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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
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names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 6824

This paper formalizes the design of experiments intended 
specifically to study spillover effects. By first randomizing 
the intensity of treatment within clusters and then 
randomly assigning individual treatment conditional 
on this cluster-level intensity, a novel set of treatment 
effects can be identified. The paper develops a formal 

This paper is a product of the Poverty and Inequality Team, Development Research Group. It is part of a larger effort by 
the World Bank to provide open access to its research and make a contribution to development policy discussions around 
the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors may be 
contacted at bozler@worldbank.org.  

framework for consistent estimation of these effects, 
provides explicit expressions for power calculations, and 
shows that the power to detect average treatment effects 
declines precisely with the quantity that identifies the 
novel treatment effects. A demonstration of the technique 
is provided using a cash transfer program in Malawi.
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Designing Experiments to Measure Spillover Effects

Multiple economic disciplines have begun to explore the empirical issues raised by spillover

effects from one individual to another. What Charles Manski (1993) refers to as endogenous

effects are explored in different ways – by empirical studies permitting general equilibrium

effects, the analysis of medical treatments that provide herd immunity, or by studies of

network effects. An increasingly useful lens on this problem is experimental policy trials

that explicitly consider interference between individuals. Once we permit interference in this

context, the impact of a program only on its beneficiaries becomes an unsatisfying answer

to the real policy impact. Thus, it becomes more important to understand spillovers and

the overall effect on the entire population. What if a program creates benefits to some only

by diverting them from others? How do individuals respond to the intensity of treatment

within a population? Does the study even have an unpolluted counterfactual?

The possibility of interference between individuals has traditionally been seen as the

Achilles heel of randomized experiments; standard experimental designs are unable to iden-

tify and measure spillovers.1 Given these concerns, a new wave of empirical work has emerged

in the past decade trying to relax the strong assumption of no interference, or that individ-

uals are not affected by the treatment status of others. This literature includes studies

that uncover network effects using experimental variation across treatment groups (Matteo

Bobba and Jeremie Gignoux 2013; Edward Miguel and Michael Kremer 2004), leave some

members of a group untreated (Manuela Angelucci and Giacomo De Giorgi 2009; Felipe

Barrera-Osorio, Marianne Bertrand, Leigh Linden and Francisco Perez-Calle 2011; Gus-

tavo J. Bobonis and Frederico Finan 2009; Esther Duflo and Emmanuel Saez 2003; Rafael

Lalive and M. A. Cattaneo 2009), exploit plausibly exogenous variation in within-network

treatments (Philip S. Babcock and John L. Hartman 2010; Lori A. Beaman 2012; Tim-

othy G. Conley and Christopher R. Udry 2010; Esther Duflo and Emmanuel Saez 2002;

Kaivan Munshi 2003), or intersect an experiment with pre-existing networks (Abhijit Baner-

jee, Arun G. Chandrasekhar, Esther Duflo and Matthew O. Jackson 2013; Jiehua Chen,

Macartan Humphries and Vijay Modi 2010; Karen Macours and Renos Vakis 2008; Emily

Oster and Rebecca Thornton 2012).

A partial population experiment (Robert A. Moffitt 2001), in which some clusters are

assigned to control and a subset of individuals are offered treatment within clusters assigned

to treatment, partially overcomes this challenge and yields valid estimates of treatment

and spillover effects. But such experiments provide no exogenous variation in treatment

1In the presence of spillovers, the blocked design produces biased estimates. The clustered design is not
biased, but provides no information to estimate the extent of spillovers.
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saturation to estimate the extent to which program effects are driven by the percentage of

individuals treated in treatment clusters.2 Consequently, the most recent empirical approach

has been to conduct a two-level randomization in which the share of individuals assigned to

treatment within treated clusters is directly varied.3

In this paper, we provide a formal presentation of these randomized saturation (RS)

designs. We define the relevant set of treatment effects a researcher should consider in the

presence of spillovers, and present a clear set of assumptions under which the RS design

can consistently measure these effects. In a RS design, each cluster is randomly assigned a

treatment saturation, and each individual within the cluster is randomly assigned a treatment

status, given the assigned cluster saturation. This design allows for the consistent estimation

of a rich set of treatment and spillover effects across the distribution of treatment saturations,

which include the intention to treat effect (ITT), spillovers on the non-treated (SNT), and

the total causal effect (TCE) as well as novel estimands such as the treatment effect on the

uniquely treated (TUT) and the spillover effect on the treated (ST). In the process, a RS

design also allows the researcher to discover the extent to which observed correlations in

outcomes within clusters were caused by endogenous effects, thereby offering a solution to

the reflection problem, albeit after the fact, and informing the design of future studies.

Next, we develop a technical framework to guide researchers through the various choices

in RS designs. All (non-trivial) RS designs yield consistent estimates of treatment and

spillover effects, but the power of each design varies with the saturation profile and the share

of clusters assigned to each saturation. We impose a random effects variance structure and

derive explicit expressions for the minimum detectable treatment and slope effects, which

determine the statistical power of different RS designs. Power is a function of some standard

quantities, such as the effect size and the intra-cluster correlation (ICC) of outcomes, as well

as of some unique features of the RS design such as the share of individuals assigned to each

treatment saturation and the variance of saturations. Power for the average ITT and SNT

is decreasing in precisely the quantity that identifies the novel effects, namely, variation in

2Most extant partial population experiments feature cluster-level saturations that are either endoge-
nous (Oportunidades) or fixed (Duflo and Saez (2003), where they are typically set at 50%). PRO-
GRESA/Oportunidades (Mexico) is perhaps the most-studied example of a partial population experiment.
This program features a treatment decision at the cluster (village) level and an objective poverty eligibil-
ity threshold at the household level, so both eligible and ineligible individuals in treatment villages can be
compared to their counterparts in the pure control group. PROGRESA has been used to examine spillover
effects in several contexts (Jennifer Alix-Garcia, Craig McIntosh, Katharine R. E. Sims and Jarrod R. Welch
2013; Angelucci and De Giorgi 2009; Bobonis and Finan 2009). Other partial population experiments include
Duflo and Saez (2003) and Peter Kuhn, Peter Kooreman, Adriaan Soetevent and Arie Kapteyn (2011).

3Abhijit Banerjee, Raghabendra Chattopadhyay, Esther Duflo, Daniel Keniston and Nina Singh (2012);
Bruno Crepon, Esther Duflo, Marc Gurgand, Roland Rathelot and Philippe Zamora (2013); Xavier Gine
and Ghazala Mansuri (2012); Betsy Sinclair, Margaret McConnell and Donald P. Green (2012).

2



the intensity of treatment across clusters. RS designs therefore generate a tradeoff compared

with the standard blocked, clustered, and partial-population designs: while they allow the

researcher to identify novel effects on both the treated and the non-treated, this comes at the

cost of reduced power to detect average effects. With input on the magnitude of ICCs and

the relative importance of the various estimands, we use the power calculations to provide

insight on design choices such as the optimal degree of variation in saturations and the size

of the pure control. 4

We conclude the theoretical presentation with three additional uses of the RS design.

First, we show that one can recover an estimate of the treatment on the compliers effect

(TOC) by assuming that the observed spillover effects on those not offered treatment are a

reasonable proxy for the spillovers experienced by non-compliers. This technique is critical

because interference between units within clusters violates the exclusion restriction in the

standard technique of instrumenting for treatment with randomized assignment to identify

the TOC. Second, we consider experiments that use within-cluster controls to form the

counterfactual. Imposing a functional form assumption on the saturation distribution allows

the researcher to project the desired counterfactual outcome: untreated clusters with a

saturation of zero. This value can be used to correct the naive estimate of the ITT, even

in studies without a pure control. Finally, we show that an RS design implemented on a

non-overlapping network also produces exogenous variation in the treatment saturation of

overlapping networks (for example, social groups), variation that is generally superior to

what would be obtained from blocked or clustered designs.

We close with an empirical application of these techniques using a cash transfer exper-

iment in Malawi, wherein the fraction of eligible school-aged girls offered treatment was

randomized across clusters. The study seeks to understand whether cash transfers could

help adolescent girls improve schooling outcomes as well as delay marriage and pregnancy.

In previous work, we have shown that, compared with a pure control group, conditional cash

transfers (CCTs) significantly improved schooling outcomes while unconditional cash trans-

fers (UCTs) caused substantial reductions in marriage and fertility rates among program

beneficiaries (Sarah Baird, Craig McIntosh and Berk Özler 2011). In this paper, we exploit

the sample of within-cluster controls and the RS design to investigate spillover effects on

both program beneficiaries and eligible non-beneficiaries. Spillovers are a central concern for

two distinct reasons. First, a large literature indicates that schooling cash transfer programs

can alter the welfare of non-beneficiaries due to congestion effects in the classroom (Jere R

Behrman, Piyali Sengupta and Petra Todd 2005), shifts in local norms around education

4In the Supplemental Appendix, we provide a Matlab program that allows a researcher to calculate the
power of different potential RS designs.
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(George A. Akerlof and Rachel E. Kranton 2002), income spillovers (Manuela Angelucci, Gi-

acomo De Giorgi, Marcos A. Rangel and Imran Rasul 2010), or general equilibrium changes to

prices (Jesse M. Cunha, Giacomo De Giorgi and Seema Jayachandran 2011) and production

(Alix-Garcia et al. 2013). Second, and more specific to the Malawian context, cash transfers

can decrease young women’s dependence on men for financial assistance (Winford Masanjala

2007) and/or the need for ‘transactional sex’ (Michelle J. Poulin 2007; Ann Swindler and

Susan Watkins 2007), thereby reducing the incidence of teen pregnancies and early marriages

among program beneficiaries, but with ambiguous spillovers to non-beneficiaries in the same

communities.

We find that while average spillover effects are muted for all outcomes, they generally

intensify with treatment saturation: positive treatment effects on beneficiaries are accom-

panied by positive spillovers on non-beneficiaries, which increase with treatment intensity.

On the other hand, treatment effects among beneficiaries themselves decline with treatment

saturation. More importantly, we find no evidence for higher rates of marriage or preg-

nancy among within-cluster controls, suggesting that diversionary effects do not counter the

documented beneficial effects of UCTs on these outcomes. Finally, taking advantage of ex-

ogenous variation generated by the RS design in the number of treated friends of individuals,

we confirm that spillover effects are similarly muted in social networks.

The remainder of the paper is structured as follows. Section 1 formally models a random-

ized saturation design, outlines the assumptions required to use this design, defines novel

estimands related to spillovers, presents closed-form expressions for the power of these es-

timands, and discusses the critical design tradeoffs. Sections 2.1 and 2.2 discuss the use

of randomized saturation designs in the absence of a pure control group, while Section 2.3

demonstrates the use of randomized saturation designs in a broader class of networks. Sec-

tion 3 presents an application of the technique and Section 4 concludes. All proofs are in

the Appendix.

1 A Randomized Saturation Design

One of the most basic design choices in any multi-level experiment is the question of allocating

treatment to N individuals distributed across C clusters. The conventional wisdom focuses

on the ‘design effect’, whereby a positive correlation between the outcomes of individuals

in the same cluster, i.e. intra-cluster correlation (ICC), causes a power loss if treatment is

assigned at the cluster level. It would be easy to conclude that a blocked design, in which half

of individuals in each cluster is treated and the other half is used as the counterfactual, is

preferable. Critically, however, individuals in the same cluster may behave similarly because

4



they are influenced by the behavior of others in the group (endogenous effects), their behavior

reflects the exogenous characteristics of the group (contextual effects), or because they share

similar characteristics or face similar institutional environments (correlated effects) (Manski

1993). The entire thrust of the ‘reflection problem’ introduced by Manski (1993) is the

impossibility of separating these effects using observational data that is typically available

to the researcher at baseline. If only contextual or correlated effects are responsible for the

observed ICC, indeed the blocked design proves optimal. However, if endogenous effects are

present, then a blocked design is the wrong choice because the counterfactual is contaminated

by interference from treated individuals. A clustered design, in which some clusters are

assigned to treatment while others to control, would produce unbiased treatment effects if

there is no interference across clusters, but with the loss of statistical power arising from

cross-cluster identification. Thus this most basic of design choices ends up on the horns of

the reflection problem: because neither the blocked nor the clustered design actually reveals

the extent of interference, researchers learn little from a given study as to the optimal design

of subsequent studies. The RS design provides a solution to this conundrum.

A randomized saturation (RS) design is an experiment with two stages of randomization.

Take as given a set of N individuals divided into C non-overlapping groups, or clusters.5

The first stage randomizes the treatment saturation of each cluster, and the second stage

randomizes the treatment status of each individual in the cluster, according to the realized

saturation of the cluster. Formally, in the first stage, each cluster c = 1, ..., C is assigned a

treatment saturation πc ∈ Π ⊂ [0, 1] according to the distribution F , with mean µ = E[π]

and variance η2 = V ar(π). In the second stage, each individual i = 1, ..., n in cluster c is

assigned a treatment status Tic ∈ {0, 1}, where Tic = 1 represents a treated individual.6 The

realized treatment saturation of stage 1 specifies the distribution of the treatment status in

stage 2 for each cluster, P (Tic = 1|πc = π) = π. Let f be the probability mass function for

distribution F .7 A RS design ω is completely characterized by the pair {Π, f}.
The saturation πc = 0 represents a cluster with no treatment individuals, or a pure

control cluster. A within-cluster control is defined as an untreated individual in a cluster

with treated individuals: Sic = 1{Tic = 0, πc > 0}. This results in the following distribution

5The RS design and the studies discussed here use a simple, spatially defined definition of ‘cluster’ that is
mutually exclusive and exhaustive. This is distinct from the issue of randomizing saturations with overlapping
social networks (Peter Aronow 2012), which typically require a more complex sequential randomization
routine (Panos Toulis and Edward Kao 2013). However, an additional advantage of this design is that it will
also create exogenous variation in the saturation of any network that is correlated with given cluster, even
if this other network is overlapping. This is discussed in more depth in Section 2.3.

6This notation implicitly assumes each cluster is of equal size. This is for notational convenience; the
results easily extend to unequally sized clusters.

7For expositional simplicity, we present the theoretical results in a discrete saturation support framework,
although the analysis easily generalizes to continuous or mixed distributions.
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over the three possible treatment statuses:

Treatment Individual: P (Tic = 1) = µ

Pure Control: P (Sic = 0, Tic = 0) = ψ

Within-cluster Control: P (Sic = 1) = 1− µ− ψ := µS

where ψ := f(0). We say a randomized saturation design has a pure control if ψ > 0.

A RS design introduces correlation between the treatment status of two individuals in

the same cluster. This correlation is proportional to the variance of the cluster level treat-

ment saturations, ρT = η2/(µ(1 − µ)), where η2 can be split into the variance in treatment

saturation across treated clusters, η2
T = V ar(π|π > 0), and the variance from pure control

clusters:

η2 = (1− ψ) η2
T +

(
ψ

1− ψ

)
µ2

Section 1.3.1 shows that in the presence of intra-cluster correlation (ICC), η2 affects the

power of the design.

The RS design nests several common experimental designs, including the clustered,

blocked and partial population designs.8 The blocked design is biased in the presence of

spillovers, and it is not possible to measure spillovers with either design. Therefore, we must

put some restrictions on the RS design in order to be able to identify treatment and spillover

effects. We say a RS design is non-trivial if it has at least two saturations, at least one of

which is strictly interior.

Definition 1. A randomized saturation design is non-trivial if |Π| ≥ 2 and ∃π ∈ Π such

that π ∈ (0, 1).

Multiple saturations guarantee a comparison group to determine whether effects vary with

treatment saturation, and an interior saturation guarantees the existence of within-cluster

controls to identify spillovers on the untreated (µS > 0). Note that the blocked and clustered

designs are trivial, while the partial population design is non-trivial.

Remark 1. Before turning to our formal framework, it is important to clarify the popula-

tion in which the researcher is measuring spillovers. The RS design defines the treatment

saturation of a cluster as the share of the study sample that is offered treatment. If spillovers

8Fixing the probability of treatment at P , the clustered design corresponds to Π = {0, 1} and f(1) = P ,
the blocked design corresponds to Π = {P} and f(P ) = 1 and the partial population design corresponds
to Π = {0, π} and f(π) = P/π. In the clustered design, there is perfect correlation between the treatment
status of two individuals in the same cluster and in the blocked design, there is no correlation. Note η2

T = 0
for all three.
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occur within the study sample, then this is the appropriate saturation measure.9 Alterna-

tively, if there is a ‘gateway to treatment’ and not all eligible individuals are sampled into

the study, or spillovers occur on a larger population within the cluster, then it is necessary

to distinguish between the true treatment saturation (the share of treated individuals in the

spillover network) and the assigned treatment saturation (the share of treated individuals in

the study population).10 If sampling rates or the share of the spillover population eligible

for treatment are constant across clusters, the true saturation is the sampling rate times the

assigned saturation. If the sampling rates are driven by cluster characteristics, then the true

saturation is endogenous. In this case, the researcher can instrument for the true saturation

with the assigned saturation. To streamline the remainder of the theoretical analysis, we

assume that the assigned and true saturations coincide.

1.1 Defining Treatment and Spillover Effects

Let Yic represent the outcome for individual i in cluster c. In a general framework, outcomes

can depend in an arbitrary way on an individual’s own treatment status, as well as the

treatment status of all other individuals in the study:

Yic = g(Tic, Ric, {Tjd, Rjd}jd6=ic;Xic, εic)

where Ric ∈ {0, 1} indicates whether an individual complies with treatment, Xic is a vector

of covariates and εic is an error term.11

To use the RS design for causal inference requires an assumption on how the treatment

status of others impacts Yic. We relax the stable unit treatment value assumption (SUTVA)

within clusters, but maintain it across clusters: spillovers may flow within a cluster, but do

not flow between clusters. This ensures that pure control clusters provide a valid counter-

factual for treated clusters and that cross cluster comparisons can identify how spillovers

depend on the intensity of treatment saturation.

9For example, Banerjee et al. (2012) study interventions to improve performance among constables in
Rajasthan police stations. Sinclair, McConnell and Green (2012) study sending social-pressure mailings to
registered voters in a congressional district.

10For example, Gine and Mansuri (2012) sample every fourth household in a neighborhood, and randomly
offer treatment to 80 percent of these households. This causes the true treatment saturation to be 20 percent
rather than the assigned 80 percent. Other examples include unemployed individuals on official unemploy-
ment registries form a small portion all unemployed individuals in an administrative region (Crepon et al.
2013); neighborhoods eligible for infrastructure investments comprise only 3 percent of all neighborhoods
(Craig McIntosh, Tito Alegria, Gerardo Ordonez and Rene Zenteno 2013); and malaria prevention efforts
target vulnerable individuals, who account for a small share of total cluster population (GF Killeen, TA
Smith, HM Ferguson, H Mshinda, S Abdulla et al. 2007).

11As is standard, Ric is only observed for individuals with Tic = 1.
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Assumption 1. There is no cross-cluster interference in outcomes: Yic is independent of

{Tjd, Rjd} for all d 6= c.

Assumption 1 simplifies the framework so that outcomes only depend on the treatment of

other individuals in the same cluster,

Yic = g(Tic, Ric, {Tjc, Rjc}j 6=i;Xic, εic).

Given Assumption 1, we can formally define several treatment and spillover effect mea-

sures, both at specific saturations and pooled across multiple saturations. The Intention

to Treat (ITT) effect is the difference between the expected outcome for individuals of-

fered treatment in a cluster with saturation π and the expected outcome for pure control

individuals,

ITT (π) := E(Yic | Tic = 1, πc = π)− E(Yic | Tic = 0, πc = 0).

The corresponding term for the Spillover on the Non-Treated (SNT) effect is the differ-

ence between the expected outcome for individuals not offered treatment in a cluster with

saturation π and the expected outcome for pure control individuals,

SNT (π) := E(Yic | Tic = 0, πc = π)− E(Yic | Tic = 0, πc = 0).

The Total Causal Effect (TCE) measures the overall cluster-level difference between

treated and pure control clusters,

TCE(π) := E(Yic | πc = π)− E(Yic | πc = 0) = π ∗ ITT (π) + (1− π) ∗ SNT (π).

Individuals offered treatment will experience two types of treatment effects, a direct

treatment effect from the program as well as a spillover effect that arises from the treatment

of other individuals in their cluster. A natural way to formalize these two effects is to

decompose the ITT into two components: the Treatment on the Uniquely Treated

(TUT) measures the ITT on a sole individual offered treatment within a cluster. 12

TUT := E(Yic | Tic = 1, πc = 0)− E(Yic | Tic = 0, πc = 0) = ITT (0),

The Spillover on the Treated (ST) measures the saturation-dependent spillover effect on

12The saturation of a cluster includes all treated individuals in the cluster. When the size of a cluster is
finite, it is impossible to simultaneously have a treatment individual and a saturation of zero - technically,
ITT (1/n) captures the isolated impact of treatment. We use TUT = ITT (0) for notational simplicity.

8



individuals offered treatment,

ST (π) := E(Yic | Tic = 1, πc = π)− E(Yic | Tic = 1, πc = 0).

The ITT is the sum of these two components, ITT (π) = TUT + ST (π).

It is also possible to pool across saturations and estimate an average effect for the entire

experiment. Given a RS design ω, define ITT ω as the difference between the expected

outcome for individuals offered treatment in each saturation π, weighted by the share of

treated clusters with saturation π, and the expected outcome for pure control individuals,

ITT ω :=
∑
Π\0

E(Yic | Tic = 1, πc = π)

(
f(π)

1− ψ

)
− E(Yic | Tic = 0, πc = 0)

=
∑
Π\0

ITT (π)

(
f(π)

1− ψ

)
.

with analogous definitions for SNT ω, TCEω and ST ω. This measure depends on the distri-

bution and support of saturations, and will vary across RS designs.13

We can now formalize what we refer to as spillover effects. There are spillover effects on

the untreated (treated) if there exists a π such that SNT (π) 6= 0 (ST (π) 6= 0). A sufficient

condition to test for the presence of spillovers is SNT 6= 0 or ST 6= 0.

1.2 Consistent Estimates of Treatment and Spillover Effects

Next, we establish that a RS design yields consistent estimates of treatment and spillover

effects, both at individual saturations and pooled across multiple saturations. Sufficient

conditions for consistency are a design with a pure control and an interior saturation, and

no interference between clusters.

Result 1. Assume Assumption 1 and let ω be a non-trivial randomized saturation design

with a pure control. Then ω generates unbiased, consistent estimators for ITT (π), SNT (π)

and TCE(π) at each π ∈ Π.

In order to estimate the pooled effects described in Section 1.1, we must introduce weights.

When data are pooled, this unintentionally places a disproportionate weight on treated

individuals in high saturation clusters and untreated individuals in low saturation clusters.

Saturation weights correct for this distortion.14

13We make this dependence explicit by indexing the pooled measure with ω; this index is suppressed at
times for expositional simplicity.

14One could define many different pooled effects, including the pooled effect that results from using
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Definition 2. Saturation weights apply weight sTπ = 1/π to treated individuals and weight

sUπ = 1/(1− π) to untreated individuals in treated clusters.

For example, a cluster with π = 2/3 has twice as many treated individuals as a cluster

with π = 1/3. Weighting the treated individuals by sT2/3 = 3/2 and sT1/3 = 3 allows one to

calculate a pooled estimate that places equal weight on both clusters, rather than twice as

much weight the π = 2/3 clusters.

Result 2. Assume Assumption 1 and let ω be a non-trivial randomized saturation design with

a pure control. Then using saturation weights, ω generates unbiased, consistent estimators

for ITT ω and SNT ω, and without saturation weights, TCEω.

We need an additional condition on the RS design to obtain a consistent estimate of the

TUT and ST. It is possible to estimate the TUT by either including clusters with very low

saturations, or imposing a functional form on ITT (π) and deriving TUT = ITT (0) from

estimates at other saturations.

Result 3. Assume Assumption 1 and let ω be a non-trivial randomized saturation design

with a pure control. If ˆTUT is unbiased and consistent, then ŜT (π) = ˆITT (π)− ˆTUT and
ˆST ω = ˆITT ω − ˆTUT are unbiased, consistent estimators.

1.3 Calculating Variances: Stratified Interference and Random

Effects

Estimating the variance of treatment and spillover effects requires an assumption on the

nature of interference between units and the variance of the data generating process. Within

a cluster, we observe a single realization of the many potential configurations of individual

treatment assignment at a given saturation.15 We follow Eric J. Tchetgen and Tyler Vander-

Weele (2010) in using the ‘Stratified Interference’ assumption proposed by Michael Hudgens

and Elizabeth Halloran (2008). This assumption says that the outcome of an individual is

independent of the identity of the other individuals assigned to treatment.

Assumption 2. Fixing {πc, Tic, Ric, Xic, εic}, Yic = y for any permutation of the treatment

status of individuals j 6= i.

unweighted data. The definition we propose has two advantages: (i) it is comparable across treatment
and within-cluster controls, in that the pooled ITT and SNT give the same weight f(π)/(1 − ψ) to each
saturation-specific effect ITT (π) or SNT (π), and (ii) it facilitates an easy test for the shape of the effect
(linearity, convexity, etc.) by comparing the pooled ITT to the ITT at the expected saturation.

15This is not an issue with non-interference, as each unit has only two potential outcomes.
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This assumption significantly simplifies the analysis and allows inference without possessing

information about the underlying network structure within a cluster.16

Second, we parameterize the nature of interference within clusters with a random effects

error structure.

Assumption 3. The data generating process has a random effects error structure, with

εic = vc + wic, common cluster component vc ∼ (0, τ 2), individual component wic ∼ (0, σ2)

and (vc, wic) orthogonal to (πc, Tic, Ric, Xic).

A random effects framework combined with a RS design decomposes the clustering of out-

comes into two components: (i) the extent to which outcomes are endogenously driven by

treatment of others in the same cluster, and (ii) the statistical random effect in outcomes,

which reduces the power of the clustered estimates but does not imply interference between

units.

Remark 2. This approach mirrors regression techniques typically used to analyze economic

and medical experiments, and enables a direct comparison of the power of RS designs to

the power of the canonical blocked and clustered designs, making explicit the impact that

randomizing saturations has on power. It differs from the approach taken by the recent

statistics literature (Hudgens and Halloran 2008), as well as in the paper most similar to ours

(Sinclair, McConnell and Green 2012), both of which use randomization inference techniques

(Ronald A. Fisher 1935).

Given Assumptions 1, 2 and 3, we can express Yic as:

Yic = g(Tic, Ric, πc, ;Xic) + vc + wic.

The random effects assumption provides the additional structure needed to characterize the

relationship between the RS design, the data generating process and the Minimum Detectable

Effect (MDE), the smallest treatment or spillover effect that it is possible to distinguish from

zero (Howard S. Bloom 1995). Suppose that the true effect is nonzero for some treatment

or spillover effect β. Given statistical significance level α, the null hypothesis that β = 0 is

rejected with probability γ (the power) for values of β that exceed:

MDE = [t1−γ + tα] ∗ SE
(
β̂
)
.

16In the absence of this assumption, a researcher would need to observe the complete network structure
in each cluster, understand the heterogeneity in networks across clusters, and use a model of network-driven
spillovers to simulate the variance in outcomes that could be generated by these networks.
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In the next two subsections, we characterize the MDE for the treatment and spillover effect

measures defined in Section 1.1, show how the MDE depends on the structure of the RS

design, establish properties of the optimal RS design to measure each effect (the design that

yields the smallest MDE), and illustrate the trade-off between measuring pooled and slope

effects.

1.3.1 The Minimum Detectable Pooled Effect

A simple regression-based estimator of the pooled effects is:

Yic = β0 + β1Tic + β2Sic + φXic + εic (1)

For any non-trivial RS design with a pure control, this model identifies the pooled treatment

effect and the pooled spillover effect on untreated individuals, but not the pooled spillover

effect on treated individuals. The coefficients depend on the empirical distribution of satura-

tions; given design ω, equation 1 with saturation weights returns ˆITT ω = β̂1 and ˆSNT ω = β̂2

and equation 1 without saturation weights returns ˆTCEω = (µ/(1−ψ))β̂1 +((1−µ−ψ)/(1−
ψ))β̂2.

The following theorem characterizes the MDE of the pooled ITT and SNT.

Theorem 1. Assume Assumptions 1, 2 and 3 and let ω be a non-trivial randomized satura-

tion design with a pure control. Then, given statistical significance level α and power γ, the

MDE of ITT ω is:

MDET
ω = (t1−γ + tα)

√
1

nC

{
(n− 1) τ 2

(
1

(1− ψ)ψ
+

(
1− ψ
µ2

)
η2
T

)
+ (τ 2 + σ2)

(
ψ + µ

µψ

)}

The MDE of SNT ω (MDES
ω ) is similar, substituting µS for µ.

The MDE depends on the size of the treatment and control group, and the within-cluster

variation in treatment status, η2
T . This expression illustrates the relationship between the

random effects structure and the RS design. The first term in the brackets captures the

variation in β̂ due to the common cluster component of the error term, and the second

term captures the variation in β̂ due to individual variation. Introducing randomization into

the treatment saturation of clusters results in a power loss when there is a common cluster

component to the error. Otherwise, if τ 2 = 0, the standard error only depends on the size of

the treatment and control groups, but is independent of how treatment is distributed across

clusters.

12



Figure 1. Partial Population Design

Sufficient tests for the presence of treatment effects and spillover effects on the untreated

are ITT ω 6= 0 and SNT ω 6= 0. The following set of Corollaries derive the optimal RS

design to test for these effects. Consider the partial population design in which a cluster is

treated with probability 1− ψ, and treated clusters all have the same treatment saturation

P . This design minimizes the variation in treatment saturation, and therefore, the MDE for

treatment and spillover effects.

Corollary 1. Let Ω be the set of non-trivial RS designs with a pure control and suppose

τ 2 > 0. Then, fixing µ and ψ, the design with Π = {0, P = µ/(1− ψ)} and f = {ψ, 1− ψ}
(a partial population design) jointly minimizes MDET

ω and MDES
ω .

The optimality of a partial population design stems from a positive ICC.

Choosing the optimal treatment saturation P involves a trade-off. The power of the

pooled ITT increases with P , while the power of the pooled SNT decreases with P . The

relative importance of detecting these two effects, as well as their expected magnitudes, will

determine the optimal P .

Corollary 2. Let Ω be the set of non-trivial RS designs with a pure control and suppose τ 2 >

0. Then, fixing ψ, a partial population experiment with P = 1/2 minimizes MDET
ω +MDES

ω .

In this design, MDET
PP = MDES

PP .

The optimal size of the control group depends on the relative magnitude of the common

cluster component of error to the individual component of error.

Corollary 3. Let Ω be the set of non-trivial RS designs with a pure control. The size of the

control group that minimizes MDET
ω +MDES

ω depends on τ 2, σ2 and n:

1. If τ 2 = 0, then ψ∗ =
√

2− 1 ≈ 0.41
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2. If σ2 = 0, then ψ∗ =
√
n(1 + n)− n which converges to 1/2.

3. If τ 2 > 0 and σ2 > 0, then ψ∗ ∈
(√

2− 1,
√
n(1 + n)− n

)
The optimal size of the control therefore lies in a relatively narrow range. Designating about

40% of individuals as pure controls yields the smallest sum of standard errors when there

is no common cluster component to the error, while designating close to 50% is preferable

when there is no individual component to error. It is always optimal to have the control be

more than a third because it serves as the counterfactual for both treatment and spillover

groups. As τ 2 increases, the optimal number of control clusters increases. This comparative

static arises because the variance in β̂ due to individual error is proportional to the total

number of individuals in each treatment group, while the variance in β̂ due to correlated

error is proportional to the total number of clusters in each treatment group.

Moving away from the partial population design to a design with variation in the treat-

ment saturation leads to a power loss in the ability to measure pooled effects. Corollary 4

characterizes the rate at which this power loss occurs.

Corollary 4. Fix µ and ψ. Then V ar(β̂) increases linearly with respect to η2
T .

Taken together, these corollaries provide important insights on experimental design. If

the researcher is only interested in detecting treatment effects and spillover effects on the

untreated, then a partial population experiment has the smallest MDE, and Corollary 3

specifies the optimal control group size. However, partial population designs have the draw-

back that they only measure effects at a single saturation. When researchers care about

the effects at multiple saturations, they will need to introduce variation in the treatment

saturation. Corollary 4 establishes the rate at which the power of the pooled effects declines

from this increase in treatment saturation variance.

1.3.2 The Minimum Detectable Slope Effect

Now suppose that a researcher would like to determine how treatment and spillover effects

vary with treatment intensity, or measuring spillover effects on the treated. This section

presents two methods to estimate these measures: (1) a non-parametric model that estimates

an individual treatment and spillover effect at each non-zero saturation; and (2) a linearized

model that estimates the first order effect that changing the treatment saturation has on

treatment and spillover effects. Identification of these models requires a RS design with

multiple interior treatment saturations and a pure control.

The Minimum Detectable Slope Effect (MDSE) is the smallest rate of change δ in the

effect, with respect to π, that it is possible to distinguish from zero. Suppose that the true
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slope is nonzero. Given statistical significance level α, the null hypothesis that the effect is

constant, δ = 0, is rejected with probability γ for values of δ that exceed:

MDSE = [t1−γ + tα] ∗ SE
(
δ̂
)
.

A Non-Parametric Model: A regression based estimator for the treatment and spillover

effect at each saturation can be obtained through:

Yic = β0 +
∑

Π\{0}

β1πTic ∗ 1{πc = π}+
∑

Π\{0}

β2πSic ∗ 1{πc = π}+ φ ·Xic + εic, (2)

which returns ˆITT (π) = β̂1π, ˆSNT (π) = β̂2π and ˆTCE(π) = πβ̂1π + (1 − π)β̂2π for each

π ∈ Π \ {0}.17 The support of the RS design determines which saturation specific estimates

are identified, but unlike equation 1, the definition of the coefficients is independent of the

empirical distribution of saturations f(π). This model introduces the possibility to test for

the presence of spillover effects on treated individuals. A hypothesis test of β1πj = β1πk

determines whether the ITT varies with the treatment saturation. By definition, β1πk −
β1πj = ST (πk)− ST (πj), so this hypothesis also tests for the presence of spillover effects on

treated individuals. Similarly, β2πj = β2πk tests whether the SNT varies with the treatment

saturation.

We can also use equation 2 to estimate the change in spillover effects between saturations.

Given saturations πj and πk, the rate of change of the spillover effect on treated individuals is

δTjk =
(
β1πk − β1πj

)
/ (πk − πj), with an analogous definition for the within-cluster controls.

If spillover effects are affine, then this is a measure of the slope of the spillover effect,

dITT (π)/dπ or dST (π)/dπ; in the case of a non-linear spillover effect, one can view δ1jk as

a first order approximation of the slope.

Similar to Theorem 1, we can characterize the MDSE of the ITT and SNT between any

pair of saturations πj, πk ∈ Π, which is proportional to SE(δ̂Tjk) or SE(δ̂Sjk).
18

Theorem 2. Assume Assumptions 1, 2 and 3 and let ω be a randomized saturation design

with κ ≥ 2 interior saturations. Then, given statistical significance level α and power γ, the

17No saturation weights are necessary to estimate individual saturation effects.
18Recall the MDSE of the ITT and ST are equivalent, by definition. It is also possible to calculate the

MDE of ITT (π) and SNT (π) for each saturation π; this result is similar to the pooled MDE and is presented
in the Appendix.
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MDSE between saturations πj and πk for the treated group is:

MDSET
ω (πj, πk) =

(t1−γ + tα)

πk − πj

√
1

nC
∗
{

(n− 1) τ 2

(
1

f(πj)
+

1

f(πk)

)
+ (τ 2 + σ2)

(
1

µj
+

1

µk

)}
where µk := πkf (πk). An similar expression characterizes the MDSE for the within-cluster

control group as MDSES
ω , substituting µSk := (1− πk) f (πk) for µk.

As the distance between two saturations increases, it is possible to detect smaller slope

effects. At the same time, increasing the spread of saturations has a countervailing effect by

making the number of treatment (within-cluster control) individuals very small at low (high)

saturations. The latter effect dominates at saturations close to zero or one. When the cluster

component of error is large, the share of clusters assigned to each saturation, f(πj), plays a

larger role in determining the MDSE - a more equal distribution leads to a smaller MDSE.

When the individual component of error is large, the share of treated and control individuals

assigned to each saturation, µj, is more important. Note that while a pure control is required

to identify treatment and spillover effects at each saturation in equation 2, it is not required

to identify the slope effects.

There are two steps to the design choice for the non-parametric model: selecting which

saturations to use (the support of Π), and deciding how to allocate individuals into each

saturation bin (the distribution f(π)). A researcher can either fix a hypothesized slope size

and determine how far apart saturations must be to detect this slope, or fix the distance

between two saturations and calculate the smallest detectable slope size. Although a partial

population design with a saturation of π = 1/2 is optimal for detecting pooled effects, this

design does not identify slope effects. Moving away from the partial population design to

a design with two interior saturations, Corollary 5 determines how we should assign the

saturations.

Corollary 5. Let Ω be the set of RS designs with at least two interior saturations. Then, fix-

ing f(πj) = f(πk), the saturations (π∗j , π
∗
k) that minimize MDSET

ω (πj, πk) +MDSES
ω (πj, πk)

are symmetric about 1/2. The optimal distance ∆∗ = π∗k − π∗j depends on τ 2, σ2 and n:

1. If τ 2 = 0, then ∆∗ =
√

2/2 ≈ 0.71.

2. If τ 2 > 0, then ∆∗ ∈
(√

2/2, 1
)

and limn→∞∆∗ = 1.

3. ∆∗ is increasing in τ 2 and n, and decreasing in σ2.

Therefore, π∗j = (1−∆∗)/2 and π∗k = (1 + ∆∗)/2.
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Although Theorem 2 is generally too intractable to yield broader analytical insights about

optimal design questions, it is possible to numerically calculate the MDSE for designs with

more than two saturations. Given κ saturations, a researcher could use Theorem 2 to answer

questions like (i) fixing equal sized bins f(π1) = ... = f(πκ), what is the optimal spacing of

saturations; or (ii) fixing equally spaced saturations π1, ..., πκ, what share of clusters should

be assigned to each bin? This model also allows for hypothesis tests on the shape of the

ITT (π) and SNT (π). For example, a test of concavity requires three interior saturations.

It is possible to use the expression for the MDE(π) to calculate the optimal control

group size numerically, given an estimate for τ 2 and σ2.19 Similar to the pooled model, the

optimal size of the control group will be smaller in the presence of only individual error

than in the presence of only cluster-level error, and will lie in between for intermediate

error distributions. The optimal control will be smaller than the size of any treatment

saturation ψ∗ < f(π), but will be larger than any treatment or within-cluster control group,

ψ∗ > max{πf(π), (1− π)f(π)}.

An Affine Model: It is also possible to measure slope effects by imposing a functional

form on the shape of the ITT (π) and SNT (π). For example, we could use an affine model

to estimate the first order slope effect:

Yic = δ0 + δ1Tic + δ2Sic + δ3(Tic ∗ πc) + δ4(Sic ∗ πc) + φ ·Xic + εic (3)

This regression identifies the TUT as the intercept of the treatment effect, ˆTUT = δ̂1. The

coefficients δ3 and δ4 are slope terms estimating how effects change with the saturation,

dŜT (π)/dπ = δ̂3 and d ˆSNT (π)/dπ = δ̂4. The intercept δ2 estimates spillover effects at

saturation zero. There should be no spillover effect on untreated individuals if the saturation

of treatment is zero (SNT (0) = 0 by definition), so δ2 = 0 serves as a hypothesis test for the

linearity of the spillover relationship. A test for dST/dπ = dSNT/dπ is given by an F-test

of the hypothesis that δ3 = δ4.

Similar to Theorem 2, identification of equation 3 requires a RS design with two interior

saturations and a pure control. We present an analogous result to Theorem 2 in the Ap-

pendix, which characterizes the analytical expression for the MDSE, proportional to SE(δ̂3)

and SE(δ̂4).

It is also possible to test for linearity, or identify non-linear relationships with a similar

regression to equation 3. For example, including a squared term Tic ∗ π2
c would identify a

quadratic relationship. In simulations, the affine MDSE is smaller than the non-parametric

MDSE for detecting these higher moments. Another advantage of the affine model is that

19The expression for MDE(π) is in the proof of Theorem 2 in the Appendix.
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Figure 2. Trade-off between Pooled MDE and MDSE

it can be estimated with data from a RS design in which saturations are assigned from a

continuum.20

The optimal RS design for a pooled analysis stands in sharp contrast to that for a slope

analysis, most obviously in the extent of variation in treatment saturation. A graphical

representation of the tradeoff between detecting pooled and slope effects is presented in

Figure 2. The optimal RS design to identify both slope and pooled effects will depend on

the relative importance that the researcher places on each effect, as well as the expected

size of each effect. To facilitate actual implementation of an RS experiment, we created a

Matlab program to calculate the minimum detectable effects in the pooled, non-parametric

and affine models for different designs. The researcher specifies the relative importance of

measuring (i) pooled versus slope effects and (ii) treatment versus spillover on the untreated

effects. The program then calculates the optimal support of the RS design, Π, and the

optimal allocation of clusters to each saturation bin, f(π).

1.4 Estimating the Treatment on the Compliers Effect

This section returns to the general framework of Section 1.2, and derives the Treatment

on the Compliers (TOC) effect in a model with spillovers.21 The TOC is the difference

between the expected outcome for individuals who comply with treatment and the expected

20This design is necessary when using a Chow test to identify threshold effects.
21This is more commonly known as the Treatment on the Treated (TOT) effect. Throughout this paper,

we use the term ‘treated’ to refer to the group offered treatment; therefore, to avoid confusion, we refer to
the impact on those actually receiving treatment as the Treatment on the Compliers effect.
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outcome for pure control individuals who would have complied with treatment,

TOC(π) = E(Yic | Tic = 1, Ric = 1, πc = π)− E(Yic | Tic = 0, Ric = 1, πc = 0).

A similar expression defines the pooled effect TOC.

In a model with spillovers, the non-compliers in a treatment cluster may be affected

by the treatment of compliers, and don’t necessarily have the same expected outcome as

non-compliers in a control cluster. Define the Spillover on the Non-Compliers (SNC)

as:

SNC(π) = E(Yic | Tic = 1, Ric = 0, πc = π)− E(Yic | Tic = 0, Ric = 0, πc = 0),

a spillover term which is conceptually similar to the SNT. Combining these expressions, the

TOC(π) can be expressed as the difference between the ITT (π) and SNC(π), weighted by

the compliance rate r(π):22

TOC(π) =
ITT (π)− (1− r(π))SNC(π)

r(π)
.

These expressions have no empirical counterpart because compliance in the control is

not observed, and interference between units invalidates the usual strategy of estimating

the TOC from the ITT. With no interference, SNC(π) = 0, and the standard approach of

instrumenting for compliance with being offered the treatment produces a valid estimate of

the TOT (π). With interference, we need an estimate of SNC(π) to estimate the TOT (π).

An alternative way forward is to assume that spillovers on within-cluster non-compliers

are similar to spillovers on within-cluster controls, which are empirically identifiable.23

Assumption 4. SNC(π) = SNT (π)

This assumption effectively replaces the IV estimator’s assumption that SNC(π) = 0 with

an estimate of the spillover effect on untreated individuals, and allows us to recover an

estimate of the TOC(π).24

22If compliance varies across the saturation distribution, then changes in ITT (π) will be driven by this as
well as changes in the underlying TOC(π) and SNC(π). Indeed, in some cases, such as adoption of a new
technology, the most important saturation-driven heterogeneity may come from variation in uptake across
the saturation distribution.

23Unlike many extant partial population experiments in which the within-cluster controls are ineligible
for the treatment, in a RS design the within-cluster controls come from the same population as the treatment
sample, so this assumption may be more warranted.

24Crepon et al. (2013) estimate the treatment on the treated effect by assuming that the externality on
an untreated worker is independent of his treatment status, which is equivalent to Assumption 4.
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Result 4. Assume Assumption 1 and 4. A non-trivial randomized saturation design with a

pure control yields a consistent estimate of the TOC at saturation π,

ˆTOC(π) =
ˆITT (π)− (1− r̂(π)) ˆSNT (π)

r̂(π)

where r̂(π) =
∑

i,c 1{Tic = 1, Ric = 1, πc = π}/
∑

i,c 1{Tic = 1, πc = π} is a consistent

estimate of the compliance rate at saturation π.

If the compliance rate is constant with respect to treatment saturation, then an analogous

expression exists for TOC as a function of ITT and SNT .25

Similar to the ITT, we can break the TOC into two effects: a direct treatment effect from

the program, the Treatment on the Unique Complier (TUC), and a spillover effect, the

Spillover on the Compliers (SC). An analogous result to Result 3 identifies these effects.

Returning to the random effects model and maintaining Assumption 4, we can back out

estimates of the TOC, SC and TUC. From equation 2, ˆTOC(π) = (β̂1π−(1− r̂(π))β̂2π)/r̂(π).

If we assume the compliance rate is constant with respect to π, equation 1 identifies TOC =

((β̂1 − (1 − r̂)β̂2))/r̂. Equation 3 identifies dŜC(π)/dπ = (δ̂3 − (1 − r)δ̂4)/r̂ and ˆTUC =

δ̂1/r̂. Cross-equation hypothesis testing can be performed using either Seemingly Unrelated

Regression or GMM.

In conclusion, the RS framework provides an empirical resolution of why units within a

cluster behave similarly. A study that finds high ICCs but no spillover effects can attribute

clustering to correlated or contextual effects, while a study with the same ICCs but large

spillovers should attribute clustering to endogenous effects. In this way the randomization of

saturations resolves the reflection problem (albeit after the fact), and informs optimal design

of subsequent experiments in similar contexts.

2 Extensions of the RS Design

2.1 Using Within-cluster Controls as Counterfactuals

Suppose there is no evidence of spillovers on untreated individuals – the estimate of SNT (π)

is a precise zero for all π. Then the within-cluster controls are not subject to interference

25Estimating the pooled TOC is tricky if the compliance rate varies with treatment saturation:

TOC =
∑

Π\{0}

[(
1

r(π)

)
ITT (π) +

(
1− r(π)

r(π)

)
SNC(π)

](
f(π)

1− ψ

)
.

It is not possible to express TOC as a function of ITT and SNT . We must either estimate ITT (π) and
SNC(π) for each π, or weight observations to take into account the varying compliance rate.
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from the treatment and they can be used as counterfactuals.

Assumption 5. SNT (π) = 0 for all π ∈ Π.

This assumption is testable using any RS design that identifies a consistent estimate of the
ˆSNT (π).

When Assumption 5 holds, the researcher can pool within-cluster and pure controls, and

estimate a simpler model to measure treatment effects:

Yic = β0 + β1Tic + φ ·Xic + εic (4)

Given RS design ω, this regression returns ˆITT ω = β̂1.26 Power is significantly improved by

the larger counterfactual, particularly when the ICC is high.

Theorem 3 characterizes the pooled MDE when the within-cluster controls are included

in the counterfactual.

Theorem 3. Assume Assumptions 1, 2, 3 and 5 and let ω be a randomized saturation design.

Then, given statistical significance level α and power γ, the MDE of ITT ω is:

MDET
ω = (t1−γ + tα)

√
1

nC

{(
(1 + ρ(n− 1))

µ(1− µ)

)
τ 2 +

(
1

µ(1− µ)

)
σ2

}

where ρ = η2/µ(1 − µ) is the correlation in treatment status between two individuals in the

same cluster.

Theorem 3 nests the familiar expressions for the MDE of the blocked and clustered

designs, and provides context for two well-known results. Fixing the treatment probability

µ, the expression for the MDE is decreasing in the variance of the treatment saturation η2,

and minimized when this variation is zero, which corresponds to the blocked design. Second,

fixing η2, the MDE is minimized when µ(1 − µ) is maximized, which occurs at µ = 1/2.

Therefore, in the absence of spillovers, the optimal design is a blocked study with equal size

treatment and control groups.

An immediate result of Theorem 3 is that the power of the pooled treatment effect in

any RS design lies between the power of the treatment effect in the blocked and clustered

designs.

Corollary 6. Let ω be a randomized saturation design with treatment probability µ. Then

MDET
B < MDET

ω < MDET
C ,

26Saturation weights are necessary if there are spillover effects on treated individuals, ST (π) 6= 0 for some
π ∈ Π.
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where MDET
B is the MDE in a blocked design with saturation µ and MDET

C is the MDE in

a clustered design with share of treatment clusters µ.

2.2 Using the RS Design to Estimate the Pure Control Outcome

If a study has no pure control group, the counterfactual is at the mercy of within-cluster

spillovers. In this context, the RS design has the distinct advantage of allowing a researcher

to test for the presence of spillover effects and estimate the unperturbed counterfactual. If

the spillover effect is continuous at zero, the researcher can use the variation in treatment sat-

uration to project what would happen to untreated individuals as the saturation approaches

zero.27 With this unperturbed counterfactual in hand, we can then estimate ˆSNT , and use

this value to correct the estimate of the ˆITT .

Assumption 6 provides a simple way to estimate the pure control by assuming that the

outcome variable is linear with respect to treatment saturation.

Assumption 6. E(Y |T, π) is an affine (linear) function of π.

While it is possible to use a more flexible functional form and the specification can be tested,

the linear case provides simple intuition for the technique.28

Given Assumption 6, it is natural to estimate:

Yic = δ0 + δ1Tic + δ2 ∗ πc + δ3(Tic ∗ πc) + φ ·Xic + εic (5)

Given RS design ω with no pure control, estimating equation 4 with saturation weights

and equation 5, the hypothesis test δ2 = 0 determines whether there is variation in the

control outcome across saturations. If spillovers are present on untreated individuals, then

the counterfactual needs to be corrected. The coefficient δ̂0 is an estimate of the desired

‘pure’ control outcome, E(Yic | Tic = 0, πc = 0), while β̂0 is an estimate of the within-cluster

control outcome actually used as the counterfactual, E(Yic | Tic = 0, πc > 0). The difference

between β̂0 and δ̂0 is the ˆSNT , which can be used to derive an unbiased estimate of the
ˆITT .

27Although continuity is a reasonable assumption, it is not universally applicable. Consider signalling in
a ground-hog colony. Individuals are ‘treated’ by being alerted to the presence of a nearby predator, and the
possible individual-level outcomes are ‘aware’ and ‘not aware’. The animal immediately signals danger to
the rest of the colony, and control outcomes will be universally ‘aware’ for any positive treatment saturation,
but ‘unaware’ when the saturation is exactly zero.

28In a panel difference in difference regression, the quantity giving the desired counterfactual would be
the un-interacted ‘post-treatment’ dummy. This is the change the control group would have experienced at
saturation zero
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Figure 3. Treatment Saturation of Alternate Network

Result 5. Assume Assumption 1, 2, 3 and 6, and let ω be a randomized saturation design

with no pure control and κ ≥ 2 interior saturations. Then ω generates consistent estimators

of ˆITT ω = β̂1 + β̂0 − δ̂0 and ˆSNT ω = β̂0 − δ̂0, where β̂0, β̂1 and δ̂0 are the estimates from

equation 4 with saturation weights and equation 5.

Similar estimates for the ITT and SNT at a specific saturation are generated by estimating

equation 4 on a single saturation.

The RS design opens up unique empirical possibilities even when there is no pure control

group. This is particularly important for settings in which a pure control is not feasible due

to regulatory requirements or other exogenous restrictions.29

2.3 Spillover Effects in Overlapping Networks

The RS design we present must be implemented in a non-overlapping network (such as vil-

lages or schools), but many networks of interest do not satisfy this strong requirement (such

as peer networks or extended families). However, an RS design implemented on a non-

overlapping network also produces exogenous variation in the treatment saturation of over-

lapping networks, variation that is always superior to what would be obtained from a blocked

design and generally superior to clustered designs. This variation depends on the structure of

both networks – it increases as the correlation between the two networks increases. As imple-

menting a RS design using non-overlapping clusters is much more straightforward than the

sequential randomization required to conduct a RS design in overlapping networks (Toulis

and Kao 2013), this provides an attractive way of generating random variation in treatment

saturation even when the true network of interest is overlapping.

Figure 3 illustrates the treatment saturation distributions in an overlapping network that

results from implementing either a blocked, clustered or RS design on a non-overlapping

network.30 Using an overlapping network with five links per individual, we plot the share of

individuals at each treatment saturation in the non-overlapping network, where the treatment

saturation captures the share of an individual’s links who receive treatment. We use the

29For example, in McIntosh et al. (2013), a Mexican government rule required that each participating
cluster (municipality) be guaranteed at least one treated sub-unit (neighborhood).

30We use a blocked design in which 50% of individuals in each cluster are treated, a clustered design
in which 50% of clusters are treated at either 100% or 0% saturation, and a RS design in which an equal
share of clusters are treated at saturations 0%, 33%, 67% or 100%. Each assignment rule results in the same
overall fraction (one half) of the sample being treated.
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probability that a link in the overlapping network connects two individuals in the same cluster

(the unit of the non-overlapping network) to measure the correlation between networks.31

As can be seen in Figure 3, the blocked design produces little overall variation in treatment

saturations; the saturations are centered around 50%, independent of the correlation. The

clustered design suffers from the opposite problem: because treatment has taken place at

the cluster level, it is dominated by nodes that have either high or low treatment saturations

when there is correlation between networks. Finally, the RS design produces a more even

distribution of saturations when there is correlation between networks. In the limit, when

there is no correlation between networks, the three designs produce the same saturation

distributions (left panel of Figure 3).

3 Empirical Application

The Schooling, Income, and Health Risk (SIHR) is a randomized saturation study designed

to understand the role that Conditional and Unconditional Cash Transfers (CCTs and UCTs)

play in improving schooling outcomes and reducing early marriage and pregnancy among

unmarried, school-age females. We now present an analysis of all of the estimands developed

in this paper using the RS design to understand how these programs altered outcomes for

the within-cluster controls as well as for the treated. The study took place in the Zomba

district of Malawi. Before the start of the intervention, 176 EAs were selected from urban

(Zomba city, 29 EAs) and rural (147 EAs) strata for inclusion in the study. 32

In the 176 study EAs, each dwelling was visited to take a census of all never-married

females aged 13-22 years. Within this eligible population we defined two cohorts: those

enrolled in school at baseline (baseline schoolgirls), and those not enrolled in school at

baseline (baseline dropouts). All baseline dropouts were selected for inclusion in the study

due to the small size of this cohort (approximately five per EA, accounting for about 15%

of the target population), while we sampled within the larger cohort of baseline schoolgirls.

The percentage of this cohort randomly selected for inclusion in the study was just above

60% and varied by geographical stratum and age group. 33 This sampling procedure yielded

3,796 individuals, who were enrolled in the study and completed baseline interviews at the

end of 2007. Of these study participants, 889 were baseline dropouts and 2,907 were the

baseline schoolgirls who we analyze here.

Out of the 176 EAs, 88 EAs were assigned to pure control and 88 to treatment. All

31The specific structure of the network is irrelevant. Any network with the same number of links and
correlation measure will acheive the same saturation distribution.

32Each EA contains an average of 250 households spanning several villages.
33The sampling rate varied from 14% to 45% in urban EAs and 70% to 100% in rural ones.
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Figure 4. Research Design

Shaded cells indicate treatment and numbers give sample sizes at the individual level per cell. Household
transfer amounts randomized at the EA level, monthly values of $4, $6, $8, $10. Participant transfer amounts
randomized at the indvidual level, monthly values of $1, $2, $3, $4, $5.

baseline dropouts in treatment EAs were offered CCTs. The randomized saturation experi-

ment as well as the UCT/CCT experiment was conducted only among baseline schoolgirls.

46 EAs had CCT saturations randomized, 27 EAs had the UCT saturations randomized,

and 15 EAs saw only baseline dropouts treated. 34 In EAs assigned to CCT, 15 are treated

at 33%, 16 are treated at 67%, and 15 are treated at 100%, while there were 9 UCT EAs

in each saturation bin. The 15 EAs in which only baseline dropouts are treated provide a

0% CCT saturation, measuring the spillover from CCT treatment of baseline dropouts on

baseline schoolgirls. Within each EA, we then selected the integer number of treatments

that made the EA-level sample saturation as close as possible to that assigned. Figure 4

presents a schematic of the randomized saturation study design.

In the CCT arm, households were offered cash transfers of between $5 and $15 per month

if the study participant attended school at least 80% of the days her school was in session

during the past month. The UCT arm featured the same transfer system, but the cash

transfers were offered unconditionally.35 The cash transfer program started in early 2008,

and continued for two years.

We performed the RS experiment only among baseline schoolgirls sampled into the study,

meaning that the inclusion rules and sampling rates form a ‘gateway to treatment’ for the

true saturation within both the eligible population and the overall population. This has

two distinct implications. First, while the conduit for the spillover effects may be an inel-

igible group such as potential male partners, a gateway-to-treatment study can only hope

34Due to funding constraints for the transfers, the study included a larger pure control group than would
have been ideal for power purposes alone.

35See Baird, McIntosh and Özler (2011) for more details on intervention design.
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to capture spillover effects that are both generated and experienced by eligibles. Second, a

sampling rate of less than 100% pushes down treatment saturations within the entire eligible

population relative to those assigned within the study sample. Because this study featured

a high overall sampling rate of 68%, the true saturations are only slightly lower than the as-

signed. The correlation coefficient between the assigned and true saturations at the EA level

is 0.86, while the assigned saturations are completely orthogonal to the sampling weights

with a correlation coefficient of 0.03. The actual saturation experiment is thus dampened

by one-third from the assigned experiment. To recover marginal effects in the correct units

of the true saturation, we instrument for the true saturations with the assigned.

Our analysis utilizes data from three sources. First, the annual SIHR Household Survey

provides three rounds of data (baseline, 12-month follow-up, and 24-month follow-up). This

survey provides data on the core respondent’s marital status and fertility, as well as her

network of friends. Second, we visited the schools of all study participants, who reported

being enrolled in school during the 12-month follow-up interviews, and collected data on

their enrollment and attendance directly from their schools.36 Finally, to obtain an objec-

tive measure of learning, we administered independent tests for English, mathematics, and

cognitive skills to study participants in their homes at the 24-month follow-up. The tests

were developed by a team of experts at the Human Sciences Research Council according to

the Malawian curricula for these subjects for Standards 5-8 and Forms 1-2.37 The outcomes

used in the empirical analysis, then, are enrollment, average test scores, and self-reported

marriage and pregnancy.

Table 1 shows balance tests with the same specifications to be used in the analysis of

spillover effects. All results are shown separately for CCTs and UCTs, providing cross-

sectional baseline comparisons at the individual level while clustering standard errors at the

EA level to account for the design effect. The set of 10 variables for which we examine baseline

balance between various treatment groups is the same set reported in Baird, McIntosh and

Özler (2011). Panel A shows the simple balance tests; the spillover sample is generally similar

to the pure control at baseline. In Panel B we include linear these slope terms, meaning that

the top half of Panel B tests for the difference of the 0% saturation (observed in the CCT,

extrapolated in the UCT) from the pure control. This provides falsification for the intercept

and slope terms to be used in the saturation analysis. Overall the experiment appears well

balanced.

36While a school survey was also conducted at the 24-month follow-up, this was done only for a random
sub-sample of study participants due to budget constraints. Hence, the outcome variable of number of terms
enrolled goes from a minimum of zero to a maximum of three an indicator of school attendance during the
first year of the program.

37Primary school in Malawi is from Standard 1 to 8, while secondary school is from Form 1 to 4.
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3.1 Analysis of Treatment and Spillover Effects

We now present the treatment and spillover effects that can be identified using the random-

ized saturation design. Table 2 estimates equations (1) and (3), with two modifications.

First, we allow the CCT and UCT arms to have separate treatment and spillover effects.

Second, we instrument for the true saturation within the eligible population using the ran-

domly assigned saturation in the sample so as to provide marginal effects in the units of the

true saturation. Our analysis includes all baseline schoolgirls, controlling for a basic set of

baseline covariates and clustering standard errors at the EA level. We present two sets of

results for each outcome, first showing simple ITT and SNT effects by estimating equation

(1) in the odd-numbered columns, and then proceeding to test for the presence of saturation

slope effects using equation (3) in the even-numbered columns. The bottom two panels of

Table 2 explicitly calculate the treatment effects that were developed in Section 1.38

The regression coefficients on the treatment saturations give the linearized slope effects

for each outcome. The pooled ITT is presented in columns 1 and 2 and the SNT in columns

3 and 4. The TUT is the intercept term, given by the first two rows in the even-numbered

columns. We can divide the TUT by the respective compliance rates to calculate the TUC,

the treatment effect on the unique complier; and calculate the ToC, the pooled treatment

on the compliers effect, using Assumption 4. These two estimands allow us to calculate

the pooled spillovers on the compliers: SC = TOC − TUC. Finally, we perform F-tests

on each of these estimands, which are linear combinations of regression coefficients across

equations. Estimation conducted using Seemingly Unrelated Regressions with OLS models

or two-step GMM with IV models provide identical results for the significance levels in the

bottom panels of Table 2.

The cluster-level pooled spillover on the non-treated effects (SNT ) are given by the co-

efficients on the within-cluster control indicators in the odd-numbered columns. Despite

the sizable pooled intention to treat effects (ITT ), we find no average spillover effects on

the non-treated. Furthermore, for each statistically significant treatment effect the average

spillover effect on within-cluster controls has the same sign, indicating no evidence of detri-

mental spillover effects among untreated individuals in treated clusters. The total causal

effect, which is a weighted average of the ITT and SNT , presented in the bottom two

panels confirms this finding: the TCE closely tracks the ITT in statistical significance and

typically appears close to the ITT multiplied times .65, the average treatment saturation

in clusters with any treatment. Saturation effects presented in the even-numbered columns

suggest that these spillovers on the non-treated increase with treatment saturation, although

38The compliance rate was 77.4% for the CCT arm and 99% for the UCT arm.
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none of these slope estimates are significant at the 10% level.

When we move to examining spillover effects on the treated (ST ), we find some evidence

that the beneficial treatment effects decline with treatment intensity. For example, the

treatment on the uniquely treated (TUT ) effect on enrollment in the CCT group is 0.25

terms, while the pooled ITT estimate is 0.133. Effects on test scores are evident in estimates

presented in columns 3 and 4. Similarly, for marriage and pregnancy, the TUT effects in the

UCT arm are consistently higher (in absolute value) than the pooled ITT effects, suggesting

that beneficial intention to treat effects wear off as more eligible individuals are treated

within the cluster. Intriguingly, this indicates that d(SNT (π))
dπ

and d(ST (π))
dπ

have opposite signs

for all four outcome variables, suggesting a welfare tradeoff between treated and untreated

units that becomes more pronounced as the treatment saturation increases.

Underlying the estimation of the saturation slope terms in Table 2 are the discrete distri-

butions of the treatment saturations assigned in our experiment: 33%, 67%, 100%, and a 0%

CCT cell that estimates the spillover on schoolgirls from CCT baseline dropout treatment

alone. We calculate the non-parametric cell-specific ITT (π) for each treatment saturation

and SNT (π) for each saturation below 100%. Table 3 presents this fully granular analysis of

impact, showing coefficient estimates for each combination of treatment arm and saturation

separately, using the non-parametric regression model in equation 2. In the first column

we provide the average true saturation rate within the eligible population for each assigned

saturation bin. The impact estimates in columns 2-5 reinforce the findings from Table 2,

which used the affine model to estimate saturation effects: spillover effects on the non-treated

are generally strongest (and have the same sign as the pooled intention to treat effects) for

the cells with the highest treatment saturation (see, e.g. column 2 row 9 or column 4 row

11). Furthermore, again consistent with the earlier findings from Table 2, intention to treat

effects are highest in the cells with low saturation, becoming insignificant for the highest

saturations (see, e.g. the ITT (π) estimates for schooling outcomes in the CCT arm and

those for marriage and pregnancy in the UCT arm in the top panel of Table 3).

3.2 Analysis of Spillover Effects in Friends Network

The finding of weak spillovers within relatively large spatial units could mask the presence

of stronger spillovers within social networks. Using data collected at baseline on the closest

friends of each study participant, we show that spillover effects are equally muted within

this more intimate social network.

At baseline, we asked each study participant to list their five closest friends and to provide

some basic information about these friends. We matched the friends to our study sample
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to determine their treatment status. Restricting our sample to the set of individuals who

(a) lived in study EAs, (b) were eligible for the treatment (i.e. never-married females aged

13-22), and (c) are either themselves in the study sample or were listed at baseline among the

five closest friends gave us a sample of 8,981 individuals in 176 EAs. As described in Section

II.C, because there is a positive correlation between the locations of the study participants

and their friends, the RS design generates exogenous variation in treatment intensity within

each individual’s social network.

In Table 4, we present program effects as a function of the number of treated friends.

The covariates included in the analysis of social networks must reflect the fact that we failed

to link friends in a non-negligible number of cases and that we only observe treatment status

for friends linked to our sample. To account for this endogenous variation in our ability to

link friends in the study sample, we include fully flexible controls for the distribution of the

number of matched friends. The findings mirror those presented in Table 2: for beneficiaries

and non-beneficiaries alike, none of the outcomes is responsive to the number of treated

friends. The similarity in the pattern of spillovers in the spatial and social networks provides

some support for stratified interference described in Assumption 2.

Returning to clusters defined over spatial units, such as EAs, the purity of a cross-cluster

counterfactual will be compromised if the regional intensity of treatment has an effect on

outcomes. To test for this, we conclude by following Miguel and Kremer (2004) and Bobba

and Gignoux (2013) in using GIS data on the locations of the EA centroids to count the

number of treatment and control EAs within distance bands of <3km and 3-6km from each

EA. Since the treated number of EAs is randomized conditional on the total number within

each band, we can use this variation to look for cross-cluster spillovers that would violate

Assumption 1. Table 5 demonstrates that this cash transfer experiment did not generate

strong cross-cluster effects. Coefficient estimates for the number of treated EAs within the

two distance bands are always small and statistically insignificant, implying that there are

no spillovers for enrollment, test scores, marriage, or fertility across clusters (columns 1, 3,

5, and 7).39 Exploiting incidental randomization across clusters we confirm Assumption 1

and, as in the within-cluster analysis, find little evidence of spillover effects.

39In contrast to Bobba and Gignoux (2013), who find large spillover effects of PROGRESA in Mexico but
only on treated individuals, we find no consistent evidence that program beneficiaries experience spillovers
from adjacent clusters that are any different from untreated individuals (columns 1, 3, 5, and 7). In other
words, the ST and the SNT measured cross-cluster are both zero.
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4 Conclusion and Discussion

In recent years, empirical researchers have become increasingly concerned with the problem

of interference between subjects. Experiments designed to rigorously estimate spillovers

open up a fascinating set of research questions and provide policy-relevant information about

program design. Research designs and RCTs that fail to account for spillovers can be biased;

finding meaningful treatment effects but failing to observe deleterious spillovers can lead to

misconstrued policy conclusions. This paper attempts to push the frontier of research designs

by formalizing the analysis of randomized saturation experiments.

The benefit of randomizing treatment saturations is the ability to generate direct ex-

perimental evidence on the nature of spillover and threshold effects. The cost of doing so

is statistical power. Having laid out the assumptions necessary to estimate both the mean

and variance of spillover effects, we develop explicit, closed-form expressions for the power

of RS experiments. We first provide a general expression for power when we seek to esti-

mate treatment and spillover effects jointly. The power loss from randomizing saturations

is directly related to the variation in treatment saturation, and so is an inherent feature of

the design. Our explicit power calculation formulae provide concrete guidance for optimal

research design depending on whether the researcher is primarily interested in measuring

pooled treatment and spillover effects or slope effects (which necessitates more partially

treated clusters). When spillover effects are found to be muted, this bolsters the credibility

of causal inference from clustered designs.

Our empirical application provides little evidence of spillover effects within clusters, or

indeed across clusters. This suggests that the significant decreases in marriage and fertility

amongst schoolgirls in the unconditional cash transfer treatment group (Baird, McIntosh and

Özler 2011) are causal in a larger sense, and are not arising because the treatment diverts

such behavior to others girls in the study. For marriage, and pregnancy, the coefficient on

treatment saturations for the within-cluster controls is in fact negative, indicating a slight

protective effect of the program on nearby individuals who do not receive the treatment.

The framework presented here serves as an important guide to policy questions. For

example, if a researcher is implementing a program with fixed resources and can either treat

100% of five villages or 50% of ten villages, which treatment allocation will maximize the

total benefit? In the Malawi cash transfer program, our results suggest that they would

have the same total effect, and the TCE of the program is closely approximated by the ITT

times the average saturation rate, independent of how individuals are assigned to treatment.

Small policy trials conducted on a subset of the population can miss important scale or

congestion effects that will accompany the full-scale implementation of a program. To the
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extent that varying the cluster-level saturation leads to differential impacts on prices, norms,

and congestion effects, the randomized saturation design provides an experimental framework

that can bolster both external and internal validity.
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A Mathematical Appendix

A.1 Proofs from Section 1.2, 1.4 and 2.2

Proof of Result 1: Let ȳ1,π and ȳ0,π be the sample averages for treated and untreated
observations, respectively, in clusters with saturation π. Note for π > 0,

ȳ1,π =
1

nCπf(π)

C∑
c=1

n∑
i=1

Yic1Tic=1,πc=π

with an analogous definition for ȳ0,π and ȳ0,0. Then ˆITT (π) = ȳ1,π − ȳ0,0 converges to
E(Yic | Tic = 1, πc = π) − E(Yic | Tic = 0, πc = 0) = ITT (π) by the strong law of large
numbers. The results for ˆSNT (π) = ȳ0,π − ȳ0,0 and ˆTCE(π) = π ˆITT (π) + (1− π) ˆSNT (π)
are analogous. Q.E.D.

Proof of Result 2: Let ȳ1 and ȳ0,π>0 be the sample averages for treated and within-
cluster control observations across all saturations, respectively, weighted with saturation
weights. Note that

ȳ1 =
1

nC
∑

i,c s
T
πc1Tic=1,πc>0

C∑
c=1

n∑
i=1

Yics
T
πc1Tic=1,πc>0 =

1

1− ψ
∑
Π\0

f(π)ȳ1,π

Therefore,

ȳ1 − ȳ0,0 =
1

1− ψ
∑
Π\0

f(π)(ȳ1,π − ȳ0,0) =
1

1− ψ
∑
Π\0

f(π) ˆITT (π)

and from Result 1, ˆITT (π) is a consistent, unbiased estimate of ITT (π). Therefore, ˆITT =

ȳ1 − ȳ0,0 converges to ITT . Similarly, ˆSNT = ȳ0,π>0 − ȳ0,0 converges to SNT .
One must estimate TCE from a pooled estimate of the ITT and SNT without satura-

tion weights, because the shifting composition of the sample is integral to the definition of
the TCE.. Let ȳπ>0 be the sample average for pooled treated and within-cluster control
observations across all saturations.

ȳπ>0 =
1

nC
∑

i,c 1πc>0

C∑
c=1

n∑
i=1

Yic1πc>0 =
1

1− ψ
∑
Π\0

πf(π)ȳ1,π + (1− π)f(π)ȳ0,π

Therefore,

ȳπ>0 − ȳ0,0 =
1

1− ψ
∑
Π\0

f(π)π ˆITT (π) + (1− π)f(π) ˆSNT (π) =
1

1− ψ
∑
Π\0

f(π)T̂CE(π)

and from Result 1, ˆTCE(π) is a consistent, unbiased estimate of TCE(π). Therefore,
ˆTCE = ȳπ>0 − ȳ0,0 converges to TCE. Note that while it was possible to directly esti-
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mate ˆTCE(π) from ˆITT (π) and ˆSNT (π) in Result 1, it is not possible to directly estimate
ˆTCE from ˆITT and ˆSNT . Q.E.D.

TCE = (µ/(1− ψ))ITT unweighted + ((1− µ− ψ)/(1− ψ))SNT unweighted

Proof of Result 3: Analogous to Result 1. Q.E.D.

Proof of Result 4: Given Assumption 4, there is a consistent estimate of the SNC. The
rest of the proof is analogous to Result 1. Q.E.D.

Proof of Result 5: Given Assumption 6, we can identify the slope of the ITT and SNT.
The rest of the proof is analogous to Result 1. Q.E.D.

A.2 Preliminary Calculations

This section provides background material used to derive the MDE and MDSE in Theorems
1, 2 and 3.

A.2.1 Form of the MDE

The MDE depends on the standard error of β̂:

MDE = [t1−γ + tα] ∗ SE
(
β̂
)

To compute the MDE, we need to determine SE
(
β̂
)

. This depends on the data generating

process and the randomization structure. Consider a model with a random effects error
structure:

yic = x′icβ + vc + wic

for a vector of treatment status covariates xic, where vc is the common cluster component
of error and wic is the individual error. Let X ′cXc =

∑n
i=1 xicx

′
ic and u′c =

[
u1c ... unc

]
,

where uic = vc + wic. Then the standard error of β̂ is:

SE
(
β̂
)

=

√
1

nC
∗ A−1BA−1

where

A := prob lim
1

nC

C∑
c=1

X ′cXc and B := prob lim
1

nC

C∑
c=1

X ′cucu
′
cXc

Given that all clusters are identical ex-ante, 1
N

∑C
c=1E [X ′cXc] = 1

C

∑C
c=1

1
n
E [X ′cXc] =

1
n
E [X ′cXc]. Also note that A and B are independent of whether one takes n → ∞ or
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C →∞. Therefore, using the formulas for matrices A and B yields:

A =
1

n
E[X ′cXc] and B =

1

n
E [X ′cucu

′
cXc]

The matrix B can be decomposed into two matrices, B = (n− 1)τ 2D + (τ 2 + σ2)A, which
leads to the expression:

SE
(
β̂
)

=

√(
n− 1

nC

)
τ 2A−1DA−1 +

(
1

nC

)
(τ 2 + σ2)A−1

where A and D depend on the RS design. We will utilize this expression to calculate SE
(
β̂
)

for different effects and RS designs.

A.2.2 Form of Matrices

ucu
′
c =


u2

1c u1cu2c u1cunc
u1cu2c ... ...
... ...

u1cunc u2
nc



E[ucu
′
c] =


τ 2 + σ2 τ 2 τ 2

τ 2 τ 2 + σ2 ...
... ...
τ 2 τ 2 + σ2

 = τ 2 +


σ2 0 0
0 σ2 ...
... ...
0 σ2


Given x′ic =

[
1 Tic Sic ...

]
, (a 1× k vector), we can write:

Xc =


x′1c
x′2c
...
x′nc

 =


1 T1c S1c ...
1 T2c S2c ...
... ...
1 Tnc Snc ...

 an n× k matrix

X ′cXc =
n∑
i=1

xicx
′
ic =

n∑
i=1


1 Tic Sic ...
Tic T 2

ic TicSic ...
Sic TicSic S2

ic ...
... ...

 a k × k matrix

A.2.3 Relevant Expectations

Distribution of treatment status: 40

� E[Tic] = P (Tic = 1) = µ

40We implicitly assume that realized saturation is equal to assigned saturation, i.e. πc = 1
nΣn

i=1Tic, so
given assigned saturation, there is no variation in realized saturation.
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� E[Sic] = 1− µ− ψ = µS

� E[Cic] = ψ

� E[T xic] = E[Tic] = µ

� E[Sxic] = E[Sic] = µS

� E [TicSic] = 0

Variance of treatment status:

� V ar[Tic] = E[T 2
ic]− E[Tic]

2 = µ(1− µ)

� V ar[Sic] = (1− µ− ψ) (µ+ ψ)

� V ar[Cic] = ψ(1− ψ)

Within cluster treatment status:

� E [TicTjc] = P (Tic = 1, Tjc = 1) =
∑

Π P (Tic = 1, Tjc = 1, πc = π) =
∑

Π π
2f (π) =

E[π2]

where the second equality follows from the chain rule of probability and the third
equality follows from the fact that randomization at the individual level is independent
within a cluster i.e. Tic is independent of Tjc, conditional on πc.

� E [SicSjc] = 1− 2µ+ E[π2]− ψ

E [SicSjc] = P (Sic = 1, Sjc = 1)

=
∑

Π

P (Sic = 1, Sjc = 1, Tc = π)

=
∑

Π\{0}

(1− π)2 f (π)

= E
[
(1− π)2]− ψ

= 1− 2µ+ E[π2]− ψ

� E [CicCjc] = ψ

� E [TicSjc] = µ− E[π2]

E [TicSjc] = P (Tic = 1, Sjc = 1)

=
∑

Π

P (Tic = 1, Sjc = 1, Tc = π)

=
∑

Π\{0}

π (1− π) f (π)

= E [π (1− π)]− 0 ∗ ψ
= µ− E[π2]
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Across cluster treatment status:

� E [TicTjd] = µ2

since E [TicTjd] = E [Tic]E [Tid] by independence

� E [SicSjd] = (1− µ− ψ)2

� E [CicCjd] = ψ2

Correlation with saturation πc is

� E[Ticπ
x
c ] =

∑
Π π

xP (Tic = 1, πc = π) =
∑

Π π
x+1f (π) = E[πx+1]

� E[T xicπc] = E[Ticπc]

� E[TicTjcπ
x
c ] =

∑
Π π

xP (Tic = 1, Tjc = 1, πc = π) =
∑

Π π
x+2f (π) = E[πx+2]

� E[Sicπ
x
c ] =

∑
Π π

xP (Sic = 1, πc = π) =
∑

Π\{0} π
x (1− π) f (π) = E [(1− π)πx]

� E[Sxicπc] = E[Sicπc]

� E [SicSjcπ
x
c ] =

∑
Π π

xP (Sic = 1, Sjc = 1, πc = π) =
∑

Π π
x (1− π)2 f (π) = E[πx (1− π)2]

� E[TicSjcπ
x
c ] =

∑
Π π

xP (Tic = 1, Sjc = 1, πc = π) =
∑

Π π
xπ (1− π) f (π) = E[πx+1 (1− π)]

Correlation of treatment status between two girls in the same cluster:

ρT =
E [TicTjc]− E [Tic]E [Tic]

V ar[Tic]
=

η2

µ(1− µ)

ρS =
E [SicSjc]− E [Sic]E [Sic]

V ar[Sic]

=
(1− 2µ+ η2 + µ2 − ψ)− (1− µ− ψ)2

(1− µ− ψ) (µ+ ψ)

=
η2 + ψ (1− 2µ− ψ)

(1− µ− ψ) (µ+ ψ)
ρC = 1

Distribution of uic:

� E [u2
ic] = τ 2 + σ2

� E [uicujc] = τ 2 if i 6= j which is Cov(uicujc)

� E [uicujd] = 0 if c 6= d

� Tic or Sic is independent of uic ⇒ E [f(uic)g(Tic)] = E [f(uic)] ∗ E [g(Tic)]
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Sum of the error terms and treatment status within each cluster:

1

n
E

( n∑
i=1

uic

)2
 = E

[
u2
ic

]
+ (n− 1)E [ujcuic] = (nτ 2 + σ2)

1

n
E

[(
n∑
i=1

uic

)(
n∑
i=1

Ticuic

)]
= E

[
u2
icTic

]
+ (n− 1)E [ujcuicTic] = (nτ 2 + σ2)µ

1

n
E

[(
n∑
i=1

uic

)(
n∑
i=1

Sicuic

)]
=

(
nτ 2 + σ2

)
(1− µ− ψ)

since Tic and Sic are independent of uic.

1

n
E

( n∑
i=1

Ticuic

)2
 = E

[
u2
icT

2
ic

]
+ (n− 1)E [ujcuicTicTjc]

=
(
τ 2 + σ2

)
µ+ (n− 1)τ 2E[π2]

1

n
E

( n∑
i=1

Sicuic

)2
 =

(
τ 2 + σ2

)
(1− µ− ψ) + (n− 1)τ 2

(
1− 2µ+ E[π2]− ψ

)
1

n
E

[(
n∑
i=1

Ticuic

)(
n∑
i=1

Sicuic

)]
= (n− 1)τ 2

(
µ− E

[
π2
])

since TicSic = 0 for all i, c.

A.2.4 Variance of Treatament Saturation

The marginal distribution of saturations across treatment clusters (removing control clusters)
is:

g(π) =
f(π)

1− ψ
with support Π\{0}.

Eg[π
2] =

1

1− ψ
∑

Π\{0}

π2f(π)

Eg[π] =
1

1− ψ
∑

Π\{0}

πf(π)
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The component of total variation in cluster saturation due to variation in the saturation of
treated clusters is:

η2
T : = V ar(π|π > 0) = Eg[π

2]− Eg[π]2

=

(
1

1− ψ

)∑
Π\{0}

π2f(π)−
(

1

1− ψ

)∑
Π\{0}

πf(π)

2
=

(
1

1− ψ

)
η2 −

(
ψ

(1− ψ)2

)
µ2

Then the total variation can be expressed as the sum of the variation in the saturation of
treated clusters and the variation between treated and control clusters, weighted by the size
of the control group:

η2 = (1− ψ) η2
T +

(
ψ

1− ψ

)
µ2

A.3 Proof of Theorem 1

We want to compute matrices A and B for the model with x′ic =
[

1 Tic Sic
]
. Using the

calculations from Section A.2, we can calculate:

A =
1

n

n∑
i=1

E

 n Tic Sic
Tic T 2

ic TicSic
Sic TicSic S2

ic

 =

 1 µ µS
µ µ 0
µS 0 µS



B =
1

n
E

 (
∑n

i=1 uic)
2

(
∑n

i=1 uic) (
∑n

i=1 Ticuic) (
∑n

i=1 uic) (
∑n

i=1 Sicuic)

(
∑n

i=1 uic) (
∑n

i=1 Ticuic) (
∑n

i=1 Ticuic)
2

(
∑n

i=1 Ticuic) (
∑n

i=1 Sicuic)

(
∑n

i=1 uic) (
∑n

i=1 Sicuic) (
∑n

i=1 Ticuic) (
∑n

i=1 Sicuic) (
∑n

i=1 Sicuic)
2


= (n− 1)τ 2

 1 µ µS
µ η2 + µ2 µ− µ2 − η2

µS µ− µ2 − η2 µS − µ+ η2 + µ2

+
(
τ 2 + σ2

)
A

Using mathematica to compute SE
(
β̂
)

=
√

1
nC
∗ A−1BA−1, taking the diagonal entries and

plugging in the expression relating η2 and η2
T yields the result. Q.E.D.

Proof of Corollary 1: Fixing µ and ψ, SE
(
β̂1

)
and SE

(
β̂2

)
are both minimized at

η2
T = 0. This corresponds to a partial population experiment with a control group of size ψ

and a treatment saturation of P = µ/(1− ψ). Q.E.D.

Proof of Corollary 2: Fixing ψ, a partial population design has the smallest sum of
standard errors, for any treatment size µ. Therefore, we can restrict attention to the set of

partial population designs, and the expression for V ar
(
β̂
)

simplifies to:
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MDET
ω = [t1−γ + tα]

√
1

nC
∗
{

(n− 1) τ 2

(
1

(1− ψ)ψ

)
+ (τ 2 + σ2)

(
ψ + µ

µψ

)}

MDES
ω = [t1−γ + tα]

√
1

nC
∗
{

(n− 1) τ 2

(
1

(1− ψ)ψ

)
+ (τ 2 + σ2)

(
1− µ

(1− µ− ψ)ψ

)}
The sum of these expressions is minimized at µ = µS = (1 − ψ)/2, which corresponds to a
partial population experiment with P = 1/2. Q.E.D.

Proof of Corollary 3: In a partial population design with µ = (1− ψ)/2,

MDET
ω = MDES

ω = [t1−γ + tα]

√
1

nC
∗
{

(n− 1) τ 2

(
1

(1− ψ)ψ

)
+ (τ 2 + σ2)

(
ψ + 1

(1− ψ)ψ

)}
When there is no inter-cluster correlation, τ 2 = 0, the expression simplifies to:

[t1−γ + tα]

√
1

nC
∗ σ2

(
ψ + 1

(1− ψ)ψ

)
which is minimized at ψ∗ =

√
2−1. When there is no individual error, σ2 = 0, the expression

simplifies to:

[t1−γ + tα]

√
1

nC
∗
{
τ 2

(
n+ ψ

(1− ψ)ψ

)}
which is minimized at ψ∗ =

√
n(1 + n)−n. Note limn→∞

√
n(1 + n)−n = 1/2. Given that

(ψ + 1)/((1− ψ)ψ) and (ψ + n)/((1− ψ)ψ) are both convex with unique minimums, any
weighted sum of these functions is minimized at a value ψ∗ that lies between the minimum
of each function. Therefore, when τ 2 > 0 and σ2 > 0, ψ∗ ∈ (

√
2− 1,

√
n(1 + n)− n).Q.E.D.

Proof of Corollary 4: Follows directly from Theorem 1. Q.E.D.

A.4 Proof of Theorem 2

We want to compute matrices A and B for the model with x′ic =
[

1 T1ic S1ic T2ic S2ic

]
where T1ic = 1 (Tic = 1, πc = π1), S1ic = 1 (Tic = 0, πc = π1), T2ic = 1 (Tic = 1, πc = π2ic)
and so forth. Using the calculations from Section A.2 and defining µk := πkf (πk), pk :=
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(1− πk) f (πk), ηk := π2
kf (πk) and ρk := (1− πk)2 f (πk) = pk − µk + ηk, we can calculate:

A =
1

n

n∑
i=1

E


n T1ic S1ic T2ic S2ic

T1ic T 2
1ic 0 0 0

S1ic 0 S2
1ic 0 0

T2ic 0 0 T 2
2ic 0

S2ic 0 0 0 S2
2ic

 =


1 µ1 p1 µ2 p2

µ1 µ1 0 0 0
p1 0 p1 0 0
µ2 0 0 µ2 0
p2 0 0 0 p2



B =
1

n
E


(
∑n

i=1 uic)
(
∑n

i=1 T1icuic)
(
∑n

i=1 S1icuic)
(
∑n

i=1 T2icuic)
(
∑n

i=1 S2icuic)

 ∗


(
∑n

i=1 uic)
(
∑n

i=1 T1icuic)
(
∑n

i=1 S1icuic)
(
∑n

i=1 T2icuic)
(
∑n

i=1 S2icuic)


ᵀ

= (n− 1)τ 2


1 µ1 p1 µ2 p2

µ1 η1 µ1 − η1 0 0
p1 µ1 − η1 ρ1 0 0
µ2 0 0 η2 µ2 − η2

p2 0 0 µ2 − η2 ρ2

+
(
τ 2 + σ2

)
A

Using mathematica to compute SE
(
β̂
)

=
√

1
nC
∗ A−1BA−1 and taking the diagonal entries

yields the MDET for each saturation πj:

MDET
ω (πj) = (t1−γ + tα)

√
1

nC
∗
{

(n− 1) τ 2

(
ηj
µ2
j

+
1

ψ

)
+ (τ 2 + σ2)

(
ψ + µj
ψµj

)}

= (t1−γ + tα)

√
1

nC
∗
{

(n− 1) τ 2

(
1

f(πj)
+

1

ψ

)
+ (τ 2 + σ2)

(
1

µj
+

1

ψ

)}
Next, we can compute MDSET

ω (πj, πk) from

SE(δTjk) = SE[
(
β1πk − β1πj

)
/ (πk − πj)] = SE

(
β1πk − β1πj

)
/ (πk − πj)

as

Cov(β1πk , β1πj) =
1

nC
(nτ 2 + σ2)

1

ψ

V ar(β1πk − β1πj) = V ar(β1πj) + V ar(β1πk)− 2Cov(β1πk , β1πj)

=
1

nC
∗
{

(n− 1) τ 2

(
1

f(πj)
+

1

f(πk)

)
+
(
τ 2 + σ2

)( 1

µj
+

1

µk

)}
Plugging this into the expression for MDSET yields the result. Calculating the MDES and
MDSES is analogous. Q.E.D.
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Proof of Corollary 5: Fixing the size of each saturation bin f(πj) = fj and f(πk) =
fk and the distance between two saturations πk − πj = ∆, minimizing MDSET

ω (πj, πk)
+MDSES

ω (πj, πk) is equivalent to solving:

min
πj

(
1

fjπj
+

1

fk(πj + ∆)
+

1

fj(1− πj)
+

1

fk(1−∆− πj)

)
The minimum occurs at the π∗j that solves π∗j (1 − π∗j )fj = (π∗j + ∆)(1 −∆ − π∗j )fk. When
fj = fk, π

∗
j = (1−∆)/2 and π∗k = π∗j + ∆ = (1 + ∆)/2, which is symmetric about 1/2.

Fixing fj = fk, the ∆ that minimizes MDSET
ω (πj, πk) + MDSES

ω (πj, πk) is equivalent
to solving:

min
∆

1

∆2

(
(n− 1)

n
τ 2 +

(τ 2 + σ2)

n

(
2

(1−∆)(1 + ∆)

))
The optimal ∆∗ solves:

(n− 1)τ 2

2(τ 2 + σ2)
=

2(∆∗)2 − 1

(1− (∆∗)2)2

If τ 2 = 0, then 2(∆∗)2 − 1 = 0, yielding ∆∗ =
√

2/2. Note that (2∆2 − 1)/((1 − ∆2)2) is
monotonically increasing for ∆ ∈ [0, 1), and strictly positive for ∆ >

√
2/2. When τ > 0,

((n− 1)τ 2)(2(τ 2 +σ2)) is also strictly positive, increasing in τ 2 and decreasing in σ2. There-
fore, ∆∗ ∈

(√
2/2, 1

)
for τ 2 > 0 and finite n, ∆∗ is increasing in τ 2 and n, and decreasing in

σ2. If τ 2 > 0, then the left hand side converges to ∞ as n → ∞, which requires ∆∗ → 1.
Q.E.D.

A.5 Proof of Theorem 3

We want to compute matrices A and B for the model with x′ic =
[

1 Tic
]
. Using the

calculations from Section A.2, we can calculate:

A =
1

n
E

[
n

∑n
i=1 Tic∑n

i=1 Tic
∑n

i=1 T
2
ic

]
=

[
1 µ
µ µ

]
and

B =
1

n
E

[
(
∑n

i=1 uic)
2

(
∑n

i=1 uic) (
∑n

i=1 Ticuic)

(
∑n

i=1 uic) (
∑n

i=1 Ticuic) (
∑n

i=1 Ticuic)
2

]
= τ 2(n− 1)

[
1 µ
µ η2 + µ2

]
+
(
τ 2 + σ2

)
A

This can be used to compute

SE
(
β̂1

)
=

√
1

nC
∗
[(

1

µ(1− µ)
+

(n− 1)η2

µ2(1− µ)2

)
τ 2 +

(
1

µ(1− µ)

)
σ2

]
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Using η2 = ρµ(1− µ), we can express SE
(
β̂1

)
in terms of µ and ρ.

SE
(
β̂1

)
=

√
1

nC
∗
[(

(1 + ρ (n− 1))

µ (1− µ)

)
τ 2 +

(
1

µ(1− µ)

)
σ2

]
Fixing µ, this expression is minimized at η2 = 0 or ρ = 0. Q.E.D.

Proof of Corollary 6: Follows directly from Theorem 3, noting that the blocked design
corresponds to ρ = 0 and the clustered design corresponds to ρ = 1. Q.E.D.

A.6 Affine Model

Theorem 4. Assume Assumptions 1, 2 and 3 and let ω be a randomized saturation design
with κ ≥ 2 interior saturations and a pure control. Then, given statistical significance level
α and power γ, the MDSE for the treated group is:

MDSET
ω = (t1−γ + tα)

√
1

nC
∗ {(n− 1) τ 2h1 + (τ 2 + σ2)h2}

where

h1 =

(
(η2 + µ2)2 − 2µ(η2 + µ2)E[π3] + µ2E[π4]

((η2 + µ2)2 − µE[π3])2

)
and h2 =

(
η2 + µ2

(η2 + µ2)2 − µE[π3]

)
A similar expression characterizes the MDSE for the within-cluster control group as MDSES

ω .

Proof of Theorem 4: We want to compute matrices A and B for the model with

x′ic =
[

1 Tic Ticπc Sic Sicπc
]

Using the calculations from Section A.2, we can calculate:

A =
1

n

n∑
i=1

E


1 Tic Ticπc Sic Sicπc
Tic T 2

ic T 2
icπc TicSic TicSicπc

Ticπc T 2
icπc T 2

icπ
2
c TicSicπc TicSicπ

2
c

Sic TicSic TicSicπc S2
ic S2

icπc
Sicπc TicSicπc TicSicπ

2
c S2

icπc S2
icπ

2
c



=


1 µ η2 + µ2 1− µ− ψ µ− η2 + µ2

µ µ η2 + µ2 0 0
η2 + µ2 η2 + µ2 E[π3] 0 0

1− µ− ψ 0 0 1− µ− ψ µ− η2 + µ2

µ− η2 + µ2 0 0 µ− η2 + µ2 η2 + µ2 − E [π3]
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B =
1

n
E


(
∑n

i=1 uic)
(
∑n

i=1 Ticuic)
(
∑n

i=1 Ticπcuic)
(
∑n

i=1 Sicuic)
(
∑n

i=1 Sicπcuic)

 ∗


(
∑n

i=1 uic)
(
∑n

i=1 Ticuic)
(
∑n

i=1 Ticπcuic)
(
∑n

i=1 Sicuic)
(
∑n

i=1 Sicπcuic)


ᵀ

= (n− 1)τ 2D +
(
τ 2 + σ2

)
A

where

D =


1 µ E[π2] 1− µ− ψ µ− E[π2]
µ E[π2] E[π3] µ− E[π2] E[π2]− E [π3]

E[π2] E[π3] E[π4] E[π2]− E [π3] E[π3]− E [π4]
1− µ− ψ µ− E[π2] E[π2]− E [π3] 1− 2µ+ E[π2]− ψ µ− 2E[π2] + E [π3]
µ− E[π2] E[π2]− E [π3] E[π3]− E [π4] µ− 2E[π2] + E [π3] E[π2]− 2E [π3] + E [π4]


Using mathematica to compute SE

(
δ̂
)

=
√

1
nC
∗ A−1BA−1 and taking the diagonal entries

yields the result. The MDSET is a function of SE(δ̂3), while the MDSES is a function of

SE(δ̂4).
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Regressions are OLS using Round 1 data with robust standard errors clustered at the EA level. All regressions
are weighted with both sampling and saturation weights to make the results representative of the target
population in the study Eas.
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Table 2. Linear Spillover Analysis
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Test scores are standardized to mean zero and standard deviation one in the control group. Odd-numbered
columns are OLS regressions, even-numbered columns are IV, using Round 3 data with robust standard errors
clustered at the EA level. All regressions except for the TCE are weighted with both sampling and saturation
weights to make the results representative of the target population in the study EAs; TCE regressions use
sampling weights only. TCE estimated through separate regression of outcomes on a dummy for treatment
at the EA level. Baseline values of the following variables are included as controls: age dummies, strata
dummies, household asset index, highest grade attended, and an indicator for ever had sex. Significance
levels for cross-equation F-tests calculated using multiple equation two-step GMM estimation. Parameter
estimates statistically different than zero at 99 percent (***), 95 percent (**), and 90 percent (*) confidence.
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Table 3. Granular Spillover Analysis
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Test scores have been standardized to have a mean of zero and a standard deviation of one in the control
group. Regressions are OLS models using Round 3 data with robust standard errors clustered at the EA level.
All regressions are weighted with both sampling and saturation weights to make the results representative of
the target population in the study EAs. Baseline values of the following variables are included as controls in
the regression analyses: age dummies, strata dummies, household asset index, highest grade attended, and
an indicator for ever had sex. Parameter estimates statistically different than zero at 99 percent (***), 95
percent (**), and 90 percent (*) confidence.
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Table 4. Spillover Analysis in Social Networks

Terms&Enrolled& Average&Test&
Scores

Ever&Married Ever&Pregnant

& (1) (2) (4) (5)
CCT 0.164 0.034 A0.017 0.012

(0.060)*** (0.024) (0.030) (0.037)
UCT 0.122 0.036 A0.075 A0.065

(0.071)* (0.025) (0.024)*** (0.026)**
WithinAVillage&Control&CCT 0.01 0.016 0.015 A0.003

(0.063) (0.024) (0.030) (0.028)
WithinAVillage&Control&UCT A0.12 A0.003 0.005 A0.019

(0.114) (0.019) (0.039) (0.048)
Number&of&Treated&Friends& A0.011 A0.021 0.006 0.015
&&&&&&&&&&&for&CCT&Treatment&Girls (0.055) (0.016) (0.023) (0.028)
Number&of&Treated&Friends A0.031 A0.029 A0.006 A0.01
&&&&&&&&&&&for&UCT&Treatment&Girls (0.092) (0.019) (0.025) (0.024)
Number&of&Treated&Friends& 0.109 0.008 A0.025 0.044
&&&&&&&&&&&for&CCT&Untreated&Girls (0.106) (0.017) (0.047) (0.058)
Number&of&Treated&Friends 0.196 A0.002 A0.065 A0.052
&&&&&&&&&&&for&UCT&Untreated&Girls (0.099)* (0.028) (0.042) (0.058)
Number&of&Treated&Friends 0.021 A0.032 0.036 0.084
&&&&&&&&&&&for&Pure&Control&Girls (0.145) (0.023) (0.052) (0.076)
Number&of&friends&who&are&dropouts A0.15 A0.029 0.085 0.125

(0.047)*** (0.008)*** (0.022)*** (0.022)***
Number&of&friends&in&same&cluster 0.004 A0.02 0.004 A0.006

(0.015) (0.004)*** (0.006) (0.006)
1&Matched&Friend A0.008 A0.025 0.037 0.027

(0.046) (0.009)*** (0.019)** (0.022)
2&Matched&Friends 0.001 0.003 0.055 0.049

(0.073) (0.014) (0.032)* (0.032)
3&Matched&Friends A0.015 A0.003 0.087 0.065

(0.098) (0.017) (0.038)** (0.041)
4&Matched&Friends A0.123 0.011 0.08 0.08

(0.196) (0.030) (0.074) (0.089)
5&Matched&Friends 0.227 A0.016 A0.148 A0.253

(0.133)* (0.042) (0.057)** (0.066)***
Constant 2.639 0.502 0.133 0.219

(0.049)*** (0.012)*** (0.019)*** (0.019)***

Observations 2660 2620 2652 2653
RAsquared 0.013 0.062 0.023 0.023

Analysis performed within social networks, as defined by the ’five closest friends’ listed by core respondents at
baseline. Regressions are OLS models with robust standard errors clustered at the EA level. All regressions
are weighted with both sampling and saturation weights to make the results representative of the target
population in the study EAs. Parameter estimates statistically different than zero at 99 percent (***), 95
percent (**), and 90 percent (*) confidence.
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Table 5. Robustness check using cross-EA variation in treatment intensity
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Regressions are OLS models using Round 3 data with robust standard errors clustered at the EA level. All
regressions are weighted with both sampling and saturation weights to make the results representative of
the target population in the study EAs. Baseline values of the following variables are included as controls in
the regression analyses: age dummies, strata dummies, household asset index, highest grade attended, and
an indicator for ever had sex. Parameter estimates statistically different than zero at 99 percent (***), 95
percent (**), and 90 percent (*) confidence.
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%PROGRAM TO ESTIMATE POWER OF A RANDOMIZED SATURATION STUDY
%AUTHOR: Aislinn Bohren
%SUPPLEMENTAL MATERIAL TO "DESIGNING EXPERIMENTS TO MEASURE SPILLOVER
%EFFECTS" By S. Baird, A. Bohren, C. McIntosh, B. Ozler

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%USER INPUT
clear;clc;

n=20; %cluster size
C=5; %number of clusters
tau=0.5; %variance of cluster error
sigma=2; %variance of individual error
alpha=0.05 ; %significance
gamma=.9; %power

pi=[0,1/3,2/3]; %saturation bins
f=[1/3,1/3,1/3]; %distribution over bins

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%CALCULATIONS
varN=tau+sigma;
varCo=(n-1)*tau;
varC=n*tau+sigma;

%Note: eta=E[pi^2] here; so eta in paper is eta-mu^2
x=1;
powerT=zeros(1,length(x));
powerS=zeros(1,length(x));
powerTonly=zeros(1,length(x));
powerSonly=zeros(1,length(x));
powerT1=zeros(1,length(x));
powerT2=zeros(1,length(x));
powerS1=zeros(1,length(x));
powerS2=zeros(1,length(x));
MDSE_T=zeros(1,length(x));
MDSE_S=zeros(1,length(x));
MDSE_TAffine=zeros(1,length(x));
MDSE_SAffine=zeros(1,length(x));
MU=zeros(1,length(x));
ETA=zeros(1,length(x));
etaT=zeros(1,length(x));

for j=1:length(x);
%Calculate distribution statistics
mu_ind=zeros(1,length(pi));
p=zeros(1,length(pi));
eta_ind=zeros(1,length(pi));
rho=zeros(1,length(pi));
c_ind=zeros(1,length(pi));
d_ind=zeros(1,length(pi));

for i=1:length(pi);
mu_ind(i)=pi(i) *f(i);
eta_ind(i)=pi(i)^2 *f(i);
c_ind(i)=pi(i)^3 *f(i);
d_ind(i)=pi(i)^4 *f(i);
p(i)=(1-pi(i))*f(i);
rho(i)=(1-pi(i))^2 * f(i);
end;

mu=sum(mu_ind);
eta=sum(eta_ind);
c=sum(c_ind);
d=sum(d_ind);
psi=0;if pi(1)==0; psi=f(1);end;
MU(j)=mu;
ETA(j)=eta;



etaT(j)=(eta-mu^2)/(1-psi)-(psi/(1-psi)^2)*mu^2;

%Pooled S&T
A=[1,mu,1-mu-psi;mu,mu,0;1-mu-psi,0,1-mu-psi];
D=[1,mu,1-mu-psi;mu,eta,mu-eta;1-mu-psi,mu-eta,1-2*mu+eta-psi];
power=((1/(n*C)).*(varCo*A^(-1)*D*A^(-1)+varN*A^(-1))).^0.5;
disp('The pooled MDE_T is:')
powerT(j)=power(2,2)
disp('The pooled MDE_S is:')
powerS(j)=power(3,3)
%end;

%Pooled T only: need to correct n for proper comparison
A=[1,mu;mu,mu];
D=[1,mu;mu,eta];
power=((1/(n*C)).*(varCo*A^(-1)*D*A^(-1)+varN*A^(-1))).^0.5;
disp('The pooled MDE_T, including within-cluster controls in the counterfactual, is:')
powerTonly(j)=power(2,2)

%Pooled S only: need to correct n for proper comparison
A=[1,1-mu-psi;1-mu-psi,1-mu-psi];
D=[1,1-mu-psi;1-mu-psi,1-2*mu+eta-psi];
power=((1/(n*C)).*(varCo*A^(-1)*D*A^(-1)+varN*A^(-1))).^0.5;
powerSonly(j)=power(2,2);

if length(pi)>2;
    
%Non-parametric, 2 saturations
A=[1,mu_ind(2),p(2),mu_ind(3),p(3);mu_ind(2),mu_ind(2),0,0,0;p(2),0,p(2),0,0;mu_ind(3),
0,0,mu_ind(3),0;p(3),0,0,0,p(3)];
D=[1,mu_ind(2),p(2),mu_ind(3),p(3);mu_ind(2),eta_ind(2),mu_ind(2)-eta_ind(2),
0,0;p(2),mu_ind(2)-eta_ind(2),rho(2),0,0;
    mu_ind(3),0,0,eta_ind(3),mu_ind(3)-eta_ind(3);p(3),0,0,mu_ind(3)-eta_ind(3),rho(3)];
power2=((1/(n*C)).*(varCo*A^(-1)*D*A^(-1)+varN*A^(-1))).^0.5;
powerT1(j)=power2(2,2);
powerS1(j)=power2(3,3);
powerT2(j)=power2(4,4);
powerS2(j)=power2(5,5);
disp('The non-parametric MDSE_T is:')
MDSE_T(j)=(power2(2,2)+power2(4,4)-2*power2(4,2))/(pi(2)-pi(3))^2
disp('The non-parametric MDSE_S is:');
MDSE_S(j)=(power2(3,3)+power2(5,5)-2*power2(3,5))/(pi(3)-pi(2))^2

%Affine
A=[1,mu,eta,1-mu-psi,mu-eta;
    mu,mu,eta,0,0;
    eta,eta,c,0,0;
    1-mu-psi,0,0,1-mu-psi,mu-eta;
    mu-eta,0,0,mu-eta,eta-c];
D=[1,mu,eta,1-mu-psi,mu-eta;
    mu,eta,c,mu-eta,eta-c;
    eta,c,d,eta-c,c-d;
    1-mu-psi,(mu-eta),(eta-c),1-2*mu+eta-psi,mu-2*eta+c;
    mu-eta,(eta-c),(c-d),mu-2*eta+c,eta-2*c+d];
power3=((1/(n*C)).*(varCo*A^(-1)*D*A^(-1)+varN*A^(-1))).^0.5;
disp('The affine MDSE_T is:')
MDSE_TAffine(j)=power3(3,3)
disp('The affine MDSE_S is:')
MDSE_SAffine(j)=power3(5,5)

end;
end;
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