown in Figure 2-1, many new 
satellite missions (SAR, LiDAR, and optical) will render 
abundant high- and medium-resolution data during 
the next decade. However, none of these sensors or 
methods will be capable of accurately mapping AGB 
across all vegetation types in all regions, at least 
with a spatial and temporal resolution sufficient for 
the detection of small patterns and changes in AGB, 
including those associated with forest degradation 
and growth. This was confirmed by the experts 
participating in the workshop, who discussed the need 
to base operational AGB monitoring on a combination 
of sensors.

The upcoming BIOMASS and NISAR missions (in 2022—
2023), specifically designed around AGB mapping and 

monitoring, will provide data free of charge, and this 
will result in a new generation of AGB data sets capable 
of supporting the MRV process in the mid to long term 
(5—10 years). Longevity in free L-band data is likely 
to be provided by the ESA ROSE-L mission, which is 
considered a high-priority candidate in the Copernicus 
program, and is scheduled for launch toward 2027. 
These data, combined with inputs from ALOS-4, 
PALSAR-3, and other L-band platforms, including the 
Earth observation satellite constellation of Argentina’s 
space agency, SAOCOM (Satélite Argentino de 
Observación COn Microondas; Spanish for Argentine 
Microwaves Observation Satellite), have the potential 
to contribute to a long-term AGB monitoring system 
capable of annual reporting at global scales should 
a suitable solution to the commercial restrictions be 
found. Figure 2-1 shows the type of access, availability, 
and the expected launch timeline of these missions.

Together with new satellite missions, and new 
developments in data science, artificial intelligence 
(AI) and geostatistics (GS) are also improving the 
capability for obtaining more accurate predictions 
and quantifying uncertainty. Their implementation 
in MRV frameworks, which is not yet complete and 
comprehensive, could help to mobilize greenhouse 
gas (GHG) emission reduction-based payments. For 
example, geostatistical methods (including model-
based inference) represent relatively mature 
technologies in the forestry domain, but for the 
most part they have not yet found their way into an 
operational MRV context because of their complexity. 
Currently, the linking of ground-based AGB to RS 
data in an MRV context is typically achieved through 
rather simple models that often yield poor predictive 
performance. Nevertheless, GS offers a multitude 
of methods and algorithms for integrating data of 
multiple variables and improving spatial prediction/
mapping, including: 

i. Spatial regression models (linear or nonlinear) 
that account for spatial correlation, differences in 
data resolution, and measurement error.

ii. Regression models, combined with advanced 
spatial interpolation methods, which address the 
issue of spatial misalignment.

iii. Spatiotemporal geostatistical models accounting 
for the temporal dimension of the data.

iv. Computational procedures for handling large data 
sets.

v. Bayesian extensions of all of the above. 

i

ii

iii

iv

v
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Geostatistical regression models (see ii. above) have 
direct links to model-based inference and hybrid 
inference, which are widely employed in the forestry 
context. Moreover, GS provides a comprehensive 
framework for error and/or uncertainty modeling/
propagation. Geostatistical simulation, in 
particular, extends classical nonspatial simulation 
to account for spatial and/or spatiotemporal 
correlation, as well as different data resolutions, 
and constitutes an all-around approach for spatial 
error propagation, particularly when results need 
to be reported at various spatial resolutions (pixel 
versus regional versus national). Spatiotemporal 
geostatistical models for AGB (see iii above) are being 
actively developed, particularly for combining time-
series analysis with spatial statistics for understanding 
temporal patterns and actual changes that occurred 
between the times of image acquisition. Finally, 
satellite-based AGB estimation could benefit 
from the advent of multiple-point GS, whereby 
spatial patterns are first “learned” from training 
images and are then “exported” to the ground 
via geostatistical simulation, and fused with 
actual data to provide realistic models of spatial 
heterogeneity and complexity. This is a very active 
area of research, which is being applied in fields such 
as soil science and engineering, recently in combination 
with RS techniques, which could improve the accuracy 
of AGB estimates.

Geostatistical approaches and AI solutions can 
be considered as relatively mature technology 
that could be used at the various stages of 
AGB estimation from space, mainly to support 
image processing and pattern recognition within 
the remotely sensed information. The algorithms 
that can be considered for modeling AGB dynamics 
and classification purposes would have to be, of 
course, tuned to the specific application. Given 
the need for image processing and recognition of 
patterns within RS data, it is easily predicted that the 
various methodologies involved in image processing 
would be incorporated into AGB estimations. This 
implies that deep neural networks and the various 
approaches used for its performance improvement 
would be applied. AI would not only be used for 
image processing. Other tasks, such as inter/
intra-annual dynamic estimation, uncertainties 
estimation, data filtering, data processing/
curation, and data insight/variables/system  

7  Google Earth Engine (GEE) is a cloud computing platform for processing and analyzing satellite imagery and other Earth observation (EO) data.
8  EO-learn is a collection of Python packages that fuse AI and remote sensing techniques, and have been developed to seamlessly access and process spatiotemporal image sequences.
9  Radiant MLHub is an open library for ready-to-use, open-source geospatial training data, and advanced machine-learning applications on EO.
10  Open Data Cube is an open-source geospatial data management tool in which data is organized as a multidimensional array of values.
11  ENVI in the Cloud provides users with the full functionality of software packages like ENVI, in a powerful cloud-hosted IT environment.

behavior could be accomplished using AI solutions. 
Similarly, patterns and correlations within the 
collected information would be performed by 
various machine-learning approaches that would 
help reduce the burden of dimensionality in the 
collected information, and at the same time 
facilitate handling information from annexed 
approaches (for example, cloud computing processing). 
At the current stage, various AI applications already 
exist in several platforms that help bring tools and 
scientific communities together: GEE,7 EO-learn (open-
source Python library),8 Radiant MLHub,9 Open Data 
Cube,10 and ENVI in the Cloud,11 among others. Apart 
from all of the work performed so far, efforts have to 
be made to facilitate the application of AI technologies 
within the MRV framework.

Cloud computing (CC) is a mature technology that 
is shifting the paradigm in processing large data 
volumes and ensuring scalability. The foundational 
technologies and systems enabling cloud services 
are consolidated and standardized. CC underpins 
a vast number of services and information backups 
that allow large enterprises to host all their data and 
run their applications in the cloud. It is based on the 
concept of dynamic provisioning, which is applied 
not only to services but also to computing capability, 
storage, networking, and information technology (IT) 
infrastructure in general. Resources are made available 
through the internet and offered on a pay-per-use basis 
from CC vendors. However, there are currently very few 
end-to-end examples of AI algorithms that are employed 
to derive AGB from satellite data and are deployed in a 
cloud environment.

As more satellite sensors are launched, the availability 
of data will progressively increase. Some advances 
already exist, such as cloud computing platforms that 
provide global maps, and some progress has been made 
toward the automation of AGB estimation. However, 
there is still a long way to go before the efficient 
combination of these technologies will allow us to build 
a wall-to-wall AGB processing chain that speeds up MRV 
implementation and mobilizes emissions reduction-
based payments. In the following section of this report, 
we highlight the main challenges of the presented 
technologies, which have been grouped into four topics: 
data availability and accessibility; processing and 
computational performance; uncertainty management; 
and standardization and protocols.
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Data Availability and Access
The first of these challenges is the need for free and 
open access to remote sensing (RS) data and 
algorithms that can be produced in a timely and 
cost-effective manner, within the time frame of the 
monitoring, reporting, and verification (MRV) cycle. 
This is critical to ensuring reproducibility. The open-
data policy adopted by ESA and NASA has gone some 
way toward addressing this requirement; however, 
the data sets on which the most promising results 
are based, including TanDEM-X and ALOS PALSAR, are 
not available free of charge, while those that are, for 
example C-band SAR and optical data from the Sentinel 
missions and Landsat, are not necessarily the most 
appropriate data sets for aboveground biomass (AGB) 
mapping and monitoring (CEOS 2021b). Other useful 
satellite data sets, while open, were not available in 
the past—for example, NASA’s GEDI spaceborne LiDAR 
was only given its two-year slot on the International 
Space Station starting in late 2018, though its timeline 
has fortunately been extended. ESA’s BIOMASS mission 
will likely only operate for four years, and there is 
no plan for a successor satellite. In some ways, this 
makes these data sets even less useful for operational 
MRV systems than commercial data sets, since once 
they are no longer operational there is no possibility of 
gaining access to the data, even if budget is available. 

Another challenge is the need for transparent 
methods and algorithms for converting RS 
variables to AGB estimates, which requires 
accurate in situ data for calibration and 
validation. A smaller number of scientific in situ plots 
are available, and are very useful for calibration and 
validation, but that is not their primary purpose, so 
they are often not located where they would ideally 
be for this purpose, and are not measured repeatedly. 
Remeasurement of AGB in situ plots should be done 
at least every 2—5 years in order to account for 
changes and update calibration models and validation 
databases, with more frequent observations likely 

to be required in areas that are undergoing forest 
disturbance or encroachment (Herold et al.. 2019). 
However, securing the necessary funding to 
maintain and remeasure these ground networks 
is often difficult, and it represents a challenge to 
the establishment of long-term in situ monitoring 
networks.

A global biomass reference system would also require 
the capacity to handle and process immense amounts 
of data from in situ, airborne, and spaceborne 
sensors. The challenge here is not only the required 
computational power but also the ability to efficiently 
integrate these data sets into methodological 
frameworks. To do so, there are two challenges that 
have to be overcome. First, geostatistics (GS) and 
artificial intelligence (AI), like all analytical frameworks, 
rely on representative reference data, such as 
common sites and plots where different methods can 
be tested and/or validated. Therefore, the limited 
availability of representative data (both in terms 
of quantity and quality), along with the scarcity 
of metadata about their generation, constitutes 
a key barrier toward the application of GS in an 
MRV context, since it hinders confidence building 
in comparative studies as well as uncertainty 
reduction when communicating results to experts 
and stakeholders. Second, data collection should 
meet the calibration and validation requirements 
set for all of the domains (that is, RS, GS, and AI) 
that depend on the application and expected functions 
and outputs of the methodological approach (image 
processing, regressions, time-series analysis, etc.)

Processing and Computational 
Performance
Another barrier is related to scaling up from local 
estimations to the national scale and beyond. Different 
model parameterizations, such as stratification by 
forest type, are required for scaling GS applications 
to large areas, along with computational methods for 

3. IDENTIFIED 
TECHNOLOGICAL 
CHALLENGES

Not sure what this means?
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inverting very large covariance matrices. Different 
model parameterizations also entail decisions that 
are critical in model development, rendering the 
task of automation rather challenging. Additional 
improvements are needed to determine optimum 
methods for integrating (with linear or nonlinear 
models) in situ and RS data in AI models, while explicitly 
accounting for spatial correlation; accommodating the 
temporal dimension of the data and models of AGB 
change; and considering differences in data resolution, 
measurement error, and spatial misalignment between 
different data sources, as well as the complexity 
of different environments when scaling up (spatial 
heterogeneity), among other issues. Geostatistical 
methods also include model-based inference methods 
that are widely employed in forestry. Additionally, the 
development of new algorithms and solutions 
may require not only in situ data collection but 
also well-defined user requirements in order to 
develop solutions that fit the objectives, scale, 
and expected performance of the devised tool. 
Therefore, the time planned for building a monitoring 
system should also consider the time frame needed to 
collect and implement user requirements. 

The availability of large volumes of data requires 
powerful computing systems with efficient 
computational performance, and the resources for 
massive data storage. Centralized clouds are frequently 
used for storing and processing RS data, reducing 
computational time and cost. Such methods have 
already been used to estimate AGB in Sub-Saharan 
Africa using very high-resolution satellite imagery.12

Uncertainty Management
Differences of calibration between observations of 
the same sensor type in time and space are difficult 
to correct. Ensuring satellite data comparability will 
require separate calibrations based on data that 
is collected concurrently with the period of image 
acquisition. National Forest Inventories (NFIs) have 
the potential to contribute to this; however, at the 
international level, concerns and issues related 
to plot size, data access, standardization, and 
measurement protocols, or lack thereof, can create 
additional challenges and uncertainties. Moreover, 
difficulties arise when attempting to account for error 
and uncertainty in various MRV steps, including the 
quality of spatial data (along with uncertainty or 
vagueness in definitions—for example  forest versus 

12  “Counting Trees and Shrubs in the Sub-Sahara Using Cloud Computing”, https://www.nccs.nasa.gov/news-events/nccs-highlights/counting-shrubs-trees-using-cloud-computing.
13  Monte Carlo methods are one of the two methods to combine uncertainties accepted by the IPCC and is based on numerical simulations that draw pseudo-random samples from probability density 
functions representing the population of each parameter involved in the estimation.  
14  Open Science is a new approach to the scientific process based on cooperative work and new ways of sharing knowledge by using digital technologies and collaborative tools.

nonforest), positional errors, attribute errors, 
temporal uncertainty, and completeness.

Finally, the lack of familiarity with geostatistical 
methods of the people involved in operational 
MRV highlights the need for such methods to be 
appropriately communicated.

Overall, geostatistical methods are well developed 
and can contribute to improving uncertainty 
estimations. Yet there are two main areas that 
require improvement:

i. Accounting for different sources of uncertainty, 
including spatial data quality (along with 
uncertainty/vagueness in definitions—for example, 
forest versus nonforest), positional errors, attribute 
errors, temporal uncertainty, and completeness; and

ii. Identifying optimal GS simulation methods 
for spatial error propagation and expanding 
classical Monte Carlo methods13 to include 
spatial correlation and differences in data 
resolution. This would be useful because 
simulation results may apply to a fine spatial 
resolution, and subsequently be aggregated to a 
coarser scale—for example, to the country level—for 
reporting purposes. 

Regarding specific AI solutions, the main limitation that 
is clearly jeopardizing a “relatively” fast implementation 
in the MRV processes is the lack of communication 
between the RS and AI domains, which is hindering 
the adequate integration of AI solutions into the 
carbon stock estimation process. 

Standardization and Protocols
Despite the efforts of Open Science,14 the lack of open 
methodologies and algorithms is still a common 
issue that remains unresolved and is hindering 
standardization. In addition, the lack of broadly 
accepted guidelines in developing tools for specific 
tasks (for example, defining system variables) and 
data management (that is how, and in which format 
products will be accessed, stored, and shared) can 
pose challenges to the reliability and consistency of 
open processing systems. 

Cloud computing (CC ) is a well-developed technology 
for managing resources using standard protocols and 
producing scalable products. There are  International 
Organization for Standardization (ISO) standards for 
cloud interoperability, although the level of 
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implementation and application worldwide is 
not known. Potential barriers highlighted during 
the virtual workshop were related to massive data 
storage and governmental reluctance to share and 
migrate data from national servers and research 
centers to private cloud providers located in foreign 
countries. Moreover, dependency on a particular 
cloud provider could, on the one hand, constrain the 
modification of components; and on the other hand, 
reduce interoperability issues. 

At a global scale, one could also employ a client-
server model of distributed computing through edge 
computing, through which multiple local users share 
their computing resources to be run as one system. 
Edge computing is an emerging cloud architecture 
that can contribute to solving some national data-
sharing issues (for example, NFI, soil sampling, field 

campaigns). Within this architecture, data can be 
processed and analyzed independently in local data 
centers that connect to the core data center. However, 
bandwidth resources and connectivity issues in 
some regions of the world may pose challenges to 
building these systems.

In summary, the main challenges to be considered 
while building these systems are:

·	 Data storage, sharing, and migration from local 
servers to a centralized system; 

·	 Processes distributed in different clouds could 
produce interoperability issues; and

·	 Absence of internet connectivity: Establishing 
computing system architecture based on high data 
transfer remains a challenge in some parts of 
the world because of connectivity and bandwidth 
limitations.
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In general, technological advancements have been 
relatively quick, because of widespread confidence 
in their methods and the resultant data, as well as 
in their ability to improve carbon measurements and 
MRV processes. However, the enabling environment 
has not always been conducive to change, and the 
policies that support technological advancement have 
progressed at a much slower rate, and consequently 
have not kept up with this speed. There is an increased 
risk that since the scientific community has greater 
faith in the data and tools than policy makers do, as 
this gap widens, challenges to the uptake and use of 
new technologies could intensify further. Therefore, 
it was reiterated in the virtual workshop discussions 
that technological advancements in REDD+ monitoring, 
reporting, and verification (MRV) cannot function 
without positive enabling environments; the latter are 
key to implementation. 

Implementing the proposed technologies into 
comprehensive methodological frameworks would 
contribute to overcoming the challenges and 
achieving the main goal of this analysis, which is 
to improve the MRV process, reducing the time of 
MRV implementation, and consequently speeding up 
the mobilization of greenhouse gas (GHG) emission 
reduction-based payments in the short term; and to 
foster sustainability and build an operational service 
to carry out carbon stock-based finance at a global 
scale in the long term. To do so, we have outlined 
recommendations for the short term (1—2 years) as 
well as for the long term (3—5 years) to the best of our 
knowledge, based on the state-of-the-art review and the 
feedback received from experts (Figure 4-1).

First, we have identified four areas for improving MRV 
processes, especially C-stock measurements, from a 
technological perspective: data availability and access; 
processing and computational performance; uncertainty 
management; and standardization and protocols.

Second, we have highlighted appropriate enabling 
environments for rolling out these innovative 
technologies. We have proposed five categories: 
policies and regulations; institutions and stakeholders; 
capacity and information; finance and sustainability; 
and social, cultural, and behavioral factors.

4. RECOMMENDATIONS FOR 
ROLLING OUT INNOVATIVE 
TECHNOLOGIES AND 
BUILDING ENABLING 
ENVIRONMENTS TO 
OVERCOME CHALLENGES
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Figure 4-1 Implementation Framework

SHORT TERM

Data Availability and Access
• Seek international partnerships that foster free and 

open access to data, algorithms, and centralized 
cloud services through sustainable funding.

• Support forest inventory updates and new 
initiatives to build a Global Forest Biomass 
Reference System.

Processing and Computational Performance
• Support the integration of new approaches 

(biomass estimation, hybrid modeling, data 
augmentation) into traditional ones.

• Support the convergence of techniques among 
research groups.

Uncertainty Management
• Support demonstration activities and pilots to link 

in situ and remote sensing data.

• Include estimates of error propagation from the 
input data to the final output in MRV systems.

Standardization and Protocols
• Establish a common understanding of how data will 

be used and processed.

• Promote data standards, protection, and security.

• Support data policies (for both field and remote 
sensing data) regarding access and sharing.

• Incentivize stakeholders to promote public-private 
partnerships.

• Create key performance indicators.

• Select a neutral entity to coordinate actions.

• Establish cross-communication among experts  
and users.

• Seek public and private funding sources.

• Engage with stakeholders to build confidence 
throughout the MRV system.

• Improve the MRV process to reduce the time 
required for implementation.

• Speed up the mobilization of greenhouse gas 
emission reduction-based payments.

Data Availability and Access
• Support future satellite missions with similar 

characteristics. 

• Ensure and reinforce international partnerships to 
make satellite data publicly available, and increase 
the Global Forest Biomass Reference System.

Processing and Computational Performance
• Build distributed systems with local micro-clouds in 

regions without local data migration possibilities.

• Promote interoperability between local data centers 
and central servers.

Uncertainty Management
• Develop meta-models.

• Combine input data selected by AI solutions.

• Estimate the impact of overestimating and/or 
underestimating carbon stocks on results-based 
payments.

Standardization and Protocols
• Establish an international framework to adopt 

standard data management and processing 
approaches deployed in cloud computing systems 
located in different regions.

• Analyze whether new data and tools could create 
ethical issues in the future, keeping in mind the risk 
of “dual uses.”

• Support policy frameworks for AI solutions and 
cloud security. 

• Foster collaboration among space agencies, 
international organizations, and governments.

• Assess capacity-building needs.

• Invest in research, training, and knowledge transfer.

• Allocate funding to support regular acquisition of 
UAVs and LiDAR through CEOS.

• Foster sustainability.

• Build an operational and sustainable service to 
carry out carbon stock-based finance at a global 
scale.

LONG TERM

INTERMEDIATE 
OUTCOMES

ENABLING 
ENVIRONMENT

IMPACT

GOAL
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4.1 SHORT-TERM RECOMMENDATIONS 
(1—2 YEARS)

INTERMEDIATE OUTCOMES
	 Data Availability and Access

Ensuring reliable remote sensing (RS) data inputs 
will require establishing international partnerships 
with RS data providers; supporting existing efforts 
in in situ data collection; and building on existing 
infrastructure. For example, the intergovernmental 
Group on Earth Observations (GEO) is playing a key 
role in promoting open access to data, information, and 
knowledge. GEO has contributed to increasing data 
availability for users and reducing the cost barrier 
through agreements with key data providers (NASA, 
ESA, DLR, JAXA) to make some of their data free to use 
and share. Further efforts to ensure data availability 
should warrant that existing agreements—for example, 
with JAXA—are fulfilled, and new arrangements 
with other commercial service providers are sought 
(GEO 2020). An example of such an agreement is the 
collaboration between Kongsberg Satellite Services 
(KSAT), Planet, and Airbus with Norway’s Ministry of 
Climate and Environment, to provide access to high-
resolution imagery for monitoring the tropics in order 
to curb deforestation. The contract awarded was 
approximately €37 million euros, which is comparable 
to the sum estimate for the development of a Global 
Forest Biomass Reference System (CEOS 2020).

Ground-data sampling campaigns should foster 
partnerships with research groups and institutions 
that are developing and maintaining the forest plot 
networks responsible for in situ data collection and 
curation—such as ForestPlots.net, SEOSAW, AfriTRON, 
CTFS-ForestGEO, and RAINFOR—to make some of their 
forest inventory data publicly available and contribute 
to enhancing them with data from other regions. 
Granting access to repeat inventories conducted in the 
periods 2005—2010, 2015, and more recent plots, which 
will ensure an overlap with key spaceborne missions, 
would be particularly relevant for calibrating and 
validating RS-based methodologies. Emphasis should 
be placed on 1-hectare sampling plots to ensure spatial 
matching between RS pixels and in situ samples. In 
addition, we recommend addressing efforts toward 
not only updating out-of-date inventories in areas 
with limited capacity for establishing remeasurement 
programs, but also supporting new initiatives to 
monitor forest structure in regions with clear 
opportunities for aboveground biomass (AGB) 
15  http://www.openforis.org

mapping and monitoring in support of MRV (for 
example, tropical dry forest) that lack the resources 
for such inventories (Figure 4-2). For example, citizen 
science and open, free tools for data collection such 
as OpenForis15 could contribute to increasing in situ 
data collection, processing, and sharing in regions 
with limited resources. We estimate that the cost 
of remeasuring a single 1-hectare plot is $2,000—
$4,000 if conducted by a local team. This will require 
institutional coordination and significant financial and 
administrative support from organizations such as 
the World Bank, and national governments that have 
both the necessary capacity and the resources to 
assist in these efforts and can help develop a Global 
Forest Biomass Reference System. 

Open-data access and suitable data (in terms of 
quality, acquisition time, and quantity) for model 
calibration and validation will directly impact the 
development and performance of geostatistical 
(GS) models and artificial intelligence (AI) solutions. 
The deployment of algorithms and AGB estimates 
using big data should be carried out through cloud 
computing (CC) systems to speed up the MRV 
processing chains. Centralized and distributed clouds 
have the potential to speed up AGB estimates; improve 
MRV implementation; allow reproducibility; and 
reduce implementation time. During the course of the 
virtual workshop, experts stated that the availability 
of open-source clouds is an important requirement 
for establishing a methodological framework using 
CC systems. Therefore, short-term actions should 
focus on promoting open clouds—which would help 
generate trust, and encourage data sharing—as well 
as building on existing platforms. 
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	 Processing and Computational Performance

The short-term recommendations on the automation 
of analysis through GS approaches are based on 
selecting state-of-the-art, and preferably open-source, 
GS software that should be enhanced in computational 
efficiency, parallelized for speed, and ported onto CC 
systems to address large-scale applications. There are 
also additional developments and trends in the field 
of AI (for example, hybrid modeling frameworks) 
that could be incorporated in future methodological 
frameworks to design AI components with high 
performance, and with a broader range of applicability, 
in order to improve implementation of the MRV process. 
Input data aided by automatic and self-evolving AI 
configuration components could be useful for building 
dynamically modified systems, constraints, parameters, 
and estimations, leading to an enhanced system. Data 
augmentation could be used as a promising approach 
for increasing the supply of information to AI algorithms 
as long as they do not incorporate further uncertainties 
into the system. This implies that methodologies such 
as image inversion/flipping could be included, but 
those based on synthetically created information should 
be implemented only with caution. Environmental 
and land-based conditions are considerably dynamic. 
This variability has to be included in nontraditional 
components in order to produce trustworthy solutions. 
Furthermore, AI is well recognized for making inferences 
based on “what is currently true,” but if the situation 
is changing dynamically, the system has to develop 
alternatives to cope with recognized uncertainties 
or incorporate them into the system as a new set of 

information. Finally, convergence of techniques 
between research groups (RS, AI/computer vision, 
GS, CC) would enable the enhancement of the tools that 
have been developed. These interactions will need to 
be fostered by end users who are interested in such 
applications.

Operational and in-development examples of centralized 
platforms for retrieving satellite data, such as the 
System for Earth Observations, Data Access, Processing 
and Analysis for Land Monitoring (SEPAL), which is 
hosted by the United Nations’ Food and Agriculture 
Organization (FAO), harnesses cloud-based capabilities 
and modern geospatial data infrastructures like Google 
Earth Engine (GEE), allowing users to access and 
process satellite imagery to monitor forests. NASA and 
ESA are currently building the Multi-Mission Algorithm 
and Analysis Platform (MAAP), which has features 
similar to GEE, and the Copernicus Data and Information 
Services platform (DIAS), which are also targeted 
toward monitoring forests. MAAP aims to improve the 
ease of access to huge amounts of data that are or will 
be available using CC resources. This platform will 
enable users to develop code, analyze results, and share 
and process global-scale data, which in turn should 
increase reproducibility and transparency. However, 
there are still issues surrounding the availability of 
input data, both for creating and parameterizing existing 
models for predicting AGB, or AGB change, many of 
which require regional calibration, or lack up-to-date 
information. Therefore, the first step required is the 
establishment of partnerships to ensure RS and in situ 
data access and their integration into open-access cloud 

Figure 4-2 Potential Biomass Reference Measurement Sites to Set Up Increase Confidence in Biomass Estimates

Note: These will need to be re-censused since they will be outdated by 2022/2023 (CEOS 2020).
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systems. This system will ideally retrieve RS and in situ 
data from various providers and will use AI solutions 
and geostatistical approaches to estimate global and 
annual carbon maps in tropical regions (see examples 
in Appendix C). The need to store large volumes of 
data (for example, satellite imagery of time-series) 
makes centralized clouds the best option for 
avoiding big data migration among servers. Also, 
the lack of stable connectivity and bandwidth 
in many parts of the world makes the option of a 
centralized cloud system the most plausible one in 
the short term. 

	 Uncertainty Management

It is recommended that the implementation of 
geostatistical methods be approached through 
demonstration activities and pilots to link in situ 
and RS data. These methods should account for spatial 
correlation; differences in spatial resolutions (and 
possible misalignments) between in situ and remotely 
sensed data; errors in reference and other data; and 
spatial heterogeneity in attribute values when scaling 
to large regions, due to different biomes. It is also 
recommended to employ geostatistical simulation 
algorithms to propagate spatial uncertainty 
stemming from various sources and steps in the 
MRV process to the final carbon estimates reported. 

	 Standardization and Protocols

Data migration and storage should be accompanied by 
privacy and security protocols (for example, different 
levels of access to the platform, and the adoption of 
international regulations) to establish standard data 
protection guidelines, including security strategies, 
depending on the system architecture and the license 
to use national data sets and added-value products 
developed in the platform.

Improved model performance will go hand in hand with 
extended periods of development and testing phases 
following trustworthy AI solutions, which should be 
“lawful (respecting all applicable laws and regulations), 
ethical (respecting ethical principles and values), 
and robust (both from a technical perspective while 
taking into account its social environment)” (European 
Commission 2019). In particular, human intervention in 
supervised approaches will likely be required for reasons 
of assessment and transparency (because people 
might not believe the full black box). Therefore, broadly 
accepted guidelines should be added to the development 
and deployment of any AI component. Promoting 
and developing data management protocols and 

regulations through policies and professional 
initiatives will help create a common understanding 
of how data will be used. 

ENABLING ENVIRONMENTS
	 Policies and Regulations

The implementation of REDD+, globally, is guided by 
a series of overarching policies, including the Paris 
Agreement and Agenda 2030. Still, to enable the 
development of a Global Forest Biomass Reference 
System, and to leverage the discussed technologies, 
specific policy and regulation requirements regarding 
the use of these technologies need to be taken into 
consideration. These include:

·	 Revisions to the decision 11/CP19 on the modalities 
for forest-monitoring systems under the Warsaw 
Framework regarding the need to use the latest 
technologies, and cooperation between national and 
international agencies in order to harmonize data 
needs for reporting to the UNFCCC. Some steps 
have already been taken, such as the introduction 
of guidance for the use of allometric models and 
biomass maps that were included in the 2019 
Refinement to the 2006 IPCC Guidelines for National 
GHG Inventories (IPCC 2019); and

·	 Development of policies to improve compliance and 
voluntary carbon standards to encourage the use of 
disruptive technologies for forest monitoring.

The following actions are recommended in order to create 
an environment that can promote the development of a 
global forest biomass monitoring system:

·	 Adoption of standard operating procedures for in 
situ and remote sensing data for forest monitoring. 

·	 Development of policies for aligning in situ and RS 
data.

·	 Development of a policy for data access and sharing 
among public and private institutions. 

·	 Development of legal provisions on the use and 
validity of spatial data.

	 Institutions and Stakeholders

Institutions and stakeholders play a key role in providing 
the regulations, funding mechanisms, and training 
activities and education needed to implement new 
technologies and ensure future sustainability. They 
need to be incentivized to collaborate and communicate, 
while also being held accountable for outcomes. 
Incentivization can be achieved through financial 
rewards, but also, and very importantly, through 
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well-developed key performance indicators. 
Incentives will be particularly important for piloting 
new technologies at the national and international 
levels. Setting up an environment in which people 
and institutions can contribute to something that 
they consider to be useful will result in a win-win 
situation. Furthermore, if a clear purpose and 
framework for sharing data is provided, it can help 
create openness as people become more willing to 
share data. Providing rewards for contributing data 
is a great example of incentivization. The reward 
does not need to be financial, but it can still be very 
interesting for countries if, for example, they can 
access additional data, and if their institutions 
trust the organization holding the data. This could 
be fostered through public-private partnerships. 
However, open source (data, algorithms, and cloud) 
is crucial to overcoming data-sharing reluctance. 
Cloud computing as both infrastructure and 
platform is the core system through which the other 
three technologies could be implemented through 
several major steps. 

Cloud-based data catalogs have to be compiled or 
retrieved from public and private Earth observation 
(EO) data providers (NASA, ESA, JAXA, DLR). 
Therefore, partnerships with these agencies 
and intergovernmental institutions, and other 
international organizations such as GEO and FAO 
(for example, the Global Forest Observation Initiative) 
should be fostered. 

In situ data sets have to be used in combination with RS 
data and highlighted technologies in order to calibrate 
and validate models for biomass estimation. However, 
there is a lack of data in many tropical regions because 
of remoteness, lack of capacity, paucity of data, or armed 
conflicts (Rodríguez-Veiga et al.. 2017). Therefore, carbon 
maps in many regions will rely on a combination of 
innovative technologies and allometric models that are 
representative of the forests of that region. Updating 
forest inventories and supporting existing and new 
initiatives for in situ data collection will increase the 
quantity of calibration and validation samples. There 
are international  initiatives already in place to 
coordinate in situ data collection and harmonization 
that could contribute to establishing partnerships 
for migrating in situ data to this system—for 
example, AfriTRON, CTFS-ForestGEO, ForestPlots, and 
RAINFOR. Remote sensing and in situ data could be 
integrated into AI solutions and geostatistical models 
run in a cloud environment. But to do so, collaboration 

16  ClimateAI (https://climate.ai/), European AI Alliance, the World Economic Forum Global AI Action Alliance (https://www.weforum.org/projects/global-ai-action-alliance), the Global Partnership on AI 
(https://gpai.ai/), the Partnership on AI (www.partnershiponai.org), the International Association of Mathematical Geosciences (IAMG -- https://www.iamg.org/), with key players in geostatistics among 
its membership; and geoENVia (https://geoenvia.org), an association promoting the use of geostatistics for environmental applications.

must be established between key private and public 
players in order to enable knowledge transfer 
and develop operational solutions following the 
recommendations proposed in this report. Some 
of the key players in the field of standardization and 
software development, guidelines, and initiatives are 
the International Organization for Standardization (ISO), 
ClimateAI, the European AI Alliance, the World Economic 
Forum Global AI Action Alliance, the Global Partnership 
on AI, the Partnership on AI, the International Association 
of Mathematical Geosciences (IAMG), and geoENVia.16 
The development of AI solutions in a cloud environment 
should also consider the following key relevant industry 
partners with specific products: Google, Microsoft, IBM, 
Amazon, and the Environmental Systems Research 
Institute (ESRI).

	 Capacity and Information

Additionally, the architectural design and the combination 
of software and hardware needed to process big data 
should be selected in such a way as to improve the 
computational cost of the analyses, not only to improve 
MRV implementation, but also to reduce the associated 
carbon footprint derived from it. Open-source tools 
usually include tutorials and documentation for self-
learning. However, designing field data sampling 
and the development of new algorithms tailored 
to monitoring specific environmental issues will 
likely require technical training. As with geostatistics, 
the removal of barriers in the use of AI solutions may 
be achieved by supporting communication between 
experts and users working in these domains. 

	 Finance and Sustainability

Financing could be made available to open satellite 
data archives and could even fund new missions as 
well as in situ data campaigns. This would remove 
barriers in the way of developing a consistent 
carbon measurement strategy. All in all, setting up a  
Global Forest Biomass Reference System (for example, 
a network of 100 biomass reference measurement 
sites, plus 210 additional distributed sites) will require 
significant investment—about 34 million euros, or $41 
million for in situ data collection, personnel time, airborne 
campaigns, data curation, and processing over a 5-year 
period (CEOS 2020). Other estimates indicate that in 
order to fully re-census 600 1-hectare plots across all 
four tropical continents would require 9 million euros 
($11 million) per remeasurement cycle (Chave et al.. 
2019).

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.iamg.org_&d=DwMGaQ&c=CIoxZ4z5BqFvKvSGFOTo726QZIiNTc_M9CmngT-Pla4&r=jqHYzUIB-FdXhnUh7uXsckcUOaTgEbpmidTV8KUMCwk&m=g_hEDk1pp1YR6ns-hL9ukdRvCuCZyGKejajhGGTsAxs&s=Q4ayS-xgVklMLefdGXX94FAZIfAF9s3sEMPEGR8dP5s&e=
file://gmvprojects.gmv.es/WB-FOCASTOCK/02_DOCUMENTATION/D4/WB_Review/Work/02_Received_from_Partners/Edits/(https:/geoenvia.org
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For any system to be implemented, and to be 
sustainable beyond the time frame of an intervention, 
adequate financing is needed. In general, financing 
for digital MRV will come from demonstrating its 
value, and both public and private sources will be 
required.

·	 Public Sources

There are numerous potential sources of public finance 
to support innovation in forest MRV. At the multilateral 
levels, the Green Climate Fund (GCF) and the Global 
Environment Facility (GEF) play a strong role and 
will continue to do so. In addition, there is the need 
for continued support from bilateral funding such as 
Norway’s International Climate and Forest Initiative 
(NICFI), the United States Agency for International 
Development (USAID), and the United Kingdom, among 
others.

·	 Private Funding

Impact investment, blended finance, and carbon credits 
are all possible sources of finance. The voluntary market 
might serve as a useful platform (and source of financing) 
for pilots, while the cost of maintaining technologies over 
the long term needs to be factored into the products in 
order to ensure the sustainability of the solutions. In this 
regard, technology companies have a strong role to play 
in providing computational power, software, and training 
capacity. 

	 Social, Cultural, and Behavioral Factors

Effective implementation relies on confidence being 
built throughout the MRV system. This means that the 
stakeholders and/or beneficiaries need to know that their 
data will not be used against them. The system must be 
reliable, and it must ensure continuity over a number of 
years so that users and data providers consider it worthy 
of investing the required resources.

4.2 LONG-TERM RECOMMENDATIONS 
(3—5 YEARS)
INTERMEDIATE OUTCOMES

	 Data Availability and Access

Long-term remote sensing (RS) data acquisition should 
focus on exploring opportunities and supporting plans 
for future follow-up to the GEDI and BIOMASS 
missions, and/or plans for other missions with 
similar characteristics. By implementing this 
recommendation, the availability of input data 
with similar features will ensure the relevance of 
the geostatistical and AI algorithms developed 
and tailored to these satellite data sets once those 
“explorer” missions reach the end of life. It would be 
essential to ensure and reinforce the continuation 
of international partnerships, making satellite data 
publicly available.

Regarding access to in situ data, our long-term 
recommendations are focused on maintaining and 
increasing the Global Forest Biomass Reference 
System (a network of 100 biomass reference 
measurement sites, plus 210 additional distributed 
sites), which as discussed earlier, would require 
about 34 million euros for in situ data collection, 
personnel time, airborne campaigns, and data curation 
and processing over a five-year period (CEOS 2020). 

	 Processing and Computational Performance

To resolve cases in which in situ data-sharing challenges 
cannot be easily overcome, edge computing has been 
proposed as an emerging cloud computing architecture 
for applications at large scale. Within this architecture, 
nonsharable in situ data could be processed and 
analyzed in local data centers in a similar manner 
to the one in a centralized cloud in this case, each local 
data center could act as a micro-cloud where analysis 
and results would be computed locally. Distributed 
systems enable quicker responsiveness and processing, 
lower network traffic, and facilitate real-time monitoring. 
Local data centers should therefore be created to 
store privacy-protected data and run relevant AGB-
related analytics. In addition, interoperability with 
the centralized cloud needs to be maintained. 

	 Uncertainty Management

As previously recommended, once a well-established 
and sustainable plot network has been developed, 
long-term measures to automate processing 
through geostatistics could evolve toward “meta-
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models” and linking GS (or other) model parameter 
estimates across different plots, conditions, data types, 
accuracies, and modeling approaches to actual carbon 
predictions and their quality; this would improve feature 
engineering, machine-learning approaches, and model 
development in GS and AI. In addition, multiple-point 
geostatistics could enhance the quantification 
of spatial patterns from training images for AGB 
estimation by combining various sources of satellite 
imagery, possibly selected via AI solutions. 

Quantifying the (possibly monetary) impact of 
overestimating versus underestimating the true 
carbon amount is recommended; this will set the 
stage for evaluating the suitability of data sources for 
computing emission reduction-based payments and 
improving uncertainty management. In addition, the 
development of a set of prototype case studies 
involving GS models will help showcase the benefit 
of improving uncertainty management in the MRV 
cycle.

	 Standardization and Protocols

Establish an international framework to adopt 
standard data management and processing in cloud 
computing systems located in different regions. 
Some specific areas for which guidelines should be 
considered include resilience to attack and security; 
accuracy, reliability, and reproducibility; data protection 
and security (authentication, encryption); quality and data 
integrity; traceability, explainability, accessibility, and 
universal design; stakeholder participation; auditability; 
readiness for tackling specific problems; and sustainable 
and environmentally friendly solutions for fostering 
computational efficiency.

ENABLING ENVIRONMENTS
	 Policies and Regulations

Exploring the interaction of the above actions with 
some of the more specific REDD+ policies will also be 
important. For example:

·	 Country-level REDD+ readiness policies, strategies, 
and regulations;

·	 Other sector-specific policies and regulations;
·	 Free and prior informed consent; and
·	 Environmental and social safeguards.

Furthermore, the ethics of data  and usage is always 
a concern. Although the current resolution of satellite 
data does not specifically enter into the ethical risk zone 
(for example facial recognition) for non-MRV purposes, 
it is recommended that the possibility of new data 

and tools creating ethical issues in the future should 
be analyzed, and thought should be given to possible 
“dual uses” before the technology and data become 
operational. For example, while satellites do not 
recognize facial images, drones can and do; this generates 
even higher risks and highlights the need for policies 
on spatial data privacy. In addition, the application of 
the selected algorithms should follow broadly accepted 
guidelines. Many organizations have started to create AI 
regulations to avoid negative consequences related to 
the use of AI: For example, the European Commission 
has issued an Ethics Guide based on seven requirements: 
transparency, explainability, safety, fairness, human 
rights, privacy, and security (European Commission 2019). 
It should be noted that negative consequences are linked 
to someone in the value chain being able to make certain 
kinds of decisions, while ethical risks are simply related 
to the use of very high-resolution imagery. Confidence 
can be built through policy frameworks such as the 
Cloud Security Alliance (CSA), with various levels of 
certification and trust. 

	 Institutions and Stakeholders

Coordination between satellite and ground inventory 
systems at the technological level is one of the key 
needs, enabling near real-time data collection; the 
reduction of uncertainty around the interpretation of that 
data; and therefore, higher confidence in the estimates 
from satellite-based methods. This will require close 
collaboration among the space agencies, national 
governments, and international agencies that 
are funding the in situ data collection programs. 
International initiatives such as the Global 
Forest Observations Initiative (GFOI) can play 
a role in engaging countries, always taking into 
consideration each country’s circumstances. 

On another front, long-term recommendations include 
stakeholders’ engagement at early stages of 
AI deployment tools so that they understand the 
limitations of the system (independently of the extent of 
the foreseen application of the system) and promoting 
the incorporation of scientific advances ready for 
operationalization (for example, incorporate auto, self-
evolving/automatic configuring AI components once they 
are considered mature for deployment).

Moreover, as increasing amounts of data become 
available, facilities provided by the private cloud sector 
will become more important for data storage and data 
processing and analytics. The success of innovations 
in the development of a global forest biomass 
monitoring system will require collaboration 
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between space agencies, international institutions 
such as the FAO and the World Bank, and national 
partners. Participants in the workshop recommended 
that to increase confidence in MRV data, there needs 
to be a perceived neutral entity that takes charge of 
the process and, specifically, of the quality control 
of the in situ data, making it available and accessible 
to the global community, similar to the World 
Meteorological Organization network. An important 
driver will be increasing local capacity for data analysis 
and allowing the analysis to be co-located with data 
collection, while supporting country-level policy makers. 

Greater decentralization seems to spur the use of new 
data and technologies. However, with these opportunities 
there are also challenges for REDD+ countries. 
Implementation in countries with higher degrees of 
decentralization tends to generate better outcomes, as 
the challenges for digital MRV and potential solutions 
tend to be locality-specific and require knowledge of 
the places in which they are to be implemented. Also, 
places with greater decentralization often have greater 
local capacity and the autonomy to deliver. However, 
decentralization efforts require higher degrees and 
volumes of capacity to be built, especially with newer 
technologies, but usually there are only a limited 
amount of people at the local level and they are already 
overburdened with an increasing number of mandates 
and responsibilities.

	 Capacity and Information

There are significant needs in data collection, storage, 
retention, security, interoperability, portability, and 
interconnectivity between systems. To address 
these needs, capacity development is the main 
recommendation that was suggested by many of the 
participants in the workshop. Capacity needs to be 
developed or improved, especially at the national and 
subnational levels. The selection and tuning of AI models 
are both highly skilled tasks involving experts who may 
require capacity building in forest and environmental 
departments in order for local implementation to be 
effective, without having to outsource these services to 
external experts (who may themselves not understand 
the local environmental context). It is recommended 
that a full data and capacity-building needs 
assessment based on the identified target audiences 
and stakeholders be carried out before developing 
a complete strategy. This assessment could start 
with lessons learned from previous programs by NASA, 
ESA, and other national agencies. In addition, cutting-
edge approaches, including the development of 
new algorithms and methodologies, will require 

investment in research, training, and knowledge 
transfer across the  industrial, academic, and end-
user communities.

There are capacity-building needs associated with 
all of the presented technologies:

·	 Remote sensing. Capacity building is currently 
leaning on IPCC Good Practice Guidance for Land 
Use, Land-Use Change and Forestry (GPG-LULUCF); 
Agriculture, Forestry and Other Land Use (AFOLU) 
guidelines; and GFOI Methods and Guidance on the 
use of biomass maps. However, these guides are 
very generic and hard to apply given the highly 
diverse country contexts. While most countries 
now maintain a National Forest Inventory (NFI), 
there is great variation among the countries, due to 
different definitions of forests and biomass, varying 
data availability, and the reliability of in situ data, as 
well as different country needs. Initiatives such as 
NASA and ESA’s collaboration on the Multi-Mission 
Algorithm and Analysis Platform (MAAP) requires 
in situ data in order to develop the algorithms and 
validate the products, without which data cannot be 
trusted by policy makers. Local institutions need 
to be willing to share their data, but open-source 
solutions are usually hard to enforce, especially 
when incentives are insufficient, or lacking 
altogether. 

·	 Artificial intelligence. In the AI realm, technologies 
that are able to accelerate and cover topics 
concerning policy (including the sharing of 
information) and human resources, such as training 
and tackling current needs in the sector, should 
be prioritized.

·	 Cloud computing (CC). In the CC space, the need 
to move computation closer to data generation 
will create capacity challenges. Even when there 
are policy frameworks (such as the Cloud Security 
Alliance, data requires a full process before it is 
ready for analysis: It needs to be harmonized and 
placed in the cloud; then training samples must 
be generated and quality controlled; finally, data 
sets need to be trained using machine learning 
or AI, and methods for post-processing the data 
need to be developed. Therefore, there is a clear 
need for standard operating procedures on the 
preparation of remote sensing and in situ data 
from various sources, and its sharing across 
platforms. Critically, local expertise needs to be 
built, and stakeholders need to be consulted, which 
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will require financial commitments. Finally, but 
importantly, the allocation of resources, capacity 
building, and training activities are needed to 
build, maintain, and operate data centers within 
distributed systems in some regions.

	 Finance and Sustainability
 It is important to ensure sustainability in the 

longer term, which can only happen if there is an 
ongoing, adequate understanding of the value 
of the technologies and the embedding of these 
technologies in systems owned by key decision- 
makers in the countries. Funding should be 
allocated to support the regular acquisition 
of unmanned aerial vehicles (UAVs)/aerial 
LiDAR in situ data through the Committee on 
Earth Observation Satellites. The cost of such 
acquisitions will vary; however, a reasonable guide 
would be $250–$600 per square kilometer, with 
UAV acquisitions tending toward the lower end, and 
airborne (that is, airplanes) the upper end. 

	

17  https://www.fairr.org/research/

	 Social, Cultural, and Behavioral Factors 

 At the global level, lessons learned from the 
mobilization of demand for deforestation-free supply 
chains can also be drawn, and synergies derived 
for implementation in the carbon measurement 
and MRV space. In fact, investors managing  
approximately $6 trillion are increasingly demanding 
a wide range of research, analysis, benchmarking 
tools, and best-practice materials that will help 
them understand and manage the risks and 
opportunities associated with intensive agriculture. 
Such powerful investor groups wield powerful 
influence levers on national policy.17 Therefore, 
engagement with them is key.
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Name Affiliation Sector 

Aguilar-Amuchastegui Naikoa World Wide Fund for Nature (WWF) Remote Sensing, Geostatistics, and REDD+ MRV

Asiyanbi Adeniyi BIOSEC Policy Matters

Atkinson Peter Lancaster Environment Centre at the 
University of Lancaster 

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics

Baydin Atilim Gunes University of Oxford Artificial Intelligence, Machine Learning and/or Big 
Data

Benito Pablo Llopis South Pole Policy Matters and Project implementation

Benjamins Richard Telefónica Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Policy matters

Brooks Chris Oxford Policy Management Policy Matters

Cabezas Antonio Tabasco GMV Aerospace and Defense Remote Sensing

Camara Gilberto Group on Earth Observations
Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data, Geostatistics, Cloud 
Computing and Policy Matters

Camps-Valls Gustau University of Valencia Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics 

Carr Edward Clark University Climate Change

Castren Tuukka World Bank Forest Data

Chiappe Federica Federica Chiappe Consulting Policy

Chua Darryl Temasek Policy Matters

Cooke Katherine Oxford Policy Management Policy Matters

De Bruin Sytze
Laboratory of Geo-Information Science 
and Remote Sensing at Wageningen 
University

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics

De Grandi Elsa Carla GMV Aerospace and Defense Remote Sensing

Di Gregorio Monica University of Leeds Policy Matters

Disney Mat University College London Remote sensing, Artificial Intelligence, Machine 
Learning and/or Big Data

APPENDIX A: WORKSHOP 
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The names of presenters and experts providing substantial feedback have been bolded and underscored. 
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Dumra Bidyut DBS Bank Artificial Intelligence, Machine Learning and/or Big 
Data

Duncanson Laura University of Maryland Remote Sensing

Dutta Omjyoti GMV Aerospace and Defense Remote Sensing / Cloud Computing

Espejo Andrés World Bank Carbon Finance / Forestry

Fernandes Erick World Bank Sustainable Development

Flasher Joe Amazon Cloud Computing

Fleming Sam Earth Box Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Cloud Computing

Garcia Monica Technical University of Denmark Remote Sensing

Garret Keith World Bank Sustainable Development

Ghosh Soumya Kanti Indian Institute of Technology 
Kharagphur

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Cloud Computing

Giménez Marta Gómez GMV Aerospace and Defense Remote Sensing

Giuliani Gregory University of Geneva / UN Grid-Geneva Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Cloud Computing

Gonzalez-Castañé Gabriel Insight Centre for Data AI/Machine Learning

Gorelick Noel Google
Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data, Geostatistics, Cloud 
Computing, and Policy Matters

Haas Oliver DBS Bank Finance

Häme Tuomas VTT Technical Research Centre of 
Finland

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data

Harshadeep Nagaraja-Rao World Bank Sustainable Development

Herold Martin 
Laboratory of Geo-Information Science 
and Remote Sensing at Wageningen 
University

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Policy Matters

Howard Luke Plan Vivo foundation Voluntary Carbon Market

Iversen Peter UNFCCC Policy Matters

Jiménez Julián Gonzalo World Bank Climate Change

Jonckheere Inge Food and Agriculture Organization of the 
United Nations (FAO) Remote Sensing and Cloud Computing

Kubasiak Anna Microsoft Artificial intelligence, Machine Learning and/or Big 
Data

Kyriakidis Phaedon Cyprus University of Technology Geostatistics
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Lacoste Alexandre Element AI Artificial Intelligence

Lynch Jim Earth-I Remote Sensing and Policy Matters

Mariethoz Gregoire Institute of Earth Surface Dynamics at 
the University of Lausanne

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data, Geostatistics and Cloud 
Computing

Martínez Carlos López Polytechnic University of Catalonia Artificial Intelligence and Big Data

McNichol Iain University of Edinburgh Remote Sensing

Mendes Flavia Remote Sensing Solutions GmbH Remote Sensing

Mitchard Edward University of Edinburgh Remote Sensing

Nanos Nikos Aristotle University of Thessaloniki Geostatistics

Nuño Bruno Sánchez-Andrade Microsoft
Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data; Geostatistics, Cloud 
Computing and Policy Matters

Nussbaum Madlene Bern University of Applied Sciences Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics

Ochiai Osamu Japan Aerospace Exploration Agency 
(JAXA) Earth Observation

Olofsson Pontus Boston University Earth & Environment Remote Sensing and Geostatistics

Paganini Monica World Bank Policy Matters

Parisa Zack SilviaTerra Forest Data

Pascual Adrián Arizona State University Remote Sensing and Geostatistics

Patenaude Genevieve University of Edinburgh Remote Sensing and Cloud Computing

Peneva-Reed Ellie World Bank Remote Sensing / Climate

Ploton Pierre Institute of Research for Development
Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics; Earth 
Observation

Prados Ana I. University of Maryland Baltimore County Remote Sensing and Policy Matters

Ramage Steven Group on Earth Observations Earth Observation

Ramoelo Abel South African National Parks Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics

Rana Omer University of Cardiff Artificial Intelligence, Machine Learning and/or Big 
Data, and Cloud Computing

Reddy Rama Chandra World Bank Climate Change

Reed Bradley United States Geological Survey Remote Sensing
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Romero Beatriz Revilla GMV Aerospace and Defense Remote Sensing

Sadler Marc World Bank Climate Funds

Schneider Fabian Jet Propulsion Laboratory (JPL) Remote Sensing

Scipal Klaus European Space Agency (ESA) Remote Sensing

Sebastian Ana GMV Aerospace and Defense Remote Sensing

Shapiro Aurelie World Wide Fund for Nature (WWF) Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data

Sinha Chandra Shekhar World Bank Climate Change

Staddon Sam University of Edinburgh Remote Sensing

Stahl Göran 
Swedish University of Agricultural 
Sciences; Department of Forest Resource 
Management

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics

Stein Alfred University of Twente Geostatistics

Tejada Graciela CCST do Instituto Nacional de Pesquisas 
Espaciais (INPE) Brazil Remote Sensing and Earth System Science

Thau Dave World Wide Fund for Nature (WWF) Big Data and Artificial Intelligence

Tolosana Rafael University of Zaragoza Cloud Computing

Tuia Devis École polytechnique fédérale de 
Lausanne (EPFL)

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data

Verhegghen Astrid Joint Research Centre (JRC) Remote Sensing and Cloud Computing

Volpi Michele Swiss Data Science Center, ETH Zürich 
and EPFL

Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data

Vyhmeister Eduardo Insight Center for Data AI/Machine Learning

Williams Mathew University of Edinburgh Remote Sensing

Yagüe Julia GMV Aerospace and Defense Remote Sensing

Zhang Yujia Cornell University Remote Sensing, Artificial Intelligence, Machine 
Learning and/or Big Data and Geostatistics
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Aboveground biomass (AGB) is “all living biomass above the soil including stem, stump, branches, bark, seeds, 
and foliage” (IPCC, 2003 p. 557, G.2).

Belowground biomass (BGB) is “all living biomass of live roots. Fine roots of less than (suggested) 2 mm 
diameter are sometimes excluded because these often cannot be distinguished empirically from soil organic 
matter or litter” (IPCC, 2003 p. 558, G.3).

Biomass is “the organic material both aboveground and belowground, and both living and dead, e.g., trees, crops, 
grasses, tree litter, roots etc. Biomass includes the pool definition for above- and below-ground biomass” (IPCC, 
2003 p. 558, G.3).

Carbo pool is “the reservoir containing carbon.” (IPCC, 2003 p. 559, G.4).

Carbon stock is “the quantity of carbon in a pool” (IPCC, 2003 p. 559, G.4).

Dead wood “includes all non-living woody biomass not contained in the litter, either standing, lying on the ground, 
or in the soil. Dead wood includes wood lying on the surface, dead roots, and stumps larger than or equal to 10 cm 
in diameter or any other diameter used by the country” (IPCC, 2003 p. 562, G.7).

Essential climate variable (ECV) is a “physical, chemical or biological variable or a group of linked variables that 
critically contributes to the characterization of Earth’s climate” (GCOS 2021).

Forest reference level (FRL) is “a benchmark for emissions from deforestation and forest degradation and 
removals from sustainable management of forest and enhancement of forest C stocks” (FCPF 2020, p. 25). 

Forest reference emission level (FREL) is “a benchmark for emissions exclusively from deforestation and forest 
degradation” (FCPF 2020, p. 25).

The Global Climate Observing System (GCOS) is a “co-sponsored programme which regularly assesses the 
status of global climate observations and produces guidance for its improvement. It is co-sponsored by the World 
Meteorological Organization (WMO), Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), 
United Nations Environment Programme (UN Environment), and International Science Council (ISC). GCOS expert 
panels maintain definitions of Essential Climate Variables (ECVs). They identify gaps by comparing the existing 
climate observation system with these ECVs. ECVs are the observations required for systematically observe 
Earth`s changing climate. The expert panels regularly develop plans on how to sustain, coordinate and improve 
physical, chemical and biological observations” (CEOS 2021c).

Litter “includes all non-living biomass with a diameter less than a minimum diameter chosen by the country (for 
example 10 cm), lying dead, in various states of decomposition above the mineral or organic soil. This includes 
litter, fumic, and humic layers. Live fine roots (of less than the suggested diameter limit for belowground biomass) 
are included in litter where they cannot be distinguished from it empirically” (IPCC, IPCC p. 567).

Measurement is “the processes of data collection over time, providing basic datasets, including associated 
accuracy and precision, for the range of relevant variables. Possible data sources are in-situ measurements, field 
observations, detection through remote sensing and interviews” (UN-REDD 2009, p. 3).

Monitoring a) “is a function of the National Forest Monitoring Systems, which is primarily a domestic tool to allow 
countries to assess a broad range of forest information, including in the context of REDD+ activities.

APPENDIX B:  
GLOSSARY OF TERMS

http://www.ioc.unesco.org/
http://www.unep.ch/
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The monitoring function can be implemented through a variety of methods and serve a number of different 
purposes, depending on national circumstances” (FAO, 2013 p. vi).

Monitoring b) is “the need for periodic information on the results obtained through national policies and 
measures” (FAO, 2013 p. 5).

Open science refers to “the way research is carried out, disseminated, deployed and transformed by digital 
tools and networks. It relies on the combined effects of technological development and cultural change towards 
collaboration and openness in research” (European Commission 2014).

Reporting is “the process of formal reporting of assessment results to the UNFCCC, according to predetermined 
formats and according to established standards, especially the IPCC Guidelines and GPG. It builds on the principles 
of transparency, consistency, comparability, completeness and accuracy” (UN-REDD 2009, p. 4).

Soil organic matter “includes organic carbon in mineral and organic soils (including peat) to a specified depth 
chosen by the country and applied consistently through the time series. Live fine roots (of less than the suggested 
diameter limit for belowground biomass) are included with soil organic matter where they cannot be distinguished 
from it empirically” (IPCC, IPCC p. 574, G.19).

Verification is “the process of formal verification of reports, for example the established approach to verify 
national communications and national inventory reports to the UNFCCC” (UN-REDD 2009, p. 4).
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An inventory of platforms can be found on the CEOS webpage (CEOS, 2021 b). Here, we highlight the following 
examples.

Multi-Mission Algorithm and Analysis Platform (MAAP) for Biomass, NISAR, and GEDI

NASA and ESA are currently collaborating to build the Multi-Mission Algorithm and Analysis Platform (Albinet 
2019). Exponential data growth is a significant factor in the earth sciences and carbon monitoring community with 
the launch of several high-data-volume missions, including ESA BIOMASS (Le Toan et al.. 2011); NASA-ISRO SAR 
(NISAR) (Rosen et al.. 2017), and NASA Global Ecosystem Dynamics Investigation (GEDI) (Stavros et al.. 2017), as 
well as complementary and/or similar missions. Both ESA BIOMASS and NASA-ISRO SAR (NISAR) have planned 
launches for 2022, while NASA GEDI was launched in December 2018 for a two-year mission, with data being made 
available to users from late 2019.

This platform will enable users to develop code, analyze results, and share and process global-scale data. It is 
similar to Google Earth Engine (GEE) but targeted to forest communities, which will hold all of the satellite and 
in situ data using cloud computing resources. However, challenges remain on how to turn observations into 
actionable products, given that satellites can only measure structure; they cannot measure biomass directly. 
Where conversions have been carried out, measurements have been affected by large uncertainties, and most 
contain regional biases, making their use as evidence for result-based payments unsatisfactory. In every case, 
ground observation data is needed to develop the algorithms and validate the products, without which, data cannot 
be trusted for policy making. The success of this will require collaboration between space agencies, institutions 
such as FAO and the World Bank, and national partners; space agencies alone cannot solve this challenge, as 
they do not have either the expertise or the mandate to establish such a system.

GEDI’s OBIWAN

One of the objectives of the GEDI mission is to produce estimates of mean biomass with uncertainty on 1 x 
1 kilometer grid cells. Using the GEDI data set and footprint-level biomass library, OBIWAN (Online Biomass 
Inference using Waveforms and iNventory)18 will provide biomass estimates over areas defined by users. Users 
will be returned a standard carbon report documenting the statistical estimator used, along with query-specific 
information about sample number and model parameters. OBIWAN is expected to provide critical emission factors 
for forests under both the REDD+ and IPCC reporting frameworks in many parts of the world. OBIWAN, the first 
space-based carbon density estimates, is characterized by its level of statistical rigor, and the spatial resolution 
required for market-based and international carbon accounting.

SEPAL

The System for Earth Observations, Data Access, Processing and Analysis for Land Monitoring (SEPAL) is an open-
source, cloud computing platform developed for the automatic monitoring of land cover.

It combines cloud services such as GEE and Amazon Web Services Cloud (AWS) with free software, including 
geospatial services. The main focus of this platform is on building an environment with previously configured tools 
and on managing the use of computational resources in the cloud to facilitate ways to search, access, process, 
and analyze Earth observation data, especially in countries that have difficulties with internet connection and few 
computational resources. It works as an interface that facilitates access and the integration of other services.

18  https://climate.esa.int/sites/default/files/D1_S1_T6_Healey.pdf
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