EX-ACT version 9
StartDescription of
projectLand-use
changesEX-ACT version 9 is based on the 2019 Refinement to the 2006 IPCC Guidelines for N

EX-Ante Carbon-balance T

100

Map conforms to United Nations World map, May 2020

The boundaries and names shown and the designations used on this map do not imply the legal status of any country, territory, city or area or of its authorities, or concerning the deli

EX-ACT is a designed to support decision makers within the governments, private sector and intervention scenarios in the AFOLU sector, as well as for on-going and ex-post evaluations. EX-ACT v9 has been developped by FAO's Agrifood Economics Division with the support of tl Website: <u>http://www.fao.org/tc/exact/ex-act-home/en/</u> Contact: EX-ACT@fao.org

DISCLAIMER

FAO declines all responsibility for errors or deficiencies in the database or software or in the documentation accompanying it, f asked to report any errors or deficiencies in this product to FAO.

The choices of calculation made in this tool are those of the author(s) and do not necessarily reflect the views and choices of

© FAO (2020)

FAO encourages the use, reproduction and dissemination of material in this product. Except where otherwise indicated, materi endorsement of users' views, products or services is not implied in any way.

All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao

e expression of any opinion whatsoever on the part of FAO concerning the mitation of its frontiers and boundaries. Dashed lines on maps represent

I civil society organizations to calculate greenhouse gas emissions using IPCC methdoologies. EX

he World Bank and Agence Française de Développement.

for program maintenance and upgrading as well as for any damage that may arise from them. FAO also declines any responsibility fo the Food and Agriculture Organization of the United Nations.

al may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products .org/contact-us/licence-request or addressed to copyright@fao.org

(-ACT can be used in the project (or programme) design phase via ex-ante evaluation of

r updating the data and assumes no responsibility for errors and omissions in the data provided. Users are, however, kindly

or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO's

Food and Agriculture Organization of the United Nations

English

EX-ACT version 9 Start Description of project

Land-use changes

1. DESCRIPTION

1.1 Project description	
User Name	Ena Shin
Date	9/1/2022
Project name	
Project code	P178439
Project cost (in USD)	
Funding agency	World bank
Executing agency	FAO, SFD
Project status	Design

Cropland management

Grassland & Livestock Forest management

Inland wetlands & Aqua.

1.2 Project site and duration

Continent Country

Climate

Climate

Moisture

Soil type

Project duration (in years)

	Western Asia	
	Yemen	
	Tropical	
	Dry	
	High activity clay soils	
rs)	Implementation Phase	5
	Capitalization Phase	15
-	Total Duration of Accounting	20

EX-ACT version 9	Description of	Land-use
Start	project	changes

2.	1 DEFORESTATION		
	Type of vegetation ?	HWPs (tDM/ha)	Fire used? (y/n)
	Please select	0	NO
	Please select	0	NO
	Please select	0	NO
	Please select	0	NO
	Please select	0	NO
	Please select	0	NO
	Please select	0	NO
	Please select	0	NO

*The selection of "D" corresponds to a default (linear) dynamics of change. Other sele

2.2 AFFORESTATION & REFORESTATION

Final land-use	Fire used? (y/n)
Please select	NO

Please select	NO
Please select	NO
Please select	NO

*The selection of "D" corresponds to a default (linear) dynamics of change. Other sele

2.3 OTHER LAND-USE CHANGES

User notes	Fire used? (y/n)
Component 1 - Terracing (coffee, sorghum)	NO
	NO
Component 3 - kitchen gardens	NO
Component 3 - kitchen gardens	NO
	NO

*The selection of "D" corresponds to a default (linear) dynamics of change. Other sele

Cropland	Grassland &	Forest	Inland we
management	Livestock	management	

Final land-use after deforestation		Fore	ested area	(ha)
Land-use type	Agroforestry system	Start	Without	
				*
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D

ection options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for fur

Initial land-use	Initial agroforestry systems	Reforested Without	d are
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D

Please select Please select Please select	Please select Please select Please select	0 D 0 D 0 D

ection options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for fur

Initial land-use	Final land-use	Area of lar Without	nd-u *
Annual fallow	Agroforestry - default	2,000	D
Annual fallow	Please select	0	D
Grassland	Annual cropland	0	D
Other land (non-vegetated)	Annual cropland	0	D
Grassland	Silvopasture	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D

Total r

ection options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for fur

etlands &	Coastal wetlands	Inputs &	
Aqua.	& Fish/Aqua.	Investments	

lf cou	intry-s	specific data	are available	e, please go to Tier 2:	Tier 2
With	*	Deforested Without	area (ha) With	Total emissions (Without	tCO2-e) With
0	D	0	0	0	0
0	D	0	0	0	0
0	D	0	0	0	0
0	D	0	0	0	0
0	D	0	0	0	0
0	D	0	0	0	0
0	D	0	0	0	0
0	D	0	0	0	0
	_				
To	otal d	eforestation	(tCO2-e)	0	0
ther explanation of these assumptions.					

lf cou	ntry-	specific data are available, please go to Tier 2:	Tier 2
xa (ha) With	*	Total emissions (Without	tCO2-e) With
0	D	0	0
0	D	0	0
0	D	0	0
0	D	0	0
0	D	0	0

0 D 0 D 0 D	0 0 0	0 0 0	
Total af/re forestation (tCO2-e)	0	0	
ther explanation of these assumptions.			

Tier 2 If country-specific data are available, please go to Tier 2: Total emissions (tCO2-e) se change (ha) With Without With * 0 0 1,059 D 0 0 0 D 315 544 D 0 315 0 -4,177 D 0 D 0 0 D 0 0 0 D 0 0 0 0 0 0 0 0 D 0 0 D 0 0 on forest land-use change (tCO2-e) 1,059 -3,633 ther explanation of these assumptions.

Balance
0 0 0 0 0 0 0 0
0

Balance	
0	
0	
0 0	

0
0
0
0

2.1 DEFORESTATION

Type of vegetation that will be deforested		All units are in tC/ha Above-ground	
	Default	Tier 2	
Please select	0.0		
Use this part only if you want to refine the analysis at Tier 2			

IPCC default values are provided for your information only; EX-ACT will use Tier 2 values a

2.2	Afforestation	and Ref	orestation

	Above-grou	und bioma
Final land uses after	(≤ 20 years)	
affo/reforestation	tC/ha	a/yr
	Default	Tier 2
Please select	0.00	

Please select	0.00
Please select	0.00
Please select	0.00

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values ϵ

2.3 OTHER LAND-USE CHANGES

	Initial land use		
		All units ar	e in tC/ha
User notes		Biomass	
		Default	Tier 2
Component 1 - Terracing (coffee, sorg	Annual fallow	4.7	
#REF!	Annual fallow	4.7	
#REF!	Grassland	4.1	
Component 3 - kitchen gardens	Other land (non-vegetated)	0.0	
	Grassland	4.1	
	Please select	0.0	

Below-ground		Litter		Dead woo	d
Default	Tier 2	Default	Tier 2	Default	Tier 2
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
itomatically v	vherever sp	pecified.			

ss growth		Below-gr	ound biom	ass growth		
(> 20 y	ears)	(≤ 20 y	ears)	(> 20 y	/ears)	
tC/ha/yr		tC/h	tC/ha/yr		tC/ha/yr	
Default	Tier 2	Default	Tier 2	Default	Tier 2	
0.00		0.00		0.00		
0.00		0.00		0.00		
0.00		0.00		0.00		
0.00		0.00		0.00		
0.00		0.00		0.00		

0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	

automatically wherever specified.

E

		Final land use				
			In tC/ha	in the fir	st year	in tC/ha
Soil ca	rbon		Biomass			Soil carbo
Default	Tier 2		Default	Tier 2		Default
19.5	14.3	Agroforestry - default	3.5			21.2
19.5	14.3	Please select	0.0			0.0
21.0	15.4	Annual cropland	4.7			19.3
21.0	15.4	Annual cropland	4.7			19.3
21.0	15.4	Silvopasture	3.9			21.2
0.0		Please select	0.0			0.0
0.0		Please select	0.0			0.0
0.0		Please select	0.0			0.0
0.0		Please select	0.0			0.0
0.0		Please select	0.0			0.0

	Back	
Soil carbo	n	
Default 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Tier 2	-

				E	Back
Litter		Dead wood		 So	il
tC/h	a	tC/h	а	tC	/ha
Default	Tier 2	Default	Tier 2	Default	Tier 2
0.00		0.00		0.0	
0.00		0.00		0.0	
0.00		0.00		0.0	
0.00		0.00		0.0	
0.00		0.00		0.0	

0.00 0.00 0.00	0.00 0.00 0.00	0.0 0.0 0.0	

3ack	
n Tier 2 15.6 0.0 14.2 14.2 15.6	

EX-ACT Version 9

Start

3.1. ANNUAL CROPPING SYSTEMS (to be used also for pluri

3.1.1. Annual cropping systems from other LU or converted to other L

Description	Main season crop		
Annuals after deforestation	Default		
Annuals converted to forest land	Default		
Annuals converted from non-forest LUs	Default		
Annuals converted to non-forest LUs	Default		

3.1.2. Annual cropping systems remaining annual cropping systems (

User notes	Main season crop
You can use it to describe your system	
Component 2 - Seed production	Grains
Component 2 - Seed production	Grains
Component 2 - Fodder production Improvmente	Grains
Component 2 - Fodder production Improvmente	Grains
Component 2 - Fodder production Improvmente	Grains
Component 2 - Sesame production	Grains
Component 2 - Sesame production	Grains
Component 3 - Kitchen garden	Default
Component 3 - Kitchen garden	Default
	Default

If country-specific data are available, please go to:

*The selection of "D"corresponds to a default (linear) dynamics of change. Other selection
3.2. PERENNIAL CROPPING SYSTEMS (e.g. agroforestry, or

3.2.1. Perennial systems from other LU or converted to other LU

Description	Agroforestry systems
Perennials after deforestation Perennials converted to forest land	Please select Please select
Perennials converted to other LUs Perennials converted to other LUs	Please select

3.2.2. Perennial systems remaining perennial systems (total area mus

User notes	Agroforestry systems
	Please select

*The selection of "D"corresponds to a default (linear) dynamics of change. Other sele

3.3. FLOODED RICE SYSTEMS

3.3.1. Flooded rice systems from other land-use or converted to othe

Description	Cultivation period (days)
Rice after deforestation	113
Rice converted to forest land	113
Rice converted from non-forest LUs	113
Rice converted to non-forest LUs	113

Total flooded-rice systems (tCO2-e)

User notes	Cultivation period (days)
	113
	113
	113
	113
	113
	113
	113
	113
	113
	113

*The selection of "D"corresponds to a default (linear) dynamics of change. Other sele **In case of flooded rice the total area considered for emissions calculations may be

-annual systems such as cotton or sugarcane)				
U				
Management options for annua	al cropping systems			
Tillage management	Input of organic material ?			
Please select Please select Full tillage Please select	Please select Please select High C input, no manure Please select			
total area must remain constant) Management options for	annual cropping systems			
Tillage management	Input of organic material			
Full tillage Full tillage Reduced tillage Reduced tillage Reduced tillage Reduced tillage Reduced tillage Full tillage Full tillage Please select	Low C input Medium C input Low C input Low C input Medium C input Medium C input High C input, no manure Low C input High C input, no manure Please select			

ection options include "I" for immediate changes and "E" for exponential - please refer to the guideline

	or perennial cropping systems
Tillage	Input of
management	organic material
Please select	Please select
nain constant)	
Management options f	or perennial cropping systems
Tillage	Input of
management	organic material
Please select	Please select
	Please select
Please select	Please select
Please select Please select	FIEdSE SEIECL
Please select Please select Please select	Please select

r land-use (please fill 'Land-use change' module)

Please confirm total area of flooded rice remaining flooded rice (ha)

ection options include "I" for immediate changes and "E" for exponential - please refer to the guideline e greater than actual total land under flooded rice if multicropping seasons are in place. It is key to pro-

Inputs & investments

Coastal wetlands & Fish/Aqua.

Inland wetlands & Aqua.

If country-specific data are available, p

Residue	Yield	Start	Area (ha) Without	With
management	(t/ha/yr)			
Please select		0	0	0
Please select		0	0	0
Exported		0	0	630
Please select		0	0	0

		Area (ha)				
Residue management	Yield (t/ha/yr)	Start	Without	*	With	*
Exported		5,440	5,440	D	0	D
Exported		0	0	D	5,440	D
Exported		2,800	2,800	D	0	D
Exported		0	0	D	1,120	D
Retained		0	0	D	1,680	D
Retained		9,520	9,520	D	0	D
Retained				D	9,520	D
Please select		20,000	20,000	D	4,000	D
Please select		0	0	D	16,000	D
Please select		0	0	D	0	D
	Total (ha)	37,760	37,760		37,760	_

Total annual cropping systems (tCO2-e)

s for further explanation of these assumptions.

If country-specific data are available, p

	Area (ha))	
Residue/ Biomass burning	Yield (t/ha/yr)	Start	Without	With				
NO NO NO		0 0 0	0 0 2,000	0 0 0				
	-	U	0	0				
Residue/	Yield		Area (ha)		_			

Residue/	Yield					
Biomass burning	(t/ha/yr)	Start	Without	*	With	*
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
NO		0	0	D	0	D
	Total (ha)	0	0		0	
		Total pere	nnial croppi	ng sy	rstems (1	tCO2-e)
s for further explanation of	these assumption	IS.				

If country-specific data are available, please

Organia	Viold	Ai	rea (ha)		_
amendment	(t/ha/yr)	Start	Without	With	
Please select Please select Please select Please select		0 0 0	0 0 0 0	0 0 0 0	
		Flooded	-rice area (ha)		
Organic amendment	Yield (t/ha/yr)	Start	Without *	With	*
Please select Please select	Total (ha)**	0 0 0 0 0 0 0 0 0 0	0 [0 [0 [0 [0 [0 [0 [0 [0 [0 [D D D D D D D D D
0			Total flooded-	rice system:	s (tCO2-e)

s for further explanation of these assumptions. ovide the actual area under flooded rice in cell K122 to ensure correct area aggregation in the result
blease go	Tier 2	
Total emiss Without	ions (tCO ₂ eq) With	Balance
0 0 0 0	0 0 -1,562 0	0 0 -1,562 0
Total emiss	tions (tCO ₂ eq)	
Without	With	Balance
40,641 0 22,369 0 0 64,217 0	5,080 22,579 2,796 7,829 9,916 8,027 38,196 61,929	-35,561 ▼ 22,579 ▲ -19,573 ▼ 7,829 ▲ 9,916 ▲ -56,189 ▼ 38,196 ▲ -144,502 ▼
0	49,543 0	49,543 ▲ 0
0 0 333,658	49,543 0 204,333	49,543 ▲ 0 -129,325 ▼

olease go to	Tier 2	
Total emiss	sions (tCO ₂ eq)	
Without	With	Balance
0 0 0 0	0 0 0 0	0 0 0 0
Total emiss	sions (tCO ₂ eq)	
Without 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	With 0 0 0 0 0 0 0 0 0 0	Balance 0 0 0 0 0 0 0 0 0 0 0
0	0	0

Total emiss	otal emissions (tCO2 eq)		
Without	With	Balance	
0	0	0	
0	0	0	
0	0	0	
0	0	0	

Total emissions (tCO₂ eq)

	Balance	With	Without
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
0		0	0
			ts
0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0

3.1. ANNUAL CROPPING SYSTEMS (to be used also for pluri-annual syst

3.1.1. Annual cropping systems from other LU or converted to other LU

	Main season o
Description	Soil carbon (t(
	tC/ha
	Default
Annuals after deforestation	0.0
Annuals converted to forest land	0.0
Annuals converted from non-forest LUs	19.3
Annuals converted to non-forest LUs	0.0

3.1.2. Annual cropping systems remaining annual cropping systems (total area mus

	Main season
	Soil
	tC/ha
	Default
#REF!	21.00
Component 2 - Seed production	21.00
#REF!	21.00
#REF!	21.00
#REF!	21.00
Component 2 - Seed production	21.00
Component 2 - Fodder production Improvmente	21.00
Component 2 - Fodder production Improvmente	21.00
#REF!	21.00
Component 2 - Fodder production Improvmente	0.00

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values auto

3.2. Perennial cropping systems

3.2.1. Perennial systems from other LU or converted to other LU

	Above-ground
	tC/ha/yr
Perennial systems from (or to) other land uses	Default
Perennials after deforestation	0.00
Perennials converted to forest land	0.00
Perennials converted from non-forest LUs	0.00
Perennials converted to non-forest LUs	0.00

3.2.2. Perennial systems remaining perennial systems (total area must remain cons

	Above-groun
Perennial systems remaining perennial systems	tC/ha/yr
	Default
Please select	0.00

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values autc

3.3. Flooded rice systems

3.3.1. Flooded rice systems from other land-use or converted to other land-use (ple

Flooded rice systems from (or to) other LU	Cultivation days	period
	Default	Tier 2
Rice after deforestation	113	
Rice converted to forest land	113	
Rice converted from non-forest LUs	113	
Rice converted to non-forest LUs	113	

3.3.2. Flooded rice systems remaining flooded rice systems

Flooded rice syst remaining rice systems	Cultivation period days				
Description	Default	Tier 2			
	113				
	113				
	113				
	113				
	113				
	113				
	113				
	113				
	113				
	113				

Use this part only if you want to refine the analysis at Tier 2

IPCC default values are provided for your information only; EX-ACT will use Tier 2 values auto

tems such as cotton or sugarcane)

crop							
C/ha)	Tillage fa	actor	Input 1	Input factor		Residue/Biomass ava	
					t dm/ha		
Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2	
	0.00		0.00		3.18		
	0.00		0.00		3.18		
	1.00		1.04		3.18		
	0.00		0.00		3.18		

remain constant)

crop

•								
	Land use factor		Tillage factor		Input factor		Residue/Biomass ava t dm/ha	
Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2
15.20	0.92		1.00		0.95		3.18	
15.20	0.92		1.00		1.00		3.18	
15.20	0.92		0.99		0.95		3.18	
15.20	0.92		0.99		0.95		3.18	
15.20	0.92		0.99		1.00		3.18	
15.20	0.92		0.99		1.00		3.18	
15.20	0.92		0.99		1.04		3.18	
	0.92		1.00		0.95		3.18	
	0.92		1.00		1.04		3.18	
	0.00		0.00		0.00		3.18	

matically wherever specified.

ł		Below-ground tC/ha/yr		Below-groundSoil carbontC/ha/vrtC/ha		Ti	lage	factor
	Tier 2	Default	Tier 2	Default	Tier 2	Defa	ault	Tier 2
		0.00		0.0		0.0	00	
		0.00		0.0		0.0)0	
		0.00		0.0		0.0)0	
		0.00		0.0		0.0)0	
		0.00		0.0		0.0	00	

tant)

ł		Below-ground tC/ha/vr		Soil carbon tC/ha		Land use factor		Tillage factor	
	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	
		0.00		0.00		0.00		0.00	

matically wherever specified.

ase fill 'Land-use change' module)

				Daily emissi	on factor fo	r rice EF = EF	-basis x SF-	Before x CF
				EFc and EFi	are in kg CH	4 per ha per o	day	
Soil ca	arbon							
tC/ha	а			EFc		SFw		SFp
Default	Tier 2			Default	Tier 2	Default	Tier 2	Default
28.4				1.19		0.00		0.00
28.4				1.19		0.00		0.00
28.4				1.19		0.00		0.00
28.4				1.19		0.00		0.00
				Daily emissi	on factor fo	r rice EF = EF	-basis x SF-	Before x CF
EFc and EFi are in kg CH4 per ha per day								
Soil ca	arbon	Land use	factor					
tC/ha	а			EFc		SFw		SFp
Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2	Default
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
0.00		0.00		1.19		0.00		0.00
matically w	herever sp	ecified.						
Minor season crop Crop type Yield Residue management t/ha/yr Please select None None Please select None Please select None Please select Minor season crop Yield Crop type Residue t/ha/yr management Please select None None Please select

					Back
Input fa Default 0.00 0.00 0.00	actor Tier 2	Residues tdm/ha Default 10 10 10	burned Tier 2	Fire peri year Default 1 1 1	odicity Tier 2
0.00		10		1	
Input fa	actor	Residues tdm/ha	burned	Fire peri year	odicity
Default 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Tier 2	Default 10 10 10 10 10 10 10 10 10	Tier 2	Default 1 1 1 1 1 1 1 1 1 1	Tier 2

Back	

-or Amendr	ment						
Tier 2	SFo Default	Tier 2	EFi Default	Tier 2	Rice straw (t dm/ha Default	(Main seas) Tier 2	on crop)
	0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00 0.00		
-or Amendr	ment						
Tior 2	SFo	Tior 2	EFi	Tior 2	Rice straw (t dm/ha	(Main seas	on crop)
	0.00		0.00		0.00		

0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	
0.00	0.00	0.00	

	Вс	ack
Residue/B	iomass av	ailable
t dm/ha		
Default	Tier 2	
0.00		
0.00		
0.00		
0.00		

Residue/B	iomass ava	ailable
t dm/ha		
Default	Tier 2	
0.00		
0.00		
0.00		
0.00		
0.00		
0.00		
0.00		
0.00		
0.00		
0.00		

EX-ACT Version 9 Start

4.1. GRASSLAND MANAGEMENT

4.1.1. Grassland systems from other land-use or converted to other lar

Description

Grassland systems from (or to) other LU

Grasslands after deforestation Grasslands converted to forest land Grasslands after non-forest LUs Grasslands converted to non-forest LUs Start

Non-degraded

4.1.2. Grassland systems remaining grassland systems (total area mu

User notes	
	Start
	High intensity grazing Please select
	Please select
	Please select
	Please select
	Please select
	Please select
	Please select

*The selection of "D" corresponds to a default (linear) dynamics of change. Other selection options

4.2 LIVESTOCK AND MANURE MANAGEMENT

User notes

Livestock system#1 Livestock system#2 Livestock system#3 Livestock system#4 Livestock system#5 Livestock system#6 Livestock system#7 Livestock system#8 Livestock system#9 Livestock system#10 Livestock system#11

Со	mp	onei	nt 2.1	1.b. V	'acci	natio	on		
Со	mp	onei	nt 2.1	1.b. V	'acci	natio	n		

*The selection of "D" corresponds to a default (linear) dynamics of change. Other selection

Definitions of grassland management options

Non – degraded (Nominally managed)

High Intensity Grazing

Improved grassland

Improved grassland with medium inputs

Improved grassland with high inputs

Represents low or medium intensity ç above-ground vegetation, without sig

Represents high intensity grazing sys composition and possibly productivit degraded, but do not represent exces

Represents grassland which is sustai (or cutting and removal of vegetation) (e.g., fertilization, species improveme

Applies to improved grassland where

Applies to improved grassland where have been used (beyond that require

nd-use (please fill 'Land-use change' module)

Grassland management		Fire man	agement &
Without	With	With	out
		(y/n)	Year
		NO	5
		NO	5
		NO	5
Non-degraded		NO	5

ist remain constant)

Cropland management

Grassland management		Fire mar	agement &
Without	With	With	out Vear
High intensity grazing	Non-degraded	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5
Please select	Please select	NO	5

include "I" for immediate changes and "E" for exponential - please refer to the guidelines for further explanatio

Livestock categorie	s ?	Livestock productivity	?
Dairy sheep Goats Please select Please select Please select Please select Please select Please select Please select Please select Please select		Default	

options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for fi
& periodicity	Yield (t/ha/year)	Area (ha)
With (v/n) Year	Start Without Wi	'ith Start Without
NO 5 NO 5 NO 5 NO 5		0 0 0 0 0 0 315 315

s periodic	city	_	Yield (t/ha/year)		_	Area (ha)		
Wit (y/n)	th Year		Start	Without	With		Start	Without	*
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
NO	5						0	0	D
	-								

Total gras

n of these assumptions.

Production (meat, milk, etc)			Livestock management			
in tonnes of	product per	year	N	umber of he	ads	
Start	Without	With		Start	Without	
				0	0	D
				0	0	D
				0	0	D
				0	0	D
				0	0	D
				0	0	D
				0	0	D
				0	0	D
				0	0	D
				0	0	D
				0	0	D
					-	

urther explanation of these assumptions.

If country-s	pecific data are available, ple	ease go to Tier 2:	
	Total emissions (tC	02-е)	
With	Without	With	
0 0 0 0	0 0 0 0	0 0 0 0	

		Total emissions (tCO2-e)				
With		Without	With			
0	D	0	0			
0	D	0	0			
0	D	0	0			
0	D	0	0			
0	D	0	0			
0	D	0	0			
0	D	0	0			
0	D	0	0			
0	D	0	0			
0	D					
sland syste	ems (tCO2-e)	0	0			

If country-specific data are available, please go to Tier 2:					
		<u>Total emissions (tC</u>	<u>O₂ eq)</u>		
With		Without	With		
34,345	D	0	117,597		
27,476	D	0	86,191		
0	D	0	0		
0	D	0	0		
0	D	0	0		
0	D	0	0		
0	D	0	0		
0	D	0	0		
0	D	0	0		
0	D	0	0		
0	D	0	0		
Total livesto	ck (tCO2-e)	0	203,788		

Tier 2	
Balance	
0 0 0 0	
Balance	
0 0 0 0 0 0 0 0	
0	-

Tier 2	
Balance	
117,597 ▲ 86,191 ▲ 0 0 0 0 0 0 0 0 0 0	
203,788 🔺	

4.1. GRASSLAND MANAGEMENT

4.1.1. Grassland systems from other land-use or converted to other land-use (please fi

Description	Soil carbon stocks		
Grassland systems from (or to) other LU	Default	Tier 2	
Grasslands after deforestation	01.0		
Grasslands converted to forest land Grasslands after non-forest LUs	21.0		
Grasslands converted to non-forest LUs	15.4		
4.1.2. Grassland systems remaining grassland systems (total are	ea must ren	nain const	
	Soil carbo Star	n stocks (t	
Grasslands remaining grasslands	Default	Tier 2	
	18.9 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0		

Use this part only if you want to refine the analysis at Tier 2

IPCC default values are provided for your information only; EX-ACT will use Tier 2 values

4.2 LIVESTOCK AND MANURE MANAGE

Livestock categories	Livestock productivity	E	Enteric fermentatio		
		ŀ	kgCH4/head/year		
			Default	Start	
Dairy sheep	Low-productivity		5.0		
Goats	Default		5.0		
Please select		0	0.0		
Please select		0	0.0		
Please select		0	0.0		
Please select	Default		0.0		
Please select	Default		0.0		
Please select	Default		0.0		
Please select	Default		0.0		
Please select	Default		0.0		
Please select	Default		0.0		

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values

ll 'Land-use change' module)

		AGB (t d.m./ha)			Combustion factor (%)
out	With				
Tier 2	Default	Tier 2	Default	Tier 2	Default Tier 2
	21.0		0		0.77
	21.0		0		0.77
	21.0		0		0.77
	15.4		2.3		0.77
	ut Tier 2	ut Wit Tier 2 Default 21.0 21.0 21.0 15.4	out With Tier 2 Default Tier 2 21.0 21.0 21.0 15.4	AGB (t d.n out With Tier 2 Default Tier 2 Default 21.0 0 21.0 0 21.0 0 15.4 2.3	AGB (t d.m./ha)AGB (t d.m./ha)outWithTier 2DefaultTier 2DefaultTier 221.00021.00021.00015.42.3

tant)

tC/ha)				AGB (t d.m./ha)			bustio	n factor ((%)
Witho	out	With							
Default	Tier 2	Default	Tier 2	Default	Tier 2	Defa	ault	Tier 2	
18.9		21.0		2.3		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		
21.0		21.0		0.0		0.7	7		

automatically wherever specified.

Back

MENT

Manure manage

om ma /head/y	nure n
/head/y	
	year
ılt S	Start
	-
3U 33 30 30 30 30 30 30 30 30 30 30	ault S 3ult S 13 13 10 10 10 10 10 10 10 10 10 10

ement

J		N2O from manure mngt.					
		kgN20/head/year					
Without With	า	Default	Start	Without	With		
		0.00					
		0.00					
		0.00					
		0.00					
		0.00					
		0.00					
		0.00					
		0.00					
		0.00					
		0.00					
		0.00					

elementary manure ma	anagement syster	m ?		
	Emission fa	ctor CH4	Emission fa	ctor N2O
	kgCH4/heac	l/year	kgN20/head	d/year
	Default	Tier 2	Default	Tier 2
Regional share				
Composting	0.00		0.02	
Composting	#REF!		#REF!	
Regional share				
Composting	#REF!		#REF!	
Composting	#REF!		#REF!	
Please select				

5.1 FOREST DEGRADATION & MANAGEMEN

Type of forest vegetation	For	Forest degradation lev			
that will be managed	Start	Without			
Please select	Please select	Please select			
Please select	Please select	Please select			
Please select	Please select	Please select			
Please select	Please select	Please select			
Please select	Please select	Please select			
Please select	Please select	Please select			
Please select	Please select	Please select			
Please select	Please select	Please select			

*The selection of "D" corresponds to a default (linear) dynamics of change. Other selection options include

IT

/e	I	Fire occ	urrence	Fire peri	iodicity	Impact (%	Impact (% burnt)		
	With	Without (y/n)	With (y/n)	Without (year)	With (year)	Without	With		
	Please select	NO	NO	1	1	100%	100%		
	Please select	NO	NO	1	1	100%	100%		
	Please select	NO	NO	1	1	100%	100%		
	Please select	NO	NO	1	1	100%	100%		
	Please select	NO	NO	1	1	100%	100%		
	Please select	NO	NO	1	1	100%	100%		
	Please select	NO	NO	1	1	100%	100%		
	Please select	NO	NO	1	1	100%	100%		

"I" for immediate changes and "E" for exponential - please refer to the guidelines for further explana

nent	Inland wetlands & Aqua.	Coastal wetlands & Fish/Aqua.	Inputs & investm

If country-specific data are available, please Tier 2

Forested area (ha) To					Total emissions (t0	СО2-е)
Start	Without		With		Without	With
		*		*		
0	0	D	0	D	0	0
0	0	D	0	D	0	0
0	0	D	0	D	0	0
0	0	D	0	D	0	0
0	0	D	0	D	0	0
0	0	D	0	D	0	0
0	0	D	0	D	0	0
0	0	D	0	D	0	0
Total forest	degradation a	nd ma	nageme	nt (tCO2-e)) 0	0
ation of these assumpti	ons.					

5.1 FOREST DEGRADATION & MANAGE

Forest degrad

Type of forest vegetation		
that will be degraded	Sta	art
	Default	Tier 2
Please select	?	

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will

EMENT

dation level (in % of biomass lost)			Carbon pools of non-degraded forest (all values are in					
				Above-g	round	Below-gi	round	Litte
W	ithout	W	ith					
Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2	Default
?		?		0.0		0.0		0.0
?		?		0.0		0.0		0.0
?		?		0.0		0.0		0.0
?		?		0.0		0.0		0.0
?		?		0.0		0.0		0.0
?		?		0.0		0.0		0.0
?		?		0.0		0.0		0.0
?		?		0.0		0.0		0.0

use Tier 2 values automatically wherever specified.

Back

n tC/ha) Soil management and degradation								
r Dead wood			Soil carb	Soil carbon		Land use, mngt and input facto		
			tC/ł	a		Start	Without	
Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2	Tier 2	
	0.0		0.0		1.0			
	0.0		0.0		1.0			
	0.0		0.0		1.0			
	0.0		0.0		1.0			
	0.0		0.0		1.0			
	0.0		0.0		1.0			
	0.0		0.0		1.0			
	0.0		0.0		1.0			

*The selection of "D" corresponds to a default (linear) dynamics of c

6.1.2 Organic soil management practices asso

Final land-use

Please select Please select Please select Please select Please select Please select

*The selection of "D" corresponds to a default (linear) dynamics of c

6.1.3 Organic soil management practices asso

User notes

*The selection of "D" corresponds to a default (linear) dynamics of c

6.2 LAND MANAGEMENT ON ORGANIC SOIL

6.2.1 Forest management

Type of forest vegetation	Forest degradation l
that will be managed	Start
Please select	Please select

*The selection of "D" corresponds to a default (linear) dynamics of c

6.2.2 Other land-use management

User notes

*The selection of "D" corresponds to a default (linear) dynamics of c

6.4 INLAND WATERBODIES

For Mineral soil only - This accounts for CH4 emissions from (i) canals for water sup For aquaculture in coastal wetland based pond go to "Coastal wetlands"

User notes

*The selection of "D" corresponds to a default (linear) dynamics of c
Cropland Grassland & changes management Livestock Forest management

ciated with deforestation

Final land-use after deforestation		Forested are	a (ha)	
Land-use type	Agroforestry system			
		Start	Without	*
Please select		0	0	D
Please select		0	0	D
Please select		0	0	D
Please select		0	0	D
Please select		0	0	D
Please select		0	0	D

hange. Other selection options include "I" for immediate changes and "E" for exponential - please refer 1

ciated with afforestation / reforestation

Initial land-use

Land-use cover

Agroforestry system

Reforested area (

	Without	ut *
Please select	0	D

hange. Other selection options include "I" for immediate changes and "E" for exponential - please refer 1

ciated with other land-use changes

Land-use cover		Converted a	ireas
Initial land-use	Final land-use		
		Without	*
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D
Please select	Please select	0	D

hange. Other selection options include "I" for immediate changes and "E" for exponential - please refer 1

evel		Forested are	ea (ha)	
Without	With	Start	Without	
				*
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D
Please select	Please select	0	0	D

hange. Other selection options include "I" for immediate changes and "E" for exponential - please refer 1

	Total area (ha)	
Land-use cover	Start	Without	
			*
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D

hange. Other selection options include "I" for immediate changes and "E" for exponential - please refer t

Type of peat	Surface	where peat is extracted
	Star	t Without
		*
Please select	0	0 D
Please select	0	0 D
Please select	0	0 D
Please select	0	0 D

hange. Other selection options include "I" for immediate changes and "E" for exponential - please refer t

pply or navigation, (ii) ditches for agriculture (irrigation, drainage, etc.), and (iii) ponds for agriculture and aquaculture

Waterbody type	Tota area of	waterbodies	(ha)
	Start	Without	*
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D
Please select	0	0	D

Inputs & investments

Coastal wetlands & Fish/Aqua.

Inland wetlands & Aqua.

If country-specific data

Det

		Deforested area (l	ha)	Management pra	ctices following co
				Fire	
With	*			Biomass	Soil
0	D	0	0	Y/N	Y/N
0	D	0	0	Y/N	Y/N
0	D	0	0	Y/N	Y/N
0	D	0	0	Y/N	Y/N
0	D	0	0	Y/N	Y/N
0	D	0	0	Y/N	Y/N

to the guidelines for further explanation of these assumptions.

If country-specific data

Management practices following cc Fire

(ha)

/ith	*
0	D
0	D
0	D
0	D
0	D
0	D

to the guidelines for further explanation of these assumptions.

If country-specific data

(ha)		Management pra	ctices following co
		Fire	
With	*	Residues	Soil
0	D	Y/N	Y/N
0	D	Y/N	Y/N
0	D	Y/N	Y/N
0	D	Y/N	Y/N
0	D	Y/N	Y/N
0	D	Y/N	Y/N

to the guidelines for further explanation of these assumptions.

	Management practices following conversion				
With		Fire		Water table leve	l
	*	Biomass	Soil	Start	Without
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?

to the guidelines for further explanation of these assumptions.

				If cc	ountry-specific
		Management pract	ices following co	onversion	
With		Fire		Water table leve)
	*	Residues	Soil	Start	Without
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	?	?
0	D	Y/N	Y/N	2	?

to the guidelines for further explanation of these assumptions.

If country-specific data

d (ha)		% area occupied by	y ditches	
With	*	Start	Without	With
0	D	0%	0%	0%
0	D	0%	0%	0%
0	D	0%	0%	0%
0	D	0%	0%	0%

to the guidelines for further explanation of these assumptions.

			If country-specific dat
		Trophic class	
With	*	·	
0	D	Please select	
0	D	Please select	
0	D	Please select	
0	D	Please select	
0	D	Please select	
0	D	Please select	
0	D	Please select	
0	D	Please select	

a are available, pl	ease go to Tier 2:	Tier 2 biomass	Tier 2 drain	hage	Tier 2 fire
onversion					
Water table level		%	area occupied by	ditches	
Start ? ?	Without ? ?	With ? ?	Start V	Vithout	With
? ? ?	???????????????????????????????????????	? ? ?			
?	? ?	?			
		Total c	leforestation on c	organic s	soils (tCO2-e)
a are available, pl	ease go to Tier 2:	Tier 2 biomass	Tier 2 draina	age	Tier 2 fire

onversion

Water table level

% area occupied by ditches

Without	With	Without	With
?	?		
?	?		
?	?		
?	?		
?	?		
?	?		
·	·		

Total af/reforestation on organic soils (tCO2-e)

a are available, ple	ease go to Tier 2:	Tier 2 biomass		Tier 2 drainage		Tier 2 fire
onversion						
			% a	area occupied by ditc	hes	
	Without	With		Withou	t	With
	?	?				
	?	2				
	2	2				
	2	2				
	2	2				
	2	2				
	:	:				
-		Total other land	d-us	e changes on organio	c soi	ls (tCO2-e)

lata are available,	please go to Tier 2:	Tier 2 biomass	Tier 2 dra	ainage	Tier 2 fire
	% area occupied by	ditches			
With	Start	Without	With		
?					
?					
?					
?					
?					
?					
			Total forest degr	adation and	d managemen

a are available, p	lease go to Tier 2:	Tier 2 biomass	Tier 2 drainage	Tier 2 fire
	0/ · · · · · · · · · · · · · · · · · · ·			
\\/i+b	% area occupied by	ditches	\\/i+b	
2	Start	vvitnout	VVILII	
? 2				
: 2				
: ?				
?				
?				
			Total other land-us	se managemen

are available, ple	ease go to Tier 2:	Tier 2 dra	inage		
Height of extraction	on (cm)		Quantity o	f peat produce	ed
			Tonne per	year	
Start	Without	With	Start	Without	With
50	50	50	0	0	0
50	50	50	0	0	0
50	50	50	0	0	0
50	50	50	0	0	0
				Tota	l peat extracti

a are available, ple	ease go to Tier 2:	Tier 2	
Fish production (to	onne/ha/year)		
			Total inland waterbodies on mineral so

Without	With	Balance	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0 0	

on soil	Tier 2 rewetti	ng	
	Total emissions (i	:CO2-e)	
	Without	With	Balance
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

on soil	Tier 2 rewetti	ng			
Total emissions (tCO2-e)					
	Without	With	Balance		
	0	0	0		
	0	0	0		
	0	0	0		
	0	0	0		
	0	0	0		
	0	0	0		
	0	0	0		
it (1002-e)	U	0	0		

on soil	Tier 2 rewet	ting			
Total emissions (tCO2-e)					
	Without	With	Balance		
	0	0	0		
	0	0	0		
	0	0	0		
	0	0	0		
	0	0	0		
	0	0	0		
it (tCO2-e)	0	0	0		

	Total emissions ((tCO2-e)	
	Without	With	Balance
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	- 0
n (tCO2-e)	U	U	0

Without	With	Balance
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

6.1 LAND-USE CHANGE ON (

Type of vegetation that will be deforeste

Please select Please select Please select Please select Please select Please select

Use this part only if you want to refin IPCC default values are provided for

6.1.2 Organic soil manageme

Final land-use

Please select Please select Please select Please select Please select Please select

Use this part only if you want to refin IPCC default values are provided for

6.1.3 Organic soil manageme

Initial land-use

Please select Please select Please select Please select Please select Please select

Use this part only if you want to refin IPCC default values are provided for

6.2.1 Forest management

0= 0%, very low= 10%

Please select Please select Please select Please select Please select

Use this part only if you want to refin IPCC default values are provided for

DRGANIC SOIL

	Above-gro tC/h	und na	Below-gro tC/h	und na	Litte tC/h	r 1a
	Default	Tier 2	Default	Tier 2	Default	Tier 2
e the analysis at Tier 2 your information only; EX-ACT will	use Tier 2 \	values autor	natically wh	nerever spe	ecified.	

ent practi	ces asso	ciated with	afforestation / re	forestatic	on	
	Above-gr	ound biomas	s growth			Below-gr
	(≤20 ye	ears)	(> 20 yea	rs)		(≤ 20 y
	Default	Tier 2	Default	Tier 2		Default

tC/ha/yr	tC/ha/yr	Default
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0

e the analysis at Tier 2

your information only; EX-ACT will use Tier 2 values automatically wherever specified.

ent practices associated with other land-use changes

Above-gro tC/ł	ound na	Above Final land-use	• ground :C/ha	
Default	Tier 2	Defau	ılt Tie	er 2
0.0		Please select 0.0		
0.0		Please select 0.0		
0.0		Please select 0.0		
0.0		Please select 0.0		
0.0		Please select 0.0		
0.0		Please select 0.0		

e the analysis at Tier 2 your information only; EX-ACT will use Tier 2 values automatically wherever specified.

, low= 20%,	moderate	= 40%, large=	: 60%, extre	em= 80%			
For	est degrad	lation level (in % of bior	mass lost)			Carbo
Sta	rt	Witl	hout	Wi	th	Above-gr	ound
Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2
? ? ? ? ?		? ? ? ? ?		? ? ? ? ?		0.0 0.0 0.0 0.0 0.0 0.0	
e the analys your informa	is at Tier 2 ation only;	2 EX-ACT will (use Tier 2 v	values autor	matically wl	nerever specified.	

Back

Deadwood tC/ha Default Tier 2

ound biomass	growth		Litter	
ears)	(> 20 y	/ears)		
Tier 2	Default	Tier 2	Default	Tier 2

Default	tC/ha
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0

on pools of non-degraded forest (all values are in tC/ha)					
Below-gr	round	Litte	er	Dead wo	od
Default	Tier 2	Default	Tier 2	Default	Tier 2
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	
0.0		0.0		0.0	

Default	
0.0	
0.0	
0.0	
0.0	
0.0	
0.0	

			Back		
Fire occurre	ence and sev	verity			
Without			With		
Periodicity	Impact		Periodicity	Impact	
Year	% burnt		Year	% burnt	
1	100%		1	100%	
1	100%		1	100%	
1	100%		1	100%	
1	100%		1	100%	
1	100%		1	100%	
1	100%		1	100%	

6.1.1 E

Please indic Use this pa IPCC defau

6.1.2 Ei

Please indic Use this pa IPCC defau

6.1.3 E

Please indic Use this pa IPCC defau

6.2.1 E

Please indic Use this pa IPCC defau

Please indic Use this pa IPCC defau

6.3 LAN

Use this pa IPCC defau

mission factors for drainage associated with deforestation

On-site emission factors					
Final land-use	CO2		O2 CH4		
	tC/ha/yr k		kgCH4/ha/yr		
	Default	Tier 2	Default	Tier 2	
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		

cate the dominant quality of peat, this can influence the emission factors above:

art only if you want to refine the analysis at Tier 2 ult values are provided for your information only; EX-ACT will use Tier 2 values automatica

mission factors for drainage associated with afforestation/ref

	On-site emission factors		
	CO2	CH4	
Final land-use	tC/ha/yr	kgCH4/ha/yr	

	Default	Tier 2	Default	Tier 2
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	

sate the dominant quality of peat, this can influence the emission factors above:

art only if you want to refine the analysis at Tier 2

ult values are provided for your information only; EX-ACT will use Tier 2 values automatica

mission factors for drainage associated with other land-use ch

On-site emission factors					
	CC)2	С	H4	
Final land-use	tC/ha/yr		kgCH4/ha/yr		
	Default	Tier 2	Default	Tier 2	
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		
Please select	0.00		0.00		

cate the dominant quality of peat, this can influence the emission factors above:

art only if you want to refine the analysis at Tier 2

ult values are provided for your information only; EX-ACT will use Tier 2 values automatica

	On-site en	nission fact	tors	
	CC)2	С	H4
Final land-use	tC/ha/yr		tC/ha/yr kgCH4/ha/yr	
	Default	Tier 2	Default	Tier 2
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	
Please select	0.00		0.00	

cate the dominant quality of peat, this can influence the emission factors above:

art only if you want to refine the analysis at Tier 2

ult values are provided for your information only; EX-ACT will use Tier 2 values automatica

mission factors for drainage associated with other land-use m

	On-site emission factors				
	C02		CH4		
Land-use cover	tC/ha/yr		tC/ha/yr		
	Default	Tier 2	Default	Tier 2	
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		

cate the dominant quality of peat, this can influence the emission factors above:

art only if you want to refine the analysis at Tier 2

ult values are provided for your information only; EX-ACT will use Tier 2 values automatica

	On-site emission factors					
	CO2		CH4			
Type of peat	tC/ha/yr		tC/ha/yr tC/ha/yr		tC/ha/yr	
	Default	Tier 2	Default	Tier 2		
Please select	0.0		0.0			
Please select	0.0		0.0			
Please select	0.0		0.0			
Please select	0.0		0.0			

art only if you want to refine the analysis at Tier 2 ult values are provided for your information only; EX-ACT will use Tier 2 values automatica

AND WATERBODIES

CH4 emission factor from waterbodies					
Waterbody type	kgCH4/ha/yr				
	Sta	art	Witho	ut	
	Default	Tier 2	Default	Tier 2	
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		
Please select	0.0		0.0		

Back

N20		DOC	;	CH4	ļ
kgN2O-N/ha/yr		tC/ha/yr		kgCH4/ha	/yr
Default	Tier 2	Default	Tier 2	Default	Tier 2
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
	Nutrient po	or			

orestation		Back	
	Off-site emission fac	ctors	
N20	DOC	CH4	
kgN2O-N/ha/yr	tC/ha/yr	kgCH4/ha/yr	

Default	Tier 2	Default	Tier 2	Default	Tier 2		
0.00		0.00		0.00			
0.00		0.00		0.00			
0.00		0.00		0.00			
0.00		0.00		0.00			
0.00		0.00		0.00			
0.00		0.00		0.00			
	Nutrient p	oor					
Illy wherever specified.							

nanges					Back	
		Off-site en	nission fac	tors		
N20		DC	C	CH		
kgN2O-N/ha/yr		tC/ha/yr		kgCH4/ha/yr		
Default	Tier 2	Default Tier 2		Default	Tier 2	
0.00		0.00		0.00		
0.00		0.00		0.00		
0.00		0.00		0.00		
0.00		0.00		0.00		
0.00		0.00		0.00		
0.00		0.00		0.00		
	Nutrient poo	or				
Illy wherever spec	cified.					

				B	ack
		Off-site en	nission fac	tors	
N20		DC	C	CH4	
kgN2O-N/ha/yr		tC/h	tC/ha/yr		4/ha/yr
Default	Tier 2	Default	Tier 2	0	Default
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
0.00		0.00		0.00	
	Nutrient po	Jutrient poor			
Illy wherever spec	cified.				

anagement					Back	
		Off-site e	mission fa	ctors		
N20		DO	С	CH4		
tC/ha/yr		tC/ha/yr			tC/ha/yr	
Default	Tier 2	Default	Tier 2		Default	
0.0		0.0		0.00		
0.0		0.0		0.00		
0.0		0.0		0.00		
0.0		0.0		0.00		
0.0		0.0		0.00		
0.0		0.0		0.00		
	Nutrient p	oor				
Illy wherever spec	cified.					

	CO2 emiss					
N20		D	DOC		4	Peat densi
tC/ha/yr		tC/ha/yr			tC/ha/yr	t/m3
Default	Tier 2	Default	Tier 2	Default	Tier 2	Default
0.0		0.00		0.00		0.000
0.0		0.00		0.00		0.000
0.0		0.00		0.00		0.000
0.0		0.00		0		0.000
Illy wherever spe	ecified.					*lf ye

				Back
		Trophic st	ate	
				Mean annual [Chlo.a]
With		α		[µg/L]
Default	Tier 2	Default	Tier 2	
0.0		0.0		
0.0		0.0		
0.0		0.0		
0.0		0.0		
0.0		0.0		
0.0		0.0		
0.0		0.0		
0.0		0.0		

6.1.1 Emissions factors for fire on organic soils associated w

	Deforested	area (ha)	
Final land-use	Without	With	
Please select	0	0	
Please select	0	0	
Please select	0	0	
Please select	0	0	
Please select	0	0	
Please select	0	0	

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values

6.1.2 Emissions factors for fire on organic soils associated w

Converted areas

With

Without

Final land-use

Please select	0	0
Please select	0	0

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values

6.1.3 Emissions factors for fire on organic soils associated w

Final land-use	al land-use		
	Without	With	
Please select	0	0	
Please select	0	0	
Please select	0	0	
Please select	0	0	
Please select	0	0	
Please select	0	0	

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values

6.2.1 Emissions factors for fire on organic soils associated w

F inal land was	Area (ha)
Final land-use	
Please select	0

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values

6.2.2 Emissions factors for fire	e on orga	anic soils	s associ	ated w
Land-use cover	Area (ha)			
	Start	Without	With	
Please select	0	0	0	
Please select	0	0	0	
Please select	0	0	0	
Please select	0	0	0	
Please select	0	0	0	
Please select	0	0	0	

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values

	Back
sion from peat use	9
ity Tier 2	Use for energy?*
	Please select Please select Please select Please select
es it is automatica	lly accounted fro in the Inputs module

ith deforestation

Fire occurrence and severity

	Witho	but	With	ו
Type of fire	Periodicity	Impact	Periodicity	Impact
	Year	% burnt	Year	% burnt
Please select	1	100%	1	50%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%

automatically wherever specified.

ith afforestation/reforestation Fire occurrence and severity Without With Type of fire Periodicity Impact

	Year	% burnt	Year	% burnt
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%

automatically wherever specified.

ith other land-use change

Fire occurrence and severity

	Witho	out	With	l
Type of fire	Periodicity	Impact	Periodicity	Impact
	Year	% burnt	Year	% burnt
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%

automatically wherever specified.

Fire occurrence and severity

	Witho	out	With	l
Type of fire	Periodicity	Impact	Periodicity	Impact
	Year	% burnt	Year	% burnt
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%

automatically wherever specified.

ith other land-use management

Fire occurrence and severity

	Witho	out	With	l
Type of fire	Periodicity	Impact	Periodicity	Impact
	Year	% burnt	Year	% burnt
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%
Please select	1	100%	1	100%

automatically wherever specified.

Back

CO2		CO		CH4		Mean dry	matter
gC/kg d.r	n.	gCO/kg o	gCO/kg d.m. gCH4/kg d.m.		t dm/ha		
Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	

			Back	
Emission factors	fire			
CO2	CO	CH4	Mean dry matter	_
gC/kg d.m.	gCO/kg d.m.	gCH4/kg d.m.	t dm/ha	

Default	Tier 2							
464		210		21		0		
464		210		21		0		
464		210		21		0		
464		210		21		0		
464		210		21		0		
464		210		21		0		

							Back
Emission	factors fire	!					
CO2	2	CO		CH4		Mean dry	matter
gC/kg d.	m.	gCO/kg o	d.m.	gCH4/kg	g d.m.	t dm/	ha
Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		U	

Back

gC/kg d.m.gCO/kg d.m.gCH4/kg d.m.t dm/haDefaultTier 2DefaultTier 2DefaultTier 246421021004642102101464210210046421021004642102100464210210046421021004642102100	CO2	-	CO		CH4		Mean dry r	natter
Default Tier 2 Default Tier 2 Default Tier 2 Default Tier 2 464 210 21 0 0 464 210 21 0 0 464 210 21 0 0 464 210 21 0 0 464 210 21 0 0 464 210 21 0 0 464 210 21 0 0 464 210 21 0 0	gC/kg d.	m.	gCO/kg d	l.m.	gCH4/kg	d.m.	t dm/l	าล
46421021046421021046421021046421021046421021046421000	Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2
464210210464210210464210210464210210	464		210		21		0	
464210210464210210464210210	464		210		21		0	
464210210464210210	464		210		21		0	
464 210 21 0	464		210		21		0	
	464		210		21		0	
464 210 21 0	464		210		21		0	

						В	ack
Emission 1	factors fire	!					
CO2	-	CO		CH4		Mean dry	matter
gC/kg d.i	m.	gCO/kg d.m.		/kg d.m. gCH4/kg d.m.		t dm/	ha
Default	Tier 2	Default	Tier 2	Default	Tier 2	Default	Tier 2
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	
464		210		21		0	

6.1.1. Rewetting associated with defores

	On site em
Type of vegetation	CO2 on sit
	tC/ha/yr
Please select	0.0

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only;

6.1.2. Rewetting associated with afforest

Final land-use

On site em

	tC/ha/yr
Please select	0.0

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only;

6.1.3 Rewetting associated with other lar

Final land upo	On site or
Filial lanu-use	On site en
	CO2 on sit
	tC/ha/yr
Please select	0.0

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only;

6.2.1 Rewetting associated with forest m

Final land-use	On site em
	CO2 on sit
	tC/ha/yr
Please select	0.0

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only;

6.2.2 Rewetting associated with other lar

Land-use cover	On site em
	CO2 on sit
	tC/ha/yr
Please select	0.0

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only;
Back

CH4 on-site		N20		DOC off-si	te	
kg CH4-C/ha	a/yr	kg N2O-N/	/ha/yr	tC/ha/yr		
0		0		0.00		
0		0		0.00		
0		0		0.00		
0		0		0.00		
0		0		0.00		
0		0		0.00		
				Nu	trient poor	soil

EX-ACT will use Tier 2 values automatically wherever specified.

ation/reforestation			Back
iissions factor		Off-site emission fa	actor
CH4 on-site	CH4 on-site N20		

kg CH4-C/	'ha/yr	kg N2O-N/	/ha/yr	tC/I	ha/yr	
0		0		(0.00	
0		0		(0.00	
0		0		(0.00	
0		0		(0.00	
0		0		(0.00	
0		0		(0.00	

Nutrient poor soil

Back

EX-ACT will use Tier 2 values automatically wherever specified.

nd-use change

CH4 o	n-site	N20		DOC of	f-site	
kg CH	4-C/ha/yr	kg N2O-N/	/ha/yr	tC/ha/y	r	
0		0		0.00		
0		0		0.00		
0		0		0.00		
0		0		0.00		
0		0		0.00		
0		0		0.00		
					Nutrient poor soil	

EX-ACT will use Tier 2 values automatically wherever specified.

Back

hissions fa	ctor				Off-site er	nission fac	tor
	CH4 on-sit	te	N20		DOC off-si	te	
	kg CH4-C/	'ha/yr	kg N2O-N,	/ha/yr	tC/ha/yr		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
					Nu	trient poor	soil

EX-ACT will use Tier 2 values automatically wherever specified.

nd-use management

nissions fa	ctor				Off-site en	nission fac [.]	tor
	CH4 on-site		N20		DOC off-si	te	
	kg CH4-C/	ha/yr	kg N2O-N/	′ha/yr	tC/ha/yr		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
	0		0		0.00		
					Nu	trient poor	soil

EX-ACT will use Tier 2 values automatically wherever specified.

*The selection of "D" corresponds to a default (linear) dynamics of change. Other selection

7400 .						
7.1.2 Drainage						
Please specify area in the "Extraction and Excavation" module above.						
Type of vegetation % drained						
	Start		Without	*		
Please select	0%		0%	D		
Please select	0%		0%	D		
Please select	0%		0%	D		
Please select	0%		0%	D		
Please select	0%		0%	D		
Please select	0%		0%	D		

*The selection of "D" corresponds to a default (linear) dynamics of change. Other selection

7.1.3 Rewetting & revegetation

Type of vegetation	Area re	wetted
	Withou	ut *
Please select	0	D

*The selection of "D" corresponds to a default (linear) dynamics of change. Other selection

Fish category

7.2. Coastal and marine fisheries management

Inputs & Investments module can be used to complement this section Fishing operations (based on fuel use intensity, FUI, values)

Gear Category

% with refrige
Start
0%
0%

Please select	Please select	0%	
Please select	Please select	0%	
Please select	Please select	0%	
Please select	Please select	0%	
Please select	Please select	0%	
Please select	Please select	0%	

On-board leakage from refrigeration systems

Total catch with refrigerant systems (fishes, etc.)Emissions from production of ice produced inshore% of Total cate
StartTotal artisanal and coastal catch

*The selection of "D" corresponds to a default (linear) dynamics of change. Other selection

7.3. Coastal wetland-based aquaculture

Inputs & Investments module can be used to complement this section

CH4 and N2O emissions from ponds

Waterbody type	Trophic class				
Please select	Please select				
Please select	Please select				
Please select	Please select				
Please select	Please select				
Please select	Please select				
Please select	Please select				
Emissions from feeds					

User note	Waterbody type
	Please select

*The selection of "D" corresponds to a default (linear) dynamics of change. Other

Cropland management	Grassland & Livestock	Forest management

es, tidal marsh and seagrass meadow)

of aquaculture or salt production)

	A	Area excavated (ha)		Maximum are	a available for drair
With		Without	With	Start	Without
0%		0	0	0	0
0%		0	0	0	0
0%		0	0	0	0
0%		0	0	0	0
0%		0	0	0	0
0%		0	0	0	0

options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for further

.....

		Area drained (h	na)	
With	*	Start	Without	With
0%	D	0	0	0
0%	D	0	0	0
0%	D	0	0	0
0%	D	0	0	0
0%	D	0	0	0
0%	D	0	0	0

options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for further

l (ha)	Percentage of nominal biomass restored				
With	*	Without	With		
0	D	0%	0%		
0	D	0%	0%		
0	D	0%	0%		
0	D	0%	0%		
0	D	0%	0%		
0	D	0%	0%		

options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for further

rant syster	ns	FUI manage	ement
Without	With	Without	With
0%	0%	0%	0%
0%	0%	0%	0%
0%	0%	0%	0%
0%	0%	0%	0%
0%	0%	0%	0%
0%	0%	0%	0%
		100% = Nor	ninal FUI (see tier 2

ch preserved by ice produced inshore Without With

options include "I" for immediate changes and "E" for exponential - please refer to the guidelines for further

Tota area of waterbodies (ha)

Start	Without	*	With	*
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D

selection options include "I" for immediate changes and "E" for exponential - please refer to the gu

Inputs & investments

De

Coastal wetlands & Fish/Aqua.

Inland wetlands & Aqua.

If country-specific data are available, please

nage	Total emissions (tCO2-e
With	Without
0	0
0	0
0	0
0	0
0	0
0	0

Total for extraction and excavation (tCO2-e)

explanation of these assumptions.

Total emissions (tCO2-e

- Without 0
 - 0

- 0
- 0
- 0
- 0

Total for drainage (tCO2-e)	0
explanation of these assumptions.	
	Total emissions (tCO2-€
	Without
	0
	0
	0
	0
	0
	0
Total for rewetting & revegetation (tCO2-e)	0
explanation of these assumptions.	

If country-specific data are available, please

T	otal catch pe Start	er year (tonne/ye Without * D D D D D D D D	ear) With	* D D D D D D	Total emissions (tCO2-€ Without 0 0 0 0 0 0 0 0
	Start	Without	With		Without

	0	0	0	0
	Start	Without	With	Without
	0	0	0	0
Total fo	or coastal and	d marine fisheri	es (tCO2-e)	0
explanation of th	nese assumptio	ons.		

If country-specific data are available, please

Annual production (tonne/year)

Start	Without	*	With	*
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D

Annual quantity of feeds (tonne/year)

Start	Without	*	With	*
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D
0	0	D	0	D

Total emissions (tCO2-€

Without	
0	
0	
0	
0	
0	
0	
Without	

· · ·	1	~	1
0)		
()		
()		
()		
()		
()		

Total for coastal-based aquaculture (tCO2-e)

idelines for further explanation of these assumptions.

go to Tier 2:	Tier 2
e)	Balance
With	0
0	0
0	0
0	0
0	0
0	0
0	0

3)	Balance
With	
0	0
0	0
0	0
0	0
0	0
0	0

0	0	_

3)	Balance
With	
0	0
0	0
0	0
0	0
0	0
0	0
0	0

go to Tier 2:	Tier 2
e) With 0 0 0 0 0 0	Balance 0 0 0 0 0 0 0
With	

0	0	
With O	0	
0	0	

go to Tier 2:	Tier 2	
e) With 0 0 0 0 0 0 0	Balance 0 0 0 0 0 0 0	
With 0 0 0 0 0 0	0 0 0 0 0 0	

7.1 MANAGEMENT OF COASTAL WETLANDS (mangroves, tida

7.1.1. Extraction and excavation (port construction, construction of aqu All values are in tC/ha

Type of vegetation	Above-gro	Below-ground		
	Default	Tier 2	Default	Tier 2
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values au

7.1.2 Drainage				
	All values	are in tC/	'ha	
Type of vegetation	Above-gro	Above-ground		und
	Default	Tier 2	Default	Tier 2
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values au

7.1.3 Rewetting & revegetation				
	All values	are in tC	/ha	
Type of vegetation	Above-ground		Below-ground	
	Default	Tier 2	Default	Tier 2
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	
Please select	0.0		0.0	

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values au

7.2. Coastal and marine fisheries management

		Fuert
Fish category	Gear Category	Unit
Please select	Please select	l/tonr
Please select	Please select	l/tonr
Please select	Please select	l/tonr
Please select	Please select	l/tonr
Please select	Please select	l/tonr
Please select	Please select	l/tonr

Fuel use intensity - FUI (litre/t ca

Unit	Default	
l/tonne	0	Gear speci

On-board leakage from refrigeration systems			
	Quantity lost (kg refrigerant)		
	Default	Tier 2	
Refrigerant lost per tonne of landed catch	0.023		
Emissions from production of ice produced ashore			
	Quantity (tonne)		
	Default	Tier 2	
Quantity of ice (tonne) per tonne of catch	2.8		

Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values au

7.3. Coastal wetland-based aquaculture

		CH4 emission factor from waterbodies				
		kgCH4/ha	/yr			
		Sta	art	Without		
Waterbody type	Trophic state	Default	Tier 2	Default	Tier 2	
Please select	Please select	0.0		0.0		
Please select	Please select	0.0		0.0		
Please select	Please select	0.0		0.0		
Please select	Please select	0.0		0.0		
Please select	Please select	0.0		0.0		
Please select	Please select	0.0		0.0		

Waterbody type

Please select Please select Please select Please select Please select Use this part only if you want to refine the analysis at Tier 2 IPCC default values are provided for your information only; EX-ACT will use Tier 2 values au

I marsh and seagrass meadow)

aculture or salt production)

Litter		Deadwood		Type of soil	Soil (1 m	1 m depth)		
Default	Tier 2	Default	Tier 2		Tier	Default	Tier 2	
0.0		0.0		Mineral	IPCC	0		
0.0		0.0		Mineral	IPCC	0		
0.0		0.0		Mineral	IPCC	0		
0.0		0.0		Mineral	IPCC	0		
0.0		0.0		Mineral	IPCC	0		
0.0		0.0		Mineral	IPCC	0		

Itomatically wherever specified.

Litte Default	r Tier 2	Deadwood Default	l Tier 2	Type of soil	Soil (1 m o Tier	depth) Default	Tier 2
0.0		0.0		Mineral	IPCC	0	
0.0		0.0		Mineral	IPCC	0	
0.0		0.0		Mineral	IPCC	0	
0.0		0.0		Mineral	IPCC	0	
0.0		0.0		Mineral	IPCC	0	
0.0		0.0		Mineral	IPCC	0	

Itomatically wherever specified.

Litte	er	Deadwood		Average salinity	EF CO2 (to	C/ha/yr)
Default	Tier 2	Default	Tier 2		Default	Tier 2
0.0		0.0		<18	0.00	
0.0		0.0		<18	0.00	
0.0		0.0		<18	0.00	
0.0		0.0		<18	0.00	
0.0		0.0		<18	0.00	
0.0		0.0		<18	0.00	

stomatically wherever specified.

				E	Emission factor (tCO2-e/m3)
				Ga	asoil/Diesel	2.60
atch)						
	Tier 2				Emission facto	or (tCO2eq/t catch)
	Start	Without	With		Start	Without
ific					0.00	0.00
ific					0.00	0.00
ific					0.00	0.00
ific					0.00	0.00
ific					0.00	0.00
ific					0.00	0.00
			Fotal fuel c	onsumption (m3/year)	0	0

GWP of refrigerant Default Tier 2 1780		Emission factor tCO2-e/t catch 0.4			
Flectricity (kWh) used per tonne of ice			Quantity (kWh/t ice) Default 60	Tier 2	E t
Country of origin of ice production		Please select			
Itomatically whereve	r specified.				

		Trophic state				
				Annual me	ean [C	hlo.a]
	With	α		[µg/l	_]	
Default	Tier 2	Default	Tier 2			
0.0		0.0				
0.0		0.0				
0.0		0.0				
0.0		0.0				
0.0		0.0				
0.0		0.0				
				(tCO	2-e/t f	eed)
				Def	fault	Tier 2
					0	
					0	

0	
0	
0	
0	
~	

Back

% C lost after excavation

Default	Tier 2
96%	
96%	
96%	
96%	
96%	
96%	

EF drainage (tC/ha/yr)

Default	Tier 2
0.0	
0.0	
0.0	
0.0	
0.0	
0.0	

EF CH4 (kgCH4/ha/yr) Default Tier 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

	Back	
With		
0.00		
0.00		
0.00		
0.00		
0.00		
0.00		
0		

Back

N2O EF from fish production (t N2O-N/t production)

Default	Tier 2
0.00169	
0.00169	
0.00169	
0.00169	
0.00169	
0.00169	

8.1 INPUTS (liming, fertilizers, pesticides)

Fertilizers	Amount appl
Lime application	Start
Limestone (tonnes per year)	0
Dolomite (tonne per year)	0
Not-specified (tonnes per year)	0
Synthetic fertilizers	
Urea (tonnes of Urea per year)	0
Synthetic N-fertilizers other than Urea (tonnes of N per year)	0
Phosphorus (tonnes of P2O5 per year)	0
Potassium (tonnes of K20 per year)	0
N-fertilizers on irrigated rice	
N-fertilizer in continously irrigated rice (tonnes of N per year)	0
N-fertilizer in wet and dry irrigated rice (tonnes of N per year)	0
Organic N-fertilizers	
Sewage	0
Compost	0
Rendering waste, brewery waste, guano	0
Pesticides	
Fungicides	0
Herbicides	0
Insecticides	0

Inputs	Irrigation	Infrastruct ure

8.2. ENERGY CONSUMPTION (electricity, fuel...) except f

Description and unit to report

	Quantity con
Electricity (MWh per year) Country of origin of electricity	Start
Please select	0
User defined (Tier 2)	0
Liquid or gaseous (in m3 per year)	
Please select	0
Mobile - Gasoil /Diesel Oil	0
Please select	0
Please select	0
User defined (Tier 2)	0
Solid (in tonnes of dry matter per year)	
Wood	0
Peat	0
Charcoal	0
Peat (from peatlands)	0

Description and unit to report	
Implementation of new irrigation systems Irrigation systems Surface with IRRS Please select Please select Please select	
Operational phase of groundwater irrigated systems	Su Start
Please select Please select Please select Please select	0 0 0 0

8.4 BUILDINGS & ROADS

Description and unit to report

Buildings and roads (in m2)

Please select Road (asphalt) Please select Please select

ied per year (in tonne)

Without	Ŧ	With	Ŧ
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
3,000	D	1,800	D
3,000	D	1,800	D
3,000	D	1,800	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D

Total emis	sions at field level	(tCO2-e)
CO2 emiss	sions	N20 em
Vithout	With	Without
0	0	-
0	0	-
0	0	-
0	0	0
-	-	122,925
-	-	-
-	-	-
-	-	0
-	-	0
-	-	0
-	-	0
-	-	0
-	-	-
-	-	-
-	-	-

or irrigation, i.e. see next section

sumed per year

Without	*	With	*
0 0	D D	0	D D
0	D	0	D
0	D	26	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D
0	D	0	D

Surfaces (in	ha)				
Without		With			
0 0 0 0		3,000 0 0 0			
rfaces (in ha)					
Without	*	With	*		Source of er Pum
0	D D	0 0 0	D D D		Please sele Please sele Please sele

Country of origin of electricity Please select

Surfaces (in m2)

Without

With

0 192,000 0 0 0 0
0 0 0 0 0
0 0

& Aqua.	Coastal wetlands &Fish/Aqua.	Inputs &	investments	Detailed results

If country-specific data a

issions	Emissions from pl	roduction,	nsfor (tCO2-0)
With	Without	With	
-	0 0 0	0 0 0	
0 73,755 - -	0 250,250 38,500 28,875	0 150,150 23,100 17,325	
0 0	0 0	0 0	
0 0 0	- - -	- - -	
- -	0 0 0	0 0 0	

If country-specific data a

Manufactured in the country

Total energy (tCO2-e)

If country-specific data a

Manufactured in the country

Over the main cro	p season	_
Gross Irrigation		-
Water		
Requirement	Depth H2O	
(in mm/year)	(in m)	
	1	

Total irrigation (tCO2-e)

If country-specific data a

Total buildings and roads (tCO2-e)

are available, ple	ase go to Tier 2:	Tier 2
Total emission	ıs (tCO2-e)	
Without	With	Balance
0	0	0
0	0	0
0	0	0
0	0	0
373,175	223,905	-149,270 ▼
38,500	23,100	-15,400 ▼
28,875	17,325	-11,550 ▼
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

440,550	264,330	-176,220 🔻

are available, plea	ase go to Tier 2:	Tier 2	
<u>Total emissio</u>	<u>ns (tCO2-e)</u>	Balance	
Without	With		
0 0	0 0	0 0	
0 0 0 0	0 1,248 0 0 0	0 1,248 ▲ 0 0 0	
0 0 0 0	0 0 0 0	0 0 0 0	
0	1,248	1,248 🔺	

are available, please go to Tier 2:

<u>Total emissio</u>	<u>ns (tCO2-e)</u>	Balance
Without	With	
0 0 0	271 0 0 0	271 ▲ 0 0 0
0 0 0 0	0 0 0 0	0 0 0 0
0	271	271 🔺

0	0	0	
0	14,080	14,080 🔺	
0	0	0	
0	0	0	
0	14,080	14,080 🔺	

8.1 INPUTS (liming, fertilizers, pesticides)

Emissions factors

Fertilizers

	<u>CO2 emissions</u>	CO2 emissions		
	Unit		Default	
Limestone (tonnes per year)	tC/t lime		0.120	
Dolomite (tonne per year)	tC/t lime		0.130	
Not-specified (tonnes per year)	tC/t lime		0.125	
Urea (tonnes of Urea per year)	tC/t Urea		0.200	
Synthetic N-fertilizers other than Urea (tonne	es of N per year)			
Phosphorus (tonnes of P205 per year)				
Potassium (tonnes of K20 per year)				
N-fertilizer in continously irrigated rice (tonn	es of N per year)			
N-fertilizer in wet and dry irrigated rice (tonn	es of N per year)			
Sewage				
Compost				
Rendering waste, brewery waste, guano				
Fungicides				
Herbicides				
Insecticides				
		1.1		
		Urea	CO2 removal	

8.2. ENERGY CONSUMPTION (electricity, fuel...) except for

Description and unit to report

Electricity Emission factor for the selected country Losses of electricity during transportation	tC
User defined (Tier 2)	tC
Losses of electricity during transportation	
Liquid or gaseous	
Please select	-
Mobile - Gasoil /Diesel Oil	-
Please select	1
Please select	-
User defined (Tier 2)	1
Solid	
Wood	tCO2
Peat	tCO2
Charcoal	tCO2-e
Peat (from peatlands)	tCO2

8.3 IRRIGATION

Description and unit to report

Implementation of new irrigation systems

Irrigation systems Surface with IRRS Please select Please select Please select

Operational phase of groundwater irrigated systems

Irrigation systemsSource of energyPlease selectPlease selecttPlease selectPlease selecttPlease selectPlease selecttPlease selectPlease selecttPlease selectPlease selectt

Losses of electricity (

k

k

k

k

8.4 BUILDINGS & ROADS

Description and unit to report

Buildings and roads (in m2)

Unit

Default

Please select	tCO2/m2	0.000
Road (asphalt)	tCO2/m2	0.073
Please select	tCO2/m2	0.000
Please select	tCO2/m2	0.000

Emissions at field level

Emissions from product

	N20 emissions			CO2-e emissions	5
Tier 2	Unit	Default	Tier 2	Unit	Default
				tCO2/t lime	0.587
				tCO2/t lime	0.587
				tCO2/t lime	0.587
	kg N-N2O/kg N	0.005		tCO2/t N	4.767
	kg N-N2O/kg N	0.005		tCO2/t N	4.767
				tC02/t P205	0.733
				tC02/t K20	0.550
	kg N-N2O/kg N	0.003		tCO2/t N	4.767
	kg N-N2O/kg N	0.005		tCO2/t N	4.767
	kg N-N2O/kg N	0.005			
	kg N-N2O/kg N	0.005			
	kg N-N2O/kg N	0.005			
				tCO2-e/t active ingredient	14.3
				tCO2-e/t active ingredient	23.1
				tCO2-e/t active ingredient	18.7

I from the atmosphere during urea manufacturing is estimated in the Industrial Processes and Product Use Sector by the cou

or irrigation, i.e. see next section

Unit	Default	Tier 2		
02/MWh/yr	0.000			
%	10%			
CO2/MWh/yr				
%	10%			
tCO2-e/m3	0.000			
tCO2-e/m3	2.714			
tCO2-e/m3	0.000			
tCO2-e/m3	0.000			
tCO2-e/m3				
2-e/t d.m. Wood	0.178		Account for CO2 emissions?	No
2-e/t d.m. Peat	0.104		Account for CO2 emissions?	No
e/t d.m. Charcoal	0.209		Account for CO2 emissions?	No
2-e/t d.m. Peat	0.104			

Unit	Default	Tier 2	
cg CO2-e/ha	90.20		
:g CO2-e/ha	0.00		
:g CO2-e/ha	0.00		
tg CO2-e/ha	0.00		
			> Pump Characte
Emission factors sourc	ce of energy		Average pressure (in bar)

Unit	Default	Tier 2	Default	Tier 2
CO2-eq/m3	0.000		0.00	
CO2-eq/m3	0.000		0.00	
CO2-eq/m3	0.000		0.00	
CO2-eq/m3	0.000		0.00	
during transportation	10%			

istics

mic head (in	meters head)		Pumping ef	ficiency (in %)
Tier 2			Default	Tier 2
			45%	
			45%	
			45%	
			45%	
	<u>mic head (in</u> Tier 2	<u>mic head (in meters head</u>) Tier 2	<u>mic head (in meters head</u>) Tier 2	mic head (in meters head) Tier 2 Default 45% 45% 45% 45% 45%

Summary GHG

ADDITIONAL FINANCING - YEMEN FOOD SECURI

Continent Country Climate Moisture	Western Asia Yemen Tropical Dry		
Total areas (h	na)	40,075	
Project du	ration (in years)		
Implementati	on	5	
Capitalization	1	15	
Period analys	is	20	

Results presented here include GHG fluxes on mineral and organic soils See further down for detailed results on organic soils

Carbon-balance,

Gross Fluxes Without P

Project name	ADDITIONAL FINANCING - YEMEN FOOD SECURITY RE
Continent	Western Asia
Country	Yemen
Climate	Tropical
Moisture	Dry

GROSS FLUXES

In $t\mbox{CO}_2\mbox{-}e$ over the whole period analysis

PROJECT	COMPONENTS	WITHOUT	WITH
Landuco	Deforestation	0	0
changes	Afforestation	0	0
changes	Other land-use	1,059	-3,633
	Annual	333,658	204,333
Cropland	Perennial	0	0
	Flooded rice	0	0
Grasslands &	Grasslands	0	0
Livestock	Livestock	0	203,788
Forest mngt.		0	0
Inland wetlands		0	0
Coastal wetlands		0	0
	Inputs & Invest.	440,550	279,929
Total emissions, tCO ₂ -e		775,267	684,416
Total emission	s, tCO ₂ -e/ha	19.3	17.1
Total emissions, tCO ₂ -e/ha/yr		1.0	0.9

+ = Source / - = Sink

Results presented here include GHG fluxes on mineral and organic soils See further down for detailed results on organic soils

WITHOUT PROJECT	Forest	Annual
Forest	0	0
Annual cropland and fallow	0	37,760
Agroforestry	0	0

Flooded rice	0	0
Grassland	0	0
Degraded land	0	0
Other land (non-vegetated)	0	0
Total area without project (ha)	0	37,760

WITH PROJECT	Forest	Annual
Forest	0	0
Annual cropland and fallow	0	37,760
Agroforestry	0	0
Flooded rice	0	0
Grassland	0	315
Degraded land	0	0
Other land (non-vegetated)	0	315
Total area with project (ha)	0	38,390

GROSS FLUXES

In tCO_2 -e over the whole period analysis

PROJECT COMPONENTS	WITHOUT	WITH
Deforestation	0	0
Forest degradation	0	0

Af/reforestation	0	0
Non-forest land-use change	0	0
Non-forest land management	0	0
Peat extraction	0	0
Total emissions, tCO ₂ -e	0	0
Total emissions, tCO ₂ -e/ha	0.0	0.0
Total emissions, tCO ₂ -e/ha/yr	0.0	0.0

Share of the balance pe

FIRE

CH4 SOIL

N20 SOIL

CO2 SOIL

Gross Fluxes Without P

Biomass management

Fire

Rewetting

Drainage

0 0 0	1

WITHOUT PROJECT	Forest	Annual
Forest land	0	0
Annual	0	0
Agroforestry	0	0
Flooded rice	0	0
Grassland	0	0
Degraded	0	0
Other land (non-vegetated)	0	0
Total area without project (ha)	0	0

WITH PROJECT	Forest	Annual
Forest land	0	0
Annual	0	0
Agroforestry	0	0
Flooded rice	0	0
Grassland	0	0
Degraded	0	0
Other land (non-vegetated)	0	0
Total area with project (ha)	0	0

analysis

MITIGATION POTENTIAL

-90,850

tCO₂-e

+ = Source / - = Sink

-200,000

in tCO₂-e

roject, in tCO₂-e

	1		Ι		· · · · · · · · · · · · · · · · · · ·	
00	100,000	150,000	200,000	250,000	-150,000	

nents

DETAILED RESUL

SPONSE AND RESILIENCE PROJECT			
Project duration (in years)			
Implementation 5			
Capitalization 15			
Period analysis 20			

Total area (ha)

Mineral soil Organic soil Waterbodies

SHARE PER GHG OF THE BALANCE

In tCO₂-e over the whole period analysis

BALANCE	CO ₂ BIOMASS	CO ₂ SOIL	N ₂ O
0	0	0	0
0	0	0	0
-4,692	-15,108	10,409	8
-129,325	0	-123,669	-5,656
0	0	0	0
0	0	0	0
0	0	0	0
203,788			17,219
0	0	0	0
0	0	0	0
0	0	0	0
-160,621		0	-49,170
-90,850	-15,108	-113,260	-37,600
-2.3	-0.4	-2.8	-0.9
-0.1	0.0	-0.1	0.0

ILED MATRIX OF CHANGES

Perennial	Flooded rice	Grassland	Degraded land
0	0	0	0
0	0	0	0
0	0	0	0

0	0	0	0
0	0	315	0
0	0	0	0
2,000	0	0	0
2,000	0	315	0

Perennial	Flooded rice	Grassland	Degraded land
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

DETAILED RESULTS ORG

SHARE PER GHG OF THE BALANCE

In tCO₂-e over the whole period analysis

BALANCE	CO ₂ BIOMASS	CO ₂ SOIL	N ₂ O SOIL
0	0	0	0
0	0	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0		0	0
0	0	0	0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

r GHG, in tCO₂-e

BALANCE

WITH

WITHOUT

roject, in tCO₂-e

Biomass n

Fire

Rewetting

Drainage

ILED MATRIX OF CHANGES

--

Perennial	Flooded rice	Grassland	Degraded land
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Perennial	Flooded rice	Grassland	Degraded land
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Net fluxes, in tCO₂-e

Share of the balance per GHG, in t

Gross Fluxes With Project, in tCC

tments					
Annual					
'estock					
	Other land-use				
(0	50,000	100,000	150,000	200,000

40,075	Global warming potential	(100 yrs)
40,075	CO ₂	1
0	CH_4	34
0	N ₂ O	298

AVERAGE ANNUAL EMISSIC

In tCO₂-e/yr

CH4	OTHER	WITHOUT	WITH
0		0	0
0		0	0
0		53	-182
0		16,683	10,217
0		0	0
0		0	0
0		0	0
186,569		0	10,189
0		0	0
0		0	0
0	0	0	0
	-111,451	22,028	13,996
186,569	-111,451	38,763	34,221
4.7	-2.8	0.0	0.0
0.2	-0.1	0.0	0.0
		Uncertainty level	tCO2-e/yr
		Without	38,763
		Balance	-4,543

FOR MINERAL SOILS

Other land	Total area (ha)	Total area (ha)
0	0	Mineral soil
0	37,760	Organic soil
0	0	Waterbodies

0	0
0	315
0	0
0	2,000
0	40,075

Other land	Total area (ha)	
0	0	
0	37,760	
0	0	
0	0	
0	315	
0	0	
1,685	2,000	
1,685	40,075	

ANIC SOILS

AVERAGE ANNUAL EMISSIC

In tCO₂-e/yr

CH₄ SOIL	FIRE	WITHOUT	WITH
0	0	0	0
0	0	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0.0	0.0		
0.0	0.0	0.0	0.0

Uncertainty level Without With Balance

Share of the balance per activities, ir

Gross Fluxes With Project, in tCC

nanagement

FOR ORGANIC SOILS

Other land	Total area (ha)
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

Other land	Total area (ha)
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

CO₂-e

700,000 800,000 900,000

50,000 200,000 250,000

250,000

300,000

)NS

BALANCE
0
0
-235
-6,466
0
0
0
10,189
0
0
0
-8,031

-4,543

0.0

Percen	t
33%	
33%	
30%	

0

)NS

0	
0	
0	
0	
 0	

0.0

tCO2-e/yr	Percent
0	0%
0	0%
0	0%

n tCO₂-e

component, outcome, output	reference	START
date:	9/1/2022	
Title:	ADDITIONAL FINANCING - YEN	IEN FOOD SECURITY RESPONSE
Total cost:	150,000,000	USD
Product Investigat	20	
Project duration:	20	years
Implementation phase:	5	years
Capitalization phase:	15	years
Goographical area:	National (waiting for identification	of torgot props)
Geographical alea.		of larger areas)
Soil:	HAC	C soils
GSOC	15.42	tC/ha
Climate:		
Mean annual Precipitation	115.434	mm
Mean annual Temperature	26.422	°C
elevation	692.040	m
PET		mm
Components		
1		
2		Increasi
3		
-		Horticultural develop
4		(
-		
3		

According to the general context of Yer

EX-ACT ANALYSIS

Component, outcome, output	reference	START
all data presented might be subject to modifications as project design advances		
COMPONENT 1		
1.a. Agricultural land improvement		
terracing	set -aside (annual fallows)	1000
	terracing -agroforestry	0
torracing	set -aside (annual fallows)	1000
terracing	terracing -agroforestry	0
1.b. Irrigation Improvement		
	Low carbon	3000
	Medium carbon	0

1.d. Rural road improvement		
	bare land (non-vegetated) Road	192000
COMPONENT 2.1		
2.1.a. Crop production		
seed producing groups	traditional practices (grains) Improved seed producer (grains)	5,440.0
	fodder production- traditional	2800
fodder production improvement	fodder production- improved	
	fodder production- improved (irri	gated)
2.1.b. Vaccination		
Increase in livestock due to reduced		
mortality	Small ruminants	0
	Goat	
	el.	
	Sheep	
COMPONENT 2.2		
2.2.a. Support to micro-small and medium	n livestock producers	
	Skimmer/cooling tank	0
2.2.c. Sesame production		
	Sesame - Traditional	9,520.0
	Sesame - adopted practed	
COMPONENT 3		
3.a Improved Kitchen gardens		
	horticulture - traditional	20000
farmer field schools	horticulture- adoption practices	0
C	traditional	3000
fertilizer use	(NPK) adoption of practices	
3.c. Innovation activities		
	bare land (non-vegetated)	315
Horticulture (kitchen gardens)	grassland	315
, , , , , , , , , , , , , , , , , , ,	annual cropland (vegetables)	
SUPPORTING DATA		
fertilizer use in horticulture	NPK (20-20-20)	150
	compost	0
0 l		
Cattle	-0.0094	-0.008450673
Goats	-0.0058	-0.005214659
Sheep	-0.0034	-0.003037572
% of sheep and goats		STOCKS 2019

goats	0.488446194	8366631
sheep	0.511553806	8762443

15448

0.143386937

0.130673878

FAO stat - yemen- area harvested - 2019

TOTAL	868531
PERENNIALS	124536
ANNUALS	743995
CEREALS	528078
VEGETABLES	69006

crop	ha
Almonds, with shell	6474
Apples	2204
Apricots	681
Bananas	9431
Barley	27344
Beans, dry	1474
Beans, green	423
Broad beans, horse beans, dry	4788
Cabbages and other brassicas	710
Carrots and turnips	1566
Cereals nes	
Chick peas	18281
Chillies and peppers, green	2940
Coffee, green	34981
Cow peas, dry	26062
Cucumbers and gherkins	994
Dates	14765
Eggplants (aubergines)	620
Figs	547
Fruit, citrus nes	36
Fruit, fresh nes	14358
Fruit, stone nes	415
Fruit, tropical fresh nes	477
Garlic	480
Grapes	11784
Groundnuts, with shell	2141
Leeks, other alliaceous vegetables	999
Lemons and limes	2496
Lentils	9552
Lettuce and chicory	343
Maize	36578
Mangoes, mangosteens, guavas	26114
Melons, other (inc.cantaloupes)	3524
Millet	92774
Okra	4539

Onions, dry

Oranges	7869
Papayas	1562
Peaches and nectarines	2766
Pears	140
Peas, dry	1526
Plums and sloes	0
Potatoes	15711
Pulses nes	11838
Pumpkins, squash and gourds	1451
Quinces	375
Seed cotton	21639
Sesame seed	20621
Sorghum	313916
Sugar cane	0
Sweet potatoes	42
Tangerines, mandarins, clementines, satsu	1419
Tobacco, unmanufactured	13236
Tomatoes	7781
Vegetables, fresh nes	3234
Walnuts, with shell	0
Watermelons	9596
Wheat	57466

TO BE CONSIDERED WHEN MORE INFORMATION BECOMES AVAILABLE:

adoption rates implementiation rates operational phase of groundwater irrigated systems units and type equipment to be established ditches and canals to be constructed

Item	Year Code	Year
cattle	2005	2005
cattle	2006	2006
cattle	2007	2007
cattle	2008	2008
cattle	2009	2009
cattle	2010	2010
cattle	2011	2011
cattle	2012	2012
cattle	2013	2013
cattle	2014	2014
cattle	2015	2015

cattle	2016	2016
cattle	2017	2017
cattle	2018	2018
cattle	2019	2019
goats	2005	2005
goats	2006	2006
goats	2007	2007
goats	2008	2008
goats	2009	2009
goats	2010	2010
goats	2011	2011
goats	2012	2012
goats	2013	2013
goats	2014	2014
goats	2015	2015
goats	2016	2016
goats	2017	2017
goats	2018	2018
goats	2019	2019
sheep	2005	2005
sheep	2006	2006
sheep	2007	2007
sheep	2008	2008
sheep	2009	2009
sheep	2010	2010
sheep	2011	2011
sheep	2012	2012
sheep	2013	2013
sheep	2014	2014
sheep	2015	2015
sheep	2016	2016
sheep	2017	2017
sheep	2018	2018
sheep	2019	2019

WITHOUT WITH unit

AND RESILIENCE PROJECT

(2021-2026)

TIER 2 VALUES CALCULATED IN LUC

Improving agricultural production infrastructure ing domestic food production and market develo ment to improve nutritional status and incomes Capacity building for food security management Project management

men it is assumed that the project wil achieve

WITHOUT	WITH		unit
1(200	0	ha
1	000	0	na
	0	1000	ha
10	000	0	ha
	0	1000	ha
31	200	0	ha
5	000	0	i la
	0	3000	ha

192000	192000	m2 m2
5,440.0	0	ha
-	5440	ha
2800		
	1,120	
	1,680	
0	1,648,540	
	824,270	
	27,476	
	824,270	
	34,345	
0	26.28	M3 petrol/
9,520.0		ha
	9,520.0	ha
20000	4000	ha
0	16000	ha
3000	600	t/year
	1200	t/year
315	0	ha
315	0	ha
	630	ha

150	75	kg/ha
0	2000	kg/ha

proportion of perennials per area harvested in

proportion between cereals and vegetables

Unit	Value	Growth Rate
Head	1447243	
Head	1463700	0.01
Head	1495000	0.02
Head	1531000	0.02
Head	1567295	0.02
Head	1605000	0.02
Head	1654000	0.03
Head	1684367	0.02
Head	1721906	0.02
Head	1768442	0.03
Head	1748989	-0.01

Head	1697277	-0.03
Head	167195/	-0.03
Head	1503/152	-0.01
Head	1/13/1/	-0.10
Head	786/122	-0.00
Head	80/1955	0.02
Head	8414000	0.02
Head	8708000	0.03
Head	8883315	0.03
Head	9016000	0.02
Head	9106000	0.01
Head	9158464	0.01
Head	9255373	0.01
Head	9379831	0.01
Head	9267273	-0.01
Head	9081917	-0.02
Head	9004596	-0.01
Head	8644657	-0.04
Head	8366631	-0.03
Head	7980213	
Head	8197024	0.03
Head	8589000	0.05
Head	8889000	0.03
Head	9087216	0.02
Head	9206000	0.01
Head	9358000	0.02
Head	9419212	0.01
Head	9551311	0.01
Head	9688145	0.01
Head	9571887	-0.01
Head	9104860	-0.05
Head	9185435	0.01
Head	8813076	-0.04
Head	8762443	-0.01

ASSUMPTIONS (trends,

leptosols+ calcisols+luvisols+gypsisols

1981-2019 1979-2019

pment

of rural households

a 90% implementation in all activities

ASSUMPTIONS (trends,

lands not able to cultivate COFFEE lands not able to cultivate SORGHUM Target is 4,000 farming beneficiaries. Average farm size is 1.36 Ha p better land preparation and high carbon input with manure support 4000 HH to improve 2800 ha (60% irrigated) improved wit

Assuming it is slaughted in a 0.5 year (compared to its avearage live

Assuming it is slaughted in a 0.5 year (compared to its avearage live

25kwh=3l, working 24 hours, 365 days

Target is 7,000 farming beneficiaries. Average farm size is 1.36 Ha r

20,000 Producers trained; 90% adoption of practices; 1 ha/farmer 150 kg/ha /year of NPK (20-20-20) 75kg/ha /year of NPK (20-20-20)

6300 beneficiaries establishing gardens of 0.1ha

Average Last 14 years

-0.001

0.005

0.007

SOURCES

NOTES

Project Paper 3

communication with FAO Yemen

the targeted areas were not defined when preparing the ar

Harmonized soil database

most dominant soils

Data deper

CHIRPS sourced from earthmap ECMWF ERA5 sourced from earthmap

Project Paper 14

Project Paper 15

Project Paper 20

Project Paper 22

Project Paper 24

implmenting organization

SOURCES

NOTES

EFA EFA

EFA

EFA

PP, FAO CENSUS, 2002 (https://www.fao.org/3/bs602e/bs602e.pdf) PP h the use of alfalfa, rhodes and cowpea reduced tillage, le

reduced tillage, low carbon input reduced tillage, low carbon reduced tillage, medium carbon

EFA EFA espan of 15 years) EFA espan of 12 years)

EFA

EFA EFA

EFA EFA Consultation with the Implementation Agency Consultation with the Implementation Agency

EFA EFA

EFA

Average Last 10 years

Average Last 5 years -0.043

-0.009
-0.006 -0.023 -0.020

-0.003

Type of Yellowfi Commo Little Tu Longtai Indian M Snappe Cuttlefi: Gold Ba Frigate Spotted King fis Groupe

Fish	%
in Tuna	47
n dolphinfish	25
una	7
il Tuna	6.5
Mackerel	5
e r	3
sh	1
and fusilier	0.7
Tuna	0.3
l shark	0.2
sh	0.2
ır.	0.05

<u>a</u>	0.00
	0.05
pecies	4

User can find climate and soil related data on Earth Map: www.earthmap.org

The website allows also to run a script to download all the data of interest to EX-ACT analysis for a prese

elected polygon (NB. The script may not run correctly for larger areas due to server calculation capaity lin

nits). The downloaded data may be pasted here and subsequently must be processed by the user to deriv

'e the average values to be included in the EX-ACT analysis.

Definitions cropland

Long-term cultivated

Perennial tree/woody crops

Full tillage

Reduced tillage

No-till

Low carbon input

Medium carbon input

High carbon input without organic amendments

High carbon input with organic amendments

Perennial systems / Agroforestry systems

Fallows

Hedgerows

Alley cropping

Multistrata systems

Parklands

Shaded perennial crop systems

Silvoarable systems

Silvopastoral systems

Flooded rice

Irrigated

Continuously flooded

Single drainage

Multiple drainage

Rainfed and deep water

Rainfed, wet season (regular rainfed)

Rainfed, dry season (drought prone)

Deep water

Flooded pre-season (>30 days)

Non flooded pre-season (>180 days)

Non flooded pre-season (< 180 days)

Cropping season

Straw incorporated shortly (<30 days) before cultivation

Straw incorporated long (<30 days) before cultivation

Definitions livestock

Main livestock categories

Dairy cattle

Dairy cattle in high-productivity systems

Dairy cattle in low-productivity systems

Other cattle in high-productivity systems

Other cattle in low-productivity systems

Other livestock in high-productivity systems

Other livestock in low-productivity systems

Regional characteristics for cattle and b

North America

Western Europe

Eastern Europe

Oceania

Latin America

Asia

Africa

Middle East

Indian subcontinent

Manure management systems

Manure management systems Pasture/Range/Paddock

Daily spread

Solid storage

Dry lot

Liquid/Slurry

Lagoons (uncovered anaerobic)

Pit storage below animal confinements

Anaerobic digester Burned for fuel

Pit storage below animal confinements

Poultry manure

Composting

Represents area that has been continuously managed for predominantly annual crops over 50 yrs.

Long-term perennial tree crops such as fruit and nut trees, coffee and cacao.

Substantial soil disturbance with full inversion and/or frequent (within year) tillage operations. At planting time, little (e.g., <30%) of the surface is covered by residues.

Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.

Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.

Low C input cropland systems are defined by one of the following conditions:

(1) The crop residues of annual crops are removed or burnt without using organic amendments (e.g. manure) <u>or</u>

(2) Low residue yielding crops are cultivated (e.g cotton, green maize, vegetables, tobacco) or frequent rotation with bare fallow without organic amendments, cover crops/green manures, and mixed crop/grass systems <u>Or</u>

(3) Annual crops with no mineral fertilization or N-fixing crops without irrigation, cover crops/green manures, vegetated fallows, high residue yielding crops and mixed crop/grass systems

Medium C input cropland systems are defined by one of the following conditions:

(1) annual cropping with cereals where all crop residues are returned to the field; or

(2) the crop residues of annual crops are removed or burnt BUT organic amendments (e.g. manure) are applied <u>or</u>

(3) low residue crops are cultivated (e.g cotton, green maize, vegetables, tobacco) or frequent rotation with bare fallow BUT using practices that increase C input above low residue varieties such as using organic amendments, cover crops/green manures, and mixed crop/grass systems <u>or</u>

(4) annual crops with no mineral fertilization or N-fixing crops BUT using practices that increase C input by enhancing residue production such as irrigation, cover crops/green manures, vegetated fallows, high residue yielding.

me crop residues of annual crops are neither removed nor purit. It represents significantly greater crop residue inputs over medium C input cropping systems due to additional practices, such as production of high residue yielding crops, use of green manures, cover crops, improved vegetated fallows, irrigation, frequent use of perennial grasses in annual crop rotations, but without manure applied.

Represents significantly higher C input over medium C input cropping systems due to an additional practice of regular addition of animal manure.

Land rested from cultivation, but comprises planted and managed trees, often leguminous, shrubs and herbaceous cover crops before it is cultivated again. Includes improved and natural fallows, and can be implemented before any of the following systems. Linear plantation around iteras, including shellerbeins, windbreaks, boundary plantings and live foreas

Fast-growing, usually leguminous, woody species (mainly shrubs) grown in crop fields, usually at high densities. The woody species are regularly pruned and the prunings are applied as mulch into the alleys as a source of organic matter and nutrients. Also known as intercropping.

Multistorey combinations of a large number of various trees and perennial and annual crops. They include home gardens and agroforests.

Intercropping of agricultural crops or grazing land under low density mature scattered trees. Typical of dry areas like Sahel (e.g. Faidherbia albida).

Growing shade-tolerant species such as cacao and coffee under, or in between, overstorey shade trees that can be used for timber or other commercial tree products

Woody species planted in parallel tree rows to allow mechanization and intercropped with an annual crop; usually used for timber (e.p. Juglans spp), but also for fuel (e.g. Populus spp). Usually low tree density per hectare.

Woody species planted on permanent grasslands, often grazed.

Fields are flooded for a significant period of time and the water regime is fully controlled.

Fields have standing water throughout the rice growing season and may only dry out for harvest end-season drainage. Rice is cultivated under continuously flooded condition but sometimes an end-season drainage before rice harvest included.

Fields have a single drainage event and period during the cropping season at any growth stage, in addition to the end of season drainage. One mid-season drainage and an end-season drainage are adopted over the entire rice-growing season.

Fields have more than one drainage event and period of time without flooded conditions during the cropping season, in addition to an end of season drainage, including alternate wetting and drying (AWD). Also called 'intermittent irrigation', in which the number of drainage events was not clear, but there are more than one events during the growing season.

Fields are flooded for a significant period of time with water regimes that depend solely on precipitation.

Rice cultivation that relies on rainfall for water, in this case the field is flood prone during the rice-growing season. The water level may rise up to 50 cm during the cropping season.

Rice cultivation that relies on rainfall for water, in this case the field is drought prone during the rice-growing season. Drought periods occur during every cropping season.

Water level rises to more than 50 cm above the soil for a significant period of time during the cropping season.

Permanently flooded rice fields are assumed to have a preseason water regime of 'flooded pre-season'. Late rice (e.g., in China) is usually planted immediately after early rice on the same field and is therefore regarded as having a pre-season water regime of 'flooded pre-season'.

If rice is planted once a year and the field is not flooded in the non-rice growing season, the preseason water regime is classified as 'non flooded pre-season >180 d'.

Rice is planted more than once a year, but there is more than one month of fallow time between the two seasons, 'non-flooded pre-season <180 d' usually implies pre-season drainage.

Refers to the number of times rice is harvested per year. By default 1.

Straw applied just before rice transplanting as on-season; straw that is left on the soil surface in the fallow season and incorporated into the soil before the next rice transplanting is also categorized as 'straw incorporated shortly (<30 days) before cultivation'. The amount of straw return is expressed in dry weight (t ha-1).

Straw incorporated into soils in the previous season (upland crop or fallow) is categorized as 'straw incorporated long (>30 days) before cultivation'. The amount of straw return is expressed in dry weight (t ha-1).

Productivity systems

Mature cows (first lactation and beyond) that are producing milk in commercial quantities for consumption. Dairy cow population should not be confused with multi-purpose cows that may be used for more than one production purpose milk, meat or draft.

High-yielding dairy cows that are concentrated in confinement production systems or grazing on high quality pastures with supplements. The farms are 100-percent market oriented for commercial milk production, for national markets and/or export; Purebred or crossbred cattle are genetically improved through selective breeding for milk production.

Low-yielding dairy cows, grazing non improved pastures, and using locally produced roughage (e.g. crop residues), and agro-industrial by-products. Local breeds or crossbred cows are bred locally, without intensive selection for milk productivity. Milk production is mostly for local market and local consumption Based on animal feeding systems using forage (e.g. high-quality grass) and concentrates in confinement production systems or grazing with supplements or on improved pastures, producing high rates of daily weight gain. Animals can be purebred or crossbred and are genetically improved through selective breeding for improved commercial meat production. Growing cattle may be finished young in "intensive grazing with supplements" or feedlot systems, and meat is produced for national markets and/or export.

Based on animal feeding systems where locally produced roughage (e.g. crop residues) or low quality rangelands represent the major source of feed utilized, producing low rates of daily weight gain. Animals can be represented by local breeds or may be crossbred and can also be used for multiple purposes such as draft, meat and milk for self consumption and markets. Are 100 percent market oriented with high level of capital input requirements and high level of overall herd (flock) performance. Feed is purchased from local or international market or intensively produced on farm. Animals are improved through breeding practices for commercial production. The high-productivity systems are common in swine, poultry, goats and sheep production.

Are mainly driven by local market or by self-consumption, with low capital input requirements and low level of overall herd (fowl) performance typically using large areas for production or backyards. Locally produced feed represents the major source of feed utilized or animals are kept-free range for major part or all of their production cycle, the yield of the activity being linked to the natural fertility of the land and the seasonal production of the pastures. The lowproductivity systems are common in swine, poultry, goats and sheep production

uffalo

<u>Cattle</u>: Highly productive commercialized dairy sector feeding high quality forage and grain. Separate beef cow herd, primarily grazing with feed supplements seasonally. Fast-growing beef steers/heifers finished in feedlots on grain. Dairy cows are a small part of the population. There are no buffalo herds, but American bison may be raised.

<u>Cattle</u>: Highly productive commercialised dairy sector feeding high quality forage and grain. Dairy cows also used for beef calf production. Very small dedicated beef cow herd. Minor amount of feedlot feeding with grains.

<u>Buffalo</u>: Buffalo farming system is exclusively intensive. The concentrates are largely used only during the lactation phase. Animals are maintained in paddocks, grazing practices are not widespread.

<u>Cattle</u>: Commercialised dairy sector feeding based on forages and gains. Separate beef cow herd, primarily grazing. Minor amount of feedlot feeding with grains.

<u>Buffalo</u>: Commercialized buffalo sector feeding primarily with roughages. Buffaloes are managed according to their categories. Animals are maintained paddock and tied up during the winter, in summer they are allowed to graze.

<u>Cattle</u>: Commercialised dairy sector based on grazing. Separate beef cow herd, primarily grazing rangelands5 and hill country of widely varying quality. Growing amount of feedlot feeding with grains. Dairy cows are a small part of the population. No Buffalo herd.

<u>Cattle</u>: Commercialised dairy sector based on grazing. Separate beef cow herd grazing pastures and rangelands. Minor amount of feedlot feeding with grains. Growing non-dairy cattle comprise a large portion of the population.

<u>Buffalo</u>: Buffalo husbandry is based on extensive systems in native or cultivated pastures in lowlands and uplands, most often without supply of concentrated feed. Milk production is based on pasture with frequent supplementation of roughage (sugar cane, silage, etc.), with a predominance of one sinale milkina.

<u>Cattle</u>: Commercialised dairy sector is experienced fundamental changes due to increasing number of large farms with intensive production system based on grains and forage. Cattle kept in traditional production systems are multi-purpose, providing draft power and some milk within farming regions. Cattle of all types are smaller than those found in most other regions. <u>Buffalo</u>: Buffaloes are generally swamp type. Buffaloes are raised by smallholder farmers as source of draft power. Animals are commonly grazed in field and fed on agriculture residual products. Milk yield per cow is low. Nevertheless, the dairy buffalo breeding is rapidly developing in countryside of Asia.

<u>Cattle</u>: Commercialised dairy sector based on grazing with low production per cow. Most cattle are multi-purpose, providing draft power and some milk within farming regions. Some cattle graze over very large areas. Cattle are smaller than those found in most other regions. <u>Buffalo</u>: Small-scale buffalo sector well-integrated with cropland. Animals are raised for multi-purpose. Feeding primarily depends on roughages and crop-residues. Minor commercial dairy buffalo farms feeding with concentrate feed mixture.

<u>Cattle</u>: Majority of cattle population is still kept by small holders in the traditional production systems. The animals are fed primarily by crop residues and are grazed. Most animals are dual-purpose. In contrast to the small-scale farms, commercial dairy sector is generally intensive, mainly based on compound feed and grains.

<u>Buffalo</u>: Buffalo farming system primarily based on smallholders rearing animals for meat, milk and draught. Animals obtain their feeding by grazing. Minor commercialized buffalo sector feedina foraae and concentrate supplemented feed.

<u>Cattle</u>: Commercialised dairy sector based on crop by-product feeding with low production per cow. Most bullocks provide draft power and cows provide some milk in farming regions. Cattle in this region are the smallest compared to cattle found in all other regions. <u>Buffalo</u>: Smallholder buffalo sector feeding poor quality roughages and crop-residues. Buffaloes are primarily free grazing. Concentrates are fed to dairy animals during last months of pregnancy. Dairy and meat production are intimately related. Animals are used as draft power. Minor commercialized buffalo sector providing animals with balanced ration.

me manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed

Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.

The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked because of the presence of a sufficient amount of bedding material or loss of moisture by evaporation

A paved or unpaved open confinement area without any significant vegetative cover. Dry lots do not require the addition of bedding to control moisture. Manure may be removed periodically and spread on fields.

Manure is stored as excreted or with some minimal addition of water or bedding material in tanks or ponds outside the animal housing. Manure is removed and spread on fields once or more in a calendar year. Manure is agitated before removal from the tank/ponds to ensure that most of the VS are removed from the tank..

A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoons have a lower depth and a much larger surface compared to liquid slurry stores. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The supernatant water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.

used to irritate and fertilise fields. Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year. Manure may be pumped out of the storage to a secondary storage tank multiple times in one year, or stored and applied directly to fields. It is assumed that VS removal rates on tank emptying are >90%

Anaerobic fermentation of slurry and/or solid. Biogas is captured and flared or used as a fuel. The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel Mixture of excreta and washing water, stored within the livestock building, usually below the confined animals

Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks, for alternative systems for layers and for the production of meat type chickens (broilers) and other fowl. Litter and manure are left in place with added bedding during the poultry production cycle and cleaned between poultry cycles, typically 5 to 9 weeks in productive systems and greater in lower productivity systems.

Biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.

CLIMATE

SOIL

Note: for more detailed maps users can refer to: <u>Harmonized World Soil Database</u> <u>Earthmap</u>

GLOBAL ECOLOGICAL ZONES

Source: FAO, 2015.

Global ecological zones for FAO Forest Reporting: 2010 Update, Forest Resour

e Zones

Back LUC

CLIMAT	E IDENTIFIER		
MAT	Mean Annual Temperature in C	20.0	
МАР	Mean Annual Precipitation in mm	2,400	
PET	Potential Evapotranspiration in mm	1,000	
Elevation	Elevation above sea level	900	
Climate	Tropical		
Moisture	Wet		

	Soil classification		
	WRB-2006	IPCC	
	Acrisol AC	LAC Soils	
	Albeluvisol AB	HAC Soils	
Contraction of the second	Alisol AL	HAC Soils	
	Andosol AN	Volcanic Soils	
•	Anthrosol AT	LAC Soils	

Arenosol AR	Sandy Soils
Calcisol CL	HAC Soils
Cambisol CM	HAC Soils
Chernozem CH	HAC Soils
Cryosol CR	LAC Soils
Durisol DU	LAC Soils
Ferralsol FR	LAC Soils
Fluvisol FL	HAC Soils
Gleysol GL	Wetland Soils
Gypsisol GY	HAC Soils
Histosol HS	Organic Soils
Kastanozem KS	HAC Soils
Leptosol LP	HAC Soils
Lixisol LX	LAC Soils
Luvisol LV	HAC Soils
Nitisol NT	LAC Soils
Phaeozem PH	HAC Soils
Planosol PL	LAC Soils
Plinthosol PT	LAC Soils
Podzol PZ	Spodic Soils
Regosol RG	HAC Soils
Solonchak SC	LAC Soils
Solonetz SN	HAC Soils
Stagnosol ST	LAC Soils
Technosol TC	LAC Soils
Umbrisol UM	HAC Soils
Vertisol VR	HAC Soils

Climate	Elevation in m	MAP and PET in mm	Climate & Moisture regime
MAT > 18	< 1000	MAP ≥ 2000	Tropical Wet
MAT > 18	< 1000	1000 ≤ MAP < 2000	Tropical Moist
MAT > 18	< 1000	MAP < 1000	Tropical Dry
MAT > 18	≥ 1000	MAP ≥ 1000	Tropical Montane
MAT > 18	≥ 1000	MAP < 1000	Tropical Montane
10 < MAT ≤ 18	< 1000	MAP > PET	Warm Temperate Moist
10 < MAT ≤ 18	< 1000	MAP < PET	Warm Temperate Dry
0 < MAT ≤ 10	< 1000	MAP > PET	Cool Temperate Moist
0 < MAT ≤ 10	< 1000	MAP < PET	Cool Temperate Dry
-10 < MAT ≤ 0	< 1000	MAP > PET	Boreal Moist
-10 < MAT ≤ 0	< 1000	MAP < PET	Boreal Dry
MAT ≤ -10	< 1000	MAP > PET	Polar Moist
MAT ≤ -10	< 1000	MAP < PET	Polar Dry

Climate and moisture regime to be specified in the "Description" module