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ABOUT THE GLOBAL PROGRAM FOR RE-
SILIENT HOUSING

GPRH provides technical and financial support to 
governments interested in increasing safety and 
resilience in the housing sector. GPRH has devel-
oped a methodology that combines: a) technology 
to identify which homes can be made safe before 
the next disaster; b) policy to connect families 
with government-sponsored housing programs; 
and c) private sector participation to create jobs 
and local economic development through private 
investments in the construction and financial sec-
tors. While the program focuses on housing, it 
developed a methodology to extract urban clues 
from drone and street view imagery with multiple 
applications.

OBJECTIVE AND AUDIENCE

The purpose of this guidance note is to demon-
strate how to utilize geospatial technologies to 
accurately and rapidly assess infrastructure within 
the built environment of a small island developing 
state. The document presents a methodology on 
how to collect drone (i.e., unmanned aerial sys-
tem (UAS)) and street view imagery, process the 
imagery, and apply machine learning (ML) models 
to generate a housing assessment database for 
decision-makers. 

The audience is primarily World Bank task team 
leaders and task teams who need information 
about the housing stock in a small island devel-
oping state. It also could help disaster risk man-
agement practitioners and governments. This 
document will interest people who want to gather 
imagery remotely for project preparation, supervi-
sion, and impact evaluation. Those collecting, pro-
cessing, and synthesizing mobile mapping data 
(e.g., drone pilots, street view camera operators, 
ML engineers, and other developers) will find the 
specific recommendations and requirements with-
in the detailed workflow useful.

The audience is not required to use the entire meth-
odology. Teams can reference the document when 
collecting drone data for baseline assessments or 
when they want to use street view for post-dam-
age assessment. The lessons learned and guid-
ance provided in this document can be useful for a 
wide range of projects at various stages.
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ABBREVIATIONS AND ACRONYMS

3D	 three-dimensional
AOI	 area of interest
AWS S3	 Amazon Simple Storage Service
cm	 centimeter
CNN	 Convolutional Neural Network
CORS	 continuously-operating reference system
CVAT	 Computer Vision Annotation Tool
DEM	 digital elevation model
DL	 deep learning
DOM	 digital object model
DRM	 disaster risk management
DSM	 digital surface model
DTM	 digital terrain model
EXIF	 exchangeable image file
FK	 foreign key
GA	 Geoscience Australia
GAMS	 GNSS Azimuth Measurement Subsystem
GCP	 ground control point
GFDRR	 Global Facility for Disaster Reduction and 	
	 Recovery
GNSS	 Global Navigation Satellite Systems
GPRH	 Global Program for Resilient Housing
GPS	 Global Positioning System
Hz	 hertz
IMU	 inertial measurement unit
INS	 inertial navigation system
kg	 kilogram
km	 kilometer
LCP	 LadybugCapPro
m	 meter
ML	 machine learning
MP	 megapixel

NCAT	 NGS Coordinate Conversion and 		
	 Transformation Tool
NGS	 National Geodetic Survey
NOAA	 National Oceanic and Atmospheric 		
	 Administration
OPUS	 Online Positioning User Service
PK	 primary key
POI	 point of interest
PPK	 post-processed kinematic
ppm	 parts per million
PPP	 precise point positioning
PVF2	 polyvinylidene fluoride
ResNet	 residual network
RGB	 red-green-blue
RMSE	 root-mean-square error
RTK	 real-time kinematic
SfM	 structure-from-motion
SIDS	 small island developing state
SQL	 Structured Query Language
SRTM	 Shuttle Radar Topography Mission
SSD	 Single Shot MultiBox Detector
TBC	 Trimble Business Center
UAS	 unmanned aerial system
UAV	 unmanned aerial vehicle
UN	 United Nations
UNDP	 United Nations Development Programme
VGG-19	 Visual Geometry Group CNN with 19 		
	 convolutional layers
VRS	 virtual reference station
VTOL	 vertical takeoff and landing
WASH	 water, sanitation, and hygiene
WGS84	 World Geodetic System 1984
XML	 Extensible Markup Language
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Introduction

The United Nations (UN) Human Settlements Programme estimates that 1.6 billion people (20 percent 
of the world population) live in inadequate housing.1 In addition, the UN recognizes 58 small island 
developing states (SIDS) for their social, economic, and environmental vulnerabilities.2,3 SIDS face 
challenges specific to their land area, relative coastline exposure, and low elevation coastal zones.4 
While SIDS vary in population and land area size, small population sizes can result in higher costs per 
capita for physical infrastructure and services to plan for and recover from disasters.5 Furthermore, 
there are a multitude of stressors placed on physical infrastructure ranging from the impacts of cli-
mate change (e.g., sea level rise, high-intensity tropical cyclones, extreme forest fires) to population 
growth outpacing housing supply and structural maintenance needs exceeding available resources. 
With more frequent, damaging, and deadly natural disasters, the housing sector continues to suffer 
significant damage, particularly for the poor. 

Before breaking ground, structural engineering studies are needed for resilient housing design and 
construction. Traditionally, engineers start their study by entering the field with rapid field assess-
ment tools (e.g., the Rapid Visual Screening of Buildings for Potential Seismic Hazards) that can 
identify housing vulnerabilities.6 These assessments require engineers to evaluate homes from the 
street. Unfortunately, this is a time-consuming and expensive process, which makes it untenable to 
scale. However, advanced technology – drones, street view cameras, machine learning (ML) algo-
rithms – can now be leveraged to inform resilient housing policy design and implementation. These 
geospatial technologies enable governments with forward-thinking housing policies, targeted hous-
ing subsidies, and simplified risk management guidelines to invest in disaster-resilient retrofitting 
that serves the public good. The World Bank’s GPRH developed a methodology implementing these 
advanced geospatial technologies to support the strengthening of urban communities and substan-
dard housing.7 This document provides technical guidance for those interested in adopting a similar 
process supporting SIDS.

SIDS are ideal locations to apply the GPRH methodology. Governments and statistical offices of these 
states commonly face human and financial resource challenges that restrict the generation of detailed, 
updated datasets, resulting in reliance on customary datasets or limited use of incomplete or obsolete 

1 UN-Habitat (United Nations Human Settlements Programme). The Value of Sustainable Urbanization. World Cities Report 
2020. Nairobi, Kenya: UN-Habitat, 2020. https://unhabitat.org/World%20Cities%20Report%202020
2 UN-OHRLLS (United Nations Office of the High Representative for the Least Developed Countries, Landlocked Developing 
Countries and Small Island Developing States), https://www.un.org/ohrlls/content/list-sids
3 UN-OHRLLS, https://www.un.org/ohrlls/content/about-small-island-developing-states
4 Pelling, Mark and Juha Uitto. Small island developing states: natural disaster vulnerability
and global change. Global Environmental Change Part B: Environmental Hazards 3, no. 2 (2001): 49–62.
https://doi.org/10.1016/S1464-2867(01)00018-3
5 Pelling and Uitto. Small island developing states: natural disaster vulnerability and global change.
6 FEMA (Federal Emergency Management Agency). Rapid Visual Screening of Buildings for Potential Seismic Hazards: A 
Handbook. Washington, DC: FEMA, January 2015. https://www.fema.gov/sites/default/files/2020-07/fema_earthquakes_
rapid-visual-screening-of-buildings-for-potential-seismic-hazards-a-handbook-third-edition-fema-p-154.pdf
7 World Bank Group. “Global Program for Resilient Housing.” Last modified January 31, 2022.
https://www.worldbank.org/en/topic/disasterriskmanagement/brief/global-program-for-resilient-housing

https://unhabitat.org/World%20Cities%20Report%202020
https://www.un.org/ohrlls/content/list-sids
https://www.un.org/ohrlls/content/about-small-island-developing-states
https://doi.org/10.1016/S1464-2867(01)00018-3
https://www.fema.gov/sites/default/files/2020-07/fema_earthquakes_rapid-visual-screening-of-buildings-for-potential-seismic-hazards-a-handbook-third-edition-fema-p-154.pdf
https://www.fema.gov/sites/default/files/2020-07/fema_earthquakes_rapid-visual-screening-of-buildings-for-potential-seismic-hazards-a-handbook-third-edition-fema-p-154.pdf
https://www.worldbank.org/en/topic/disasterriskmanagement/brief/global-program-for-resilient-housing
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datasets.8,9 However, the land area of SIDS, whether a single island or a series of small islands, makes 
them a suitable size for collecting data using drones and street view cameras. In addition, their popu-
lation density (22 SIDS are among the 50 most densely populated countries in the world), allows this 
technology to efficiently capture housing and infrastructure data.10 With limited land, compounded 
by natural disasters and climate change threats, a database generated using the GRPH methodology 
helps to effectively manage rapidly changing and competing priorities for housing, infrastructure, and 
land use on islands. This supports evidence-based decision-making within SIDS.

While the primary application of the technical methodology shared within the guidance note is hous-
ing assessment, this workflow can certainly be applied to additional infrastructure needs from public 
services to asset inventory. To gain confidence in these additional application areas, pilot testing on 
more complex public facilities including transportation and water, sanitation, hygience (WASH) infra-
structure is encouraged. In particular, this approach is well-suited to document current infrastructure 
status for climate change mitigation and adaptation efforts similar to those undertaken by the World 
Bank Group in the Marshall Islands and Solomon Islands.11,12 Adopting the data collection and analysis 
workflows outlined herein would provide a more thorough assessment of buildings and associated 
infrastructure that will be impacted by rising sea levels and higher intensity storms in the coming 
decades. Furthermore, this methodology can be both scalable and less expensive than other potential 
data acquisition and analysis processes. Thus, the opportunities to utilize geospatial technologies and 
ML in infrastructure monitoring are numerous and available for governments looking to modernize 
how capital funding is allocated to address the challenges populations face in the near future. 

GPRH supports the strengthening of urban communities in SIDS by providing a) technical assistance 
for the identification of high-risk buildings; b) advice on program policy and design; and c) identifica-
tion of technical solutions that could increase household resilience to hazards and pandemics. A first 
step in addressing these goals is to assess the condition of the current housing inventory for a given 
jurisdiction. Thus, high-resolution imagery of each home within the jurisdiction is systematically 
captured from two perspectives: from above via cameras on drones as well as from the ground via 
360-degree, vehicle-mounted cameras. Once a neighborhood has been canvassed from the sky and 
from the street, ML algorithms are trained to extract specific characteristics of each house. GPRH 
then integrates these various housing attributes into a spatial database and visualizes them in an 
interactive web tool called the Housing Portal. The Housing Portal allows decision-makers to gain an 
overview of the housing stock at the city, neighborhood, and block levels as well as navigate along the 
street to examine the housing images and ML results. 

Extracting geospatial data from drone and street view images has several major advantages. First, 
this approach reduces field time and expenses relative to traditional methods. The information tech-

8 Montalvo, J. Daniel, Mitchell A. Seligson, and Elizabeth J. Zechmeister. “Data Collection in Cross-National and International 
Surveys.” In Advances in Comparative Survey Methods, 569–82. Hoboken: John Wiley & Sons, Ltd, 2018.
https://doi.org/10.1002/9781118884997.ch27
9 Paris21. National Strategy for the Development of Statistics Guidelines for SIDS, 2018.
https://paris21.org/sites/default/files/2018-02/SIDS-NSDS-Guidelines_final_web.pdf
10 Adeoti T, Fantini C, Morgan G, Thacker S, Ceppi P, Bhikhoo N, Kumar S, Crosskey S & O’Regan N. Infrastructure for Small 
Island Developing States. Copenhagen: UNOPS, 2020. https://content.unops.org/publications/Infrastructure_SIDS_EN.pdf
11 World Bank Group. “Marshall Islands: New Climate Study Visualizes Confronting Risk of Projected Sea Level Rise.” Last 
modified October 29, 2021. https://www.worldbank.org/en/news/press-release/2021/10/29/marshall-islands-new-climate-
study-visualizes-confronting-risk-of-projected-sea-level-rise
12 Government of Solomon Islands and Global Facility for Disaster Reduction and Recovery. “Solomon Islands: Rapid 
Assessment of the Macro and Sectoral Impacts of Flash Floods in the Solomon Islands, April 2014.” Washington, DC: World 
Bank, 2014. https://openknowledge.worldbank.org/handle/10986/21818

https://doi.org/10.1002/9781118884997.ch27
https://paris21.org/sites/default/files/2018-02/SIDS-NSDS-Guidelines_final_web.pdf
https://content.unops.org/publications/Infrastructure_SIDS_EN.pdf
https://www.worldbank.org/en/news/press-release/2021/10/29/marshall-islands-new-climate-study-visual
https://www.worldbank.org/en/news/press-release/2021/10/29/marshall-islands-new-climate-study-visual
https://openknowledge.worldbank.org/handle/10986/21818
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nology capacity of SIDS governments are broad ranging from islands that are largely paper-based to 
islands that own and operate drones regularly. Regardless of the differences, they all seem to share 
an eagerness to adopt new technology that would improve operational efficiency. Second, the tech-
nology approach minimizes direct personal contact during data acquisition, which is beneficial in 
areas with security concerns. Furthermore, minimization of personal contact can also reduce some 
potential biases arising from human-derived assessments collected by multiple people in the field 
across a longer time frame. Third, this workflow deftly integrates the benefits of covering broad areas 
at scale with time-tested methods that utilize detailed, individual, on-the-ground assessments. Thus, 
this methodology avoids the pitfall that can accompany projects reliant solely on surveying large 
areas via satellite imagery analysis. Often, those projects provide assessments with less actionable 
information because a project’s objectives may only be addressed suitably through the integration 
of additional ground-based data collection. Lastly, by emphasizing accuracy during geospatial data 
collection, this GPRH methodology avoids issues that arise from street-level data collected with am-
biguous geographic locations due to positioning inaccuracies prevalent on mobile platforms. The 
subsection “Data Fusion – Georeferencing” will provide further details on this issue.

End users derive value from this methodology by extracting important information from collected 
data into a well-structured, easily-accessible database. The Housing Portal database can be tailored to 
integrate other datasets to best serve the needs of individual projects and support decision-making re-
lated to housing, disaster risk management (DRM), urban planning, fragility, and conflict mitigation, 
among other concerns. Given the flexibility of ML models to accurately capture infrastructure char-
acteristics when provided with sufficient training data, there are numerous potential Housing Portal 
applications from workflow-derived data including: cadaster updating, regularization, and mass val-
uation. Specifically, planning departments can extract information related to a structure’s access to 
public infrastructure and networks (e.g., utilities, roads). Likewise, taxation departments can access 
information related to the characteristics of a structure (e.g., use, condition, materials, features) to 
define an objective and transparent valuation of the subject structure. Furthermore, if governments 
of developing countries are interested in adopting a Fit-For-Purpose Land Administration approach 
to supporting land tenure security, the GPRH methodology is flexible enough to deliver datasets with 
spatial accuracies that accommodate the specific registry needs of citizens within that jurisdiction.13 
This data can be integrated with other spatial or socio-economic data to infer various insights about 
a neighborhood or a city. Preventative and post-damage analysis can be developed for several types 
of risk and can allow intervention in areas that may be too fragile for on-the-ground analysis. The 
result is a housing database that can identify homes that a) are likely to be newly constructed; b) can 
be made safer at reasonable costs; c) need to be relocated; and d) need further technical assessments.

13 Enemark, Stig, Keith Clifford Bell, Christian Lemmen, and Robin McLaren. Fit-For-Purpose Land Administration: Joint FIG / 
World Bank Publication. 2nd ed. Copenhagen, Denmark: FIG Publications, 2014. 
https://fig.net/resources/publications/figpub/pub60/figpub60.asp

https://fig.net/resources/publications/figpub/pub60/figpub60.asp
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The housing data capture and assessment methodology has been applied to countries in Africa, 
Southeast Asia, Latin America, and the Caribbean: Colombia (Cartagena, Neiva, Bogota, Armenia, 
Montenegro, Filandia), Ghana (Accra), Guatemala (Guatemala City), Indonesia (Padang), Mexico (Sa-
lina Cruz, Juchitan), Paraguay (Asuncion), Peru (Lima), and the islands of St. Maarten and St. Lucia 
(Figure 1). For a full list of data generated as of June 2021, refer to Annex 1.

FIGURE 1. GPRH Housing Portal

1. The COVID-19 Vulnerability 
Index: Locating the 40% more 
vulnerable in Bogota, 
Colombia 

6. Locating homes that need 
roof retrofitting to withstand 
future hurricanes in Castries, 
St. Lucia

6. Locating homes that need roof 
retrofitting to withstand future 
hurricanes in Castries, St. Lucia

Using damage assessment data 
from a Category 5 hurricane in 
Dominica, a model based on 
housing characteristics was 
created to predict future damage 
in St. Lucia.

2. Locating overcrowding 
homes at the block level in 
Lima, Peru

7. Locating backyard homes 
in Philipsburg, Sint Maarten

12. Locating units that have 
not paid property taxes in 
Lima, Peru

3. Locating slums in 
Philipsburg, Sint Maarten.

8. Locating homes with dirt 
floors in Guatemala City, 
Guatemala

13. Conducting mass 
property valuation in Bogota, 
Colombia

4. Locating homes that could 
be most affected by floods in 
Asuncion, Paraguay

9. Classifying structures 
by age of construction in 
Lima, Peru

14. Estimated potential 
for increasing property tax 
collection in Lima, Peru

5. Locating homes built with 
unreinforced masonry in
Salina Cruz, Mexico

10. Locating homes built 
with reinforced masonry in 
Padang, Indonesia

15. Locating Venezuelan 
migrants in Cartagena, 
Colombia

11. Locating the 40% most 
vulnerable in Cartagena, 
Colombia

SOURCE: Original figure for this publication.

The GPRH methodology relies on a variety of experts to collect and process drone and street view 
images and fuse the results into a dynamic Housing Portal. Data collection, initial image processing, 
and ML are the main components of the workflow found in Figure 2. In general, these workflow steps 
are applied separately to drone and street view imagery due to the distinct steps and techniques 
required to prepare and subsequently synthesize results from both sources into the Housing Portal. 
Since these are distinct data processing pipelines, knowledge is distributed across multiple people to 
create the Housing Portal.
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FIGURE 2: GPRH workflow

DRONE STREET VIEW

Join predictions and 
GIS vector data

Determine
Area of Interest (AOI)

Add related housing attributes 
and import to Housing Portal

INITIAL IMAGE PROCESSINGGenerate orthomosaic
and three DEMs

Trajectory correction and
image production

MACHINE LEARNING
(image segmentation)

Delineate rooftops to
generate GIS vector data

Delineate buildings to 
generate GIS vector data

LABELINGLocal rooftop labeling Local building labeling

MACHINE LEARNING
(image classification)Classify rooftops Classify buildings

COLLECT DATA Collect street view dataCollect drone data

SOURCE: Original figure for this publication.

The objective of this guidance note is to provide an overview of best practices and considerations 
for SIDS to reference when capturing housing data using the GPRH methodology. The intent of this 
document is to ensure that others undertaking data acquisition and data processing of drone and 
street view imagery avoid common pitfalls by collecting data efficiently for subsequent integration 
into a housing database such as a Housing Portal. Given the focus of this guidance note is on a specific 
workflow and application, interested readers, and especially those who are new to drone mapping, 
are encouraged to read additional guidance notes from the World Bank Group on drone mapping 
technical guidelines and cost/benefit analyses of drone technology deployment. 14, 15

14 World Bank, and Humanitarian OpenStreetMap Team. Technical Guidelines for Small Island Mapping with UAVs. 
Washington, DC: World Bank, 2020. http://hdl.handle.net/10986/33455
15 Stokenberga, Aiga, and Maria Catalina Ochoa. Unlocking the Lower Skies: The Costs and Benefits of Deploying Drones 
across Use Cases in East Africa. Washington, DC: World Bank, 2021. http://hdl.handle.net/10986/35593

http://hdl.handle.net/10986/33455
http://hdl.handle.net/10986/35593


13 PHILIPSBURG, SINT MAARTEN. GPRH.

Street view imagery 
captured 168.7K 
panoramic images and 
more than 1 million 
cube images using a 
Trimble MX7 system 
(6-camera Ladybug 
imaging sensor with 
a Trimble mobile 
mapping system) in 
St. Maarten.
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Data Collection

Project Planning – Area of Interest

A clearly defined area of interest (AOI) is a necessary first step prior to data acquisition on the ground 
and in the air. AOI selection is a collaborative process with government officials to ensure data collec-
tion efforts align with local population interests and needs (e.g., disaster-prone areas, informal housing 
areas, etc.). When considering the extents of an AOI based on available field time, projects areas with 
flatter topography will take less time to capture via drone than areas with steep and highly variable 
terrain. Part of the AOI selection process also requires consultation with local airspace regulations to 
ensure survey areas do not encroach on no-fly zones (e.g., close proximity to airports, over military 
and national security interests). Prior to performing drone data collection, all necessary permits need 
to be secured from local and national aviation authorities. It should be noted that street view imagery 
collection does not typically require a permit. However, alerting the community and police is highly rec-
ommended, especially before entering areas where the camera would draw attention. After securing 
the permits and delineating the AOI, data collection from the sky and street can be planned accordingly.

Project planning also needs to incorporate a strategy for managing data in the newly surveyed areas. 
While local site conditions will vary and impact resultant datasets, the data inventory of previous 
projects found in Annex 1 is provided to help end users approximate a relationship between the area 
of the AOI and the volume of data collected. This relationship can be used to help estimate future data 
storage and processing needs depending upon the desired area of the AOI to be surveyed. Additional 
details are discussed in the “Street View Imagery Acquisition” section.

Data Fusion – Georeferencing

To create a reliable housing condition assessment which brings together data from multiple sources, 
best practices for geospatial data fusion need to be followed. Typically, this entails accurate georefer-
encing using a common geodetic framework to tie these datasets together. For housing inventory as-
sessments, this means that drone and street view imagery data need to share the same geodetic basis. 
While much of this GPRH workflow is built on the premise of best practices for new data acquisition, 
existing geospatial imagery datasets may also be integrated in lieu of new collections. Many agencies 
and governments may be interested in adopting this data reuse approach to save on time and expense. 
To leverage these previous collection efforts, it is critical that reused data a) have a known geodetic 
basis that newly collected data can tie into via high accuracy georeferencing and b) meet the data spec-
ifications laid out in subsequent sections on drone and street view imagery acquisition.

For imagery data acquisition, on-board camera sensors have accompanying positioning and naviga-
tion sensors that receive uncorrected, autonomous positions from Global Navigation Satellite Sys-
tems (GNSS) with a horizontal positional accuracy of 2-10 m.16 For some applications, misalignment 
arising between two datasets from 10 m horizontal positional errors is acceptable. In these cases, 
additional georeferencing project planning is unnecessary. Frequently, this level of horizontal posi-
tional error is unacceptable for housing-related projects, especially when working in areas with high 
housing density. Thus, additional georeferencing steps are required to ensure accurate data fusion.

16 Van Sickle, Jan. GPS for Land Surveyors. 4th ed. Boca Raton (Fla.): CRC Press Taylor & Francis Group, 2015.
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There are two methods for establishing a higher accuracy, common geodetic basis. The first, and most com-
mon, is to use a GNSS base station or GNSS Virtual Reference Station (VRS) to provide corrections for both 
data collection pipelines. The second method is georeferencing one dataset to a higher accuracy dataset.

Georeferencing – Base Stations

The optimal method for ensuring a high accuracy geodetic basis is to use the same GNSS base station 
data for post-processing the carrier-phase GNSS data collected on-board the drone (if the system has 
capable sensors) and on-board the street view camera. If the drone does not have on-board GNSS 
receivers capable of collecting data for post-processed kinematic (PPK) processing, then see the data 
processing section “Georeferencing – Dataset Alignment.” It is imperative that base station GNSS 
data is collected once per second (1 Hz) in order for complete processing of the GNSS data collect-
ed on-board the street view camera and the drone. The horizontal positional error of the resulting 
datasets is directly correlated to the baseline distance between the base station and the platform. A 
common rule of thumb is that the error increases by 1 part per million (ppm) as the baseline distance 
increases. Thus, a base station that is 10 km from the survey area can be expected to contribute about 
1 cm (10 mm) of additional error on top of the 2-5 cm of horizontal error that is normally attributed to 
post-processed kinematic GNSS data. Base stations that are far from a project site (over 150 km) have 
fewer satellites in common with data collected on the drone and street view platforms. This leads to 
increased errors and at times an inability to post-process data, which means that data collected on 
the platform would then revert to the accuracy levels of autonomous positions (2-10 m).

PROJECT SPOTLIGHT:
Dominica: importance of accurate geographic coordinates
Data gathered using the GPRH methodology can be integrated with other field survey data. Both street view and drone datasets require 
accurate geographic coordinates. During reconstruction efforts following Hurricane Maria in 2017, detailed survey data was collected 
house by house in Dominica as shown in Figure PS-1.* After this resource-intensive effort, the descriptive housing dataset was 
unfortunately limited by its coarsely collected geographic coordinates. With coordinates lacking sufficient accuracy, project teams 
were unable to link the field-collected housing data to each unique home seen in the satellite imagery with a high degree of confidence.

FIGURE PS-1: Housing data from a Dominica neighborhood overlaid on satellite imagery base map

N

Minimal damage

Minor damage

Major damage

Destroyed

Roseau North
Roseau 
Valley

Roseau 
South

Roseau
Central

*UNDP - Dominica Post-Hurricane Maria Recovery Project, https://www.bb.undp.org
SOURCE: United Nations Development Programme (UNDP), ESRI basemap, and Global Program for Resilient Housing.

https://www.bb.undp.org/content/barbados/en/home/projects/dominica-post-hurricane-maria-recovery-pro
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To reduce the burden on field teams, it is ideal if the GNSS base station is local to the project site (i.e., 
within 25 km) and already a part of a continuously-operating reference system (CORS) network. When 
using data from a CORS network, known absolute coordinates for the base station are already available. 
In the case of publicly-funded CORS networks, data is typically provided free of charge to end users. The 
National Oceanic and Atmospheric Administration’s National Geodetic Survey (NGS) operates a dense 
CORS network across the United States with a sparser network of CORS stations found worldwide in-
cluding the Caribbean.17 NGS has a web interface that provides GNSS data free of charge to users soon 
after the data is collected at the CORS base station.18 Likewise, a university consortium called UNAVCO 
runs a smaller CORS network throughout the Americas. When using GNSS data from NGS or UNAVCO, 
only base stations which provide 1 Hz GNSS data should be used. Figure 3 shows the availability of 1 
Hz GNSS CORS stations from the two above-mentioned public CORS networks. For operations in the 
Eastern Hemisphere, interested readers are referred to the Australian Government’s Geoscience Aus-
tralia (GA). GA aggregates data from multiple CORS networks throughout the Asia-Pacific region.19,20 
Alternatively, there are additional country-specific CORS networks such as the one operated by Indone-
sia’s Geospatial Information Agency.21 During project planning, it is important to not only consider the 
presence of a CORS GNSS base station near a project site but also its availability (is the receiver collect-
ing raw data and sharing this data over the web?), its recording interval (is the raw data collected at 1 
Hz?), and reliability (how frequent has the base station data been available over the preceding months?). 
These attributes can be checked via web mapping interfaces and subsequent hyperlinks to the desired 
CORS base stations.22,23 In addition to public CORS networks, private CORS networks do exist and 
should also be considered depending again upon location, availability, and fees.

FIGURE 3: Public CORS GNSS base station availability across the Caribbean

SOURCE: Original figure for this publication with data from April 25, 2022.

April 25, 2022

17 National Geodetic Survey – The NOAA CORS Network (NCN), https://www.ngs.noaa.gov/CORS/
18 National Geodetic Survey - User Friendly CORS, https://www.ngs.noaa.gov/UFCORS/
19 Geoscience Australia - GNSS Network Map, https://gnss.ga.gov.au/network
20 Geoscience Australia - GNSS Data Repository, https://data.gnss.ga.gov.au/docs/home/index.html
21 Geospatial Information Agency of Indonesia - Geospatial Reference System Webmap, https://srgi.big.go.id/jkg-active
22 National Geodetic Survey – CORS Map, https://www.ngs.noaa.gov/CORS_Map/
23 UNAVCO – Real-time Networks & Stations Monitoring, https://www.unavco.org/instrumentation/networks/status/all/realtime 

https://www.ngs.noaa.gov/CORS/
https://www.ngs.noaa.gov/UFCORS/
https://gnss.ga.gov.au/network
https://data.gnss.ga.gov.au/docs/home/index.html
https://srgi.big.go.id/jkg-active
https://www.ngs.noaa.gov/CORS_Map/
https://www.unavco.org/instrumentation/networks/status/all/realtime
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When a data acquisition project requires high accuracy georeferencing and a CORS base station is 
not available, it is recommended to bring a GNSS base station and place it within the project AOI. 
GNSS base stations from prominent positioning and navigation system manufacturers (e.g., Trimble, 
Topcon, Leica) can be rented for a few thousand dollars (US) for a month’s operation with all neces-
sary supplementary equipment. The purchase of similar equipment can cost 5 to 6 times as much. 
Meanwhile, there are alternative low-cost and ‘Do-It-Yourself’ solutions available for those on tighter 
budgets and with more time to research and test options. Whether renting or purchasing, equipment 
specifications dictate that GNSS base station receivers are capable of logging static, multi-frequency 
raw GNSS data at 1 Hz for the duration of all active surveys. This means that coordination between 
data collection teams is necessary to ensure that the base station is always logging raw data when 
either the drone is aloft capturing data or when the street view camera is collecting 360° imagery. 
Site selection for the GNSS base station is based on a) clear view of the sky (i.e., minimal satellite 
obstructions from 10° above the horizon to directly overhead in all directions); b) lack of electrical in-
terference from nearby high power infrastructure such as high tension power lines and electrical sub 
stations; c) stability and permanence of the point over which the GNSS receiver is placed; d) security 
of the site to avoid issues with unattended equipment; and e) ease of access to exchange batteries and 
check on data logging status as needed during each day for the duration of a project mission. Figure 
4 depicts an example of a GNSS receiver set on a fixed-height tripod and used as a base station in 
Asuncion, Paraguay. Lastly, it is best practice to communicate with local government officials about 
the need to establish a GNSS base station meeting the above criteria so potential sites can be scouted 
and recommended prior to a team arriving onsite.

FIGURE 4: GNSS base station on a fixed-height tripod in a secure site with
minimal overhead obstructions

Facing North Facing West

SOURCE: Global Program for Resilient Housing.

Many lower-cost, entry-level drones do not have high accuracy on-board positioning sensors (e.g., 
PPK-capable GNSS receivers). To overcome this limitation and provide highly accurate georeferenc-
ing of drone imagery-derived datasets, the primary method entails the placement of high-contrast 
aerial targets throughout the survey area to serve as ground control points (GCPs). These GCPs can 
be installed or painted by field crews or can exist already in the urban environment as shown in Fig-
ure 5. Regardless of when they were established, the GCPs need to be surveyed with high positional 
accuracy using real-time kinematic (RTK) GNSS surveying or similar methods to obtain final coordi-
nates for use within the drone image processing software. Interested readers are again referred to 
the previously cited guidance notes from the World Bank Group on indirect georeferencing for drone 
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mapping operations as well as articles from the scientific literature on best practices using GCPs.24 
The installation and surveying process of GCPs can be quite time-consuming, which can limit the ef-
fective area covered during a time-limited project mission. Thus, the section “Georeferencing – Data-
set Alignment” outlines an alternative approach leveraging street view imagery to provide an aligned 
dataset that is superior in horizontal positional accuracy to the autonomous positioning without the 
need to laboriously survey GCPs in the field.

FIGURE 5: Examples of high-contrast ground control points for indirect georeferencing of drone imagery
	 Aerial targets installed for use as GCPs	 Existing features that can be used as GCPs

SOURCE: Original figure for this publication.

24 Sanz-Ablanedo, Enoc, Jim Chandler, José Rodríguez-Pérez, and Celestino Ordóñez. “Accuracy of Unmanned Aerial Vehicle 
(UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used.” Remote 
Sensing 10, no. 10 (October 9, 2018): 1-19. https://doi.org/10.3390/rs10101606

https://doi.org/10.3390/rs10101606
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Street View Imagery Acquisition

Street view image data acquisition requires driving a vehicle up and down neighborhood streets with 
a high-resolution, car-mounted 360° street view camera. The aim is to capture the street-facing fa-
cades of all buildings within the AOI. Prior to data acquisition, the road network for a given munic-
ipality or jurisdiction along with the AOI extents are downloaded to a mapping application on an 
Android or iOS device with location service capability (i.e., GPS/GNSS capable devices). Note that the 
mobile device does not require a 3G or 4G data plan; however, wifi access is needed before the trip 
to download and cache the necessary road and satellite imagery basemaps. While the vehicle is navi-
gating the road network during data acquisition, the portions of the road network being captured are 
highlighted in the mapping application as shown in Figure 6. This record keeping helps the camera 
operator with efficiently mapping neighborhoods by reducing data gaps and avoiding redundant map-
ping of the same roadways. While each neighborhood and municipality is unique, common issues 
encountered during navigation of the road network for data capture include a) blocked roadways, b) 
gated communities that are inaccessible, c) one-way streets, and d) narrow passageways that the ve-
hicle cannot safely navigate through. These points of interest (POIs) are also marked in the mapping 
application to serve as a reminder when post-processing data upon returning from the data acquisi-
tion mission.

FIGURE 6: Mapping application on mobile device from a GPRH mission in St. Maarten

Roadway where data was not yet captured or inaccessible
Point of interest denoting features that blocked further mapping of a given roadway

AOI extent Roadway where data was successfully captured

SOURCE: Original figure for this publication.

To ensure that there is enough data coverage of each façade for the ML algorithms, street view images 
are collected approximately every two meters along the route using a high-resolution, car-mounted, 
360-degree street view camera. Specifically, the GPRH team uses a Trimble MX7 system as shown 
in Figure 7, which combines a 6-camera Ladybug imaging sensor with a Trimble mobile mapping 
system. At each 2 m interval, the portable system takes six pictures (top, bottom, front, back, left, 
and right of the MX7) for subsequent stitching into a 30 megapixel (MP) panoramic photo. Each JPG 
image file stores EXIF metadata that includes the timestamp of data capture, the WGS84 latitude and 
longitude coordinates from a GNSS-derived autonomous position, and the camera facing direction.
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FIGURE 7: Trimble MX7 mobile mapping system used for street view data collection in St. Lucia

SOURCE: Global Program for Resilient Housing.

Due to the Trimble mobile mapping system components, the MX7 system is capable of precise posi-
tioning during post-processing using raw data collected on-board by a tightly-coupled GNSS receiver 
and inertial navigation system (INS) with the previously described GNSS base station data. The MX7 
is also equipped with a GNSS Azimuth Measurement Subsystem (GAMS) to continuously calibrate 
the inertial measurement unit (IMU) by maintaining heading accuracy and ensuring that the azimuth 
does not drift. When using this MX7 system, it is imperative that the vehicle has a) an appropriate 
roof rack as shown in Figure 7; and b) a new battery to avoid a weak power supply disrupting data 
acquisition. For project planning puposes, previous projects with this system yielded approximately 
8 hours of continuous data capture prior to internal storage reaching maximum capacity.

When streets are too narrow for cars to pass through, alternative, lighter weight and highly mobile 
spherical cameras can be used to achieve the building façade coverage goals obtained by the MX7. 
A GoPro Fusion or an Insta360 Pro are examples of commercially-available, 360° cameras that can 
be attached to a backpack or motorcycle for navigating between tightly packed houses. In addition 
to proprietary systems, there are open source, Do-It-Yourself 3D street view systems that can be de-
veloped with patience and ingenuity for those with technical savvy.25 Figure 8 shows a GPRH team 
member using a commercial backpack system due to narrow roadways in the Los Banados neighbor-
hood in Asuncion, Paraguay.

25 Rainbow Sensing. https://rainbowsensing.com/

https://rainbowsensing.com/
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FIGURE 8: Example of 360° backpack camera system being deployed in Asuncion, Paraguay

SOURCE: Global Program for Resilient Housing.

Data collection from previous projects in Annex 1 reveals that the average ratio between car distance 
(i.e., kilometers driven by a street view vehicle) and the number of panoramic images in the resultant 
Housing Portal is close (582 img/km ± 165 img/km) to the expected 500 images per kilometer (i.e., 
500 img/km equals 1000 m divided by 2 m/img). The ratio ranges from 345 img/km to 875 img/km, 
which is reflective of both areas where data acquisition rates were coarser (e.g., a set of images every 
3 m) on the low end and mapping roadways with high redundancy on the high end. Additionally, the 
expected driving distance based on the area of the AOI from previous projects is 17 km driven per km2 
of area flown with a standard deviation of ± 8 km. These ratios can be used as approximations to help 
gauge street view data collection needs for future projects.

Drone Imagery Acquisition

While airborne imagery could be collected by a multitude of airborne platforms (e.g., helicopters, 
manned airplanes, small ultralights, surveillance drones, etc.), the GPRH methodology typically cap-
tures data via small UAS (sUAS) or those drones weighing less than 25 kg. These drones are relatively 
portable for travel purposes, capable of capturing high quality imagery over substantial areas (e.g., 
10s to 100s of km2), and are moderately priced which eases accessibility for the governments of SIDS. 
Drone data is collected by flying over an entire AOI in weather that is conducive to capturing clear 
photos of the ground (i.e., minimal clouds, wind, haze). Before and during sUAS flight, it is incum-
bent on drone operators to follow drone operations risk management best practices as detailed in 
the World Bank Group’s comprehensive guidance note.26 In particular, operators should be aware 

26 World Bank Group. 2017. “Guidance Note: Managing the Risks of Unmanned Aircraft Operations in Development 
Projects.” Washington, DC, USA: World Bank Group. https://documents1.worldbank.org/curated/en/895861507912703096/pdf/
Guidance-note-managing-the-risks-of-unmanned-aircraft-operations-in-development-projects.pdf

https://documents1.worldbank.org/curated/en/895861507912703096/pdf/Guidance-note-managing-the-risks-
https://documents1.worldbank.org/curated/en/895861507912703096/pdf/Guidance-note-managing-the-risks-
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that SIDS often lack robust regulatory frameworks for determining ground risk assessment, specific 
operational risk assessment, and airport deconfliction. Thus, adherence to the afore-mentioned best 
practices will help minimize risk for all involved in drone data acquisition.

The objective of drone data collection is acquiring imagery with a spatial resolution of approximately 
4 cm that is consistent in orthometric and colormetric values across the geographic area of interest. 
This offers a level of detail that is approximately eight times the resolution of high-end commercial 
satellite imagery (e.g., WorldView-327). The spatial resolution of the drone imagery is completely 
dependent on the physical size of the sensor in the camera, the focal length of the camera lens, and 
the flight altitude of the drone. When using typical flight planning software, the specifications of 
the camera and the lens are already preconfigured in the software and loaded based on a dropdown 
menu of imaging sensors that can be selected. Thus, beyond selecting the sensor/lens combination 
that will be flown on-board the drone, the only parameter left to modify the spatial resolution is the 
flight altitude. 

Popular drones such as the Sensefly eBee X with a S.O.D.A. camera and the DJI Phantom 4 Pro both 
have global-shutter cameras to reduce potential image blur and a large physical sensor in the cam-
era to reduce noise in the captured images. These and similar sensors can provide input imagery to 
generate high quality orthomosaics that are suitable for subsequent processing in ML models. In 
addition, higher-end drones often have superior, larger format sensors (e.g., PhaseOne iXM cameras 
that can provide 50 MP or 100 MP images captured on sensors larger than a full frame camera) that 
would provide excellent input imagery to produce geometrically-correct, color-balanced orthomosa-
ics.28 In general, common fixed-wing drones (e.g., Sensefly eBee series, Wingtra) are more efficient 
fliers over longer distances than the common multicopter drones (e.g., DJI Phantom or DJI Mavic 
series). Consequently, the fixed-wing drones can stay aloft longer (i.e., up to an hour of flight time 
depending on wind conditions) and cover larger areas than the multicopters can within similar time 
frames. Multicopter platforms are logistically easier to operate since they are capable of taking off 
and landing within a very small area; meanwhile, many fixed wing aircraft require a larger takeoff 
and landing zone area (e.g., the size of a recreational soccer field). For this reason, some manufac-
turers are introducing hybrid drone platforms that incorporate vertical takeoff and landing (VTOL) 
capability on a fixed wing airframe to provide users with operational site selection flexibility and 
longer flight duration performance. Longer duration UAS are becoming more common in the mar-
ketplace. These drones feature high efficiency platforms powered by lithium batteries and gasoline. 
When traveling to project locations, drones that use gasoline or large lithium batteries (i.e., batteries 
over 100 watt-hours) require additional travel logistical planning to ensure safe shipment of the drone 
and its components via means other than commercial aircraft. The previously mentioned technical 
note from the World Bank Group on small island mapping using drones is an excellent resource for 
choosing an appropriate platform for a given project.29

The GPRH methodology can be undertaken with any drone platform type; however, it has most fre-
quently been applied using a fixed-wing, Sensefly eBee X drone equipped with a S.O.D.A 3D camera. 
A benefit of this camera is the ability to take alternating oblique and nadir images during flight. The 
oblique images provide better coverage of building facades and the ground underneath canopies and 
roof overhangs than the downward-facing nadir imagery. At 1.3 kg (including the battery and the cam-

27 European Space Agency, https://earth.esa.int/eogateway/missions/worldview-3
28 PhaseOne iXM, https://geospatial.phaseone.com/cameras/ixm-100/
29 World Bank, and Humanitarian OpenStreetMap Team. Technical Guidelines for Small Island Mapping with UAVs. 
Washington, DC: World Bank, 2020. http://hdl.handle.net/10986/33455

https://earth.esa.int/eogateway/missions/worldview-3
https://geospatial.phaseone.com/cameras/ixm-100/
http://hdl.handle.net/10986/33455
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era), this aircraft is extremely portable and unlikely to cause significant injury if it were to have an 
issue during flight. Furthermore, the maximum battery capacity for the eBee X is less than 100 watt-
hours, which means transportation to project sites via commercial aircraft both domestically and in-
ternationally is possible. In addition, the drone utilizes a precise, on-board PPK positioning system so 
each camera exposure location and the corresponding georeferenced, RGB photo can have positional 
accuracies approaching cm-level magnitude when post-processed with local GNSS base station data. 
For entities requiring higher-end drone platforms, some manufacturers include two on-board GNSS 
receivers capable of PPK positioning to increase confidence in derived positional accuracies by utiliz-
ing heading orientation between the two receivers as an additional navigational data input.

During drone mission planning, an image overlap of 70 to 80 percent between adjacent photos en-
sures all captured imagery can be aligned and accurate elevation datasets are derived. When possible, 
it is advised to use a digital elevation model (e.g., SRTM global DEM with 30m spatial resolution) for 
flight planning, especially in areas with mountainous or steep terrain as encountered in many SIDS.30 
Mission parameters such as maximum altitude and maximum flight distance from the landing zone 
are dependent upon airspace rules governing a municipality. Maximum flight distance is highly de-
pendent upon local communication interference (e.g., first responder communication towers) and 
local topography (e.g., extreme elevation gradients lose communication over shorter distances than 
flat terrain). 

When preparing for a project, it is important to communicate with local government officials regard-
ing the need to access specific, suitable takeoff and landing zone areas (e.g., sports fields, parks with 
few trees). Securing permission to fly from these areas before the data acquisition team is onsite con-
tributes significantly to flight operation efficiency and maximizing available flight windows. Regard-
less of the site location, involving the local community before and after flight operations as shown in 
Figure 9 is an enjoyable and educational experience for all.

30 UN Department of Economic and Social Affairs - Small Island Developing States,
https://www.un.org/esa/sustdev/sids/sidslist.htm

https://www.un.org/esa/sustdev/sids/sidslist.htm
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FIGURE 9: Community engagement in data collection with Sensefly eBee drones

SOURCE: Global Program for Resilient Housing.

LESSONS LEARNED:
Flight planning for survey areas with variable terrain elevations
•	 For operators with lower-cost, entry-level drones, most basic flight planning software (e.g., Pix4Dcapture, DroneDeploy) do not 

account for the changing terrain of the project area when calculating the ground sample distance (GSD) (i.e., spatial resolution) 
of the resultant imagery.* Instead, the GSD in the mission planner is usually based on the altitude above ground level (AGL) of the 
takeoff area.

•	 For areas with highly variable terrain, a flight that is flown at a consistent AGL will result in drastically different GSDs within the 
project area. Also, front and side overlap percentages will be quite different depending on the difference between the terrain 
elevation and the elevation of the aircraft.

•	 When possible, it is best to use a flight planning software that has terrain awareness (e.g., UgCS) and/or conduct flights with 
similar terrain elevations together in one mission.**

•	 When this is not possible, GSD flight planning based on the midpoint in the terrain elevation between the highest point and the 
lowest point may be the best option to minimize discrepancies across the entire area. This will require pre-planning to determine 
the difference in elevation between the terrain midpoint elevation and the takeoff elevation.

•	 It is best to be a bit more conservative in front and side overlap percentages when terrain changes significantly within a flight AOI 
(80 to 85 percent front overlap and 70 to 75 percent side overlap). This is especially true when mission planning software does 
not have terrain awareness.

* Pix4Dcapture, https://www.pix4d.com/product/pix4dcapture. DroneDeploy, https://www.dronedeploy.com/
** UgCS, https://www.ugcs.com/

https://www.pix4d.com/product/pix4dcapture
https://www.dronedeploy.com/
https://www.ugcs.com/
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A Sensefly eBee drone 
collected imagery in 
St. Lucia.

CASTRIES, ST. LUCIA. GPRH.
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Initial Data Processing

Georeferencing – Base Station Data Processing

Before processing the drone or street view imagery, the geodetic basis for the entire project must be 
determined to ensure spatially accurate data fusion. When using either a CORS GNSS base station 
or an independent base station to provide accurate georeferencing for the resultant datasets, the first 
step is to determine the absolute final coordinates that will be used for control in the drone and street 
view navigation trajectory post-processing. If using a CORS GNSS base station, these coordinates 
are provided on the accompanying data sheet with a specific coordinate system and datum. Many 
software packages and web tools (e.g., NGS Coordinate Conversion and Transformation Tool [NCAT]) 
exist to convert coordinates from one coordinate system and datum to another.31 When using data 
from an independently set up base station, additional steps are required to determine the absolute 
final coordinates. The most straightforward option is to process all of the base station data using on-
line GNSS processing tools such as the NGS Online Positioning User Service (OPUS) to compute one 
set of final base station coordinates. Depending upon the project location (e.g., remote project sites), 
some tools that utilize Precise Point Positioning (PPP) will provide better solutions than network pro-
cessed solutions such as OPUS. Once the final coordinates for the base station are determined, the 
processing of the navigation trajectories can commence.

Street View Imagery Processing

The initial processing of data from the MX7 sensor suite consists of two components: a) navigation 
trajectory correction and b) image production. The general workflow is similar for other street view 
sensors; however, the software packages and raw data collected by each sensor is slightly different. 
One should make particular note of the GNSS data that is being captured by different street view sen-
sors. Especially for lower-cost sensors, image metadata should store geographic coordinates for each 
image; however, there may not be a method to post-process and refine those locations due to the lack 
of a raw GNSS data receiver on-board. As always, it is highly recommended to field test and develop 
equipment workflows prior to project deployment.

Navigation Trajectory Correction

The Trimble MX7 utilizes a tightly-coupled GNSS/INS sensor suite to produce a precise navigation 
trajectory. Since the MX7 navigates on roadways in urban settings for housing-related projects, data 
gaps in GNSS raw data may exist due to GNSS satellite outages when traveling in close proximity to 
tall buildings and underneath tree canopy or overpasses. Therefore, post-processing is necessary to 
improve the accuracy of the produced trajectory particularly during the signal outage periods. Ap-
planix IN-fusion technology applies a centralized Kalman Filter to utilize inertial data to resolve am-
biguities during GNSS signal disruptions. Applanix POSPac is the software used for post-processing 
the GNSS and INS data from Trimble MX7 operations. During post-processing, it is important to a) 
monitor root-mean-square (RMS) errors for the horizontal and vertical components of the navigation 
trajectory to troubleshoot large inaccuracies should they arise and b) overlay processed navigation 

31 National Geodetic Survey – Coordinate Conversion and Transformation Tool (NCAT), https://www.ngs.noaa.gov/NCAT/

https://www.ngs.noaa.gov/NCAT/
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trajectories on satellite imagery in GIS software (e.g., QGIS, ArcGIS) to ensure that there are not sys-
tematic biases (e.g., incorrect control coordinates) causing large horizontal positional errors. Upon 
completing the quality assurance and quality control, the navigation trajectory is output as a SBET 
file, which is then used as an input in the image production process.

Image Production

Data from the Trimble MX7 is processed in both a) LadybugCapPro (LCP), an open-source software, 
and b) Trimble Business Center (TBC), a proprietary software which complements the MX7 workflow. 
Each software package is used to export a specific set of street view imagery as shown in The work of 
GPRH supported resilient housing for neighborhoods in.

FIGURE 10: Equirectangular panoramic image and corresponding cube images
Comparison of two street view image datasets from a project in St. Lucia with the equirectangular 
panoramic image on the top and the set of six square cube images on the bottom.

SOURCE: Global Program for Resilient Housing.
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The LCP software is used to output cube images, which are a set of six square-size images capturing 
the six sides (top, bottom, front, back, left, and right) for the MX7 camera. The cube images serve as 
the input images used in the ML processing pipeline. To generate the cube images, PGR files provided 
by the Trimble MX7 at the end of the data capturing process are input into LCP.

The TBC software is used to output a) panoramic images, which are the six-sides of cube images 
stitched into an equirectangular image; and b) geolocation data, which includes the location informa-
tion for each panoramic image stored in a CSV file format. The CSV file is the navigation trajectory 
dataset that includes the timestamp of data capture, heading, geographic coordinates (i.e., latitude, 
longitude), and elevation. To import and export panoramic images, TBC requires two inputs: a) the 
SBET navigation trajectory file from POSPac and b) the TRIDB file, which is the database indicating 
the relationships between the image directories and the navigation data. The resultant panoramic 
images are then uploaded to Mapillary, an online mapping platform that gives users in the Open-
StreetMap community and other mapping platforms free access to the street view images.32 Finally, 
the CSV trajectory serves as the foundation for linking attributes derived from the cube images and 
the panoramic images to the data and attributes derived from the drone imagery.

Drone Imagery Processing

Following a PPK-enabled drone flight, the navigation trajectory of the drone is post-processed us-
ing the GNSS base station absolute final coordinates and raw GNSS data to refine the image expo-
sure location coordinates. By using the GNSS base station to post-process both the drone and street 
view navigation trajectories, the resultant photo locations for both imaging systems will align with 
high spatial accuracy. During the drone imagery processing pipeline, structure-from-motion (SfM) 
software generates a dense point cloud from the overlapping imagery. To obtain accurate elevation 
models, the SfM-generated 3D point cloud is classified, filtered, and cleaned so that all ground and 
non-ground points are appropriately classified as shown in Figure 11. While many software programs 
can perform automated ground classification of 3D point clouds, it is inevitable that the process will 
entail some manual editing and cleaning of the resultant classification. Manual refinement is espe-
cially necessary in areas with steep slopes and for buildings that are built into the sides of hills with 
walkouts on the downhill side.

32 Mapillary, https://www.mapillary.com/

https://www.mapillary.com/
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FIGURE 11: SfM-generated 3D point clouds
Point clouds from a project in St. Maarten shown in true color on the left and 
classified ground (brown) and non-ground (white) on the right.

SOURCE: Original figure for this publication.

The primary drone data deliverables for the subsequent steps in the GPRH workflow are uncom-
pressed raster GeoTIFFs of the full radiometrically, color-balanced orthophoto mosaic and three dig-
ital elevation models (DEMs) as shown in Figure 12. The orthophoto mosaic is provided in natural 
color with a non-resampled, spatial resolution of 4 cm or less, spectral resolution of at least 3 bands 
(RGB), and 16-bit radiometric resolution. The three raster DEM layers are provided with a non-res-
ampled, spatial resolution of 8 cm or less. The first DEM, the digital terrain model (DTM), is a bare-
Earth representation of the topography. The second DEM, the digital surface model (DSM), is an ele-
vation model that includes all ground and non-ground features (e.g., buildings, trees, etc.). The third 
DEM, the digital object model (DOM), is the difference between the DSM and the DTM and provides 
the modelled height of all non-ground objects. The accuracy of the DOM for determining structural 
heights is adversely impacted by steeply sloped terrain and dense tree canopy abutting the structure. 
Depending on project objectives, additional drone data (e.g., raw flight data such as JPG, TXT, and/
or other raw output files), flight logs, classified 3D point cloud(s) in LAS format) may need to be de-
livered as well.

LESSONS LEARNED:
Drone image processing of large, contiguous survey areas
•	 When a project area is mapped with multiple individual flights, avoid processing each unique flight separately and subsequently 

delivering individual orthomosaics for each flight.

•	 Instead, it is critical to align images from all flights together in the SfM software (e.g., Pix4Dmapper, Agisoft Metashape, 
OpenDroneMap) before proceeding to create the dense point cloud, digital elevation models, and orthomosaic.*

•	 When delivering large orthomosaics covering 10 to 30 km2 at 4-5 cm spatial resolution, image tiles are the most effective input for 
the ML analysis pipeline.

* Pix4Dmapper, https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
   Agisoft Metashape, https://www.agisoft.com/
   OpenDroneMap, https://www.opendronemap.org/

https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.agisoft.com/
https://www.opendronemap.org/
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FIGURE 12: Primary drone datasets
Drone datasets for GPRH workflows encompass an orthomosaic (a) and three digital 
elevation models (b-d) as shown for this example project site in St. Maarten.

Orthomosaic (a)

DSM (c)

DOM (b)

DTM (d)

SOURCE: Original figure for this publication.

Georeferencing – Dataset Alignment

Spatially aligning the drone and street view imagery datasets is important for most applications. 
Thus, when high positional accuracy is required and data acquisition teams are not using PPK-en-
abled drones, GPRH teams have leveraged the positional accuracy of post-processed street view data 
to improve the positional accuracy of drone-derived datasets. Leveraging this existing street view 
dataset is important because the time involved to field survey an appropriate number of GCPs over a 
20-25 km2 area would be prohibitive to conducting drone data acquisition in a timely manner. Typ-
ically, GPRH data processing is done separately for drone and street view data. For this alignment 
workflow, the drone processing team communicates with the street view processing team regarding 
potential GCPs within the AOI. Common GCP recommendations include the previously described 
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painted lines and symbols shown in Figure 5 as well as the center of manhole covers or well-defined 
intersections of pavement and sidewalk patches. It is best practice to use GCPs on the ground to 
avoid issues with relief displacement in the imagery from elevated aerial targets. Again, the goal is 
to recommend multiple potential GCPs that are well-distributed around the AOI and may be observ-
able in both the street view and drone imagery. The street view processing team can then identify 
these recommended points in at least two street view images within TBC as shown in Figure 13. The 
resultant GCP coordinates are then output in the same coordinate system and datum as the street 
view imagery. Lastly, these street view GCPs are integrated into the drone data processing pipeline 
to ensure that the datasets derived from both the street view imagery and drone imagery align with 
high spatial accuracy.

FIGURE 13: Example of GCP identification within street view imagery in Trimble Business Center

SOURCE: Original figure for this publication.
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PROJECT SPOTLIGHT:
St. Maarten: post-hurricane building stock evaluation
After Hurricane Irma, St. Maarten confronted reconstruction challenges compounded by limited housing data. Government officials 
collaborated with GPRH to efficiently gather information to evaluate the housing status of its residents. Using the GPRH methodology, 
drones captured natural color imagery (4-6 cm spatial resolution) spanning 28 km2. High-risk neighborhoods could be located from the 
sky (e.g., informal settlements established close to a new trash site). Advanced ML algorithms applied to drone and street view imagery 
assessed the condition of 13,000 buildings as shown in Figure PS-2. Building attributes, such as size, use (e.g., critical infrastructure, 
residential, commercial, mixed), and quality (e.g., good, fair, poor, damaged), were made accessible through a geospatial database. 
This meant that buildings and temporary structures (e.g., backyard homes) were counted and accurately located; meanwhile, their 
relevant characteristics could be assessed at a neighborhood level. As a result, government officials and other stakeholders possessed 
actionable information as they evaluated reconstruction efforts and planned investments.

FIGURE PS-2: Rapid building quality evaluation conducted in St. Maarten

SOURCE: Global Program for Resilient Housing.
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Two years after 
Hurricane Irma, 
GPRH collected drone 
imagery covering 28 
km2 to assess housing 
in St. Maarten.

PHILIPSBURG, ST. MAARTEN. GPRH.
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Machine Learning

Once drone and street-level data are fully processed and aligned, ML algorithms are used to identify 
building characteristics. Traditionally, many of the algorithms developed for street view imagery fo-
cus on transportation (e.g., Convolutional Neural Networks (CNNs)-based detection or segmentation 
of objects such as road signs, crosswalks, and car information).33 However, a great opportunity exists 
to use street view imagery in building characteristic detection; whereas, these characteristics have 
shown to be an accurate indicator of socioeconomic trends.34 In addition, ML segmentation of school 
signs, crosswalks, hospital entrances, and petrol logos allows for the automatic detection of critical 
infrastructure such as schools, health facilities, and gas stations. Similarly, information regarding 
the home’s façade (e.g., windows, garages, doors) can also be extracted.

Before proceeding to the analysis of drone and street view imagery with ML, it is important to high-
light that AI and ML need to be used responsibly to avoid data misuse, bias, and ethics concerns. The 
World Bank Group published a working group summary that addresses best practices for ethical use 
of AI.35 This document is an excellent resource for those new to the field of AI and ML who want to 
educate themselves on how to benefit from using this powerful technology while minimizing unin-
tended negative impacts.

Drone Imagery Analysis

ML is a powerful analytical tool for detecting patterns in imagery datasets using computers that 
require minimal human intervention. When using drone imagery in the ML GPRH workflow, there 
are four main components: a) image segmentation; b) model training; c) image classification; and d) 
model accuracy assessment. The orthomosaics and DEMs derived from drone imagery permit the a) 
delineation of rooftops; b) extraction of building height to calculate the number of floors per home; 
and c) estimation of ground slope under each building. To delineate roofs using image segmentation, 
a U-Net CNN is applied. Depending on the compactness of the structures (i.e., overlapping or adjacent 
rooflines of abutting structures), manual delineation may be required to supplement the CNN-based 
delineation. Essentially, this manual delineation is quality assurance and quality control of the image 
segmentation portion of the ML process. Figure 14 shows an example of rooftop delineation with 
black polygons approximating the extents of a building’s structure.

33 Neuhold, Gerhard, Tobias Ollmann, Samuel Rota Bulò, and Peter Kontschieder. “The Mapillary Vistas Dataset for Semantic 
Understanding of Street Scenes.” 2017 IEEE International Conference on Computer Vision (ICCV) (2017): 5000-5009. doi: 
10.1109/ICCV.2017.534.
34 Galobardes, Bruna , Mary Shaw, Debbie A. Lawlor, John W. Lynch, and George Davey Smith. “Indicators of socioeconomic 
position (part 1).” Journal of epidemiology and community health vol. 60,1 (2006): 7-12. doi:10.1136/jech.2004.023531.
35 World Bank Group. 2021. “Responsible AI for Disaster Risk Management.” Working Group Summary. Washington, DC, 
USA: World Bank Group. https://opendri.org/wp-content/uploads/2021/06/ResponsibleAI4DRM.pdf

https://opendri.org/wp-content/uploads/2021/06/ResponsibleAI4DRM.pdf
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FIGURE 14: Delineated rooftop polygons overlaid on a drone-derived orthomosaic in St. Lucia

SOURCE: Global Program for Resilient Housing.

The next steps in the ML processing pipeline are model training and image classification. Once the 
rooftops are delineated, the roof material and condition are predicted via image classification for each 
rooftop polygon using a Visual Geometry Group CNN with 19 convolutional layers (VGG-19) where 
classes are shown in Table 1. To make correct predictions, the network has been previously trained 
with labeled images from other cities, as well as a small sample of local labeling to identify endoge-
nous characteristics of the location. As projects expand to new geographic areas around the world, 
the diversity of building characteristics in the training dataset continues to broaden. Inevitably, there 
will still be local construction practices that are not completely captured by the training dataset that 
need to be supplemented through additional labeling.

TABLE 1. Algorithms developed to derive building characteristics from drone images
BUILDING PROPERTIES

Roof condition good, fair, poor, under construction, or vacant

Roof material concrete, metal, mixed, tile, or other

Further details are provided in Table A-2 found in Annex 2.
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Drone ML Accuracy Assessment

The final step in the ML processing of drone imagery is determining the reliability of the ML-derived 
classifications. The identification of a rooftop characteristic in Table 1 depends on how clear the 
feature is in the image, how many training samples of the characteristic were provided in the ML 
model, how many classes are used for a specific building characteristic, and how well the classes 
capture the variability of all evaluated features for a given characteristic. Multiple metrics exist for 
evaluating classification quality. The simplest metric is accuracy, which measures the number of 
correct predictions as a percentage of the total number of predictions. Accuracy can be a good metric 
if there is a balanced number of samples in each class. Unfortunately, this is rarely the case so an-
other metric that handles imbalanced classes is needed, namely the F1 score. The F1 score is actually 
a combination of two prediction evaluation metrics: precision and recall. Precision is a percentage 
that reflects how much of all positive classification predictions are correctly positive for a given class 
(e.g., true_positives / [true_positives + false_positives]). Meanwhile, recall measures the success that 
the model correctly predicted all of the positive cases for a given classification (e.g., true_positives / 
[true_positives + false_negatives]). The F1 score combines the recall and precision metrics as follows:

F1 score = 2 * 
(precision * recall)

(precision + recall)

Thus, a model that has both good precision and recall will have a high F1 score (i.e., close to 100 per-
cent). The ML model for evaluating drone rooftop characteristics is shown in Table 2. 

TABLE 2. Accuracy and F1 score (drone)
CHARACTERISTIC ACCURACY (%) F1 SCORE (%)

Material 83.64 81.20

Condition 77.14 74.67
SOURCE: Original table for this publication.

To provide end users with a categorical attribute for the reliability of the ML model, the drone confi-
dence level defines how certain the model identifies the roof material and condition. For each rooftop 
polygon, the ML model a) calculates an array of values equal to the number of potential classifica-
tions and b) assigns the probability of each potential classification with a value between 0-1, where 
1 equals 100 percent probability. The confidence level measures the difference between the material 
(or condition) with the highest probability in the array minus the sum of the rest of the probabilities 
in the array. Confidence levels are critical to understanding the reliability of the ML-based classifica-
tion. This method offers a specific confidence level for each prediction:

•	 High: if the value is >0.75, the difference among the material (or condition) with the highest prob-
ability and the rest is large, the confidence is high.

•	 Medium: if the value is >0.25 and <0.75, there is a material (or condition) that has a higher proba-
bility than the rest, but the difference is not clear, so the confidence is medium.

•	 Low: if the difference is <0.25, the model cannot clearly differentiate between at least two materi-
als (or conditions), so the confidence is low.
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PROJECT SPOTLIGHT:
St. Lucia: building vulnerability assessment
ML models can be built and trained for specific applications. In St. Lucia, GPRH successfully undertook a study assessing the 
vulnerability of housing structures to impacts from hurricanes. Based on housing vulnerability literature, it was shown that buildings 
were less affected by hurricanes when they had a square floor plan, a roof with 4 panels, a roof slope of greater than 30 degrees, and 
short roof overhangs.* Further, by specifically analyzing data in Dominica after Hurricane Maria, the least vulnerable structures had 
a) a hip, pyramid, or hip and valley roof shape, b) a larger building footprint, and c) roof material made of concrete or PVF2 sheeting.

To investigate the applicability of these findings to a specific project site in St. Lucia, drone-derived datasets as described in the drone 
data processing section were generated for the entire AOI. Similar to other projects using the GPRH workflow, image segmentation 
was used to generate roof outlines for further analysis. A model was built using attributes related to rooftop structure and rooftop 
material as shown in Figure PS-3 and Figure PS-4.

FIGURE PS-3: Rooftop shapes that were modeled for a housing vulnerability assessment project in St. Lucia

Open gable Hip Combination Pyramid hipFlatHip and valley
SOURCE: Modified from https://www.roofingcalc.com/top-15-roof-types-and-their-pros-cons/

* New Jersey Institute of Technology. “Home Shapes And Roofs That Hold Up Best In Hurricanes.” ScienceDaily.
www.sciencedaily.com/releases/2007/06/070619155735.htm (accessed May 16, 2022).

FIGURE PS-4: Examples of common rooftop construction materials found on Caribbean islands

PVF2 Sheeting Galvanized metal Shingle Cement

SOURCE: Origilnal figure for this publication.

(Continued on following page)

http://www.sciencedaily.com/releases/2007/06/070619155735.htm
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The result was a rich dataset on housing vulnerability for Dennery, St. Lucia, shown in Figure PS-5. The local government could then 
use this up-to-date database within the Housing Portal in Figure PS-6 to identify houses that would benefit most from leveraging 
geospatial technology and ML to improve the lives of local residents. It should be emphasized that implementation of this methodology 
provides information for high-level housing assessments and subsequent identification of residents’ housing in St. Lucia most at 
risk. Meanwhile, those St. Lucian residents seeking detailed, engineering-grade vulnerability analyses of specific buildings would 
require additional point-by-point structural assessments than cannot be accomplished via exterior observations alone.

FIGURE PS-5: Visualization of predicted housing vulnerability to hurricane damage in St. Lucia

very low

low

medium

high

very high

SOURCE: Origilnal figure for this publication.

FIGURE PS-6: Integration of housing vulnerability dataset from St. Lucia into the GPRH Housing Portal

SOURCE: Origilnal figure for this publication.
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Street View Imagery Analysis

As with any ML model, the model and algorithms are only as good as the training data upon which 
it is built. Thus, high-quality training datasets are a necessity to develop high-performing ML mod-
els. For street view information extraction, a free, open-source, web-based annotation tool called 
Computer Vision Annotation Tool (CVAT), shown in Figure 15 is used to label thousands of randomly 
selected street level images captured in the AOI. To assemble the ground truth labels for the training 
dataset, the CVAT labeling results are exported to an XML document before conversion to the COCO 
format, which is imported into the ML network architecture.

FIGURE 15. Labeling images using CVAT

SOURCE: Global Program for Resilient Housing.

LESSONS LEARNED:
Developing (or supplementing) a training dataset
•	 For a simple classification, at least 2,000 labels per class is recommended.

•	 Provide visual examples for each label and clear instructions on handling edge cases to support labeling consistency. Note edge 
cases are when a feature does not decisively fit within one class for a given attribute.

•	 Crowdsourcing labeling through services like Mechanical Turk may negatively impact the quality of the training dataset. This 
crowdsourced approach was tested and the label quality from external sources was poor enough that the ML results were 
substantially worse. Thus, a dedicated labeling team is preferred.

To derive building characteristics visible from the street, a deep learning (DL)-based image segmenta-
tion technique, Mask R-CNN, is used to detect instances of building characteristics from images and 
classify the detected instances. Examples of detected building characteristics include the predicted 
building use, wall material, and wall condition among others shown in Table 3. Detectron2 is the pri-
mary tool used for implementing the Mask R-CNN technique. Detectron2 is built upon and powered 
by the PyTorch DL framework.
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 TABLE 3. Algorithms developed to derive building characteristics from street view images

BUILDING PROPERTIES

Complete construction status of the building: complete or incomplete

Condition wall condition: good, fair, or poor

Construction type predominant construction: unreinforced masonry, reinforced masonry, or unknown

Designed designed: designed at one time or undesigned: designed incrementally

Material wall material: brick or concrete block; plaster; wood - polished; wood - crude/plank; adobe; corrugated 
metal; stone with mud/ashlar with lime or cement; container/trailer; plant material; mix/unclear/other

Security secured or unsecured

Use residential, commercial, critical infrastructure, or mixed

Vintage estimated era of building construction:
1) pre-1940, 2) 1941–1974, 3) 1975–1999, 4) 2000–present

BUILDING PARTS

Door number of doors 

Garage number of garages

Window number of windows

Further details are provided in Table A-2 found in Annex 2.

SOURCE: Original table for this publication.

To identify building parts (e.g., windows, doors, garages) in projects using the GPRH workflow from 
street view imagery, the ML model is developed with the TF Object Detection API using a Residu-
al Network (ResNet) model component for feature extraction and a Single Shot MultiBox Detector 
(SSD) model component for object proposals. This multi-tooled approach enabled creation of a model 
that performed well across multiple geographic regions for identifying numerous building properties 
(e.g., building construction type, exterior wall material, use, condition). Additionally, the parts of the 
building (e.g., windows, doors, garages) are not only identified but also counted. The predicted build-
ing properties and parts are linked to each street view image using a unique image frame ID. A de-
tection ray connects each geolocated image taken from the street to the building footprint. Figure 16 
illustrates an example of the vehicle’s GPS trajectory joined by the detection ray to the photographed 
building and related prediction.
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FIGURE 16: Depiction of façade material predictions (plaster)
A detection ray connects each geolocated view of the building with the building footprint.

SOURCE: Global Program for Resilient Housing.

To make this information accessible to end users, the street view images, street view detections, 
and building footprints are stored in separate tables in a PostgreSQL database as shown in Figure 17. 
The street view images (sv_images) table contains image information from the trajectory files. The 
street view detections (sv_detections) table contains the ML detections from the building parts and 
properties files. Lastly, the building footprints (buildings) table contains the locations of the buildings 
and related metadata. The SQL database structure was selected to manage the housing data since it 
permits fast, detailed, and dynamic queries for the web-based interface of the Housing Portal.

FIGURE 17: Diagram of PostgreSQL relational database schema
The PK is the primary key field in a given table and FK stands for the foreign
key field linking the database tables.

SOURCE: Global Program for Resilient Housing.
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Street View ML Accuracy Assessment

Similar to the drone imagery ML process, data users need to quantitatively understand the reliability 
of the ML-derived classifications for the building characteristics in Table 3. Thus, a model that has 
both good precision and recall will have a high F1 score (i.e., close to 100 percent) as shown for the 
four building characteristics listed in Table 4.

Table 4. Accuracy and F1 score (street view)
CHARACTERISTIC ACCURACY (%) F1 SCORE (%)

Construction type 98.97 98.97

Material 97.08 93.30

Use 94.62 88.31

Condition 78.85 69.68
SOURCE: Original table for this publication.

Each individual classification receives a prediction score between 0-1 based on the probability that 
the building characteristic identified in the image is assigned to the most probable class among all 
available classes for an attribute, with 1 indicating the highest confidence level (100 percent). With 
multiple street view images of the same building, the final building characteristic classification is 
determined by the highest prediction score among all images for that specific class. 

Having plentiful, high-quality training data is paramount to the accuracy of a ML model’s results. For 
example, the three main material classes: plaster, brick or concrete block, and mix/other/unclear dis-
play high accuracy (>90 percent) given the high quantity of associated labels for these features. Those 
three classes have approximately 76,000, 17,000, and 19,000 labels, respectively, within the street 
view ML model; meanwhile, the remaining material classes found in Table 3 have at most 2,000 
labels and often only hundreds of labels. This relationship between label quantity and classification 
accuracy suggests that the model could also achieve high performance for the relatively more minor 
material classes (e.g., adobe, wood – crude plank, wood – polished, corrugated metal) once more 
training data is collected and provided. Similarly, the training data for the wall condition class is rath-
er imbalanced. With more training data for buildings in ‘good’ condition (i.e., currently 12,000 and 
55,000 labels fewer than ‘poor’ and ‘fair’ labels, respectively), the overall class accuracy and F1 score 
should subsequently improve given the model already shows high accuracy (<90 percent accuracy) 
for the ‘fair’ and ‘poor’ wall condition predictions, which have a substantial amount of training data. 

After predictions scores are generated for every building in the dataset, all final prediction scores 
are grouped from highest to lowest in three equally-sized categories (i.e., tertiles) to determine high, 
medium, and low confidence levels for each building characteristic. The characteristic for a given 
building is then given a categorical confidence level based on its prediction score relative to the pre-
diction scores of other buildings in the dataset. If prediction scores for a building characteristic are 
all greater than 95 percent for a given dataset, then all predictions for that building characteristic are 
assigned high confidence. By ranking confidence levels in this manner, end users can determine the 
reliability of a specific building characteristic classification when comparing the selected classifica-
tion to classifications of the same characteristic across all buildings within a dataset.
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GPRH worked in St. 
Maarten in 2019, two 
years after Hurricane 
Irma devastated the 
area. Capturing images 
offered an inventory 
of homes and public 
spaces. Now, after 
the next storm, it 
will be possible to 
quickly measure 
any damage to these 
structures, allowing 
reconstruction to 
begin.
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Housing Portal

The overarching goal for projects using the GPRH methodology is to provide end clients with an at-
tribute-rich, comprehensive dataset on housing conditions that can be accessed and used to inform 
housing interventions and investments. In order to bring this data into the hands of a decision mak-
ers, a demo Housing Portal was developed. This Housing Portal is open source and designed to be 
tailored to the local context.

The Housing Portal can show more than 25 characteristics for complete cities, neighborhoods, or 
housing units as shown in Table A-2 and Table A-3 in Annex 2. Furthermore, the Housing Portal is 
interactive by allowing users to define their own areas of analysis (e.g., examining a particular neigh-
borhood or block) and by providing filters to examine and visualize specific housing characteristics 
as shown in Figure 18. It is even possible to navigate along the street from street view image to street 
view image and gain further insight from the complete imagery for each home as illustrated in Figure 
19. Another benefit of the Housing Portal is that housing data can be exported for further analysis in 
a variety of formats (e.g., GeoJSON, GeoPackage, ESRI shapefile, CSV).

FIGURE 18: Custom area selected for building quality analysis in Padang, Indonesia

SOURCE: Global Program for Resilient Housing.
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FIGURE 19: Home in custom area selected for review in Padang, Indonesia

SOURCE: Global Program for Resilient Housing.

Given the richness of the data displayed in the Housing Portal, privacy and security are paramount. 
Images that contain a) faces or b) any personal information about the people living in the homes are 
blurred. To ensure security, each country has a dedicated Housing Portal with login permissions ex-
clusive to each user. An example of the Housing Portal landing page can be viewed at:
https://gprh.geoweb.io/. Public access is not provided by default. However, once a government is host-
ing their own instance of the Housing Portal, they may choose to provide open access.

The Housing Portal application architecture consists of two parts: a backend and frontend. Docu-
mentation for both components are provided on the platform as shown in Figure 20. On the backend, 
spatial and user data is kept in a PostGIS database. The spatial data for each AOI is stored in a PostGIS 
instance with individual tables for buildings, images, and detections as shown in Figure 17. The appli-
cation components are run within docker containers, except for Nginx in production. The frontend is 
a JavaScript application built using Vue.js. All data is kept behind the World Bank firewall on Amazon 
Simple Storage Service (AWS S3). The code to develop the Housing Portal and its database are open 
source and available on GitHub: https://github.com/GPRH/housing_portal. By providing the code and 
detailed instructions on GitHub, governments can create their own instance of the system to be run 
locally or on AWS. While the portal has been designed to be transfered to governments, continued IT 
support and knowledge sharing should also be included in the transfer. Support for the installation 
and deployment will help ensure government IT experts can administer and maintain the Housing 
Portal well into the future.

https://gprh.geoweb.io/
https://github.com/GPRH
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FIGURE 20: GPRH Housing Portal application documentation

SOURCE: Global Program for Resilient Housing.

The capabilities of the Housing Portal can be extended to tailor the understanding of cities by govern-
ments and companies. For example, by integrating official geospatial information into the portal (e.g., 
cadastral, census, or hazard layers), governments can start understanding the land tenure security 
or socio-demographic profiles of homes. By pulling in supplementary data, the Housing Portal can be 
queried to identify homes and neighborhoods to support the implementation of formal, affordable, and 
resilient housing to improve lives and safeguard economies. For a government client interested in inte-
grating this database into its own national data repository, the PostGIS database has a flexible design to 
allow for modifications (e.g., reprojection, etc.) to fit the spatial data infrastructure needs of the national 
government. Furthermore, the government client could permit the release of the housing dataset in the 
World Bank Data Catalog to improve discoverability and data reuse.36 For sharing of non-sensitive data 
with the general public, uploading housing data to OpenStreetMap’s free, editable geographic database 
could provide public benefit to those reliant on non-proprietary map data.37 Simple rooftop polygon 
datasets with fewer attributes (e.g, rooftop material, number of stories) derived from GPRH workflows 
could update or fill-in data gaps that exist across the maps of many SIDS in OpenStreetMap. As the 
number of projects and geographic areas expands, it is anticipated that this unique blend of geospatial 
technologies and ML will continue to impactfully serve the World Bank’s twin goals of ending extreme 
poverty and increasing the prosperity of vulnerable populations throughout SIDS and beyond.

36 World Bank Data Catalog, https://datacatalog.worldbank.org/
37 OpenStreetMap, https://www.openstreetmap.org/

https://datacatalog.worldbank.org/
https://www.openstreetmap.org/
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GPRH helped the 
government find 
homes that need 
roof retrofitting to 
withstand future 
hurricanes in St. Lucia. 
There was a high 
concentration of small 
units (average area: 
33 m2) with a high to 
very high likelihood 
of complete damage 
located near the port.
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Project Implementation

Understanding project implementation best practices is a prerequisite for the successful execution 
of a project using the GPRH methodology. Readers are encouraged to reference these recommenda-
tions in conjunction with relevant sections and annexes of the guidance note to apply this approach 
and technology to support a wide variety of World Bank projects. 

Four annexes are available to guide project implementation. Annex 1 helps to estimate data collection 
time based on prior projects and Annex 2 shares the standardized metadata for the resulting housing 
database. Annex 3 reveals a timeline for a sample project with an associated budget template found in 
Table A-4 of Annex 4. Given the unique scope and location of each project, providing a generic budget 
estimate for a sample project would provide minimal long-term relevance. Thus, a budget template is 
shared so project teams can ensure that no major components of the workflow are overlooked during 
the project planning process. Lastly, if teams would like additional support making their geospatial 
data more sustainable, they can contact GFDRR’s Digital Earth Platform for assistance.38

LESSONS LEARNED:
Project Implementation
•	 Start field data collection with equipment calibration and testing prior to shipment via diplomatic pouch to the project site.

•	 Ensure data collection teams meet with local government officials and World Bank Group staff from the country office to confirm 
all parties are coordinating activities with the same goals in mind. 

•	 The most successful project missions are those where knowledge transfer is consistent throughout the duration of the data 
acquisition. Thus, encourage local officials’ involvement so they can:

	– learn mapping techniques through hands-on experience, and 

	– be proactively involved in streamlining access for data acquisition areas.

•	 Data collection via drone and street view vehicles requires flexibility from the field teams due to the previously mentioned issues 
related to takeoff and landing zone access for drones, inaccessible roadways for street view vehicles, and unpredictable weather 
events for both teams.

•	 Delegate data processing tasks to processing teams to create the deliverables outlined in the data processing sections.

	– While a rigid timeline related to data processing delivery can be difficult to pinpoint due to topography and other 
geographic features, data processing and ML components typically take two to four times the data collection duration.

•	 When communicating ML results, it is imperative to emphasize model performance for each prediction (e.g., level of confidence 
for a given attribute).

•	 Upon conclusion of the ML, integrate the datasets using standardized data formats (consistent naming conventions, attribute 
definitions, and data types) into a housing database (e.g., Housing Portal) for visualization and further analysis.

•	 Based on previous and pending projects in SIDS, the applications for the data derived from GPRH workflows across these island 
nations address similar issues:

	– locating and characterizing informal settlements,

	– detecting backyard homes,

	– retrofitting roofs,

	– assessing speed of reconstruction efforts after major natural disasters, and

	– identifying vacant and suitable lands for construction and densification.

38 World Bank GFDRR Digital Earth Platform. https://www.gfdrr.org/en/digitalearthpartnership

https://www.gfdrr.org/en/digitalearthpartnership
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The work of 
GPRH supported 
resilient housing for 
neighborhoods in
St. Lucia.
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Annex 1 – Inventory of GPRH Data

TABLE A-1: Inventory of GRPH data as of June 2021
Note that data continues to be collected within Colombia, among other countries.

COLOMBIA GHANA GUATEMALA INDONESIA MEXICO PARAGUAY PERU ST. LUCIA ST. MAARTEN

Drone coverage 
(km2)

40 11 4 80 31 17 20 8 28

Car distance
(km, inc. overlap)

470 – 120 1,700 580 230 140 210 320

Panoramic images 411,910 – 62,036 587,880 337,601 121,368 107,337 109,200 168,691

Cube images 2,792,710  – 372,216 6,465,264 2,025,606 728,208 644,022 655,200 1,012,146

Street view labels 26,925 – – 25,590 8,240 23,417 20,061 – 12,865

Rooftops  109,300 25,400 4,900 146,000 67,900 35,100 61,600 9,100 13,000
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Annex 2 – GPRH Housing Portal Metadata

TABLE A-2: Metadata descriptions for building data attributes in the GPRH Housing Portal
BUILDINGS
TITLE ATTRIBUTE DESCRIPTION

GENERAL OR GOVERNMENT INFORMATION

address street address Street address.

aoi area of interest Area of interest.

block block Block.

geohash geohash Alphanumeric string to encode geographic coordinates.

count number of tax records Number of tax records available per building.

id building ID Building ID in database.

pt_avg average property tax Average property tax per building.

pt_avg_owed average property tax owed Average property tax owed (cumulative balance including prior years).

pt_sum sum of property tax Sum of property tax per building.

pt_sum_owed sum of property tax owed Sum of property tax owed (cumulative balance including prior years).

DRONE

d_area roof area (m2) Estimated roof area in square meters.

d_avg_height height (m) Average (mean) height of the building in meters derived from 
the rooftop polygon and the digital height information derived 
from the drone. Calculated using zonal statistics.

d_condition roof condition Roof condition is based on construction appearance, 
such as patching and coloring (rust).
Good: new, well-constructed (no holes) and very minimal patching or discoloration.
Fair: roof is patched or discolored, but still sturdy; may look 
old or drab but seems livable and not precarious.
Poor: lots of patching, holes, items to hold it down, or bags to stop 
leaks. Otherwise, the building may be under construction or vacant. 

d_material roof material Concrete: more than 50% of the rooftop is visibly concrete.
Metal: vast majority of the rooftop is covered in metal (70-90%).
Mixed: multiple materials used to cover the roof and keep the inhabitants dry. 
Typically, this is less than 50% concrete.
Tile: more than 50% of the rooftop is clay tile or metal tile.
Other: tent or tarp material.

d_slope ground slope (degree) Average (mean) slope of the ground in degrees underneath the roof. This tends to be 
overestimated.

d_volume volume (m3) Estimated volume of building in cubic meters.

STREET VIEW

sv_complet complete Construction status of the building: complete or incomplete.

sv_condit wall condition Good: new construction and sturdy.
Fair: sturdy but shows signs of aging.
Poor: dilapidated, temporary, self-built, or not well-maintained.
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TITLE ATTRIBUTE DESCRIPTION

sv_constru construction The predominant construction type is organized into the following categories: 
Unreinforced masonry: refers to buildings made from brick, stone or 
concrete blocks that appear from the outside to be missing concrete 
columns or beams (or both). Other examples include buildings made 
from adobe or constructed using timber or wooden frames.
Reinforced masonry: refers to buildings with confined masonry or 
concrete frames, which may be called reinforced masonry in some 
countries. Reinforcement components such as rebar inside of blocks 
are not always possible to determine from street view analysis but at 
times, particularly when buildings are ‘incomplete’ rebar is visible.
Unknown: unknown.

sv_design designed Designed: building designed at one time.
Undesigned: building designed incrementally.

sv_door doors Number of doors.

sv_garage garages Number of garages.

sv_materia wall material The predominant classes are plaster, brick or 
concrete block, and mix/other/unclear.
brick or concrete block:
plaster;
wood – polished;
wood – crude/plank;
adobe;
corrugated metal;
stone with mud/ashlar with lime or cement;
container/trailer;
plant material;
mix/unclear/other.

sv_securit extra security Secured or unsecured.

sv_use building use Residential: used solely for residential purposes.
Commercial: used for commercial purposes (e.g., store).
Critical infrastructure: used for public purposes, such as education, 
government, public services, health care, religion, banks or other 
public infrastructures. This class was used sparingly.
Mixed: used for residential and non-residential purposes. A common 
case is a mini-market on the first floor and residential housing above.

sv_vintage vintage Estimated era of building construction (for neighborhoods 
with distinct architectural periods):
1) pre-1940, 2) 1941–1974, 3) 1975–1999, 4) 2000–present.

sv_window windows number of windows

HAZARDS

hz_earthqu earthquake risk 1=very low, 2=low, 3=medium, 4=high, 5=very high.

hz_flood flood risk 1=very low, 2=low, 3=medium, 4=high, 5=very high.

hz_landslide landslide risk 1=very low, 2=low, 3=medium, 4=high, 5=very high.

hz_tsunami tsunami risk 1=very low, 2=low, 3=medium, 4=high, 5=very high.

hz_wind wind risk 1=very low, 2=low, 3=medium, 4=high, 5=very high.

ANALYSIS AND FIELD WORK

cap_payment payment capacity Capacity of payment from households: maximum household 
annual income=(estimated value/5). Estimated value can be 
modeled from field surveys. This is for illustrative purposes.
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TITLE ATTRIBUTE DESCRIPTION

dem_insur home insurance Demand for home insurance premiums: yes, if total quality=good or 
very good; all other demands=no AND general value=medium or high. 
Otherwise, no. General value can be calculated from the total quality and 
building volume, determined per AOI. This is for illustrative purposes.

dem_micro home microfinance Demand for home improvement microloans: yes, if ONLY demand 
for quality improvement=yes and structural improvements=yes; and 
capacity of payment > USD 10,000. This is for illustrative purposes.

dem_reset resettlement Demand for resettlement: yes, if any hazard=5; total 
quality=poor or very poor. Otherwise, no.

dem_struct structural improvement Demand for structural improvement: yes, if earthquake hazard is 3 or 
lower AND flood, landslide or wind hazard is between 0 and 4 AND 
construction type=unreinforced masonry or reinforced masonry AND 
soft story=yes AND total quality=good or fair. Otherwise, no. 

dem_qualit quality improvement Demand for quality improvement: yes, if hazards are below 5 AND 
construction type=reinforced masonry AND possible soft story=yes 
AND total quality=fair, poor or very poor. Otherwise, no.

extra_attrs extra attributes General purpose field where extra data may be added such as from 
a survey. Recommended to export as a geopackage to view.

infrastruc access to paved roads Is the building within 10 m of a paved road? 1=yes, 0=no.

K3 COVID-19 index The COVID-19 index locates the bottom-40 and bottom-10 vulnerable households 
at the block level. Variables correspond to overcrowding, age, illness, disability, and 
access to water, sewerage, electricity, and internet. Values range from 1-3 with 1 
being most vulnerable. If all K3 values=3 in export, the index is not available for AOI.

land_publi public land Is the building on public land? 1=yes, 0=no.

land_servi access to services Is it possible to bring public services? For example, is there a 
bus stop within 400 m (five-minute walk)? 1=yes, 0=no.

opp_expansion expansion Opportunity for expansion: yes, if building height is less than 3 m AND within 
200 m of greenspace AND within 10 m of paved road. Otherwise, no. 

park greenspace Does this building have good access to greenspace? (i.e., is it 
walking distance or less than 200 meters from a park?)
1=yes, 0=no.

soft_story soft story Is this a potential soft story building? For example, the building height 
is at least 7.5 meters AND has at least one garage AND at least 
two windows. Other calculations are possible. 1=yes, 0=no. 

tot_qualit total quality Determined by comparing the roof and wall condition derived from drone 
and street view imagery. If roof and wall condition are not the same 
designation (good, fair or poor), the lower value of the two is taken:
Very good: if both roof and wall condition are good.
Good: if roof or wall condition is good and the other is 
under construction, vacant or otherwise unknown.
Fair: if both roof and wall condition are fair; or if one is fair and the 
other is good, under construction, vacant or otherwise unknown.
Poor: if roof or wall condition is poor and the other is good, 
fair, under construction, vacant or otherwise unknown.
Very poor: if both roof and wall condition are poor.

value estimated value Estimated value modelled from field survey.
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TABLE A-3: Metadata descriptions for sector and greenspace data attributes in the GPRH Housing Portal

SECTORS
TITLE ATTRIBUTE DESCRIPTION

GENERAL OR GOVERNMENT INFORMATION

aoi area of interest Area of interest.

area_km area (km2) Area of sector in square kilometers.

avg_tax average tax Average tax per sector.

avg_tax_owed average tax owed Average tax owed per sector.

id id Sector ID in database.

name sector Name of sector.

sector_id sector id Sector ID in database (string).

ANALYSIS AND FIELD WORK

building_count building count Total number of buildings in sector.

commercial commercial buildings Number of commercial buildings.

critical_infrastructure critical infrastructure Number of critical infrastructure buildings.

fair_quality fair quality Number of buildings in fair condition (total quality).

good_quality good quality Number of buildings in good condition (total quality).

mixed mixed buildings Number of mixed buildings.

poor_quality poor quality Number of buildings in poor condition (total quality).

resettlement resettlement Number of buildings in demand for resettlement.

residential residential buildings Number of residential buildings.

softstory soft story Number of potential soft story buildings.

very_good_quality very good quality Number of buildings in very good condition (total quality).

very_poor_quality very poor quality Number of buildings in very poor condition (total quality).

GREENSPACE
TITLE ATTRIBUTE DESCRIPTION

area_m area (m2) Area in square meters.

id id Greenspace ID in database.

type type of feature Designation of cemetery, forest, grass, meadow, park, playing field, 
recreation ground, or scrub derived from OpenStreetMap.39

39 OpenStreetMap, https://www.openstreetmap.org/

https://www.openstreetmap.org/
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Annex 3 – Sample Timeline

This schedule outlines the workflow and estimated time to complete a project, once preparatory 
steps have been completed (i.e., determined AOI, produced detailed flying and driving maps, secured 
flight permits for drones, rented GNSS base station). This estimate is based on a project with four 
distinct AOIs covering a total area of 100 km2.
ACTIVITY ESTIMATED TIME

Shipment of Equipment 1 week via diplomatic pouch

Data Collection
	– Installation of base station
	– Drone: take-off and landing from accessible fields
	– Street view: driving all navigable roads

3 weeks40

Knowledge Transfer
	– On-the-job training for one or two drone pilots (option to use their drones)
	– 1-3 government staff members to shadow or assist with street view capture
	– Training on methodology (description of each step) and how to best process drone imagery
	– Provide training materials and implementation training reports 

Throughout data collection 
and several virtual meetings 
following the mission 

Data Processing
	– Drone: 5-8 weeks
	– Street view: 6-8 weeks

2 months

Machine Learning
	– Drone: 2-3 months
	– Street view: 2 months (using existing models)
	– Followed by synthesis of building characteristics into GIS layers

4 months

Continued Capacity Building 
	– Discuss the sustainability and next steps for the application of this data and how it can be updated

2-3 weeks 

Follow up
	– Virtual meeting to coincide with data delivery

TOTAL 8 months

40 In general, one can estimate covering 5 km2 per day; however, additional time is required to travel between AOIs and for 
data collection in areas with steep terrain, high road network density, narrow roadways, or low road surface quality. During 
the mission, other conditions such as weather or availability of secure, open areas will affect time and coverage.
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Annex 4 – Budget Template

TABLE A-4. Budget template for a project following the complete
GPRH methodology
PURPOSE ESTIMATE

Drone collection –

Street view collection –

Base station rental –

Shipment of equipment –

Collection Subtotal –

Drone and street view imagery - processing –

Drone imagery - machine learning (and manual 
inspection of rooftop delineation) –

Street view imagery - machine learning (classification) –

GIS database –

Processing and Digitization Subtotal –

Continued capacity building –

Staff –

Knowledge Transfer and Project Management Subtotal –

TOTAL –
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