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Multidimensional poverty measures are increasingly used in 
practice even though they face strong criticism and generate 
longlasting debates. These contentions primarily find their 
origin in the divergence between standard poverty identifi-
cation practices and a welfarist definition of the poor. This 
paper fills this gap by constructing a poverty measurement 
theory that (i) adopts a welfarist definition of the poor, 
(ii) acknowledges that the relevant welfare function is only 
partially known and (iii) encompasses both market and 
non-market dimensions of well-being. The theory shows 
that standard identification practices are not flexible enough 

in order to properly account for the multidimensional 
nature of well-being. This nature implies that an individual 
is poor when she experiences an extremely low outcome in 
some dimension or/and when she cumulates moderately 
low outcomes in several dimensions. The paper proposes 
a simple refinement that better reflects this insight. The 
paper uses the theory in order to provide answers to sev-
eral longlasting debates. The theory provides a conceptual 
foundation from which practitioners may derive guidance 
for the many choices they face.
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1 Introduction

“Future progress in devising useful composite indices of de-
velopment will require that theory catches up with measure-
ment practice.” Ravallion (2012)

A broad consensus has now emerged that human well-being is multidi-
mensional (Stiglitz et al., 2009). Vast literatures are dedicated to normative
indicators of well-being accounting for this multidimensionality (Fleurbaey,
2009). Among these indicators, multidimensional poverty measures are
gaining prominence because they are increasingly used in practice, both at
national and international levels.1

However, multidimensional poverty measurement practices face strong
criticism and generate long-lasting debates. The major contentions relate
to the way the multidimensionally poor are identified (Ravallion, 2011; Pat-
tanaik and Xu, 2018). The standard practice is to identify an individual
as poor when the weighted sum of her deprivation statuses across dimen-
sions exceeds some threshold. Unfortunately, the theory behind this prac-
tice (Alkire and Foster, 2011a) offers no guidance to help the practitioners
make the necessary choices.2 This is a major issue because these choices
have massive implications for poverty comparisons and trends (Aaberge and
Brandolini, 2015).3 Ravallion (2011) regrets that these measures aggregate
dimensions in a way that is unrelated to well-being. In particular, the
weights routinely selected are unrelated to marginal rates of substitution.4

Also, when data are cardinal, measuring outcomes using a dichotomous
deprivation status “wastes” well-being relevant information. About the se-
lection of dimensions, a fierce debate still rages on about whether monetary
poverty should be integrated with non-monetary poverty (Atkinson, 2016).

We argue that the main cause for these debates is that standard iden-
tification practices are not informed by a welfarist definition of the poor.
A welfarist definition holds that an individual is poor when her well-being,
represented by a welfare function, is too low. The bulk of the literature
on multidimensional poverty measurement is not welfarist (Bourguignon
and Chakravarty, 2003; Alkire and Foster, 2011a; Datt, 2019).5 The few
welfarist theories (Maasoumi and Lugo, 2008; Decancq et al., 2019) cannot

1 More than 70 countries have now adopted an official multidimensional poverty
measure. International institutions such as the World Bank, the UNDP or the European
Commission also adopted their own. Multidimensional poverty measures are also used
in order to measure progress towards the Sustainable Development Goals.

2 The values of weights and cutoffs are considered exogenously determined in Alkire
and Foster (2011a). Alkire et al. (2015) do provide guidance for these choices, but this
guidance is based on experience and best practices, rather than on a consistent notion
of individual well-being, leaving the practitioner without a clear compass.

3 This issue started a literature devising methods to check the robustness of poverty
evaluations to the selection of alternative parameters values (Atkinson and Bourguignon,
1982; Duclos et al., 2006; Bourguignon and Chakravarty, 2019).

4 Using equal weights is a popular default choice (Alkire et al., 2015). Selecting
equal weights resonates with the counting approach (Atkinson, 2003), which counts the
number of dimensions for which an individual is deprived and uses a threshold number
for identification (Guio et al., 2017).

5 They typically justify their non-welfarist approaches advancing pragmatic argu-
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inform identification practices. The reason is that they do not account for
the main information constraint faced by practitioners, namely that they
only have partial information on the relevant welfare function. Currently,
there exists no theory that can help guide and improve the identification
practices inherent to the increasingly popular, though criticized, multidi-
mensional poverty measures.

In this paper, we develop a welfarist theory of poverty measurement
that accounts for practitioners’ information constraint and derive some of
its implications for multidimensional poverty identification practices. We
extend the welfarist theory behind monetary poverty measurement to di-
mensions of well-being for which no market exists. We demonstrate that
this extended theory allows shedding new light on several long-standing de-
bates. Our theory reveals that the multidimensional nature of well-being is
not properly accounted for by standard identification practices. We show
how to refine them in a way that better reflects this multidimensional-
ity. Our extended theory provides the conceptual foundation for taking
identification practices beyond what Ravallion (2016) considers to be an
essentially ad-hoc aggregation of different dimensions.

The novelty of our poverty measurement theory is to combine three
elements: a welfarist definition of the poor, the practitioners’ information
constraint and the absence of some markets. We assume that the welfare
threshold defining poverty is exogenously given, but that the “true” trade-
offs between different dimensions at that welfare threshold are imperfectly
known to the practitioner. We impose two natural restrictions on these
trade-offs that echo key arguments expressed in the literature. In a nut-
shell, dimensions are to some extent substitutable (Ravallion, 2011), but
there is a limit to their substitutability (Sen, 1992). These two restric-
tions jointly imply that two types of individuals are poor: (i) individuals
with an extremely low achievement in at least one dimension (“extremors”)
and (ii) individuals who are not extremors but cumulate moderately low
achievements in several dimensions (“cumulators”). The information con-
straint implies that the identification method used by practitioners cannot
make exactly the same trade-offs between dimensions as the welfare func-
tion. The absence of some markets implies that the identification method
cannot be welfare-consistent, i.e., some poor individuals are not identified
as poor (“exclusion error”) or/and some non-poor individuals are identified
as poor (“inclusion error”). We propose robust criteria that allow com-
paring imperfect identification methods as a function of their distance to
welfare-consistency.

First, we apply our theory to the case for which non-market dimensions
are measured through cardinal variables. The standard practice is to use
linear identification methods, which aggregate across dimensions by mak-
ing a weighted sum of the outcomes in each dimension. With cardinal data,
the outcomes entering this weighted sum can be measured through alterna-
tive information bases, namely achievement, deprivation or (deprivation)

ments, such as the difficulty to measure welfare in practice (e.g., p 308 of Alkire and
Foster (2011b)) or the fact that policy makers push towards the use of dimension-specific
cutoffs (e.g., p 27 of Bourguignon and Chakravarty (2003)).
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status.6 Monetary poverty identification practices rely on achievements,
while non-monetary poverty identification practices, such as the union or
the intersection approaches, rely on statuses.7

We show that very limited information on the welfare function is suffi-
cient to rank linear identification methods using different information bases.
We show that Ravallion (2011) makes a valid point against linear methods
using deprivation status, but that his critique does not necessarily justify
replacing them by linear methods using achievement. One of our results
shows that the limits of the latter methods may outweigh the benefits of
using weights corresponding to marginal rates of substitution.8 In con-
trast, we show that linear methods using deprivation are superior to those
using status, as suggested by Pattanaik and Xu (2018). We show they are
also superior to those using achievement, which implies that practitioners
should use them when data are cardinal.

Intuitively, the inferiority of linear methods using status or achievement
is that they do not provide the flexibility to simultaneously identify cumu-
lators and extremors. For instance, linear methods using achievement are
bound to make exclusion errors on some extremors, because they allow that
a high achievement in one dimension “compensates” for a low achievement
in another dimension. In contrast, the union approach identifies well ex-
tremors, but it is bound to make exclusion errors on cumulators because
this approach requires using small dimension-specific cutoffs. Another key
message from our analysis is that using weights that correspond to the
marginal rates of substitution at some bundle is not sufficient for a linear
method to make a good identification. Indeed, this only ensures a good
local approximation of the trade-offs. In the absence of markets, a good
identification requires a good approximation at all bundles yielding the
welfare threshold.

Second, we apply our theory in order to improve identification when
non-market dimensions are measured through “ordinal” variables (ordered
categorical variables). With ordinal data, linear methods using achieve-
ment or deprivation are not meaningful, which only leaves linear methods
using status. We show that standard linear methods using status cannot
properly account for the multidimensional nature of well-being. The rea-
son is that their single dimension-specific cutoff does not offer the flexibility
to correctly identify both cumulators and extremors. Extremors should be
identified based on small cutoffs using the union approach while cumulators
should be identified based on larger cutoffs using the intersection approach.
To improve on this, we propose a small refinement of standard practices
that is based on two dimension-specific cutoffs, which lead to three statuses:

6 The status basis is dichotomous. The achievement and deprivation basis are con-
tinuous, even if the latter censors outcomes above dimension-specific deprivation cutoffs.

7 For instance, consumption poverty measures typically identify the poor by aggregat-
ing the quantities (=achievements) of different market goods (=dimensions) consumed
using prices as weights. Alternatively, the UNDP-OPHI’s global MPI identifies the poor
by a weighted sum of the deprivation statuses in each indicator entering its definition.

8 The limit of using linear methods using achievement is that a sufficiently large
achievement in one dimension may “compensate” for an extremely low achievement in
another dimension (Alkire and Foster, 2011b).
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extreme deprivation, moderate deprivation and no deprivation.
Third, we study identification when both monetary and non-monetary

dimensions matter to well-being. We consider three different data con-
straints. In the absence of any data constraint, we show that identification
methods that combine monetary and non-monetary dimensions are supe-
rior to both purely monetary and to purely non-monetary methods. The
reason is that the latter are bound to make exclusion errors on some indi-
viduals who have an extremely low achievement in the ignored dimension.
When data come from two separate surveys, the association between mon-
etary and non-monetary outcomes is not observed. We show by means of
an example that the two separate surveys may provide a very noisy pic-
ture of poverty. This demonstrates the potentially large added-value of
collecting achievements on all dimensions in the same survey. When data
come from one survey that ignores either the monetary dimensions or the
non-monetary dimensions, we study how the weights for the observed di-
mensions should be “distorted” in order to account for the non-observed
dimensions. Some current practices seem to apply such distortions, which
could suggest that some practitioners may consider a general notion of well-
being, rather than a narrower notion limited to the observed dimensions.

We contribute to the poverty measurement literature on several ac-
counts. First, we provide a welfarist theory that unifies monetary and
non-monetary poverty measurement. In our theory, there is no conceptual
distinction between a “multidimensional structure” and a “unidimensional
structure” to poverty measurement (Chakravarty and Lugo, 2019). The
unidimensional structure follows from considering a unique welfare aggre-
gator summarizing achievements in all dimensions. The multidimensional
structure follows from considering extreme achievements thresholds below
which an individual is poor regardless of her achievements in other dimen-
sions. Considering these elements jointly allows accounting for the main
arguments raised by both sides. Second, our results shed new light on
longstanding debates around multidimensional poverty measurement. We
show that the fact that the weights used in practice do not correspond to
marginal rates of substitution is not a sufficient reason to discard these prac-
tices. However, when cardinal data are available on at least two dimensions,
the practitioner should not identify the poor using the dichotomous sta-
tus basis. We show that measures combining monetary and non-monetary
dimensions better identify the poor than the measures that keep them sep-
arate.9 The former may require more costly data collection than the latter,
but such collection may potentially greatly improve identification.

The paper is organized as follows. We present our theory in Section
2. We apply our theory to identification methods under cardinal data in
Section 3. We apply our theory to identification methods under ordinal
data in Section 4. We apply our theory to study monetary versus non-
monetary poverty measurement in Section 5. We conclude in Section 6.

9 There exists currently no consensus on whether it makes sense to aggregate mone-
tary measures with non-monetary measures (Atkinson, 2016), and if it does make sense,
how it should be done. Our result thus provides a foundation for the Multidimensional
Poverty Measure introduced by the World Bank (2018), defined in Section 7.1.
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2 A welfarist theory for poverty identification

Following Sen (1976), a poverty measure is typically constructed in two
steps. In the identification step, the set of individuals is partitioned between
those who are identified as poor and those who are not. In the second
step, a poverty index is selected in order to aggregate the contributions to
poverty of all individuals identified as poor. In this paper, we focus on the
identification step.10

2.1 Basic framework

There is a continuum N = [0, 1] of individuals, indexed by i. Let xi =
(xi1, xi2) ∈ R

2
+ denote the bundle consumed by individual i, which summa-

rizes her achievements (or attainments) in the two dimensions. For the sake
of simplicity, we restrict our attention to the 2-dimensions case. However,
our theory readily generalizes to the m-dimensions case. Let x = (xi)i∈N
denote an allocation.

Individual welfare is formalized by the utility function U : R
2
+ → R,

which represents a preference relation on the set of bundles. As is stan-
dard in the monetary poverty measurement literature (Ravallion, 2016), we
assume preference homogeneity, i.e., all individuals hold a common prefer-
ence. We assume that U is continuous, strictly monotonic in both dimen-
sions and differentiable everywhere.

Bundles are related to individual endowments. Each individual is born
with an endowment ωi = (ωi1, ωi2) ∈ R

2
+. The distribution of endowments

is denoted by ω = (ωi)i∈N . Let F (ω) denote the joint distribution of en-
dowments and let f(ω) denote the associated density function. We assume
that the density function f has full support and can be differentiated ev-
erywhere. Hence, for any bundle x ∈ R

2
+, there is some individual i ∈ N

with ωi = x. When a market exists between the two dimensions, we assume
that any individual i selects her achievements in the budget set defined by
her endowment ωi and equilibrium prices p = (p1, p2) ∈ R

2
+ in a way that

maximizes U(xi). In the absence of markets, we assume that any individual
i consumes her endowment, which means that xi = ωi.

An individual is defined as (multidimensionally) poor if her welfare is
too low. We assume that there is an exogenously-given level of utility
U such that the set of poor individuals is Np(x) = {i ∈ N | U(xi) <
U}. To avoid trivialities, we assume U > U(0, 0). Our theory is silent
about the selection of the minimal level of utility U , which is typically a
political decision. Graphically, individual i is poor if her bundle is below the
indifference curve associated to utility level U , which we call indifference
curve U for short.

We impose two minimal restrictions on the shape of indifference curve
U . These restrictions echo positions frequently expressed in the multidi-

10 Our results have direct implications for poverty indices because these indices require
an identification method. However, our framework could also be used to derive impli-
cations that are specific to the poverty index. Before investigating these implications, a
natural first step is to define a meaningful and defensible identification method.
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Figure 1: Indifference curve U satisfying our two restrictions.

Individual i is a cumulator and i′ is an extremor.

mensional poverty measurement literature. First, we assume that there is
some substitutability between the two dimensions along indifference curve
U . That is, an individual with welfare level U is willing to reduce her
achievement in one dimension if her achievement in the other dimension
is sufficiently increased. Formally, we require that indifference curve U is
strictly convex. This restriction reflects the view that individuals on the
poverty frontier also make trade-offs between different dimensions (Raval-
lion, 2011).11 Second, we assume that there is a limit to the substitutability
between the two dimensions along indifference curve U . That is, for each
dimension there is an achievement threshold below which the individual
is poor regardless of her achievement in the other dimension. Formally,
for any j ∈ {1, 2} there is an extreme achievement threshold ej > 0 such
that U(x) < U when xj ≤ ej . Graphically, the indifference curve U ad-
mits asymptotes at these extreme thresholds. This restriction reflects the
view that each core dimension of well-being is essential (Sen, 1992; Duclos
et al., 2006; Chakravarty and Lugo, 2019).12 We assume throughout that
the shape of indifference curve U is fixed but arbitrary as long as it satisfies
these restrictions.

Interestingly, our two restrictions imply that we can partition the set
of poor individuals into two categories. First, an individual may be poor
because her achievement in some dimension is below the extreme threshold,
i.e., xj ≤ ej for some dimension j. We call such poor individual an “ex-
tremor”. Second, an individual with no extreme achievement may be poor
because she cumulates moderately low achievements in several dimensions,
xj > ej for all dimensions j. We call such poor individual a “cumulator”.
In Figure 1, i is a cumulator and i′ is an extremor. Distinguishing between
these two types of poor individuals not only makes sense from a conceptual

11 This restriction encapsulates the view that the overlap of low achievements in
several dimensions matters for identification (Ferreira and Lugo, 2013).

12This restriction is reasonable for core dimensions of well-being, such as consumption,
health or freedom. For instance, an individual whose health is very bad has low well-
being regardless of her consumption. However, this assumption would be much less
compelling for subcategories of consumption, like for instance consumption of rice or
consumption of wheat.
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perspective, but may also help improve anti-poverty programs. Indeed,
unlike cumulators, extremors cannot be lifted out of poverty when some of
their moderately low achievements are improved.

2.2 Imperfect knowledge and identification methods

In order to reflect the information constraints faced by practitioners, we as-
sume that the shape of indifference curve U is only partially known. This
partial knowledge reflects the fact that welfare is challenging to reliably
measure in practice (Alkire and Foster, 2011b). At one extreme, it could
be that only one bundle on this indifference curve is known. Information
constraints imply that the practitioner cannot use indifference curve U in
order to identify the poor. In other words, she cannot rely on the unidi-
mensional approach to poverty measurement with utility function U as the
aggregator and U as the target.

In order to partition the set of individuals into two groups, those who
are identified as (multidimensionally) poor and those who are not, the prac-
titioner must use an identification method. An identification method eval-
uates individual bundles by comparing the value returned by some aggrega-
tion function M : R

2
+ → R to some identification threshold k ∈ R. The set of

individuals identified as poor is denoted by N̂p(x) = {i ∈ N | M(xi) < k}.
For instance, in the case of monetary poverty measurement, for which
achievements are quantities, individual i is identified as poor when

p1xi1 + p2xi2 < k, (1)

where k = p1z1 + p2z2 is the poverty line, based on a reference bundle
z. This identification method makes a linear aggregation of achievements
using prices as weights. Graphically, an identification method defines an
identification contour below which bundles are identified as poor.13 The
linear identification contour defined in Eq. (1) is illustrated in Figure 2.

x2

x1

z

U

p

b

increasing path

b

b

b

b
b

b
ω

Figure 2: Welfare-consistent identification method with markets.
The identification contour is in red.

Crucially, the information constraints imply that the shape of the iden-
tification contour is in general different from the shape of indifference curve

13 The identification contour is conceptually different from the “poverty frontier” (Duc-
los et al., 2006), which in our framework corresponds to the indifference curve U .
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U . In Figure 2, an individual that would consume endowment ω would not
be identified as poor even if endowment ω yields a welfare level smaller
than U . However, this does not necessarily mean that the set of poor in-
dividuals is unrelated to the set of individuals identified as poor. When
measuring monetary poverty, the objective for the practitioner is to se-
lect an identification method that perfectly identifies the poor, i.e., such
that N̂p(x) = Np(x). When it is the case, the identification method is
considered welfare-consistent.

The monetary poverty measurement literature provides guidance for
the practitioner. This literature proposes conditions under which the iden-
tification method is welfare-consistent. For instance, the method defined
in Eq. (1), which uses prices as weights, is welfare-consistent when bun-
dle z maximizes welfare given prevailing prices and U(z) = U (Ravallion,
1998).14 Prices are directly connected to welfare as they capture marginal
rates of substitution (Sugden, 1993). However, the key reason why perfect
identification is possible although the identification contour differs from in-
difference curve U is the presence of markets. Indeed, an individual whose
endowment is ω will trade part of her achievement in dimension 2 in order
to increase her achievement in dimension 1. Optimal behavior implies that
all bundles are on an increasing path (see Figure 2). Under the conditions
stated above, the identification contour ranks all bundles on the increasing
path in the same way as the indifference curve U .15

In the absence of markets, identification methods cannot be welfare-
consistent under information constraints. This follows from the fact that (i)
the shape of the identification contour differs from the shape of indifference
curve U and (ii) individuals consume their endowment in the absence of
well-functioning markets.16 In Figure 2, an individual whose endowment
is ω would have no choice but to consume ω. This individual would not
be identified as poor since her bundle is above the identification contour.
This individual would then be mis-identified because her welfare is smaller
than U .17 More generally, an imperfect identification methods can make
two different kinds of mis-identification. An exclusion error arises when a
poor individual is not identified as poor. An inclusion error arises when a

14 Ravallion (1998) describes the following two-step procedure to identify the poor: (1)
specify a reference level of utility and (2) derive a money-metric identification cutoff cor-
responding to this reference level of utility. In practice, the ideal of welfare-consistency
remains challenging when prices vary and requires the use of methods for the estima-
tion of the expenditure function (Deaton and Muellbauer, 1980) and the construction
of “equivalent-incomes”, i.e., money-metric utilities (Samuelson and Swamy, 1974; Dimri
and Maniquet, 2019). The most complete review of this literature can be found in
Ravallion (2016).

15 In fact, it is not necessary that weights correspond to prices in order for the method
to be welfare-consistent. Indeed, any identification method whose identification contour
crosses this increasing path in bundle z (and only in that bundle) is welfare-consistent.

16 Constraints like ignorance or administrative barriers may hinder the proper func-
tioning of markets and thus force individuals to consume non-optimal endowments.

17 In other words, in the absence of a market, even if the marginal rate of substitution
at bundle z in Figure 2 could be correctly estimated, a linear identification method
based on this marginal rate of substitution would not be welfare-consistent.
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non-poor individual is identified as poor.18

The absence of guidance for multidimensional poverty measurement
practitioners follows from the absence of a welfarist theory that acknowl-
edges the existence of these mis-identifications. Non-welfarist theories
(Bourguignon and Chakravarty, 2003; Alkire and Foster, 2011a; Datt, 2019)
do not consider the existence of an indifference curve U . Instead, they di-
rectly assume that individuals identified as poor are poor.19 In contrast,
welfarist theories (Maasoumi and Lugo, 2008; Decancq et al., 2019) assume
that the indifference curve U is known and used for identification. As a
result, they do not consider an identification contour with a different shape.

2.3 Comparing imperfect identification methods

We propose to rank imperfect identification methods by comparing their
“distance” to welfare-consistency. This distance is defined as the total “cost”
resulting from all identification errors. This distance thus relies on a cost
function C(x), which is continuous, strictly increasing in U(x) − U when
U(x) > U and strictly increasing in U−U(x) when U(x) < U .20 We assume
that C(x) = 0 when U(x) = U and that C is smooth, i.e. twice differen-
tiable everywhere except maybe when U(x) = U . Figure 3 provides two ex-
amples of such cost functions. The interpretation for the mis-identification
costs depends on the purpose of identifying the poor, as discussed in Ap-
pendix 7.2.

(a)

U (x)

C

U

(b)

U (x)

C ′

U

Figure 3: Two different cost functions C and C ′.

The two types of error may occur in a given allocation x and the to-
tal mis-identification cost sums the costs of exclusion errors and inclusion
errors

T (x) =

∫

i ∈ Np(x)\N̂p(x) ∪ N̂p(x)\Np(x)

C(xi) di, (2)

18 An inclusion error may arise when a bundle is above indifference curve U but below
the identification contour (see Section 3).

19 The counting approach to multidimensional deprivation (Atkinson, 2003) does not
always explicitly identify a set of individuals as poor. Some of its refinements, e.g.,
Aaberge et al. (2019), either do not aim at identifying the poor, or implicitly assume
that all individuals with at least one deprivation are identified as poor.

20 This definition of the cost function C(x) seems to suggest that our theory provides a
special importance to the welfare function U , but this is not the case. Our objective here
is to present a simple definition for C. Our theory does not rely on the welfare function
U , but rather on the preference relation that U represents. Indeed, our comparison
criterion requires robustness to all cost functions C.
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By definition, a welfare-consistent method is such that T (x) = 0 and an
imperfect identification method yields T (x) > 0. Given some allocation,
an identification method is further from welfare-consistency than another
method when the former yields a larger total cost than the latter.

A robust comparison of two identification methods should not depend
on the particular cost function C selected. Also, it should not depend on
the particular allocation considered, and therefore should not depend on
the joint distribution of endowments F .21 We say that an identification
method identifies (the poor) worse than another method if the total
cost of the former is strictly larger than the total cost of the latter for all F
and all C. When this is the case, it is clear that the former method should
not be used.

Of course, this robust criterion for comparison yields a partial ranking of
identification methods. We also define another “weaker” criterion in order
discriminate among identification methods. We say that an identification
method may identify (the poor) optimally in some set of identification
methods if there exist some F and some C such that this identification
method minimizes the total cost in the set considered. When this is the
case, at our level of generality, there is no clear reason to discard this
identification method. This second criterion is related to the previous one.
Indeed, if a method identifies worse than another method, this method
never identifies optimally in any set containing the latter method. However,
it can be that a method never identifies optimally in some set even if the
method does not identify worse than any particular method in the set.

One limitation of these two criteria is that they depend on the shape
of indifference curve U , which we assume is imperfectly known. However,
complete knowledge of this shape is not necessary in order to apply these
criteria. Indeed, in the absence of markets, the total cost can alternatively
be written as

T (x) =

∫

Ein∪Eex

C(x)f(x)dx, (3)

where Ein and Eex are the sets of bundles on which the identification
method makes inclusion and exclusion errors, respectively. For instance, in
Figure 2, we have Ein = ∅ and Eex corresponds to the area between the
identification contour and indifference curve U . This second formulation
reveals that, regardless of C and F , the total cost is smaller when the sets
Ein and Eex associated to one method are subsets of the corresponding sets
Ein and Eex associated to another method. Thus, our main criterion can be
applied when the identification contour of the former is an unambiguously
better approximation of the indifference curve U than the identification
contour of the latter. As we show below, our two restrictions on the shape
of indifference curve U imply that very limited information on this shape
is often sufficient when comparing mainstream identification methods.

21 This is particularly important when the identification method is used in order to
construct a multidimensional poverty measure. Indeed, the objective of such measure is
to perform pairwise comparisons of different allocations.
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3 Better identification when data are cardinal

We assume in this section that there is no market between the two di-
mensions and that achievements in the two dimensions are cardinally mea-
sured.22 Consumption is typically cardinally measured.23 This can also be
the case of health when measured in quality-adjusted life years or healthy-
years equivalents (Mehrez and Gafni, 1989). This can also be the case of
education when measured in learning-adjusted years of schooling (Corral
et al., 2021). We use our theory in order to compare linear identification
methods that rely on different information bases.

3.1 Three families of linear identification methods

In practice, mainstream identification methods are linear identification
methods (LIMs). LIMs have two main characteristics. First, they are
based on a reference deprivation bundle z = (z1, z2) ∈ R

2
++ whose com-

ponent zj > 0 is dimension j’s deprivation cutoff. Second, their aggregation
function M makes a weighted sum of outcomes in all dimensions. Under
information constraints, a linear aggregation constitutes a natural default
choice, especially when it is backed by axiomatic justifications (Alkire and
Foster, 2011b).

We distinguish three families of LIMs, which differ by the information
bases they use in order to measure outcomes. The mainstream family uses
the deprivation-status basis in order to identify the poor (Alkire et al.,
2015). For any individual i the deprivation bundle z and her bundle xi

define a vector of deprivation statuses si ∈ {0, 1}2 such that

sij = 1 if xij < zj ,

= 0 if xij ≥ zj .

This information basis has the key advantage that it can be used both
on ordinal and cardinal data. Let wS = (wS

1 , w
S
2 ) ∈ [0, 1]2 be a vector of

weights such that
∑

j w
S
j = 1. Let kS ∈ [0, 1] denote the identification

threshold. A status-based linear identification method (status-LIM)
is defined as a triplet (z, wS, kS) that identifies i as poor when

wS
1 si1 + wS

2 si2 > kS. (4)

For instance, both the UNDP-OPHI’s global MPI and the World Bank’s
MPM use status-LIMs, though they consider more than two dimensions.
We illustrate this for the World Bank’s MPM in Section 7.1.

A comment is in order. We do not consider that the deprivation bundle
z is exogenously-given. We rather consider z as a parameter of an LIM.

22 A dimension is cardinally measured when achievements in this dimension are or-
dered and the distances between achievements can be meaningfully compared.

23 Monetary poverty is typically measured using cardinal data. However, when exactly
one dimension is cardinally measured and the other dimensions are ordinally measured,
we are virtually in a case for which all dimensions are ordinally measured. Indeed, when
exactly one dimension is cardinally measured, the identification method cannot take
advantage of the cardinal nature of this dimension.
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Hence, we do not require a priori that the deprivation bundle z corresponds
to the extreme achievements bundle e, nor that bundle z provides utility
level U . For this reason, we do not call z a “poverty” bundle.24 There is a
priori no special interpretation to being deprived in dimension j, i.e., having
achievement in dimension j below zj , other than having a low achievement
in that dimension.

Under two dimensions, any non-trivial status-LIM narrows down to
either the union approach (union-LIM) or the intersection approach
(intersection-LIM).25 26 Individual i is identified as poor under the union
approach if xi1 < z1 or xi2 < z2, while individual i is identified as poor
under the intersection approach if both xi1 < z1 and xi2 < z2.

27 These
two approaches are discussed in the early literature on multidimensional
poverty measurement (Tsui, 2002; Bourguignon and Chakravarty, 2003).
The identification contours of a union-LIM and an intersection-LIM are
respectively illustrated in Figure 4.b and 4.c.

When data are cardinal, the use of the dichotomous deprivation-status
basis has been criticized. Ravallion (2011) suggests using instead the
achievement basis, which is used in monetary poverty measurement. The
achievement basis measures outcomes on a continuous scale and thus avoids
wasting potentially relevant information. Let wA = (wA

1 , w
A
2 ) ∈ [0, 1]2 be a

vector of weights such that
∑

j w
A
j = 1. An achievement-based linear

identification method (achievement-LIM) is defined as a pair (z, wA)
that identifies i as poor when

wA
1 xi1 + wA

2 xi2 < kA, (5)

where the identification threshold kA = wA
1 z1 + wA

2 z2 is entirely defined
by z and wA, and is such that kA > 0. In the monetary poverty litera-
ture, weights reflect prices (see Eq. (1)) and the identification cutoff kA

corresponds to the monetary line (under normalized prices). The identifi-
cation contour of an achievement-LIM, defined as the frontier of Eq. (5),
is illustrated in Figure 4.a. The achievement basis thus allows defining an
identification contour whose trade-off between the dimensions corresponds
to the marginal rate of substitution at z, at least if it is known.

A third alternative information basis is the deprivation basis (Maa-
soumi and Lugo, 2008). Pattanaik and Xu (2018) suggest using linear

24 Recall that, by definition, an individual i is poor when U(xi) < U , regardless of
the deprivation bundle z considered.

25 Under three or more dimensions, status-LIMs are much richer than these two
approaches as shown by Alkire and Foster (2011a) (see Section 4.1). Our main results
are robust to considering more than two dimensions (see Appendix 7.7).

26 We consider as trivial a status-LIM for which the deprivation-status of some di-
mension j never affects identification. This is for instance the case of dimension 2 if
wS

2
< 0.5 < kS < wS

1
, because then an individual i is identified as poor if and only if

si1 = 1. For our purpose, we can safely ignore trivial status-LIMs because they corre-
spond to some LIMs from another family defined below, namely achievement-LIMs for
which wS

j = 1 for some j.
27A status-LIM narrows down to the union approach when wS

1
> kS and wS

2
> kS .

The intersection approach is a case of linear identification when wS
1
≤ kS , wS

2
≤ kS and

wS
1
+ wS

2
> kS .
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Figure 4: Identification contours for an achievement-LIM (a), a union-
LIM (b) and an intersection-LIM (c).
Individuals consuming a bundle in the area between the (red) identification
contour and the axes are identified as poor.

identification in the deprivation basis, in order to account for the depth of
deprivation. For any individual i the deprivation bundle z and her bundle
xi define a vector of deprivation di ∈ [0, 1]2 such that

dij =
zj − xij

zj
if xij < zj ,

= 0 if xij ≥ zj.

Let wD = (wD
1 , w

D
2 ) ∈ [0, 1]2 be a vector of weights such that

∑

j w
D
j = 1.

Let kD ∈ [0, 1] denote the identification threshold. A deprivation-based
linear identification method (deprivation-LIM) is defined as a triplet
(z, wD, kD) that identifies i as poor when

wD
1 di1 + wD

2 di2 > kD. (6)

The identification contours of two different deprivation-LIMs are illustrated
in Figure 5.a and 5.b.

x2

x1

b z

(a) (b)
x2

x1

b z

Figure 5: Identification contours for two different deprivation-LIMs.

(a) (z, wD, kD) with wD
1 > kD and wD

2 > kD. (b) (z, wD′

, kD′

) with wD′

1 >
kD′

and wD′

2 < kD′

.

Two remarks are in order. First, the inequality signs in Eq. (4) and
Eq. (6) are reversed with respect to that in Eq. (5). The reason is that
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welfare is increasing in achievements, but decreasing in deprivations and
deprivation-statuses. Second, as we show in Appendix 7.3, deprivation-
LIMs subsume both achievement-LIMs and union-LIMs. That is, for any
achievement-LIM (z, wA), there exists a deprivation-LIM (z′, wD, kD) that
defines the same identification contour and therefore always identifies the
same individuals as poor. In our terminology, we say in that case that
(z, wA) is mimicked by (z′, wD, kD). In contrast, no deprivation-LIM has
the same identification contour as an intersection-LIM. These relationships
are illustrated by the Venn diagram in Figure 6.

status-LIMs
achievement-LIMs

deprivation-LIMs

union-LIMs intersection-LIMs

Figure 6: Venn diagram for different types of LIMs.

In the next subsections, we use our welfarist theory in order to compare
different LIMs.

3.2 Improving LIMs requires little information

In this subsection, we show by means of an example that very limited
information on the shape of indifference curve U may be sufficient in order
to improve on some LIMs. This may require no more knowledge than a
bundle on the indifference curve U and the marginal rate of substitution
at that bundle, or some extreme achievement thresholds ej.

Consider an intersection-LIM whose deprivation bundle z is on the in-
difference curve U , as illustrated in Figure 7.a. If the practitioner knows the
marginal rate of substitution at z, then she can reduce exclusion errors us-
ing an achievement-LIM whose identification contour passes through z and
whose slope is equal to the marginal rate of substitution at z. These two
LIMs do not make inclusion errors, but the achievement-LIM makes fewer
exclusion errors. As shown in Figure 7.a, the intersection-LIM makes exclu-
sion errors on the two triangles Intex and Int′ex, which the achievement-LIM
does not make. Hence, the achievement-LIM identifies the poor better than
the intersection-LIM.

If the practitioner also has some information on extreme achievement
thresholds ej, she can further reduce exclusion errors by constructing a
deprivation-LIM that takes advantage of this information. As illustrated
in Figure 7.b, the identification contour of this deprivation-LIM mimics
that of the achievement-LIM between these asymptotes.28 Again, the

28 Here is how to construct a deprivation-LIM (z′, wD, kD) from the two bundles x
and x′ with x1 > x′

1
and x2 < x′

2
that define its identification contour, i.e., bundles x

and x′ are at the intersection of its three segments. Take the deprivation bundle to be
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deprivation-LIM makes no inclusion error and does not make the exclusion
errors that the achievement-LIM makes on the areas Aex and A′

ex. Hence,
the deprivation-LIM identifies the poor better than the achievement-LIM.

e1

e2

x1

U

b z

x2

Intex

Int′ex

e1

e2

x1

U

b z

x2

b z
′

Aex

A′
ex

(a) (b)

Figure 7: The intersection-LIM identifies worse than the achievement-
LIM (a), which in turn identifies worse than the deprivation-LIM (b).
The intersection-LIM and the achievement-LIM are based on z while
the deprivation-LIM is based on z′. The identification contour of the
achievement-LIM is dashed in (b).

As graphically illustrated in Figure 7, we have successively improved
on the intersection-LIM by considering alternative LIMs whose identifica-
tion contours are better approximations of the indifference curve U . The
concave identification contour associated to an intersection-LIM does not
approximate well a convex indifference curve. The linear identification con-
tour associated to an achievement-LIM provides a better approximation,
but not as good as that of the more flexible identification contour associated
to a deprivation-LIM.

3.3 Status-LIMs versus Achievements-LIMs

Ravallion (2011) criticizes the identification inherent to status-LIMs. He
argues that status-LIMs used in practice aggregate dimensions in a way that
is ad-hoc and unrelated to well-being. In particular, he observes that their
weights wS are typically unrelated to the marginal rates of substitution
at z. He suggests using instead achievement-LIMs with weights wA that
correspond to these marginal rates of substitution. In this section, we use
our theory in order to compare status-LIMs and achievement-LIMs. Our
results show that Ravallion makes a valid point, but that his critique is not
necessarily devastating for status-LIMs.

Under two dimensions, status-LIMs are either intersection-LIMs or union-
LIMs. Proposition 1 shows that achievement-LIMs are indeed superior to
intersection-LIMs. As the proof reveals, the only information that is neces-
sary to construct an achievement-LIM that identifies the poor better than

(z′
1
, z′

2
) = (x1, x

′

2
). The remaining three parameters wD

1
, wD

2
and kD solve the following

system of three equations: kD = wD
1

∗ (x1 − x′

1
)/x1, kD = wD

2
∗ (x′

2
− x2)/x

′

2
and

wD
1
+ wD

2
= 1.
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an intersection-LIM is the bundles at which the identification contour of
the latter intersects the indifference curve U .

Proposition 1. Any intersection-LIM identifies the poor worse than some
achievement-LIM.

Proof. See Appendix 7.5. �

However, at our level of generality, we cannot conclude that achievement-
LIMs are superior to union-LIMs. Our theory reveals that union-LIMs have
advantages that achievement-LIMs do not have, and the other way around.

Union-LIMs offer the possibility to identify an individual as poor when
her achievement is extreme in one dimension, regardless of her achievements
in other dimensions. This ability allows union-LIMs not to make any exclu-
sion errors on extremors. However, taking advantage of this ability while
limiting inclusion errors requires selecting rather small dimension-specific
cutoffs zj . As we show in Appendix 7.4, optimal union-LIMs are such that
U(z) < U . As a result, optimal union-LIMs are bound to make exclusion
errors on cumulators.

In contrast, achievement-LIMs are bound to make exclusion errors on
some extremors because of the substitutability inherent to their identifi-
cation contour. Limiting an achievement-LIM’s exclusion errors requires
selecting rather large dimension-specific cutoffs zj. As we show in Ap-
pendix 7.4, optimal achievement-LIMs are typically such that U(z) > U .29

This implies that optimal achievement-LIMs make limited exclusion errors
on cumulators, but they still make exclusion errors on extremors.

We illustrate this reasoning in Figure 8 using a particular example
for which neither the achievement-LIM nor the union-LIM make inclu-
sion errors. The optimal union-LIMs that does not make inclusion errors
has its deprivation bundle equal to the extreme bundle e. The optimal
achievement-LIMs that does not make inclusion errors has its deprivation
bundle on the indifference curve U . As shown in Figure 8, the union-LIM
makes exclusion errors on cumulators in area Uex, which the achievement-
LIM does not make. In contrast, the achievement-LIM makes exclusion
errors on extremors in area Aex and A′

ex, which the union-LIM does not
make. Which of these two LIMs has the largest total cost depends on the
respective sizes of these areas, which depends on the degree of complemen-
tarity associated to indifference curve U . This also depends on the relative
number of individuals whose bundles lies in these areas, which depends on
the joint distribution F .

Proposition 2 formalizes the fact that achievement-LIMs need not iden-
tify the poor better than union-LIMs.

Proposition 2. A union-LIM may identify the poor optimally in the set
{status-LIMs, achievements-LIMs}.

29 More precisely, any optimal achievement-LIM is mimicked by an achievement-LIM
whose deprivation bundle z is such that U(z) > U . Indeed, the same identification
contour is associated with different achievement-LIMs defined by the same weights wA

but different deprivation bundles.
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Figure 8: Achievement-LIMs need not identify better than union-LIMs.

The achievement-LIM is based on z and the union-LIM is based on e.

Proof. See Appendix 7.6. �

More fundamentally, our theory reveals that it is not sufficient that the
weights of an LIM correspond to marginal rates of substitution for this
LIM to yield a good identification. Indeed, in the absence of markets, a
good identification requires that the whole shape of the identification con-
tour be a good approximation of the shape of the indifference curve U .
Having weights equal to marginal rates of substitution allows for a good
approximation locally around a particular point of the indifference curve
U . However, this is no guarantee that the approximation remains good
further away from this point. Achievements-LIM are not good at identify-
ing extremors because they allow a high achievement in one dimension to
compensate for an extremely low achievement in another dimension.30 In
contrast, Union-LIMs are good at identifying extremors because their iden-
tification contour approximates well the asymptotes of indifference curve
U . Hence, in the absence of markets, the fact that the weights wS of status-
LIMs differ from marginal rates of substitution is not a sufficient reason to
replace status-LIMs by achievement-LIMs.

3.4 Deprivation-LIMs are superior

Pattanaik and Xu (2018) criticize the identification inherent to status-
LIMs, on the grounds that it does not account for the depth of deprivation.
When data are cardinal, they suggest using instead deprivation-LIMs. Us-
ing our theory, we show that not only deprivation-LIMs are superior to
status-LIMs, but also to achievement-LIMs.

A deprivation-LIM may appear “strange” at first sight because it does
not identify as poor some individuals who are deprived in all dimensions,31

as can be observed in Figure 5. However, as we show in Appendix 7.4, a
general characteristic of optimal LIMs is that their deprivation bundle does
not lie on the indifference curve U . Fundamentally, the reason being that

30 Achievements-LIM are good at identifying cumulators because their identification
contour approximates well the middle of indifference curve U .

31 This always happens when kD > 0, the case for which deprivation-LIMs do not
correspond to union-LIMs.
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all LIMs make misidentification errors and optimal LIMs make a trade-off
between inclusion errors, which are limited by selecting smaller dimension-
specific cutoffs, and exclusion errors, which are limited by selecting larger
dimension-specific cutoffs. Therefore, the deprivation bundle of an optimal
LIM is always disconnected from indifference curve U and thus at least
slightly disconnected from the definition of the poor. This is the reason
why we call z a “deprivation” bundle rather than a “poverty” bundle.

Proposition 3 shows that an LIM identifies the poor optimally in the
set of LIMs only if it is a deprivation-LIM. Importantly, this result is
not the direct consequence of the ability of deprivation-LIMs to mimic
achievement-LIMs or union-LIMs (Lemma 1). Indeed, we can always con-
struct deprivation-LIMs that perform strictly better than these LIMs. Deprivation-
LIMs perform strictly better than achievement-LIMs because the former al-
low reducing the exclusion errors that the latter make on extremors. This
only requires information on extreme achievement thresholds ej . The con-
struction is illustrated in Figure 9.a, where the achievement-LIM makes
exclusion errors on the areas Aex and A′

ex but not the deprivation-LIM. In
turn, deprivation-LIMs perform strictly better than union-LIMs because
the former allow reducing the exclusion errors that the latter make on cu-
mulators. This only requires information on some bundle on indifference
curve U that is not identified by the union-LIM and the marginal rates of
substitution at that bundle.32 The construction is illustrated in Figure 9.b,
where the optimal union-LIM makes exclusion errors on the areas Uex but
not the deprivation-LIM.

(a) (b)

x1

U

b z
′

A′
ex

e2

e1

b

Aex

x2

z

x1

U

b z
′

b
Unex

x2

z

Figure 9: The achievement-LIM identifies the poor worse than the
deprivation-LIM (a). The union-LIM identifies the poor worse than the
deprivation-LIM (b).
The achievement-LIM is based on z and the deprivation-LIM on z′ (a).
The union-LIM is based on z and the deprivation-LIM on z′ (b).

Finally, Proposition 1 implies that deprivation-LIMs perform better
than intersection-LIMs because deprivation-LIMs perform better than achievement-
LIMs. Proposition 3 formalizes the above reasoning.

32 Strictly speaking, the information on the marginal rates of substitution at that
bundle is not even necessary in order to design a deprivation-LIM that strictly improves
on the union-LIM.
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Proposition 3. Any achievement-LIM identifies the poor worse than some
deprivation-LIM. Any status-LIM identifies the poor worse than some deprivation-
LIM.

A priori, the fact that deprivation-LIMs identify the poor better than
achievement-LIMs may appear surprising. Indeed, the achievement basis
has more information than the deprivation basis, which censors outcomes
above the deprivation cutoffs. However, under the constraint of linear
aggregation, this censoring provides more flexibility to the identification
contour of deprivation-LIMs. As a result, deprivation-LIMs combine the
advantage of union-LIMs, which is to identify all extremors, and the advan-
tage of achievement-LIMs, which is to identify a large part of cumulators.
Proposition 3 implies that, when the dimensions are measured through
cardinal data, the practitioner should not use status-LIMs or achievement-
LIMs, but rather deprivation-LIMs. This provides a formal justification for
the suggestion of Pattanaik and Xu (2018).

We have only considered the 2-dimensions case, but the main points that
we have made in this section should have broader validity, as we discuss in
Appendix 7.7.

4 Better identification when data is ordinal

We assume in this section that there is no market between the two dimen-
sions and that achievements in the two dimensions are “ordinally” mea-
sured.33 When data is ordinal, achievement-LIMs and deprivation-LIMs
cannot be meaningfully used. We show that the insights gained in Section
3 help improve LIMs based on status.

4.1 The case for two dimension-specific cutoffs

The main limitation with current status-LIMs is that they do not allow to
simultaneously identify extremors and cumulators. As we show below, the
practitioner is forced to make a choice between making a decent identifica-
tion of extremors or making a decent identification of cumulators.

Recall that status-LIMs are either union-LIMs or intersection-LIMs in
the 2-dimensions case. As explained in Section 3.3, union-LIMs are ideal
for the identification of extremors. However, they cannot properly identify
cumulators. Indeed, optimal union-LIMs must have a small deprivation
bundle, in the sense that U(z) < U (see Appendix 7.4). This implies that
optimal union-LIMs systematically make exclusion errors on cumulators.
This is illustrated in Figure 10.a where the union-LIM identifies the ex-
tremor i′, but not the cumulator i because in each dimension j ∈ {1, 2}
her achievement xij is just above the deprivation cutoff zj . In other words,
union-LIMs violate the widespread idea that overlapping deprivations mat-

33 By “ordinally” measured, we mean that they are ordered categorical. That is,
achievements are ordered but differences between achievement levels cannot be com-
pared.
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ter when identifying the poor (Ferreira and Lugo, 2013; Aaberge and Bran-
dolini, 2015).

In contrast, intersection-LIMs are well-suited for the identification of
cumulators. However, they will systematically make exclusion errors on
some extremors. Indeed, intersection-LIMs do not identify as poor an in-
dividual with an extreme deprivation in one dimension if she has no de-
privation in the other dimension. This is illustrated in Figure 10.b where
the intersection-LIM identifies the cumulator i, but not the extremor i′

because her achievement xi′2 is above the deprivation cutoff z2. In other
words, intersection-LIMs violate the widespread idea that, when identifying
the poor, there is no presumption of a possible trade-off between dimen-
sions of deprivation (Alkire et al., 2015; Atkinson, 2016).34 Being deprived
in one dimension may be sufficient to be identified as poor, regardless of
achievements in the other dimensions.

b
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b
xi
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z

x1

b

b
xi

x2 x2

U

U
xi′

(a) (b)

Figure 10: Optimal union-LIMs identify extremors well but not cumu-
lators (a). Optimal intersection-LIMs identify cumulators well but not
extremors (b).

Individual i is a cumulator and individual i′ is an extremor.

The current status-LIMs are not flexible enough in order to genuinely
account for the multidimensional nature of well-being. Indeed, this multi-
dimensional nature implies the existence of two types of poor individuals,
namely extremors and cumulators. Identifying extremors implies using the
union approach together with a rather small dimension-specific cutoff zj .
In contrast, identifying cumulators implies using the intersection approach
together with a rather large dimension-specific cutoff zj .

The natural solution is for status-LIMs to rely on two dimension-specific
cutoffs, one extreme cutoff and one moderate cutoff. There would thus be
three deprivation categories in any dimension: extreme deprivation, moder-
ate deprivation and non-deprivation. Extremors would be identified from
their extreme deprivation status using the union approach. Cumulators
would be identified from their moderate deprivation statuses using the in-
tersection approach.35

34 This relates to the issue whether the depth of an individual’s deprivation in one
dimension can be sufficient to identify her as poor regardless of her achievements in
other dimensions (Duclos et al., 2006; Ferreira and Lugo, 2013).

35 Our distinction between extreme and moderate deprivations has a similar spirit
but is yet conceptually different from the distinction “basic” vs “non-basic” attributes
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For instance, in the case of monetary poverty, the extreme cutoff could
correspond to the absolute $1.9 a day international line of the World Bank
(Ferreira et al., 2016). In turn, the moderate cutoff could correspond to
a relative poverty line such as the Societal line of the World Bank (World
Bank, 2018; Jolliffe and Prydz, 2021). Any individual below the interna-
tional line would be identified as (multidimensionally) poor, regardless of
her achievements in other dimensions. In contrast, an individual whose in-
come is above the international line but below the Societal line would only
be identified as poor if she is simultaneously deprived in other dimensions.
Such identification method would be in line with the idea that being abso-
lutely poor is worse than being only-relatively poor (Decerf and Ferrando,
2021; Decerf et al., 2021).

Our suggestion of using two dimension-specific cutoffs when measuring
multidimensional poverty has a deeper motivation than the practice of con-
sidering two poverty lines when measuring monetary poverty. In the latter
case, the motivation is to perform robustness checks based on alternative
poverty lines in order to mitigate the (partial) arbitrariness of any poverty
line. In contrast, when measuring multidimensional poverty, two cutoffs
are necessary in order to consistently assess low well-being using a unique
welfare threshold U . Indeed, an individual with a moderate deprivation
in one dimension may have the same welfare as another individual with
an extreme deprivation in the same dimension, for instance if the former
cumulates moderate deprivations in other dimensions.36

Importantly, there still is a benefit of using two cutoffs when measur-
ing multidimensional poverty using more than two dimensions. Indeed,
the same tension arises between identifying extremors or cumulators when
selecting the cutoff in a given dimension. This is clear when restricting
the comparison to the union and the intersection approaches. In practice,
the fraction of individuals identified as poor by the union approach (resp.
the intersection approach) tends to one (resp. zero) as the number of di-
mensions considered increases (Rippin, 2010; Dotter and Klasen, 2017).
This practical issue is mitigated by selecting small cutoffs when using the
union approach and by selecting large cutoffs when using the intersection
approach. However, our theory implies that increasing (or reducing) dimen-
sional cutoffs in order to deal with this practical issue leads to increasing
mis-identification errors.

As shown by Alkire and Foster (2011a), when at least three dimensions
are accounted for, status-LIMs can be much richer than only the union
and the intersection approaches. The AF status-LIMs are unions of inter-
sections (of dimensions with deprivation status).37 Their insight is highly

introduced by Dhongde et al. (2016). For instance, being deprived in a “basic” attribute
need not be sufficient to be identified as poor.

36 When measuring monetary poverty, an individual with income between the two
poverty lines must be considered better-off than another individual with income below
the lower poverty line.

37 As Eq. (4) reveals, an individual i is identified as poor if the set of dimensions
on which she is deprived, which we denote by Di, have a total weight

∑

j∈Di
wS

j larger

than kS . Hence, individual i is deprived on the intersection of the dimensions in Di.
Then, a status-LIM a la AF identifies as poor the union of individuals for whom the
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valuable because it allows overcoming the practical issue faced by union-
LIMs and intersection-LIMs. This cleared the way for the implementation
of multidimensional poverty measures, such as the global Multidimensional
Poverty Index (global MPI) (Alkire et al., 2015). However, the extremor
versus cumulator tension remains only partially addressed. Indeed, the
global MPI measures each dimension using several dichotomous indicators,
which are thus one-cutoff indicators. The global MPI’s weights are such
that a sufficient condition for an individual to be identified as poor is that
she is deprived in all the indicators in a given dimension. This implicitly
generates an extreme deprivation category in the dimension. Yet, being
based on dichotomous indicators, this kind of measure cannot account for
the depth of deprivation in a given indicator. Accounting for the depth
of deprivation is precisely the objective of using two-cutoffs indicators, as
illustrated above for the monetary dimension.

4.2 Refined AF-LIMs

Defining status-LIMs based on two dimension-specific cutoffs only require
a small refinement of AF status-LIMs. First, two deprivation bundles are
necessary, an extreme deprivation bundle ze = (ze1, z

e
2) and one moderate

deprivation bundle zm = (zm1 , zm2 ). Second, both extreme and moderate de-
privation statuses in any dimension j should be attached a weight. There-
fore, we would have we = (we

1, w
e
2) and wm = (wm

1 , w
m
2 ) where wm

j < k < we
j

for all j ∈ {1, 2} and k is the identification threshold. A refined AF-LIM
is then defined as a tuple (ze, zm, we, wm, k) that identifies i as poor when

we
1s

e
i1 + wm

1 s
m
i1 + we

2s
e
i2 + wm

2 s
m
i2 > k, (7)

where seij = 1 when i is extremely deprived in dimension j and 0 otherwise,
and smij = 1 when i is moderately deprived in dimension j and 0 otherwise.

Observe that, for the sake of identification, there is in fact no need to
select values for we. Indeed, any extremely deprived individual is identified
as poor, regardless of the exact weights.

The identification contour associated to a refined AF-LIM is illustrated
in Figure 11. This refined contour is a mixture of the respective iden-
tification contours of an intersection-LIM and a union-LIM. Around the
middle of indifference curve U , the refined contour corresponds to that of
the intersection-LIM. Around the two sides of indifference curve U , the
refined contour corresponds to that of the union-LIM.

We have argued that the additional flexibility allowed by refined AF-
LIMs allows to genuinely account for the multidimensional nature of well-
being. Unsurprisingly, this additional flexibility allows better identifying
the poor than when using classical status-LIMs.

Proposition 4. Any status-LIM identifies the poor worse than some re-
fined AF-LIM.

Proof. See Appendix 7.8. �

total weight on their Di exceeds kS .
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Figure 11: Identification contour for a status-LIM with two dimension-
specific cutoffs per dimension.

The Multidimensional Poverty Measure (MPM) introduced in World
Bank (2018) implicitly follows the idea that any individual who is extremely
deprived in the monetary dimension should be identified as (multidimen-
sionally) poor. The monetary dimension is captured by a single dichoto-
mous variable, which captures whether the individual is below the $1.9
a day international line. All dimensions are given equal weight. In the
3-dimensions version of the MPM, the monetary dimension has a weight
equal to 1/3, which corresponds to the identification threshold k = 1/3 se-
lected. In the 5-dimensions version of the MPM, the monetary dimension
has a weight equal to 1/5, which corresponds to the identification threshold
k = 1/5 selected. Hence, the design of the MPM is consistent with the idea
of extreme (monetary) deprivation. We have shown above how to improve
its design by incorporating the idea of moderate (monetary) deprivation,
using a refined AF-LIM.

5 Monetary versus non-monetary poverty

In this section, we use our theory in order to study the identification of
the multidimensionally poor from data on monetary and non-monetary
outcomes. In particular, we consider identification under different data
constraints that the practitioner may face. We show that, in the absence of
data constraint, identification methods that neglect either monetary or non-
monetary outcomes are inferior to methods combining both. When only
marginal distributions are available, we show that estimates of the head-
count ratio can potentially be very imprecise. Finally, we show that some
current practices can be understood as attempts at improving identification
under data constraints.

5.1 No data constraints

One major open question relates to which dimensions should be taken into
account when identifying the multidimensionally poor. Our welfarist theory
suggests that the dimensions to include are those responsible for low well-
being. Any such dimension should thus combine at least two characteristics.
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First, the dimension should be important for human well-being. Second,
a significant fraction of the population should have low outcomes in the
dimension.38 Whether a particular dimension satisfies these requirements
is an empirical question. Yet, there is little doubt that it is typically the
case for the monetary dimension and for the health dimension.

Assume that the practitioner faces no data constraints. Hence, there
is a survey that collects individual outcomes on both the monetary and
the health dimensions. We show that an identification method combining
information on both dimensions identifies the poor better than an identi-
fication method that ignores one of these two dimensions. This result is a
straightforward implication of our theory. This result may in fact appear
trivial, but there are substantial debates on whether monetary poverty
should be combined with non-monetary poverty. For instance, Atkinson
(2016) does not recommend the World Bank to track a multidimensional
poverty measure that combine both.39 The dominant practice seems to be
to keep monetary poverty measures separated from non-monetary poverty
measures. Notable exceptions are the MPM of the World Bank (see def-
inition in Section 7.1) and the official multidimensional poverty measure
adopted in Mexico (CONEVAL, 2010).40

Formally, let x1 denote health achievements, as measured by an ordinal
variable. Let x2 denote monetary achievements as measured by the total
monetary value of consumption on market dimensions (food, non-food, etc).
Assume at this stage that individuals cannot increase their health outcomes
by consuming specialized market goods (e.g., drugs do not exist). As we
explain below, this assumption is not necessary for our next result. We say
that an LIM ignores dimension j ∈ {1, 2} if this LIM attributes a weight
wj = 0.

Any LIM that ignores monetary outcomes identifies the poor worse than
some LIM that accounts for both dimensions. Indeed, the LIM that ignores
monetary outcomes identifies the (multidimensionally) poor simply by se-
lecting some health deprivation cutoff z1. Provided that the two dimen-
sions are not perfectly correlated, this LIM makes exclusion errors on some
extremors. In particular, it makes exclusion errors on individuals whose
health achievement is above z1 but whose monetary achievement is below
the extreme monetary threshold e2. Consider the union-LIM with the same
health deprivation cutoff z1 and whose monetary deprivation cutoff is equal

38 A dimension for which virtually no-one has low achievement cannot be a major
source of well-being losses. For instance, many peasants in medieval Europe where
subjected to serfdom, a condition of servitude to the local Lord. There is little doubt
that being subjected to serfdom drastically reduces a person’s well-being. However,
including a freedom-from-serfdom dimension would make little sense when measuring
multidimensional poverty in a society where serfdom has been abolished or never existed.
In contrast, such dimension would be highly relevant in a society where serfdom is
widespread.

39 See p 170 in Atkinson (2016): “It is not proposed that the [multidimensional] indi-
cator should include a monetary poverty dimension. [. . . ] The aim of Recommendations
18 and 19 is to provide indicators that complement the monetary indicator, and not to
seek to combine the two different approaches.”

40Other countries that include a monetary dimension in their national multidimen-
sional poverty measure can be found in Tables A.2 and A.3 in Unicef et al. (2021).
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to the extreme threshold e2. As illustrated in Figure 12, this union-LIM
does not make exclusion errors on area Hex, unlike the LIM that ignores the
health dimension. Moreover, this union-LIM does not make more inclusion
errors. Hence, the former identifies the poor better than the latter. The
same reasoning also shows that any LIM that ignores the health dimension
identifies the poor worse than some LIM that accounts for both dimensions.

e1

e2

Health

U

Monetary

z1

Hex

z
b

Figure 12: Methods ignoring one dimension identify the poor worse than
some methods combining the dimensions.
Ignoring the monetary dimension amounts to identify as poor individuals
whose health achievements are smaller than some z1. A union-LIM based
on z = (z1, e2) reduces exclusion errors on area Hex.

Proposition 5 acknowledges the fact that this reasoning is not limited to
linear identification methods. This result provides a welfarist foundation for
measures combining monetary and non-monetary dimensions. It justifies
the aggregation of dimensions of different nature, at least when one is
interested in identifying individuals with low well-being.

Proposition 5. Any identification method that ignores either the monetary
dimension or non-monetary dimensions identifies the poor worse than some
identification method that accounts for both the monetary and the non-
monetary dimensions.

We have assumed that individuals cannot increase their health outcomes
by consuming specialized market goods. In practice, there do exist (costly)
treatments for some health conditions. However, Proposition 5 is robust to
more realistic assumptions on health-related expenses. Indeed, the argu-
ment rests on the existence of individuals who have a high achievement in
one dimension and an extremely low achievement in the other dimension.
It is obvious that some individuals in perfect health have extremely low
monetary achievements, because one cannot “sell” their own good health.
It should also be clear that some rich individuals are in extremely bad
health, because some health conditions have no (effective) treatment. We
provide in Appendix 7.9 a more detailed discussion on the robustness of
Proposition 5 to the existence of health-related expenses.
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5.2 Only marginal distributions

We consider the case for which two separate surveys exist, one on monetary
achievements and one on health achievements. These separate surveys
provide the marginal distribution in each dimension, but no information on
the correlation that may exist between monetary and health achievements.

It is literally not possible to identify a subset of households as poor
when relying on two marginal distributions coming from separate surveys.
Indeed, identifying the poor requires partitioning one set of households into
two categories. Such partition cannot be done because the two separate
surveys contain not one but two sets of households, which may overlap or
not. Of course, one could identify the poor by only considering one of these
two sets of households. This can for instance be done by entirely ignoring
one survey, or by only using this survey in order to (somehow) impute the
missing achievements in the other survey. We consider the former case
in the next subsection and the latter case is equivalent to having no data
constraint, at least if one assumes that the imputation is reliable.

In this section, we study the implications of using two separate surveys
for poverty measurement. We focus on the poverty index most directly
related to identification, namely the (multidimensional) head-count ratio.
An important question is whether the two separate surveys contain most of
the relevant information for precisely estimating the true fraction of poor
individuals. In other words, we ask to which extent the ignored correlation
between achievements may affect the head-count ratio.

A standard approach consists in computing upper- and lower-bounds on
the head-count ratio by looking at all distributions that match the marginal
distributions observed. We consider a stylized example. For simplicity,
assume in line with Section 4 that achievements in each dimension are either
extreme deprivation (E), moderate deprivation (M) or non-deprivation (N).
An individual is identified as poor if she has one extreme deprivation or two
moderate deprivations. In each survey, three individuals are surveyed, one
is extremely deprived, one is moderately deprived and one is non-deprived,
which yields the following two marginal distributions

(E1,M1, N1),

(E2,M2, N2),

where subscripts refer to dimensions. The following two allocations are
consistent with these two marginal distributions

x =(E1, N2
︸ ︷︷ ︸

indiv. 1

;M1,M2
︸ ︷︷ ︸

indiv. 2

;N1, E2
︸ ︷︷ ︸

indiv. 3

),

x
′ =(E1, E2

︸ ︷︷ ︸

indiv. 1

;M1, N2
︸ ︷︷ ︸

indiv. 2

;N1,M2
︸ ︷︷ ︸

indiv. 3

).

with respective head-count ratios H(x) = 1 and H(x′) = 1/3.
This reveals that the ignored correlation may have big implications on

the head-count ratio, which in our example lies somewhere in the wide
bracket [1/3, 1]. This example also reveals that the head-count ratio is not
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necessarily monotonic in the correlation between achievements. Alloca-
tion x has its outcomes perfectly negatively correlated, but has the highest
head-count ratio. The impact that the association between outcomes have
on the head-count ratio depends on whether this association pushes in-
dividuals above or below the identification threshold. In our example, a
positive correlation in extreme deprivation reduces the head-count ratio
because an individual is identified as poor as soon as she has one extreme
deprivation. In contrast, a positive correlation in moderate deprivations
increases the head-count ratio because an individual is identified as poor
when she cumulates two moderate deprivations.

Together, these considerations suggest that two separate surveys only
provide a very noisy picture of the head-count ratio. There is potentially a
large added value in collecting in the same survey the achievements in all
relevant dimensions.

5.3 Only one marginal distribution

We consider the case for which only one survey exists. This survey is
assumed “specialized” in the sense that it collects information either only
on monetary poverty, or only on non-monetary poverty. We ask how to
best identify individuals with low well-being from such a specialized survey.
More precisely, we ask how to set the weights in order to decrease the
(expected) mis-identification errors.

We need to consider a slightly more general framework with m-dimensions.
The first ℓ dimensions are market goods and they form the market do-
main. The remaining m − ℓ dimensions are non-market goods and they
form the non-market domain. We assume that ℓ ∈ {2, . . . , m − 1}, which
implies that both domains are non-trivial. Any bundle x can be decom-
posed into (xm, xnm) where xm = (x1, . . . , xℓ) is the market bundle and
xnm = (xℓ+1, . . . , xm) is the non-market bundle. The non-market bundle
corresponds to non-market endowment while the market bundle is opti-
mally selected in the individual’s budget set. Individual i’s monetary ag-
gregate corresponds to the monetary value of her market bundle, i.e., to
∑ℓ

j=1 pjxij .
Our main point is that the weights given to the observed dimensions

should reflect how their achievements are related to achievements on the
non-observed dimensions.

Identifying low well-being from monetary data

We consider the case of a specialized survey covering the monetary domain.
We show by means of an example that the weights of an achievement-LIM
that minimizes mis-identification errors may deviate from market prices, at
least when market behavior is non-separable from non-market endowment.
This non-separability arise when the welfare function U cannot be written
as U(x) = U(u(xm), xnm), where function u : R

ℓ
+ → R represents behavior
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on the market domain.41

When the welfare function U is non-separable, the market bundles are
not on a single increasing path. This is for instance illustrated on Figure 13
for a case with two market dimensions and one non-market dimension on
which achievements are assumed dichotomous (either low or high achieve-
ment in the non-market dimension). The bundles are on two different
increasing paths, one increasing path for each category in the non-market
dimension. In this simple case, behavior on the market domain completely
reveals an individual’s non-market achievement.

In our example, we show that using an achievement-LIM whose weights
correspond to prices may identify the poor worse than some achievement-
LIM with other weights. Our example is illustrated in Figure 13. Assume
for simplicity that, in each of the two categories for dimension 3, there are
individuals whose welfare is above U and individuals whose welfare is below
U .42 The monetary aggregate necessary to have welfare level U is smaller
for those having high achievement in dimension 3 than for those having low
achievement. In Figure 13, an individual with low (resp. high) achievement
in dimension 3 is not poor when her bundle is above bundle xL (resp. xH).
Clearly, xL corresponds to a larger monetary aggregate than xH . It is thus
not possible to perfectly identify the poor in our example when weights
correspond to prices. Consider the identification contour drawn in red in
Figure 13, which is associated to an achievement-LIM whose weights differ
from prices. This achievement-LIM perfectly identifies the poor. Thus,
this achievement-LIM identifies the poor better than an achievement-LIM
whose weights correspond to prices.

Here is the intuition for the suboptimality of equating weights to prices.
Assume that the non-market dimension 3 is health and that a low achieve-
ment means that the person cannot move without a wheelchair. Assume
that market dimension 1 captures books consumption and market dimen-
sion 2 captures sport material consumption. The fact that an individual
spends a larger fraction of her budget on books may be a signal of her low
health achievements. When achievement-LIMs are limited to the market
domain, it is possible to take advantage of this signal in order to decrease
expected mis-identification errors. This can be done in our example by at-
tributing lower relative weights to books than their relative prices. When its
weights differ from prices, an achievement-LIM implicitly attribute differ-
ent monetary lines to individuals with different non-market achievements.

This suggests that, when trying to identify the multidimensionally poor
from a survey covering the monetary domain, health expenditures could

41 Formally, we say that U is separable if for all xm, xnm, xm′

and xnm′

we have

U(xm, xnm) ≥ U(xm′

, xnm) ⇔ U(xm, xnm′

) ≥ U(xm′

, xnm′

).

Graphically, the indifference map on the market domain does not depend on achieve-
ments on the non-market domain, even though the utility level attached to each indif-
ference surface typically depends on them.

42 This assumption violates our requirements on the indifference curve U , namely the
existence of an extreme threshold. One can construct a more complicated example that
satisfies these requirements, although it would be a bit more involved.

29



x2

x1

UH

xH

UL pathL

pathH

b

b

b

b

b

b

b
b

b xL
achievement-LIM

(wA 6= p)

Figure 13: Equating weights to market prices needs not yield an optimal
identification of the poor.
Budget lines for bundles xH and xL are in green, the two market dimensions
(shown) are not separable from the third non-market dimension, which ad-
mits values L or H.

be excluded from total consumption. Such exclusion would correspond
to setting the weights associated to health expenditures to zero. Again,
the rationale being that health expenditures signal low unobserved health
achievements.

Identifying low well-being from non-monetary data

We consider the case of a specialized survey covering the non-monetary do-
main. We explain that, in oder to minimize (expected) mis-identification
errors, the weight of a non-market dimension should depend on the correla-
tion that is expected between achievements in this dimension and monetary
aggregates.

Non-market achievements are not chosen, but they may still signal
something useful about market achievements. This is at least the case
when the strength of the correlation between the monetary aggregate and
non-market dimensions varies across non-market dimensions. Assume for
instance that the correlation between education and income is perfect while
health and income are uncorrelated. Under this assumption, someone who
has low education also has low income, but an individual with bad health
may have low income or high income.

The signal that non-market achievements provide on the ignored mone-
tary aggregate may help improve identification in expected terms. For sim-
plicity, assume that there are four dimensions, where the market domain
is {1, 2}. Dimension 3 is perfectly correlated with the monetary aggregate
while dimension 4 is not correlated with the monetary aggregate. Assume
that all dimensions are cardinally measured and all are equally important
to welfare, e.g., U(x) = x1 + x2 + x3 + x4.

43 Without data constraints, it
would be possible to perfectly identify the poor with an achievement-LIM

43 This assumption violates both of our requirements on the indifference curve U . One
can construct a more complicated example that satisfies these requirements, although
it will be a bit more involved.
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that attributes equal weights to each of the four dimensions. Now, it is
still possible to perfectly identify the poor with an achievement-LIM that
ignores the market domain, at least if the weight that it attributes to di-
mension 3 is three times the weight attributed to dimension 4. Hence, the
weight for dimension 3 reflects not only the welfare importance of dimension
3 but also the welfare importance of the non-observed market domain.

This shows that, when constructing an LIM limited to the non-market
domain, the relative weights between non-market dimensions should be
distorted in the direction of giving a higher relative weight to the dimensions
that are most positively correlated with the monetary aggregate. This
may explain why non-monetary measures such as the global MPI give a
relatively high importance to the education dimension, even if some doubt
that this dimension has a high intrinsic value to well-being (Ravallion,
2011).

6 Concluding remarks

We argue that the lack of conceptual guidance for practitioners and the
long-lasting debates surrounding the standard practices aimed at identify-
ing the multidimensional poor both find their origin in the absence of a
welfarist theory able to inform these practices. In order to be able to in-
form these practices, a welfarist theory must acknowledge that welfare is at
best partially known to the practicioner. This paper builds such a theory
as an extension of the welfarist theory sustaining the identification of the
monetary poor. Several results show that this theory can fruitfully be used
to inform these debates as well as help improve the standard identification
practices.

When constructing a multidimensional poverty measure, the practi-
tioner is confronted with many non-trivial choices. Arguably the most
salient of these choices are the selection of dimensions, the selection of
weights and the selection of the identification threshold. These choices
cannot be informed by the theory proposed by Alkire and Foster (2011a)
because their theory treats them as exogenous. However, a welfarist defini-
tion of the poor provides conceptual guidance on the characteristics of the
relevant dimensions, as observed in Section 5. Exactly which dimensions
meet these characteristics in practice is an empirical question, whose an-
swer likely depends on the context considered. Our theory can also provide
conceptual guidance on the selection of weights and identification thresh-
old. These parameters must be selected in such a way that the shape of the
identification contour is as close as possible to the shape of the indifference
curve U . For simplicity, assume that the practitioner knows a bundle x on
this indifference curve, i.e., U(x) = U . Assume that some information is
available on the welfare function U , namely that we know the ranking of
bundle x with several other bundles. This information provides indications
on the shape of indifference curve U . This information is thus useful to
select values for the weights and identification threshold because these pa-
rameters define the shape of the identification contour. In a nutshell, our
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welfarist theory implies that these choices can be informed by information
on how individuals rank bundles around the threshold welfare level U .

We illustrate by means of an example that our theory can provide in-
sights about the relationships existing between the parameters defining op-
timal LIMs. Consider the simplified case for which inclusion errors entail
zero cost and assume the practitioner only considers achievement-LIMs. In
this case, the practitioner can do no better than selecting the deprivation
bundle z on the indifference curve U and have weights wA correspond to
the marginal rate of substitution at z. As illustrated in Figure 14, differ-
ent bundles on the indifference curve U lead to different achievement-LIMs.
Exactly which of these achievement-LIMs minimizes the total cost depends
on the joint distribution F . However, the convexity of indifference curve
U implies the existence of relationships between the parameters of these
achievement-LIMs. First, the larger is the deprivation cutoff z1, the smaller
must be the deprivation cutoff z2.

44 Second, the larger is the deprivation
cutoff z1, the smaller must be the weight wA

1 attributed to dimension 1.45

Indeed, all else equal, being deprived in some dimension affects welfare
less when its deprivation cutoff is larger. This discussion suggests that
selecting equal weights between dimensions regardless of the choice of de-
privation cutoffs, as is popular, cannot be in line with a welfarist definition
of the poor. It also suggests that our theory may have implications for the
design of tests aimed at checking the robustness of poverty comparisons to
alternative parameter values. This is an area for future research.
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Figure 14: Relationships between cutoffs and weights for Achievement-
LIMs.

Achievement-LIMs (z∗, wA∗) and (z∗∗, wA∗∗) are such that z∗1 < z∗∗1 , z∗2 >

z∗∗2 and −
wA∗
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44 In Figure 14, we have indeed that z∗∗
2

< z∗
2
.

45 In Figure 14, we have indeed that the slope of the identification contour associated
to the achievement-LIM with bundle z∗∗ is less steep, meaning its weight wA

1
is smaller

(and wA
2

is larger given that wA
2
= 1− wA

1
).
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7 Appendix

7.1 The World Bank’s MPM

For illustrative purposes, we present and comment on the definition of the
World Bank’s Multidimensional Poverty Measure (MPM). The MPM con-
siders three dimensions, namely monetary poverty, education and access to
basic infrastructure. Each dimension is captured by one or more indicators,
whose respective weights are summarized in Figure 15. The MPM identifies
as (multidimensionally) poor any individual who lives in a household whose
total deprivation is at least as large as the identification threshold kS = 1/3.
This is for instance the case if her household is monetary poor. This is also
the case if her household lacks access to two basic infrastructures and is
deprived in one education indicator, because its total deprivation is then
equal to 1/9+1/9+1/6, which is larger than kS.

Figure 15: World Bank’s Multidimensional Poverty Mea-
sure: indicators and weights. Source: WorldBank (2020).

We comment on several characteristics of this definition. First, the
MPM uses a status-based linear identification method. We discuss this in
the case of the monetary poverty indicator. Consider a household whose
achievement in this dimension is equal to $1 per person. Given that the
dimensional cut-off is $1.9 per person, the household’s deprivation is equal
to 1.9−1

1.9
and its deprivation-status is equal to 1. Only deprivation-status is

used by the MPM’s identification method, which ignores the household’s
exact achievement or deprivation. Indeed, changes in its achievements or
deprivation that do not affect its deprivation-status cannot affect whether
or not the household is identified as poor.

Second, the three dimensions have no formal existence from the perspec-
tive of the MPM’s identification method. That is, the MPM’s identification
method works as-if six dimensions are considered, each corresponding to
one of the six indicators. For any given set of weights, this method sim-
ply sums the weights across indicators in which the household is deprived,
regardless of the dimensions captured by these indicators. The only im-
pact that these three dimensions might potentially have is to influence the
weights attributed to each indicator. Indeed, a popular convention is to
attribute the same (total) weight to each dimension and the same weight
to each indicator in a given dimension.
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7.2 Interpretation for the mis-identification costs

The interpretation for the cost of mis-identifying depends on the purpose
of identifying the poor.

First, assume that social transfers are targeted to individuals who are
identified as poor. In the case of inclusion errors, citizens may call into
question these transfers if non-poor individuals benefit too much from these
transfers. Alternatively, for a fixed budget, the social transfers received by
poor individuals decrease with the size of the inclusion errors. In the case
of exclusion errors, some poor individuals are (mistakenly) not eligible and
do not receive the help the government would like to extend to them.

Second, assume that the aim is to evaluate the trend of multidimen-
sional poverty. Then, the larger the mis-identification costs, the larger the
potential for capturing spurious trends. Assume for simplicity that the
poverty index is the head-count ratio, which corresponds to the fraction of
those identified as poor. The poverty level might be correct at some point
in time when the number of inclusion errors exactly compensates for the
number of exclusion errors. However, the larger are these errors, the larger
the potential mistake in the poverty trend if the inclusion errors evolve over
time at a different speed than exclusion errors.

7.3 Relationships between families of LIMs

Lemma 1. Any achievement-LIM is mimicked by some deprivation-LIM.
Any union-LIM is mimicked by some deprivation-LIM.

Proof. The deprivation-LIM (z′, wD, kD) has the same identification con-
tour as the union-LIM (z, wS, kS) when z′ = z and kD = 0. In turn, the
deprivation-LIM (z′′, wD, kD) has the same identification contour as the

achievement-LIM (z, wA) when for some a > 1 we have z′′ = (a kA

wA
1

, a kA

wA
2

),

wD
1 = wD

2 = 0.5 and kD = 1− 1
2a

.46 �

7.4 Deprivation bundle z of optimal LIMs

Lemma 2 shows that, for any particular type of LIM that we consider,
selecting a deprivation bundle that lies on the indifference curve U is not
optimal.

Lemma 2. (i) The union-LIM (z, wS, kS) identifies the poor optimally
in the set of union-LIMs only if U(z) < U . (ii) The intersection-LIM
(z, wS, kS) identifies the poor optimally in the set of intersection-LIMs only
if U(z) > U . (iii) The achievement-LIM identifies the poor optimally in
the set of achievement-LIMs only if it is mimicked by an achievement-
LIM (z, wA) such that U(z) > U . (iv) The deprivation-LIM (z, wD, kD)
identifies the poor optimally in the set of deprivation-LIMs only if U(z) >
U .

46 If we have wA
j = 0 for some j ∈ {1, 2}, then the construction is not well-defined

(division by zero). In that case, the construction is z′′ = z, wD = wA and kD = 0.
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Proof. Consider statement (i).
First, consider any union-LIM (z, wS, kS) with U(z) > U . We show that

this union-LIM identifies the poor worse than a union-LIM (z′, wS, kS) such
that U(z′) = U and such that bundle z′ is dominated by bundle z, which is
z′j < zj for all j ∈ {1, 2}. Neither of these LIMs makes an exclusion error,
but the set E ′

in on which (z′, wS, kS) makes inclusion errors is a subset
of the set Ein on which (z, wS, kS) makes inclusion errors. Therefore, the
total costs of (z′, wS, kS) is always strictly smaller than the total costs of
(z, wS, kS), as desired.

There remains to consider any union-LIM (z, wS, kS) with U(z) = U .
We show that there exists no cost function C and joint distribution F such
that (z, wS, kS) is optimal in the set of union-LIMs. Consider the contra-
diction assumption that such C∗ and F ∗ do exist. We derive a contradiction
by showing that there exists another union-LIM (z′, wS, kS) that yields a
smaller total cost under C∗ and F ∗. The union-LIM (z′, wS, kS) will be
such that U(z′) < U and such that bundle z′ is dominated by bundle z.
The proof of the existence of such (z′, wS, kS) is illustrated in Figure 16.a.

x1

Uz′
b

x2

b zEz′
ex

Ez
in

Figure 16: The union-LIM (z, wS, kS) with U(z) = U does not identify
optimally in the set of union-LIMs.

The union-LIM (z, wS, kS) does not make exclusion errors but makes
more inclusion errors (on areas Ez

in) than (z′, wS, kS).47 Hence, (z, wS, kS)
has a larger total cost if its additional inclusion errors are more costly than
the exclusion errors made by (z′, wS, kS) (on area Ez′

ex). We show that this
must be the case for some z′ sufficiently close to z. For some z′, let T z′

denote the exclusion costs associated to (z′, wS, kS) and let T z denote the
additional inclusion costs associated to (z, wS, kS) on Ez

in, which by Eq.
(3) correspond to

T z′(x∗) =

∫

Ez′
ex

C∗(x)f ∗(x)dx and T z(x∗) =

∫

Ez
in

C∗(x)f ∗(x)dx

where x
∗ and f ∗ are respectively the allocation and density function cor-

responding to F ∗. Recall that the density function f ∗ is smooth and has

47 The union-LIM (z, wS , kS) must make inclusion errors because this indifference
curve U is strictly convex.
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full support. Recall that the cost function C∗ is smooth and tends to zero
when bundles tend to z. The area of Ez′

ex is smaller than the area of Ez
in.

The density f ∗ on these areas cannot tend to zero or infinity as z′ tends
to z because f ∗ has full support. In contrast, the cost C∗ on Ez′

ex tends to
zero when z′ tends to z, whereas it is not the case on Ez

in.
48 This implies

that T z′ < T z for some z′ sufficiently close to z, and thus the total cost of
(z′, wS, kS) is smaller than the total cost of (z, wS, kS) under C∗ and F ∗,
the desired contradiction.

The proofs for statements (ii), (iii) and (iv) follow a similar reasoning
and are thus omitted.

�

7.5 Proof of Proposition 1

Take any intersection-LIM (z, wS, kS) that identifies optimally in the set of
intersection-LIMs. By Lemma 2, we have that U(z) > U . We construct an
achievement-LIM (z′, wA) that identifies the poor better than (z, wS, kS).
The construction is illustrated in Figure 17.

As deprivation bundle z of the intersection-LIM is such that U(z) > U ,
its identification contour intersects twice this indifference curve U .49 Con-
sider any achievement-LIM (z′, wA) whose identification contour passes
through these two intersections. As illustrated in Figure 17, this achievement-
LIM makes fewer inclusion errors and fewer exclusion errors than the intersection-
LIM. In contrast to the intersection-LIM, the achievement-LIM does not
make inclusion errors on the triangle Intin. In contrast to the intersection-
LIM, the achievement-LIM does not make inclusion errors on the triangles
Intex and Int′ex. This shows that the total cost of the achievement-LIM
is smaller than the total cost of the intersection-LIM for all C and F , the
desired result.

7.6 Proof of Proposition 2

We show for a particular joint distribution F ∗ and cost function C∗ that
a union-LIM has negligible total cost while any achievement-LIM has non-
negligible total cost.

The proof is illustrated in Figure 18. As indifference curve U is strictly
convex, there must exist three bundles xi, x

′
i and x′′

i such that any achievement-
LIM that correctly identify the extremors i′ and i′′ as poor makes an inclu-
sion error on the non-poor individual i. In contrast, there exists a union-
LIM that identifies the extremors i′ and i′′ as poor but does not identify
i as poor. For instance, it is the case of the union-LIM whose deprivation
bundle is e.

48 The cost C∗ on Ez′

ex tends to zero when z′ tends to z because all bundles in Ez′

ex

tend to z, which implies that they all tend to provide utility U . This is not the case
on Ez

in, which always contains bundles that are not in the immediate neighborhood of
z and thus do not tend to provide utility U as z′ tends to z.

49 Indeed, the second restriction on the shape of indifference curve U implies that this
curve has two asymptotes.
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Figure 17: The intersection-LIM (z, wS, kS) with U(z) > U identifies the
poor worse than the achievement-LIM.

From these three bundles, we can construct F ∗ and C∗ such that a
union-LIM has negligible total cost while any achievement-LIM has non-
negligible total cost. Assume that one third of individuals has bundle xi,
one third has bundle x′

i and the remaining third has bundle x′′
i . Such

joint distribution would not have an associated density function with full
support, violating our hypothesis. However, there exists a joint distribution
F ∗ that comes arbitrarily close to it and that has full support. Take the
cost function C∗ to be arbitrarily close to attributing the same cost to any
mis-identification.

Given that the union-LIM does not make mis-identification errors on
bundles xi, x

′
i and x′′

i , its total cost is negligible with respect to that any
achievement-LIM, which is bound to make a mis-identification error on any
of those three bundles.

U

x1

e2

e1

b
x′i

b
xi

b x′′i

Figure 18: Any achievement-LIM makes a mis-identification error on at
least one of the tree bundles xi, x

′
i and x′′

i .

7.7 Deprivation-LIMs are superior with m-dimensions

We discuss the reasons why some insights presented in Section 3 should
generalize to m dimensions.

When there are two dimensions, status-LIMs a la Alkire-Foster (AF)
are either intersection-LIMs or union-LIMs. When there are at least three
dimensions, this is no longer the case because then status-LIMs a la Alkire-
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Foster (AF) are unions of intersections (of dimensions with deprivation
status).50 Three illustrations of status-LIMs in the 3 dimensions case are
drawn in Figures 19.a, 19.c and 19.e. For instance, the status-LIM whose
poverty surface is illustrated in Figure 19.c identifies as poor the union of
individuals who are simultaneously deprived in any two dimensions.51

We comment on how three key insights generalize to m dimensions when
there are no markets. First, achievement-LIMs do not identify the poor bet-
ter than status-LIMs, and the other way around. Each of these two types
of LIMs still keeps its respective advantages and limitations. Achievement-
LIMs always allow a high achievement in some dimension to compensate for
extreme achievements in other dimensions. As a result, achievement-LIMs
are bound to make exclusion errors on extremors whose achievements are
high on other dimensions. In turn, status-LIMs a la AF do not allow the
achievement level in dimension j below which an individual is identified as
poor to depend on her achievements x−j in the other dimensions. That is,
for fixed x−j , there is a unique achievement level (equal to zj) at which
the identification of an individual may change as her achievement xj de-
creases. As a result, these status-LIMs cannot simultaneously (i) identify
an individual as poor because she experiences an extreme achievements in
dimension j and (ii) identify an individual as poor because she cumulates
moderate deprivations, including one in dimension j.52

This shows that, from the perspective of identifying the poor, no decisive
argument can be made that achievement-LIMs are preferable to status-
LIMs at our level of generality. Ravallion (2011) and Ferreira and Lugo
(2013) rightfully recall that relative prices represent marginal rates of sub-
stitution, which are intimately related to welfare. However, when there
are no markets, using an achievement-LIM whose weights capture marginal
rates of substitution at the deprivation bundle needs not improve on status-
LIMs, even when the weights of these status-LIMs do not reflect marginal
rates of substitution. Capturing correctly the marginal rates of substitu-
tion does not prevent from making exclusion errors on individuals who have
extreme achievements.

Second, little information is sufficient in order to construct a deprivation-
LIM that identifies the poor better than an achievement-LIM. Indeed,
the social planner only needs to know extreme achievement thresholds ej .
Then, it is straightforward to construct a deprivation-LIM that mimics
the achievement-LIM everywhere above extreme achievement thresholds,

50 As Eq. (4) reveals, an individual i is identified as poor if the set of dimensions
on which she is deprived, which we denote by Di, have a total weight

∑

j∈Di
wS

j larger

than kS . Hence, individual i is deprived on the intersection of the dimensions in Di.
Then, a status-LIM a la AF identifies as poor the union of individuals for whom the
total weight on their Di exceeds kS .

51 The status-LIM whose poverty surface is illustrated in Figure 19.a identifies as
poor the union of individuals who are deprived in dimension 3 and individuals who are
simultaneously deprived in dimensions 1 and 2. The status-LIM whose poverty surface
is illustrated in Figure 19.e identifies as poor the union of individuals who are deprived
in any dimension.

52 Indeed, when wS
j < kS , the status-LIM cannot implement (i); and when wS

j > kS ,
the status-LIM cannot implement (ii).
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Figure 19: Identification contours corresponding to status-LIMs (a), (c),
(e). Identification contours corresponding to deprivation-LIMs (b), (d),
(f). The identification contour of the deprivation-LIM is drawn as a better
approximation of some (undrawn) indifference surface U than the corre-
sponding identification contour of the status-LIM, where (a) corresponds
to (b), (c) corresponds to (d) and (e) corresponds to (f).
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but that also identify as poor any individual with an extreme achievement.
(Such construction has been illustrated in the case of two dimensions in Fig-
ure 7.) Observe that exact knowledge of the extreme achievement thresh-
olds is not necessary. Indeed, it is sufficient to know a lower bound for
these extreme achievement thresholds in order to construct a deprivation-
LIM that identifies the poor better than the achievement-LIM.

Third, little information is sufficient in order to construct a deprivation-
LIM whose identification contour is a better approximation of the indiffer-
ence surface U than the identification contour of a status-LIM. Indeed, the
social planner only needs to have information on marginal rates of sub-
stitution. The identification contours of status-LIMs will always be very
rough approximations of the (convex) indifference curve U because they
are not convex. As status-LIMs identify the poor using a union of inter-
sections, they suffer from the fact that identification contours of intersec-
tions are not convex. In the case of two dimensions, we showed how to
construct achievement-LIMs (and thus deprivation-LIMs) that identify the
poor better than intersection-LIMs, by using information on the marginal
rate of substitution in a way that reduces exclusion errors. (Such con-
struction has been illustrated in the case of two dimensions in Figure 7.)
Essentially, this construction takes advantage of the convex identification
contours of achievement-LIMs (deprivation-LIMs). In the case of k dimen-
sions, deprivation-LIMs are also convex and can thus better approximate
a given indifference curve U , which implies making fewer mis-identification
errors. We illustrate graphically in Figure 19 that identification contours
of deprivation-LIMs can be better approximations of convex indifference
curve U . Figure 19.b relates to Figure 19.a, Figure 19.d relates to Figure
19.c and Figure 19.f relates to Figure 19.e.53

7.8 Proof of Proposition 4

Status-LIM are either union-LIMs or intersection-LIMs. Any optimal union-
LIM has a deprivation bundle z such that U(z) < U . Therefore, such
union-LIM makes exclusion errors on some cumulators. A refined AF-LIM
whose extreme bundle ze = z and whose moderate bundle zm is slightly
larger than z will reduce these exclusion errors without making additional
inclusion errors.

In turn, any intersection-LIM, regardless of its deprivation bundle z,
makes exclusion errors on the extremors that are not deprived in one di-
mension. A refined AF-LIM whose moderate bundle zm = z and whose
moderate bundle ze corresponds to e will reduce these exclusion errors
without making additional inclusion errors.

53 Consider Figure 19.f. Observe that, above the deprivation cutoff in any dimension,
the poverty surface defines, in the plane of the other two dimensions, a constant iden-
tification contour with the same shape as in the two dimensions case. Information on
marginal rates of substitution in those planes allow constructing deprivation-LIMs that
are better approximations of the iso-welfaresurface U .
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7.9 Proposition 5 and health expenditures

The consumption of some market goods like drugs do improve one’s health
outcome.

This does not mean that we should consider that there exists a market
between the consumption dimension and the health dimension. As writen
in the text, no treatment exists for some health conditions. This implies
that some people can do no better than “consume” their low health endow-
ments ω1, where dimension 1 is health.

Here is how our framework should be understood in the presence of
health-related market goods. First, an individual’s health achievement x1

need not be equal to her endowment ω1, but is rather obtained as a com-
bination of her endowment and the efficacy of her health expenditures.
Second, there is currently no consensus on how to define an individual’s
monetary achievement x2 in the presence of such goods. Two focal alterna-
tives are to either include health expenditures in x2 or to exclude them from
x2.

54 When measuring multidimensional poverty, it would seem natural to
define the monetary achievement x2 by excluding health expenditures in
order to avoid a form of double-counting. However, whichever of these two
definitions is used, our assumptions on the shape of indifference curve U
are still relevant. There would thus still be extremors who have a high
achievement in some dimension. And the argument sustaining Proposition
5 applies.
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