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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

Policy Research Working Paper 10357

Meeting the dual challenge of providing reliable and afford-
able energy and transport to a growing population while 
reducing environmental impacts, including mitigating 
greenhouse gas emissions, requires a deep understanding of 
both the unit- and system-level responses. These responses 
arise from the ongoing energy and transport system evo-
lution, such as the transition toward lower carbon fuels 
and the expanded deployment of new low-carbon genera-
tion technologies. This literature review takes stock of the 
advantages and disadvantages of alternative approaches, 
by offering a taxonomy of the current modeling approach, 
focusing inter alia on the characteristics of the models. Cur-
rent analyses often employ integrated assessment models to 
quantify the effects (for example, economywide greenhouse 
gas emissions) of various policies and decision processes on 
representative unit operations. The accuracy of the modeling 

approaches used to estimate these costs depends on several 
factors: for example, modeling approaches (ranging from 
partial equilibrium energy-land models to computable 
general equilibrium models of the global economy, from 
myopic to perfect foresight models, and from models with 
or without endogenous technological change), covered area, 
time horizon, determination of baseline scenarios, detailed 
sectoral representation, emissions sources, inclusion of effi-
ciency and renewable energy options, and so forth. Some 
of the biggest challenges for improving the design and use 
of integrated assessment models include accounting for the 
trade-off between efficiency and equity, capturing interac-
tions between impact sectors and feedbacks to the climate 
system, and dealing with uncertainty and risk. This review 
focuses on the treatment of the energy and transport sectors.

This paper is a product of the Infrastructure Chief Economist Office. It is part of a larger effort by the World Bank to 
provide open access to its research and make a contribution to development policy discussions around the world. Policy 
Research Working Papers are also posted on the Web at http://www.worldbank.org/prwp. The author may be contacted 
at mvagliasindi@worldbank.org. 
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1. Introduction 

Meeting the dual challenge of providing reliable and affordable energy and transport to a growing 

population while reducing environmental impacts, including mitigating greenhouse gas (GHG) emissions, 

requires a deep understanding of both the unit- and system-level responses that arise from the ongoing 

energy and transport system evolution, such as the transition towards lower-carbon fuels, the expanded 

deployment of new low-carbon generation technologies. The widespread adoption of renewable generation 

technologies is of particular significance, because their presence in the system also introduces some 

challenges linked to their inherent intermittency and variability. The review will look at the current 

available options for modeling the energy and transport sectors within an integrated framework.  

Current analyses often employ integrated assessment models (IAMs) to quantify the effect (e.g., economy-

wide GHG emissions) of various policies and decision processes on representative unit operation. The 

accuracy of the modeling approaches used to estimate these costs depends on several factors: for example, 

modeling approaches (ranging from partial equilibrium energy–land models to computable general 

equilibrium models of the global economy, from myopic to perfect foresight models, and from models with 

or without endogenous technological change), the covered area, time horizon, determination of baseline 

scenarios, the detailed sectoral representation, emissions sources, inclusion of efficiency and renewable 

energy options and so forth. 

The literature review will take stock of the advantage and disadvantages of alternative approaches, by 

offering a taxonomy of the current modeling approach, focusing inter alia on the characteristics of the 

models. The remainder of the paper is structured as follows. 

Section 2 provides an overview of IAM models and their evolution over time since Nordhaus’s first simple 

DICE model. 

Section 3 focuses on providing a taxonomy over a broad range of IAMs focusing on the modeling approach 

(Section 3.1), the economic, temporal and spatial coverage (Section 3.2), the sectoral coverage and 

technological change (Section 3.3), the modeling of renewable energy and substitution effects (Section 3.4), 

and policy application (Section 3.5).   

Section 4 concludes with an overall assessment. 

 

2. IAM models 

Based on socioeconomic scenarios, Integrated Assessment Models (IAM) derive consistent pathways for 

macroeconomic, energy system, and land use variables and project resulting emissions of greenhouse gases 

and air pollutants over a long horizon. They can address questions, such as “What can happen?”, using 

baseline projections and questions, such as “What should happen?” to reach given mitigation goals. 

IAM models are crucial for understanding the nature of climate change, because without formulating a clear 

framework, it may be hard to capture complex physical and economic. Nordhaus’s first integrated 

assessment model, namely the Dynamic Integrated model of Climate and the Economy (DICE), does so. 

The single model contains all of the links among carbon dioxide concentrations, the climate, economic 

damages from climate change, and a model of the economy that produces carbon dioxide emissions – 

closing the loop (Nordhaus, 1992). 
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Since its publication in 1994, a sizeable number of papers are currently based on the DICE model. Further 

contributions and applications were also developed. Just to provide an example, already in 1994, Nordhaus 

and co-authors pioneered the estimation of the damages from climate change to agriculture (Mendelsohn et 

al. 1994). In a nutshell, agricultural yields may decline as a consequence of climate change, reducing the 

value of land that is used for cultivating crops.  

Nordhaus’s contribution to the economics of climate change also extends to the understanding of the 

paramount importance of uncertainty in climate change. Namely, uncertainty in key parameters that are key 

assumptions in the models often turns out to be more crucial than uncertainty across different models 

(Gillingham et al. 2018). Based on the DICE model, as reported by Nordhaus (2013), a delay that results 

in warming of 3° Celsius above preindustrial levels, instead of 2°, could increase economic damages by 

approximately 0.9 % of global output. The incremental cost of an additional degree of warming beyond 3° 

Celsius would be even greater. Moreover, these costs are not incurred one-time, but are rather on a recurring 

basis, because of the permanent damage caused by increased climate change resulting from delay in taking 

actions to mitigate changes in climate.  These temperature increases are far above 1.5-2 ° Celsius target 

endorsed in the 2015 Paris Agreement, making the commitment under the UN Paris Agreement sub-optimal 

within the DICE framework. Nevertheless, recent contributions, including Hänsel et al. (2020) and Dietz 

et al. (2020), find that even the basic DICE model, when appropriately updated, with more accurate 

calibration of the carbon cycle and energy balance model or using more reasonable costs and discount rates 

into the DICE model could find the UN Paris commitment targets optimal.   

In principle, the world has accepted the case for a risk management approach based on the UNFCCC 

commitment to “avoid dangerous interference” in the world's climate system, interpreted in the Paris 

Agreement's goal to keep global temperature change to “well below 2C above preindustrial levels and 

pursue efforts… to 1.5C”, as opposed to the earlier work, framing the issue more in terms of balancing 

costs against benefits. The most comprehensive summary of IAM research questions and findings can be 

found in the IPCC’s fifth assessment report, in the chapter from Working Group III (WG3) and a more up-

to-date review is included in the IPCC special report on 1.5C. 

The DICE model has over time been superseded by much more sophisticated models. IAMs can be applied 

in a forward-looking manner to explore internally consistent socio-economic-climate futures, often 

extrapolating current trends (either under a range of assumptions or using counterfactual assumptions) to 

generate baselines for subsequent climate policy analysis. They can also be used in a back-casting mode to 

explore the implications of climate policy goals and climate targets for systems transitions and near-to-

medium term action. In most IAM-based studies, both applications are used concurrently (Clarke et al., 

2009; Edenhofer et al., 2010; Luderer et al., 2012; Kriegler et al., 2016; Riahi et al., 2015; Tavoni et al., 

2015). 

Often IAMs are defined more narrowly as the subset of integrated pathway models with an economic core 

and equilibrium assumptions on supply and demand, although non-equilibrium approaches to integrated 

assessment modeling exist (Guivarch et al., 2011; Mercure et al., 2018). IAMs with an economic core 

describe consistent price-quantity relationships, where the “shadow price” of a commodity generally 

reflects its scarcity in the given setting. To this end, the price of greenhouse gas emissions emerging in 

IAMs reflects the restriction of future emissions imposed by a warming limit. Such a price needs to be 

distinguished from suggested levels of emissions pricing in multidimensional policy contexts that are 

adapted to existing market environments and often include a portfolio of policy instruments (Stiglitz et al., 

2017).  
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Despite such characteristics, these models can differ greatly in how detailed the aspects of the system are 

represented and in how the components interact. For instance, some IAMs place particular focus on 

macroeconomic feedbacks or particular sectors or technologies. Climate policy analysis often involves 

comparisons among results from several IAMs in order to provide more robust cost estimates and a clearer 

representation of uncertainties. 

The use of IAMs for climate policy assessments has been framed in the context of solution-oriented 

assessments (Edenhofer and Kowarsch, 2015; Beck and Mahony, 2017). This approach emphasizes the 

exploratory nature of integrated assessment modeling to produce scenarios of internally consistent, goal-

oriented futures. They describe a range of pathways that achieve long-term policy goals, and at the same 

time highlight trade-offs and opportunities associated with different courses of action. However, future 

pathways cannot be completely isolated from society and decision making (Edenhofer and Kowarsch, 2015; 

Beck and Mahony, 2017). This suggests an interactive approach which engages societal values and user 

perspectives in the pathway production process. It also requires transparent documentation of IAM 

frameworks and applications to enable users to contextualize pathway results in the assessment process. 

 

3. Main taxonomy of IAM models 

Different modeling frameworks were created for different problems, with each model design tailored to 

address a specific set of questions. The characteristics of the modeling framework as well as the primary 

questions that guided its designs must be kept in mind when comparing the model results.  

Detailed, process-based IAMs include a diverse set of models ranging from partial equilibrium energy–land 

models to computable general equilibrium models of the global economy, from myopic to perfect foresight 

models, and from models with to models without endogenous technological change.  IAMs cover most 

supply-side mitigation options on the process level, while many demand-side options are treated as part of 

underlying assumptions, which can be varied (Clarke et al., 2014).  

The literature review will take stock of the advantage and disadvantages of alternative approaches, by 

offering a taxonomy of the current modeling approach, focusing inter alia on the characteristics of the 

models. 

 

3.1 Main taxonomy according to modeling approaches 

As summarized in Figure 1, IAMs may be broadly grouped into general equilibrium and partial equilibrium 

models. General equilibrium models cover the full economy with a more or less detailed representation of 

specific economic sectors. General equilibrium models are top-down models that provide a highly 

aggregated representation of economic effects. They have a macroeconomic perspective and focus mainly 

on the relations between the energy sector and other sectors of the economy. General equilibrium models 

can use in turn a dynamic recursive approach or intertemporal optimization. Dynamic recursive computable 

general equilibrium models (CGE) are prominent examples of general equilibrium models, that identify 

market equilibria for each point in time. In doing so, they are inherently myopic and usually provide a 

detailed description of the sector composition of the economy. Intertemporal general equilibrium models 

focus on the intertemporal dynamics of investment in production capital under foresight about future 

production and consumption. They describe a closed economy but can usually only represent one to three 

aggregated economic sectors due to the computational burden of intertemporal optimization. IAMs based 
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on conventional top-down models tend to lack an adequate representation of technological flexibility and 

substitution possibilities and limits.  

Partial equilibrium models simplify the data requirements and can permit purposive analysis of a particular 

sector. They describe processes and markets in one or more sectors in detail – such as the energy sector, 

including energy demand by economic sectors and technological specifics – and treat the rest of the 

economy exogenously.  Bottom-up models provide a detailed technological representation and typically 

include no or very limited interactions with the macroeconomic system. IAMs based on the conventional 

bottom-up approach, without additional macroeconomic modules, do not represent the macro-economic 

feedbacks of different energy transition pathways, e.g., through rebound effects, investments and 

households’ expenditures feedbacks on the economy. Optimization typically aligns with quantitative-

oriented risk assessment and sensitivity analysis, whereas simulation tends to align better with more 

qualitatively oriented alternative assessment approaches.  

 

Figure 1: Summary of key modeling taxonomy 

 

 

Researchers have also attempted to bridge the gap between top-down and bottom-up models either by 

incorporating macroeconomic feedback into bottom-up models or by including technological details in top-

down models. Regarding energy-economy linkages, most IAMs are now hybrid constructs, either energy 

system linked to macroeconomic growth models or multi-sector CGE—or other economywide— models 

with explicit technologies in key sectors. 

The subsections below explore in more detail the key different classes of models and summarize their key 

assumptions. 

General versus partial equilibrium models 

As mentioned above, general equilibrium models provide a highly aggregated representation of economic 

effects and focus mainly on the relations between the energy sector and other sectors of the economy. On 

the other hand, partial equilibrium models focus on one or more sectors in detail which include no or limited 

interactions with the macroeconomic system. Partial equilibrium models typically maximize consumer and 

producer surplus or minimize production costs of sectors over time. They may or may not include foresight 

of future supply and demand in the optimization process. Policy costs are calculated in terms of sector cost 

mark-ups or reduction of consumer and producer surplus, typically deduced from the area under the 

marginal abatement cost curve for greenhouse gas emissions. 
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Both partial and general equilibrium models can include a great variety of low-carbon technology options 

on the supply and demand sides that can deliver emission reductions in response to climate policy. Most 

models include a similarly high variety of low-carbon supply options, but some general equilibrium models 

include a noticeably lower number of options. For simplicity, they focus on energy supply side technologies 

and do not cover demand-side options for emissions reduction and use of low-carbon fuels (e.g., electricity 

or hydrogen in transport), even though demand side options are explicitly represented in some models. 

Nonetheless, the measure illustrates the fact that by modeling the economy as a whole, general equilibrium 

models may not always include the same level of technological detail as more energy-system-focused 

partial equilibrium models.  

Tables 1a and 1b report separately a first overview of the key modeling approaches proposed by the general 

and partial equilibrium models included in the review. 

 

Top down versus bottom up modeling 

There are broadly two approaches for estimating costs of carbon mitigation from energy systems: top-down 

and bottom-up models, with this distinction being overcome by hybrid models including features of both 

top-down and bottom-up models, as characterized in the second column of Tables 1a and 1b.  

Top-down models provide a highly aggregated representation of economic and endogenization effects. 

They yield no or limited characterization of technologies. They represent sectoral economic activities 

through aggregate production functions. However, their energy-economy interactions provide limited 

representation of the energy system. One third of the general equilibrium models in Table 1.a falls under 

this category. 

Bottom-up models, namely technologically disaggregated models, provide flow optimization or partial 

equilibrium representations of the energy sector. Bottom-up models are built with deep technological detail 

including technical performances and cost structures of future technologies. As such they also reflect an 

optimistic engineering paradigm. They include a great number of discrete energy technologies to capture 

the substitution of energy sources on primary and final energy levels. They also include process 

substitutions and efficiency improvements. Each energy-consuming technology is identified by a detailed 

description of input-output structures, cost dynamics, and other technical and economic characteristics. 

However, such models often neglect the macroeconomic impacts of energy policies. The majority of partial 

equilibrium models, with the exception of GCAM, are bottom up models. 

Bottom-up models can be further divided into optimization and accounting models. Optimization models 

are based on a detailed representation of technologies involved in energy supply and demand. The 

information on technologies is recorded in terms of their capital, operating costs, and technical efficiencies. 

Models using optimization algorithms find the lowest costs for an energy system for a given discount rate. 

These models can analyze different energy markets (oil, gas, coal, etc.) and the interactions between them. 

Following a partial equilibrium approach with a focus on the energy sector, these models also assume that 

other sectors are not affected by changes in energy demand or the way this demand is serviced.  

In recent years, various bottom-up models have been developed on global and national scales to study 

energy strategies and planning. These models have different features and are often based on different 

methodological approaches. However, although these models are useful in predicting future trends, most 

consider the system as a whole and disregard the relationships between nations. Often, these models employ 

global or regional frameworks and depict energy systems and sectors of selected nations independently of 
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each other (i.e., they ignore trading relationships and possible variations in production and energy 

consumption due to changes in trading volumes).  

By merging both top-down and bottom-up approaches, hybrid models combine the technological 

explicitness of bottom-up models with the economic comprehensiveness of top-down models. However, in 

hybrid modeling, both the bottom-up and top-down aspects are simplified for computational purposes (i.e., 

to make the model computable). Therefore, by comparison, hybrid models typically have limitations in the 

amount and detail of their inputs and outputs. These models can be divided into (a) input-output models, 

(b) neo-Keynesian macroeconomic models, and (c) computable general equilibrium models. Input-output 

models are based on a system of linear equations that represent an economy as a number of industries. 

Input-output analysis shows the process by which inputs in one industry sector produce outputs for 

consumption or for input into another industry sector. Because macroeconomic models assume that every 

industry exists in an imperfect competition market, they do not calculate an equilibrium solution. Instead, 

the equilibrating mechanisms of macroeconomic models work through quantity adjustments rather than 

price. By contrast, general equilibrium models include all sectors of the economy and several interacting 

markets. The energy demand is estimated through aggregate economic indices (GDP growth, price, and 

price elasticities). Each sector’s production output is simulated by means of a production function that 

allows for the substitution of a factor of production (labor, capital, energy, and material) based on the 

elasticity of the substitution. These models assume perfect market equilibrium and do not take into account 

structural unemployment. These models can be static when they look at a given future year in a single step 

or dynamic when an entire time transition is covered in multiple time steps. In dynamic models, investments 

made in one period have an influence on the capital stock of the next period. Two-thirds of the general 

equilibrium models in Table 1.a fall in this category. 

In sum, top-down models lack technological details, whereas bottom-up models lack macroeconomic 

consistency. To address these challenges, two strategies have been followed. Soft linking has been a 

practical strategy adapted to run a given scenario on both top-down and bottom-up models. It ensures 

macroeconomic consistency by making GDP growth comparable, e.g., specific GDP losses due to a carbon 

tax can also be applied when calculating energy demands in the bottom-up models. Researchers have also 

attempted to bridge the gap between top-down and bottom-up models either by incorporating 

macroeconomic feedback into bottom-up models or by including technological details in top-down models. 

Many of the recent IAMs are increasingly capable of representing technological details and economic 

interactions because of continuing trend of hybridization (Sugiyama et al., 2013). Partial equilibrium 

models such as TIAM (Loulou and Labriet 2008), POLES (Criqui et al. 1999), AIM/Enduse (Kainuma et 

al. 2000), and DNE21+ (Akimoto et al. 2008), incorporate some degree of economic effects. On the other 

hand, general equilibrium models such as MERGE (Richels and Blanford 2008) and ReMIND (Leimbach 

et al. 2010) explicitly incorporate end-use technologies within a macroeconomic framework in a global 

IAM based on Ramsey’s optimal growth theory, extending classical IAMs. WITCH (Bosetti et al. 2006) is 

a top-down neoclassical optimal growth model with a specification of energy services. The ReMIND model 

created by the Potsdam Institute for Climate Impact Research is another example of a hybrid model, 

integrating technological detail similar to energy system models in the framework of a growth model. 

MESSAGE-MACRO (Messner and Schrattenholzer 2000) links an energy supply model (Schrattenholzer 

1981) with a macroeconomic module and solves it iteratively. The major challenges faced by these models 

are theoretical consistency, computational complexity, and policy relevance. 
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Optimal versus recursive modeling 

General equilibrium models can use a dynamic recursive approach or intertemporal optimization. 

Computable General Equilibrium models (CGE) are prominent examples of general equilibrium models. 

CGE models calculate static equilibria at each point in time prescribing some growth dynamic in between 

time steps, i.e., they are recursive dynamic. This guarantees not only that all markets are cleared but also 

that a Pareto-optimum is achieved. Sectoral resolution and the dynamics of relative prices are the main 

strengths of CGE models. They are inherently myopic and usually provide a detailed description of the 

sector composition of the economy. Intertemporal general equilibrium models focus on the intertemporal 

dynamics of investment in production capital under foresight about future production and consumption. 

They describe a closed economy but can usually only represent one to three aggregated economic sectors 

due to the computational burden of intertemporal optimization. General equilibrium models typically 

express policy costs in terms of production losses, consumption losses or welfare measures. 

Growth models using an optimizing framework allow endogenous savings and investment decisions with 

unlimited foresight while many recursive dynamic CGE models restrict optimizing behavior of its agents 

to a sequence of static equilibria. Hence, the time path of emissions and investments derived by most CGEs 

are not intertemporally cost-effective. This lack of optimality is not a shortcoming of these models as they 

try to replicate the outcome of decentralized markets in which market imperfections are inherent.  

In contrast to recursive CGE models, an optimal economic growth model allows an understanding of 

transition paths and an assessment of what decentralized markets could achieve if appropriate policy in-

struments were applied. On the other hand, most intertemporal economic growth models lack economic 

detail and offer only limited insights into sectoral dynamics. Finally, simulation models refer to models that 

start at a given state of the economy; then continue to calculate the next time step. In mathematical terms, 

they solve initial value problems or boundary value problems given as systems of differential equations. 

Forty percent of general equilibrium models fall under this category. 

 

 

Simulation versus Optimization Modeling 

 

The most important difference between the two classes of simulation versus optimization models lies in the 

crucial assumption whether the model itself can identify the optimal solution or not. Optimization models 

are expected to be able to make all optimization decisions based on a set of restrictions, rules and 

presumptions in combination with a limited set of pre-defined economic values. In contrast, simulation 

models leave it to the user to make all crucial decisions.  

 

Namely, in the optimization approach, the modeler provides information in the form of data, objective 

functions and boundaries and lets the model identify the optimal solution. In the simulation approach, to 

establish grounds for decision-making the user identifies a variety of potential system elements and uses 

the model to calculate consequences of different combinations. Finally, simulation models differ from 

optimization models in that instead of identifying ‘optimal’ decisions, they simulate, based on observed or 

assumed relationships between variables, how the system might develop going forward. This difference 

implies different interpretations for the heterogeneity and decision making of the agents represented in the 

model—and for the interpretation of the model results more generally. The two approaches also tend to 

handle risks and uncertainties differently. Optimization typically aligns with quantitative-oriented risk 

assessment and sensitivity analysis, whereas simulation tends to align better with more qualitatively-

oriented alternatives assessment approaches.  
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For example, simulation models, such as IMAGE, reflect in their parametrization heterogeneity of agents 

and their implied, heterogeneous preferences whereas cost-driven linear optimization models, generally 

assume a single representative agent, with a single set of preferences, and would thus suggest that the 

technology best matching these preferences is the best option for everyone represented by this agent. 

Arguably investment decisions made in the producing sectors may be more economically rational than 

those of consumers and policy choice, where many factors beyond financial considerations play a role. 

Many models have different stylized features to reflect these, beyond cost considerations impacting the 

choices made. Examples are the use of a multinomial logit equation to depict market heterogeneity (e.g. 

IMAGE Girod et al., 2012, Daly et al., 2014), risk or hurdle rates to reflect the attitudes that people hold 

towards risks, and preferences for certain choice features, for example, speed or affluence.  

 

 

Foresight versus myopic  

 

Optimization models can be further differentiated on the basis of the adopted solution approach. Some 

optimization models assume perfect foresight behavior, implying that agents have rational expectations 

about future events. Other models (also known as dynamic recursive models) assume that agents have 

myopic expectations. The way that IAMs ‘solve’ over the decision horizon can also vary from model to 

model. Models do this in time steps, which usually vary from 1 to 10 years. In some models, minimizing 

costs simultaneously across all time periods (intertemporal optimization) assumes perfect foresight, making 

strong assumptions in that the agent has full knowledge about the future. Although such assumptions are 

hardly realistic, exploring cost-optimal pathways can help identify and describe efficient ways to reach a 

given climate target. Other IAMs work myopically, meaning a time step is solved without full knowledge 

of the future. Such assumptions may be suitable to explore today’s choices which may lock-in infrastructure 

and raise the cost of climate action later. 

 
Table 1.a Key Modeling taxonomy for General Equilibrium 

Model 
Equilibrium 

Concept 
Model 

perspective 
Intertemporal 

Solution Methodology 
Myopic/Foresight 

MERGE-ETL General Hybrid 
Intertemporal 
optimization 

Foresight 

MESSAGE General Hybrid 
Intertemporal 

optimization 
Foresight 

ReMIND General Hybrid 
Intertemporal 
optimization 

Foresight 

WITCH General Hybrid 
Intertemporal 

optimization 
Foresight 

C3IAM General Hybrid 
Intertemporal 

optimization 
Foresight 

BET EMF33 General Hybrid 
Intertemporal 
optimization 

Foresight 

AIM-CGE General Top-down Recursive dynamic Myopic 
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GEM-E3-ICCS General Top-down 
Recursive dynamic 

optimization 
Myopic 

IMACLIM General Top-down Recursive dynamic Myopic 

TEA General Hybrid Recursive dynamic Myopic 

GRACE General Hybrid Recursive dynamic Myopic 

IFs General Hybrid Recursive dynamic Myopic 

PHOENIX General Top-down Recursive dynamic  Myopic 

POLES General Hybrid Recursive dynamic Myopic 

WorldScan2 General Top-down Recursive dynamic Myopic 

 

Table 1.b Key Modeling taxonomy for Partial Equilibrium 

Model 
Equilibrium 

Concept 
Model 

perspective 
Intertemporal Solution 

Methodology 
Myopic/Foresight 

DNE21+ Partial Bottom-up  Intertemporal optimization Foresight 

global TIMES Partial Bottom-up  Intertemporal optimization Foresight 

global ETP-TIMES Partial Bottom-up  Intertemporal optimization Foresight 

COFFEE Partial Bottom-up  Intertemporal optimization Foresight 

AIM-Enduse Partial Bottom-up  Recursive dynamic Myopic 

GCAM Partial Hybrid Recursive dynamic Myopic 

IMAGE Partial Bottom-up  Recursive simulation Myopic 

PROMETHEUS Partial Bottom-up  Recursive simulation Myopic 
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3.2 Main taxonomy according to the economic, temporal and spatial coverage 

As discussed before, IAMs are characterized by a dynamic representation of coupled systems, including 

energy, land, agricultural, economic and climate systems (Weyant, 2017). They are global in their scope, 

and typically cover sufficient sectors and sources of greenhouse gas emissions to identify consistency of 

different pathways with long-term goals of limiting warming to specific levels (Clarke et al., 2014). 

 

Some IAMs sacrifice sectoral and regional details to provide researchers the ability to explore the 

fundamental uncertainties. Other IAMs, instead, forego some flexibility in order to provide a more granular 

detail in the modeling of particular sectors or regions. Each approach has its own set of strengths and 

weaknesses. Tables 2a and 2b differentiate models depending on the economic, temporal and spatial 

coverage. 

 

Economic coverage 

IAMs have evolved to answer different questions and have therefore developed different aspects of the 

energy-economy-climate-land systems and their interactions. For instance, IAMs which started as 

economic models still have their relative strengths in the representation of the economy. It is not surprising 

that the majority of the general equilibrium models listed in Table 2.a include a representation of the key 

sectors of the economy. Even within this group, the number of sectors covered ranges from 16 sectors 

(grouped in 5 more aggregate sectors) to 27 sectors. Other IAMs’ core strength is a detailed energy system, 

making them more suited for analyzing different technological options for decarbonizing energy supply. 

More than 60 percent of the partial equilibrium models cover exclusively energy supply and demand for all 

sectors, whereas the remaining models include also land use and agriculture. 

 

Temporal coverage 

For most mitigation models, time horizons range from at least 2030 up to 2050 and beyond. Most notably, 

almost all general equilibrium models go beyond 2050, whereas only 3 out of 8 partial equilibrium models 

do so. Most baseline scenarios predict little or no change in emissions for the first 20–30 years. Reducing 

emissions to reach a temperature increase of 2◦C by 2050 requires a rapid reduction in emissions beginning 

in this decade largely because CO2 emissions remain in the atmosphere for 100 or more years. Cumulative 

emissions thus are an important element that requires rapid reductions relative to changes in capital stocks, 

which would require retrofitting existing technologies or switching to advanced technologies.  

 

Spatial coverage 

Owing to their aggregate representation, general equilibrium models are well suited for global analyses 

(Table 2a) in which the world is generally divided into 10 or more regions. They can also be used for 

regional- and national-level analyses, though the latter approach is more common.  

Whereas the coverage of most advanced economies is included in most of the models, the coverage of lower 

income countries in Sub-Saharan Africa is less widespread and is only done in MESSAGE, WITCH, BET 

EMF33, AIM-CGE, among the general equilibrium models, and global TIMES and COFFEE among the 

partial equilibrium models. 
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Table 2.a Economic, Temporal and Spatial coverage for General Equilibrium 

Model Economic coverage 
Temporal 

dimension 
Spatial dimension 

MERGE-ETL 
Aggregate economic output, detail 

on energy production and 
transformation sectors 

2000-2150 

9 regions: Canada, Australia and New Zealand, 
China, Eastern Europe and FSU, India, Japan, Mexico 

and OPEC, Western Europe, US and rest of the 
world 

MESSAGE 

Full energy system; supply curves 
for bio-energy and non-energy 

mitigation options; iteratively solved 

with aggregated macro-economic 
model 

Base year:2030, 
time steps:10, 

horizon: 2110 

11 regions (including Sub Saharan Africa, Asia and 
China, Eastern Europe, Former Soviet Union, Lattin 
America, Middle East, North America, OECD, Asia, 

South Asia, Western Europe) 

ReMIND 
Closed economy growth model 

with detailed energy sector 

Base year:2005, 

time steps:5, 
horizon: 2005-

2100 

12 Regions 

WITCH Energy, final goods, land use 

Base year 2005 

with a time 
horizon of 150 

years modeled in 

5 year time step 
(usually reported 

up to 2100 

13 regions, on basis of geography, income and 

structure of energy demand: Canada, Japan and New 
Zealand, China and Taiwan, China, Southeast Asia, 
India, the Republic of Korea and South Africa and 

Australia, LAC, MENA, EU new and old (15), South 
Asia (excluding India), SSA, Non EU Eastern Europe, 

US 

C3IAM 

27 sectors, which are agriculture 
products, crops, cattle animal 

products, raw milk, wool, forestry, 

fishing, coal, oil, gas, other minerals, 
other manufacturing, energy-
intensive manufacturing, roil, 

electricity, gas generation and 

distribution, water, construction, 
transportation service industry and 

other services 

 time horizon 
from 2011 to 

2100 with flexible 

time steps 

12 regions, which are USA, China, Japan, Russian 
Federation, India, Other Branches of Umbrella 

Group, European Union, Other West European 

Developed Countries, Eastern European CIS 
excluding Russian Federation, Asia excluding China, 

India and Japan, Middle East and Africa and Latin 
America 

BET EMF33 

The model explicitly handles energy 
service demand and end-use 

technologies in a global 

macroeconomic framework. This 
structure allows a systematic 

approach to examine trade-offs 
between advanced energy supply 

technologies and end-use 
efficiencies from a long-term global 

perspective across different 

mitigation policies and technologies. 

Base year:2010, 
time steps:10, 
horizon: 2150 

13 region, including Brazil, Canada, Australia and 

New Zealand, China and Taiwan, China, India, Japan,  
LAC,  EU 27 + Switzerland, Norway and Iceland, 

,MENA, Asia, LAC, Russian Federation, SSA 

AIM-CGE 

The whole economic activities are 

represented , but energy, 
agriculture and land use are 

disaggregated.  

Base year: 2005. 
2005--2100 

period. For some 
applications, the 

model is run up to 

2050. The time 
step of the model 

solution is one 

year. 

10 regions: China; Taiwan, China; Korea, Rep.; Hong 
Kong SAR, China; Singapore, India, Indonesia, 

Malaysia, the Philippines, and Thailand. Other regions 
are Latin America, Middle East Asia and North 

Africa, 

Sub-Saharan Africa, and the Rest of World (ROW)  

GEM-E3-ICCS 

General Equilibrium model that 

includes all economic agents (firms, 
households, government, rest of the 
world) and aggregates the economy 

in 26 economic activities: 
Agriculture, Coal, Oil,  Gas, Power 

Supply, Ferrous and non ferrous 

metals,  Chemical Products, Other 
energy intensive,  Electric Goods,  

Transport equipment, Other 

Equipment Goods, Consumer 

Base year: 2014, 
time steps: 5, 
horizon: 2100 

46 regions 
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Goods Industries, Construction, 
Transport,  Market Services, Non 

Market Services and ten discrete 
power producing technologies. 

IMACLIM 

12 production sectors: 5 energy 

sectors (coal, oil, gas, electricity, 
petroleum products), 3 transport 
sectors (air, water, terrestrial), 

construction, agriculture, energy-
intensive industry and manufacturing 

& services (composite good).  

+ 2 sectors with auto-production by 
households: motorized private 

mobility, non-motorized transport. 

2001-2100 in 
yearly steps 

12 regions: USA, Canada, Europe, OECD Pacific, 
FSU, China, India, Brazil, MENA, SSA, Rest of Asia, 

Rest of LAC 

TEA 

16 sectors grouped in 5 macro 

sectors: Agriculture (represented by 
4 goods / sectors); Industry 

(represented by 6 goods / sectors); 
Energy (represented by 5 goods / 

sectors); Transportation 
(represented by 3 sectors); and 

Services. 

2010--2100 
period. The base 
year is 2010 and 

the time step is 
five years 

16 Regions (including Africa, Australia and New 
Zealand, Brazil, Central America, Canada, Caspian 

region, China, EU and rest of Europe, India, Japan, 
the Republic of Korea, Middle East, Asia, the Russian 

Federation, South Africa, South America, United 
States) 

GRACE 

All economic activities in the world, 

as expressed by national accounts 
data 

Base year (2014). 
The model can be 

solved yearly until 
a future year, such 
as 2050 and 2100 

by updating 
external variables 

every year. 

15 Regions 

IFs 

A multisector general equilibrium 
economic model (which uses 

inventories as buffer stocks and to 
provide price signals so that the 
model chases equilibrium over 

time); it provides labor, investment, 
and consumption information to 
partial equilibrium energy and 

agriculture models. 

base year of IFs is 

2015 and the 
model runs 

recursively in 

annual time steps 
through horizons 

up to 2100.  

186 countries 

PHOENIX 
27 production and investment 

sectors 
2000-2150 GTAP countries 

POLES Industry, services, agriculture 

Base year: 2015, 
time steps: Yearly, 

horizon: 2015-
2100 

66 regions (including detailed EU28, all OECD 

countries and main non-OECD countries) 

WorldScan2 16 sectors 2000-2050 16 regions 

 

 

 

https://www.gtap.agecon.purdue.edu/databases/
https://www.gtap.agecon.purdue.edu/databases/
https://www.gtap.agecon.purdue.edu/databases/
https://www.gtap.agecon.purdue.edu/databases/
https://www.gtap.agecon.purdue.edu/databases/
https://www.gtap.agecon.purdue.edu/databases/
https://www.gtap.agecon.purdue.edu/databases/
https://www.gtap.agecon.purdue.edu/databases/
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Table 2.b Economic, Temporal and Spatial coverage for Partial Equilibrium 

Model 
Economic Coverage 

Temporal 
dimension 

Spatial dimension 

DNE21+ 
Energy (bottom-up); energy supply & 

demand modeled for all sectors 
2006-2050 in 5 and 10 

years steps 

54 regions (America, Canada, Australia, China, 

India, Russian Federation are divided into 
further small regions, making a total of 77 

regions) 

global TIMES 
Energy (bottom-up); energy use for all 

sectors 

Base year is 2005 
Horizon i (2005-2100) 
with 5 year time steps 

up to 2070 and with 
10 year time steps 

beyond 

16 regions, including AFR, Australia, Canada, 

Central and South America, China, Eastern 
EUROPE, FSU, India, Japan, Mexico, MENA, 

Other developing Asia, the Republic of Korea, 

UK, USA, Western Europe 

global ETP-TIMES 
Energy (bottom-up); energy use for all 

sectors 

Base year: 2014, time 
steps: 5 years, 
horizon: 2060 

28-39 regions 

COFFEE 

COFFEE is designed to meet the 
demand for energy services 

(exogenous whether run in a stand-
alone basis or when linked to the TEA 

model), given the competition 
between technologies and energy 

sources, with the objective of 
minimizing the total cost of the 

system.  

2010--2100 period. 

The base year is 2010 
and the time step is 

five years 

16 Regions (including Africa, Australia and New 
Zealand, Brazil, Central America, Canada, 

Caspian region, China, EU and rest of Europe, 
India, Japan, the Republic of Korea, Middle East, 

Asia, the Russian Federation, South Africa, 
South America, United States) 

AIM-Enduse 
Energy, agriculture, land use and 

waste 
2005-2050 32 regions 

GCAM 
Energy, land use and associated 

products 

Base year:2015, time 

steps:5-year (default), 
minimum time step is 
1-year, horizon: 2100 

32 Regions (including USA, Canada, Mexico, 
Australia and New Zealand, Japan, the Republic 
of Korea, EU, Europe non-EU, Eastern Europe, 

the Russian Federation, China, Taiwan, China, 
Central Asia, South Asia, Southeast Asia, 

Indonesia, India, Pakistan, Middle East, Africa 4 

regions, South Africa, Argentina, Brazil, Central 
America, Colombia, South America 2 regions) 

IMAGE 
Detailed energy and land use system.  

Energy demand from Industry, 

Transport, Residential and Services. 

Base year:1970, time 
steps:1-5 year time 

step, horizon: 2100 

26 Regions (including USA, Canada, Mexico, 

Australia and New Zealand, Japan, Western 
Europe, Eastern Europe, the Russian Federation, 

China, the Republic of Korea, Ukraine, Asian-

Stan,  South Asia, Southeast Asia, Indonesia, 
India,  Africa 4 regions, South Africa, Brazil, 

Central America, South America) 

PROMETHEUS 

Energy supply (production and 
international trade of fossil fuels), 
Energy transformation (electricity 
production, refining of fuels and 

production of synthetic fuels, such as 
liquid biofuels and hydrogen) and 

energy demand (industry, transport 

and residential/services/agriculture 
sector) 

1 year time step, 

usually from 2018 to 
2050 

10 geographical units, including China, India, 
North America (USA and Canada), OECD 

Pacific (Japan, the Republic of Korea, Australia, 
New Zealand), EU-28, CIS, Middle East and 

North Africa, Emerging economies and Rest of 
the world. 
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3.3 Main taxonomy according to the sectoral coverage and modeling of technological change  

Tables 3a and 3b go into more detail to describe the focus on the energy and transport sectors and the 

specific forms of technological change used in the models. 

Energy sector coverage 

Only about half of the general equilibrium models distinguish among key categories of energy end users, 

including the common distinction between residential, commercial, industrial and transport users, while 

some of the general equilibrium models are characterized by a top-down and a less disaggregated 

representation of energy end-users. In contrast, all the partial equilibrium models consider a much more 

granular and bottom-up representation of the different categories of end users. The future energy mix in 

IAM pathways does not always find agreement among experts. In particular, IAMs have been criticized  for 

their relatively low projections of solar power and for their optimistic projections of CCS and BECCS. van 

Sluisveld et al. (2018) compared the relative ranking of  IAMs projections of 2050 electricity generation 

technologies to the rankings from about 40 experts selected from their collaboration in international reports 

on climate and energy. Figure 2 shows how experts ranked technologies on the vertical axis compared to 

the IAM rank on the horizontal axis, for both baseline scenarios (left box) and those limiting warming to 

2C (right box).  

Figure 2 

 

Source:  Sluisveld et al. (2018). 

 

Experts ranked solar much higher than IAMs, giving it the highest rank among any technologies, whereas 

it was ranked only the fifth highest by IAMs. Experts ranked bioenergy (without CCS) higher as well; they 

had much lower expectations for fossil fuels and bioenergy with CCS, as well as for nuclear. 

One key message from these varied projections is that there is no single answer to the question of how the 

global energy system should change to limit future warming. It is possible to meet climate goals using 

https://www.carbonbrief.org/wp-content/uploads/2018/10/Ranking-chart.png
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mainly renewables and biomass, as in the REMIND model. Or the same targets can be met using a 

combination of renewables, nuclear and fossil fuels with CCS, as in the GCAM model. 

 

Table 3.a Representation of energy, transport sectors and technological change for General Equilibrium  

Model 
Represented Energy End 

Use Sectors 
Represented Transport sector Technological change 

MERGE-ETL Energy intensive sector No disaggregation Endogenous 

MESSAGE 

Industry, feedstocks (non-
energy use of fuels), 

residential, commercial, 

transport 

Transport sector representation is very stylized and 

essentially includes fuel switching and price-elastic 
demands 

Exogenous 

ReMIND 
Stationary (aggregating 

industry, buildings), transport 

Mobility demands for the 4 modeled transport sub-
sectors (Passenger-light duty vehicles (LDV), Freight, 

Electric Rail, Passenger-Aviation and Buses) are 
derived in a top-down fashion, since they are input to 

a nested CES production function that ultimately 

produces GDP. For the LDV mode, three different 

technology options (internal combustion engine, 
battery electric vehicle, and fuel cell vehicle) compete 
against each other in a linear bottom-up technology 

model. 

Endogenous LBD 

WITCH 
transport, industry and 

residential/commercial 

Passengers and freight vehicles (both distinguished 
according to traditional combustion, hybrid, plug in 
hybrid and electric). The composition of vehicles is 

determined by a Leontief function of a range of costs 

(including battery, O&M, fuel and carbon costs) 

Partly endogenous 

C3IAM 
transport, industry and 

residential/commercial 

Intercity passenger transport, urban passenger 

transport and freight transport. Urban passenger 
transport is divided into public transport (bus and rail 

transit), taxi, and private vehicles (cars and electric 

bikes). Intercity passenger transport is divided into 
private vehicles and four main business intercity 

passenger transport (road transport, railway 

transport, aviation and waterway transport). Freight 
transport is divided into five main types: road 

transport, railway transport, aviation transport, 
waterway and pipeline transport.  

Exogenous 

BET EMF33 Transport, Power, Heat  Passenger and freight Exogenous 

AIM-CGE 
Industry, residential, 

commercial, transport 
Road, Railway, Waterways, Air transport Exogenous 

GEM-E3-ICCS Firms, households 

As regards the transport modes, the sectorial split 
follows and further extends the classification used by 
the GTAP database. This extension splits the GTAP 

data in passenger and freight transport by mode and 
further disaggregates the modes into rail and road as 

Exogenous 
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well as distinguishes between public and private 
transport.  

IMACLIM 
Residential, transport, 

industrial 

In static equilibrium, the transport of passengers and 
freight are characterized by the number and 

characteristics of household vehicles, the efficiency of 
the fleet of vehicles, the capacities of the different 

transport mode and the coefficient of the 

intermediary energy use and consumption  

Endogenous 

POLES Buildings, transport 

Several modes are distinguished in the model (road, 

rail, water, air), for both passenger and goods 
transport. The competition across vehicle types (6 

types of vehicles in cars and trucks: conventional ICE, 
electric, plugin hybrid, H2 fuel cell, H2 thermal, gas)  

Partly Endogenous 

TEA 
transport, industrial, 

residential and commercial 

sectors 

The activity of the transportation sector is usually 

separated into passenger and freight. The energy 

consumed in this sector is used to achieve a 
necessary level of activity. In this sense, within the 
model, the exogenous demand will be expressed in 

pkm, for passengers, and tkm, for freight. 

Exogenous 

GRACE 

transport, industrial, 

residential and commercial 
sectors 

Domestic transport in a region is divided into air, sea, 
and other transport activities, modeled as nested  

Exogenous 

IFs 

Energy demand is estimated as 
a function of the energy 

demand per unit GDP and 
total GDP, with adjustments 
related to energy prices and 

energy efficiency 

Aggregate Exogenous 

PHOENIX   

Ground transportation differs from air and water 
transport in that we allow for substitution away from 

conventional transport to hybrid electric (HEV) 
and/or biofuel backstop technologies when they are 
cost competitive. The elasticity of substitution is 1.2 

Exogenous 

WorldScan2 

Production sectors using 
energy as intermediate input 

and households consuming 
energy directly. 

Aggregated  Exogenous 
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Table 3.b Representation of energy, transport sectors and technological change for Partial Equilibrium  

 

 

 

 

 

Model 
Represented Energy End 

Use Sectors 
Represented Transport sector Technological change 

DNE21+ 

Industry, residential, 
commercial, transport, top-
down modeling for other 

sectors 

The type of vehicle includes small passenger car, large 
passenger car, bus, small truck, and large truck. Vehicle 
technologies are categorized into internal combustion 
engines, electric cars, fuel-cell cars, and alternative fuel 

vehicles, including bioethanol mixed with gasoline, 
biodiesel mixed with diesel, and CNG. The gasoline and 

diesel combustion engines for gasoline/diesel are further 

classified into conventional internal combustion cars 
(low/high efficiency), hybrid cars, and plug-in hybrid cars. 

Partly Endogenous 

global TIMES 
Transport, Residential and 
Commercial, Industry and 

Other (Agriculture).  

The transportation sector is characterized by 14 energy-

services plus one non-energy use demand segment. Six of 
the energy-services are considered as generic demands: 

international and domestic aviation, freight and passenger 

rail transportation, domestic and international navigation. 
All other energy-services are for road transport. The 

non-energy use is predominately the demand lubricants. 

exogenous with 
endogenous technology 

learning extension 

global ETP-TIMES 
Transport, industry and 

residential/commercial 

2‐3 wheelers, Light duty vehicles (distinguished by 
Internal combustion (gasoline/diesel/CNG/LPG) 

(gasoline/diesel/CNG/LPG), Hybrids (gasoline/diesel) 

Plug‐in hybrids (gasoline/diesel) Fuel cell vehicles, Electric 
vehicles), Heavy duty vehicles (Passenger,  Minibuses, 

Buses, BRT systems, Freight, Medium freight trucks, 

Heavy freight trucks), Rail (passenger, freight), Air (only 
passenger) Water (only freight) 

Endogenous; exogenous 

COFFEE 
Transport, industrial, 

residential and commercial 
sectors 

The activity of the transportation sector is usually 
separated into passenger and freight. The energy 

consumed in this sector is used to achieve a necessary 

level of activity. In this sense, within the model, the 
exogenous demand will be expressed in pkm, for 

passengers, and tkm, for freight. 

Exogenous 

AIM-Enduse 
Industry, residential, 

commercial, transport 
Road, Railway, Waterways, Air transport Exogenous 

GCAM Buildings, transport, industry 

Four final demand: long-distance passenger air travel, 

(other) passenger travel, international freight shipping, 
and (other) freight. The passenger sector consists of up 
to five nesting levels, corresponding to different modes 

(e.g., road, rail), sub-modes (e.g., bus, light duty vehicle), 
size classes, and drivetrain technologies.  

Exogenous 

IMAGE 
Industry, residential, services, 

transport 

There are seven passenger transport modes - foot, 
bicycle, bus, train, passenger vehicle, high-speed train, 

and aircraft.  
Endogenous 

PROMETHEUS 
Industry, transport and 

residential/services/agriculture 

sector 

The private passenger cars sector is modeled in detail, by 
distinguishing internal combustion engine cars (using 

gasoline, diesel, biofuels or hydrogen as a fuel), 

conventional and plug-in hybrids, electric cars and fuel-
cell cars (using hydrogen or gasoline as a fuel). 

Endogenous 
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Transport sector coverage 

Some of the general equilibrium models explicitly model the transport sector and also endogenize the choice 

of technologies. In particular: 

• GEM-E3-ICCS distinguishes the technologies for transport means, and endogenizes the choice of 

technologies in the simulation of investment by sectors providing transport services and the 

purchasing of durable goods by households. Finally, the operation of the transport means is related 

to the sectors producing the energy commodities, including alternative fuels, such as electricity and 

biofuels.  

• POLES uses a multinominal logit function that depends on the total cost for the user, considering 

fixed cost (investment, life-time, user discount rate) and variable cost (consumption per km, fuel 

price), and is constrained by infrastructure developments for refueling stations. 

• GRACE uses CES functions of energy use and other inputs. Importing countries pay a price 

premium to the international transport sector. This price premium is determined by a fixed transport 

factor derived from the base year data. The supply of international transport services is depicted by 

a Cobb-Douglas aggregate of the service good from the individual regions. The Armington 

aggregate is then distributed between private, public, investment, and intermediate consumption. 

A much more detailed representation of the transport sector is reported in some of the partial equilibrium 

models: 

• IMAGE The structural change processes in the transport module are described by an explicit 

consideration of the modal split. Two main factors govern model behavior, namely the near-

constancy of the travel time budget, and the travel money budget over a large range of incomes. Six 

freight transport modes are included: international shipping, domestic shipping, train, heavy truck, 

medium truck and aircraft. Vehicles with different energy efficiencies, costs and fuel type 

characteristics, compete on the basis of preferences and total passenger-kilometer costs, using a 

multinomial logit equation in both the passenger and freight transport submodules. These 

substitution processes describe the price induced energy efficiency changes. 

• GCAM The passenger sector also includes non-motorized modes (walking and cycling), which are 

not represented as energy consumers. Their market share in future periods largely depends on 

income, prices, elasticities, and also the time value of transportation. 

 

Uncertainty and technological change  

 

A relevant feature of IAMs is how they deal with uncertainty and risk. The complexities of both human-

induced climate change and the policies designed to address it mean that there are vast uncertainties 

regarding key model inputs and parameters and important model outcomes (e.g., changes in projected 

temperatures and precipitation amounts). IAMs and scenarios are developed to analyze climate policies and 

estimate future pathways of temperature, but no model can replicate the real world completely and no 

scenario can predict a realized future pathway perfectly. For tractability, every model or scenario has to 

make some simplifying assumptions, particularly in mathematical representations of economic and climate 

systems. Different assumptions then lead to different models or scenarios. 

 

There are three broad approaches to incorporate uncertainties into economic models of climate change, as 

represented in Figure 3.  The simplest approach, which is not a real uncertainty analysis but can be used as 

a tool to identify which model parameters should be treated stochastically, is a sensitivity analysis. It 
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answers the question of how sensitive model outputs are to changes in model inputs and involves varying 

input parameters that are not known with certainty. More demanding, but still relatively simple, is what is 

termed uncertainty propagation. In this case, there are uncertain parameters in the model, but the agents in 

the model do not account for them. This implies that there is no learning. Finally, one can for instance take 

expectations of the output. A more complex implementation involves modeling certain variables as 

stochastic processes. For computational purposes propagation of uncertainty usually involves sampling 

from a joint distribution using mostly the Monte Carlo method. The most demanding approach accounts 

for learning and can be termed sequential decision-making under uncertainty. This implies that models 

determine optimal policies at more than one point in time, taking into account the available information in 

each period. Models in this category range from simple two-period decision analysis to an infinite-horizon 

stochastic optimization. There are three main types of learning: active learning whereby the effect of policy 

choices on certain key variables (e.g. the effects of emissions on the economy and the climate system) is 

observed for the purpose of obtaining information about uncertain parameters, purchased learning e.g. from 

R&D and autonomous learning where the passage of time reduces uncertainty. The first two types of 

learning imply endogenous technological change, which is also an important issue in the context of climate 

change. Most existing models though, use autonomous learning and not more than two decision periods. 

Most existing models are deterministic and, if at all, most modelers have only performed very basic types 

of uncertainty analysis. Although sensitivity analyses and Monte Carlo simulations are a good place to start, 

two other crucial dimensions of the climate change problem should be included in any comprehensive 

attempt to inform climate policy decisions. First, decisions made today can be revisited and modified at any 

point in the future as new information on climate change damages and mitigation costs becomes available. 

Thus, decision making about climate change is one of sequential decision making under uncertainty. 

Models of sequential decision-making under uncertainty are used to determine optimal policies under 

different aspects of uncertainty and learning. Altogether, uncertainty analysis is very complex and 

computationally intensive. The second crucial dimension of climate change uncertainty that has yet to be 

systematically addressed by researchers is assumptions about the decision makers’ attitudes toward risk.  

 

Figure 3: Challenges in treatment of uncertainty and technological change 
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An important issue concerns technological change: specifically, whether technology costs are assumed to 

be exogenous (that is, specified externally by modeling assumptions), or induced by the cumulative impact 

of policy, investment, and market growth within a model. Only a limited number of models, irrespective of 

whether general or partial equilibrium, have been able to endogenize technical change. Few if any models 

represent path dependence beyond the capital inertia and induced learning, to take account of institutional, 

social, and behavioral inertia, a limitation acknowledged in some of the leading studies.  

 

Let us consider in turn the specific treatment of uncertainty and technological change.  

 

Treatment of uncertainty 

 

IAMs and scenarios are developed to analyze climate policies and estimate future pathways of temperature, 

but no model can replicate the real world completely and no scenario can predict a realized future pathway 

perfectly. For tractability, every model or scenario has to make some simplifying assumptions, particularly 

in mathematical representations of economic and climate systems. Different assumptions then lead to 

different models or scenarios. 

 

There is large uncertainty in future temperature projections from climate models, as well as in future 

economic systems. It is often hard to judge which model or scenario is better, but policy makers have to 

make their decisions in the face of the model or scenario uncertainty. There are three main types of learning: 

active learning whereby the effect of policy choices on certain key variables (e.g. the effects of emissions 

on the economy and the climate system) is observed for the purpose of obtaining information about 

uncertain parameters, purchased learning e.g. from R&D and autonomous learning where the passage of 

time reduces uncertainty. The first two types of learning imply endogenous technological change, which is 

also an important issue in the context of climate change. Most existing models though, use autonomous 

learning and not more than two decision periods. Models of sequential decision-making under uncertainty 

are used to determine optimal policies under different aspects of uncertainty and learning. Altogether, 

uncertainty analysis is very complex and computationally intensive. Most existing models are deterministic 

and, if at all, most modelers have only performed very basic types of uncertainty analysis. 

 

Finally, the last column of Tables 4a and 4b reports some of the most interesting applications and papers 

published using the specific IAM model at hand. 

 

Table 4.a Representation of policy, uncertainty and application for General Equilibrium 

Model Policy Uncertainty Application 

MERGE-ETL 
Emission tax Emission pricing cap and 

trade emission standards Fuel Taxes and 

Subsidies energy efficiency standards 

Deterministic (Scenario analysis); A 
stochastic version (Monte Carlo 

analysis) was developed in 2008 

Impacts of  endogenous technological change on carbon-
mitigation policy (Kypreos, 2008) .  MERGE-ETL has been 

applied to explore uncertainty related to global climate 
and nuclear policies in the wake of the Fukushima disaster, 

focusing on the impact on Switzerland (Marcucci and 

Turton 2012) 

MESSAGE 
Emission tax Emission pricing cap and 

trade emission standards energy 

efficiency standards 

Scenario analysis; sensitivity analysis; a 
stochastic version was developed by 

Kovacevicet al.  (2013). 

The impacts of wind and solar PV deployment on the 
structure and operation of the electricity system (Johnson 

et al. 2017) 

 Policy trade-offs between climate mitigation and clean 
cook-stove access in South Asia (Cameron et al., 2016). 

ReMIND 
Emission tax Emission pricing cap and 
trade fuel taxes and subsidies Portfolio 

standards Capacity targets 
Deterministic (scenario analysis) 

The role of renewables in the low-carbon transformation 
(Bauer et al., 2010) Coupling a Detailed Transport Model  

(Rottoli et al., 2021)  
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WITCH 

Quantitative climate targets on global 
temperature, on radiative forcing, on 

atmospheric carbon concentration, on 
greenhouse gas emissions or on carbon 

budget. Carbon taxes and additional 

subsidies taxes on energy sources 

Scenario analysis; a Monte Carlo 
analysis was introduced in 2008. 

Incentives and Stability of International Climate Coalitions 

(Bosetti et al., 2012)  A International energy R&D 
spillovers and the economics of greenhouse gas 
atmospheric stabilization (Bosetti et al., 2008) 

C3IAM 
Emission tax Emission pricing cap and 

trade fuel taxes and subsidies 
Deterministic (scenario analysis) 

Self-preservation strategy for approaching global warming 
targets in the post-Paris Agreement (Wei et al. 2020) 

BET EMF33 Advanced technologies Deterministic (scenario analysis) 
Role of end-use technologies in long-term GHG reduction 

scenarios (Yamamoto et al.,  2013 and 2020)  

AIM-CGE 

Emission tax 

Emission pricing Capacity targets 
Emission standards 

Energy efficiency standards 

Cap and trade 
Fuel taxes 

Fuel subsidies 

Deterministic (scenario analysis) 

Consequence of Climate Mitigation on the Risk of Hunger 
(Hasegawa et al., 2013), Assessment of CO3 reductions 

and economic impacts considering energy-saving 
investments (Masui  et al., 2006).  Local air pollutant 

emission reduction and ancillary carbon benefits of SO2 

control policies (Xu& Masui, 2009) 

    

GEM-E3-ICCS 

The analysis of market instruments for 

energy-related environmental policy, 
such as taxes, subsidies, regulations, 
emission permits etc., at a degree of 

detail that is sufficient for national, 
sectoral and world-wide policy 
evaluation. The assessment of 

distributional consequences of programs 
and policies, including social equity, 

employment and cohesion.  

Deterministic (scenario analysis) 

The GEM-E3 model has been extensively used by several 

DGs of the European Commission for policy analysis and  
in a series of research projects funded by the European 

Commission like the MEDPRO and the AMPERE project.  

IMACLIM 
Energy taxes, Emission trading, 

technology subsidies or regulation 
Scenario analysis 

Infrastructures, technical inertia and the costs of low 
carbon futures (Waisman et al., 2012). The transportation 
sector and low-carbon growth pathways: modeling urban, 

infrastructure, and spatial determinants of mobility 
(Waisman et al., 2013)  Sustainability, globalization, and the 

energy sector (Waisman et al., 2014). 

POLES 

GHG Policies, Energy taxation policies 

(carbon pricing fossil fuel subsidies, 
renewables) Support to specific 

technologies (including electric vehicles 

and modal shifts in passenger transport) 

Scenario analysis 

 Pathways to Mexico’s climate change mitigation targets 

(Veyseyet al., 2016), European climate—energy security 
nexus (Criqui et al., 2012).     A global stocktaking exercise 
of the Paris pledges: Implications for energy systems and 

economy. (Vandyck et al., 2016). 

TEA 

The TEA model allows sectoral and 

international trading of emissions credits 
(or allowances) that are accounted for 

along with other trade flows. 

Deterministic (scenario analysis) 

  

GRACE 

GRACE can simulate effects of policies 

of climate mitigation (e.g. carbon tax, 
carbon market, renewable subsidy, and 
energy efficiency improvement), climate 

adaptation measures (e.g. substitution 

between goods/resources and market 
responses), climate impact (e.g. climate 

change impact on crop production and 
forest growth). the policy options 

Deterministic (scenario analysis) 

Europe’s climate goals and the electricity sector (Gunnar 
et al., 2012), The effects of energy efficiency improvement 
in China (GLOMSRØD, S. & WEI, T. 2016, EI, T. & LIU, Y. 

2017) 
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Table 4.b Representation of policy, uncertainty and application for Partial Equilibrium 

Model Policy Uncertainty Application 

DNE21+ 

Based on the scenario setup, energy- and 
climate-related policies are explicitly 

represented in DNE21+. This includes carbon 
pricing, emission cap and trade system, carbon 

tax, preferred tax on specific energy sources, 
fuel subsidies, fuel standards and energy 
standards. In general, these policies are 

implemented via constraints or a price mark-up 
on energy sources. 

Deterministic (scenario analysis 

& sensitivity analysis) 

Estimates of GHG emission reduction potential by country, 

sector, and cost (Akimoto et al. 2010) Comparison of marginal 
abatement cost curves  (Akimoto et al. 2012)   

global TIMES 

A variety of energy and climate policies, 
including emission taxes, permit trading, specific 

technology subsidies, technology and resource 
constraints/targets 

Deterministic scenario analysis 
with Stochastic Programming 

extension 

Bouckaert, S., Assoumou, E., Selosse, S., & Maïzi, N. (2014). A 
prospective analysis of waste heat management at power plants 

and water conservation issues using a global TIMES model. 
Energy, 68, 80–91 

global ETP-TIMES 

Emission Tax/Pricing, Cap and Trade, Fuel 

Taxes, Fuel Subsidies, Feed-in-Tariff, Portfolio 
Standards, Capacity Targets, Emission 
Standards, Energy Efficiency Standards 

Deterministic (scenario analysis 

& sensitivity analysis); 
stochastic (Monte Carlo 

analysis) 

IEA ETP reports 

COFFEE   
Deterministic (scenario analysis 

& sensitivity analysis) 

 Development of a global integrated energy model to evaluate 
the Brazilian role in climate change mitigation scenarios 

(Rochedo, 2016). The role of biomaterials for the energy 

transition from the lens of a national integrated assessment 
model (de Oliveira et al., 2021)  

AIM-Enduse 

Emission tax 
Emission standards 

Energy efficiency standards 
Fuel taxes 

Fuel subsidies 

Deterministic (scenario analysis 

& sensitivity analysis) 

 Applications to China, India, Japan & Vietnam (Kainuma et al., 
2003) Consequence of Climate Mitigation on the Risk of Hunger 

(Hasegawa et al., 2015) 

GCAM 

Emission tax,  Emission pricing Capacity targets, 

Emission standards 
Energy efficiency standards,  

Agricultural producer and consumer subsidies 
Land protection, Pricing carbon stocks 

Cap and trade, Fuel taxes, Fuel subsidies Feed-
in-tariff,  Portfolio standard 

Deterministic (scenario analysis 
& sensitivity analysis) 

Power sector investment implications of climate impacts on 
renewable resources in Latin America (Silvia et a;., 2021).  Biojet 

fuels and emissions mitigation in aviation (Wise et al., 2017). 

targeting on specific sectors can be 
introduced in GRACE as it is a multi-

sectoral model. 

IFs 

Prepackaged scenario intervention files 

also allow integrated analysis of scenario 
sets including the UNEP GEO-4 set and 

the Shared Socioeconomic Pathway 

(SSP) set 

Deterministic (scenario analysis) 

ICT Contribution to Increased Carbon Emissions (Moyer 

et al., 2012). Scenarios for Vulnerability: Opportunities and 
Constraints in the Context of Climate Change and 

Disaster Risk (Birkmann, et al., 2013.) Eradicating Poverty 

in Fragile States (Burt et al. 2014) 

PHOENIX 

    

Impacts of long-term temperature change and variability 
on electricity investments (Khan et al., 2021) 

WorldScan2 

  

Deterministic (scenario analysis & 
sensitivity analysis) 

‘Four Futures of Europe’ (De Mooij and Tang, 2003, and 

Lejour, 2003) and its companion ‘Four Futures of Energy 
Markets and Climate Change’ (Bollen, Manders and 

Mulder, 2004) 
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IMAGE 

Energy policies (air pollution, energy access, 

energy security and bioenergy) Land and 
biodiversity policies (food, bioenergy, nature 
conservation) Human development policies 

(malnutrition, health) 

Deterministic (scenario analysis 

& sensitivity analysis) 

Energy systems and climate policy-long-term scenarios for an 

uncertain future (Van Vuuren, 2007).  

PROMETHEUS 

The PROMETHEUS model is used to simulate 

the implications of various energy and climate 
policy instruments, including GHG policies, 
energy pricing policies, support policies for 

specific technologies, efficiency standards. 
Support to investment in low carbon 

technologies 

Deterministic (scenario analysis 
& sensitivity analysis) 

 Investments in Power Generation Under Uncertainty (Fragkos 
and. Kouvaritakis, 2019, Fragkoset al., 2015) 

 

 

 

Treatment of technological change 

 

Let us consider in more detail an important issue concerning technological change, as the direction and 

scale of innovation are influenced by relative prices, demand and expectations. For example, rising prices 

induced efficiency improvement in end-use equipment, as described in Newell et al. (1999) as well as 

optimization in vehicle fuel use, as reported by Knittel (2011). Lower solar module prices led to exponential 

growth in adoption of renewable energy (Taghizadeh-Hesary et al., 2019). “A major systematic review  by 

Grubb & Wieners (2020) documents the evidence and causal mechanisms of cost reductions associated 

with a doubling of capacity. The key mechanisms of cost reduction include learning-by-doing and learning-

by-using, but also economies of scale, together with the development of global supply chains, and growing 

confidence reducing the perceived risks and hence cost of finance.  

 

Weiss et al. (2010) find an average learning rate of 18% across 15 demand-side technologies. Similarly, 

reviews by Rubin et al. (2015), Samadi (2018), and Farmer and Lafond (2016) find learning rates for 

renewable technologies close to 20% and stable for solar. The average global cost of PV is already well 

below the projections for 2030 made in the early 2010s. Accordingly, models including specific projections 

about technology costs over the medium and long period become outdated quite rapidly, particularly when 

the projections do not vary with the scale of deployment. 

 

The cost reductions reflect learning and development of the industry and its supply chains at scale. 

Moreover, PV cost variations between countries reflect not just the solar resource, but the maturity and 

scale of the local PV businesses. In parallel with renewables in electricity generation, the uptake of electric 

vehicles (EV) and renewably hydrogen-powered fuel cell electric vehicles (FCEV) in the private transport 

and freight sector has recently been faster than expected and is expected to speed up in the coming decades. 

This is all happening much faster than in the IAMs’ transport sector decarbonization indicators. For light 

duty transport, electric vehicles are cheaper to run than gasoline, and given battery costs are falling even 

faster than PV, may be cheaper to buy as the market grows. 

 

The impact of innovation can be quite dramatic, though it involves significant cost and investment in the 

transition. Competitive tenders of solar PVs in the late decades have repeatedly achieved tariff records, with 

costs well below the cost of fossil fuel generation even from existing fuel fired plants. Decarbonization has 

already been more feasible than assumed in most model projections, and the costs continue to decline with 

deployment, pointing to the need to update the assumptions to reflect most recent developments, and to deal 

with uncertainty as history is often not the best predictor of future trends. 

 

Although many of these models (e.g., MERGE-ETL) can incorporate induced innovation, several fail to do 

so, because it adds substantial computational complexity. Most models in the IPCC Assessments were run 
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without induced innovation. Bosetti et al. (2015) find that different representations of endogenous 

technological change in IAMs may still result in similar future energy structures, though the robustness of 

this finding may be challenged for example, by the dramatic fall in renewables costs since observed. 

 
Only a limited number of models, irrespective of whether general or partial equilibrium, have been able to 

endogenize technical change. Most notably only 3 out of 15 general equilibrium models (MERGE-ETL, 

ReMIND, and IMACLIM), 2 of them are partly endogenous (WITCH and POLES) while the other two-

thirds of models are still based on exogenous technological change. 

 

Among partial equilibrium models only 2 out of 8 (IMAGE and PROMETHEUS) endogenize technological 

change, 3 of them (DNE21+, global TIMES and global ETP-TIMES) partly endogenize innovation whereas 

the other 3 consider only exogenous technical change.   

 
Path dependence is another important feature in IAM models, which entails a transitional cost of moving 

away from a given path, due to inertia. Seto et al. (2016) report quite a few institutional and behavioral 

factors contributing to carbon lock-in, including technological institutional and behavioral ones.  IAM 

models find it difficult to capture path dependence beyond the capital inertia and induced learning. The 

improved understanding of carbon lock-in as well as economic insights about “self-fulfilling prophesies” 

suggest that IAMs still fail to address path dependency (Grubb et al., 2021). Among the ones that succeeded 

are simulation (rather than optimizing) models, the most detailed linking an econometric model with 

technology innovation and climate modules (Mercure et al., 2018). 

 

Innovation, through economies of scale and learning-by-doing, makes an established path more attractive. 

Fouquet and Aghion (2019) identify at least several economic processes driving innovation, including 

knowledge spillovers (cumulative built innovations based on prior, related innovations in ways, network 

effects (where the attractiveness of a technology depends upon interrelated networks of other users or 

suppliers) and complementarities as in the case of renewables and storage.  

 

Path dependence implies that past choices create a new default trajectory, and that there may be many 

alternative paths. Simplistic interpretation of the existence of a “least-cost, optimum pathway” would imply 

that countries at a similar stage of economic development would have similar levels of per-capita energy 

consumption. This is not the case since developed countries with similar per-capita income differ by almost 

several factors in their primary per-capita energy consumption. Effects of geography and trade can only 

account for a modest part of these differences. Per-capita CO2 emissions vary even more, though this is 

also influenced by the endowment of hydro and other low carbon energy sources. Even more striking, there 

has been no sign of convergence of carbon intensity, over time (Grubb et al., 2021). This stylized fact is 

consistent with theories of path dependence, in which the institutions, infrastructures, and vested interests 

in fossil-fuel-intensive countries tend to self-perpetuate, while lower carbon economies may be more able 

to further decarbonize. Moreover, abatement cost is substantially influenced by assumptions around “hard-

to-abate” sectors, rather than climate target stringency (see for instance Mercure et al., 2019). The emerging 

field of agent-based climate-economy models (Farmer et al., 2015) may handle nonequilibrium effects, 

learning and bounded rationality (Lamperti et al., 2018; Rengs et al., 2020). While some of the more 

obvious feedbacks are included in some models, e.g. improved efficiency over time (included in practically 

all models), changes in input prices for materials and labor (included in detailed general equilibrium models, 

e.g. CGE models), many other factors, such as detailed technology-specific policies, spillovers from sectors 

not covered in detail in the models, remain generally exogenous. 

 

Some of the criticism of IAMs has to do with the speed at which technologies can be deployed. The real-

world processes behind this are numerous and complex and the speed can be influenced by energy and 

climate policies, but also by factors which are independent of policies, depending on knowledge spillovers 

or public acceptance of the given technology. IAMs generally modeled patterns of technological diffusion 
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by imposing exogenous constraints, rather considering the speed of deployment endogenously. Use of 

expansion and decline constraints is common. Such constraints can be technology specific, or relate to a 

group of similar technologies. Sometimes such constraints are extended to include adjustment costs, which 

allow faster growth/decline, with an additional cost (e.g. Keppo and Strubegger 2010). Finally, assumptions 

about technology substitutability and system integration requirements affect both the speed and extent of 

changes in market shares. 

 

While all models are well calibrated, some models make specific assumptions to explore special scenarios. 

IMACLIM adopts a pessimistic view of technological change by assuming strong inertia and by neglecting 

carbon-free energy sources from backstop technologies. AIM/Dynamic-Global focuses on the investment 

in energy-saving capital as a mitigation option, and largely neglects other options. As a consequence, 

economic growth cannot be decoupled from emissions. 
 

3.4 Main taxonomy according to the modeling of renewables’ intermittency and substitution between 

different technologies  

Tables 5a and 5b report the taxonomy of IAM models, making specific reference to the way in which 

integration of variable renewable energy is modeled, the substitution between different technologies and 

the emission considered. 

 

Renewables and intermittency  

 

There has been increasing focus on improving the modeling of integrating variable renewable energy into 

the power system (Creutzig et al., 2017; Luderer et al., 2017; Pietzcker et al., 2017) and of behavioral 

change and other factors influencing future demand for energy and food (van Sluisveld et al., 2016; 

McCollum et al., 2017; Weindl et al., 2017), including in the context of 1.5°C-consistent pathways (Grubler 

et al., 2018; van Vuuren et al., 2018). The literature on the many diverse CDR options only recently started 

to develop strongly (Minx et al., 2017). IAMs mostly incorporate afforestation and bioenergy with carbon 

capture and storage (BECCS) and only in few cases also include direct air capture with CCS (DACCS) 

(Chen and Tavoni, 2013; Marcucci et al., 2017; Strefler et al., 2018b). Global IAMs also generally do not 

model electricity grids at an hour-to-hour or day-to-day resolution. This means they cannot consider the 

weather-related fluctuations that make it challenging to integrate variable renewables, such as wind and 

solar, into the grid. However, most IAMs do include some mechanism to account for the costs of 

integration, as reported in detail below, both among general equilibrium and partial equilibrium models. 

 

Among general equilibrium models: 

 

• The power generation sector in AIM/CGE (Fujimori et al., 2012) is disaggregated in great detail to 

reflect technological change in the power sector, and logit functions are used to determine the share 

of power supply technologies as a function of their generation costs. The power generation cost is 

determined by the cost of intermediate inputs and primary factor (capital and labor) cost. Some 

barriers to variable renewable energy integration, like curtailment and storage, are explicitly taken 

into account in the recent version of AIM/CGE model (Dai et al., 2017). The storage service is 

treated as one of the intermediate inputs for the variable renewable energy production sectors, and 

it is produced by an explicit storage service providing sector. The required input of the storage 

service is calculated through an exponential function depending on variable renewable energy 

shares, parameterized to the residual load duration curves developed in the ADVANCE project 

(Ueckerdt et al., 2017). Curtailment is represented as an additional demand in the electricity 

https://www.carbonbrief.org/in-depth-whole-system-costs-renewables
https://www.carbonbrief.org/in-depth-whole-system-costs-renewables
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0095
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0040
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0325
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balance, and also takes the form of an exponential function depending on variable renewable energy 

E shares and parameterized to the Ueckerdt et al. data. 

• In the MESSAGE model (Messner and Strubegger, 1995, Riahi et al., 2012), region- and share-

dependent residual load duration curves (Ueckerdt et al., 2017) are used to parameterize how 

flexibility of the residual non- variable renewable energy system, variable renewable energy 

curtailment, and wind and solar PV capacity values change with increasing variable renewable 

energy share (Johnson et al., 2017--in this issue). These equations are translated into step-wise 

linear functions that describe the contribution of variable renewable energy to capacity adequacy 

and system flexibility constraints, where increasing deployment requires more firm (backup) 

capacity and increasing flexibility from the non- variable renewable energy portion of generation. 

In addition, electricity storage and hydrogen electrolysis technologies are included as options for 

repurposing both variable renewable energy and non-variable renewable energy production that 

would otherwise be curtailed. Thermoelectric technologies are represented in two modes of 

operation, baseload and flexible, to better account for the cost, efficiency, and availability penalties 

associated with flexible operation and the consequences of variable renewable energy deployment 

for non-variable renewable energy plant utilization. Since MESSAGE is a least-cost optimization 

model with perfect foresight, the additional electricity system requirements for integrating variable 

renewable energy endogenously influence investment decisions within the power sector. 

 

• The energy-economy-climate model REMIND (Luderer et al., 2013, Luderer et al., 2015) is a 

Ramsey-type general equilibrium growth model of the macro-economy in which inter-temporal 

global welfare is maximized, combined with a technology-rich representation of the energy system. 

Its power sector implementation is based on the region-specific residual load duration curves 

developed in Ueckerdt et al. (2017), which capture the effects of adding wind and solar power to 

the power sector on a) capacity adequacy, b) dispatch, c) storage and d) curtailment. The residual 

load duration curves are represented by four load bands plus a capacity adequacy equation. The 

height of these load bands is a polynomial function of wind and solar share, so their height 

endogenously adjusts with changing variable renewable energy shares. Investments into the 

different power technologies are optimized with perfect foresight over the full time horizon of the 

model. Dispatch is represented through the residual load bands. Short-term storage deployment and 

curtailment are prescribed by polynomial fits of the variable renewable energy-share-dependent 

residual load duration curves. As the model uses an optimization framework for investments into 

dispatchable and variable renewable energy technologies, the share-dependent polynomial residual 

load duration curves formulation enables the model to fully account for the changing marginal 

value of variable renewable energy in the investment procedure. 

 

• WITCH (Bosetti et al., 2006, Emmerling et al., 2016) is a hybrid model that combines an 

aggregated, top-down inter-temporal optimal growth Ramsey-type model (with perfect foresight) 

with a detailed description of the energy sector. Energy technologies – divided between the electric 

and the non-electric sectors – are nested in a Constant Elasticity of Substitution (CES) framework, 

which represents the many economic and non-economic drivers leading to limited technology 

substitution in a stylized way. Energy demand is modeled in average terms over the year. System 

integration of variable renewable energies is explicitly modeled through two constraints, related to 

the flexibility and the capacity adequacy of the power generation fleet. A simple modeling of the 

electric infrastructure and a generic storage technology are implemented as well (Carrara and 

Marangoni, 2017). 

 

Among general equilibrium models: 

 

https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0225
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0270
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0325
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0150
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0200
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0210
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0325
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0020
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0080
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0025
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0025
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• In the integrated assessment framework IMAGE (Stehfest et al., 2014), region-specific residual 

load duration curves (Ueckerdt et al., 2017) have been combined with a load band approach to 

capture integration constraints of variable renewable energy resources (De Boer and Van Vuuren, 

2017). These constraints include curtailment, storage requirements, backup requirements, and 

system load factors that decline as the variable renewable energy share increases. The constraints 

have been translated to cost markups, which are added to a base levelized cost of electricity (LCOE) 

to form an all-in LCOE. Investments are rule-based and calculated recursively for each time step: 

a module calculates the required capacity additions to meet demand, and a multinomial logit 

equation is applied to distribute market share among the available technologies based on the all-in 

LCOE. Dispatch of technologies occurs according to the merit order. 

 

• The new POLES (Mima, 2016) power module now includes several forms of storage technologies 

as well as load shedding and curtailment of surplus power (Després et al., 2017--in this issue). Each 

region has an endogenous residual load duration curves of 648 time-slices built from demand, wind 

and solar variations. They are used to define the seven load bands in which the production 

technologies compete. Investments for each load band are rule-based and calculated recursively for 

each time step: a module calculates the required capacity additions to meet demand, and a 

multinomial logit equation is applied to distribute market share among the available technologies 

based on the curtailment-adjusted LCOE plus a multiplier representing technology maturity and 

other non-cost effects on investment. A storage investment mechanism is also implemented based 

on a computation of its expected economic value. In this way, each region takes into account the 

integration challenges linked to the gradual development of VRE sources. POLES is the only IAM 

that follows a model-coupling route and combines a long-term investment planning model with a 

dispatch model (EUCAD, European Unit Commitment And Dispatch) based on twelve 

representative days with hourly resolution (Després et al., 2017, Després, 2015, Nahmmacher et 

al., 2016). Such a model-coupling brings the advantage that it enables representation and analysis 

of short-term effects, but it also creates the challenges of a) creating a reliable interface to ensure 

that the results from one model influence the other model (e.g., investment decisions should be 

influenced by the revenues realized in the dispatch), and b) gathering sufficiently detailed data for 

the individual regions. Due to lack of data, the current version of POLES only uses the detailed 

model coupling for the European countries, while the other world regions rely on an aggregated 

residual load duration curves-based investment and dispatch procedure. 

 

• In the COFFEE model solar resources are split in four steps of increasing capacity factor. Wind 

resource was estimated considering 12 step curves for and 27 step discrete curves were created 

combining capacity factor, distance to shore and water depth for onshore and offshore, respectively. 

 

 

Energy system substitution 

 

IAMs based on top-down models tend to lack an adequate representation of technological flexibility and 

substitution possibilities and limits, for instance by using constant elasticity of substitution functions for 

energy modeling which has been shown to fail to match historically observed patterns in energy transition 

dynamics (Kaya et al., 2017). In contrast, IAMs based on bottom-up approach do not represent the macro-

economic feedbacks of different energy transition pathways, such as those coming from rebound effects, 

as well as additional investments and households’ expenditures feedbacks on the economy. These effects 

can cause radical changes in economic structure, productivity and trade that would affect the rate, direction 

and distribution of economic growth. This may explain why the decoupling between economic growth and 

energy use or emissions in IAM scenarios are seen by some as unrealistic (Scrieciu et al. 2013, Spangenberg 

and Polotzek 2019, Nieto et al. 2020), in particular for developing regions (Steckel et al. 2013).  The 

https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0300
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0325
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0045
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0045
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0235
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0070
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0070
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0060
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0240
https://www.sciencedirect.com/science/article/pii/S0140988316303395#bb0240
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demand side of the economy is also not adequately represented (Rosen and Guenther, 2016, Lovins et al. 

2019), so that IAMs may fail to reflect energy efficiency dynamics. 

 

As reported before, in terms of energy-economy linkages, most IAMs are now hybris, either energy system 

linked to macroeconomic growth models (Bauer et al., 2008) or multi-sector CGE, or other economywide 

models with explicit technologies in key sectors (Paroussos et al., 2020). With the exception of partial 

equilibrium models (e.g. TIAM–UCL and IMAGE), most IAMs are able to incorporate some macro-

economic feedbacks of energy transition pathways, but substantial different degrees of sophistication. 

Multisector models based on an input–output structure usually include a more comprehensive 

representation of energy-economy relationships (Mercure et al., 2019, Paroussos et al., 2019). Most top-

down models have also been improved to reflect technological flexibility and substitution possibilities 

s(Wing, 2006), model linking for specific purpose (Fujimori et al., 2019a, Delzeit et al., 2020).  

 

Finally, IAMs include only limited representation of the life cycle impacts of technology. Models with a 

macroeconomic budget closure include at least an indirect representation of the global supply chains of all 

capital investment. In compact growth IAMs, capital investment are included in a composite 

macroeconomic good, whereas multi-sector models report a more consistent representation with inter-

industry flows and specific investment goods, though the related materials flows are accounted for only in 

monetary units. Conversely, some partial equilibrium IAMs (e.g. COFFEE and IMAGE) can account for 

material flows in physical units, but miss the full life-cycle linkages. Progress towards expanding IAMs 

with these features is an active research area (Pauliuk et al., 2017) with different possible routes including 

adding new features to the models (e.g. adding an investment matrix to track more specific life-cycle 

linkages in a CGE model (Dai et al., 2016)) or by model linking with IE models (multi-region input–output, 

life cycle assessment, etc) such as Luderer et al. (2019). 

 

Emissions assessment 

 

The baseline applies to all the climate models discussed in this paper, and defining it is a key part of cost 

assessment. The baseline is a measure of the GHG emissions that would occur in the absence of climate 

change interventions. The baseline rests on key assumptions about future economic policies at the 

macroeconomic and sectoral levels, including structure, resource intensity, relative prices, technology 

choice, and the rate of technology adoption. The baseline also depends on assumptions about future 

development patterns in the economy, such as population growth, economic growth, and technological 

change. Climate change policies may have implications in terms of local and regional air pollution. They 

may also have indirect effects on transportation, agriculture, land use practices, employment, and fuel 

security. These effects are taken into account within many bottom-up models as well as IAMs. They can be 

negative or positive. In addition, their inclusion tends to generate higher or lower climate change mitigation 

costs compared with studies in which they are not included.  

 

For a wide variety of options, and as often demonstrated in IAMs, the costs of mitigation depend on the 

regulatory framework adopted by national governments to reduce GHGs. The more flexibility allowed by 

the framework, the lower are the costs of achieving a given reduction. The opposite is expected with 

inflexible rules and few trading partners. No-regrets options are by definition actions to reduce GHG 

emissions that have negative net costs. Net costs are negative when options generate direct or indirect 

benefits large enough to offset the costs of implementing the options. The possibility of achieving no-regrets 

options implies that people choose not to exercise some carbon-reducing options because of relative prices 

and preferences. Such options are commonly used when assessing the benefits of scenarios that are focused 

on increased reduction of climate emissions. For example, compared with a baseline scenario, a faster 

increase in appliance standards could help achieve rapid no-regrets options. 
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Table 5.a Representation of renewable energy, substitutions and emissions for General Equilibrium 

Model Renewables and Intermittency 
Functional Structure for Energy 

System Substitution 
Emissions 

MERGE-ETL 

Includes levelized generation costs. 

Constraints due to intermittent 
production are described by setting a 

maximum share on electricity 

production from wind and solar 

Substitution between equivalent technologies 
with dynamic constraints and share 

constraints 
GHG (CO2 and NO2) 

MESSAGE 

Links intermittent power with the 
availability of flexible generation (e.g., 

hydro, gas, other thermal) and back-
up/storage capacity 

Substitution between equivalent technologies 

with limitations due to system integration, 
etc. 

GHG and other pollutants 

ReMIND 
Requires storage and curtails wind and 
solar depending on the share of wind 

and solar in power generation 

Hybrid: CES at the level of final energy, 
linear substitution with adjustment costs and 

capital stocks at the primary and secondary 
energy levels 

GHG and other pollutants 

WITCH 

Cost penalty for wind with increasing 
share in electricity to capture spinning 

reserves, backup capacity, and 
discarded electricity 

Constant elasticity of substitution (CES) GHG (CO2 and NO2) 

C3IAM 

The evolution of the power mix is 
calibrated to energy models (i.e. 

PRIMES for EU and PROMETHEUS for 
the world). 

Substitution occurs through a nested CES 

function 
GHG and other pollutants 

BET EMF33 

The power generation sub-module in 
BET takes into account capacity 

constraints and the lifetime of each 

generation plant. In addition, it 
considers the load duration curve, 

discretized into four sections, ranging 

from year maximum hours, peak 
hours, shoulder hours, to bottom 

hours.  BET has a generation 

constraint on solar and wind, which 
are intermittent renewables 

Linear choice (lowest cost) CO2 

AIM-CGE 
Requires additional storage for 

intermittent renewables 
Energy system cost minimization GHG and other pollutants 

GEM-E3-ICCS 

The evolution of the power mix is 
calibrated to energy models (i.e. 

PRIMES for EU and PROMETHEUS for 
the world). 

Substitution occurs through a nested CES 

function 
GHG and other pollutants 

IMACLIM 

Production is distinguished between 

base and peak demand in a load curve. 
Constraints due to intermittent 

production are described by setting a 

maximum share on wind and solar 
capacities which depends on the 

segment. 

In the short run static equilibrium, the fixed 
technologies (Leontief coefficients) prevent 

substitution among factors. These 

substitutions are treated between two 
equilibria in sector-specific dynamic modules.  

GHG and other pollutants 

POLES 

Links intermittent power with the 

availability of back-up capacity (hydro, 
gas, other thermal) 

Logit sharing depending on costs and 
political choices 

GHG and other pollutants 

TEA As COFFEE As COFFEE As COFFEE 
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GRACE no 
The supply and demand is simulated by 

nested CES functions. 

GHGs include CO2, methane (CH4), 
nitrous oxide (N2O), fluorinated gases 

(FGAS) 

Ifs 

The capital/output (capital/production) 
ratios for all fuel types decline over 

time due to technological 
improvements at rates determined by 

two user controllable parameters.  

Energy system cost minimization 

Fossil fuel consumption generates carbon 
emissions specific to coal, oil, and natural 

gas use. Net deforestation generates 

additional carbon emissions or removal. 

PHOENIX 

Electricity-generating technologies are 

placed into three nests: base load, 
intermediate load, and peak load  

Energy system cost minimization GHG and other pollutants 

WorldScan2   
Nested CES (constant elasticity of 

substitution) function  
GHG and other pollutants 

 

 
Table 5.b Representation of renewable energy, substitutions and emissions for Partial Equilibrium 

Model Renewables and Intermittency 
Functional Structure for Energy 

System Substitution 
Emissions 

DNE21+ 

Electricity demand and supply are formulated 
for 4 time periods; Useful capacity of wind and 
solar power depends on time period and share 

of wind and solar power is limited; Electricity 
storage options can mitigate limitations 

Bottom-up energy system model with 
substitution calculated endogenously by 

minimizing total energy system cost 

GHG and other pollutants 

global TIMES 

The temporal resolution is determined by 

three seasons, summer, winter and 
intermediate. Each of the season accounts for a 

third of the whole year or 4 months. These 
time slices are again split into night and day, 
where day represents 16 hours and night 8 

hours 

Renewable production can be 

constrained through annual bounds on 
capacity and growth constraints. 

Pollutants and non-GHG forcing agents 
are not explicitly modeled, however 

additional forcing factor are included in 

the climate module. 

global ETP-TIMES 
Expansion and decline constraints system 

integration constraints 

Lowest cost with adjustment penalties. 
Discrete technology choices with 

mostly high substitutability in some 

sectors and mostly low substitutability 
in other sectors 

GHG 

COFFEE 

COFFEE describes energy conversion 
technologies based on discrete techniques with 

pre-defined technological (size, lead time, 

efficiency, availability, etc.) and economic 
(overnight costs, fixed and variable O&M costs, 

contingency factors etc.) variables, thus 

capturing technological deployment over time 
in a least cost approach.  

Energy system cost minimization GHG and selected other pollutants 

AIM-Enduse 
Requires additional storage for intermittent 

renewables 
Energy system cost minimization Energy and non energy GHG  

GCAM 
Splits the load duration curve into four distinct 

pieces in the USA; Requires backup for 
intermittent renewables in all regions 

Logit sharing GHG and other pollutants 
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3.5 Main taxonomy according to applications  

 

Tables 3a and 3b report in addition to the treatment of uncertainty, the policy whose impact the model is 

able to represent and applications. 

 

Policy instruments 

 

Top-down models are well suited to assess the macroeconomic impact of energy and environmental 

policies, especially market-oriented policies (carbon tax and tradable quota), on national and global scales. 

Because of limited representation efficiency improvements are difficult to convert explicitly into the 

production function of these models. For top-down models, the most efficient technology lies on the 

production frontier determined by market behavior. These models can help policy makers to assess the 

macroeconomic impacts of market instruments such as a carbon tax on energy systems or subsidies on 

renewable energy generation. Bottom-up models are also used to assess the energy supply and demand 

aspects of technology-based policies that are not driven by price (e.g., labels and standards). Theoretically, 

the “most efficient” technology within these models can lie beyond the production frontier determined by 

market behavior because customers may not actually adopt the technology. This discrepancy provides 

evidence of an efficiency gap. A high degree of detail regarding technology, such as its cost and efficiency, 

is included in bottom-up models, which allows researchers to explore the potential of decoupling economic 

growth from energy demands. 

 

There are many climate-policy instruments, including carbon taxation, cap-and-trade, intensity-based 

targets, and subsidies (for renewable energy, research for new clean technology, emission reductions, etc.) 

which have been included in the modeling of IAMs. Each instrument has its advantages and disadvantages. 

For example, a carbon tax gives a direct price on carbon emissions, so companies can adjust their emissions 

based on cost-benefit analysis, but there is uncertainty in its effect on total emissions in the real world. A 

cap-and-trade scheme issues a number of emission allowances for the market to auction and trade, so it 

provides direct control over future emissions and it would be more straightforward to control temperature 

increase under some threshold (e.g., 2 or 1.5°C), but it is hard to estimate its economic cost. An intensity-

based target scheme requires emissions per unit of economic activity to not exceed given targets, so it may 

be appealing to developing economies, but there is uncertainty in aggregate emissions and economic costs. 

IMAGE 

Includes both back up capacity and spinning 
reserve for intermittent supply options (ISOs). 

Back up capacity is added to account for the 
capacity credit (which decreases as a function 
of penetration of the ISOs). The costs for back 

up power is allocated to the ISO. Required 
spinnning reserve of 15% assumed for ISOs. 

Multinomial logit formulation describing 

substitution for technologies and fuels 
GHG and other pollutants 

PROMETHEUS 

The electricity generation module includes 26 
power generation technologies and their 

competition to cover electricity demand for 
base, medium and peak load 

The substitution between different 

fuels/technological options is modeled 
based on the  “gap”, which is defined in 
terms of the difference between energy 

demand and the amount of energy that 
can be satisfied using existing equipment 

from the previous year, which is not 

scrapped.  

It covers all emissions from the energy 
sector and the industry sector and can 

split CO2 emissions by sector (transport, 

industry, buildings, power generation, 
refineries, international bunkers, other) 

and by fuel (coal, oil, natural gas). 
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Subsidies to renewable energy can help renewable energy firms to improve their market shares and 

competitivity with fossil fuel energy firms, but there is uncertainty in its effect on controlling total 

emissions. Carbon tax is the most popularly debated policy, and it is often estimated to be equal to the social 

cost of carbon if it is not explicitly modeled (as in Baldwin, Cai, & Kuralbayeva, 2020), and if emissions 

control has not reached its limit (Cai et al., 2017; Cai & Lontzek, 2019). However, it could be challenging 

to implement a carbon tax policy in some countries. Instead, the cap-and-trade scheme may be implemented 

at a regional level. For example, there are currently cap-and-trade programs like the European Union 

Emissions Trading Schedule, the Regional Greenhouse Gas Initiative, and the California cap-and-trade 

program, although these programs require careful design to make them effective. 

 

Policy comparisons among the climate policy instruments have been conducted in the literature. Goulder 

and Parry (2008) review many instrument choices in climate policy with different evaluation criteria, 

including economic efficiency and cost-effectiveness, distribution of benefits or costs (across income 

groups, ethnic groups, regions, generations, etc.), ability to address uncertainties, and political feasibility. 

Fischer and Springborn (2011) compare carbon tax, cap-and-trade, and intensity-based targets in a DSGE 

model with stochastic productivity. Heutel (2012) compares the optimal emissions tax rate and the optimal 

emissions quota. Drouet et al. (2015) discuss selection of climate policies under uncertainties. Goulder et 

al. (2016) argue that under plausible conditions a more conventional form of regulation, a clean energy 

standard, is more cost-effective than emissions pricing such as carbon taxation or cap-and-trade. Meckling, 

Sterner, and Wagner (2017) investigate the combination and sequence of policies to avoid environmental, 

economic, and political dead ends in decarbonizing energy systems. Rozenberg, Vogt-Schilb, and 

Hallegatte (2020) compare the impact of mandates (for new power plants, buildings, and appliances), 

feebates (programs that tax energy-inefficient equipment and subsidize energy-efficient equipment), energy 

efficiency standards, and carbon pricing in a simple model with clean and polluting capital, irreversible 

investment, and a climate constraint. They find that carbon prices are efficient but can cause stranded assets, 

while feebates and mandates do not create stranded assets. Baldwin et al. (2020) compare a carbon tax with 

a subsidy for renewable energy using a DSGE model, which is based on the full DICE model but adds 

renewable and nonrenewable energy sectors as well as a government that decides the optimal dynamic 

carbon tax or subsidy. They find that a carbon tax is more efficient under a stringent climate target, while 

a subsidy is more efficient under a mild climate target. 

 

Barrage (2020) characterizes and quantifies optimal carbon taxes in a dynamic general equilibrium climate–

economy model with distortionary fiscal policy. He finds that optimal carbon tax schedules are 8%–24% 

lower when there are distortionary taxes, compared to the setting with lump-sum taxes considered in the 

literature. Hafstead and Williams (2020) examine the role for tax adjustment mechanisms, which 

automatically adjust the carbon tax rate based on the level of actual emissions relative to a legislated target, 

and the trade-offs of alternative designs. They show that tax adjustment mechanisms in carbon tax design 

can substantially reduce emissions uncertainty. Kalkuhl et al. (2020) find that the time-consistent policy is 

the “all-or-nothing” policy with either a zero carbon tax or a prohibitive carbon tax that leads to zero fossil 

investments, and it is the lobbying power of owners of fixed factors (land and fossil resources), rather than 

fiscal revenue considerations or the lobbying power of renewable or fossil energy firms, that determines 

which of the two outcomes (all or nothing) is chosen. Van der Ploeg and Rezai (2020) allow for immediate 

or delayed carbon taxes and renewable subsidies that will cause discrete jumps in the present valuation of 

physical and natural capital, and then investigate how the legislative “risk” of tipping into policy action 

affects the time at which the fossil era ends, the profitability of existing capital, and the green paradox 

effects (Sinn, 2008). 
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4. Toward an overall assessment 

 

There are several key messages emerging from the literature review that are worth emphasizing ahead of 

presenting some of the key challenges of IAM models. First, researchers have attempted to bridge the gap 

between top-down and bottom-up models either by incorporating macroeconomic feedback into bottom-up 

models or by including technological details in top-down models. Regarding energy-economy linkages, 

most IAMs are now hybrid constructs, either energy system linked to macroeconomic growth models or 

multi-sector CGE—or other economywide— models with explicit technologies in key sectors. 

Second, IAMs have made substantive progress in dealing with uncertainty and risk. As noted, IAMs and 

scenarios are developed to analyze climate policies and estimate future pathways of temperature, but no 

model can replicate the real world completely and no scenario can predict a realized future pathway 

perfectly. For tractability, every model or scenario has to make some simplifying assumptions, particularly 

in mathematical representations of economic and climate systems. Different assumptions then lead to 

different models or scenarios. There are three broad approaches to incorporate uncertainties into economic 

models of climate change.  The simplest approach, which is not a real uncertainty analysis but can be used 

as a tool to identify which model parameters should be treated stochastically, is a sensitivity analysis. A 

more complex implementation involves modeling certain variables as stochastic processes. For 

computational purposes, propagation of uncertainty usually involves sampling from a joint distribution 

using mostly the Monte Carlo method. The most demanding approach accounts for learning and can be 

termed sequential decision-making under uncertainty. This implies that models determine optimal policies 

at more than one point in time, taking into account the available information in each period.  

 

Third,  endogenous technological change is also an important issue in the context of climate change. Most 

existing models though, use autonomous learning and not more than two decision periods. Most existing 

models are deterministic and, if at all, most modelers have only performed very basic types of uncertainty 

analysis. Although sensitivity analyses and Monte Carlo simulations are a good place to start, two other 

crucial dimensions of the climate change problem should be included in any comprehensive attempt to 

inform climate policy decisions. First, decisions made today can be revisited and modified at any point in 

the future as new information on climate change damages and mitigation costs becomes available. Thus, 

decision making about climate change is one of sequential decision making under uncertainty. Models of 

sequential decision-making under uncertainty are used to determine optimal policies under different aspects 

of uncertainty and learning. Altogether, uncertainty analysis is very complex and computationally intensive. 

The second crucial dimension of climate change uncertainty that has yet to be systematically addressed by 

researchers is assumptions about the decision makers’ attitudes toward risk.  

 

An important issue concerns technological change: specifically, whether technology costs are assumed to 

be exogenous (that is, specified externally by modeling assumptions), or induced by the cumulative impact 

of policy, investment, and market growth within a model. Only a limited number of models, irrespective of 

whether general or partial equilibrium, have been able to endogenize technical change. Few if any models 

represent path dependence beyond the capital inertia and induced learning, to take account of institutional, 

social, and behavioral inertia, a limitation acknowledged in some of the leading studies.  

 

Last but not least, the variations across model structures and key assumptions yield different results. Some 

of these variations and their impacts are briefly discussed below: 

 

• Assumptions about energy demand drivers (i.e., GDP and population) differ across models. For 

example, the range of near- and long-term GDP growth assumed by different models shows great 

variation. However, many frameworks model drivers endogenously: for example, general 

equilibrium models project GDP endogenously, whereas other frameworks (bottom-up models) 

require those drivers as exogenous inputs. 
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• Differences in assumptions about resource costs and performance parameters reflect the modeling 

teams’ assumptions about the relative costs associated with energy production from different 

technologies. 

• How models represent the growth of technologies is also important. For CCS, nuclear, wind, solar, 

and hydroelectric technologies as well as, although to a lesser degree, fossil technology for 

electricity generation, the variation among models is great. As we have seen, some of them can 

assume no constraint, a growth-rate constraint, a constraint on the share of technologies, or no 

technology at all. 

• The process of calibrating base year shares as well as how this calibration affects the future 

evolution of technologies are important. Many models, such as GCAM and general equilibrium 

models, calibrate energy systems to the base year share of technologies, whereas other models, 

such as MESSAGE and AIM-Enduse, do not calibrate base year shares. Thus, in the former models, 

the base year shares affect the evolution of future energy systems. This process represents the 

degree to which base year capital stocks turn over and affect the future capital stocks of different 

technologies. 

• The representation of regional resource bases varies across models. Resource bases are not critical 

for fossil technologies, as these are globally traded commodities, but they are essential for 

determining the share of renewable energy sources and CCS technologies. For solar power, for 

example, some models assume regional production limits, some assume regional supply curves, 

some CGE models assume a fixed factor, and other models assume no limits. Similar differences 

in assumptions for other technologies are also present across models. However, each model 

provides its own representation of the different technologies. For example, GCAM represents solar 

and wind with supply curves and bioenergy with endogenous land competition. In addition, 

although there is no limit for CCS supplies, regional resource bases in Japan and the Republic of 

Korea are constrained. 

• Though most models include technology cost as an exogenous assumption, some modeling 

frameworks, such as WITCH, model technology costs endogenously. 

• Finally, solution algorithms differ across models. Most technology-detailed bottom-up models are 

based on an intertemporal modeling framework, whereas others, such as GCAM, are myopic and 

their solution algorithm is recursive dynamic. 

 

There are now many criticisms of Integrated Assessment Models (IAM) and these range from technical 

disputes regarding appropriate quantities for variables to more fundamental critiques of the assumptions, 

concepts and purposes of IAMs (for the latter see also Dale, 2018; Hickel, 2018; Murphy, 2018). IAMs 

give the impression of being rooted in data, which tends to give them status as science as well as policy 

influence in key decision making and advisory circles (governments, the IPCC, etc.). Climate and economy 

focused IAMs are, however, deeply unrealistic in how they represent energy, environment and human 

systems and the relation between them.  

 

The recent IPCC Global Warming of 1.5°C report (IPCC, 2018) and the deficits published in the annual 

UNEP Emissions Gap reports (see Christensen & Olhoff, 2019) have placed greater pressure on 

governments across the world to immediately increase investment in mitigation and adaptation and take 

more urgent action to reduce emissions – and this has resulted in further negotiations via the COP process 

and the UNFCCC and different countries are now beginning to announce they will aim for ‘net zero’ 

emissions by mid-century (though currently statutory commitments, detailed plans and implementation are 

mainly lacking and there is considerable skepticism regarding what ‘net’ might mean). Still, it is 

increasingly clear that more delay and gradual incremental change will be insufficient. Moreover, it remains 

the case that the IPCC approach to change is itself not sufficiently ambitious. IPCC reports include various 

‘simulated scenarios’ generated from IAMs.  
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Some of the biggest challenges for improving the design and use of IMAs include what to count and how 

to count it. The application of IAMs to climate policy has generally been focused on issues related to 

efficiency. Accordingly, equity considerations have rarely been addressed directly. This is unfortunate 

because equity and fairness issues often dominate the political debate concerning what to do about climate 

change. For example, a policy maker in a low income country might be more interested in alleviating energy 

poverty by improving energy access and/or reducing poor air quality than in reducing climate change 

impacts per se, while a decision maker in a high income country might be more interested in trading off the 

reductions in economic output that result from reducing emissions against the losses from increases in the 

projected losses from extreme weather events in both poor and rich coastal regions. Moreover, this 

shortcoming is not easily fixed after a model with an efficiency-based optimizing architecture has been run, 

because of the many equity trade-offs and approximations that are typically made when such models are 

constructed in the first place. Even in this case, this process necessarily requires a number of important 

value judgments concerning whose preferences to count and how to weigh them against one another 

(cf., Sussman, Weaver, and Grambsch 2015).  

 

The treatment of intertemporal discounting and intergenerational equity is another related and important 

challenge to be considered.  To summarize, intertemporal equity is extremely important in determining the 

appropriate rate of implementation of policies designed to reduce carbon emissions. Low discount rates 

generally make rapid implementation of such policies much more urgent than high discount rates because 

damages are projected to grow steadily over time at a much more rapid rate than mitigation costs. Climate 

change impact assessments can be especially sensitive to the baseline assumed, especially in cases where 

“tipping points” may be reached; the closer the tipping point is to the baseline the more likely it is to be 

triggered.  

 

Capturing interactions between impact sectors and feedbacks to the climate system. A formidable challenge 

for all IAMs is capturing important interactions between impacted sectors and regions, and feedbacks that 

can occur between the impacted sectors and atmospheric concentrations of GHGs, temperatures, and 

precipitation. IAMs have made slow, but steady, progress on these effects over the last 20 years, with great 

emphasis increasingly being placed on interactions among the global energy, water, land, and food systems.  

 

This is broad agreement that the global energy system must be increasingly electrified, while shifting away 

from fossil fuels and towards renewables, in order to meet stringent climate goals. The IAM baseline 

scenarios continue to be dominated by fossil fuels, though the relative shares of coal, oil and gas vary 

considerably across the different IAMs. For example, the IMAGE IAM envisages nearly twice the coal 

consumption and half the oil consumption of WITCH. Similarly, the REMIND model sees significant 

deployment of renewable energy even without climate policy, due to falling costs, whereas AIM, GCAM 

and IMAGE have relatively low renewables growth. This is largely because REMIND models the “learning 

by doing” that has seen renewable energy costs fall as deployment increases, whereas most other IAMs do 

not. IAM scenarios that limit warming to below 2C also differ substantially in their energy mix. Some, such 

as GCAM and REMIND, completely eliminate coal use in favor of biofuels and technologies such as 

bioenergy with carbon capture and storage (BECCS). Others include a sizable amount of both coal and gas 

coupled to carbon capture and storage. 

 

 

 

 

 

 

 

 

https://www.journals.uchicago.edu/doi/full/10.1093/reep/rew018#rew018-B94
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