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Abstract
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Extreme values are common in survey data and represent 
a recurring threat to the reliability of both poverty and 
inequality estimates. The adoption of a consistent criterion 
for outlier detection is useful in many practical applica-
tions, particularly when international and intertemporal 
comparisons are involved. This paper discusses a simple, 
univariate detection procedure to flag outliers in the dis-
tribution of any variable of interest. It presents outdetect, 
a Stata command that implements the procedure and 

provides useful diagnostic tools. The output of outdetect 
compares statistics—with focus on inequality and poverty 
measures—obtained before and after the exclusion of out-
liers. Finally, the paper carries out an extensive sensitivity 
exercise, where the same outlier detection method is applied 
consistently to per capita expenditure across more than 30 
household budget surveys. The results are clear-cut and 
provide a sense of the influence of extreme values on poverty 
and inequality estimates.
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provide open access to its research and make a contribution to development policy discussions around the world. Policy 
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1 Introduction 

Outliers – observations that “appear to deviate markedly from other members of the sample 

in which they occur” (Grubbs, 1969) – are omnipresent in real-world data sets, and are 

almost always a cause for concern. If the ‘abnormality’ of extreme values is the result of 

measurement error, rather than a genuine manifestation of the variability of the data, then 

including outliers in calculations can cause serious bias to many statistics of interest. 

Given the stakes, it is no surprise that the task of dealing with outliers often takes up 

considerable time and effort on the part of the analyst (Mancini and Vecchi, 2022). Even 

the very foundation of any strategy to handle outliers – identifying which observations 

qualify as ‘extreme’ – is far from trivial. Underlying a number of popular outlier detection 

methods is a basic algorithm: the analyst defines some concept of distance from the bulk 

of the distribution, which then allows to flag as ‘extreme’ any observation for which this 

distance is larger than a certain threshold. This principle is as simple as it is elusive: in 

practice, it is declined in a great many different ways, and the criteria used are not always 

well defined. This poses a number of problems: ‘good practices’ fail to consolidate, and 

the steps taken to deal with outliers are often difficult to replicate, which is an issue for 

scientific rigor as well as for comparability of data analysis. 

In this paper we present outdetect, a tool designed to help the analyst i) identify 

extreme values in a univariate distribution based on a transparent procedure, and ii) gauge 

their potential impact on selected statistics of interest.2 While the focus is on distributional 

analysis (e.g. inequality and poverty estimation – see Cowell and Flachaire, 2007, 2015), 

the use of outdetect naturally extends to any situation where the presence of ‘too large’ 

or ‘too small’ values in a distribution is an issue. 

The algorithm employed by outdetect relies on the normalization of the target variable, 

and the imposition of cutoffs to define an outlier region. A popular version of this procedure 

is to log-transform the distribution, and flag observations that are more than two or three 

standard deviations from the mean (e.g., Deaton and Tarozzi, 2005). However, 

outdetect allows users to choose from a number of alternative (and more flexible) 

normalizing transformations, and to use a number of alternative and statistically robust 

measures of location and scale.  The use of transformations other than the log allows the 

analyst to apply a consistent detection criterion to a wide range of variables, which is 

 
2 The command outdetect can be installed in Stata by typing ssc install outdetect. 
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especially useful when dealing with the skewed and heavy-tailed distributions that are 

commonplace in welfare analysis (e.g. household consumption, income, and wealth). Some 

of these techniques are not yet available as stand-alone Stata commands (namely the 

transformation proposed in Yeo and Johnson, 2000). Robust location and scale estimators 

are useful when the detection rule itself is sensitive to precisely those extreme values it is 

designed to flag (Davies and Gather, 1993).3 

outdetect does not offer an automated way to treat outliers – to replace or drop them – 

and deliberately so. Any alteration of the raw data is potentially problematic, and must be 

informed by careful investigation of the nature of extreme values. Instead, outdetect 

focuses on sensitivity: it produces an array of statistics using both the ‘raw’ distribution 

(the data as they are) and its outlier-free counterpart (a distribution where observations that 

are flagged as outliers have been excluded from all calculations). Borrowing from the 

analytical framework developed by Hampel (1974) and Hampel, Ronchetti, Rousseeuw 

and Stahel (1986), it also produces two types of diagnostic plot, the Incremental Trimming 

Curve (ITC) which plots the value of a statistic of interest against the proportion of extreme 

values that are trimmed from the sample, and the High-influence Observation Curve (HOC) 

first suggested by Cowell and Flachaire (2007), which describes the effect of any one 

(extreme) observation on the estimated value of the statistics. These instruments allow the 

analyst to assess the influence of extreme values on results, and inform next steps.  

Of particular note is the fact that outdetect allows for the use of complex survey 

settings, so that the aforementioned comparisons can be performed using population 

statistics. 

In the last part of the paper we use outdetect to investigate the influence of extreme 

values on key inequality and poverty statistics, computed on the basis of household budget 

survey data. We use a collection of data sets from the Rural Livelihoods Information 

System (RuLIS), a joint initiative of the Food and Agriculture Organization (FAO), the 

World Bank, and the International Fund for Agricultural Development (IFAD). We find 

that the share of observations flagged as outliers of per capita consumption is 0.8% on 

average, never exceeding 2.5%; that the presence or inclusion or exclusion of these 

observations from calculations causes differences of as many as 6 percentage points for the 

 
3 Commands bacon (Billor, Hadi and Velleman, 2000; Weber, 2010), and gboxplot (Bruffaerts, Verardi 

and Vermandele, 2014; Verardi and Vermandele, 2018) are also available to detect outliers with Stata, though 

their functionalities and range of application are adjacent, rather than overlapping, with outdetect. 
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Gini index, circa 10 for the Mean Log Deviation and the Atkinson index, and 29 for the 

Theil index. Poverty indices are found to be less sensitive. While these findings are, of 

course, specific to the surveys that were included in the exercise, they give empirical 

support to more general considerations, with important implications for the practice of 

applied welfare measurement, in particular for welfare comparisons: a common framework 

for detecting and treating extreme values is essential for both international comparisons 

and within-country time trends. 

The paper is organized as follows: section 2 illustrates the method for outlier detection that 

is used in the rest of the paper; section 3 presents the command outdetect; section 4 

shows international evidence on the sensitivity of poverty and inequality estimates to 

extreme values of welfare indicators; section 5 offers some concluding remarks. 

2 Outlier detection 

In this section the variable of interest – the target for outlier detection – will be denoted by 

𝑥, and its probability density function by 𝑓(𝑥). For expositional simplicity, we shall refer 

to 𝑥 as ‘consumption’, but nothing prevents one from thinking of 𝑥 as standing for price, 

unit value, quantity, wage, income, any expenditure component, or any other continuous 

variable whose extreme values are seen as potentially problematic. 

How exactly should one identify outliers in the distribution of 𝑥? When does a high or low 

value of consumption qualify as ‘extreme’, that is, ‘too far away’ from the bulk of the 

distribution, so much as to arise suspicion as to whether it is genuine? 

Out of the many criteria proposed in the literature, outdetect uses one that is based on 

the construction of an outlier region with reference to 𝑓(𝑥) (Davies and Gather, 1993; 

Gather and Becker, 1997). If the distribution of interest is known – for example, if 𝑓(𝑥) is 

Normal – then one can consider an observation to be an outlier if it falls into a range of 

values that occur with arbitrarily low probability.  An observation 𝑥𝑖 (𝑖 = 1,… , 𝑛) falling 

into a range defined in this way could conceivably be produced by the theoretical 

distribution 𝑓(𝑥), but that would be a rare occurrence, making 𝑥𝑖 an extreme value, or an 

outlier. A conventional application of this criterion identifies the bounds of the outlier 

region for a Normal distribution as the mean, 𝜇, plus or minus three times the standard 

deviation, 𝜎 (each tail region defined in this way has a probability of about 1%).  
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There are two issues with the application of this procedure to most situations. First, the 

distribution: 𝑓(𝑥) is not known, and certainly the empirical distribution of consumption, 

and most other variable of interest to welfare analysts, is not Normal. Rather, it is typically 

asymmetric and heavy-tailed compared to the Gaussian distribution. However, if one can 

transform 𝑥 into something that is approximately Normal, the algorithm can still be applied: 

observations that are flagged in the transformed distribution are also outliers of the 

untransformed distribution. A second, subtler problem is related to the definition of the 

outlier detection region in terms of mean and standard deviation of the distribution. The 

empirical mean and standard deviation are not robust statistics, i.e. they are vulnerable 

precisely to the outliers one is concerned about. 

These considerations suggest a more general outlier detection strategy, which is 

implemented by outdetect. It can be broken down in two steps:  

1) transform the variable of interest to induce normality in its empirical pdf; 

2) set robust thresholds to identify the outlier region. 

To accomplish the first step, one needs to select an appropriate normalizing transformation 

𝑔(∙). We shall denote the transformed (normalized) variable as 𝑦 = 𝑔(𝑥). Section 2.1 

elaborates on the transformations available in outdetect. To accomplish the second 

step, one needs to pick a measure of central tendency, or location (such as the mean, or a 

robust alternative), and a measure of dispersion, or scale (such as the standard deviation, 

or a robust alternative). Section 2.2 elaborates on the measures of location and scale that 

are available in outdetect. 

The rule used to detect outliers can be expressed conveniently in terms of the z-score of 𝑦, 

defined as 𝑧 = (𝑦 − 𝜇)/𝜎. Here, the letters 𝜇 and 𝜎 indicate the mean and standard 

deviation of 𝑦, or any robust alternatives (for convenience, we shall continue to refer to 𝑧 

as a z-score, albeit a ‘robust’ one, when we depart from the mean and standard deviation 

in favor of robust measures). The goal is to choose a conventional value zα to define an 

outlier region over the distribution of 𝑧, as follows: 

 𝑧𝑖 = |
𝑦𝑖  − 𝜇

𝜎
| > 𝑧𝛼 (1) 

 

According to equation (1), an observation of the variable of interest, 𝑥𝑖, is flagged as an 

outlier if 𝑧𝑖 – the (robust) z-score associated with the transformation 𝑦𝑖 = 𝑔(𝑥𝑖) – exceeds, 
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in absolute value, the 𝑧𝛼 quantile of the distribution of z-scores.4 Equivalently, the value 𝑥𝑖 

is flagged as an outlier if its transformation, 𝑦𝑖, falls outside the following region: 

 [𝜇 − 𝑧𝛼 × 𝜎 , 𝜇 + 𝑧𝛼 × 𝜎]      (2) 

 

As for the choice of 𝑧𝛼, the threshold for the outlier region in terms of the (robust) z-score, 

a degree of arbitrariness is inevitable: 𝑧𝛼 is not tied to any statistical requirement, beyond 

the need to identify a ‘low-probability’ outlier region. The choice of the value 3 is 

customary, but smaller and larger values (2.5, 3.5, or 4) are not uncommon. Higher values 

of 𝑧𝛼 will shrink the outlier region, lower the probability thresholds for the tails of the 

distribution of z-scores, and therefore flag fewer outliers. 

Once outliers are detected according to the rule described by equations (1) and (2), 

outdetect produces a table that shows the numbers of observations that were flagged, 

both at the ‘top’ and at the ‘bottom’ (i.e. large and small extreme values, respectively), and 

their proportion over the total number of observations. The output also includes a set of 

summary statistics and diagnostic tools, designed to inform the user about the sensitivity 

of the statistics of interest to the presence of outliers. These are described in Section 2.3. 

2.1 Normalizing transformations 

There is no lack of choice of transformations for achieving approximate normality in the 

literature. During the early 2000s, in a contribution to the ‘great Indian poverty debate’, 

Deaton and Tarozzi (2005) have explored the use of the natural logarithm as a normalizing 

transformation for unit values of commodities consumed by households. This is the 

simplest of transformations – the logarithm “squeezes” large values more than small ones, 

so that the logarithm of a skewed distribution becomes more symmetrical, and closer to a 

Normal. Dupriez (2007) followed another route, and adopted the Box-Cox transformation 

(Box and Cox, 1964), which includes the log transformation as a special case. Other useful 

transformations are available, such as those proposed in Yeo and Johnson (2000), and 

Friedline et al. (2014), among others. Table 1 lists the transformations that are implemented 

 
4 The use of the absolute value in equation (1) allows for the detection of both ‘top’ and ‘bottom’ outliers (both 

‘too large’ and ‘too small’), and can be easily replaced by one-sided versions when the focus is only on one tail 

of the distribution. 
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by outdetect, with 𝑥 indicating the target variable (say, consumption) and 𝑦 indicating 

the transformed variable (say the log-consumption). 

 

Table 1. Transformations to approximate normality 

Description Formula for y Source 

Natural log 𝑦 = ln (𝑥) 1 

Log base 10 𝑦 = log10 (𝑥 + 𝑎) with 𝑎 = max[0, −(min(𝑥) − 0.001)] 2 

Box-Cox 𝑦 = {
𝑥𝜆 − 1

𝜆
if 𝜆 ≠ 0

ln(𝑥) if 𝜆 = 0

 3 

Yeo-Johnson 𝑦 =

{
  
 

  
 

𝑥𝜆 − 1

𝜆
if 𝑥 ≥ 0, 𝜆 ≠ 0

   log(𝑥 + 1)   if 𝑥 ≥ 0, 𝜆 = 0

−[(−𝑥 + 1)2−𝜆 − 1]

2 − 𝜆
if 𝑥 < 0, 𝜆 ≠ 2

−log(−𝑥 + 1) if 𝑥 < 0, 𝜆 = 2

 4 

Inverse 

hyperbolic sine 
y =  ln (𝑥 + √𝑥2 + 1 )  5 

Square root 𝑦 = √𝑥  6 

Sources: [1,2 and 6] any math textbook; [3] Box and Cox (1964); [4] Yeo and Johnson (2000); [5] Friedline et 

al. (2014). 

Each of the transformations in Table 1 has properties that fit different needs. For example, 

while the natural log may only be applied to strictly positive variables, log10 (𝑥 + 𝑎) takes 

care of negative and zero values, too. Similarly, while the use of Box-Cox is limited to 

strictly positive variables, the Yeo-Johnson and the inverse hyperbolic transformations 

apply to all variables and perform relatively better in the presence of highly skewed 

distributions (which makes them particularly suitable for the analysis household wealth 

data). A general criterion to select the “best” transformation is goodness-of-fit: the 

transformation that provides the best approximation to a Normal distribution for the 

specific variable and data set in use will be the best choice for that particular context. 

outdetect allows the user to maximize goodness-of-fit relying on the Pearson chi-

squared test (Snedecor and Cochran, 1989).  As pointed out by Peterson and Cavanaugh 

(2019), the Pearson statistic, 𝑃, divided by its degrees of freedom, df, converges to 1 when 

the data approaches a Gaussian distribution: 𝑃 df⁄  can be interpreted as a measure of how 

close a distribution is to normality, and used to rank transformations according to how 

successful they are in normalizing the data. 
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2.2 Measures of location and scale 

When 𝜇 is the mean and 𝜎 is the standard deviation of the normalized consumption 

distribution 𝑦, the outlier detection rule in equations (1) and (2) itself is sensitive to the 

presence of outliers. Davies and Gather (1993) suggest the use of robust location and scale 

measures to contrast this problem. There is little dispute on the use of the median instead 

of the mean: the median is simple to calculate, and, unlike the mean, provides a greater 

degree of resilience to the presence of outliers.5 On the other hand, the choice of a robust 

scale estimator appears to be somewhat debated. Table 2 shows a selection of candidate 

estimators for the 𝜎 parameter in equations (1) and (2). 

Table 2. Robust scale estimators for the transformed variable t 

Estimator 𝝈 Source 

IQR 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 1 

MAD 𝑀𝐴𝐷 = 1.4826 × 𝑚𝑒𝑑|𝑦𝑖 −𝑚𝑒𝑑[𝑦]| 2 

S 𝑆 = 1.1926 × 𝑚𝑒𝑑𝑖{𝑚𝑒𝑑𝑗|𝑦𝑖 − 𝑦𝑗|} 3 

Q 𝑄 = 2.2219 × (|𝑦𝑖 − 𝑦𝑗|; 𝑖 < 𝑗)
(𝑘)

 4 

Note: 𝑄3 and 𝑄1 denote the 75th and 25th percentiles, respectively; 𝑡 is the transformation of the target variable 

𝑥. Sources: [1] any statistics textbook, [2] Hampel (1974); [3, 4] Rousseeuw and Croux (1993). The use of (𝑘) 

as a subscript indicates that the data have been sorted in increasing order: given a sample of 𝑛 observation, the 

𝑘-th order statistic of the sample is its 𝑘-th smallest value. 

An outlier detection algorithm based on a z-score with the interquartile range (IQR) as the 

denominator has been experimented with in Dupriez (2007), for instance. Hampel (1974) 

suggested the use of the median absolute deviation (MAD), defined in row 2 of Table 2: 

the MAD is the median value of the distance between the transformed expenditure of each 

household (𝑦𝑖) and the center of the distribution, as estimated by the median of the 

transformed distribution (𝑚𝑒𝑑[𝑦]). Under the assumption that 𝑦 is close enough to the 

 
5 The price for the robustness of the median is a loss of efficiency with respect to the mean (Rousseeuw and 

Hubert 2017: 2), but in large samples the main, if not the only, property that matters is their bias – efficiency 

is only relevant for small samples. Note that we are assuming unweighted estimators. The weighted median 

does not, in fact, qualify as a robust statistic (Filzmoser, Gussenbauer and Templ 2016: 15). 
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standard Normal distribution, then the coefficient 1.4826 in the formula is required for 

making the MAD an unbiased estimator of the standard deviation. Rousseeuw and Croux 

(1993) introduced the S and Q estimators, described in rows 3 and 4 of Table 2, which are 

shown to have the same 50% maximal breakdown point of MAD, but be more efficient 

than MAD when 𝑓(𝑥)~𝑁(𝜇, 𝜎). Moreover, S and Q are location-free scale estimators 

which makes them suitable to deal with skewed distributions, the case of highest interest 

to welfare analysts, thanks to their location-free nature.  

Both S and Q are “sturdy” estimators of the standard deviation, but both estimators are 

computationally demanding.6 Nevertheless, efficient algorithms proposed by Croux and 

Rousseeuw (1992) make their burden manageable. Given that its core is written in Mata, 

outdetect takes full advantage of these improvements, speeding up the computation 

considerably.7 

The availability of alternative estimators for the scale parameter of 𝑦 begs the same 

question that comes up for normalizing transformations: which one should the analyst pick? 

No alternative is clearly superior according to the literature. Rousseeuw and Croux (1993) 

show that S and Q have desirable statistical properties, and once the burden associated with 

their computation is reduced – outdetect is fast, due its reliance on Mata – they turn 

out to work well in most practical applications. For practical purposes, the analyst may 

refer to the following ranking: 𝑄 ≽ 𝑆 ≻ 𝑀𝐴𝐷 ≻ 𝐼𝑄𝑅, where we use the sign “≻” to mean 

‘is preferred to’ and “≽ for ‘weakly preferred to’.8 

 
6 To calculate the S estimator, for example, one needs to compute, for each household i in the sample, the 

expression {𝑚𝑒𝑑𝑗|𝑦𝑖 − 𝑦𝑗|} for j=1, …, n. This gives n numbers, the median of which gives the estimate S (the 

number 1.1926 in the formula is required for making S a consistent estimator of the standard deviation under 

the assumption of normality). Similarly, the Q estimator (row 4 in Table 2) is obtained by sorting all pairwise 

distances |𝑦𝑖 − 𝑦𝑗| and taking the value that occupies the k-th position in the ranking, with k being roughly half 

the number of observations (the number 2.2219 in the formula is required for making Q a consistent estimator 

of the standard deviation under the assumption of normality). 

7 In order to compute the Q statistic, outdetect adapts the code written by Ben Jann for the robstat 

command (Jann, Verardi and Vermandele, 2018). 

8 The final choice between S and Q is subjective, because their advantages and disadvantages are not easily 

compared (Rousseeuw and Croux, 1992). Indeed, while they share the nature of location-free robust scale 

estimator with a 50% breakdown point, Q is slightly preferred in terms of efficiency at the Gaussian model and, 

unlike S, it has a continuous influence function. On the other hand, S requires only half as much computation 

time and storage as Q.  
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2.3 Sensitivity of statistics to the presence of outliers 

Once outliers have been identified, outdetect assesses the sensitivity of selected 

statistics to whether or not those same outliers are included in calculations. This is done by 

taking two heuristic approaches (Hampel 1974). On the one hand, the output of 

outdetect reports comparisons between estimates based on ‘raw’ data (that is, inclusive 

of all values) and data where all observations classified as outliers are excluded from 

calculations. On the other hand, outdetect includes an option to draw the Incremental 

Trimming Curve (ITC), which shows how the value of a statistic of choice changes as the 

largest or smallest observations in the data set are consecutively excluded from 

calculations. The ITC is inspired by the (finite-sample versions of) the empirical influence 

curve (Hampel 1974, Hampel, Ronchetti, Rousseeuw and Stahel 1986, ch. 2), and Tukey’s 

sensitivity curve (Huber 2002), and similar to the curve proposed by Cowell and Flachaire 

(2007) to identify influential observations. 

A first set of statistics that appear in the output are standard descriptive statistics: the mean 

and the median, the standard deviation (abbreviated with SD), the coefficient of variation 

(CV), and the interquartile range (IQR). A second set of statistics focuses on inequality 

measures and Foster, Greer, and Thorbecke (1984) poverty measures. 

As for the ITC, it is defined as follows: 

𝐼𝑇𝐶̂(𝑥(𝑖)) = 𝐽(𝑖)  𝑓𝑜𝑟 𝑖 = 0, 1, … , 𝐼 

where 𝐽(𝑖)  denotes the statistics of interest calculated on the distribution of 𝑥, after sorting 

the values of 𝑥 and excluding the 𝑖-th cumulated observation. If 𝐽 denotes, say, the Gini 

index, then 𝐽(𝑖) is the Gini index for 𝑥, calculated leaving out of the sample the first i 

observations. If i=0, then 𝐽(0) = 𝐽, which corresponds to the case when no extreme value 

is discarded, and the ITC returns the Gini index estimated on the raw data set. If i=1, then 

𝐽(1) is the value of the Gini index obtained after discarding the first extreme value. 

Similarly, 𝐽(2) corresponds to the Gini index calculated when the two most extreme values 

have been discarded from the data set. Note that data can be thought of as sorted either 

ascending or descending, so that outdetect produces two ITCs, one where the impact 

of ‘too small’ values is assessed, the other focused on the impact of ‘too large’ values. 

Overall, the gradient of the ITC curves provides a neat indication of the extent to which the 

chosen statistics is affected by the presence of extreme values: the steeper the ITC, the 

higher the impact. The ITC is further discussed and illustrated in sections 3 and 4. 
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3 How to use the outdetect command 

This section is devoted to illustrating the typical use of outdetect. After explaining the 

syntax, we provide examples of the command “in action”, using a sample of 12,447 

households from Malawi’s Fourth Integrated Household Survey (2016-2017).9 

outdetect can be installed from the Statistical Software Components Archive by typing 

ssc install outdetect. Stata 15.1 is the earliest version that can run outdetect. 

The core of the command is written entirely in Mata to minimize computation time. The 

command handles complex survey settings automatically, when svyset is used to declare 

the sampling design features of the data to Stata (see help svyset). The use of 

pweights is also allowed. The general syntax of the command is as follows: 

outdetect varname [ if ]  [ in ]  [ weight ]  [, options ] 

outdetect identifies extreme values, either “too small” or “too large” observations, in 

the distribution of varname. We shall call these observations bottom outliers and top 

outliers, respectively (small values being at the bottom of the distribution of varname, 

and large values being at the top). By default, outdetect creates a new variable, _out, 

containing numeric codes that flag outliers of varname: 

0 observation is not an outlier 

1 observation is a bottom outlier (“too small”) 

2 observation is a top outlier (“too large”) 

The output of outdetect reports “Raw” statistics (computed using varname as is), as 

well as “Trimmed” statistics (computed using just those observations of varname that are 

not flagged as outliers). A full description of all the available options is provided in the 

outdetect help file. 

3.1 Basic usage 

In this example, the target variable is per capita annual household expenditure (here called 

pce) in Malawi (monetary amounts are expressed in thousands of Malawian kwacha 

 
9 The data set is part of the Rural Livelihoods Information System (RuLIS), and is also publicly 

available at the World Bank Microdata Library. 
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(MWK), with 1 USD exchanged against circa 800 MWKs at the time of writing). As a first 

step, we load the data into memory, specify survey settings, and summarize pce: 

 

use malawi, clear 

summarize pce [aw=weight], detail 

 

 

 

The distribution of pce displays the typical features of expenditure distributions from 

survey data anywhere: it is highly skewed to the right, heavily leptokurtic, and some values 

appear to be abnormally high, as well as, possibly, abnormally low, with respect to the bulk 

of observations. The two largest observations in the sample, in particular, are one order of 

magnitude above any other large values in the distribution. Similarly, the smallest values 

in the sample (corresponding to 20-30 cents of US dollar per day) appear implausibly low. 

To gain a better sense of the extent that these extreme values might impact the analysis, 

you can issue outdetect using the default syntax (note that while outdetect allows 

users to specify weights the same way as other Stata commands, svy-setting the data set 

prior to running outdetect is the recommended practice): 
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svyset psu [pweight = weight] 

outdetect pce 

  

The outcome of outdetect is organized into three parts. The top panel specifies the 

settings of the outlier detection procedure, that is, the ways in which the parameters of 

equation (1) (𝑦, 𝜇, 𝜎, and 𝑧𝛼), are set, and whether outliers are detected in both tails of the 

distribution. When the default syntax is used, outdetect uses the Yeo and Johnson 

(2000) transformation. In this example, 𝜇 is the median of 𝑦, 𝜎 is the Q estimator, and 𝑧𝛼 

is equal to 3. Because the z-score in equation (1) is considered in absolute value, outliers 

are detected both at the top and bottom of the distribution (i.e. both large and small values). 

The middle section of the output summarizes how many observations are flagged as 

outliers. The first column (Freq.) reports the frequency: 121 observations in total, 82 at the 
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top and 39 at the bottom; the second column (Percent) shows that observations flagged as 

outliers amount to 0.97 percent of the total sample size, with a prevalence of bottom (0.66 

percent) over top (0.31 percent) outliers; the third column (Share) gives the breakdown by 

bottom and top outliers. In our example, about 2 out of 3 outliers are ‘bottom outliers’. 

Overall, the information on the distribution of the outliers between the two tails of the 

distribution helps analysts to form expectations on the potential instability of their statistics 

of interest due to the presence of extreme values. Cowell and Flachaire (2007), for instance, 

provide a full account of the behavior of inequality measures in the presence of extreme 

values: according to their Result 1, Generalized Entropy indices with coefficient 𝜃 > 1 

(e.g. the squared coefficient of variation) are very sensitive to high incomes in the data, 

while Result 2 shows that Atkinson measures with 𝜀 > 1 (where 𝜀 denotes the inequality 

aversion parameter) are very sensitive to low incomes in the data. 

The default categorical _out variable flags the two types of outliers in the data set: _out 

takes on the value of 0 if the observation is not an outlier, 1 if it is a bottom outlier, and 2 

if it is a top outlier. This can be verified by issuing tabulate _out. 

The bottom section of the output contains the core results of outdetect: it compares an 

array of 16 descriptive statistics obtained “with” and “without” outliers. The first column 

(“Raw”) uses pce as is, meaning that the statistics are computed using all nonmissing 

observations of pce; the second column (“Trimmed”) excludes all observations flagged as 

outliers from calculations. In the case of Malawi, although the incidence of observations 

flagged as outliers is small (0.97%), their impact on most indicators is quite significant.10  

In certain cases, as for the variable considered here, it can be useful to gauge the sensitivity 

of poverty estimates to extreme values, as well. The user can expand the output by 

specifying a poverty line, as shown in the following image (the nogen option is used so 

the command refrains from creating the default _out variable, which currently already 

exists in the data set, given that outdetect has been issued before). The additional 

statistics at the bottom of the output indicate that poverty estimates are not as impacted by 

the exclusion of extreme values. 

 
10 The addition of standard errors and tests to assess the statistical significance of differences is a 

feature of an upcoming update of outdetect. 
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outdetect pce, pline(300) nogen 

  

The results displayed so far are, of course, dependent on the settings of the outlier detection 

routine, which users may wish to customize. For instance, to reproduce the procedure 

originally implemented by Deaton and Tarozzi (2005), they will specify that i) the 

normalization of pce be the natural logarithm, ii) the 𝑧-score be computed by subtracting 

the mean and dividing by the standard deviation of the log of pce, iii) outliers be detected 

only at the top of the distribution, and iv) the threshold marking the outlier region set at 2.5 
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instead of 3 (the default value used by outdetect). The following code implements these 

settings: 

outdetect pce, norm(ln) zscore(mean std) out(top) alpha(2.5) 

replace 

  

The replace option generates a new _out variable, which replaces the existing one. 

To apply the best fitting transformation, the user may specify option bestnormalize: 

outdetect pce, bestnormalize replace 
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In this case, the “best” normalization turns out to be Box and Cox (1964); however, results 

in terms of outliers flagged do not change with respect to those obtained using the default 

Yeo and Johnson (2000) transformation since, the latter, is equivalent to the generalized 

Box and Cox (1964) [(𝑥𝜆 + 1) − 1]/𝜆, for 𝑥 > −1, where the shift constant 1 is included. 

Finally, the user can specify option excel, to export the table of results in an Excel file 

which is saved in the current working directory or in any other specified location: 

outdetect pce, excel(demo, replace) replace 

In this case, the replace option within parentheses refers to the Excel file, while the one 

outside refers once again to the default _out variable. 
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3.2 Diagnostic graphs 

The sensitivity of the statistics of interest to the presence of extreme values can also be 

assessed independently of the settings of the outlier detection procedure, by producing one 

or more diagnostic graphs. Depending on the graph selected, the output shown on the 

screen may change. 

First is the Incremental Trimming Curves (ITC), defined in section 2.3. For example, the 

ITC for a selection of statistics of interest can be plotted by issuing the commands below: 

outdetect pce, graph(itc(2: mean))   (figure 1, panel a) 

outdetect pce, graph(itc(2: gini))   (panel b) 

outdetect pce, graph(itc(2: h pline(300))  (panel c) 

outdetect pce, graph(itc(2: pg pline(300)) (panel d) 

The syntax specifies that (i) the diagnostic graph to be produced is the ITC, (ii) the curve 

should be plotted for the top and bottom 2 percent of observations, and (iii) the statistics of 

interest are, the mean, the Gini index, the poverty headcount ratio, and the poverty gap 

index.  

The results are shown in Figure 1. To clarify the interpretation of the curves, let us take the 

top-right panel, showing the ITC for the Gini index. The solid line shows the value of the 

Gini index as the largest observations are dropped from the sample, one at a time; the 

dashed line shows Gini when the smallest observations are removed, one at a time. The 

steeper the curve, the more sensitive Gini is to the presence of extreme values.11 

As expected, mean expenditure turns out to be quite sensitive to the presence of large 

outliers (much less so for the outliers in the left tail). Similarly, the Gini index behaves 

consistently with the analysis of Cowell and Flachaire (2007): it shows a remarkable 

stability to bottom outliers, and high sensitivity to top outliers. Finally, both the headcount 

and poverty gap indices in panels c and d show an asymmetric response to extreme values: 

they are robust (but not totally insensitive) to extremely large values, but sensitive to 

bottom outliers. Even more so is the poverty gap squared index (not shown in the figure), 

consistently with its analytical properties (Cowell and Victoria Feser 1996b). 

 
11 Each time an observation is dropped, the weights of the remaining observations are recalibrated 

so as to sum up to the entire population. 
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Figure 1. Incremental Trimming Curves for Malawi, 2017 

a. Mean b. Gini index (%) 

  

  

c. Headcount Poverty (%) d. Poverty Gap Index 

  

  

 

Note that when ITC graphs are produced, outdetect does not generate the default _out 

variable, nor does it show the output described in section 4.1. Instead, the command 

generates a table like those shown in figure 1, to facilitate the interpretation of the curve. 

The table reports values of the ITC for selected shares of discarded observations. For 

instance, if we focus on panel (a), we can interpret the table associated with the ITC for the 

mean as follows: when 0% of observations are discarded, the mean of pce is equal to 
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897.88 thousand MWK (per person/year); when 1% of the smallest observations are 

discarded, the mean is equal to 900.64 thousand MWK, whereas if 1% of the largest 

observations are discarded, the mean is equal to 795.75 thousand MWK; and so on. 

Note that users can produce the same graph by specifying that a certain number (not share) 

of observations be discarded; they will simply need to add the option abs, for absolute. 

The example below produces the ITC for the mean, focusing on the smallest and largest 10 

observations in the sample: 

outdetect pce, graph(itc(10: mean abs)) 

One last type of diagnostic plot that is available as part of outdetect has to do with 

monitoring the goodness-of-fit of the normalization of the target distribution. This is an 

important check because, if the normalization is successful, then the characterization of 

outliers as “low-probability observations”, as defined by the tails of a Normal distribution, 

will be applied accurately to the original (non-Normal) distribution. The syntax below 

produces a quantile-quantile (Q-Q) plot comparing the quantiles of the transformed 

distribution of pce, which we indicated by y in Section 2, to those of the inverse Normal 

distribution having the same mean and standard deviation as y: 
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outdetect pce, graph(qqplot) nogen 

 

Figure 2. Assessing normalization: the quantile-quantile plot  

 

 

At the bottom of the QQ-plot, outdetect also shows the p-values from three popular 

normality tests: i) the Shapiro-Wilk test (Shapiro and Wilk 1965), ii) the Shapiro-Francia 

test (Shapiro and Francia 1972), and iii) the D’Agostino, Belanger and D’Agostino (1990) 

test. The null hypothesis being tested is that the variable is normally distributed, which is 

only rejected by the first of the three tests. 

4 The influence of outliers on inequality and poverty measures 

In this section, we apply the outlier detection procedure that has been illustrated in section 

2 to per capita expenditure in a wide array of countries, taking advantage of the collection 

of survey data made available by the Rural Livelihoods Information System (RuLIS). We 

use data from 34 of these countries (we excluded four surveys, which were conducted in 

2005 or earlier). Our sources are listed in the Appendix. 
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Figure 3 shows some examples of the distribution of per capita consumption aggregates 

based on the “raw” data.12 All curves display a few features that are common for many 

variables of interest in welfare analysis (consumption expenditure, income, wealth, but also 

quantity of items consumed, calorie intake, unit values, and many others): they are skewed 

and leptokurtic (fat tails), which may be symptoms of the presence of outliers. 

 
12 The “raw” label is used here for convenience: survey microdata shared by National Statistical 

Offices have almost certainly been edited between the end of fieldwork and the time of 

dissemination, as is routine – but they are raw, as far as the analyst is concerned. The conversion in 

per capita (or adult equivalent) terms is necessary in this context, because values that may appear 

‘extreme’ on a per-household basis may turn out not to be, once household size is accounted for. 
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Figure 3. Per capita expenditure (LCU/person/year), untransformed variables 

MALAWI (2017) NIGERIA (2012) 

  

CÔTE D’IVOIRE (2008) TANZANIA (2015) 

  

MALI (2014) UGANDA (2016) 

  
SENEGAL (2011) RWANDA (2014) 
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Figure 3 (cont.). Per capita expenditure (LCU/person/year), untransformed variables 

IRAQ (2012) BANGLADESH (2010) 

  

INDIA (2012) PAKISTAN (2014) 

  

MEXICO (2014) PERU (2015) 

  
ARMENIA (2013) GEORGIA (2015) 

  

Source: Authors’ estimates based on data from RuLIS (2021). RuLIS database accessed on July 2021. 
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Figure 4 shows the incidence of outliers (as a percentage of the total number of observations 

in each sample) in the target distributions. There is remarkable heterogeneity in the fraction 

of flagged observations across countries; however, this fraction is relatively small: the 

average outlier incidence across countries is 0.8%, with a peak of 2.2% in Kyrgyzstan. The 

code underlying Figure 4 is the following syntax of outdetect: 

svyset [pweight = weight] 

outdetect pce, bestnorm 

This implies that outliers are detected after transforming the target variable with the best 

fitting normalization, using the median and the Q estimator to compute a robust z-score, 

and applying a threshold of 3 to the resulting standardized distribution. 

 

Figure 4. Incidence of outliers (% of sample size) of per capita consumption 

 

 

Because we use a threshold of 3 to flag extreme values, the expected share of outliers 

detected – were the normalization of the consumption distribution perfectly successful – 

should be around 0.3%. The higher percentage of outliers detected is due to excess 

skewness of the distributions with respect to a standard normal, which is on par with the 
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distributions displayed in Figure 3. Top outliers (extremely large observations) are more 

frequently flagged than bottom outliers (extremely small observations) – the latter are, 

however, present, despite the fact that small values typically do not attract as much 

attention in welfare analysis. 

Besides counting how many observations are flagged, it is important to figure out how 

influential these observations are. A simple way to assess the sensitivity of any statistics of 

interest to extreme values is to track the value of the statistic – say, the Gini index – when 

we progressively drop the largest and smallest observations in the distribution of per capita 

consumption, a process we can describe as incremental trimming of the distribution. The 

resulting graph, the Incremental Trimming Curve (ITC), is displayed in Figure 5 for 

selected statistics.13 The figure uses data from Mexico’s Encuesta Nacional de Ingresos y 

Gastos de los Hogares, conducted in 2014, and reports ITCs for eight different statistics of 

interest: 1) average per capita consumption, 2) Gini index, 3) mean logarithmic deviation, 

4) Theil index, 5) Atkinson index (with inequality aversion parameter epsilon equal to 2), 

6) poverty headcount ratio, 7) poverty gap, and 8) poverty gap squared. 

The ITCs in Figure 5 show that inequality statistics can be extremely sensitive to the 

presence of extreme values, although to different extents. The Theil index, for instance, 

experiences a vertical drop – 45.5% to 36% – when as few as 0.5% of large values, or about 

100 observations, are excluded from calculations. The Atkinson index with a relatively 

high value for the inequality aversion parameter (epsilon is set equal to 2 in the figure), on 

the other hand, is more sensitive to the exclusion of small values. Poverty indices 

experience smaller and more linear changes in general when extreme values are dropped. 

The case of Mexico is not peculiar: in fact, it is representative of patterns that emerge in 

most of the countries examined in this section.  

 
13 The ITC is defined in Section 2.3. 
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Figure 5. Incremental Trimming Curves (ITCs) for selected statistics, Mexico 2014 

MEAN (EXPENDITURE/PERSON/YEAR) GINI INDEX (%) 

  

MEAN LOG DEVIATION (%) THEIL INDEX (%) 

  

ATKINSON INDEX (%) - A(2) POVERTY HEADCOUNT RATIO (%) 

  

POVERTY GAP INDEX (%) POVERTY GAP SQUARED INDEX (%) 

  

Source: Authors’ estimates based on data from RuLIS (2021).  
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The empirical analysis conducted so far confirms what is known from the theoretical 

literature: outliers are, in general, highly influential for most statistics of interest. A more 

operational indication of the influence of extreme values on final estimates can be derived 

from a simple comparison of the “raw” data (‘raw’ as defined in footnote 7) to some 

counterfactual, “what if” scenario. A prima facie approach is to exclude outliers from the 

distribution of the target variable – that is, all values flagged by outdetect are “rejected” 

(to use terminology that is common in the outlier literature), and excluded from the 

calculation of final estimates. Using the outlier-free distribution of consumption as a 

counterfactual to the raw data amounts to looking at what would happen if the observations 

flagged by the algorithm did not occur at all in the distribution. This is compatible with the 

view that observations that are flagged as outliers are contaminants of the true distribution 

(originated, for instance, from measurement error). This framework, of course, does not 

imply that trimming extreme values is the best way to treat them. In fact, the perspective 

in the present context is exploratory in nature: the main purpose is that of experimenting 

with a limit, hypothetical scenario, one where all outliers flagged are, in fact, the result of 

measurement error. 
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Table 3. Difference (in percentage points) between statistics computed before and 

after the exclusion of outliers 

Country Gini MLD Theil Atkinson H PG PG2 

Armenia 0.3 0.4 0.3 0.8 0.2 0.1 0.1 

Bangladesh 1.2 1.5 2.9 1.6 0.1 0.1 0.1 

Bolivia 3.7 8.5 12.5 10.1 0.3 0.5 0.6 

Bulgaria 1.0 1.3 1.3 3.0 0.4 0.4 0.3 

Burkina Faso 0.4 0.5 0.9 0.5 0.1 0.1 0.0 

Cambodia 0.4 0.5 0.7 0.7 0.2 0.2 0.1 

Cameroon 1.2 1.9 3.3 1.4 0.0 0.0 0.0 

Côte d’Ivoire 2.2 3.2 5.5 2.9 0.1 0.1 0.1 

Ecuador 0.9 1.3 2.1 1.4 0.1 0.1 0.1 

Ethiopia 1.1 1.4 2.5 1.2 -0.1 0.0 0.0 

Georgia 1.6 2.2 3.5 2.5 0.1 0.2 0.2 

Ghana 1.2 1.8 3.2 1.6 0.0 0.1 0.1 

Guatemala 1.0 1.4 2.3 1.6 0.1 0.1 0.1 

India 1.8 2.6 5.1 2.3 0.1 0.1 0.1 

Iraq 1.1 1.2 1.8 1.4 0.1 0.1 0.1 

Kyrgyzstan 1.3 1.2 1.4 2.1 0.5 0.3 0.2 

Malawi 5.0 7.6 28.2 5.7 0.1 0.1 0.1 

Mali 4.2 7.0 15.5 4.7 0.0 0.1 0.1 

Mexico 4.8 8.3 13.7 8.9 0.3 0.5 0.4 

Mongolia 0.6 0.7 0.9 1.6 0.1 0.1 0.1 

Mozambique 5.2 9.0 16.5 9.4 0.7 0.8 0.7 

Nepal 1.2 1.6 2.7 1.6 0.1 0.1 0.1 

Nicaragua 0.6 1.0 1.4 1.3 0.2 0.2 0.1 

Niger 0.7 0.9 1.6 0.9 0.0 0.0 0.0 

Nigeria 6.0 9.7 27.7 7.4 0.4 0.4 0.3 

Pakistan 0.7 0.9 1.4 1.0 0.3 0.2 0.1 

Peru 0.8 1.2 1.8 1.4 0.1 0.1 0.1 

Rwanda 3.4 5.6 11.5 4.3 0.3 0.3 0.2 

Senegal 1.3 2.4 3.0 4.0 0.5 0.5 0.5 

Serbia 1.1 1.3 1.8 1.9 0.3 0.2 0.2 

Sierra Leone 0.5 0.8 0.9 1.3 0.3 0.3 0.2 

Tanzania 0.8 1.2 1.8 1.1 0.0 0.0 0.0 

Uganda 2.4 4.1 10.1 3.0 0.2 0.2 0.2 

Vietnam 2.8 3.8 7.0 3.6 0.2 0.2 0.2 

Average 1.8 2.9 5.8 2.9 0.2 0.2 0.2 

SD 1.6 2.8 7.2 2.6 0.2 0.2 0.2 

Min 0.3 0.4 0.3 0.5 -0.1 0.0 0.0 

Max 6.0 9.7 28.2 10.1 0.7 0.8 0.7 

Note: MLD is for Mean Logarithmic Deviation; ‘Atkinson’ is for the Atkinson index, where the inequality 

aversion parameter epsilon is set equal to 2; H is for the poverty headcount ratio; PG is for the poverty gap; 

PG2 is for the poverty gap squared. Poverty indices are computed using a relative poverty line, equal to 60% 

of median per capita consumption in the original distribution. 
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Table 3 quantifies the sensitivity of an array of statistics of interest for welfare analysis. 

The first four columns refer to inequality measures: the Gini index (column 2), two 

members of the Generalized Entropy family of indices (Mean Log Deviation and Theil 

index, in columns 3 and 4), and the Atkinson index (with the inequality aversion parameter 

set equal to two, column 5). The remaining columns refers to Foster, Greer and Thorbecke 

(1984) poverty measures: the headcount ratio (H), the poverty gap index (PG), and the 

poverty gap squared index (PG2). The results show that the exclusion of outliers decreases 

estimated inequality according to all measures. The Gini index is the least sensitive among 

the inequality measures shown in Table 3, although before-after differences can be large 

enough to cast doubt on the validity of estimates obtained from the raw data: the Gini index 

for Nigeria, Mozambique, Malawi, and Mexico is bumped down by 5 to 6 percentage 

points, a salient difference by all metrics. The Theil index is the most sensitive measure 

among those we examined, showing differences as large as 28 percentage points. Overall, 

these results align with the theoretical analysis in Cowell and Flachaire (2007). Differences 

observed for three poverty measures – the poverty headcount, poverty gap, and poverty gap 

squared – are smaller across the board, in line with the theoretical findings available in the 

literature (Cowell and Victoria-Feser 1996b). However, our illustrative example uses 

relative poverty lines, which may affect results. 

The empirical magnitude of the effects documented in Table 3 is consequential, and can be 

appreciated focusing on the case of Gini index (the more conservative scenario in our 

setting). Figure 6 (top panel) shows the point estimates of the Gini index calculated on the 

RuLIS ‘raw data sets’, that is on data as available from the data provider. Countries are 

ranked low (Kyrgyzstan) to high (Bolivia) accordingly. The bottom panel of Figure 6 

shows the estimated Gini indices, for the same countries, after excluding outliers (as 

identified by outdetect). Even a cursory inspection of the two graphs bring to light a 

number of rerankings: countries move up or down the ladder as a consequence of how 

outliers are treated. 



 31 

Figure 6 – Gini index (%), for selected countries 

All observations 

 

Without outliers 

 

Source: our estimates based on RuLIS (2021). 

 

Although the comparison between “raw” and “trimmed” statistics in Table 3 is meant as a 

sensitivity exercise, rather than an outlier treatment suggestion, clearly the behavior of the 

statistics of interest does depend on the choice of what to do with observations flagged as 

outliers. As an example, we consider winsorization (or censoring), which amounts to 

changing the value of each outlier to that of the nearest inlier (Tukey 1962: 18). In Table 4 

we compare “raw” statistics with those obtained by winsorizing the per capita expenditure 

variable, rather than trimming it.  
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Table 4. Difference (in percentage points) between statistics computed before and 

after winsorizing the target variable 

Country Gini MLD Theil Atkinson H PG PG2 

Armenia 0.0 0.1 0.0 0.2 0.0 0.0 0.0 

Bangladesh 0.5 0.7 1.6 0.6 0.0 0.0 0.0 

Bolivia 1.7 3.7 7.8 5.5 0.0 0.0 0.0 

Bulgaria 0.3 0.5 0.5 1.4 0.0 0.1 0.1 

Burkina Faso 0.0 0.1 0.2 0.1 0.0 0.0 0.0 

Cambodia 0.1 0.1 0.2 0.2 0.0 0.0 0.0 

Cameroon 0.4 0.7 1.6 0.4 0.0 0.0 0.0 

Côte d’Ivoire 0.8 1.3 2.8 1.0 0.0 0.0 0.0 

Ecuador 0.2 0.4 0.7 0.4 0.0 0.0 0.0 

Ethiopia 0.4 0.6 1.3 0.5 0.0 0.0 0.0 

Georgia 0.6 0.9 1.9 0.9 0.0 0.0 0.0 

Ghana 0.4 0.7 1.5 0.6 0.0 0.0 0.0 

Guatemala 0.2 0.4 0.7 0.6 0.0 0.0 0.0 

India 0.7 1.2 2.8 0.9 0.0 0.0 0.0 

Iraq 0.3 0.4 0.7 0.4 0.0 0.0 0.0 

Kyrgyzstan 0.4 0.4 0.6 0.8 0.0 0.1 0.1 

Malawi 3.9 6.2 26.2 4.2 0.0 0.0 0.0 

Mali 2.5 4.3 11.3 2.6 0.0 0.0 0.0 

Mexico 2.2 4.0 8.1 4.8 0.0 0.0 0.1 

Mongolia 0.2 0.2 0.3 0.9 0.0 0.0 0.0 

Mozambique 2.4 4.5 10.4 4.8 0.0 0.1 0.1 

Nepal 0.4 0.5 1.1 0.4 0.0 0.0 0.0 

Nicaragua 0.2 0.4 0.6 0.6 0.0 0.0 0.0 

Niger 0.2 0.3 0.7 0.3 0.0 0.0 0.0 

Nigeria 4.5 7.5 24.4 5.0 0.0 0.0 0.1 

Pakistan 0.2 0.3 0.6 0.3 0.0 0.0 0.0 

Peru 0.2 0.4 0.7 0.5 0.0 0.0 0.0 

Rwanda 1.4 2.5 6.3 1.8 0.0 0.0 0.0 

Senegal 0.5 0.9 1.5 1.8 0.0 0.0 0.1 

Serbia 0.3 0.4 0.7 0.6 0.0 0.0 0.0 

Sierra Leone 0.1 0.2 0.2 0.4 0.0 0.0 0.0 

Tanzania 0.3 0.4 0.9 0.4 0.0 0.0 0.0 

Uganda 1.5 2.7 8.0 1.8 0.0 0.0 0.0 

Vietnam 1.4 2.0 4.4 1.6 0.0 0.0 0.0 

Average 0.9 1.5 3.9 1.4 0.0 0.0 0.0 

SD 1.1 1.9 6.3 1.6 0.0 0.0 0.0 

Min 0.0 0.1 0.0 0.1 0.0 0.0 0.0 

Max 4.5 7.5 26.2 5.5 0.0 0.1 0.1 

Note: MLD is for Mean Logarithmic Deviation; ‘Atkinson’ is for the Atkinson index, where the inequality 

aversion parameter epsilon is set equal to 2; H is for the poverty headcount ratio; PG is for the poverty gap; 

PG2 is for the poverty gap squared. Poverty indices are computed using a relative poverty line, equal to 60% 

of median per capita consumption in the original distribution. 
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On average, differences between “raw” and “treated” results are about half as large when 

winsorizing (Table 4), as they are when trimming (Table 3), and patterns are consistent: 

the surveys where the impact of outliers is the largest remain the same (Nigeria, Malawi, 

Mexico…). This exercise is not intended to convey general messages but is a useful 

complement to the results presented in Table 3.   

As to whether trimming or winsorization is to be preferred, no general recommendation 

can be found in the literature, nor any agreed-upon practices exist (van Kerm 2007; 

Turkiewicz, 2017; Hlasny 2020). When it comes to making a decision, it is worth 

reminding that winsorization produces artificial clusters of observations at the extremes of 

the distribution. The case of Mexico 2014 in Figure 7 illustrates: the histogram of the (log) 

of per capita expenditure shows two spikes (highlighted in red), created by winsorization. 

Depending on the statistics of interest to the analyst, the presence of these masses might be 

more or less influential: clearly, the choice between trimming and winsorizing has an 

impact on cardinal comparisons involving tail-sensitive poverty and inequality measures, 

which leads to recommendation that spatial and temporal poverty and inequality 

comparisons are carried out on a common method for treating outliers.  

 

Figure 7 – Winsorized per capita expenditure, Mexico 2014 
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5 Concluding remarks 

Despite the increase in quality of household surveys in recent years, most variables of 

interest to welfare analysts suffer from measurement error: the outdetect command 

focuses on outliers, that is, on values that are so large or so small that they seem “too far 

away” from the rest of the data. While ‘outlier’ is not necessarily a synonym for ‘error’, in 

practice their investigation often leads to the identification of gross errors; and even when 

outliers turn out to be legitimate values, their analysis is informative, and is integral to the 

initial stages of any data analysis. The literature provides three sets of results that motivate 

our interest in developing outdetect as a tool for detecting outliers and assessing their 

potential impact on poverty and inequality measures. First, the body of theoretical results 

that demonstrate the extent to which different inequality and poverty measures are sensitive 

to the presence of extreme values (Cowell and Victoria-Feser 1996a, 1996b; Victoria-Feser 

2000; Cowell and Flachaire 2007, 2015; Cowell and van Kerm 2015). In general, welfare 

indices have been shown to be highly sensitive to extreme values in the tails of the 

distribution of income. Second, extreme values are omni-present in household surveys, 

both in low- and high-income countries (Hlasny and Verme 2018, Hlasny, Ceriani and 

Verme 2021). Third, while common experience and anecdotal evidence suggest that 

analysts always inspect their data, and often adjust them in some way, to protect their 

analyses from the impact of extreme values, these practices are rarely documented. Based 

on the examination of the documentation accompanying the release of some 200 official 

poverty and inequality estimates by national statistical offices, Mancini and Vecchi (2022) 

find that the overwhelming majority does not even mention whether outliers were dealt 

with, and how. 

outdetect does not purport to solve the complex and long-standing problem of outlier 

identification and treatment once and for all. In fact, outdetect does not include options 

to treat extreme values, as no automatic procedures exist that can be recommended for that. 

Rather, the command should be thought of as a heuristic tool, much in the spirit of Hampel 

(1974) and Huber (1981), aimed at helping practitioners, particularly welfare analysts, with 

assessing the impact of extreme values in their calculations. Our effort in developing 

outdetect has focused on taking stock of both theoretical results and the practical 

constraints faced by empirical analysts. As a result, outdetect is simple to use, fast to 

execute even in the presence of relatively large samples, and rooted in the academic 

literature. The command is intended to greatly facilitate the documentation of choices made 
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at the “pre-analytical” stage, and the reproducibility of the analysis. This, in turn, has far-

reaching implications for the consistency of welfare comparisons: when the methodology 

for identifying outliers differs, the consistency of both inter-temporal and international and 

intra-country geographic comparisons is at risk (Ravallion 1994; Atkinson 2019: ch. 4). 

Our preliminary empirical exploration, based on a selection of data sets drawn from the 

RuLIS project, provides a tentative assessment of the effect that lack of harmonization in 

dealing with outliers can have on welfare comparisons. 
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Appendix 

 

Table A1. RuLIS data sets used in section 4 

Country Survey Year Households 

Armenia Integrated Living Conditions Survey 2013 5,184 

Bangladesh Household Income-Expenditure Survey 2010 12,240 

Bolivia Encuesta de los Hogares 2008 3,940 

Bulgaria Multitopic Household Survey 2007 4,300 

Burkina Faso Enquête Multisectorielle Continue 2014/15 10,800 

Cambodia Cambodia Socio-Economic Survey 2009 11,971 

Cameroon Fourth Cameroon Household Survey 2014 10,303 

Côte d'Ivoire Enquête Niveau de Vie des Menages 2008  2008 12,600 

Ecuador Encuesta sobre Condiciones de Vida 2014 28,970 

Ethiopia Ethiopia Socioeconomic Survey 2015/16 4,954 

Georgia Integrated Household Survey 2015 10,999 

Ghana Ghana Living Standards Survey 2012/13 16,772 

Guatemala Encuesta Nacional de Condiciones de Vida 2014 11,536 

India India Human Development Survey 2012 42,129 

Iraq The Iraq Household Socio-Economic Survey  2012 24,944 

Kyrgyzstan Integrated Sample Household Budget and Labour Survey 2013 5,013 

Malawi Integrated Household Survey 2017 12,447 

Mali 
Enquête Agricole de Conjoncture Integrée aux Conditions de Vie 

des Ménages  
2014 3,804 

Mexico Encuesta Nacional de Ingresos y Gastos de los Hogares 2014 19,479 

Mongolia Socioeconomic Survey  2014 16,174 

Mozambique Inquérito sobre Orçamento Familiar 2009 10,832 

Nepal Nepal Living Standards Survey 2011 5,988 

Nicaragua Encuesta Nacional de Hogares sobre Medición de Nivel de Vida 2014 6,851 

Niger National Survey on Household Living Conditions and Agriculture 2014 3,617 

Nigeria General Household Survey 2012/13 4,738 

Pakistan Pakistan Social and Living Standards Measurement Survey 2013/14 17,989 

Peru Encuesta Nacional de Hogares 2015 32,188 

Rwanda Integrated Household Living Conditions Survey 2013/14 14,419 

Senegal Enquête de Suivi de la Pauvreté au Sénégal 2011 5,953 

Serbia Living Standards Measurement Survey 2007 5,557 

Sierra Leone Integrated Household Survey 2011 2011 6,727 

Tanzania National Panel Survey 2012/13 3,256 

Uganda The Uganda National Panel Survey 2013/14 3,352 

Vietnam Household Living Standards Survey 2010 9,399 

Note: Information supplied by RuLIS technical documentation, http://www.fao.org/in-action/rural-

livelihoods-dataset-rulis/technical-documentation/en/. 

  

http://www.fao.org/in-action/rural-livelihoods-dataset-rulis/technical-documentation/en/
http://www.fao.org/in-action/rural-livelihoods-dataset-rulis/technical-documentation/en/
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