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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 8757

This paper introduces a Spatial Vector Autoregressive 
Moving Average (SVARMA) model in which multiple 
cross-sectional time series are modeled as multivariate, 
possibly fat-tailed, spatial autoregressive ARMA processes. 
The estimation requires specifying the cross-sectional spill-
over channels through spatial weights matrices. the paper 
explores a kernel method to estimate the network topology 
based on similarities in the data. It discusses the model and 
estimation, focusing on a penalized Maximum Likelihood 
criterion. The empirical performance of the estimator is 
explored in a simulation study. The model is used to study 
a spatial time series of pollution and household expenditure 
data in Indonesia. The analysis finds that the new model 

improves in terms of implied density, and better neutral-
izes residual correlations than the VARMA, using fewer 
parameters. The results suggest that growth in household 
expenditures precedes pollution reduction, particularly after 
the expenditures of poorer households increase; that increas-
ing pollution is followed by reduced growth in expenditures, 
particularly reducing the growth of poorer households; and 
that there are significant spillovers from bottom-up growth 
in expenditures. The paper does not find evidence for top-
down growth spillovers. Feedback between the identified 
mechanisms may contribute to pollution-poverty traps and 
the results imply that pollution damages are economically 
significant. 

This paper is a product of the Environment and Natural Resources Global Practice . It is part of a larger effort by the World 
Bank to provide open access to its research and make a contribution to development policy discussions around the world. 
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1 Introduction

Environmental and economic systems are deeply tied with one another, but consensus on the

causal pathways is even in the most isolated settings seldom achieved. For instance: Does

economic growth lead to environmental degradation or improvement? At the same time, to

what extent does pollution take its toll on growth? The answers to both questions – and their

interrelation – might tell us how places end up in pollution-poverty traps, or succeed in cleaning

up the environment. The scope of these questions clearly calls for a holistic framework around

the environmental-economic domain with both space and time dimensions. In this paper we

introduce a framework that allows the researcher to model multiple interacting spatial time

series.

Contemporaneous regression models alone often fail to provide conclusive evidence. This is

mainly due to their inability to decide on the direction of causality. To pin down the direction,

these models require the support of economic theory. Furthermore, standard approaches often

confound direct effects with feedback effects. This leads many researches to adopt an instru-

mental approach, which often proves to be a non-trivial task. Time series offers invaluable

insights to trace the arrow of causality. Univariate autoregressive moving average (ARMA)

models are among the most fundamental statistical models to explore dynamics in observa-

tions that are collected sequentially over time. As we are interested in interactions between

variables, we focus on their multivariate counterparts, known as vector autoregressive mov-

ing averages (VARMA). Moving averages are characterized by a cutoff in the auto-covariance

functions. This implies that the effects represent parts in a model with short memory, while

autoregressive parts represent long-memory effects. Short memory effects may relate to unob-

servable factors that slowly assimilate into the model, e.g. effects for which it takes time to

be completely absorbed by a system. This is realistic for policy interventions in the context of

economic systems, but it may also be realistic for natural phenomena. The ability to model

effects that decay or remain free from feedback provides a framework to differentiate between

long and short run causality as in Dufour and Renault (1998); Dufour et al. (2006) and Du-

four and Taamouti (2010). This has added value when one is specifically interested in testing

economic theories about the timing and duration of responses.

The VARMA constitutes the backbone of many studies on causality due to the strong
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relationship between invertibility and Granger-causality, and the ability to test for the direction

of effects (Sims, 1972). Estimation of VARMA models is discussed for example by Roy et al.

(2014), but also in textbooks by Brockwell and Davis (2002), Reinsel (2003), and Lütkepohl

(2005). In this paper we work around the concept of Granger-causality (Granger, 1969, 1980;

Covey and Bessler, 1992).1 This concept involves eliminating the history of variables from the

joint distribution of all variables. There is no Granger-causality from the eliminated variables if

the conditional density of the model did not improve significantly. Testing for Granger-causality

in this framework results in repeatedly comparing different models estimated on different data

sets. This led some to argue that the notion of Granger-causality is non-operable, as one cannot

simply remove or add lags of a variable from a model and test if the effect is significant, see

Hendry (2017) for discussion. In this paper we follow Granger et al. (1995) in using Information

Criteria (IC) to decide between economic theories. Minimization of IC, guarantees the selection

of the model that attains the lower average Kullback-Leibler bound in the limit, see Sin and

White (1996) for detail. IC methods favor parsimony, hence also work when some parameters

may be unidentified under the null. They offer a general solution when models are strictly

nested, overlapping or non-nested, linear or nonlinear, and well-specified or miss-specified. In

the miss-specified case, minimizing IC results in a pseudo-true model that still delivers the

best possible hypothesis about Granger-causality as judged by the criterion function across all

possible hypotheses generated under the model and the parameter space.2 Results that are

selected based on information optimality therefore benefit from being accompanied by goodness

of fit diagnostics.

Consistent estimation of VARMA models is closely related to the ability to identify it

uniquely. In particular, stationary and invertible VARMA models have both VAR and VMA

representations. Standard approaches in the VARMA literature that deal with non-uniqueness

focus on final equations or echelon forms (see Lütkepohl (2005)). We follow a penalization

approach to ensure a unique VARMA solution to the estimation criterion. This approach can

be seen as a Ridge or Lasso regression for VARMA models. By penalizing either the VAR or

VMA coefficients in the criterion function, we rule out the multiplicity of solutions where both

components essentially cancel each other out.

1We say that one variable does not cause the other, if adding past observations of the former to the information
set with which we predict future observations of the latter does not improve the conditional density.

2As measured by a divergence metric w.r.t. the correct hypothesis.
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While the VARMA treatment takes care of the feedback over time, it does not incorporate

the possibility of contemporaneous feedback. To illustrate the latter, a shock can affect an

area both directly as well as indirectly through its neighbors. The spatial structure therefore

acts as a multiplier of the initial shock. If we neglect this multiplier, the VARMA will likely

overestimate the direct effects of interest. Hence, it is crucial to filter out the spatial dependence

at each point in time. Extending the VARMA framework with spatial effects yields the spatial

vector autoregressive moving average (SVARMA) model. The SVARMA can be thought of as

the MA extension to the spatial-VAR discussed in (Beenstock and Felsenstein, 2007). To model

spatial dependence, we need to specify the underlying spatial structure. Spatial weights are

designed around a concept of distance, which may not necessarily be geographic. In this paper

we build networks based on economic similarity rather than geographic proximity. Under this

notion, areas are more likely to share dynamics, if they have similar economic fundamentals.

At the same time, they are not likely to share spillovers, if they are dissimilar. We propose

a flexible method that allows to integrate estimation of the spatial structure using kernels.

In this context, the kernel bandwidth controls the neighborhood size that in turn determines

similarity. Large bandwidths lead to many far and weak connections and small bandwidths

yield strong local clusters.

We use the penalized SVARMA framework with integrated estimation of networks to study

interactions between pollution and household expenditures in Indonesia between 1999-2014.

We focus particularly on the effect of economic growth on pollution levels, the effect that

pollution in turn has on economic growth, and the dynamic feedback that arises as both

channels spill over into each other. Additionally, we seek to disentangle how the different

households are affected by − and affect − pollution change. In turn, this strongly depends on

the presence of bottom-up and top-down growth spillovers. Finally, we explore the differential

in these relationships between average urban areas and highly polluted areas.

We use the estimated parameters in an Impulse Response framework. Our methods and

data suggest several interesting feedback mechanisms. Notable results include that growth in

household expenditures precedes pollution reduction, particularly when the expenditures of

poorer households increase; that increasing pollution is followed by reduced growth in expen-

ditures, particularly those of poorer households; and that there are significant spillovers from

bottom-up growth in expenditures. We did not find evidence for top-down growth spillovers,
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that is, we do not find evidence that growth in average household expenditures consistently

precedes subsequent growth in bottom income household expenditures.

It is important to note that the Granger-causality concept involves contrasting the prob-

abilistic forecasting performance of a univariate and bivariate specification. This differs from

the deterministic causal framework of Pearl (2000). In fact, Pearl (2000) explicitly mentions

that Granger-causality is not causality, and that the concepts of “strong exogeneity” Engle

et al. (1983) and Granger-causality are only statistical concepts, see also the review by Neu-

berg et al. (2003). In two essays critical to modern econometrics, Haavelmo (1943, 1944)

argued that the very nature of economic behavior itself implies that economic theories should

be stochastically formulated to make these simplifications of reality elastic enough for appli-

cation. This led to the now standard approach in regression analysis to include error terms

in otherwise exact relationships. In a more critical note, Kalman (1983) goes further to argue

that the classical/deterministic model of reality developed in physics is inapplicable to the

problems of economics. In a sequence of more recent publications, it has been shown that

simple questions about important concepts in economics, such as choice and uncertainty, can

even in very simplistic settings not be answered within Pearl’s framework. White and Chalak

(2009); White et al. (2014) extend Pearl’s causal model to include optimization, equilibrium,

learning concepts, and choice that are integral parts of economics, game theory, and social

systems in which agents act and react under uncertainty. Under the extended Pearl-causal

framework, White and Lu (2010) forge the previously missing link between Granger-causality

and structural causality by showing that, given a corresponding conditional form of exogene-

ity, Granger-causality holds if and only if a corresponding form of structural causality holds.

Eichler and Didelez (2010) provide conditions under which Granger non-causality implies that

an intervention has had no effect. White et al. (2011) show that tests for Granger-causality

can be used to test for structural causality in sequential systems, and Lu et al. (2017) produce

tests for cross-section and panel data valid in a general case that does not assume linearity,

monotonicity in (un)observables, or separability between observed and unobserved variables

in the structural relations. White and Pettenuzzo (2014) show that instead of relying on ex-

ogeneity (weak, strong or super) conditional on the model or DGP, structurally causal effects

can also be consistently estimated by relying on correct specification which is the basis for

the arguments in this work. While recent literature thus suggests that structural causality
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can be shown to hold using statistical approaches valid in this paper’s setting, it must be re-

minded that Granger-causality only implies that a corresponding form of structural causality

must hold. Given the level of granularity of our data, it is not possible to infer directly what

that corresponding from is. Particularly, changes in budgets of households are events that by

themselves are not mechanical, hence they cannot lead mechanically to a change in pollution.

The interpretation of our Granger-causal result is thus that other events that occur alongside

the changes in expenditures, for example changes methods of production, must have structural

effects on pollution in a manner that corresponds to our estimated results.

The remaining part of this paper is as follows. Section 2 introduces the model. Specifically,

we detail the process equations, and our approach to build connectivity up from the data using

kernels. Section 3 discusses the properties of the model, specifically stability, invertibility, non-

uniqueness, and the IRF. Section 4 provides the tools needed for estimation and develops

diagnostics to assess model fit. Our appendix provides simulation results on the empirical

distributions of all the parameters in sample sizes relevant to our empirical application. The

framework is applied in section 5 to study dynamics in a multivariate cross-sectional time-series

of pollution and household expenditures. We study the IRF and discus policy implications of

the results. Section 6 concludes.

2 Spatial Vector Autoregressive Moving Average Model

This section details VARMA approaches for multiple panels that exhibit spatial feedback.

Figure 1 summarizes the components of the SVARMA and its relation to other widely used

models. SVARMA allows instantaneous effects between observations within cross-sections, and

long and short run effects in the time-dimension between and within panels. This provides a

dynamic framework to study causation and feedback between spatially autocorrelated time-

series. Our use of the spatial framework is intended to filter out dependencies and improve

estimation of the underlying cross-sectional ARMA structures. This is important because

contemporaneous, cross-sectional feedback works as a multiplier. Without distinguishing this

feedback from the impulse mechanisms, the direct impacts may be severely overestimated.

This is similar to the contemporaneous case in which instruments are used to isolate effect

from feedback.

6



Spatial 
autoregression 

(SAR)

Spatial vector 
autoregression
(Spatial VAR)

Vector auto-
regression 

(VAR)

Vector moving 
average
(VMA)

Vector autoregression moving average 
(VARMA)

Spatial vector autoregression moving average
(SVARMA)

Autoregression 
(AR)

Moving average 
(MA)

Spatial dependence

Spatial dependence

Vectorization Vectorization

Figure 1: This chart presents an overview of the constituents of the Spatial vector autoregressive

moving average (SVARMA) model described in this section. Note that AR and MA processes may also

be defined on single cross-sections resulting in spatial-time series, or cross-sectional ARMA models –

not depicted in this diagram.

The SVARMA model can improve inference compared to VAR or spatial VARs. The

distinction between autoregressive and residual properties is useful for forecasting and for

distinguishing between short and long effects, but moreover it plays a role in deriving consistent

model statistics.3 If the autoregressive parameter is correct in the sense that the response at

the true parameter confirms to the mean of the endogenous variable conditional on partial

information, then the score vector is generally not a martingale difference sequence as the

disturbance vector in the true model is still autocorrelated. While the AR structure of the

model is correct, the objective function does not correspond to the true objective function.

The random variables that compose the score are therefore not guaranteed to be martingale

difference sequences. While the AR structure produces correct responses, it will generally not

be possible to assign correct probability to the possibility that those responses are in fact zero.4

As an effect, the statistical framework used to asses validity of the causal claims is invalidated.

3Neutralizing serial dependence is required to satisfy the martingale property of the score needed to apply a
standard CLT.

4Corrections to the CLT are available if the score vector exhibits a suitable form of weak dependence, see for
example Pötscher and Prucha (1997). In practice it is not straightforward to judge whether the score adheres
a suitable form of weak dependence. This suggests that a researcher is always better neutralizing the residuals
when possible.
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We use the following notation, a is a scalar, a is a vector, A is a matrix, and A is a

matrix that arises from stacking multiple blocks of A together. A is the collection of matrices

{A0, A1, ..., Ap}, A collects {A0,A1, ...,Ap}. Finally, Ai:j and Ai:j respectively select elements

i to j from those sets. We reserve w := (x,y) for the joint sequence of two vector processes

x and y. While we admit that in the case of two univariate sequences, the joint sequence is

a vector, we use w := (x, y) for the joint process in this isolated case. To avoid confusion

between w ∈ W, we divert from most spatial literature by using C as a connectivity matrix.

2.1 Vector Autoregressive Moving Average (VARMA)

In the multiple univariate sequence case, w := (x, y), ε := (εx, εy), a VARMA is a process

A0wt +A1wt−1 + ...+Apwt−p = M0εt +M1εt−1 + ...+Mqεt−q ∀ t ∈ Z, (1)

with parameter matrices structured as

A :=

 axx axy

ayx ayy

 ,M :=

 mxx mxy

myx myy

 . (2)

In the multiple cross-section case w := (x,y), ε := (εx, εy) stacked nx and ny vectors for

every t, we can work by defining the parameter matrices as Aij := aijIni and M ij := mijIni ,

structured as

A0:p :=

 Axx
0:p A

xy
0:p

Ayx
0:p A

yy
0:p

 ,M0:p :=

 Mxx
0:p M

xy
0:p

Myx
0:p M

yy
0:p

 , I :=

 Inx Onx

Ony Iny

 , (3)

in which O is a matrix of zeros, to write the cross-sectional VARMA as

A0wt + A1wt−1 + ...+ Apwt−p = M0εt + M1εt−1 + ...+ Mqεt−q ∀ t ∈ Z, (4)

in which {A0,A1, ...,Ap} ∈ A and {M0,M1, ...,Mp} ∈ M are thus nw × nw parameter

matrices induced by scalar coefficients, and εt ∼ pε(εt,Σ;ν) is a disturbance vector that

has nx elements drawn from a distribution with an unknown scale matrix Σx and possibly

other parameters contained in νx and the next ny elements drawn from a distribution with an
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unknown scale matrix Σy and possibly other parameters contained in νy. This allows Σx 6= Σy

and νx 6= νy, but also Σx = Σy and νx = νy, or any combination thereof. The parametric

distributions however are of the same family, and controlled by a same function pε.

It is standard that eq. (4) is linear in all its components, and does not allow for any simul-

taneous feedback. Following standard normalization rules, A0 and M0 have unit diagonals, i.e.

A0 = M0 = I, but this is not necessarily the case. In the multiple cross-section case eq. (4) no

longer involves multiple one-dimensional sequences, and A0 = M0 = I is severely restrictive,

especially as n grows. If observations within the cross-section influence each other over time

with an interval τ , while cross-sections are observed at an interval t that is a multiple of τ , then

the interactions between cross-sectional observations seem instantaneous from the observer’s

perspective, see also the examples in Granger (1980). The SVARMA is intended to explain

part of the values of elements in w in terms of the remaining contemporaneous elements of

wt. We work with A0 as a matrix that allows for instantaneous spillovers. We focus on the

specific case in which elements in ny and elements in nx are cross-sectionally dependent.

2.2 Spatial Vector Autoregression (Spatial VAR)

Consider first a simple bivariate VAR with spatial dependencies within cross-sections (SVAR)

in scalar notation,

xt = ρxCnxxt + φxyyt−1 + φxxxt−1 +mx
0εt

yt = ρyCnyyt + φyyyt−1 + φyxxt−1 +my
0εt

, (5)

with usually but not necessarily mx
0 = my

0 = 1. By inverting the contemporaneous feedback

we can write

xt = (Inx − ρxCnx)−1(φxyyt−1 + φxxxt−1 +mx
0εt)

yt = (Iny − ρyCny)−1(φyyyt−1 + φyxxt−1 +my
0εt)

, (6)

which we can also write as

xt = Sxφxyyt−1 + Sxφxxxt−1 + Sxmx
0εt

yt = Syφyyyt−1 + Syφyxxt−1 + Symy
0εt

, (7)

by introducing Sx = (Inx − ρxCnx)−1 and Sy = (Inx − ρyCny)−1 as spatial multipliers. In this

Sφ are n × n matrices that arise from the combination of autoregressive and spatial forces,
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similarly Sm are n×n matrices producing spatial autoregressive moving averages. The spatial

VAR with scalar time effects defined at the cross-sectional level thus has a VAR representation

with parameter matrices defining the heterogeneous dependence structure at the observational

level.

2.3 Spatial Vector Autoregressive Moving Average (SVARMA)

We can write SVARMA using M = I by defining A0 in eq. (4) as a matrix consisting of a unit

diagonal and a non-unit-diagonal component C that structures the contemporaneous feedback

across the elements of nw, A0 = I + AC, with AC = −ρ ◦C in which ρ is a vector with the

first nx elements consisting out of ρx and the subsequent ny elements equal to ρy. ρ multiplies

element-wise, or ”weighs” the connectivity matrix C that has diagonal blocks Cnx , Cny and

zeros on the off diagonal blocks,

(I + AC)wt + A1wt−1 + ...+ Apwt−p = εt + M1εt−1 + ...+ Mqεt−q ∀ t ∈ Z. (8)

Alternatively, we can work with A0 = I, after multiplying all the autoregressive filters and

moving average parameters with the appropriate spatial multipliers:

wt + SA1wt−1 + ...+ SApwt−p = Sεt + SM1εt−1 + ...+ SMqεt−q ∀ t ∈ Z, (9)

with S = (I + AC)−1. We refer to eq. (9) as the structural representation of the SVARMA.

Finally, we can also work with spatial errors, and spatially multiplied autoregressive coefficients

by introducing εt = Sεt and H = SA, such that for A0 = I + AC = S−1, H0 = SS−1 = I we

have

wt + H1wt−1 + ...+ Hpwt−p = εt + M1εt−1 + ...+ Mqεt−q ∀ t ∈ Z. (10)

This is the normalized VARMA representation of the SVARMA, and differs from the non-

spatial model by the fact that while we parameterize the time dynamics at the cross-sectional

level, a heterogeneous dependence structure at the observational level arises through the spatial

network matrices. This is a powerful way of modeling high-dimensional dependencies at the

observational level as it allows for a large number of correlation channels using relatively few

parameters. We will keep the model in this form unless stated otherwise.
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2.4 Kernel-driven spatial weight matrices

Key to the contemporaneous effects is specifying a network structure that defines the spill-

over channels between cross-sectional observations. In spatial literature, the weights matrix is

based on geographical distances, but it is equally possible to define networks based on economic

distances. Below, we propose a flexible approach based on Gaussian kernels that can produce

weights matrices based on distances within a set of variables v. Specifically, connectivity

matrices C can be constructed by computing a Gaussian kernel

G = k(vi,vj ; b) = exp

(
−‖vi − vj‖2

b

)
, (11)

with ‖vi − vj‖ being the Euclidean distance, and b being a bandwidth parameter that deter-

mines the network smoothness.5 For b > 0, the kernel k can be understood as a measure of

similarity, which is seen by applying a Cauchy-Schwarz inequality

k(vi,vj ; b)
2 ≤ k(vi,vi; b)k(vj ,vj ; b) ∀ (vi,vj ; b > 0) ∈ X × X × B,

revealing that if vi and vj are similar, then k(vi,vj ; b)b>0 will be close to 1, and close to 0

when vi and vj are dissimilar. For positive b, few but strong network links arise for small

bandwidths. For large |b|, strong links result. Negative bandwidths produce networks based

on dissimilarities. If vi and vj are similar, then k(vi,vj ; b)b<0 will be close to 1, but larger

than 1 when vi and vj are dissimilar

k(vi,vj ; b)
2 ≥ k(vi,vi; b)k(vj ,vj ; b) ∀ (vi,vj ; b < 0) ∈ X × X × B.

Both have empirical relevance. If the kernel is drawn around the levels of a cross-sectional time-

series, the resulting contraction between dissimilar observations mimics the error-correction

effect of a VECM process between local observations. For positive bandwidths, the similarity

view of the kernel approach caries the interpretation of Tobler’s law that underlies the intuition

5Geographic weight matrices can equally be constructed if v describes the physical locations of observations.
Non-Gaussian kernels may also be used.
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of the SAR. For any b, the diagonals of R are unit. We build a matrix D:

D = G− I = k(vi,vj ; b) = exp

(
−‖vi − vj‖2

b

)
− I (12)

and build a spatial weight matrix C by row-normalizing D.
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Figure 2: Surfaces of spatial weights produced using the kernel approach for different bandwidth values,

on identical data produced with N/25, N ∈ {1, 2, ..., 25}.

12



3 Model properties

We can define two operators that respectively filter the (spatial) autoregressive effects and

produce the moving averages, and summarize the SVARMA as

H(L)wt = M(L)εt ∀ t ∈ Z, (13)

by defining L as a lag operator that has the effect that Lwt = wt−1, and where H(L) =

H0 + H1L + ... + HpL
p and M(L) = M0 + M1L + ... + MqL

q are full rank matrix-valued

polynomials.

Equation (13) is convenient notation for the SVARMA because it allows us to condition

theory directly on components similar to the standard case of eq. (4), and understand stan-

dard results for invertibility, stability, and Granger-causality simply as high-level conditions

on the spatially multiplied autoregressive and moving average components. In the general case

of misspecification, model invertibility and process invertibility are not the same.6 Though

non-stationary processes may be invertible, they are generally not causal in the control theo-

retical sense (Boudjellaba et al., 1992). Analysis should therefore focus on invertible stationary

processes under an axiom of correct specification. This complicates matters with respect to

the more commonly excepted axiom of misspecification that provides descriptions in terms of

pseudo-true correlations in the data. When the model is correct, fading memory properties

and process invertibility cannot simply be assumed to be properties of the data. Instead, these

properties are directly related to the properties of the model itself and the range of parameter

values considered.7 Below, we will highlight relevant parameter regions and discuss invertibil-

ity, and stability results for SVARMA models following theory for standard VARMA models

found in Lütkepohl (2005) or Brockwell and Davis (2002). The results will also show how

multiple representations may equally well describe the data, which is why we shall discuss a

penalized estimation criterion.

6See for example Blasques et al. (2018) for results on the relation between filters and DGPs.
7Proofs for Stationarity and Ergodicity of data generated by VARMA models are widespread and can be found

for example in (Nsiri and Roy, 1993). Stelzer (2008) treat multivariate Generalized ARMA models including non-
identity links, (Zheng et al., 2015) treat nonlinear theory for Multivariate Markov-switching ARMA processes,
finally Andree et al. (2017) show that multivariate ARMA structures can generate geometrically Ergodic data
even when a nonlinear observation-driven spatial dependence process is considered.
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3.1 Causal SVAR and it’s SMA representation

An important aspect of stationary SVARMA models is that under regularity conditions the

SVAR(1) part is causal (in the control theoretical sense that it is a nonanticipative system)

and has an infinite-order SMA representation. Say an SVAR(1) is written as

wt = Φwt−1 + εt ∀ t ∈ Z, (14)

with Φz = −H1Lz − ... −HpL
pz. Assuming some form of fading memory, eq. (14) may be

expanded by a process of infinite back-substitution, giving rise to an infinite-order multivariate

spatial autoregressive moving average:

wt = {εt + Φεt−1 + Φ2εt−2 + ...+ Φ∞εt−∞} ∀ t ∈ Z. (15)

For the sequence {Φ,Φ1,Φ2, ...,Φ∞} to converge, it is necessary and sufficient that all the

moduli of the eigenvalues of Φ remain within the unit circle, see section 3.3. Stationarity

and invertibility conditions that apply to eq. (13) are naturally an extension of this first order

autoregressive case, which is itself a generalization of the scalar ARMA case. This high-level

condition is the same as the one for VARMA models, the difference is that in the case of the

SVARMA, the autoregressive properties are partly determined also by the spatial multiplier.

Specifically, if det(H(z)) 6= 0 ∀ z ∈ C, |z| < 1, then there exists an infinite order representation

wt = Ψ(L)εt = {Ψ0εt + Ψ1εt−1 + Ψ2εt−2 + ...+ Ψ∞εt−∞} ∀ t ∈ Z. (16)

with the matrices Ψk generated by

H(z)Ψ(z) = M(z). (17)

The conditions

H0 :=

 Inx Onx

Ony Iny

 , M0 :=

 Inx Onx

Ony Iny

 , (18)
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imply that

Ψ0 :=

 Inx Onx

Ony Iny

 . (19)

3.2 Invertible SMA as a SVAR

If and only if det(M)(z) 6= 0 for all z such that |z| < 1, the process is invertible and the spatial

disturbance vector can also be written as

εt = Π(L)wt = {Π0wt−1 + Π1wt−1 + Π2wt−2 + ...+ Π∞wt−∞} ∀ t ∈ Z. (20)

The matrices Πk are generated by

M(z)Π(z) = H(z). (21)

The conditions eq. (18) imply that

Π0 :=

 Inx Onx

Ony Iny

 . (22)

3.3 Stability in canonical state space

The stability and invertibility conditions may alternatively be understood in a state-space

context. Consider a controllable canonical state-space representation:

wt = H−1(L){M(L)εt} = M(L)Ξt ∀ t ∈ Z, (23)

where Ξt = H−1(L)εt.

Equation (23) is defined through a transition equation that corresponds to a first-order

Markov process. It is commonly known that multivariate linear stationary processes that have

coefficients that are absolutely summable are invertible if and only if its spectral density is

regular everywhere. One can work with eq. (23) to derive the companion matrix, and see that

stability follows if the eigenvalues of Φ lie inside the unit circle. Additional details are provided

in the Appendix, appendix B.
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3.4 Uniqueness

Since an invertible SVARMA process has both SVAR and SMA representations by rewrit-

ing either part, uniqueness is not ensured. In order to ensure uniqueness of the SVARMA,

restrictions on the AR and MA operators are required to ensure that there is only a single

pair of H(L) and M(L) that satisfy eq. (13). The first source of non-uniqueness relates to

the fact that multiple combinations for H(L) and M(L) can be found for different values of

the operators at t = 0. This is ruled out by a suitable form of normalization. It is usually

ruled out that the operators cancel each other out by the assumption that the AR and MA

operators have no common factors. However, even if restrictions are in place that ensure this

in an estimation algorithm, it does not rule out that SVAR and SMA representations of the

SVARMA can be found that fit the data equally well. Lütkepohl (2005) discusses the so-called

final equations and echelon forms that are unique. Additional restrictions on the structure

of both H and M can be found, but we propose to penalize the MA parts in the criterion.

The penalty ensures that the criterion always prefers setting both AR and MA parts to zero

rather than having them cancel each other out at any arbitrary value. Furthermore, if both

an SVAR representation can be found and an SMA representation, the SVAR representation

will be favored over the SMA in order to minimize the penalty. In principle, the penalization

approach works if either the AR or the MA parts are penalized. Penalizing the AR part in-

volves a prior belief that the sequences do not feedback, and that the impulse responses are of

a short-memory type. Penalizing the MA parts can intuitively be understood as prioring on

the belief that the true process exhibits endogenous feedback, which reconciles better with the

endogeneity concerns that lead many micro-economists to promote the use of IV approaches

in contemporaneous regressions, and the general goal of having a parsimonious description of

the data to reduce regression uncertainty.

3.5 Impulse Response Functions

Given an SVARMA system, it may be insightful to know precisely how idiosyncratic impulses

on the input side affect the output variables. By considering an isolated impulse in ε, for

example a positive shock in εx while holding all other disturbances at zero for all times, one

can isolate the effect of an exogenous change in xt as it moves through the entire SVARMA
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system. Specifically, consider a mechanism activated at a certain t that produces a pulse

sequence

p(t) =

 ζ, t = 0,

0, t 6= 0.
∀ t ∈ Z.

ζ is the magnitude of the value of the considered impact. If e is the vector with a unit in the

positions where a shock occurs, the response by the system is represented by

wt = Ψ(L){p(t)e} ∀ t ∈ Z. (24)

This system is inactive until t = 0, after which it generates the sequence {Ψ0e,Ψ1e, ...,Ψ∞e, }.

The impulse travels through the entire SVARMA structure with speed depending on the spatial

autoregressive and time autoregressive parameters. It is possible to trace all the routes by

taking into account how the spatial autoregressive polynomial H(z) is structured. Finally,

confidence bands around the response can be obtained by repeating an experiment of identical

impact, and drawing different parameters for the SVARMA structure randomly from their

confidence bands. Trivially, the sequence eq. (24) converges to zero exponentially fast a.s., for

a stationary and ergodic model. Hence, even when the aggregate behavior of all parameters

is not directly of interest, the IRF provides a useful tool to explore stability of the estimated

model, which is important also for Granger-causal inference on the individual parameters.

4 Penalized Estimation

To relax the Gaussian assumption that may not hold for data that exhibits extreme tail move-

ment with high probability, often the case in the environmental-economic data, we discuss

estimation in the context of the Students’ t-estimation. In line with our discussion on unique-

ness, we apply L2 (Eucledian distance) penalties set on the moving average components that

vanish with a weight of 1/
√
NT . Penalizing the L1 norm (absolute sum), as in popularized

LASSO estimations, encourages parameter vectors with many elements set to zero, which re-

sults in an unidentified problem for b. L2 penalization, like in the ridge framework, encourages

solutions where parameters are small, and in fact the penalty effect reduces in strength as pa-

rameters become close to zero. To reduce dimensionality, we suggest to evaluate the AICc
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around the PMLE, and apply zero restrictions following minimization of information loss. L2

penalization of b increases exponentially in strength for ‖b‖ > 1 while weakening in strength

as ‖b‖ → 0, and favors networks with fewer, but stronger links. This prior is justified by the

improved small sample behavior of the MLE of spatial auto-regressions with higher degree of

sparseness of the weights matrix (Bao and Ullah, 2007). Our penalized Students’ t-criterion

with vanishing penalties maintains generality in the limit and naturally generalizes the stan-

dard Gaussian case, while imposing less strict assumptions regarding thin-tailedness of the

moving averages thereby allowing for large exogenous impacts to occur with high probability.

Let θ denote the collection of parameters of the SVARMA model, θ := (H,M), of which

θS := (ρ,b) is a subset of spatial parameters. We define the PMLE as:

θ̂T := arg min
θ∈Θ

QT (v,wT ;θ) + λγ(θ), (25)

with the ML criterion defined as

QT := `T (v,wT ;θ) =
T∑
t

`t(v,wT ;θ),

`t(v,wT ;θ) = ln pε(wt − f(v,wt;θ),Σ;ν),

(26)

with f(v,wt;θ) shorthand for the data modeled by the SVARMA with spatial matrices con-

ditional on a vector of data v, and the penalty defined as

λγ(θ) = 1/
√
NT

∑
|M|2. (27)

Using the standard expression for the multivariate t-distribution with ν = νw = (νx, νy)

degrees of freedom for each channel, and variance Σ = Σw = (Σx,Σy) for each channel, we

obtain

`t(v,wT ;θ) = D(θS,v) +K(θ) + E(θ,v,wt), (28)

where D(θS,v) is the log determinant of

D(θS,v) := ln det S
(
θρ,C(v; b)

)
, (29)

18



with S
(
θρ,C(v; b)

)
as the spatial multiplier matrix conditional on data v and bandwidth

parameters b that we defined as

S(θρ,C(v; b)) =
(
I− ρ ◦C(v; b)

)−1
, (30)

with C(v; b) constructed as detailed in section 2.4. Importantly, the log determinant equals

the sum of the log determinants of its diagonal blocks, as the off-diagonal blocks are zero

D(θS,v) = ln det S
(
θρ,C(v; b)

)
= ln detSx

(
ρx, Cnx(v; bx)

)
+ ln detSy

(
ρy, Cny(v; by)

)
,

(31)

and each determinant is evaluated over S
(
ρ, C(v; b)

)
=
(
I − ρC(v; b)

)−1
with ρC(v; b) as the

diagonal blocks of

ρ ◦C(v; b) =

 ρxCnx(v; bx) Onx

Ony ρyCny(v; by)

 . (32)

K(θ) is a constant, that can be similarly expressed as a sum

K(θ) := ln Γ
(

(ν +N)/2
)[

detΣ
1
2 (νπ)

N
2 Γ (ν/2)

]−1
, (33)

for each (ν,Σ) ∈ ((νx,Σx), (νy,Σy)). Finally, the random element E(θ,v,wt) can naturally

be defined as the sum

E(θ,v,wt) :=

−1
2(νx +N) ln

(
1 + νx−1(xt − fx(v,wt;θ

x))′Σx−1(xt − fx(v,wt;θ
x))
)

−1
2(νy +N) ln

(
1 + νy−1(yt − fy(v,wt;θ

y))′Σy−1(yt − fy(v,wt;θ
y))
)
.

(34)

The channel-wise summing of the likelihood is possible as long as feedback stays within each

cross-section, and contemporaneous spillovers between x and x are not modeled. This channel-

wise computation allows parallelization for each `t(v,wT ;θ), which reduces computation time

of each evaluation of `t(v,wT ;θ) tremendously. Parallelization is key to feasible numerical

optimization of the model under current computer systems, specifically when more than two

variables are considered as in our application.8 Since f(v,wT ;θ) depends on the moving

8We found that it is helpful to perform an initial estimation of a restricted SVARMA, after which numerical
results can be passed on as the starting point for numerical optimization of the Likelihood for the unrestricted
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averages that in turn result as difference combinations of wt − f(v,wT ;θ), the components

of eq. (34) can only be computed simultaneously for identical t. In the Appendix we discuss

restrictions that are advantageous in terms of reducing the computational cost, and detail

how this trades with flexibility of the implied density. When working with restrictions on the

moving averages the likelihoods of each channel may be evaluated independently. Initializing

a numerical search at the (P)MLE of the restricted model can further help reduce the search

length of the sum of eq. (28) significantly. It should furthermore be noted that the penalty,

and each of the three components of eq. (28), can be evaluated independently of each other.

Furthermore eq. (29), or equivalently eq. (31), and eq. (33) do not depend on time if v is

time-invariant, hence their values can be computed once and recycled T times. Parallelizing

eq. (31) is much faster than calculating eq. (29) directly and can be performed independently

from evaluating eq. (34).

Limit properties of b are not developed in the literature to our knowledge, but we do not

regard it as an interesting parameter for inference. For Granger-causal inference we are inter-

ested in θ̂T \bT , and b has the sole purpose of improving θ̂T \bT by reducing misspecification

bias of C(v; b) that may result in bias in θρ, which in turn may bias the autoregressive and

moving average parameters by shifting cross-sectional dependence to a time channel. To ex-

plore the small sample behavior, we perform a simulation study. It turns out that the small

sample distribution of the penalized bandwidth is reasonable, while the distribution of the

unpenalized bandwidth is heavily distorted in our small T study. In both cased however, we

see that θ̂T \ bT behaves well. We also provide results that highlight the significant bias in

the ARMA parts when no spatial dynamics are modeled. Due to the dependence on moving

averages that are not available as difference combinations for the first q periods are unavail-

able, the algorithm requires an initialization of ε̂t for t ≤ q. As T → ∞, the impact of the

initialization on the filter fades exponentially fast almost surely for a stationary process, see

for example Blasques et al. (2018). For small T however, the impact remains. We focus our

simulations on the small T case to investigate this.

model. These first two steps are computationally demanding since the parameter vector is large and the search
may cover a large range within Θ. We had good results using a c++ implementation of the Likelihood using an
MKL compiled BLAS/LAPACK, and numerically solving for a maximum using HOPSPACK combined with an
MPI compiler to spread computation across a cluster. Once an initial result is available, further dimensionality
reduction is a less intensive task. Once a solution has been found for the full parameter vector, we had reasonable
computation time with the optMaxlik package available at https://github.com/BPJandree/optMaxlik linked
against an MKL optimized BLAS/LAPACK using a BFGS algorithm.
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4.1 Goodness of fit

As always, goodness of fit is a matter of neutralizing residual correlations and explaining a

significant share of the variance in the data. We propose two straightforward diagnostics.

4.1.1 Residual correlation

To assess how well the estimated structure fits the data, we propose estimating a cross-sectional

AR model on the residuals on an equation-by-equation basis. Specifically, we suggest running

r models, with lags 1, ..., r, on the residuals with the first q periods dropped. Under the null,

we estimate models on random data and we will expect 1 out of 10 lags to be significant

at .10 purely out of chance. We suggest computing r individual LR ratios against a zero

lag model, and correcting the p-values using a Bonferroni-correction. The smallest p-value

out of r Bonferroni-corrected p-values should be used to report on the significance of residual

correlations for each channel. For small T , the test statistic is still affected by the initialization.

A second difficulty for small T is that the residual models can only fit on N × (T − q − r)

observations, the residual time-dimension shrinks fast. We suggest r = max(q, p) can be used

to diagnose whether major variables are omitted, and preferably r > max(q, p) to diagnose

whether sufficient variables and lags have been included in the model. In our empirical case

we use r = max(q, p) + 1 and focus on the Student’s-t case with inferred degrees of freedom.

4.1.2 Pseudo-R2

To decide between competing models, (penalized) likelihood values can be compared. As the

kernel bandwidth is unidentified when the spatial dependence is zero, and the kernel function

is unidentified at b = 0, we suggest to follow an Information Criteria approach. Likelihood

or penalized likelihood without a reference provide by itself little insight into model fit. We

suggest a pseudo-R2 using the SSR of residuals evaluated at the PMLE versus the residuals

evaluated at all parameters equal to 0 (and bandwidths at any value),

R̂2 = 1−
∑T

1 |wT − f(wT ; θ̂)|2∑T
1 |wT − f(wT ;θθ=0)|2

, (35)

in which θθ=0 implies that all the structural parameters are set to zero − not to be confused

with θ0 as the true values. For small T this is not equivalent to the true R2, as eq. (35) is
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influenced by the initialization of the residual vectors. However, as T →∞, the initialization

effect fades and eq. (35) converges to the true R2. In our empirical application we work with

small T , and we suggest that eq. (35) provides a crude approximation that is still useful to

inform the researcher on the degree of explained in-sample variance.

5 Application to Subnational Pollution and Household Income

Data in Indonesia

In this application we study interactions between household level expenditures and pollution.

It has long been theorized that as economies develop, pollution initially increases at an expo-

nential rate. However at some point on the development path, parts in the economy start to

adopt cleaner technologies and acceleration in pollution slows down till pollution levels reach

a maximum after which the entire economy enters into a state characterized by a decline in

pollution. We do not aim to provide a large survey of the literature, for a progression of the

debate, see (World Bank, 1992; Grossman and Krueger, 1995; Stern et al., 1996; Stern, 1998,

2004; Andree et al., 2018). For many, the central question is whether increases in wealth and

income result in increasing pressure on the environment, or whether economic development

provides the basis for environmental improvement. In turn, environmental degradation may

negatively interact with growth and contribute to the creation of urban pollution traps. In

this application we revisit the empirical issue and focus on the question whether pollution

increases or decreases after income. Furthermore, we are interested in the order of effects, the

presence of feedback, and distributional impacts of effects. We therefore focus our study on air

pollution, average per capita household expenditures, and bottom quintile per capita house-

hold expenditures and explore the interactions in the context of multiple spatial time series

in Indonesia over the period 1999-2014. We seek to distinguish between the effects of average

household growth and bottom household growth on pollution and see if there is differential in

potential impacts of pollution on the two different income groups.

5.1 Data

Our analysis relies on two longitudinal data sets. As a proxy for air pollution, we use the

global estimates of fine particulate matter developed by van van Donkelaar et al. (2016). We
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use annual averages of monthly household expenditures for the average household and for the

bottom quintile household. The expenditure data are taken from the Indonesia Database for

Policy and Economic Research (INDO-DAPOER, World Bank Group).9

The air pollution data set contains estimates on mean annual (1999 to 2015) concentrations

of fine particulate matter (PM2.5), coarse dust particles of 2.5 micrometers in diameter, that

proxy a wider range of air pollutants. The data points are available at a 0.01-degree resolution

and have been derived from a combination of satellite-, simulation- and monitor-based sources.

The authors address several inconsistencies in satellite-derived PM2.5 data by calibrating their

estimates with ground-based observations and reducing the noise of seasonal anomalies.

INDO-DAPOER contains key economic, social and demographic indicators at the district-

level, primarily sourced from various surveys and the Indonesia Central Bureau of Statistics

(BPS). We use the annual means of monthly per capita household expenditures (in IDR) and

the same indicator for the average across the 20 percent poorest households, which are available

from 1999 to 2014. We are primarily interested in distinguishing between average economic

developments and changes in poor household income. The data set includes poverty rates and

local estimates of GDP, but the coverage is poor.

We are primarily interested in the environmental-economic interactions in urban environ-

ments. To narrow the focus, we used a gridded population data set (Gridded Population of

the World, v4 at 30 arc-seconds resolution) to distinguish urban from rural districts. We de-

fined urban areas as a contiguous patch of pixels with population density higher than 300 per

square kilometer and a population count higher than 5,000. This is similar to the approach fol-

lowed by OECD and EC-DG Regio to define global Functional Urban Areas, scaling down the

population counts to be relevant in a subnational context. Our approach identifies 219 areas

with urban clusters. To establish a link between urban air pollution and the INDO-DAPOER

database, we summarized the PM2.5 annual grids to the district-level using the mean value for

pollution grids sensed over urban patches in each district. This captures output directly from

urban activity, and reduces the outside influence of fires and agricultural activity.

Since we are particularly interested in pollution, we drop any areas that at one or more

9https://data.worldbank.org/data-catalog/indonesia-database-for-policy-and-economic-research. Some dis-
trict names and boarders have changed over time. To construct the time series, we used the database’s “District
Proliferation Crosswalk” file to match observations in the data to the district definition provided by the Global
Administrative Areas repository (GADM) available at http://www.gadm.org/. Indonesia’s latest district con-
figuration covers 497 districts of which 427 were successfully matched.
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points in time have a concentration below 6 mcg/m3. We removed several regions in which

pollution briefly spiked to values over 40 mcg/m3 in 2006, during which a particularly strong

fire season occurred. After removing the relatively unpolluted areas and these outliers, we

are left with a final number of 113 areas that consist of polluted urban clusters. Apart from

the 113 areas that we defined as polluted urban areas, we perform an additional estimation

focusing on 60 heavily polluted areas that exceed the WHO air quality guidelines in all years.

5.2 Estimation Approach

We use percentage changes, and work with demeaned series that are cleared from both the

time-invariant and cross-sectionally invariant impacts similarly to a Fixed Effects approach,

to remove any trending behavior or strongly dependent co-movements, and control for het-

erogeneity. We find nonzero medians after removing all average effects, indicative of heavy

tail action. This strengthens justification for our t-approach against the Gaussian alternative.

Plotted distributions of levels and returns are included in the Appendix, appendix B.2.

We base our spatial weights matrix on Gaussian kernels around features computed from

the local distributions in returns (prior to demeaning). Specifically, we use the first, second

and fourth moments (excess), together with 25 and 75 quantiles of the local returns to describe

the sample distributions, and cumulative returns to describe the total effect of moving through

that distribution. The similarity approach around these local statistics informs the model on

similarities in the behavior and direction of the local time-series. The cross-sectional spillover

channels thus arise as functions of similarities in the local temporal patterns, which suggest that

those regions share commonalities such as co-integrating forces or common latent factors. We

estimate VARMA and SVARMA models with both p, q equal to three, such that if Granger-

causal effects follow after one lag, variables can potentially influence each other indirectly

through another channel while direct effects may in fact be zero. We minimize the AICc

evaluated at the PMLE, to minimize divergence w.r.t. the true probability measure.

5.3 Results

Tables tables 2 and 4 in the appendix present the estimation results for the SVARMA(AICc).

VARMA(AICc) results are contained in tables 1 and 3. The parameter results suggest that

the processes are fat-tailed, Gaussian estimation would be overwhelmingly rejected both in the
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VARMA and SVARMA frameworks. Second, the AICc drops with 494.341 points at PM2.5 > 6

and by 277.103 points at PM2.5 > 10, indicating that the SVARMA improves the conditional

density implied by the model significantly over the VARMA. Our R̂2 estimates suggest that

we explain roughly more than 70% of the variance in the data, confirming slightly higher

explanatory power using the SVARMA specifications (0.737 versus 0.705 at PM2.5 > 6, 0.732

versus 0.722 at PM2.5 > 10). In both cases the SVARMA, however, uses less ARMA parameters

(29 versus 34 at PM2.5 > 6, 27 versus 31 at PM2.5 > 10.) implying that the improvements are

significant. Our residual correlation tests also favor the SVARMA representation (the VARMA

at PM2.5 > 6 retains significant residual correlations). The rejections of residual correlations,

and reasonable R̂2, lead us to conclude that no major components are missing in either of

the SVARMA results, hence we interpret the parameters and standard errors in their usual

context.

5.3.1 Clustering effects

The spatial filtering improves the model fit considerably, we can also see that the bandwidths

that control the network smoothness are different in each channel of the model. Figure 13

in the appendix plots the network surfaces, we have ordered the link weights from high to

low. This reveals that the bandwidths at PM2.5 > 6 produce smooth network structures in

both expenditures equations with many weak links, which implies that economic spillovers are

weakly shared across many observations with many indirect spillovers. Observations in the

pollution cross-section are more often linked to only a few other observations, but share strong

direct spillovers. As there are many near-zero links, this implies that feedback effects in the

pollution equation remain relatively centered in local pollution clusters within the network.

Average expenditures have a higher bandwidth value than bottom expenditures, hence the

results indicate that bottom expenditures spillover in smaller but stronger clusters, than the

average expenditures. In the PM2.5 > 10 model that has smaller cross-sections, we see that the

network structures are relatively more similar. However, from the bandwidth values we can

see that also in this smaller subset of heavily polluted urban areas, pollution is shared across

fewer and stronger links within the entire network, bottom expenditures are in turn shared

across more but weaker links, while average expenditures have the smoothest network through

which indirect feedback effects are more easily transmitted to far-away observations.

25



5.3.2 Impulse Response analysis

To explore the dynamics implied by the estimated results, we use the parameters to simulate

IRFs. We perform 3 experiments. First we trace the effect after an isolated impact of 10%

increase in pollution across all areas, we consider a similar impact to the bottom expenditures,

and finally we repeat the experiment for average expenditures. The impact vectors are not

designed to mimic a plausible event, our foremost goal is to track the direct and indirect

Granger-causality channels implied by the estimated model. However, 10% is roughly in line

with one standard deviation of the residuals for each variable. Confidence bandwidths are

constructed by simulating from the models, randomly drawing parameters from their empirical

distributions. The first 50 time steps are discarded before the impact vector is activated to

prevent dependence of the dynamics on the initialization. Figure 3 shows the results for the

model estimated at PM2.5 > 6, and fig. 4 shows the results from the model estimated at

PM2.5 > 10. The figures are produced by 10, 000 random draws and show the cumulative

effects resulting from compounding the percentage changes including spatial feedback effects.

We find that across all districts with PM2.5 > 6, average expenditure growth has no long-

term effect on pollution, growth in the bottom expenditures, however, reduces pollution by

-2.416%. At higher pollution concentrations, we find that the effect of bottom expenditure

growth strengthens (-4.171%). Growth in average expenditures in these highly polluted areas

is also found to reduce pollution, albeit with smaller impact (-.235%). Exogenous pollution

in both models has a short-term multiplier effect due to feedback, with the effect peaking

briefly over 50%. The long-term impacts, however, produce a wide range of long-run effects

and are mostly negative or include zero. Therefore, our results suggest that ongoing effects of

exogenous pollution, such as increasing populations and changes in urban structure, contribute

to pollution build up. This suggests that a region remains polluted as long as exogenous effects

continue to enter the system, and pollution levels decline when these structural contributions

stabilize and continued income growth takes over as a predominant driver of pollution decline.

Another result is that at both PM2.5 > 6 and PM2.5 > 10, average growth is non-inclusive.

At PM2.5 > 6, an increase in average household expenditures does not significantly spill over

to bottom households in the long-run, and at PM2.5 > 10 the long-run impact is −0.634%.

Growth in bottom expenditures, on the other hand, boosts the average (7.192% at PM2.5 > 6
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and 5.132% at PM2.5 > 10). Pollution is additionally identified as a negative effect on bottom

growth, -2.227% at PM2.5 > 6. The effect intensifies at higher pollution concentrations, -

5.742% on average across all districts with PM2.5 > 10. Average household expenditures are

relatively more resilient, but are also negatively impacted by pollution (-0.854% at PM2.5 > 6),

especially at higher pollution levels (-2.645% at PM2.5 > 10).
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Figure 3: IRF plots for exogenous shocks in pollution, bottom household expenditures and average

household expenditures PM2.5 >6. Effects that exclude zero in the final year, are marked by ∗.
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Figure 4: IRF plots for exogenous shocks in pollution, bottom household expenditures and average

household expenditures PM2.5 >10. Effects that exclude zero in the final year, are marked by ∗.

The results suggest several feedback mechanisms. First, average growth is non-inclusive.

Second, pollution lowers primarily after bottom expenditures increase, while average growth is

less effective in reducing pollution. Third, average household expenditures are more resilient

to pollution effects. Taken together, these three effects compound in downwards pressure on

bottom growth, subsequently also slowing pollution clean-up, and creating an environment in

which heavily polluted urban poverty traps may potentially arise if pollution and poverty are

28



not addressed. Pollution impacts also block part of the potential multiplier effect that bottom-

up growth would produce. Growth spillovers from the bottom to the average are strong

however, suggesting that pollution-poverty environments may have strong negative impacts

on the wider urban economy. Jointly, these inferred mechanisms suggest that a bottom-up

approach to growth can help reduce the likelihood of pollution-poverty trap scenarios and even

later on remains a no-regret strategy for growth as it induces positive spillovers.

5.3.3 Economic significance

Pollution damages account for considerable loss. Using the converged IRF impact, and using

the 2017 dollar conversion rate, we can draft the following crude impacts of 10% country wide

pollution increase based on the average expenditure levels per distinguished household group.

We use the income 2014 values, and extrapolate to 2017 to match our conversion rate, by

compounding the average growth rate observed per household group. Table 6 in the appendix

summarizes the per capita expenditures used for our calculations.

Using 2014 population estimates from INDO-DAPOER, together with the average local

population growth rates, we would see approximately 83,104,069 people living in heavily pol-

luted areas in 2017. Another 47,463,131 people live between 6 and 10 PM2.5.10 Weighing the

effect on expenditures on pollution by population, the total damages across all households of a

10% pollution increase would be over 3 billion dollars. Of that, approximately half a billion dol-

lars are lost expenditures of poor households. Various factors can further add to this number in

the future, including continued growth in urban population, income and pollution levels. The

average pollution level in 2014 in heavily polluted areas was 21.75 according to our aggregated

sensor estimates, and the .95 percentile is at 26.98, showing that a 25% increase in the average

urban area can still occur. In addition, we look at household expenditures that constitute

only part of GDP, and thus capture only part of the potential economic damages. We do not

model the potential direct and indirect impacts on other components of GDP. Opportunity

costs related to diverting government expenditures to health-related issues while social returns

to investment might be higher elsewhere in an unpolluted economy may be another hidden

cost. Without intervention the damages would run into the multi-billions over the course of

only a few years.

10As a reference, the United Nations put the total Indonesian population at 261,115,456 in 2016.
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6 Conclusion

In this paper we discussed and estimated a fat-tailed Spatial Vector Autoregressive Moving

Average model that enables analyzing high-dimensional interactions between multiple cross-

sectional time series. This type of model is particularly useful to study Granger-causal inter-

actions. The model requires specifying multiple matrices that define cross-sectional spillover

channels. Networks may be part geographic, but also relate to economic distances. We intro-

duced a framework to dynamically construct networks from the data. The smoothness of the

network is controlled by a bandwidth parameter that can be integrated into the Likelihood

framework.

We estimated the model parameters using remotely sensed pollution statistics of urban

areas in Indonesia, together with subnational household expenditure data from surveys. We

estimated two models with respectively 113 urban and 60 highly polluted urban areas over

the period 1999-2014. Our networks are based on the similarities in sample moments and

quantiles of local returns in the data, and the smoothness has been estimated within the

likelihood framework. We contrasted the spatial model with a non-spatial counterpart and

found that the spatial framework improves considerably in terms of various diagnostics, while

using fewer ARMA parameters. Our approach to network modeling is not only favored by the

data, it also provides additional insights. We find that cross-sectional dependencies in pollution

are centered in smaller, but stronger, clusters than the economic variables. Expenditures of

poor households, spill over more locally than those of average households.

Our economic findings are summarized in three main points: first, expenditure growth

reduces pollution, particularly growth of poor households; second, pollution reduces growth

in expenditures, particularly of poor households; third, growth is non-exclusive, there are

significant spillovers from bottom-up growth but not from top-down growth. This imbalance in

growth spillovers aligns with a body of literature debunking so-called “trickle-down” economics

(see, for example, Quiggin (2009); Ranieri and Almeida Ramos (2013)), and suggests instead

that investment in the poor is more effective than raising average incomes. Non-inclusive

growth, lower resilience of the poor to pollution damages, and the importance of growth in

bottom households to reduce pollution, together lay the basis for polluted poverty traps.

We find that damages from pollution in Indonesia are considerable, over 3 billion annually
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for a 10% increase. Earlier research has indicated that economic impacts of air pollution stem

mainly from health effects that decrease length and quality of life, increase health expenditures,

and reduce labor supply and productivity. In 2013, one-tenth of deaths worldwide were at-

tributable to air pollution, resulting in about $225 billion annually in lost labor income (World

Bank and Institute for Health Metrics and Evaluation, 2016). For those facing negative health

impacts, personal wealth can suffer immensely, between $240 billion and $630 billion are spent

each year on health care costs related to pollution (Preker et al., 2016). Quality of life is af-

fected too, Levinson (2012) found individual average willingness to pay up to $42 per day for a

one-standard-deviation improvement in air quality in the United States. Reduced air pollution

has also been shown to increase short-run labor supply due to a healthier population, in one

case by 3.5 percent, translating to increased income for individual workers (Hanna and Oliva,

2015). Worker productivity in certain sectors also relies on health from clean air, with a 10 ppb

change in average ozone exposure, for instance, resulting in a 5.5 percent change in a study of

agricultural worker productivity (Zivin and Neidell, 2012). In that case, reducing ozone pol-

lution could result in annual cost savings in labor expenditure—totaling approximately $700

million in the United States if a 10 ppb reduction was implemented.

While many of the results point toward an economic failure, we also see potentials for

enhanced growth. Policy targeted at exogenous pollution can have positive growth effects

by reducing the harmful effects of pollution. Positive economic effects, specifically on the

poor, in turn help combat air pollution. Bottom-up growth spills over positively to average

growth while reducing pollution, and can therefore be seen both as an effective component in

pollution reduction strategies as well as in general economic growth programs. Health policies

for the poor that reduce the economic impact on these households, may similarly have economic

benefits for the broader economy by leveraging growth spillovers and pollution reduction effects.

Optimal pollution policies have both a positive effect on expenditures, specifically for the poor,

while reducing exogenous pollution. Simple examples may include distributing cleaner gas

stoves such as under the Clean Stove Initiative of the World Bank. This type of initiative

reduces particulate matter emissions by reducing the amount of wood, agricultural residues,

dung, and coal burned, while having a positive effect directly on bottom household wealth.

Wealth increase in the bottom, then has the potential to spill over through the entire economy.

In a different fashion, a pollution tax such as under Chile’s Green Tax Strategy, may in fact
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well be a less optimal way of pollution control, specifically if it is not sufficiently progressive.11

In these cases, lowering household expenditures interferes with the overall effectiveness. Tax-

based policies may possibly be made more effective if the tax revenues are in turn invested in

the poor.

Importantly, we see that the economic impacts of pollution growth are higher in polluted

areas. Combined, the evidence points toward a pro-active stance towards both poverty re-

duction and pollution abatement as early in the development process as possible. A grow

first, solve later, attitude leads in either case to the lesser effective growth strategy. Letting

pollution increase, results in increasingly higher damages. Both in a cumulative, but also in a

marginal sense. Slowed growth of the poor prolongs poverty, which in turn slows down a po-

tential pollution decline. The narrative of pollution naturally reducing as development occurs

is a decades-old concept, and has been surrounded by controversy and debate related to its

implications for development (see Stagl (1999) and Soumyananda (2004) for examples). The

so-called “clean-up phase” that historically accompanied middle- and late-stage income growth

has long been misinterpreted as a justification for knowingly developing through “dirty” means

and neglecting to establish policy interventions that would curb early-stage pollution. We hope

our evidence contributes to an ending of this unjustified and harmful interpretation that can

only lead to bad economic outcomes. This conclusion has been put forward also by others,

already in earlier literature (Panayatou, 1997; Lee, 2012).
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Supplementary Appendix

Pollution and Expenditures in a Penalized Spatial Vector

Autoregressive Moving Average with Data-Driven Networks

Bo Pieter Johannes Andrée, Phoebe Spencer, Andres Chamorro,

Dieter Wang, Sardar Feredun Azari, Harun Dogo.

A Restrictions

Restricted SVARMA 1

A model in which the joint process has autoregressive forces that feedback in the time-

dimension between the sequences, while variables feedback simultaneously within the cross-

sections, could be written as[
xt +Hxx

1 xt−1 +Hxy
1 yt−1 + ...+Hxx

p xt−p +Hxy
p yt−p

yt +Hyx
1 yt−1 +Hyy

1 xt−1 + ...+Hyx
p yt−p +Hyy

p xt−p

]
=

[
εxt +Mxx

1 εxt−1 + ...+Mxx
q ε

x
t−q

εyt +Myy
1 ε

y
t−1 + ...+Myy

q ε
y
t−1

]
∀ t ∈ Z.

(36)

This model constrains Mxy
0:p and Myx

0:p to zero, implying that residuals and lagged residuals

enter only in one cross-section, while the observations may still depend on the observations in

both cross-sections. We can write this efficiently by working with parameter matrices

H0 :=

[
Inx Onx

Ony Iny

]
,H1:p :=

[
Hxx

1:p H
xy
1:p

Hyx
1:p H

yy
1:p

]
,M0 :=

[
Inx Onx

Ony Iny

]
, M1:p :=

[
Mxx

1:p Onx

Ony M
yy
1:p

]
.

(37)

Restricted SVARMA 2

Alternatively, we can work with moving averages that enter both equations directly, e.g., the

second part of the equality in eq. (36) is of the form:[
εxt +Mxx

1 εxt−1 +Mxy
1 ε

x
t−1 + ...+Mxx

q ε
x
t−q +Mxy

q εxt−q

εyt +Myx
1 ε

y
t−1 +Myy

1 ε
y
t−1 + ...+Myx

q ε
y
t−q +Myy

q ε
y
t−q

]
. (38)
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The matrix representation results from

H0 :=

[
Inx Onx

Ony Iny

]
,H1:p :=

[
Hxx

1:p H
xy
1:p

Hyx
1:p H

yy
1:p

]
,M0 :=

[
Inx Onx

Ony Iny

]
, M1:p :=

[
Mxx

1:p M
xy
1:p

Myx
1:p M

yy
1:p

]
.

(39)

This model allows that each effect goes through a spatial multiplier that may differ in structure

and strength for each panel variable.

We make a clear distinction between the two cases because the equations in the first model

can be computed without the moving averages of other variables being available. Therefore,

the criterion functions can be evaluated on an equation-by-equation basis which allows better

parallelization of tasks. In the second model, the impulse generating mechanisms may cross-

interact, and all equations have to be evaluated simultaneously or in matrix form. This becomes

computationally demanding even for a small number of variables and moderate nw and T . It

is still possible to invert the contemporaneous spillovers on an equation by equation basis,

which means that parts of the computation can still be parallelized. The second model is a

restricted version of the case in which both observations and residuals have contemporaneous

effects between variables.12 From a practical aspect it is useful to first consider models of the

type eq. (37) first, and use the results to feed numerical algorithms to estimate models of the

eq. (39) type.

B Stability in terms of the companion matrix

Consider the Markov Chain,

wt = M(L){H−1(L)εt} = M(L)Ξt ∀ t ∈ Z,

with identity normalization of the spatially multiplied autoregressive matrix at t = 0, and

p = q for simplicity. After generating the spatially correlated residuals εt from εt, the values

of wt can be generated in two stages. First,

Ξt = εt − {H1Ξt−1 + ...+ HpΞt−p},

then,

wt = M0Ξt + M1Ξ1t−1 + ...+ Mp−1Ξt−p+1.

12The unrestricted model with contemporaneous effects between variables results from

H0:p :=

[
Hxx

0:p Hxy
0:p

Hyx
0:p Hyy

0:p

]
, M0:p :=

[
Mxx

0:p Mxy
0:p

Myx
0:p Myy

0:p

]
,

in which the connectivity matrices that generate the off-diagonal blocks Hxy
0:p and Hyx

0:p may be designed to have
non-zero diagonals. While interesting from a theoretical perspective, we were not able to design algorithms for
estimation that carried value in a practical context.
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Defining the set of p state variables:

Ξ1t = Ξt,

Ξ2t = Ξt−1,
...

Ξpt = Ξt−p+1.

and rewriting the Markov Chain in terms of the left hand side variables:

w1t = εt − {H1Ξ1t−1 + ...+ HpΞpt−1}.

Using the state vector Ξt =
[
Ξ1t,Ξ2t, ...,Ξpt

]′
we can now write the system after defining

O = 0 ◦ I:
Ξ1(t)

Ξ2(t)
...

Ξp(t)

 =


−H1 . . . −Hp−1 −Hp

I . . . −O O
...

. . .
...

...

O . . . I O




Ξ1(t− 1)

Ξ2(t− 1)
...

Ξp(t− 1)

+


I

O
...

O

 ε(t),

with measurement equation

w(t) = M0Ξ1(t) + ...+ Mp−1Ξp(t) ∀ t ∈ Z.

Stability can now be expressed in terms of the companion matrix Φ. Its elements correspond

to the inverted autoregressive components H, hence it is straightforward that this yields the

conditions that the eigenvalues of Φ must lie within the unit circle:

det(I−Φ(z)) = det(H(z)) = det(H0 + H1 + ...+ I + Hpz
p) 6= 0 ∀ |z| ≤ 1.

Note that if ρ = 0, S = (I + O)−1 = I, as an effect H = A, which gives us

det(I−Φ(z)) = det(A(z)) = det(A0 + A1 + ...+ I + Apz
p) 6= 0 ∀ |z| ≤ 1,

that only differs from the standard condition cited in VARMA literature that

det(I − Φ(z)) = det(A(z)) = det(A0 +A1 + ...+ I +Apz
p) 6= 0 ∀ |z| ≤ 1,

by construction of our parameter matrices that link the scalar coefficients to the cross-sectional

observations. However, since there is no parameter heterogeneity left, the two conditions are

identical. Finally, to better understand the relationship between the spatial multiplier for

nonzero ρ and the autoregressive parameter in determining stability, the additional results in
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(Andree et al., 2017) are of help. While the stability conditions of SVARMA are straightforward

in terms of high-level conditions, they involve many parameters and in practice it may be less

straightforward to calculate them for testing purposes. We suggest that for practical purposes,

it may be less cumbersome to simulate from the model under impulses, and see if the responses

converge as the researcher should be interested in this either way.

B.1 Small sample distribution of the MLE

To explore the adequacy of the S(V)ARMA in filtering out space-time-dynamics, we conduct a

simulation study. We investigate both the MLE that arises by setting λ = 0 and the PMLE with

λ = 1/
√
NT in situations where T is small. We set the sample size and parameters to realistic

values given the empirical application. Apart from the behavior of the ARMA components we

are interested in the adequacy of the (P)MLE in dynamically estimating appropriate spatial

structures. We explore whether the spatial structure improves the ARMA estimates, and

explore robustness to over-fitting under the null of an ARMA process. The DGP is

yt = 0.6C(x; b)yt − 0.35yt−1 + εt + 0.25εt−1, (40)

where x is drawn uniquely in every experiment from a Student’s-t distribution with ν = 120,

εt is drawn from a Student’s-t distribution with ν = 5. We explore both a spatial structure

with few but strong links with b = .15 and a smoother network with b = 2. The decision to

focus on the heavy tail case is guided by our empirical results. We focus on t− p = 12, which

is identical to, and N = (10, 25, 75, 125) which covers, our empirical cases.

As we can see in fig. 6 the PMLE performs reasonably well already in small samples, but

even in the largest samples we do not obtain the limit result for the individual parameters. This

is not surprising given the small T . The initialization of the moving averages at zero cannot

fade, causing a bias towards zero. In fact, by increasing N and fixing T , the impacts increase

further as the ratio of distorted information N/T grows. Nonetheless, the ARMA parameters

are jointly well behaved, even when both N and T are small. We conclude that inference on

the joint parameters is therefore valid, while statements that involve differentiation between

short- and long-term effects should be made with caution in small T panels. Figure 7 shows

the results for the MLE. It is clear that the penalization improves the empirical distribution

of the bandwidth parameter substantially.

Figure 8 and fig. 9 document results for b = 2. Again the unpenalized distribution of b

is not well-behaved. The penalized distribution of b improved substantially and is also better

than the distribution under b = .15. In both results, the ARMA parameters remain jointly

well-behaved confirming that the model is useful for inference about the time dynamics.

Figure 10 shows results for ARMA estimation on the identical DGP s. This reveals that

when the cross-sectional process exhibits both ARMA and spatial effects, and the spatial effects
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are not modeled, the ARMA parameters become severely biased. Combined, all the simulation

results not only confirm that the model performs well in empirically relevant situations, but

also that not specifying the spatial effects results in biased results.

Finally, to investigate the behavior of the kernel procedure under the alternative when

the ARMA is in fact correct, and no spatial structure is needed, we present Figure 5 below.

The bandwidth density is centered around 0, Note that the kernel structure is not identi-

fied at this value. Note also that if spatial dependence is zero, the bandwidth could take on

any value, which might allow the structure to eventually find some (dis)similarities that pro-

duce significant cross-sectional dependencies. The results show that the penalization of the

bandwidth prevents the values to wander off into the extreme, while bringing some minor im-

provements to the spatial dependence estimate. Either case, the spatial dependence parameter

is well-behaved, allowing the research to decide between SARMA and ARMA mechanics while

estimating the weights structure, simply by using a Wald test around the spatial dependence

parameter.
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Figure 5: Penalized (upper) small sample distributions of bandwidth and spatial parameter in the

SARMA, when the true process is a cross-sectional ARMA with zero spatial effects. The bandwidth

density is centered around 0, note that the kernel structure is not identified at this value.
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Figure 6: Penalized small sample distributions of the correctly specified SARMA, bandwidth of the

spatial kernel matrix in the DGP set to .15
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Figure 7: Unpenalized small sample distributions of the correctly specified SARMA, bandwidth of the

spatial kernel matrix in the DGP set to .15.
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Figure 8: Penalized small sample distributions of the correctly specified SARMA, bandwidth of the

spatial kernel matrix in the DGP set to 2.
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Figure 9: Unpenalized small sample distributions of the correctly specified SARMA, bandwidth of the

spatial kernel matrix in the DGP set to 2.
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Figure 10: Unpenalized small sample distributions of the miss-specified ARMA, when the true process

is an SARMA with bandwidth of the spatial kernel matrix set to .15 (left) and 2 (right).
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B.2 Data
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Figure 11: Densities of pollution levels (left) and changes in pollution (right) for 219 areas with an

urban patch of over 5,000 people and densities of 300 per square kilometer or higher.
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Figure 12: Cross-sectional time series plots of 113 urban areas with the quantiles and medians shaded.

Left levels, right percentage changes.
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B.3 Regression Results
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Figure 13: Surfaces of estimated spatial weights, ordered by link strengths (observations in no particular
order), revealing the different links and links strengths across the different channels of the SVARMA
structure.
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Table 1: VARMA(AICc) results at PM2.5 > 6, R̂2 = 0.705, 42 estimated parameters on
(N −max(p, q) × T ) × 3 = 4068 data points with 372 fixed demeaning components. AICc =
−6895.750.

Pollution Bottom Expenditures Expenditures

(pol) (bot) (exp)

φ polt−1 -0.456*** -0.155*** 0.124*
(-6.407) (-2.745) (1.862)

φ polt−2 -0.201*** -0.101***
(-6.171) (-3.215)

φ polt−3 0.078***
(3.081)

φ bott−1 0.101** -0.119**
(2.019) (-2.02)

φ bott−2 -0.138*** -0.123***
(-4.645) (-2.655)

φ bott−3 -0.056** -0.094*** -0.156***
(-2.362) (-3.333) (-3.825)

φ expt−1 0.069*** -0.277***
(2.884) (-4.884)

φ expt−2 0.159***
(4.557)

φ expt−3 0.072***
(3.099)

M polt−1 -0.142* 0.145** -0.196***
(-1.853) (2.444) (-2.7)

M polt−2 -0.100** 0.129***
(-2.236) (2.788)

M polt−3 0.068* -0.085*** -0.088**
(1.806) (-2.877) (-2.225)

M bott−1 -0.148*** -0.235*** 0.095**
(-2.585) (-3.855) (2.538)

M bott−2 0.221***
(3.692)

M bott−3 0.141**
(2.354)

M expt−1 -0.119*
(-1.827)

M expt−2 -0.135*** -0.356***
(-3.658) (-8.198)

M expt−3 -0.137***
(-3.75)

σ 0.109 0.087 0.100
ν 3.797 5.031 5.721
4-lag white-noise p 1.000 0.085* 0.025**

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the ARMA components.
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Table 2: SVARMA(AICc) results at PM2.5 > 6, R̂2 = 0.737, 41 estimated parameters on
(N −max(p, q) × T ) × 3 = 4068 data points with 372 fixed demeaning components. AICc =
−7390.091.

Pollution Bottom Expenditures Expenditures

(pol) (bot) (exp)

φ polt−1 -0.068** -0.092*** -0.047***
(-2.57) (-2.866) (-2.391)

φ polt−2 -0.070*** -0.063***
(-4.381) (-2.969)

φ polt−3 0.026* 0.054**
(1.652) (2.507)

φ bott−1 -0.108* 0.089***
(-1.94) (2.577)

φ bott−2 -0.139*** -0.129***
(-4.736) (-2.791)

φ bott−3 -0.039** -0.099*** -0.141***
(-2.119) (-3.544) (-3.534)

φ expt−1 0.071*** -0.374***
(2.964) (-12.805)

φ expt−2 0.158***
(4.453)

φ expt−3 0.074***
(3.14)

M polt−1 -0.515*** 0.126***
(-15.292) (3.233)

M polt−2

M polt−3 -0.052* -0.082**
(-1.814) (-2.131)

M bott−1 -0.038* -0.253***
(-1.94) (-4.296)

M bott−2 0.252***
(4.313)

M bott−3 0.128**
(2.203)

M expt−1

M expt−2 -0.134*** -0.387***
(-3.621) (-10.705)

M expt−3 -0.147***
(-4.273)

ρ 0.812*** 0.305*** 0.327***
(27.765) (3.177) (2.976)

b 0.088 0.18 0.229

σ 0.119 0.129 0.176
ν 2.004 7.313 4.703
4-lag white-noise p 1.000 0.129 0.176

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the SARMA components.
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Table 3: VARMA(AICc) results at PM2.5 > 10, R̂2 = 0.722, 37 estimated parameters on
(N −max(p, q) × T ) × 3 = 2160 data points with 213 fixed demeaning components. AICc =
−3876.735.

Pollution Bottom Expenditures Expenditures

(pol) (bot) (exp)

φ polt−1 -0.578*** -0.542*** -0.413***
(-17.043) (-4.875) (-2.811)

φ polt−2 -0.234*** -0.320*** -0.204**
(-4.764) (-4.866) (-2.459)

φ polt−3 0.064*
(1.883)

φ bott−1 0.138* -0.440*** -0.248**
(2.327) (-11.281) (-2.558)

φ bott−2 0.083**
(2.374)

φ bott−3 -0.061*
(-1.85)

φ expt−1 0.151*** -0.172**
(3.049) (-2.654)

φ expt−2 0.056* -0.219***
(1.837) (-5.579)

φ expt−3

Mpolt−1 0.569*** 0.342**
(4.903) (2.244)

Mpolt−2 -0.184***
(-3.11)

Mpolt−3 -0.134*** -0.294*** -0.208***
(-2.594) (-4.529) (-2.751)

Mbott−1 -0.188*** 0.348***
(-2.644) (3.247)

Mbott−2 -0.344*** -0.154**
(-6.453) (-2.138)

Mbott−3

Mexpt−1 -0.106** -0.303***
(-2.021) (-4.569)

Mexpt−2 -0.079***
(-2.579)

Mexpt−3 0.054* -0.286***
(1.789) (-6.83)

ρ
b

σ 0.094 0.079 0.101
ν 4.107 9.474 4.573
p white-noise 1.000 0.311 0.498

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the ARMA components.
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Table 4: SVARMA(AICc) results at PM2.5 > 10, R̂2 = 0.732, 39 estimated parameters on
(N −max(p, q) × T ) × 3 = 2160 data points with 213 fixed demeaning components. AICc =
−4153.838.

Pollution Bottom Expenditures Expenditures

(pol) (bot) (exp)

φ polt−1 -0.097** -0.150*** -0.085**
(-2.503) (-2.803) (-2.367)

φ polt−2 -0.073** -0.049
(-2.048) (-1.482)

φ polt−3 0.041* -0.045
(1.773) (-1.446)

φ bott−1 0.092**
(2.446)

φ bott−2 -0.271*** -0.200***
(-4.573) (-3.518)

φ bott−3 -0.093**
(-2.326)

φ expt−1 -0.324***
(-5.421)

φ expt−2 0.133***
(2.995)

φ expt−3 0.052*
(1.964)

M polt−1 -0.362*** 0.198***
(-6.212) (3.19)

M polt−2 -0.105**
(-2.33)

M polt−3 0.120***
(2.96)

M bott−1 -0.146*** -0.447***
(-3.43) (-12.057)

M bott−2 0.194*** 0.260***
(2.864) (3.825)

M bott−3 -0.216***
(-4.225)

M expt−1 -0.106
(-1.496)

M expt−2 -0.139*** -0.400***
(-2.911) (-8.092)

M expt−3 -0.159***
(-3.934)

ρ 0.833*** 0.123 0.162
(24.272) (1.374) (1.46)

b 0.118 0.151 0.208

σ 0.906 0.080 0.101
ν 2.004 7.313 4.703
p white-noise 1.000 0.187 0.864

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Constant omitted, t-statistics in parenthesis for the SARMA components.
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Table 5: Cumulative effects after 15 years following an initial 10% increase per variable.

PM2.5 > 6 PM2.5 > 10
25% 50% 75% 25% 50% 75%

Impulse: Pollution
Pollution −28.203 −14.470 −6.403 −50.507 −17.071 0.334
Bottom −3.066 −2.227 −1.534 −8.312 −5.742 −3.876
Average −1.399 −0.854 −0.409 −4.162 −2.645 −1.520

Impulse: Bottom expenditures
Pollution −3.143 −2.416 −1.794 −5.966 −4.171 −2.761
Bottom 6.504 7.192 7.940 4.389 5.132 5.928
Average 1.435 2.089 2.773 0.668 1.221 1.747

Impulse: Average expenditures
Pollution −0.043 −0.003 0.031 −0.407 −0.235 −0.106
Bottom −0.329 −0.027 0.268 −0.919 −0.634 −0.363
Average 2.522 2.954 3.330 1.525 2.146 2.772

Table 6: Economic pollution costs based on a conversion rate from IDR to dollars of 100,000
IDR to 7.410 USD – Pulled from Google Finance on 15 October, 2017.

Annual expenditures in Average annual loss in expenditures

USD per capita for 10% PM2.5 increase

Bottom household PM2.5
6+ 397.132 8.844

Average household PM2.5
6+ 1074.54 9.177

Bottom household PM2.5
10+ 420.50 24.145

Average household PM2.5
10+ 1183.96 31.316
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