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Objective, Audience and Structure

The purpose of this Guidance Note is to provide concrete guidance on how big data and machine 
learning (ML) can be leveraged in road safety analysis. The document presents opportunities to use 
these new technologies to improve current road safety assessment procedures across the project 
cycle, in accordance with the World Bank’s latest Environmental and Social Framework (ESF) guide-
lines.

This Guidance Note is for World Bank task teams who are interested in using new data sources 
and analytical methods for road safety analysis across various types of projects. In addition, re-
searchers, road safety experts, data scientists, and government agencies responsible for road safety 
assessments, transportation management, and infrastructure development would also find this doc-
ument useful to understand how these new technologies can be implemented across World Bank 
investment projects. 

This document consists of three parts. Part 1 discusses the World Bank’s current guidelines for 
incorporating road safety analysis across the project cycle, examines existing data and approaches 
and identifies opportunities to improve current methods using big data and ML. Part 2 provides an 
overview of these new technologies and concrete guidance on how they can be integrated into World 
Bank projects. Part 3 presents case studies on two regions of interest – Bogotá, Colombia and Padang, 
Indonesia – to demonstrate how ML can be implemented to evaluate road safety. The document con-
cludes with recommendations for using big data and ML in road safety assessments in the future.
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Introduction

Transportation services and infrastructure connect people, businesses, and places. They allow 
citizens to access opportunities, such as jobs, education, health services, recreation, and enable the 
movement and distribution of goods. As a result, transport services and infrastructure are key to the 
economic development of cities and regions.1 

While the development of transportation systems and infrastructure is vital to economic growth, 
it is also important to evaluate and mitigate its potential negative externalities and costs to soci-
ety.2 According to the World Health Organization (WHO), around 1.25 million people are killed on the 
world’s roads every year and between 20 and 50 million are seriously injured. These costs are dispro-
portionately higher in low- and middle-income countries (LMICs), which are estimated to endure 93 
percent of the world’s fatalities on the road, despite having 60 percent of the world’s vehicles (figure 
1).3 According to a 2019 study of select countries, road crashes cost World Bank client countries an 
estimated 7 percent to 22 percent of their GDP over a 24-year period.4

Road fatalities and injuries are predictable and preventable.5 Research indicates that roughly 70 
percent of serious crashes are due to simple and unintentional errors of perception or judgement.6 
The most vulnerable road users are pedestrians, bicyclists, and motorcyclists, accounting for more 
than 50 percent of reported fatalities in LMICs.7 Effective transport planning and management that 
carefully considers and incorporates measures to address safety risks.8 Speed reductions and the 
design of infrastructure to promote safer streets have demonstrated clear results in Colombia and 
India. In Bogotá, Colombia, the speed management program resulted in a 21 percent decrease in 
traffic fatalities compared to the average for the three preceding years (2015-18).9 In India, Pune has 
become a regional leader in complete streets, in which streets are designed for all users, rather than 
only for cars; pedestrians, cyclists, motorists, and transit riders are given safe access with the com-
plete streets approach.10

The World Bank is a key supporter of the United Nations (UN) Decade of Action for Road Safety 
and related Sustainable Development Goals (SDGs). These include SDG 3.6, which seeks to reduce 
deaths and injuries from road crashes by 50 percent, and SDG 11, which focuses on making cities and 
human settlements inclusive, safe, resilient, and sustainable. The World Bank is also a proponent of 

1 World Bank, Mobile Metropolises: Urban Transport Matters: An IEG Evaluation of the World Bank Group’s Support for Urban 
Transport (Washington, DC: World Bank, 2017).
2 Word Bank, Making Roads Safer (Washington, DC: World Bank, 2014).
3 WHO (World Health Organization), Global Status Report on Road Safety 2018 (Geneva: World Health Organization, 2018), 4.
4 World Bank, The High Toll of Traffic Injuries: Unacceptable and Preventable (Washington, DC: World Bank, 2017).
5 Makhtar Diop, “All Road Deaths Are Preventable. We Can Make It Happen,” World Bank, accessed May 14, 2021,
https://blogs.worldbank.org/transport/all-road-deaths-are-preventable-we-can-make-it-happen
6 International Transport Forum, Zero Road Deaths and Serious Injuries: Leading a Paradigm Shift to a Safe System (Paris: OECD 
Publishing, 2016). https://doi.org/10.1787/9789282108055-en
7 World Bank, Good Practice Note on Road Safety (Washington, DC: World Bank, 2019). https://pubdocs.worldbank.org/
en/648681570135612401/Good-Practice-Note-Road-Safety.pdf
8 International Transport Forum, “Best Practice for Urban Road Safety: Case Studies,” International Transport Forum Policy 
Papers, no. 76 (2020).
9 International Transport Forum, “Best Practice for Urban Road Safety: Case Studies.”
10 Institute for Transportation and Development Policy, “Pune, India Wins 2020 Sustainable Transport Award,” last modified 
June 27, 2019, https://www.itdp.org/2019/06/27/pune-india-wins-2020-sustainable-transport-award/

https://blogs.worldbank.org/transport/all-road-deaths-are-preventable-we-can-make-it-happen
https://doi.org/10.1787/9789282108055-en
https://pubdocs.worldbank.org/en/648681570135612401/Good-Practice-Note-Road-Safety.pdf
https://pubdocs.worldbank.org/en/648681570135612401/Good-Practice-Note-Road-Safety.pdf
https://www.itdp.org/2019/06/27/pune-india-wins-2020-sustainable-transport-award/
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the Sustainable Mobility for All (SM4A) initiative, which highlights 
safety as one of the pillars of sustainable mobility.11

The World Bank hosts the Global Road Safety Facility (GRSF) to 
provide funding, knowledge, and technical assistance to help de-
veloping countries create safer roads. The Facility addresses road 
safety issues across a wide range of projects, from infrastructure 
design and vehicle safety to traffic law enforcement, post-crash re-
sponse systems, data collection, and institutional strengthening. 
Since its inception in 2006, the Facility has disbursed a total of 
USD 44.6 million to improve road safety in 64 countries.

It is important, and often required, to incorporate road safety 
management procedures in transport projects to identify and 
mitigate risks in a timely manner. Governments, international 
development organizations, and other agencies have established 
various tools and systems to facilitate road safety analysis. How-
ever, the absence of valid, representative data presents significant 
challenges to developing a good understanding of road safety risks 
and reducing crash fatalities and injuries through data-driven, ev-
idence-based interventions.12

11 World Bank, Good Practice Note on Road Safety, 1.
12 World Bank, Guide for Road Safety Opportunities and Challenges: Low and Middle Income Country Profiles (Washington, DC: 
2020). https://openknowledge.worldbank.org/handle/10986/33363

SOURCE: Original figure for this publication, based on
data from WHO.

FIGURE 1: Road safety is a 
serious concern in low- and 
middle-income countries

93%
of road fatalities occur in low- and 
middle-income countries, despite these 
countries having 60 percent of the world’s 
vehicles.

https://openknowledge.worldbank.org/handle/10986/33363
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New technologies such as big data and machine learning (ML) provide promising opportunities to 
improve existing data sources and methods for road safety analysis. From analyzing anonymized 
GPS data to understand traffic flows in the Philippines to partnering with data providers that crowd-
source information about crash sites in Kenya, governments, World Bank task teams, and other 
stakeholders are adopting innovative approaches to identify, monitor, and mitigate fatalities and in-
juries in high-risk areas.13 Unsupervised learning techniques have been applied in Lima, Peru, using 
records of different crash types to identify safe areas along routes and safer pedestrian pathways, 
decreasing the likelihood of pedestrians suffering an crash.14 The Urban Traffic Modeling and Control 
project at the National University of Medellín has been using deep learning (DL) techniques to clas-
sify traffic and identify motorbike usage. In Cartagena, Colombia, data mining and ML algorithms 
were used to analyze road records and predict the severity of traffic crashes using classification algo-
rithms.15 Figure 2 provides an overview of the potential uses of big data and ML in road safety analy-
sis that will be discussed in this note.

FIGURE 2: Potential applications of big data and ML in road safety projects 

SOURCE: Original figure for this publication.

13 World Bank, “Open Traffic Data to Revolutionize Transport,” last modified December 19, 2016, https://www.worldbank.
org/en/news/feature/2016/12/19/open-traffic-data-to-revolutionize-transport; Guadalupe Bedoya Arguelles, et al., “Smart and 
Safe Kenya Transport (SMARTTRANS)” (Washington, DC: World Bank, 2019), https://documents1.worldbank.org/curated/
en/723411574361015073/pdf/Smart-and-Safe-Kenya-Transport-SMARTTRANS.pdf
14 Jesús Lovón-Melgarejo et al., “Identification of Risk Zones for Road Safety through Unsupervised Learning Algorithms,” in 
16th LACCEI International Multi-Conference for Engineering, Education, and Technology: Innovation in Education and Inclusion, 
http://www.laccei.org/LACCEI2018-Lima/full_papers/FP413.pdf
15 Holman Ospina-Mateus et al., “Using Data-Mining Techniques for the Prediction of the Severity of Road Crashes in 
Cartagena, Colombia,” in Applied Computer Sciences in Engineering, eds. J. Figueroa-García et al., vol. 1052 (2019): 309-20, 
https://doi.org/10.1007/978-3-030-31019-6_27

MACHINE/
DEEP 
LEARNING

Identify road 
conditions, barriers, 
crosswalks, 
pedestrian paths, 
street signs, traffic 
lights

Delineate road 
curvature, complex 
intersections, road 
gradient; provide 
car and truck count

Analyze vehicle 
and population 
movement

Identify road crash 
patterns and 
develop prediction 
models

Find patterns in 
weather and time 
of day

Extract traffic or 
road condition data

Incident 
reports

Satellite and
aerial imagery

Internet of 
Things

Natural 
phenomena

Social
media

Street view 
imagery

BIG DATA OR 
SPATIAL DATA 
SOURCE

https://www.worldbank.org/en/news/feature/2016/12/19/open-traffic-data-to-revolutionize-transport
https://www.worldbank.org/en/news/feature/2016/12/19/open-traffic-data-to-revolutionize-transport
https://documents1.worldbank.org/curated/en/723411574361015073/pdf/Smart-and-Safe-Kenya-Transport-SMARTTRANS.pdf
https://documents1.worldbank.org/curated/en/723411574361015073/pdf/Smart-and-Safe-Kenya-Transport-SMARTTRANS.pdf
http://www.laccei.org/LACCEI2018-Lima/full_papers/FP413.pdf
https://doi.org/10.1007/978-3-030-31019-6_27
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PART 1:
The Demand for Data to Assess Risks and Conduct 
Safety Assessments

1.1 Assessing Road Safety Across the Project Cycle

World Bank projects follow a project cycle to design, prepare, implement, support, and evaluate 
projects. The project cycle identifies six stages between project identification and project completion 
(see figure 3).16 Bank staff work closely with developing country borrowers throughout the project 
cycle to ensure that projects meet relevant World Bank economic, financial, procurement, and envi-
ronmental and social standards.

The World Bank has adopted seven pillars to identify key priorities for road safety interventions. 
These pillars, that aim at preventing road crashes, fatalities, and injuries across all projects include: 
Road Safety Management, Safer Roads and Mobility, Safer Vehicles, Safer Roads Users, Post-Crash 
Response, Safer Speeds, and Reduced Exposure. The first five pillars are from the UN Global Plan 
for Road Safety with the last two new pillars added for the Road Safety GPN.17 Road safety objectives 
of World Bank projects should be aligned with these pillars and performance indicators must track 
progress against them.

All World Bank investment projects are required to follow the World Bank’s Environmental and 
Social Framework (ESF), which went into effect on October 1, 2018. The ESF is a set of operational 
policies and procedures designed to ensure that projects are economically, financially, socially, and 
environmentally sound. The ESF includes protections for people and the environment from potential 
adverse risks and impacts that could arise from Bank-financed projects and promotes sustainable 
development. Within the ESF, ten Environmental and Social Standards (ESS) set out a range of re-
sponsibilities for Borrowers designed to help them manage project risks and impacts. In addition, the 
standards aim to improve environmental and social performance, consistent with good international 
practice and national and international obligations.

The World Bank’s ESF calls for road safety risks to be considered in all investment projects. As rel-
evant, Borrowers are required to undertake technical assessments and implement operational mea-
sures to avoid or minimize community exposure to project-related traffic and road safety risks. In the 
context of the ESF, road safety assessments are carried out as part of a project’s Environmental and 
Social Assessment (ESA). The overall approach to ESA is defined in the standard on Environmental 
and Social Assessment (ESS1) that describes the requirements for project risk assessment, expec-
tations for stakeholder engagement, and for establishing grievance mechanisms. Details describing 
road safety requirements are provided in the standard on Community Health and Safety (ESS4). 
The standard on Labor and Working Conditions (ESS2) would also apply in situations where traffic 
management measures are necessary to address the safety of workers and local communities in and 
around construction worksites. The ESF standard on Stakeholder Engagement (ESS10) will also play 
an important role in addressing road safety issues in most projects. The participation of road users 

16 The World Bank‘s Guidance Note on preparing the Project Appraisal Document for investment project finances may be 
useful to prepare its content. 
17 World Bank, Road Safety Indicators for Project Monitoring (Washington, DC: World Bank, 2021).
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of all types in the planning and decision making can provide essential user perspectives, information 
and insights on all aspects of road safety, especially if users are expected to play an active role in 
implementing project activities related to monitoring, incident reporting, and grievance and dispute 
resolution.

ESS4 anticipates that project activities, equipment, and infrastructure can increase community 
exposure to risks and impacts. To manage this risk, transport or transport related projects must 
“identify, evaluate and monitor the potential traffic and road safety risks to workers, affected commu-
nities and road users throughout the project life-cycle.” The ESF requires Borrowers to “incorporate 
technically and financially feasible road safety measures into the project design” to minimize road 
safety risks and impacts.18 Where appropriate, the Borrower will initiate a road safety assessment 
for each phase of the project, monitor incidents, and prepare regular reports reviewing outcomes and 
observations.

The ESF standard on Stakeholder Engagement (ESS10) will also play an important role in address-
ing road safety issues in most projects. The participation of road users of all types in the planning 
and decision making can provide essential user perspectives, information, and insights on all aspects 
of road safety, especially if users are expected to play an active role in implementing project activities 
related to monitoring, incident reporting, and grievance and dispute resolution. ESS10 requires the 
preparation of a Stakeholder Engagement Plan which systematically identifies project stakeholders 
and defines approaches and methods for meaningful engagement throughout the project cycle. Dif-
ferent stakeholders that could be affected by road safety include: all road users; project workers in-
volved in construction; affected communities; and vulnerable groups within those communities and 
user groups. ESS10 also requires the preparation of project Grievance Mechanisms which could be 
structured as one or more channels for raising concerns about road safety, contractor performance 
or overall project implementation.

A Good Practice Note on Road Safety accompanies the ESF to support its implementation and 
to address road safety on World Bank financed operations.19 The World Bank’s Road Safety GPN 
guides Borrowers and World Bank task teams in meeting the ESS4 road safety requirements by im-
plementing the Safe System approach. Based on the guidelines recommended by the Global Plan for 
the UN Decade of Action for Road Safety, the Safe System approach considers risks to all types of 
road users, including drivers, motorcyclists, passengers, pedestrians, bicyclists, and commercial and 
heavy vehicle drivers. The Safe System framework recognizes that while a certain degree of human 
error and crash risk is always likely, it is possible to prevent crashes that lead to death or serious 
injury. The Road Safety GPN recommends strategies and technical approaches to incorporate such 
a holistic view of road safety that considers interactions among roads and roadsides, travel speeds, 
vehicles, and road users. The document’s guidelines on evaluating risks across the project cycle in 
various types of projects, and the data requirements of these procedures are discussed in the follow-
ing section.

18 World Bank, Environmental and Social Framework for IPF Operations, ESS4: Community Health and Safety (Washington, DC: 
World Bank, 2018). 
19 World Bank, Good Practice Note on Road Safety.
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1.2 Demand for Data to Assess Road Safety

The Road Safety GPN recommends a variety of data-driven tools and methods to evaluate road 
safety risks and determine mitigation measures across the project cycle. Comprehensive road 
safety evaluation tools and procedures require both crash and non-crash data to identify issues and 
measure their associated risks. The variety, quantity, and quality of data available is an important 
determinant of the tool for measurement and analysis of various road safety indicators.

This section provides an overview of the primary road safety assessment tools that can be used at 
different stages of the project cycle as well as their data requirements. Figure 3 summarizes the 
primary road safety activities that may need to be included in the project cycle (depending on the 
type of project and potential level of road safety risk). A brief description of road safety assessment 
procedures and tools across the project lifecycle can be found in table 1. This brief review of existing 
approaches informs the suggestions for improving data collection and analysis for road safety evalu-
ation procedures through big data and machine learning (ML).
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FIGURE 3: Key road safety activities across the project cycle

SOURCE: Modified from Remote Project Supervision and Construction Management of IPF Projects. World Bank (2020).

TABLE 1: Methods for calculating OPTRSR and identifying risk factors
TYPE OF 
ASSESSMENT

WHEN TO USE (PROJ-
ECT STAGE)

WHEN TO USE (PROJECT 
ACTIVITY)

RELATIVE COST 
(HIGH, MEDIUM, 
LOW, DEPENDS)

DATA 
REQUIREMENTS 
(HIGH, MEDIUM, 
LOW, DEPENDS)

EXAMPLES OF TOOLS

Crash data-
based risk 
assessment

Preparation, 
Implementation, 
Post-Project 
Operations

Pre-Planning and 
Design, Monitoring 
and Evaluation, Error 
Correction and Hazard 
Elimination

Depends, low-
cost models are 
available

Depends Crash frequency, crash risk factors, 
crash severity analysis

Road Safety 
Impact 
Assessment 
(RSIA)

Preparation Pre-Planning and
Design

Low Low

Road Safety 
Audit (RSA)

Preparation, 
Implementation

Planning and Design, 
Construction and Pre-
Opening

Medium to High Medium/ 
Depends

iRAP Road Safety Audit Toolkit, 
Austroads Road Safety Audit Toolkit 
(currently unavailable), ADB Road 
Safety Audit Toolkit 

Road Safety 
Inspection
(RSI)

Implementation, 
Post-Project 
Operations 

 High High iRAP 

Road 
Assessment 
Program (RAP)

Preparation, Post-
Project
Operations

Planning and 
Design, Independent 
Assessment

High High iRAP, EuroRap, usRAP

SOURCE: Modified from Remote Project Supervision and Construction Management of IPF Projects (Washington, DC: World Bank, 2020).

KEY ACTIVITIES
Assess project risks (tables 1 and 2)
Conduct road safety assessments and develop mitigation measures (table 3)
Prepare ESF documents
Include road safety indications in the results framework
Collect baseline data and define targets for indicators in the results framework

KEY ACTIVITIES
Prepare Implementation Status and Results (ISR) report
Regular reporting in Aide Memoire, Memos, and minutes

KEY ACTIVITIES
Prepare Implementation Completion Report: assess if targets for indicators in 
the results framework were achieved

Negotiations & 
Board Approval

4

Appraisal3

Preparation2

Identification1

Implementation 
Support

5

Completion & 
Evaluation

6
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Assessing Overall Project Traffic and Road Safety Risk (OPTRSR)

At the identification stage of the project, Task Teams are required to assess the Overall Project 
Traffic and Road Safety Risk (OPTRSR). Road safety risks arise from the interaction of many dif-
ferent elements, including the road and roadside design, engineering, travel speeds, the extent and 
type of road use, road user behavior, vehicle safety features (both active and passive), and post-crash 
response. The OPTRSR estimates potential traffic and road risks, and their associated risk level will 
inform project Preparation and help define the Borrower’s responsibilities. Assessing OPTRSR also 
requires the identification of road safety risks that could arise as a result of project activities, for ex-
ample, as a result of changing of vehicular or pedestrian traffic patterns, flows or speeds, or from the 
use of construction equipment or vehicles. This assessment should also identify stakeholder groups 
that could be affected (project workers, affected communities, or road and vulnerable road users), 
and institutional risks (i.e., lack of regulations, technical-knowledge, or capacity). Operational road 
safety risks should be addressed at this stage, not only in the context of the project implementation 
and construction but also the long-term project operation. The OPTRSR will identify the road safety 
risk level of the project as Low, Moderate, Substantial or High.20

The Road Safety GPN recognizes four different types of World Bank transport projects that require 
estimating the OPTRSR. Type A projects include operations which involve road construction or reha-
bilitation (such as urban transport projects) or any project which affects existing infrastructure or re-
quires the creation of new transport infrastructure such as bus rapid transit lines, metro-lines, ports, 
railways and aviation infrastructure. Type B projects encompass other transport initiatives which 
do not finance transport infrastructure directly but which introduce policy changes or management 
measures intended to promote road safety. These may include measures such as changes to traffic 
speed; regulations on allowable traffic mix or volume; protections for vulnerable road users (pedes-
trians, bicyclists, motorcyclists); or other changes affecting vehicles, routes or facilities (e.g., vehicle 
import regulations). Type C projects primarily involve transport infrastructure construction with 
road safety impacts during the construction period only. Type D projects involve vehicle procure-
ments, such as procurement of bus fleets or even project vehicles. OPTRSR can arise in any project 
as a result of the road infrastructure, operating speeds (km/h), road user behavior, vehicle standards, 
and/or post-crash trauma care.21

Different methods may be implemented for assessing the OPTRSR for each project type at the proj-
ect identification stage. Based on data availability, and project type, the assessment of risk should 
consider all these factors: road infrastructure, operating speeds, road users, vehicle standards, and 
post-crash trauma care (in particular, response time and readiness of emergency care staff), three 
methods may be used for identifying the potential traffic and road risks and their associated level in a 

20 The principal purpose of this report is to emphasize and explain the OPTRSR risk rating and the methodologies for 
estimating those risks. The reader should take care to note that the OPTRSR risk rating is distinguished from the project’s 
overall Environmental and Social risk ratings which are required for every project under the World Bank’s ESF.  While the 
overall E&S risk rating uses similar terminology, its purpose is to define the entire project risk profile taking into account all 
environmental and social risks and impacts. The overall project E&S risk rating takes account of the OPTRSR rating but there 
is not necessarily a direct correlation between them (i.e., a high OPTRSR rating may not necessarily be categorized as high 
E&S risk and vice versa). Each investment project will make the final determination of overall E&S risk rating and the OPTRSR 
rating on a case-by-case basis.
21 According to Annex 3 in the Road Safety GPN, the Borrower and task team should ensure that the scope of the assessment 
is proportional to the potential risks and estimated Fatalities and Serious Injuries (FSI) for the project. This may vary for 
different project types. The OPTRSR process helps determine what further assessments will be relevant to the project. 
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project. The Road Safety GPN recommends identifying ratings and risk levels for each user group as 
Low, Moderate, Substantial or High.22 Table 2 provides an overview of these methods.

Method I: Crash data-based risk assessments are the most reliable method for estimating the OP-
TRSR for Type A projects. This method effectively captures the first three criteria (infrastructure, 
users and speeds), and will also reflect the other two criteria (vehicle standards and post-crash trau-
ma care). It is the go-to method when reasonable crash data from the previous three to five years is 
available for the road or can be estimated from data available from similar road(s) in the country and 
it can be used to inform the expected levels in the project. Crash data is evaluated along with an as-
sessment of vehicle standards and post-crash trauma care to calibrate the overall risk.

Method II: When reasonable crash data is not available, and iRAP analysis of the existing road is 
available, iRAP results and estimated risks for other factors could be used. Dedicated to saving lives 
through safer roads, the International Road Assessment Programme (iRAP) provides tools and train-
ing to help countries make roads safe. iRAP Star Ratings are an objective measure of the likelihood 
and severity of road crashes. iRAP results are often used to deliver broad network level analysis that 
provide road authorities and others with risk assessment. The focus is on identifying and recording 
road attributes which influence the most common and severe types of crashes based on scientific evi-
dence-based research. This approach determines the risk level of a specific road segment or network 
without requiring detailed crash data, which is advantageous for developing countries where data 
may be limited. One-star (black) roads are the least safe – a person’s risk of death or serious injury is 
highest on these roads – while five-star (green) roads are the safest.23

Method III: When crash data and iRAP Star Ratings are unavailable, subjective estimates of road 
infrastructure risk and estimated risks for other factors should be used. In the absence of sound 
crash data, exposure and relative risk can be estimated especially based on WHO estimates for coun-
tries, volume by transport mode, well-established relationships between risk and operating speeds 
and other road design and operating features. Road infrastructure risk can also be estimated by ana-
lyzing attributes of the existing infrastructure, such as the extent of separation of pedestrians from 
traffic and crossing locations, extent of median separation, and presence of roadside safety barriers 
as well as dedicated bike, or motorcycle lanes. For both Methods II and III and for Type B, C or D 
projects, the OPTRSR is estimated as the weighted average of each of the identified risks.

22 The Directive for implementing the Environmental and Social Policy for Investment Project Financing (October, 2018) 
Section III C defines these risks with regard to crashes as: High: “high probability of serious adverse effects to human 
health…”; Substantial: “there is medium to low probability of serious adverse effects to human health … and there are known 
and reliable mechanisms available to prevent or minimize such incidents”; Moderate: “low probability of serious adverse 
effects to human health”; and, Low: “if its potential adverse risks to and impacts on human populations … are likely to be 
minimal or negligible.”
23 iRAP (International Road Assessment Programme), iRAP Star Rating and Investment Plan Implementation Support Guide 
(London: iRAP, March 2017).
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TABLE 2: Methods for assessing OPTRSR and identifying risk factors
METHOD RISK FACTORS DATA REQUIREMENTS

Crash data-based 
risk assessment

•	 FSI crashes •	 Crash data from the previous 3–5 years or 
estimated from data available from similar 
roads in the country

•	 Assessment of vehicle standards (safe 
vehicles) 

•	 Post-crash trauma care (response time, quality 
of attention)

iRAP Star Rating •	 iRAP Star Rating – existing conditions for vehicle occupants 
•	 iRAP Star Rating – existing conditions for motorcyclists (if 

motorcycles are present on the road or likely to be present 
post-project)

•	 iRAP Star Rating – existing conditions for bicyclists (if 
bicycles are present on the road or likely to be present post-
project)

•	 iRAP Star Rating – existing conditions for pedestrians (if 
pedestrians are present on the road or roadside or likely to 
be present post-project)

•	 Assessment of non-infrastructure risks: operating speeds, 
road users, vehicle standards, and post-crash trauma care

•	 iRAP scores (Low, Medium, Substantial, High)
•	 Estimates for non-infrastructure risks

Estimating road 
infrastructure risk 
without crash or 
iRAP data

•	 Extent of separation of pedestrians from traffic with 
provision of safe walking spaces and crossing locations (if 
pedestrians are present on the road or roadside or likely to 
be present post-project)

•	 Extent of roadside safety barriers (omit this factor from 
consideration if the operating speed is <40 km/h)

•	 Extent of median separation (omit this factor from 
consideration if the operating speed is <60 km/h for a rural 
road and <40 km/h for an urban road)

•	 Extent of separate well-designed motorcycle lanes (if 
motorcycles are present on the road or roadside or likely to 
be present post-project)

•	 Extent of separate off-road bicycle lane (if bicycles are present 
on the road or roadside or likely to be present post-project)

•	 Assessment of non-infrastructure risks: operating speeds, 
road users, vehicle standards, and post-crash trauma care

•	 Subjective estimates of road infrastructure risk 
for each of the risk criteria

•	 Estimates for non-infrastructure risks

SOURCE: Road Safety GPN.

The Road Safety Screening and Appraisal Tool (RSSAT) developed by the Transport Global Practice, 
is required for all World Bank transport projects (Type A) and also recommended for other projects 
that may involve road safety risks. Its results must be reported in conjunction with the OPTRSR. The 
RSSAT tool (Method IV) considers the likely fatality rate with and without the project and it is designed 
to undertake a quick road safety screening of World Bank projects during the concept and preparation 
stages. It evaluates the safety effects of different design options, and conducts a cost-benefit analysis of 
the project’s impact on road safety, estimating change in potential Fatalities and Serious Injuries (FSI) 
due to the project. At the identification stage, RSSAT should be applied, and the results reported in con-
junction with the OPTRSR.24 RSSAT does not require crash data to identify likely change in FSI risk, and 
it is now required for all World Bank financed transport projects to estimate the economic cost of road 
crashes on project roads.Type A projects should demonstrate Project Safety Impact of 1 or below for all 
road segments before approval. Table 3 summarizes the data requirements for RSSAT. 

24 World Bank, Good Practice Note on Road Safety.
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TABLE 3: The World Bank Road Safety Screening and Assessment Tool
METHOD PROJECT SAFETY COST/BENEFIT IMPACT DATA REQUIREMENTS

RSSAT •	 Project safety impact analysis and 
safety impact model

Baseline and projected estimates for:
•	 Fatalities by mode
•	 Speeds by fleet type
•	 Segment characteristics and road features
•	 Traffic flows

SOURCE: Road Safety GPN.

Traffic and Road Safety Assessments

During the project Preparation stage, the Borrower may need to conduct more in-depth assess-
ments to identify and evaluate potential traffic and road safety risks. When traffic and road safety 
issues are likely to be significant for the community or road users, the objective of the road safety 
assessment is to consider these risks in more detail to determine the most appropriate mitigation 
(control) measures that can be implemented in the project. The assessment should consider the Safe 
System principles to confirm that all opportunities to minimize risks have been realized. The Safe 
System approach addresses all of these interactive elements in an integrated manner and emphasizes 
sharing accountability with designers and users of the road network to achieve road safety targets.25

Assessments prepared early in the project cycle help to identify and evaluate potential traffic and 
road safety risks that may arise from the project activities and/or their implementation. Such as-
sessments are intended to help the Borrower mobilize appropriate resources, analyze risks in detail, 
and identify and adopt the most appropriate mitigation measures. This assessment also guides the 
preparation of the environmental and social documents, such as the Environmental and Social Im-
pact Assessment (ESIA), Environmental and Social Management Plans (ESMP), and the Environment 
and Social Commitment Plan (ESCP).

For projects with High or Substantial road safety risks, assessments should be completed before 
the project is fully appraised to inform project objectives, components and activities, and the re-
sults framework.26 Type A projects, or Type B and C projects with major construction activities re-
quire more robust or detailed assessments. Substantial and High-risk projects should, as a minimum, 
include intermediate indicators related to traffic and road safety risk mitigation. Table 4 summarizes 
the different types of assessment tools (Methods V-VII) that can be used for this purpose as well as 
their data requirements.

One or more of these assessments may be conducted at once or at different phases of project 
Preparation. Road Safety Audits (RSA) and Road Safety Impact Assessments (RSIA) involve exam-
ining a traffic project, which may involve new construction or altering an existing road, to improve 
traffic and road safety performance. An RSA is a formal procedure to assess the crash risk potential 
and expected safety performance of a design for a road or traffic scheme. RSIA is a strategic assess-
ment of the impact of different planning options. Safe System Assessments (SSA) evaluate the design 
against Safe System principles to confirm that all opportunities to mitigate risks and maximize road 
safety have been realized.

25 Tony Bliss and Jeanne Breen, “Meeting the Management Challenges of the Decade of Action for Road Safety,” IATSS Res., 35 
(2012): 48–55, https://doi.org/10.1016/j.iatssr.2011.12.001
26 For projects with Moderate or Low safety risks, the Borrower and the Bank may agree on more flexible timelines for the 
completion or road safety assessments and/or mitigation or management measures. Such agreements would be specified In 
the project’s ESCP.

https://doi.org/10.1016/j.iatssr.2011.12.001
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These assessment procedures enable road safety engineering and crash analysis to be used for the 
prevention of crashes on new or modified roads. They can be conducted at different stages of the 
project cycle to identify key road safety challenges to guide designers, confirm that safety elements 
are correctly captured, check for any unsafe feature not apparent at previous stages and check that 
all the design details have been correctly implemented, identify deficiencies that need to be correct-
ed, or to evaluate the road’s performance with traffic and determine areas that require further atten-
tion. The earlier road safety risks are assessed within the design and development process the better 
to ensure that safety is fully integrated into all elements of the project’s infrastructure, with minimal 
risk of redesign or physical rework at a later stage.

The main data needed to perform these types of assessments are FSI, traffic flows, and road fea-
tures. Data analyses, modelling or estimates quantify and forecast traffic volumes and road crash 
FSI. Depending on data availability, these would aim to identify crash locations and crash types, 
at-risk individuals and groups, and key risk factors influencing exposure to risk, crash involvement, 
crash severity and post-crash outcomes. Even in the absence of sound crash data, exposure and 
relative risk can be estimated based on estimates for countries, volume by transport mode, well 
established relationships between risk and operating speeds, and other road design and operating 
features. Capacity reviews to assess the efficiency and effectiveness of road safety measures can be 
relevant when the project involves road safety policy change.
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TABLE 4: Overview of primary tools for traffic and road safety assessments
METHOD OBJECTIVES DATA REQUIREMENTS

Road Safety Audits 
(RSA) (performed by an 
independent team of 
specialists)

Identify safety concerns. It audits the 
safety of the specific design of the 
chosen scheme.

Analysis of project designs and interventions: specialists assess 
road options, such as intersections, signs, crossings; design 
standards, and the relationship of this intervention to main 
network. Main data needed includes:
•	 Scheme plans
•	 Crash and FSI data
•	 Traffic mix and volumes
•	 Road features (e.g., design elements, such as bypasses, cycle 

routes, junction improvements, installation of traffic signals, 
roundabouts, traffic calming, bend realignment, safety fence 
schemes and pedestrian crossing facilities)

Road Safety Impact 
Assessments (RSIA) 
(performed by members 
of the project design 
team with road design 
and road safety auditing 
experience)

Assess the impact of each of the 
planning options on the safety 
performance of the current road 
network. It estimates the impact 
of possible schemes on safety for 
an entire geographic area at the 
strategic level.

The evaluation of each alternative is based on several factors, 
some of which includes:
•	 The scheme objectives
•	 Crash and FSI data
•	 Traffic mix and volumes
•	 Road features
•	 Categorization of roads and streets of that network

Safe System Assessment 
(SSA)

Assess how closely road design and 
operation align with the Safe System 
objectives, and to clarify which 
elements need to be modified to 
achieve closer alignment with these 
objectives.

The core of the SSA approach is the “Safe System Matrix” 
framework, which is essentially a risk assessment. The 
assessment is done by scoring the risk exposure, likelihood 
and severity from 0–4. The Austroads approach can be used to 
perform this type of assessment. Data needed includes:
•	 Traffic mix and volumes
•	 Road features

SOURCE: Road Safety GPN.

Since the key objectives of these assessments (i.e., identifying risk elements and estimating crash 
exposure, likelihood, and severity for different road users) are complex and not standardized, 
the scoring system is subjective. This can complicate comparisons between sites, especially when 
these have been assessed by different individuals or teams. It is, therefore, usually most suitable for 
comparing options at a single site, identifying sources of risk and identifying solutions, rather than 
for comparing different sites.

Results Frameworks and Monitoring Plans

In addition to these assessments, a Results Framework that articulates the expected outcomes and 
impact of the project on road safety should also be developed before project Appraisal. A Results 
Framework is a management tool that presents how the development objective(s) of an operation will 
be evaluated, measured and monitored, based on the results chain (outputs, outcomes, and impacts). 
The Results Framework is based on the Project Development Objective (PDO) that indicates expected 
project outcomes. Depending on project design, intermediate indicators for each project component 
can be used to track implementation progress including the units of measurement, baselines, and 
final target for each indicator. Such details are typically provided in the project’s Monitoring Plan.
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The Results Framework and Monitoring Plan should include a 
road safety indicator with baseline and target values. The Trans-
port Global Practice has committed to including a road safety indica-
tor in all road projects and to increase the road safety focus of urban 
mobility projects. All substantial and high-risk projects should in-
clude at least one indicator that addresses road safety in the Results 
Framework or as a Disbursement Linked Indicator, as relevant.27

There are two types of indicators that should be considered. The 
first kind are intermediate indicators, which mark the progress 
toward fulfilling the development objectives before the final project 
outcomes are achieved (these may also measure progress in project outputs). Some examples of inter-
mediate indicators that may be relevant to transport projects include the number of speed managing 
devices installed and safety audit compliance. The second are outcome indicators, which evaluate the 
uptake, adoption, and use of outputs by the target group within the project period. FSI is considered 
the most important indicator for monitoring the outcome of road safety interventions.28 Table 5 pro-
vides some examples of indicators that can be included in the Results Framework, as well as the type 
of data that can be collected to monitor and evaluate them.

Change in FSI is the most frequently tracked metric for impact evaluation of projects and inter-
ventions for monitoring the outcome of road safety interventions. In cases where data cannot be 
obtained, other methodologies to estimate safety risks can also be used. Projects need to undertake 
baseline data collection to not only establish the appropriate project interventions to address road 
safety risks, but also as a way of assessing whether the project will improve or worsen the situation. 
Target values are to measure progress towards a particular indicator. For example, the number of 
workers killed (zero baseline because the project has not started; and zero target because the objec-
tive should always be to avoid fatalities). This indicator should be based on one or more of the World 
Bank’s seven road safety pillars.

During the Implementation phase, the focus shifts toward executing planned activities, and mon-
itoring and evaluating indicators. Activities that are included in the Project Appraisal Document 
(PAD) are to be carried out during this phase. When key information or data for indicators included 
in the results matrix must be collected, it is important that procurement processes and supervision 
activities are planned and executed in a timely fashion to achieve expected results. It is also vital 
that the project design includes close monitoring of the safety performance until the project closes. 
In some cases, impact evaluations may also be required to monitor the long-term effects of imple-
mented interventions. For example, the results matrix would identify the extent of progress towards 
achieving a particular milestone, like enumerating the number of physical features to separate traffic 
(e.g., footpaths, cycle lines, traffic signals) installed in the project to address the safety of vulnerable 
group users, such as pedestrians, bicyclists, or motorcyclists.

The Implementation Completion Report (ICR) addresses the targets achieved at the completion of 
the project. At project completion, the ICR carries out an ex-post analysis of project interventions, 
and measures outcome and intermediate indicators from the results framework to assess wheth-
er targets were achieved during implementation. The ICR will collect the indicators for the results 
framework for the last time to evaluate whether PDO and intermediate indicators meet their targets. 

27 World Bank, Road Safety Indicators for Project Monitoring (Washington, DC: World Bank, 2021).
28 World Bank, Road Safety Indicators for Project Monitoring. 

EXAMPLE OF INDICATOR TYPE OF DATA THAT 
CAN BE COLLECTED

Reduction of road 
crashes

Crash data

Speed reductions Traffic flows

Increased use of 
helmet and seat belts 

Number of helmet 
and seat belt users

SOURCE: Original table for this publication.

TABLE 5: Example of indicators 
that may be included in 
the Results Framework
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If, for example, a PDO is to contribute to the reduction of road traffic injuries and fatalities in selected 
corridors, with intermediate indicators to track progress towards some interventions, like imple-
menting a certain number of physical features to separate traffic, the ICR will quantify this at the end 
of the project cycle so it can be compared with baseline indicators and expected targets.

Key Challenges with Current Approaches to Road Safety Analysis

Since data is the cornerstone of all road safety assessments, the availability of high quality, reli-
able data is key to extracting useful, actionable insights and improving road safety conditions. 
Without quality information, it is difficult to estimate crash locations and crash types, at-risk individ-
uals and groups, and key risk factors influencing exposure to risk, crash involvement, crash severity, 
and post-crash outcomes. Meeting data requirements for road safety assessments can be a challenge 
for various reasons, such as the lack of open data, or data collection costs.

There can be a lack of adequate crash data or road ratings in data scarce countries and regions 
for identifying risk factors (Methods I to III). Governments often lack adequate and reliable data 
to identify road safety risks and perform road safety assessments. In addition, road crashes tend to 
be underreported, especially in LMICs. There may also be significant gaps in the data in terms of 
geographic or temporal coverage, or the data may be missing important variables and categories. 
Access to data can also be limited for certain data types, or the process of obtaining the data may be 
too complex, costly, and time-consuming. 
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Collecting data on road safety attributes through manual detection or special equipment can be 
expensive, time-consuming, and complex.29 Budgeting for data collection can be a challenge for 
both Borrowers and World Bank task teams, especially for Methods I to IV which are required at 
the project identification stage. In these cases, data is most often estimated through existing road 
designs or by local transportation agencies. For Methods V to VII, the most cost-effective method for 
data collection is the installation of cameras and sensors that record street imagery, speed informa-
tion and other data. Images and video are then analyzed by road safety experts to identify relevant 
attributes, assess road conditions and identify potential risks. Commissioning equipment and hiring 
resources to manually collect data on road features and design may be a hindrance, especially for 
smaller-scale projects where the opportunity to benefit from economies of scale is low.

In addition to the quality and availability of data, preparing and analyzing road safety data can also 
be costly, resource-intensive, and technically demanding. Most road safety assessments require 
data to be combined from various sources, which often involves aggregating, cleaning and preparing 
the data. Additional resources and specialist expertise may be necessary for this process, and also to 
analyze the data and extract useful insights using methods such as clustering and developing spatial 
models. Conventional statistical techniques can also be limited in their ability to identify complex 
correlations and underlying factors that may contribute to road safety risks across various projects.

The purpose of this Guidance Note is to identify new methods for the collection and analysis of 
road safety data that could overcome the limitations of existing approaches, and also improve 
their efficacy in identifying risks and opportunities to mitigate crashes. Conducting road safety 
assessments is a required component of most road investment and infrastructure development proj-
ects. Advanced technologies such as big data and ML have the potential to not only supplement 
existing methods, but also significantly reduce costs while improving the efficacy of road safety as-
sessments in identifying risks and opportunities to mitigate crashes. 

The following section explains how big data and ML can be practically implemented by Borrowers 
and World Bank task teams for various road safety assessment procedures that are required by 
World Bank investment projects at various stages of the project cycle. It introduces these methods 
and provides an overview of big data sources and ML techniques that are useful for road safety as-
sessments (tables 6 to 10). Part 2 also discusses best practices and key considerations that are vital to 
implementing these new methods effectively. A framework for integrating these technologies in road 
safety assessments is also proposed, and subsequent sections demonstrate how this framework can 
be applied in LMICs through two original case studies.

29 OECD (Organisation for Economic Co-operation and Development)/ITF (International Transport Forum), Big Data and Transport: 
Understanding and Assessing Options (Paris: OECD/ITF, 2015), https://www.itf-oecd.org/sites/default/files/docs/15cpb_bigdata_0.pdf

https://www.itf-oecd.org/sites/default/files/docs/15cpb_bigdata_0.pdf
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PART 2:
Big Data and Machine Learning to Strengthen Road 
Safety in Transport Projects

The World Bank and Global Road Safety Facility are keen to use new technologies, such as big 
data and ML, in data collection and analysis for road safety to overcome the limitations of existing 
approaches. As these technologies become more sophisticated and accessible, a growing body of re-
search indicates their potential to complement, and eventually even surpass conventional methods.

World Bank teams have demonstrated various applications of big data and ML in road safety and 
other transport and infrastructure projects over the past few years. For example, a task team de-
veloped an open data platform in 2015 based on a pilot in Cebu City, Philippines, which sourced data 
from a taxi company to generate insights for traffic management.30 Another team has developed a 
“Simplified Methodology” to implement ML in video analysis to extract data on road attributes. The 
new tool was piloted across over 500 kilometers of road in Mozambique and Liberia in 2019.31 The 
World Bank, in collaboration with the Philippine government, has also launched the Data for Road 
Incident Visualization Evaluation and Reporting (DRIVER) system to facilitate data sharing for road 
safety analysis. This free web-based, open-source platform connects traffic crash data from multiple 
agencies through a standardized reporting system. DRIVER also provides tools to geo-spatially an-
alyze road crash data, predict blackspots, estimate the economic costs of crashes, and evaluate the 
effectiveness of various interventions to support investments and policy-making for improved road 
safety.32

World Bank teams are increasingly turning to data partnerships to obtain crash, traffic, and oth-
er types of data for road safety analysis. For example, in Kenya, the WHO estimates that up to 75 
percent of crashes go unreported.33 SmarTTrans – a collaboration between the Kenyan government 
and the World Bank – has worked to fill this gap by bringing together crash information both from 
administrative records and from bystander crash reports from Twitter.34 In addition, the team has 
leveraged the Development Data Partnership (DDP) to access Waze API and Uber congestion and 
speed information for all 6,200 km of the city’s road network. Using all data sources, the smarTTrans 
team is creating near real-time analytics to facilitate the identification of crash hotspots, speeding, 
and congestion patterns.

30 World Bank, Open Traffic: Easing Urban Congestion (Washington, DC: World Bank, n.d.), https://olc.worldbank.org/system/
files/WBG_BD_CS_OpenTraffic_1.pdf
31 World Bank, Innovative Road Safety Risk Assessment Tool with Automated Image Analysis Technology (Washington, DC: World 
Bank, 2019). 
32 World Bank, GRSF DRIVER Completion Report (Washington, DC: World Bank, 2019), https://documents1.worldbank.org/
curated/en/245151560919065747/pdf/Data-for-Road-Incident-Visualization-Evaluation-and-Reporting-Lowing-the-Barriers-to-
Evidence-Based-Road-Safety-Management-in-Resource-Constrained-Countries.pdf
33 WHO, Global Status Report on Road Safety 2018.
34 Sveta Milusheva et al., “Applying Machine Learning and Geolocation Techniques to Social Media Data (Twitter) to Develop a 
Resource for Urban Planning,” PLoS ONE 16, 2 (2021),
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244317

https://olc.worldbank.org/system/files/WBG_BD_CS_OpenTraffic_1.pdf
https://olc.worldbank.org/system/files/WBG_BD_CS_OpenTraffic_1.pdf
https://documents1.worldbank.org/curated/en/245151560919065747/pdf/Data-for-Road-Incident-Visualization-Evaluation-and-Reporting-Lowing-the-Barriers-to-Evidence-Based-Road-Safety-Management-in-Resource-Constrained-Countries.pdf
https://documents1.worldbank.org/curated/en/245151560919065747/pdf/Data-for-Road-Incident-Visualization-Evaluation-and-Reporting-Lowing-the-Barriers-to-Evidence-Based-Road-Safety-Management-in-Resource-Constrained-Countries.pdf
https://documents1.worldbank.org/curated/en/245151560919065747/pdf/Data-for-Road-Incident-Visualization-Evaluation-and-Reporting-Lowing-the-Barriers-to-Evidence-Based-Road-Safety-Management-in-Resource-Constrained-Countries.pdf
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244317
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2.1 New Data (and Big Data) in Road Safety Analysis

Big data is generally understood as extremely large datasets that are generated by a wide range of 
data sources, including machines, sensors and other Internet of Things (IoT) devices. Big data can 
also be captured over the internet through social media and other types of applications, especially 
those that track locational or transactional data.

The large volume of such data is one of many characteristics that make big data especially useful 
for road safety and other applications in transport and infrastructure development. For example, 
big data can be generated at immense velocity, especially as more such data is collected real-time 
and for large populations. It also occurs in a variety of data formats, from structured databases to 
unstructured text documents, emails, videos, audios, stock ticker data and financial transactions. Big 
data is also characterized by a high degree of variability since data flows can change over time, de-
pending on seasons, off-peak hours or availability of collection methods across an entire population 
under study. Table 6 provides a SWOT analysis of the use of big data in road safety analysis.

For transport, the increasing use of personal mobile devices and vehicle sensors to collect traffic 
and location data presents a significant opportunity to augment traditional sources of transport 
data. Annex 1 discusses the most relevant big data types for road safety analysis. It also provides 
guidance on the potential applications of these sources for evaluating road safety, and the advantages 
and disadvantages of each source. The following sections discuss how big data can be used for the 
various road safety assessment methods and tools discussed in Part 1.
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TABLE 6: SWOT analysis of using big data in road safety analysis 
STRENGTHS WEAKNESSES

•	 Recent and broad geographic coverage allows researchers to 
dive deeper into transport issues and get a comprehensive and 
current picture of risks.

•	 Can help obtain real-time data and track up-to-the-minute 
changes in traffic flows and other important variables. 

•	 May be faster and easier to obtain and process, compared to 
manual collection.

•	 Can offer higher spatial and temporal resolution than 
conventional sources. 

•	 Can be more affordable and easier to scale. 
•	 Vast quantities of data can limit bias from outliers and other 

sources of “noise” since data gets aggregated across vast 
populations. 

•	 Can help improve data quality since often covers large 
geographic and/or temporal scope, also allowing for 
comparison against “control” datasets and scenarios.

•	 Requires investment in expertise, software and computing 
power to store, access and process big data.

•	 Availability of data can vary significantly by geography and 
context.

•	 Coverage can be inconsistent or exclude important segments 
of the population. 

•	 Most big data sources are not set up to support road safety 
assessments—it is often data that was collected for other 
purposes but gets repurposed for road safety analysis. This 
can lead to the data being biased, incomplete and/or difficult to 
incorporate in road safety analysis.

•	 Need to consider the interoperability of different datasets (i.e., 
how easy it is to combine different datasets for complex road 
safety assessment models).

•	 Changes in privacy laws and other relevant policies can impact 
quality, consistency and coverage of data.

OPPORTUNITIES THREATS

•	 Provides an alternative approach to road safety data collection 
and analysis that may complement or supplement traditional 
approaches or datasets. For example, big data sources may be 
able to collect more accurate crash data.

•	 Big data analysis can uncover new dynamics, complex 
behavioral patterns and relationships, and correlations that 
conventional statistical methods and data may not be able to 
detect. 

•	 Growing interest in autonomous vehicles is generating more 
data about road systems, vehicles, and vulnerable users that 
can be integrated into road safety analysis.

•	 Rising momentum for the creation of a “big data platform” 
where data providers can sell or share data.

•	 Privacy concerns – data should be de-identified and 
anonymized before use.

•	 Data providers may be reluctant to share data.
•	 Governments, local municipalities, and other stakeholders 

must invest in technological infrastructure to support big data 
collection and analysis.

•	 Need to enforce quality control to limit risk of data bias.
•	 Licensing constraints – most private companies, such as 

Google, provide limited licenses for data use.

SOURCE: Original table for this publication.

Big data, especially when combined with ML, which is discussed in the following section, can 
enhance the capabilities of current systems and road safety assessment tools. The increasing use 
of IoT devices, which range from smartphones to vehicle sensors, as well as Intelligent Transport 
Systems (ITS), is making it possible to collect, access and utilize real-time data about a large range 
of variables that are relevant to road safety analysis. This includes traffic flows, crash sites, peak 
timings, travel times and road usage by pedestrians, bicyclists, and motorists. The availability of 
such extensive data creates new possibilities for crash risk modelling, especially to predict the out-
comes of various types of road safety interventions as well as possible impacts of road infrastructure 
projects.

As mobile phone use rises globally, smartphones have become a prominent source of big data, 
though there are many other sources to consider. In addition to the location and velocity of road 
travelers collected passively through mobile devices, transportation projects can take advantage of 
street view, aerial, and satellite imagery, traffic monitoring systems, connected vehicles for road safe-
ty analysis, as well as crowdsourced data provided by the community through mobile devices.35 An-
nex 2 provides an overview of the most relevant and accessible big data sources for World Bank task 
teams and is a useful starting point to find relevant data sources. TTLs are advised to look for relevant 

35 Alex Neilson et al., “Systematic Review of the Literature on Big Data in the Transportation Domain: Concepts and Applica-
tions,” Big Data Res. 17 (2019): 35-44. https://doi.org/10.1016/j.bdr.2019.03.001

https://doi.org/10.1016/j.bdr.2019.03.001
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local and regional data providers based on the region(s) of interest that concern their project(s). As big 
data infrastructure advances globally and new companies and startups begin data collection for var-
ious purposes, it is likely that the list of available big data sources in World Bank member countries 
will expand significantly in coming years.

Street view imagery can complement or potentially substitute manual or commissioned road sur-
veys to collect data on road safety attributes for various types of assessments. For example, street- 
view imagery can help obtain baseline data for RSIA more quickly and cheaply, especially if the data 
is not already readily available. By applying ML algorithms to street view images, road attributes 
and other data can be detected that are important for road safety assessments. Similarly, there may 
be instances where satellite imagery or aerial imagery, those collected by an unmanned aerial vehi-
cle (UAV) or drone, can be analyzed to detect road or road user attributes. Figure 4 shows the same 
crosswalk visible in satellite imagery and street view imagery using OpenStreetMap in OSM. ML is 
discussed in greater detail in the next section.

FIGURE 4: Street view and OSM
Road safety data can be extracted from images such as road markings and signs, types of road users, and designated paths for 
vulnerable users. Each image and relevant attributes are geolocated for further analysis. In this instance, the crosswalk identified in 
OSM can be verified in street view imagery.

SOURCE: Original figure for this publication derived from OSM, Mapillary, and Maxar Technologies.

Mobile applications and telematics can provide data related to vehicle movement to identify road 
infrastructure risks. This data includes current and historical average speeds along road segments 
as well as irregularities, like traffic jams and incidents. This data is useful for most proactive road 
safety assessment tools, including RSIA, RSA, and RSI. It can be geographically visualized and ana-
lyzed, such as through heatmaps or hotspot analysis as shown in figure 5 (see Annex 3 for additional 
examples and descriptions). Telematics data has also been used to assess driver behavior, facilitate 
the prediction of crash-prone locations and create geographic visualizations, as discussed in inter-
views with researchers at the ARRB and Professor George Yannis from the National Technical Uni-
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versity of Athens. However, data privacy is an especially important concern when it comes to the use 
of telematics data.36

FIGURE 5: Hotspot analysis of major crashes reported by Waze application users

SOURCE: Original figure for this publication (data provided by Waze App; learn more at waze.com). Basemap provided by Esri, HERE, Garmin, METI/NASA, USGS.

Mobile applications are helping overcome underreporting of road crashes by crowdsourcing inci-
dent reports. For example, in Kenya, road crashes have been shown to be largely underreported, es-
pecially in areas where incident reporting mechanisms are lacking or underdeveloped.37 Navigation 
applications such as Waze are providing a valuable new source of crash and traffic data by allowing 
users to report incidents through their smartphone applications. Each incident report submitted by 
a user is geolocated and timestamped, which allows it to be combined with other geospatial data to 
identify segments of a road that are experiencing major or minor crashes, light to stand still traffic 
jams or hazardous conditions (hazards on the road or on the shoulder, weather alerts or dangerous 
road surfaces). Additionally, social media platforms like Twitter are used by many people on the 
ground to report on crashes and traffic conditions and can be leveraged using machine learning al-
gorithms to produce additional data on crashes, as was done by the smarTTrans team in Nairobi.38 
Lastly, mobile application data can be generated in real-time to assist with monitoring or collected 
and analyzed over time to develop models.

36 Anthony Germanchev (Principal Professional Leader, Advanced Technologies Lab, Australian Road Research Board) and 
Professor George Yannis (School of Civil Engineering, National Technical University of Athens), in discussion with the 
authors, April 2021.
37 Guadalupe Bedoya Arguelles, et al., “Smart and Safe Kenya Transport (SMARTTRANS).”
38 Sveta Milusheva et al., “Applying Machine Learning and Geolocation Techniques to Social Media Data (Twitter) to Develop a 
Resource for Urban Planning.”
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A growing number of countries and regions are focusing on developing a big data infrastructure 
to collect official incident reports. Collecting comprehensive and accurate information about road 
incidents is an important objective for government transportation agencies. There is growing inter-
est in gathering and analyzing the information in big data formats to provide deeper and more com-
prehensive insight into road safety risks and the impact of different interventions. The collection of 
real-time data would also be beneficial for this purpose, for which collecting, storing, and analyzing 
the information as big data would be most realistic and feasible.

How to Access Big Data

Big data for road safety generally falls into two categories: public sector and private sector. Tra-
ditionally governments have collected and provided data for road safety analysis, such as police re-
ports of crash incidents. However, alternative sources are becoming increasingly available as mobile 
apps are used to crowdsource reports of roadside incidents and companies aggregate traffic speeds 
from proprietary mobile applications. Often data quality from such sources can vary significantly by 
location, with certain sources being more effective, reliable, and better developed in some regions 
compared to others. Task teams are advised to use the list provided in Annex 2 as a starting point and 
find the most relevant data providers for their project’s region(s) of interest. 

This Guidance Note focuses on big data sources that are most easily and readily accessible to 
World Bank task teams. Different sources require different approaches to obtaining relevant data 
quickly and efficiently. It is important to understand the licensing restrictions that accompany each 
source. For example, even though a dataset is crowdsourced, it may have licensing restrictions. It is 
best to consult the World Bank Legal team and data provider to clarify terms of use when necessary.

Public sector. Governments can collect, manage, and share data relating to transport, infrastruc-
ture, and mobility. Many governments, whether at the national level or even local municipalities, are 
establishing open data platforms where datasets can be accessed by running a simple search query. 
Such platforms have already been created in the Philippines as well as in Australia and the United 
States.39 In other instances, particularly where the data infrastructure is not as advanced, data may 
have to be requested through the relevant department. It is often possible to obtain datasets relating 
to crash histories or collected by road sensors from government sources which are extensive enough 
to be processed as big data in road safety analysis.

The World Bank’s Road Safety Observatories (RSO) initiative also has the potential to become an 
important source of government-generated big data in the future. The Observatories provide a for-
mal network of government representatives to share and exchange road safety data and experience 
in order to improve road safety throughout the region. The World Bank established its first RSO in 
Latin America (OISEVI), before introducing the initiative in Africa (ARSO) and Asia-Pacific (APRSO). 
By enhancing road safety data and information systems, the Observatories play a pivotal role in help-
ing countries monitor, evaluate and develop more impactful road safety policies and interventions.40

In other cases, publicly available datasets with a global reach may be considered. A good example 

39 Australian BITRE (Bureau of Infrastructure and Transport Research Economics), “Australian Road Deaths Database (ARDD),” 
Australian BITRE, updated May 13, 2021, https://data.gov.au/data/dataset/australian-road-deaths-database; ODPH (Open Data 
Philippines), “Open Data Philippines,” ODPH, accessed June 3, 2021, https://data.gov.ph/; US NHTSA (United States National 
Highway Traffic Safety Administration), “Data,” US NHTSA, accessed May 28, 2021, https://www.nhtsa.gov/data
40 World Bank, “Better Data for Safer Roads: The Powerful Mission of Road Safety Observatories,” last modified November 5, 
2020, https://www.worldbank.org/en/news/video/2020/11/05/better-data-for-safer-roads-the-powerful-mission-of-road-safety-
observatories

https://data.gov.au/data/dataset/australian-road-deaths-database
https://data.gov.ph/
https://www.nhtsa.gov/data
https://www.worldbank.org/en/news/video/2020/11/05/better-data-for-safer-roads-the-powerful-mission-of-road-safety-observatories
https://www.worldbank.org/en/news/video/2020/11/05/better-data-for-safer-roads-the-powerful-mission-of-road-safety-observatories
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of this is OSM, which offers freely available geographic data generated by volunteers who trace satel-
lite images around the world to create and update the map consisting of road networks (detailing road 
types, bridges, tunnels, direction of traffic flow), among other features. OSM data can be combined 
with other datasets for road safety analysis. While OSM provides an overview of the road geometry, 
the recency and accuracy of the data requires validation. Due to variability in quality and coverage, 
OSM data would be considered a starting point and is not recommended for detailed assessments.

Private sector. Mobility datasets are generated through ride-hailing services, delivery services, so-
cial media, and other mobile applications that collect user location and movement. Companies in the 
transportation and logistics sector use smartphone applications to digitize their operations and take 
advantage of higher quality, real-time data to improve efficiency as well. Other companies provide 
telematics software to track vehicle movement and safety features. Companies and start-ups invest-
ing in autonomous vehicle research are providing valuable sources of big data for road safety analy-
sis. Some companies also provide APIs that allow developers to access these datasets (often on a lim-
ited basis). However, proprietary or commercial data may have to be purchased in some instances, or 
data partnerships need to be established to access such data. It is also crucial to understand how the 
data is licensed and can be legally used for different types of analysis. For example, Google restricts 
digitizing and tracing information as well as using applications to analyze and extract information 
from street view images, although annotation and labelling is permitted.41

Data Partnership Agreements. World Bank task teams can apply for access to various datasets for 
road safety analysis through the Development Data Partnership (DDP), which is a formal collabora-
tion of private sector companies and international organizations to use third-party data in research 
and international development.42 It is accessible to all World Bank staff and partners. Upon submit-
ting a proposal through the DDP site and signing a licensing agreement, companies provide datasets 
relevant to road safety, such as human movement (Orbital Insight, Unacast, and Veraset), traffic 
speed (Mapbox and Waze), social media (Twitter), and weather (tomorrow.io). In addition, the site 
shares guidance on accessing the datasets and contains a searchable inventory of Development Part-
ner projects. DDP provides a seamless, efficient, and secure manner for World Bank teams to access 
data from a broad range of data providers across various regions of interest. It includes templates of 
data license agreements, access to multi-disciplinary teams for end-to-end support and a centralized 
IT architecture and processes for ingesting, storing, and pre-processing data, as well as for coding 
collaboration. Task teams can also benefit from extensive, up-to-date documentation that provides 
guidelines, code snippets and examples from data partners’ products and services to facilitate their 
project.43 DDP datasets are primarily intended for experimental purposes. If proven successful, gov-
ernments may consider implementing a five-year agreement directly with the company to continue 
to use the data for road safety analysis. It is also possible to benefit from the platform by becoming a 
World Bank Data Fellow.

Waze for Cities is one example of a data sharing agreement that can be leveraged using the DDP 
platform. The program allows cities to utilize data standards designed by Waze for closure and inci-
dent reporting to reduce data fragmentation and promote transport and government data aggrega-
tion. It now has more than 500 global partners including city, state and country government agen-
cies, nonprofits and first responders. Moovit, an app focused on public transport, offers Mobility as a 

41 Google, “Google Maps, Google Earth, and Street View,” accessed May 14, 2021, https://about.google/brand-resource-center/
products-and-services/geo-guidelines/
42 Development Data Partnership, https://datapartnership.org/
43 Development Data Partnership Documentation, https://docs.datapartnership.org/pages/documentation.html

https://about.google/brand-resource-center/products-and-services/geo-guidelines/
https://about.google/brand-resource-center/products-and-services/geo-guidelines/
https://datapartnership.org/
https://docs.datapartnership.org/pages/documentation.html
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Service (MaaS) solutions for cities, providing personalized apps, payment solutions, real-time transit 
information, and other analytics.

In many cases, data providers help local governments by exchanging data. For example, the city of 
Tokyo in Japan has partnered with a private firm to develop a smartphone compatible app, Zenryoku 
Annai!. The app analyzes nearly 360 million observations every second to generate real-time infor-
mation on the shortest and least-congested travel routes. A similar intelligent transport system (ITS) 
in Denmark, Copenhagen Connecting, was implemented to promote transport sustainability through 
real-time digital traffic control and weather adaptation options. World Bank task teams should con-
sider seeking the support of local governments to establish data partnership agreements, particular-
ly if the provider is not already a part of the DDP.

Data marketplaces. Business leaders are keen to explore the value of the big data they collect as a 
tradable commodity. This has given rise to data marketplaces which are essentially online platforms 
dedicated to the buying and selling of data. These marketplaces can provide a more cost-effective 
source of data compared to other data mining techniques. Dedicated marketplaces for traffic and 
transport data have also emerged in recent years, although their coverage of LMICs tends to be low. 

As part of its efforts to establish an artificial intelligence tool for road safety analysis (called Ai-
RAP), iRAP is seeking to establish a data marketplace where public and private data providers can 
trade data for road safety analysis. The data marketplace will focus on three types of data products, 
according to Monica Olyslagers (Safe Cities and Innovation Specialist at iRAP), who was interviewed 
for this Guidance Note.44 The first is raw datasets that need to be processed to extract relevant in-
formation. The second is datasets that have been at least partially cleaned up and processed by data 

44 Monica Olyslagers (Safe Cities and Innovation Specialist, iRAP), in discussion with the authors, April 2021.
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providers or Ai-RAP and are ready to be plugged into road safety assessments. The third is pre-
pared-for-purpose datasets that are specifically commissioned for road safety assessments in differ-
ent types of projects. This data marketplace model is currently being piloted in Africa, as part of a 
project to set up a regional road safety observatory there in collaboration with the World Bank.

The new data marketplace will initially focus on aggregating and trading conventional datasets. 
However, the project team plans to bring on big data providers and incorporate ML in the Ai-RAP tool 
to allow for more sophisticated analysis in road safety assessment procedures. Borrowers and TTLs 
are advised to search data marketplaces as a lesser-cost alternative to commissioning data collection 
for their projects.

Key Considerations for Selecting the “Right” Big Data Source 

This section provides an overview on how different big data sources can be used. The data sources 
covered in the tables for each method or assessment type should be viewed as guides, rather than 
concrete, all-inclusive lists. The most appropriate choice of data sources should eventually be deter-
mined by considering the costs and benefits of each source. A list of factors that may be useful to 
consider for this purpose are discussed toward the end of this section. It is also worth noting that 
while big data may not be a feasible alternative to conventional data for every project or assessment 
(if only at present), it can still complement and supplement current approaches or be used to validate 
their outcomes and analyses.45

As discussed in Part 1, assessing OPTRSR is a procedure that must be conducted at the project 
Identification stage to inform design and other assessments at the Preparation stage. Table 7 pro-
vides an overview of potential big data sources for the road safety assessment procedures discussed 
in Part 1 (Methods I-VII). Tables 8 to 10 discuss data sources that could be useful for each of the three 
primary methods for estimating OPTRSR, based on their respective data requirements.

45 Holly Krambeck, Magreth Kakoko, and Mireille Raad, Using Computer Vision to Automatically Detect Road Features for Road 
Safety Audits and Assessments: Inception Report (Washington, DC: World Bank, 2019).
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TABLE 7: Overview of potential big data sources for Methods I-VII
TYPE OF DATA REQUIRED WHICH METHODS

IT’S USED FOR 
POTENTIAL BIG DATA SOURCE EXAMPLES 

Crash data from 3–5 years Methods I, V and VI Government Government portal or contact

Mobile applications and telematics Waze

Crowdsourced Waze

Operating speeds Methods II to IV Mobile applications and telematics Mapbox, Waze

Road features (road 
markings, signs, traffic 
calming measures, etc.)

Methods III, V, VI, and VII Street view imagery Mapillary

Crowdsourced OSM

Aerial and satellite imagery Maxar, UAV

Road type (urban road, 
pedestrian area, etc.)

Methods III, V, VI, and VII Street view imagery Mapillary

Crowdsourced OSM

Aerial and satellite imagery Maxar, UAV

Mobile applications Orbital Insight

Vehicle fleet mean speed Methods III to VII Mobile applications and telematics Mapbox, Waze

Traffic flow Methods IV to VII Traffic imagery Mapillary

Aerial and satellite imagery Maxar, UAV

Mobile applications and telematics Mapbox, Waze
SOURCE: Original table for this publication.

For crash data-based risk assessments (Method I), at least three years of historical crash data is required 
to cover three assessment criteria: infrastructure, road users, and speeds. Government data can be sup-
plemented with data from mobile applications and telematics software, which may also have crowdsourc-
ing capabilities, such as Waze. However, it may be a challenge to access three or more years of historical 
mobile or crowdsourced data. Table 8 summarizes the different data sources that can be used, although it 
does not include sources for two assessment criteria (vehicle standards and post-crash trauma care).

TABLE 8: Method I — Crash data-based risk assessment
REQUIREMENTS DATA SOURCE COMMENTS

Crash data 
from 3–5 
years

Government May be underreported; see Road Safety GPN

Mobile applications and 
telematics

Companies providing mobile map apps or crash-related 
data within apps could be a resource for crash data

Crowdsourced Waze incident reports (minor or major crash)

Incident reports from delivery drivers

Social media text analysis, such as from Twitter

SOURCE: Original table for this publication.

If crash data is not available, Method II uses iRAP Star Ratings on the existing road to evaluate 
road infrastructure risk, and an assessment of the other criteria. Big data can be considered for 
evaluating road features, traffic flows and users’ behaviour and complement iRAP Ratings. Table 9 
highlights alternative big data sources that can be used to assess non-infrastructure risk. iRAP is also 
exploring the use of big data such as geo-located crash data to produce iRAP Risk Maps of the his-
torical crashes per kilometer, and analyze road attributes, traffic flows, and speed data and map the 
safety performance and Star Rating.46 Such a methodology would also require the use of ML, which 
is discussed in the next section.

46 Omdena, “Rating Road Safety Through Machine Learning to Prevent Road Accidents,” accessed May 28, 2021, https://
omdena.com/projects/ai-road-safety/

https://omdena.com/projects/ai-road-safety/
https://omdena.com/projects/ai-road-safety/
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TABLE 9: Method II — iRAP Star Rating (alternative data sources using big data)
REQUIREMENTS DATA SOURCE COMMENTS

Road users (behavior)

Seat belt use for front passengers Traffic imagery Road surveillance images have been used to 
monitor front-row passengers wearing seat belts; 
potential to apply this to images (or video).

Child restraint and rear seat 
passenger seat belt use

N/A N/A

Motorcycle helmet use Street view imagery Potential to identify helmet use among 
motorcyclists.

Operating speeds (km/h) during non-peak hours (not speed limits) for each road type

Traffic video Government data or collected by team Video images can be used to calculate traffic 
flows and speeds.

Operating speeds Mobile applications and telematics Often provided as average speed per road 
segment in varying temporal resolutions.

SOURCE: Original table for this publication.

Big data can also be used to evaluate road safety risk without crash or iRAP data (Method III). Road 
infrastructure, operating speeds and other risks to road users may be estimated using various sourc-
es of big data (table 10). Combined with ML, clustering and other advanced analytical techniques, 
these data sources can also be used to model high-risk crash sites to project crash risk probability, 
frequency, and severity. This is discussed more in the following section.
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TABLE 10: Method III – Estimating road infrastructure risk without crash or iRAP data
REQUIREMENTS DATA SOURCE COMMENTS

Road infrastructure

Extent of separation of pedestrians from 
traffic with provision of safe walking spaces 
and crossing locations (if pedestrians are 
present or likely to be present post-project) 

Street view imagery Identify safe walking paths and crosswalks, traffic lights 
and signals

Crowdsourced OSM footways, intersections

Aerial and satellite imagery Identify walking paths and crosswalks

Extent of roadside safety barriers (omit this 
factor from consideration if the operating 
speed is <40 km/h)

Street view imagery Identify barriers

Crowdsourced OSM (e.g., cable barriers or guard rails)

Aerial and satellite imagery Depending on image resolution and type of barrier in 
the ROI

Extent of median separation (omit this 
factor from consideration if the operating 
speed is <60 km/h for a rural road and <40 
km/h for an urban road)

Street view imagery Identify road medians

Crowdsourced OSM (e.g., cable barriers)

Aerial and satellite imagery Depending on image resolution and type of median in 
the ROI

Extent of separate well-designed 
motorcycle lanes (if motorcycles are 
present on the road or roadside or likely to 
be present post-project)

Street view imagery Identify motorcycle lanes

Crowdsourced OSM (e.g., motorcycle lanes)

Aerial and satellite imagery Identify motorcycle lanes

Extent of separate off-road bicycle lane (if 
bicycles are present on the road or roadside 
or likely to be present post-project)

Street view imagery Identify bicycle lanes

Crowdsourced OSM (e.g., cycleways)

Aerial and satellite imagery Identify bicycle lanes

Road users

Seat belt use for front passengers Street view imagery Road surveillance images have been used to monitor 
front-row passengers wearing seat belts; potential to 
apply to images or video

Child restraint and rear seat passenger seat 
belt use

N/A N/A

Motorcycle helmet use Street view imagery Potential to identify helmet use among motorcyclists

Operating speeds (km/h) during non-peak hours (not speed limits) for each road type

Operating speeds Mobile applications and 
telematics

Often provided as average speed per road segment in 
varying temporal resolutions

Road type (pedestrian area; urban area 
without pedestrians; open road, not median 
separated; open road, median separated)

Street view imagery Identify pedestrian and non-pedestrian areas, open 
roads, and medians

Crowdsourced OSM roadways, footways, cable barriers or guard rails

Aerial and satellite imagery Pedestrian area, area without pedestrians, medians

Mobile applications Foot traffic, such as from Orbital Insight
SOURCE: Original table for this publication.
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Projects that require reporting RSSAT results (Method IV) in addition to the OPTRSR (such as 
Type A projects, see Part 1) can turn to the big data sources highlighted in table 11 as an alternative 
or complement to traditional sources. Where existing data may be scarce or of poor quality, these 
sources may provide faster, more comprehensive and reliable data to estimate baseline risks.

Similar big data sources can be used for road infrastructure evaluations that involve Methods 
V-VII. Speed limits may be provided by the government. Roadside attributes, intersections, and mid-
block attributes can be detected by ML algorithms applied to street view images.

TABLE 11: Method IV – RSSAT
REQUIREMENTS DATA SOURCE COMMENTS

Crash data from 3–5 years 
(annual fatalities, serious 
injury/fatality ratio; fatalities 
by vehicle occupant, 
motorcyclist, bicyclist, or 
pedestrian)

Government May be underreported; see Road Safety GPN

Mobile application Companies providing mobile map apps or traffic-related data 
within apps might be a resource for crash data

Crowdsourced Waze incident reports (minor or major crash)

Incident reports from delivery drivers

Social media text analysis, such as from Twitter

Vehicle fleet mean speed Mobile applications and 
telematics

Often provided as average speed per road segment in varying 
temporal resolutions

Segment characteristics 
(number of lanes per travel 
direction; lane width, paved 
shoulder width, terrain type, 
median type; road marking and 
signs; pedestrian and bicycling 
facilities, service road)

Street view imagery Number of lanes, lane width, paved shoulder width, terrain type, 
median type, road marking and signs, pedestrian and bicycle 
facilities, service road

Crowdsourced OSM

Aerial and satellite imagery Number of lanes, lane width, paved shoulder width, terrain type, 
median type, road marking, pedestrian and bicycle facilities, 
service road; road signs will be a limitation

Dominant roadside object 
(safety barrier; minor hazards; 
slope; trees, poles, and fixed 
objects; cliff or steep drops)

Street view imagery Safety barriers, static roadside objects, minor hazards; in some 
cases, cliff or steep drop may be possible

Crowdsourced OSM (e.g., barriers)

Aerial and satellite imagery Elevation for slope and steep drops; in some cases, static 
roadside objects, minor hazards or safety barriers

Speed management or traffic 
calming measures (percentage 
of road length) 

Street view imagery Identify physical speed inhibitors

Crowdsourced OSM traffic calming features by type

Aerial and satellite imagery Identify physical speed inhibitors

Intersection characteristics 
(grade separated, roundabout, 
signalized junction, 
unsignalized junction) 

Street view imagery Grade separated, roundabout, signalized junction, unsignalized 
junction

Aerial and satellite imagery Grade separated, roundabout

Pedestrian crossing (grade 
separated, signalized crossing, 
marked crossing)

Street view imagery Grade separated, signalized crossing, marked crossing

Crowdsourced OSM pedestrian crossing features by type

Aerial and satellite imagery Grade separated, marked crossing

Traffic flow (motorized 
and non-motorized; both 
directions, per day)

Street view imagery Static camera at a set location is preferrable

Aerial and satellite imagery Presents temporal limitations

Mobile applications and 
telematics

Provides temporal granularity

SOURCE: Original table for this publication.

Big data sources may also be useful to monitor and evaluate indicators for the Results Framework. 
Table 12 provides examples of a few big data sources that could be used for the indicators covered in 
table 5.
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TABLE 12: Example of big data sources for road safety indicators in the Results Framework
EXAMPLE OF INDICATOR TYPE OF DATA THAT CAN BE COLLECTED EXAMPLE OF BIG DATA SOURCE

Reduction of road crashes Crash data Government, open source data, Waze

Speed reductions Traffic flows Video images, telematics, mobile applications

Increased use of helmet and seat belts Number of helmet and seat belt users Street images and security video
SOURCE: Original table for this publication.

As a broader variety of big data sources become available, Borrowers and TTLs are advised to 
carefully consider the trade-offs involved when collecting data from various sources. Here is a list 
of factors to consider, as well as some guidance on how each of these can affect project outcomes 
and constraints. This is not an exhaustive list. Some factors may be more relevant to some projects 
than others, while additional considerations may be required for certain projects. In some cases, 
data from existing sources may not be available and will need to be collected using cameras, sensors, 
and/or other tools. The World Bank Data Lab provides resources to find, collect, manage, and gain 
insights from data, including access to Lab Leads who can give project-specific advice.47

•	 It is worth noting that many of these factors are also interrelated. For example, the types and quan-
tity of data required could impact costs of obtaining and processing it. Costs can also vary by region, 
as can the availability of resources to process and analyze the data. This list may be used in tandem 
with Annex 2, which provides an overview of the most relevant big data sources for road safety anal-
ysis as well as their relative costs, data attributes and formats, and possible limitations.

•	 Type of road safety assessment or procedure. As discussed in Part 1, a broad range of tools and 
procedures are used for road safety assessments across World Bank projects. Each tool has its 
own specific data requirements. It is important to consider these before determining appropriate 
big data sources to complement analysis.

•	 Context/Region(s) of Interest. The types and variety of big data sources available can vary great-
ly from region to region, country to country, or even different provinces or localities within the 
same country. For example, Waze crowdsourced crash data is especially useful for urban regions 
that are more densely populated compared to rural regions.

•	 Type of data required. As more big data sources become available for road and traffic data, the 
task team should carefully consider which variables and data types are most relevant to their 
model before selecting a source. For example, Google offers a number of APIs that may be useful 
for road safety analysis. This includes Google Maps, Google Traffic and Google Street View. It is 
important to consider the quantity, duration, and extensiveness of the data required. For exam-
ple, some data sources include time-series information, others do not. Some may include specific 
road features or road user data, while others may just be focused on traffic flows. 

•	 Data formats. Big data is collected, stored, and transmitted in a wide range of formats. It is 
important to consider the usability of available big data formats as well as their interoperability 
with other types of data. Since many big data sources that are currently available are not custom 
designed for road safety analysis, task teams should be prepared to have some expertise and re-
sources to extract, aggregate, clean, and convert the data into a format that can be combined with 
other data and/or used with analytical tools and models.

•	 Cost. Given the size of big datasets, costs can arise from accessing, storing, handling, process-
ing, and analyzing the data. The cost may be in the form of data licenses, software licenses or 

47 World Bank Data Lab, https://wbdatalab.org/

https://wbdatalab.org/
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equipment (if the data is being collected specifically for the project at hand). Besides the cost of 
obtaining the data, it is also important to consider the cost of using it, such as by acquiring the 
necessary expertise, software tools and processing power for analysis. Annex 2 discusses the 
relative costs associated with using different big data sources.

•	 Resources required to make data usable. In addition to relevant data sources and the costs that 
may be associated with accessing them, other resources could also be required to utilize the data 
in road safety assessment and analysis. This includes technical skills and expertise required to 
handle and analyze the data. 

•	 Time constraints. Some big data sources are faster to access and obtain data from compared to 
others. For example, open data platforms allow you to run a search query and instantly obtain 
relevant datasets. Other avenues, such as data sharing agreements, may take longer to deliver 
the required data. It is important to consider the project timeframe to determine which data 
source may be more useful for road safety analysis at a given stage. 

•	 Licensing constraints. Any official and legitimate data source is accompanied by licensing reg-
ulations that outline the terms of use of the provided dataset. Big data sources are no exception. 
Different data sources have different licensing agreements associated with them. Some, such as 
open data platforms, may have minimal licensing restrictions. Others, such as APIs and datasets 
obtained through data partnership agreements, can have more restrictive terms of use. It is im-
portant to carefully consider these limitations before choosing a source. TTLs are advised to con-
sult the World Bank’s legal team or the data provider to fully understand licensing restrictions 
associated with different big data sources to avoid legal ramifications.

2.2 Machine Learning in Road Safety Analysis

ML is a branch of artificial intelligence. It involves creating algorithms that “learn” patterns, trends 
and behaviors from data and improve accuracy over time without further programming. As figure 6 
illustrates, the lifecycle of an ML model can be typically divided into two phases: training and deploy-
ment. In the training phase, training data is fed into the algorithm to obtain a trained model. In the 
deployment phase, new input data is fed into the trained algorithm (or model) to predict the output.

FIGURE 6: ML lifecycle

SOURCE: Modified from https://randomtrees.com/data-science

Training data Training the algorithm Trained model

Prediction

New input data

https://randomtrees.com/data-science
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As shown in figure 7, ML algorithms can be divided into three categories: supervised learning, 
unsupervised learning, and reinforcement learning. The specific tasks they are capable of and the 
corresponding algorithms that are most widely used for this purpose are also listed in table 13. One 
significant difference between these categories is the format and the source of the training data.

FIGURE 7: Categories of ML and the tasks they can perform

SOURCE: Modified from https://towardsdatascience.com/coding-deep-learning-for-beginners-types-of-machine-learning-b9e651e1ed9d

Supervised learning is a family of algorithms that learn from previous data to map an input (X) to an 
output (Y). For example, a supervised learning algorithm can be used to predict the risk level or crash 
frequency (Y) of a road segment given its characteristics (X). “Supervised” means the training data is 
labelled (i.e., the training data should be pairs of X-Y, where Y is usually called labels).

Unsupervised learning algorithms find structures in a dataset in order to group or cluster data points 
based on their similarity. As the name suggests, these algorithms do not require “supervision” or 
human intervention in the training phase. This means that, unlike supervised learning, the training 
data for unsupervised learning algorithms has no labels (Y). These algorithms learn to group X based 
on similar characteristics. The most common unsupervised learning task is clustering. For example, 
given the characteristics of a road segment, an unsupervised learning algorithm can classify it into 
a group of similar segments. It does not need to understand the characteristics that the group rep-
resents to complete this task.

Reinforcement learning trains a software agent to make decisions that maximize rewards from 
interactions with an external environment.48 As opposed to supervised learning and unsupervised 
learning, which require training data to be prepared before training, reinforcement learning gener-
ates the training data during the training phase. The data is generated when the agent interacts with 
the environment. For example, reinforcement learning can be used to train an agent to control traffic 
lights based on traffic conditions.

48 This agent is a piece of software that makes a decision based on the environment. 
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TABLE 13: Categories of ML and algorithms*
ALGORITHMS TASKS

Supervised Learning SVM, DT, RF, KNN, ANN Classification

Regression

Unsupervised Learning K-means, PCA, ANN Clustering

Dimensionality Reduction

Reinforcement Learning Q-Learning, DQN Robotics/Decision-making
Source: Original table for this publication.

Artificial neural network (ANN) is a family of ML algorithms that have been inspired by the human 
brain. ANN is the most versatile ML algorithm – it can be used for supervised learning, unsuper-
vised learning, and also reinforcement learning. As shown in figure 8, ANN structures the data and 
the computation in different layers. Every layer adds more depth to the algorithm; therefore, more 
layers indicate that it is “deeper”. Such ANNs are called deep neural networks or deep ANN or DNN. 
ML algorithms that use deep ANN are called deep learning (DL) algorithms. Therefore, from another 
perspective, ML algorithms can be divided into conventional ML and DL (table 14).

FIGURE 8: ANN structure

SOURCE: Original figure for this publication.

TABLE 14: ML and DL algorithms
CONVENTIONAL ML* DL

Supervised Learning SVM, DT, RF, KNN, shallow ANN Deep ANN

Unsupervised Learning K-means, PCA Deep ANN

Reinforcement Learning (RL) RL without deep ANN RL with deep ANN
*The conventional ML algorithms listed in this table are not exhaustive. 

SOURCE: Original table for this publication.

Most ML algorithms are conventional ML, such as conventional supervised learning algorithms 
like support vector machine (SVM), which can be used for classification or regression, for exam-
ple, classifying the risk level of a road segment based on its characteristics. Conventional unsu-
pervised learning algorithms, such as K-means clustering, automatically identify spatial patterns in 
datasets, which can be applied to locate clusters or areas with recurring road crashes. Conventional 
ML works well for small, low dimensional datasets. Meanwhile, DL is a subset of ML that learns the 
complex patterns from high dimensional (e.g., an image) and large quantities of data (e.g., big data). 
Supervised, unsupervised, and reinforcement learning algorithms that use deep ANN technique be-

*The algorithms listed in this table are not exhaustive.
SVM: support vector machine 
DT: decision trees 
RF: random forest 
KNN: k-nearest neighbors 
ANN: artificial neural networks 
PCA: principal component analysis
DQN: deep Q-network, which includes and ANN in its 
algorithm

Input 1

Output 1

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Input 2

Input 3
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long to the DL category. DL’s first successful application is in the computer vision area. For example, 
image classification is a supervised learning task that utilizes deep neural networks to classify imag-
es into different classes (e.g., cars, pedestrians, etc.).

How to Use Machine Learning

The use of ML methods in road safety analyses is being widely explored.49 As ML methods become 
more advanced, economical, and accessible, their potential applications in various disciplines contin-
ue to grow and become more feasible. In road safety analyses, ML has great potential to overcome 
the limitations of traditional statistical models in crash analysis and crash probability modeling. The 
applications of ML in road safety analyses are discussed under three categories: conventional ML, 
DL, and reinforcement learning, as listed in table 15. It should be noted that some reinforcement 
learning algorithms using deep ANN belong to DL, but all reinforcement techniques are discussed 
separately.

TABLE 15: Frequently used ML techniques for road safety analysis*
ML CATEGORIES SUBCATEGORIES ALGORITHMS TASKS EXAMPLES

Conventional ML Supervised 
Learning

SVM
DT
RF
KNN
shallow ANN

Classification Predict risk level based on road 
characteristics.

Regression Crash frequency prediction based on road 
characteristics.

Unsupervised 
Learning

K-means Clustering Group road segments by characteristics 
similarity; group drivers based on their 
driving behaviors.

PCA Dimensionality Reduction Identify critical factors of road safety.

DL Supervised 
Learning

CNN Image Classification/
Object Detection/
Segmentation

Detect road features from images.

Unsupervised 
Learning

GAN Clustering/Dimensionality 
Reduction

Find the hidden features related to road 
safety from map and satellite images of 
the road environments.

Reinforcement Learning N/A Q-Learning
DQN

Robotics/Decision-making Control traffic lights based on traffic 
conditions. 

*The algorithms and examples listed in this table are not exhaustive.
CNN: convolutional neural network, a type of deep ANN
GAN: generative adversarial networks, a type of deep ANN

SOURCE: Original table for this publication.

A growing body of research explores various ML techniques to predict the probability of road 
crashes and assess their severity by training on historical datasets that encompass diverse fac-
tors. Conventional ML algorithms are the most frequently used ML algorithms for this purpose. 
They are summarized in table 15. ML-based approaches to road safety analysis can be used to com-
plement, supplement or even potentially substitute conventional road safety assessments.

Conventional supervised learning algorithms learn functions that take vectors of variables as in-
put to predict the output. Most conventional supervised learning algorithms that are frequently 
used in data science have been used in road safety analyses, including but not limited to: decision 

49 Philippe Barbosa Silva, Michelle Andrade, and Sara Ferreira, “Machine Learning Applied to Road Safety Modeling: A 
Systematic Literature Review,” Journal of Traffic and Transportation Engineering (English Edition), 7, no. 6, (2020),
https://www.sciencedirect.com/science/article/pii/S2095756420301410

https://www.sciencedirect.com/science/article/pii/S2095756420301410
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trees (DT), random forest (RF), support vector machine (SVM), k-nearest neighbors (KNN), and artifi-
cial neural networks (ANN).50 It should be noted that there is no “best” algorithm. Determining which 
algorithm may be most appropriate for an ML-based road safety analysis is essentially a data science 
problem for which there are usually no set rules. One algorithm may perform well for a dataset, but 
badly for another. It is common practice for data scientists to try different algorithms in order to 
find a suitable one for a specific problem. When using the aforementioned conventional supervised 
learning algorithms for road safety assessments, the problem is often framed as a classification or 
regression problem, in which the output (Y) of the ML algorithm is either a class (e.g., risk level or 
severity: low, moderate, substantial or high) or a scalar (e.g., crash probability, crash frequency) and 
the input (X) to the ML algorithm could be any parameter (including but not limited to weather, time, 
road factors, human factors, etc.) that is related to the output. For example, one way to calculate OP-
TRSR is to frame it as a classification problem, in which the output of the model is the OPTRSR risk 
level, while the input is a vector of variables describing road features and typical vehicle operating 
speeds, or other factors that could be used for evaluating the OPTRSR risk level. Any aforementioned 
conventional supervised learning algorithm would be suitable for this example.

Conventional unsupervised learning algorithms are mainly used for clustering and dimensional-
ity reduction purposes. In road safety analyses, K-means can be used for grouping tasks that help 
find clustering patterns in the data. For example, it can be used to group road segments by similar 
characteristics or group drivers based on their driving behaviors, so that dangerous road segments 
or drivers can be identified based on the similarity. In another example of unsupervised learning ap-
plication, principal component analysis is used for reducing the dimensions of input data to identify 
the most critical factors that affect road safety.

DL has been applied in various disciplines and achieved impressive performance. DL technologies 
have progressed significantly over the past few years, especially in image analysis and computer 
vision, the method’s first successful application. The core technique in this domain is deep convo-
lutional neural network (CNN), which is the state-of-the-art approach for object detection, semantic 
segmentation, and instance segmentation of images. Object detection is a task in which, given an 
image, the model outputs a bounding box of detected objects (figure 9). Semantic segmentation is a 
task in which, given an image, the model classifies every pixel into predefined classes (e.g., road lane, 
traffic light, etc.). Instance segmentation is a task, in which, given an image, the model groups pixels 
belonging to an instance of the object.

50 Silva, Andrade, and Ferreira, “Machine Learning Applied to Road Safety Modeling: A Systematic Literature Review.” 
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FIGURE 9: ML algorithms and street view
After applying an object detection algorithm to a street view image, a bounding box surrounds each predicted object, which also 
contains a confidence level for each prediction.

DL-based image analysis has been successfully used in various industries for applications ranging 
from facial recognition to autonomous driving. It has great potential to be used in road safety 
analysis to automatically analyze images and infer road attributes that are relevant to road safety 
assessments. Large sets of images with annotations such as road lanes, traffic lights, speed limit 
signs, and pedestrians can be compiled for training deep CNNs so that they learn to recognize these 
objects through images that the models have not previously encountered. If successful, this approach 
should equip the model to detect road attributes at a regional scale. 

The detected information can then be used for safety and risk analysis. For example, if the DL mod-
el can infer the road segment characteristics (e.g., number of lanes, terrain type, road markings and 
signs, and pedestrian, bicycling, and motorcycling facilities), the inferred information can readily be 
used as input for the RSSAT tool (Method IV). This would allow the process of detection and analysis 
to become fully, or at least significantly automated and scalable at a low cost.

DL can also provide a lower-risk alternative to manual detection of certain road attributes and 
other important variables in road safety analysis. For example, a team used imagery from Baidu 
Street View to provide a practical, automated alternative to the manual detection of street cracks, 
which can be labor-intensive, hazardous and difficult to conduct on a large scale.The authors use the 
Deeplabv3+ network model, a DL neural network, to develop an automated road crack identification 
system and demonstrate its practicality as a method to generate faster, more accurate and efficient 
information about road cracks at lower cost compared to manual detection.51

51 Min Zhang et al., “Research on Baidu Street View Road Crack Information Extraction Based on Deep Learning Method,” 
Journal of Physics: Conference Series, no. 1616 (2020). https://iopscience.iop.org/article/10.1088/1742-6596/1616/1/012086/pdf

SOURCE: World Bank Global Program for Resilient Housing.
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Reinforcement learning is widely used to design intelligent control and decision-making systems. 
In road safety and traffic management, reinforcement learning is most commonly employed to devel-
op intelligent signal control algorithms. A typical reinforcement learning-based traffic light system 
makes divisions based on specific input traffic parameters, such as the length of time for which vehi-
cles wait at the intersection, the cumulative delay caused by waiting at the intersection, the length of 
time for which the light stays green for each signal head, etc. The output of the system would be the 
next color of the light and length of time for which it should remain switched on. Designing traffic 
systems using reinforcement learning helps save time and improve safety standards.

Key Considerations for Using Machine Learning

Road safety can be evaluated explicitly using rule-based reasoning systems, such as iRAP star score 
and RSSAT. However, developing such systems can be complex if there are many input variables. 
Compared with rule-based evaluation systems, ML algorithms are data-driven and don’t require devel-
oping rules; therefore, they are relatively inexpensive to implement. ML algorithms are more suitable 
for high dimensional inputs. As a broader spectrum of ML algorithms become available, TTLs are 
advised to carefully consider the trade-offs involved when applying them to road safety analysis. This 
section discusses various factors that task teams must consider before deciding to use an ML algo-
rithm for road safety analysis in their project. Again, this is not an exhaustive list. Some factors may 
be more relevant to some projects than others, while additional considerations may be required for 
certain projects. It is worth noting that many of these factors are also interrelated. For example, the 
feasibility of using ML for a project can be affected by time and budget constraints, the availability of 
data, and the anticipated resource intensiveness of the data preparation process. Table 16 provides a 
SWOT analysis of the use of ML in road safety analysis.
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TABLE 16: SWOT analysis of using ML in road safety analysis
STRENGTHS WEAKNESSES

•	 Offers tools and techniques to process big data that may be 
more precise compared to traditional methods.

•	 Especially effective for feature learning, parameter 
optimization, and processing large amounts of big data. 

•	 ML algorithms tend to perform better than traditional 
statistical techniques in cases where high-dimensional and 
high-nonlinear data is involved.

•	 As the technology develops, novel techniques create new 
opportunities to understand complex relationships between 
multiple, interrelated variables and predict outcomes with 
greater accuracy.

•	 ML algorithms can be improved continuously as more data 
is generated or made available for training.

•	 Algorithms can be limited in their applicability; models may not 
perform well on data that is different from the training data’s 
distribution.

•	 Large amounts of data are needed to train the models and yield 
more accurate models, which may be difficult in data-scarce 
contexts.

•	 Some ML algorithms (e.g., ANN) works like a black box, and can 
be hard to interpret, therefore an ML algorithm usually requires 
thorough validation and test processes before it can be deployed in 
the real environment and assist decision-making.

•	 The technology still needs further development before it can be 
mainstreamed for use in road safety assessments. 

OPPORTUNITIES THREATS/CHALLENGES

•	 May eliminate the need for manual coding of road safety 
data in the future, making the process less labor-intensive 
and time consuming.

•	 Possible to train datasets in one location or for one purpose 
and use them for another. 

•	 Provides a powerful method for complex crash risk 
modelling and other types of predictive analytics in road 
safety. 

•	 As the technology develops, a platform powered by ML 
could be used across geographies for road assessments. 

•	 As more and more data is generated and collected everyday, 
this could be potentially analyzed with ML algorithms to 
discover new patterns and insights.

•	 Requires specialist expertise, tools, and knowledge which may 
make its usefulness limited in some contexts, especially in 
developing countries.

•	 May require additional investment in computer power and analytical 
software. 

•	 Complexity of ML algorithms can make them difficult to implement 
and analyze.

•	 Ethical considerations, such as bias in ML systems. 
•	 As a data-driven approach, ML relies on high-quality data for 

training. Significant bias in the training data could lead to the 
failure of model training. Quality control of training data could be 
difficult, especially when annotating the data requires professional 
knowledge.

SOURCE: Original table for this publication.

Feasibility with project objectives and client requirements. Before deciding to use ML for any proj-
ect, it must be ascertained if ML is suitable for the project. Some ML algorithms, such as neural net-
works, are not interpretable. They work like a black box. Clients may not have confidence in using 
them for significant decision-making, unless their predictions can be sufficiently validated.

Preparing data to train ML algorithms. ML is a data-driven approach. Therefore, as with any da-
ta-related project, it is important to plan the data collection and preparation process. To facilitate this 
process, make sure to have clearly defined the inputs and outputs of the model at the outset of the 
project. Section 2.1 provides guidance on how to select data sources, especially where big data may 
be involved. It is common that, during the training stage, an ML team may find the data is not enough 
to train a model with satisfactory performance. In this case, more data needs to be collected. In terms 
of data preparation, teams should be aware of the need to aggregate, clean and annotate data before 
it can be used for ML modelling. Annotation of data is especially necessary for supervised learning 
algorithms and entails manually identifying an object drawing a box or polygon around it and giving 
it a label such as “pothole” or “crosswalk” (figure 10).
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FIGURE 10: Labeling a crosswalk in Padang, Indonesia using the Computer Vision Annotation Tool (CVAT)

SOURCE: World Bank Global Program for Resilient Housing.

Teams are advised to incorporate a quality control process to ensure data being used for any ML 
model, especially test data, is of good quality and truly valid and representative of the population 
or situation under study. For an ML-based project, steps include: (i) identifying data required for the 
model; (ii) data collection, cleaning, annotation; (iii) trial and error training; (iv) validation; (v) deploy-
ment. Task teams should estimate the duration of these tasks, considering their expected complexity 
and potential challenges (which can vary by context and availability of resources such as expertise 
and processing power). This will help them determine if ML is feasible for their project, how it com-
pares to traditional methods and how incorporating ML can impact project timelines. It is worth not-
ing that once deployed in the production environment, ML provides significant acceleration for the 
whole process, for example, DL-based image analysis can exponentially save the time for collecting 
data to be used in the road risk estimation.

A challenge for most ML algorithms is generalization, or how well a model can perform based on 
test data (also called unseen data). Models may not perform well on unseen data that is different 
from the training data’s distribution. For example, a model that is trained on images collected on 
rural roads in an arid climate may not achieve the same level of performance on images in urban 
roads in another country. The transferability of the model depends on how similar the features in 
the images are. Therefore, before training ML algorithms, it is prudent to consider the diversity of 
the training data, especially in terms of where, how and when it was collected. It is worth noting that 
some researchers have found that artificial intelligence and ML algorithms can be easily and accu-
rately applied to different types of urban networks within the same city.52

To determine if using ML fits a budget or can even deliver a cost-advantage, it is important to un-
derstand associated costs. Costs of using ML can arise from the hiring of experts to develop and pro-
gram models, as well as from the data collection and preparation process (which includes cleaning 

52 Apostolos Ziakopoulos and George Yannis, “Using AI for Spatial Predictions of Driver Behavior” (presentation, ITF 
International Transport Forum Roundtable on Artificial Intelligence in Road Traffic Crash Prevention, 2021).
https://www.nrso.ntua.gr/geyannis/conf/cp450-using-ai-for-spatial-predictions-of-driver-behavior/

https://www.nrso.ntua.gr/geyannis/conf/cp450-using-ai-for-spatial-predictions-of-driver-behavior/
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and annotation). The cost of storing data (on local hardware or on the cloud) should also be accounted 
for, especially if the inputs involve big data. Depending on the model and quantity of data being input, 
and especially if a DL model is employed, you may also need to invest in additional computational 
resources (graphics processing unit-equipped local computers or nodes on the cloud). Front-end and 
back-end systems may also need to be established for automatic analysis services.

Deploying ML algorithms requires specialized expertise, often in the form of dedicated team 
members that are ML experts. TTLs can choose to hire experts and manage the process internally 
or acquire resources externally. An in-house, “do-it-yourself” approach ensures more control over 
every aspect of the process, which may be especially important where significant customization or 
trial and error may be required. However, this approach requires labor and time, and may be more 
costly in the long run. Using an external resource or tool, on the other hand, may be a faster option 
but can come at the expense of some visibility and control over the development of the model. It is 
important to consider these trade-offs to ensure the team is adequately resourced to use ML effec-
tively in the project.

2.3 Big Data, Machine Learning and the Future of Road Safety Assessments

Artificial intelligence presents many exciting possibilities for automation and analysis in trans-
port and infrastructure development. ML is increasingly used for road safety analysis. ML’s inher-
ent capability of managing uncertainties in data and models makes it extremely suitable for solving 
road safety related issues. Uncertainty is a defining element of crash risk modelling and, in fact, a 
source of complexity that has thus far limited the usefulness of traditional statistical models. More-
over, ML algorithms such as deep ANN can capture nonlinear patterns in data, making them the first 
choice for processing road safety big data. Table 17 provides a summary of possible applications of big 
data and ML in road safety analysis given the current state of the technologies.
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TABLE 17: Potential applications of big data and ML in Methods I to VII
POTENTIAL APPLICATIONS HOW BIG DATA CAN HELP HOW ML CAN HELP

Estimating Road Infrastructure Risk 
(Methods III, V, VI, and VII)

Video and photo images, APIs, satellite 
imagery and/or crowdsourced images

•	 Process images to evaluate road attributes 
•	 Identify road features that could cause crashes
•	 Identify risk factors contributing to crash 

occurrence
•	 Identify safety conditions in infrastructure

Traffic Flows
(Methods IV to VII)

APIs, aerial imagery, open-source 
traffic data, road sensor data, wireless 
technology, street cameras, GPS data, 
mobile devices, real-time traffic data 

•	 Process images to classify vehicles, identify 
congestion hotspots, vehicle detection, or speeds

•	 Assess traffic flows
•	 Develop risk maps
•	 Map the safety performance and Star Rating
•	 Traffic flows prediction

Crash Risk Assessment
(Methods III to VII)

Meteorology data, geo-located 
crash data, video and photo images, 
APIs, open-source traffic data, road 
sensor data, historical crash data, 
crowdsourced crash data (e.g., Waze)

•	 Create crash prediction models
•	 Develop risk maps
•	 Analyze different conflict scenarios and high-risk 

behavior

Incident Reporting/Crash Data
(Methods I, V and VI)

Video recording, crash data, photo 
images, crowdsourced data (Google 
Maps, Waze)

•	 Identify hotspots through clustering techniques

Analyzing Crash Severity
(Methods III to VII)

Video and photo images, sensor data •	 Process images to evaluate road attributes
•	 Develop crash prediction models

SOURCE: Original table for this publication. 

Combining big data and ML can provide an integrated framework for automatic road safety analy-
sis and management. This framework, demonstrated in figure 11, employs platforms (such as Mapil-
lary) to provide geo-tagged street level imagery for inputs to the DL model to infer useful information 
(e.g., road characteristics). The DL-inferred data is then combined with multi-source big datasets 
(e.g., region-specific historical crash data) for better analysis and management of road safety. For ex-
ample, the combined information can readily be used as the input to Method I-VII for estimating the 
OPTRSR. Moreover, ML algorithms (e.g., ANN) have the potential to substitute traditional methods 
and tools (iRAP, RSSAT, etc.) for evaluating risks and safety indicators like OPTRSR.
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FIGURE 11: Framework for automatic road safety analysis and management powered by ML

SOURCE: Original figure for this publication.

At present, much of the research and innovation in the use of ML for advanced road safety and risk 
modelling is being driven by universities and other research institutions. As other stakeholders, 
such as governments, developers of road safety tools and international organizations such as the 
World Bank look to apply ML in their projects, there is an opportunity to create dedicated tools that 
would harness big data and ML for road safety analysis. Such applications have the potential to re-
duce the risk of human error and allow road safety assessments to be mostly, if not fully, automated.

The following section presents practical examples of how big data and ML can assess urban road 
safety. It applies an integrated framework introduced in section 2.3 to explore the opportunities 
and limitations of new data sources and assess the ML models. To evaluate the robustness of the 
proposed framework, the Integrated Framework for Road Risk Prediction was applied in two cities 
of different sizes, regions, and data availability were chosen: Bogotá, Colombia, a rapidly urbanizing 
metropolis in Latin America, and Padang, Indonesia, a secondary city in East Asia. The study found 
that ML applied to street view imagery identified relevant road (and road user) characteristics to gen-
erate a model that predicts road risk with 72.5 percent accuracy in Bogotá. This framework was ap-
plied in Padang to test its replicability; preliminary results are encouraging for its potential to predict 
road safety for areas with limited crash data. The section concludes with a reflection and guidance 
for replicability.

Geo-tagged street level images

Deep learning model Image analysis DL inferred information
Lanes
Shoulder
Street lighting
Pedestrians crossing
…

Methods/tools
iRAP Star Rating Score 
RSSAT
RSA
RSIA
SSA
ML models
…

(Big) data sources

APIs
In-house data
Third-party data
…

Complementary 
information
Road curvature
Historical crash
Baseline fatalities
…
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PART 3
Case Studies: Applying Big Data and Machine 
Learning to Assess Road Safety

3.1 Objectives of the Case Studies 

This section presents how the Integrated Framework for Road Risk Prediction can be applied in two 
different cities of interest: Bogotá, Colombia and Padang, Indonesia. The study examines how useful 
ML is in evaluating road safety and how easily the integrated framework can be replicated. All code 
is freely available for other teams to use and develop further.53 

The objectives of the case studies are to:

1.	 Learn how well big data and ML can be used to identify road features, estimate road safety, cate-
gorize road segments based on their risk level, and identify high-risk segments. 

2.	 Evaluate the utility of several big data sources that are freely available for road safety analysis in 
diverse geographic areas.54

3.	 Assess the replicability of the proposed approach.

Located on two different continents, the selected locations offer an opportunity to apply the frame-
work on paved, urban roads in contrasting environments, particularly related to data availability 
and usability. For example, the government of Bogotá has made significant efforts to increase crash 
data collection and dissemination. The government offers an online portal with the location of each 
crash over the past year publicly available. In addition, there was high coverage for data derived 
from mobile phones, such as crowd-reported crashes. In contrast, information on the crash locations 
for Padang could not be found online, and methods for data collection are largely manual or paper 
based.55 In addition, mobile application data was scarce for crowdsourced crash reports. As a result, 
Padang offers the opportunity to explore the utility of ML when data coverage is limited.

53 The code for the Integrated Framework for Road Risk Prediction is open source and accessible on GitHub:
https://github.com/datapartnership/IntegratedFrameworkForRoadSafety. However, some datasets require partnership with 
DDP to access.
54 Freely available meaning at no cost; however, some data sources are not publicly available and require a license.
55 World Bank, Indonesia Public Expenditure Review 2020: Spending for Better Results (Washington, DC: World Bank, 2020). 
https://openknowledge.worldbank.org/handle/10986/33954

https://github.com/datapartnership/IntegratedFrameworkForRoadSafety
https://openknowledge.worldbank.org/handle/10986/33954
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BOGOTÁ AND PADANG: BACKGROUND AND CONTEXT
With a population of more than 7 million, the capi-
tal district of Bogotá is Colombia’s largest city. As a 
critical economic hub with a growing population, Bo-
gotá stands out as one of the most congested cities 
in the world.56 The government has prioritized road 
safety and achieved significant gains over the past 
few decades, reducing the city’s traffic fatality rate by 
more than 60 percent between 1996 and 2006 alone.57 
More recent interventions during the UN Decade for 
Action for Road Safety include establishing a Nation-
al Road Safety Plan and a National Road Safety Agency (Agencia Nacional de Seguridad Vial) fea-
turing a National Road Safety Observatory in collaboration with the World Bank.58 In addition, in 
2017, the city’s government launched “Vision Zero,” which aimed to implement a range of speed 
management strategies to eliminate pedestrian and driver fatalities. The program has delivered 
measurable results, such as a 27 percent reduction in fatalities across corridors where speed limits 
have been introduced, and further interventions are planned to sustain its impact.59 Despite these 
initiatives and road safety improvements in Bogotá, challenges remain, and new policies would 
benefit from timely and affordable analytics on road safety.

Padang is the capital of the Indonesian province 
of Western Sumatra with a population of around 1 
million. The government of Indonesia introduced 
various initiatives to address road safety during the 
UN Decade of Action for Road Safety. Established in 
2011, the National Road Safety Master Plan achieved 
a 10 percent reduction in annual road fatalities be-
tween 2013 and 2016. However, data collection and 
management systems that rely on manual screen-
ing significantly challenge the country’s progress in 
road performance and safety.60 Initiatives such as the establishment of the Integrated Road Asset 
Management System and the World Bank’s new Asia-Pacific Road Safety Observatory present a 
valuable opportunity for the country to improve its road safety data systems.61 For this case study 
in Padang, crash data was scarce from alternative sources. Therefore, it offers the opportunity to 
explore the utility of the pre-trained ML models in a new region with limited data coverage.

56 INRIX 2018 Global Traffic Scorecard. In 2018, drivers lost 272 hours in road congestion.
57 ODI (Overseas Development Institute), “Bogotá,” ODI: Think Change. Accessed October 12, 2021, from
https://odi.org/en/about/features/bogot%C3%A1/
58 World Bank, Colombia - Programmatic Productive and Sustainable Cities Development Policy Loans (Washington, DC: World 
Bank, 2020). http://documents.worldbank.org/curated/en/426591583968971309/Colombia-Programmatic-Productive-and-
Sustainable-Cities-Development-Policy-Loans
59 Darío Hidalgo and Claudia Adriazola-Steil, “Bogotá’s Vision Zero Road Safety Plan Is Saving Lives,” TheCityFix, last modified 
September 26, 2019, https://thecityfix.com/blog/bogotas-vision-zero-road-safety-plan-saving-lives-dario-hidalgo-claudia-
adriazola-steil/
60 World Bank, Indonesia Public Expenditure Review 2020: Spending for Better Results.
61 DT Global, “Indonesia: Establishment of Integrated Road Asset Management Systems,” accessed October 4, 2021,
https://dt-global.com/projects/irams-dc

https://odi.org/en/about/features/bogot%C3%A1/
http://documents.worldbank.org/curated/en/426591583968971309/Colombia-Programmatic-Productive-and-Su
http://documents.worldbank.org/curated/en/426591583968971309/Colombia-Programmatic-Productive-and-Su
https://thecityfix.com/blog/bogotas-vision-zero-road-safety-plan-saving-lives-dario-hidalgo-claudia-adriazola-steil/
https://thecityfix.com/blog/bogotas-vision-zero-road-safety-plan-saving-lives-dario-hidalgo-claudia-adriazola-steil/
https://dt-global.com/projects/irams-dc
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3.2 Methodology

The ML-based framework implemented in these case studies was developed to provide a quick screen 
to evaluate road safety. The framework ascertains road characteristics traditionally collected or an-
notated to provide a road safety prediction. ML models were developed specifically for this frame-
work during these case studies, one to extract road characteristics from street view images and one 
to determine road risk based on the derived road characteristics. To do so, first, the models needed 
to be trained to extract road characteristics and determine the road risk based on crash data. Then 
the models could be applied to make predictions in new areas without crash data. Therefore, there 
were two phases in this framework, first the training phase to train the models (figure 12), and then 
the deployment phase to make new predictions with the models (figure 13). In each phase there were 
three steps, both of which began with data collection and preparation. OpenStreetMap (OSM), Waze, 
and Mapillary were used to develop this framework (additional examples of these datasets and relat-
ed analysis can be found in Annex 3).

The OSM road network provided the foundation for analysis. It is free-
ly available and scalable. OSM uses lines to represent roads and points 
to represent links among the roads. In OSM, the geometric road lines 
are split into road segments (called ways) that are connected by the 
points (called nodes). No modifications were made to the OSM geom-
etry to maintain its synchronicity with other big datasets referencing 
OSM ways and nodes.

The Waze crash data consists of coordinates representing the location 
where users of the Waze application are when they see and report a 
crash.62 The Waze crash points were joined to the nearest OSM road 
segment (within 20 meters). For each road segment, the crash frequen-
cy, or crash per meter, was calculated to normalize the frequency of 
crashes. Since OSM road segments vary in length and there could be 
multiple reports per crash, calculating the crash frequency provided 
crash trends. To identify road segments with more frequent crashes per 
meter, the crash frequency was split into high and low risk.

Mapillary was used to obtain street view images, which were primari-
ly collected by the World Bank’s Global Program for Resilient Housing. 
Since many images are captured along a street, and many images can 
be linked to a single road segment, the image closest to the centroid of 
the road segment was selected. The radius for this selection was with-
in three meters of the centroid. This approach standardizes the image 
selection and classification: one image represents the scene of one road 
segment. For each OSM road segment, a street view image taken near 
the centroid of the segment was downloaded using Mapillary API v4.

62 Data provided by Waze App. Learn more at waze.com.

SOURCE: Original examples for this publication 
based on data from OSM, Waze, and Mapillary. 

Copyright OpenStreetMap contributors, Microsoft, 
Esri Community Maps contributors. Basemap 
from Esri, HERE, Garmin, METI/NASA, USGS.

http://waze.com/
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The Training Phase

The training phase consisted of two significant steps that were powered by ML to extract information 
from street view images and to make predictions on risk level based on extracted data. Each step had 
an ML model at its core that needed to be trained based on data. Therefore, there were three steps in 
the training phase.

Step 1. Select the region of interest and prepare data  

A generalized polygon of the region of interest was used to collect data from OSM, Waze, and Mapil-
lary. The road network database was prepared, and the street view images closest to the centroid of 
the road segment were downloaded as inputs for the models.

FIGURE 12: Training phase for road safety segment analysis using ML 

SOURCE: Original figure for this publication.

Step 2. Develop ML model for identifying road characteristics

The first custom ML model developed for this case study was the Road Information Collector (RIC), 
shown in figure 12. It is a deep convolutional neural network, Mask R-CNN, which can classify and 
count objects detected in images.63 The RIC model was trained with images from the updated Map-
illary Vistas Dataset (initially released in 2017), which provides detailed characteristics for types of 
road markings and barriers, traffic lights and signs, and vulnerable road users such as pedestrians, 
motorcyclists, and bicyclists.64 Other identifiable characteristics include flat terrain, which charac-
terizes road gradient, and the presence of potholes, which could indicate paved, urban road quality. 
The RIC takes street view images as the input and can detect more than 100 classes of objects as the 
output (for a complete list of the features the RIC model detects, refer to Annex 4). The model can 

63 Kaiming He et al., “Mask R-CNN,” 2017 IEEE International Conference on Computer Vision (2017): 2980-2988.
64 G. Neuhold et al., “The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes,” 2017 IEEE International 
Conference on Computer Vision (ICCV) (2017): 5000-5009, doi: 10.1109/ICCV.2017.534
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detect and classify some road features better than others (for the precision score in detecting and 
classifying the objects, see Annex 5). 

Step 3. Develop ML model for evaluating road risk

The second ML model developed was the Road Risk Evaluator (RRE). The RRE is a neural network 
classifier with two hidden layers; each has 50 neurons. The RRE was trained using paired data for 
each road segment, the road attributes from the RIC and the assigned road risk from the road net-
work database. Similar work was conducted by a team using a neural network to predict the crash 
frequency of road segments.65 

The Deployment Phase

Once the two ML models are trained, they can be added to an automated workflow in the deployment 
phase. This means the trained ML models can now predict the risk level for any road segment with 
the required input data – a street view image. Crash data is not required in the deployment phase.

FIGURE 13: Deployment phase to predict road safety

 SOURCE: Original figure for this publication.

The deployment phase uses three steps to predict risk within an automated workflow (figure 13).

Step 1. Select the region of interest and download data

For the selected region of interest, the code will download the road network from OSM and calculate 
the centroid of each road segment. The code will then download from Mapillary API a street view 
image taken near the centroid of the road segment.

65 Qiang Zeng et al., “Rule Extraction from an Optimized Neural Network for Traffic Crash Frequency Modeling,” Accident 
Analysis & Prevention 97 (2016): 87-95.
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Step 2. Identify road characteristics 

For each road segment, the downloaded image will be fed into the RIC to extract road characteristics. 
For each image, the RIC will output the numbers of detected objects for each class (refer to Annex 4 
for classes). These numbers are put together to form a vector for each image.

Step 3. Evaluate road risk 

Each vector produced by the RIC will be fed into the RRE to calculate the risk level: high or low. To illus-
trate the automated workflow of the deployment phase, figure 14 shows the risk prediction for a road 
segment. The RIC detected a flat road, car, and motorcycle; therefore, the RRE predicted the road seg-
ment as low risk. This framework requires no historical crash data to identify high- or low-risk roads.

FIGURE 14: RIC and RRE applied to predict road segment risk

SOURCE: Original figure for this publication, based on data from Mapillary and annotated with classifications from the model.

The two case studies presented illustrate the training and deployment phases. 

The training phase was conducted in Bogotá, where data was collected to train the ML model RRE, 
while the RIC model was trained on the Mapillary Vista Dataset. Then the models were applied in the 
deployment phase to predict the risk level for each road segment in Bogotá, Colombia. 

The second case study was in Padang, Indonesia. The RIC and RRE models trained in the previous 
case study were applied directly (i.e., without re-training) in a deployment phase to predict road risk 
in Padang. This demonstrates that, ideally, there is no need to re-run the training phase for future 
applications since the RIC and RRE are already trained.

Risk level: Low
RRE

RIC

construction--flat—road x 1
object--vehicle—car x1
object--vehicle—motorcycle x1
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3.3 Case Study 1: Bogotá, Colombia

The Training Phase

Step 1. Select the region of interest and prepare data

In Bogotá, a road network database was created to prepare training data for the ML models. First, a 
generalized polygon of the region was used to retrieve roads from OSM and six months of crash re-
ports from Waze (July–December 2020). The crashes were joined to the nearest OSM road segment 
within 20 meters. The crash frequency, or crash per meter, was calculated and road segments were 
divided into high risk (crash frequency >0.5) and low risk (crash frequency <=0.5) in the road network 
database. This means a crash per meter of 1 represents one crash per meter in the six months of the 
Waze data collected. Street view imagery was downloaded using the Mapillary API to collect images 
close to the centroid of each road segment. Table 18 provides an overview of the data sources for this 
case study. 

TABLE 18: Data used for case study in Bogotá, Colombia

DATA SOURCES ATTRIBUTES REMARKS 

ROAD NETWORK

OSM Road network (road segment length) Provided through an open license.

CRASHES 

Waze Road alerts (crashes reported by users, coordinates) Obtained through DDP.

ROAD CHARACTERISTICS

Mapillary 
(images and tags)

Street view image detections (crosswalk, curb,
guard rail, human, marking, pothole, sidewalk, sign, 
streetlight, traffic sign, utility pole)

Selection of image annotation tags used 
in study; more available through Mapillary 
Traffic Sign and Vistas. Multiple detections 
per image are possible.

SOURCE: Original table for this publication.

Step 2. Develop ML model for identifying road characteristics

The RIC was developed and trained to perform instance segmentation. It is a deep convolutional 
neural network that identified the classes, or objects in the image, and provided the count of these 
classifications. The model was trained using the Mapillary Vistas Dataset using a total of 124 classes 
(Annex 4).66 The resulting output is a count of the classes identified by the bounding boxes, shown in 
figure 15, which is represented through a series of integers.

Figure 15 depicts the RIC in action on an image from Bogotá. The bounding boxes surrounding each 
object in the image indicate classes the model identified. Confidence levels are provided next to the 
name of the object segmented by the bounding box. The closer the confidence level is to 1, the higher 
the confidence in the prediction. Looking at the center of the image, the bicyclist was identified with 
0.5 confidence, and other vulnerable road users were recognized, such as a motorcyclist (0.84) and 
pedestrian (0.75). Vehicles were segmented with high confidence for the bus (0.7), motorcycle (0.88), 

66 G. Neuhold et al., “The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes.”

Training data: Mapillary Vistas Dataset (124 classes)

Input: Street view image near the centroid of a road segment

Output: A vector of integers (each element represents the 
count of detected objects that belong to a class)
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and car (0.99). The RIC segmented traffic signs, support and utility poles, flat road, and road mark-
ings as well.

FIGURE 15: Image segmentation in Bogotá

SOURCE: Original figure for this publication, based on data from Mapillary. 

The sample image shows favorable results for image segmentation. The performance of the RIC mod-
el in terms of the average precision of the bounding box detection and classification for each class 
is provided in Annex 5. In the next step, road attribute data extracted through the RIC were inputs 
for the prediction model to link the road characteristics with the likelihood of a crash in the road 
networks examined.

Step 3. Develop the ML model RRE for evaluating road risk

To develop the RRE, six study areas in Bogotá, Colombia were selected to reduce computational load. 
These study areas were drawn to include a wide variety of neighborhoods (poor, rich) and placed 
throughout the city. They also contain high and low crash frequency road segments and comprehen-
sive street view image coverage. Figure 16 shows the six study areas along with the crash risk from 
the road network database, high risk (crash frequency >0.5) and low risk (crash frequency <=0.5).
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The low- and high-risk road segments in these 
areas were the training data for the model. Based 
on the segment risk derived from the road net-
work database and the characteristics for each 
road segment derived from the RIC, the model 
was trained to evaluate a road segment as high 
or low risk.

*Only 106 out of 124 classes are used as the input to RRE. A total of 18 
classes irrelevant to road characteristics, such as sky, bird, etc., were re-
moved from the vector before entering into the RRE.

In searching for an optimal architecture of the 
neural network, the number of layers and neu-
rons were tested for the best performance. Test-
ing showed that more layers or neurons do not 
significantly improve the performance on this 
dataset. The RRE was used to evaluate whether 
a road segment was low or high risk based on a 
street view image.

Overall performance of the ML

Predictions of low-risk road segments were cor-
rect 70 percent of the time, and predictions of 
high-risk road segments were correct 75 percent 
of the time (figure 17). The mean accuracy and F1-
score were both 72.5 percent. The closer the ac-
curacy and F1-score are to 100 percent, the better 
the performance of the model. In the case of this 
model, a random guess of a binary classification 
is 50 percent, which makes these results prom-
ising. These results suggest the model would 
perform well in similar contexts as Bogotá. If 
needed, there would be potential to fine-tune the 
model for increased accuracy and precision in 
other areas.

Training data: The following input-output pairs obtained from 
road segments in six study areas in Bogotá, Colombia.

Input: A vector of integers, which is the output of RIC*

Output: 0 (low risk) or 1 (high risk)

FIGURE 17: Confusion matrix showing 
the accuracy of the RRE model
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FIGURE 16: Six study areas and crash frequency in Bogotá

SOURCE: Original figure for this publication, based on data from OSM and data 
provided by the Waze App. Learn more at waze.com.

http://waze.com/


58

TIPS FOR INTERPRETING ML PERFORMANCE
The performance of an ML model can be evaluated using accuracy, precision, recall, and the F1-score. These are derived by counting 
the correct predictions (true positives and true negatives) and incorrect predictions (false positives and false negatives).  

accuracy = correct predictions / all predictions

precision = true positives / (true positives + false positives) 

recall = true positives / (true positives + false negatives) 

F1-score = 2*((precision * recall) / (precision + recall)) 

A confusion matrix shows how well the model performed in predicting road risk through a comparative chart of the true positives, 
true negatives, false positives, and false negatives.

Bogotá Results

Following the three-step workflow of the deploy-
ment phase described in section 3.2, road risk 
was predicted for the entire road network in Bo-
gotá. In total, 98,488 images were processed to 
make the predictions shown in figure 18. Road 
segments without an image within 3 meters 
were not predicted. Overall, high crash frequen-
cy from Waze and high-risk predictions exhibit-
ed similarity along some segments, particularly 
on arterial roads; however, the model tended to 
moderately overpredict high risk.

FIGURE 18: Road risk prediction in Bogotá

SOURCE: Original figure for this publication, based on data 
from Mapillary, OSM and Waze.

Risk level
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No data
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3.4 Case Study 2: Padang, Indonesia

The Deployment Phase

The model that was built in Bogotá was applied in Padang. Similar to Bogotá, the road network was 
accessed through OSM, and street view images were downloaded using the Mapillary API. Waze 
crash data was joined to the OSM road network to compare with risk predictions. Padang had limited 
geospatial crash data to validate the model. Table 19 provides a description of the datasets.

TABLE 19: Data used for case study in Padang, Indonesia

DATA SOURCES ATTRIBUTES REMARKS

ROAD NETWORK

OSM Road network (road segment length) Provided through an open license.

CRASHES

Waze Road alerts (crashes reported by users, coordinates) Obtained through DDP.

ROAD CHARACTERISTICS

Mapillary  
(images and tags)

Street view image detections (crosswalk, curb, 
guard rail, human, marking, pothole, sidewalk, sign, 
streetlight, traffic sign, utility pole)

Selection of image annotation tags in study; 
more available through Mapillary Traffic Sign 
and Vistas. Multiple detections per image are 
possible.

SOURCE: Original table for this publication.

Padang Results

In Padang, preliminary results pointed to the framework’s potential in scanning roads for safety. 
Figure 19 shows predictions where arterial road segments were predominately designated as high 
risk (red lines). Residential areas were interspersed with low- and high-risk road segments. Similar 
patterns of road segments predicted as high risk along arterial roads and a mix of low and high risk 
along residential and tertiary road segments were largely found.
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FIGURE 19: Road risk prediction in Padang

SOURCE: Original figure for this publication, based on data from OSM and data provided by the Waze App. Learn more at waze.com. Drone imagery provided by the World Bank 
Global Program for Resilient Housing.

In general, where there were crashes reported by Waze, high-risk road segments were predicted. 
These preliminary results were encouraging; however, verifying the results was difficult because 
there was not sufficient data. While the deployment of the framework in Padang requires further 
validation with more data, ML-based approaches such as this are promising to offer initial road safety 
scans. 

3.5 Findings

The Integrated Framework for Road Risk Prediction demonstrates the strength of ML to identify road 
segment safety with substantial accuracy (72.5 percent) in Bogotá. Preliminary results in Padang 
support replicating the framework with further validation in other areas. Using advanced ML tech-
niques, the framework applied a streamlined approach that relied on road characteristics and crash 
frequency to determine crash risk in the training phase. Then the ML models applied in the deploy-
ment phase could predict road risk based on road characteristics without historical crash data.

The alternative data sources used to train the models were robust – thousands of annotations, 
high-resolution images, and crash data joined to extensive road networks – and of suitable quality for 
the models to provide a road safety scan. To identify road characteristics, the RIC was trained using 
the Mapillary Vistas Dataset, which has a breadth and depth of annotations from different contexts, 
providing geographic diversity. The RRE was trained using a pairing of the road characteristics and a 
road network database created from OSM road segments and Waze crash data. OSM road segments 

Risk level
High
Low

http://waze.com/
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offered global scalability and were sufficient for a coarse assessment in these case studies. Waze data 
availability was dependent on the area (and the users of the app). Given the potential for duplicate 
crash reports, Waze data was not relied on for accurate crash data in Bogotá; instead, it was used to 
identify crash patterns of high- and low-risk road segments.

The framework is not suitable for detailed road assessments. However, it can be applied to screen 
roads for safety without historical crash data if the RIC model is enhanced with more training data 
and calibrated for the local street view context; the RRE model can be modified and enhanced with 
fine-grained training data. It is replicable in other areas with the following recommendations, which 
are applicable for developing other ML-based frameworks for road safety.

Incorporate training data to fine-tune the model for a specific location. Typically, ML models trained 
on data collected from one region do not work well for a new region. This is called domain shift: the 
testing data has a different distribution than the training data. In this case, including data collected 
from the new region in the training phase will usually help. It is important to evaluate the data and 
consider any influences the collection method may have on the potential to introduce bias into the 
project. For example, if local crash data is introduced to train the RRE, it would help validate and 
potentially improve the model’s application in the location of interest. Both RIC and RRE can be con-
tinually trained with newly obtained data so that the knowledge learned from previous data can be 
carried on for new regions while the model is still applicable to the previous regions.

It is essential to ensure that models are based on sufficient, high-quality training data. In general, 
at least a few thousand annotations are recommended to identify objects from images with simple 
context, depending on the characteristics of the object. Whether the street view images are obtained 
through big data platforms such as Mapillary or collected by the team, street view imagery covering 
different geographical regions makes the trained object detection model, like the RIC, more robust. 
Since street level images capture the visual scene (road characteristics and road users) at a single 
point in time, it is important to consider these implications when using a snapshot of that time of day, 
day of week, and season. Relatedly, a road characteristic may be covered or occluded in a street view 
image; for instance, when a passing truck blocks a sign. Imagery collected at a frequent distance, 
such as every two meters, permits greater flexibility to analyze the road scene and predict risk using 
the RIC and RRE. OSM road networks require review for recency and accuracy, and possibly editing 
to ensure suitable quality and coverage in other areas. If high-quality, granular crash data shows a 
clear pattern of more risk classes, three classes could be predicted: for example, high, medium, and 
low risk.
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Conclusion

Big data and ML offer promising opportunities to improve current road safety assessment proce-
dures for sustainable development. Road safety assessments are often required for new transport 
and infrastructure developments to be approved or as part of their monitoring and evaluation once 
they are completed. However, conducting road safety assessment procedures can be expensive and 
time-consuming. Alternative data sources and ML can optimize this process by identifying patterns 
using complex predictive models. The Integrated Framework for Road Safety offers one approach 
using street view imagery that can be accessed through Mapillary or collected by the team to provide 
a road safety scan. With further training, this framework has the potential to provide detailed road 
safety assessments, mitigating the need for manual annotations (or years of historical crash data). In 
addition to the pilots and studies conducted by the researchers and representatives of road safety or-
ganizations interviewed for this note, there are many ML models contributing to road safety efforts, 
which typically outperform statistical models in predicting road safety.67

Integrate alternative data sources and ML into road safety assessments with care. Finding valid, 
representative data can be a significant challenge in evaluating risks and reducing crash fatalities and 
injuries through data-driven, evidence-based interventions. Teams can directly partner with private 
companies and data providers to retrieve alternative sources of data. And data sharing platforms, such 
as DDP, offer streamlined solutions. However, commercial data sources are not typically established 
to collect data for road safety analysis, and their data may be inadequate for road safety assessment 
methods and procedures. Data can be biased, incomplete, and challenging to synchronize with con-
ventional analytical tools. The implications of collecting and analyzing big data using ML require thor-
ough consideration. Data privacy and security are central concerns; data needs to be de-identified and 
anonymized and stored according to institutional guidelines.68 Data and models need to be screened 
for biases that can affect their outcomes. For example, imbalanced access to smartphones or social 
media may amplify gender or community bias.69 Teams can adhere to best practices and data policies 
and make their ML models and results transparent and openly shared. Resources such as “A Frame-
work for Understanding Sources of Harm throughout the Machine Learning Life Cycle” and “The 
Ethics of Artificial Intelligence” may be helpful for teams implementing ML in their projects.70

The approach used for the case studies in this note can be extended to evaluate specific measures of 
road safety. For example, while the framework uses the crash frequency and may identify the number of 
relevant road users in a street view image, it does not thoroughly consider the number of (vulnerable) road 
users nor does it consider the probability of a crash causing fatalities or serious injuries. The approach could 

67 Philippe Silva, Michelle Andrade, and Sara Ferreira, “Machine Learning Applied to Road Safety Modeling: A Systematic 
Literature Review,” Journal of Traffic and Transportation Engineering 7, no. 6 (2020): 775-790,
https://doi.org/10.1016/j.jtte.2020.07.004
68 World Bank, World Development Report 2021: Data for Better Lives (Washington, DC: World Bank, 2021). doi:10.1596/978-1-
4648-1600-0
69 World Bank, Use of AI Technology to Support Data Collection for Project Preparation and Implementation: A ‘Learning-by-doing’ 
Process (Washington, DC: World Bank, 2021).
70 Harini Suresh and John Guttag, “A Framework for Understanding Sources of Harm throughout the Machine Learning Life 
Cycle” in Proceedings of Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ‘21),
https://doi.org/10.1145/3465416.3483305; Nick Bostrom and Eliezer Yudkowsky, “The Ethics of Artificial Intelligence,” in The 
Cambridge Handbook of Artificial Intelligence, ed. Keith Frankish and William M. Ramsey (Cambridge: Cambridge University 
Press, 2014): 316-334.

https://doi.org/10.1016/j.jtte.2020.07.004
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also be extended using complementary data such as road geometry, traffic flow, traffic volume, traffic speed, 
weather, season, and other factors affecting visibility along the road or road surface conditions. The case 
studies illustrate the potential of big data and ML to reduce the manual inspection of roadways and provide 
road safety insight where otherwise the information is in short supply, thereby contributing to safer roads.

For big data to be fully leveraged for road safety analysis, governments, road safety advocates, 
and international development organizations will want to consider investing in platforms and tools 
that specialize in collecting and analyzing data for road safety. Ongoing efforts to establish regional 
road safety data observatories provide an opportunity to gather data providers and create a data mar-
ketplace specifically for road safety analysis, especially where alternative or traditional sources are 
scarce. Government regulations and initiatives to encourage private companies to share data could 
further integrate big data in international development projects, including road safety. It is essential 
for key stakeholders in road safety assessment to collaborate closely with pioneers of these technol-
ogies to realize their potential in road safety analysis.71 Initiatives such as the Artificial Intelligence 
in Road Traffic Crash Prevention Roundtable hosted by the International Transport Forum (ITF) in 
early 2021 is an example of one such opportunity. Conversations with World Bank team leaders and 
transport specialists reveal that developing a tool to provide a single, easy-to-use solution to access 
and utilize big data for road safety analysis is in high demand. There is potential to automate some of 
the processing and analysis for which specialist expertise is currently required, and initiatives such as 
Ai-RAP and the World Bank Simplified Methodology suggest that practical, scalable solutions could be 
a reality soon.72 As big data and ML become more accessible, and as their adoption accelerates world-
wide, road safety practitioners, governments, road safety advocates, and international organizations 
can unlock their immense potential to improve the quality and efficiency of road safety assessments.

71 Subasish Das and Greg P. Griffin, “Investigating the Role of Big Data in Transportation Safety,” Transportation Research 
Record 2674, no. 6 (2020): 244–52, https://doi.org/10.1177/0361198120918565
72 Monica Olyslagers (Safe Cities and Innovation Specialist, iRAP) and Satoshi Ogita (Senior Transport Specialist, World Bank), 
in discussion with the authors, April 2021.

https://doi.org/10.1177/0361198120918565
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ANNEX 1:
Most Relevant Big Data Types for Road Safety Analysis

DATA COLLECTION POTENTIAL SOURCES POTENTIAL 
APPLICATIONS

ADVANTAGES LIMITATIONS

Street view 
imagery

•	 Apple Look Around
•	 Google Street View 
•	 KartaView
•	 Mapillary
•	 Collected by team

Identify road 
attributes for 
road safety 
assessments.

•	 Provides objective 
evidence of conditions 
in the field.

•	 Can be used in regions 
where government data 
is not available.

•	 Coverage is incomplete, particularly 
in rural and low-income areas.

•	 Licensing restrictions for ML 
application.

Mobile 
applications and 
telematics

•	 Mobile application 
data

•	 Telematic companies
•	 Rideshare companies

Identify vehicle 
movement, traffic 
flows and road 
use by various 
types of users 
for crash risk. 
identification 
and road safety 
assessments.

•	 App data is usually low 
cost and current.

•	 Telematic data could 
show risky driving 
behavior.

•	 Coverage is lighter in rural areas or 
cities where use of app is low.

•	 Often requires data sharing 
agreements with private companies.

Crowdsourced •	 Waze
•	 Delivery drivers
•	 OSM
•	 Social media

Obtain crash data 
and information 
related to road 
use, such as 
types of road 
users and their 
relative density 
at a specific 
location. Can help 
to identify road 
risks.

•	 Can supplement 
government data, 
particularly if incidents 
are underreported or 
government provided 
road networks are 
unavailable.

•	 Requires app use in the region of 
interest.

•	 Needs coordination and resources to 
collect reports from delivery drivers.

•	 Data quality may be low.
•	 Social desirability bias can occur, 

where users feel inclined to share 
specific types of information to 
reinforce a positive or negative 
perspective.

Government •	 Government transport 
agencies 

•	 Road safety 
observatories

Most frequently 
used to obtain 
crash data, 
including 
statistics related 
to crash severity, 
crash frequency 
as well as 
fatalities and 
injuries statistics.

•	 Data often has many 
attributes or details that 
have been manually 
added.

•	 Data often has been 
collected for many years 
in the same manner, 
allowing for temporal 
analysis.

•	 Data can be messy (human error).
•	 Data often not shared.

Aerial and satellite 
imagery

•	 Earth observation 
agencies

•	 Private companies

Identify road 
attributes for 
road safety 
assessments.

•	 Covers large geographic 
area.

•	 Requires balancing the cost with 
recency and granularity of imagery.

Meteorological 
sensors

•	 Meteorological 
agencies

•	 Local universities
•	 Private companies

Review weather 
conditions that 
may affect road 
safety, such as 
crashes.

•	 Infer driving conditions 
(i.e., if road surface 
conditions are not 
available in government 
crash data).

•	 There are varying levels of 
granularity. 

SOURCE: Original table for this publication.
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ANNEX 2:
Overview of Big Data Sources

Data sources accessible through DDP are indicated as free for World Bank task teams.

DATA ACCESS ATTRIBUTES RESOLUTION
AND FORMAT

COST COMMENTS 

STREET VIEW IMAGERY 

Apple Look Around Early stages; 
contact 
company

Requires processing to derive 
physical features related 
to road safety, such as: 
crosswalks, speedbumps, 
painted lines, roads, road 
shoulders, sidewalks, 
streetlights, traffic signs and 
others specific to region of 
interest.

Image N/A Offers extremely limited 
geographic coverage.

Google Street view Not accessible 
according to 
license

360 photos must 
be at least 4K 
(image)

N/A Global coverage is fairly 
extensive.

KartaView Open license Depends on 
camera (image)

Free Images are free, though image 
processing is required (see 
street view training data); 
global coverage is variable.

Mapillary DDP Depends on 
camera (image)

Free Images are free, though image 
processing is required (see 
street view training data); 
global coverage is variable.

Collected by team Requires 
permission and 
coordination 
with local 
government

Depends on 
camera (image or 
video)

High Collection every two meters 
recommended for images.
Images or video require 
processing; see street view 
training data.

STREET VIEW TRAINING DATA

Mapillary Traffic Sign DDP Traffic signs Resolution can 
be very high or 
very low. The 
model performs 
best on images 
with the same 
resolution level 
of the training 
dataset. (image)

Free More than 300 traffic sign 
classes covering six continents.

Mapillary Vistas DDP Physical features related to 
road
crosswalks, speedbumps, 
painted lines, roads, road 
shoulders, sidewalks, 
streetlights, traffic signs 
(others possible)

Free Coverage spans six continents.

Annotation by team Hire a team Physical features related to 
road, specific to region of 
interest
crosswalks, speedbumps, 
painted lines, roads, road 
shoulders, sidewalks, 
streetlights, traffic signs 
(others possible)

High Consider collaborating with 
stakeholders in a region of 
interest to label images using 
a Computer Vision Annotation 
Tool (CVAT) or a labeling team 
with training. 
2,000 labels per class is 
recommended for a simple 
classification.

World Bank’s 
GRSF Road Risk 
Assessment 
software*
* The software is included 
in this section as video 
training data is limited 
in World Bank countries. 
Contact Satoshi Ogita 
(World Bank), for access.

Open source Physical features related to 
road
road grade and curvature, 
pedestrian crossings, 
delineation, roadside severity,
lane width, and number of 
lanes

Free Video analysis produces a 
richer dataset.
Piloted in Liberia and 
Mozambique.
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DATA ACCESS ATTRIBUTES RESOLUTION
AND FORMAT

COST COMMENTS 

MOBILE APPLICATIONS AND TELEMATICS

Grab Contact 
company

Contact company N/A N/A Coverage offered in Cambodia, 
Indonesia, Malaysia, Myanmar, 
Philippines, Singapore, 
Thailand, Vietnam.

HERE Not accessible 
according 
to standard 
license

Traffic
current and historical speeds, 
jams, crashes, road closures 
and road construction

Every minute
(text, number)

N/A Detailed road network coverage 
in more than 200 countries and 
comprehensive traffic speeds 
in more than 80 countries.

Mapbox Movement DDP Movement activity index; 
driving activity index available 
in select locations

Aggregated daily 
or monthly at 100 
meter resolution 
(text, number)

Free See Mapbox Movement 
data processing guidelines 
for recommendations and 
considerations when using this 
dataset.

Mapbox Traffic DDP Traffic (typical speed) each 
road segment, identified by a 
start and end node, has 2,016 
typical speed predictions (7 
days × 24 hours × 12 five-
minute periods)

Typical speed per 
road segment 
in five-minute 
increments over 
a week (text, 
number)

Free

Moovit Contact 
company

Urban transit
(public and on-demand)

Contact company N/A

Ola Cabs DDP Travel time and potholes Contact DDP Free Coverage provided in India.

Orbital Insight DDP Foot traffic 
time of day, day of week, 
velocity (stationary, walking), 
dwell time

Each minute; 2019 
to present (text, 
number)

Free Foot traffic using mobile 
location data in region of 
interest, subject to data 
availability per country.

TomTom Contact 
company

Traffic
current and historical speeds, 
jams, crashes, road closures 
and road construction

Every minute per 
road segment
(text, number)

Free to 
Medium

Global coverage is variable. 

Uber Movement Contact 
company

Traffic 
travel times between zones, 
average speed per segment 
and traffic density

Average travel 
time, average 
speeds per hour, 
time of day or 
quarter of year 
(text, number)

Free Geographic coverage is limited 
to a selection of major cities.
Currently no API. 
Was previously part of DDP.

Unacast DDP Human movement Coordinates, 
horizontal 
accuracy, 
timestamp, time 
zone (text, number)

Free Mobile Location Data Inventory 
for geographic coverage 
available through the DDP 
website.

Veraset DDP Human movement Coordinates, 
horizontal 
accuracy, 
timestamp (text, 
number)

Free

Waze DDP Traffic (alerts, jams, 
irregularities)
major and minor crashes; 
severity of congestion or 
irregularities; current and 
typical speed on jammed 
segments; coordinates, road 
segment (start and end node), 
street name; road type; driving 
direction (NSEW); turn type; 
alerts (construction, road 
closure and weather)

Every minute; 
location provided 
as coordinates, 
road segment, 
street name (text, 
number)

Free Includes weather alerts and 
major and minor crashes by 
application users; see Waze 
under Crowdsourced section. 



67

DATA ACCESS ATTRIBUTES RESOLUTION
AND FORMAT

COST COMMENTS 

WhereIsMy
Transport

DDP Informal transit network Determined in 
collaboration
with team

Medium 
to High

Specializes in producing 
informal transit data according 
to General Transit Feed 
Specifications (GTFS).
Supports team in collecting and 
processing data in exchange 
for the team covering in-field 
costs of data collection and 
facilitating engagement with 
local transport authorities.

CROWDSOURCED

OSM Open license Road segments
road type, length, and features

Centerline of road 
segments, referred 
to as ways and 
relations 
(text, number)

Free May include additional road 
attributes: lanes, name, 
smoothness, surface, speed 
limit, and width, and other 
information such as overtaking 
permitted or lighting.

Twitter DDP Road incidents
tweeted

User-dependent; 
can be associated 
with a place or 
location 
(text, number)

Free

Waze DDP Road incidents
reported using app

Every minute; 
location provided 
as coordinates, 
road segment, 
street name (text, 
number)

Free

Delivery drivers Coordinated by 
team

Road incidents
reported using app

Depends on 
collection (text, 
number)

High

GOVERNMENT

Government or road 
safety observatory 

Government 
contact or 
open data 
platform

Incidents
(date, time, severity, type)

XY coordinate 
per incident (text, 
number)

Free to 
Low

Processing requires standard 
GIS software such as ArcGIS or 
QGIS (free).
Storage is small, typically <1GB 
per urban area over multiple 
years.

Road segments
(type, width, speed limit)

Road segments 
(text, number

Low

Traffic lights
(intersection type)

XY coordinate per 
traffic light (text, 
number)

Low May include intersection type 
(pedestrian, bicyclist, for 
example).

SATELLITE AND AERIAL IMAGERY (AND OTHER REMOTE SENSING)

Maxar Technologies Contact 
company

Elevation and roads Less than 1m
(image)

High Requires processing to derive 
road networks.
Was previously part of DDP.

Orbital Insight DDP Car and truck count; roads Car and truck 
count: high 
resolution, 
2013 to present; 
roads: medium 
resolution, 2016 to 
present
(image, number)

Free Car and truck count derived 
from satellite imagery. 
Limited Geospatial Intelligence 
Platform credits to derive 
roads in region of interest; not 
for routable road networks; 
not suitable for narrow roads 
in urban areas or dirt or 
mountainous roads in rural 
areas.
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DATA ACCESS ATTRIBUTES RESOLUTION
AND FORMAT

COST COMMENTS 

Security or traffic 
cameras

Collected 
by team or 
through external 
resource

Traffic density and volume Depends on 
camera (image
or video)

Medium 
to High

Unmanned aerial 
vehicle (UAV)

Collected by 
team

Elevation, roads, traffic density 
and volume

Depends on 
camera (image
or video)

Medium 
to High

Recent research suggests 
traffic density and volume are 
possible to calculate.

METEOROLOGICAL SENSORS

OpenWeather Contact 
company

Weather
(weather type, temperature, 
wind speed and direction, 
cloud coverage; rain and snow 
volume by hour and per 3 
hours)

40-year historical 
archive for any 
coordinates by the 
hour; or by city or 
1 km, 5 km, 10 km 
or customized grid 
(text, number)

Low Price is economical for the 
40-year history of a single 
coordinate or city. 
Contact provider for details on 
pricing and to download many 
locations.

Tomorrow.io DDP Weather
(weather type, temperature 
and humidity; wind speed, 
direction, gust; precipitation 
type, intensity; snow and ice 
accumulation; visibility, moon 
phase)

500m radius with 
precipitation 
recordings as low 
as 30 feet off the 
ground; time steps 
range from one day 
to one minute
(text, number)

Free

SOURCE: Original table for this publication.
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ANNEX 3:
Hotspots and Heatmaps: Uncovering Data Patterns 
for Road Safety

Data visualizations are provided in the case study regions using alternative data sources, such as 
OSM, Mapbox, and Waze, as well as a select government dataset. 

Bogotá, Colombia

Temporal data visualizations show road safety patterns between years, seasons, months, weeks, 
days, and times of day. The Waze crash data used to train the ML model covered a period of six 
months, from July through December 2020. It was anticipated that the pandemic would affect the 
number of Waze crash reports, and potentially traffic patterns, as crashes reported by the govern-
ment noticeably decreased compared to prior years (figure 3.1). The government dataset revealed 
fewer incidents starting in March 2020, suggesting that the number of crashes was affected by the 
pandemic, though it is worth noting that the speed limit was also reduced from 60km/h to 50 km/h 
in May 2020 (figure 3.2). With this in mind, the Waze data was used to identify road safety trends. 

FIGURE 3.1: Road crashes with damage, injury or death in Bogotá, 2016–2020 

SOURCE: Original figure for this publication, based on data from Datos Abiertos Secretaría Distrital de Movilidad.  

FIGURE 3.2: Road crashes per month in Bogotá, 2016–2020 
 

SOURCE: Original figure for this publication, based on data from
Datos Abiertos Secretaría Distrital de Movilidad.
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Hotspot analysis groups crash locations to determine statistically significant clusters of crashes. 
Government and Waze datasets were analyzed during the same six-month window (figure 3.3). Be-
tween the two datasets, similar hotspots were found near Avenida Boyacá and Calle 6 along the high-
way in the south, Avenida Norte-Quito-Sur (NQS). Overall, Waze had more hotspots than the govern-
ment dataset. Some minor road incidents captured by Waze may have gone unreported to the police. 
This trend can be seen in minor collisions clustering further north in the city. This cluster does not 
appear in the government data. Instead, clusters of government-reported crashes with only damage 
(no injury or fatality) appear in a central band. The approach to identify hotspots can vary, including 
the clustering method, size, shape, and search area of neighboring hotspots.

FIGURE 3.3: Hotspot analysis of government and Waze crash data in Bogotá, July–December 2020

*Includes major and minor crashes, as well as those not categorized as either type.

SOURCE: Original figure for this publication, based on data from Datos Abiertos Secretaría Distrital de Movilidad and the Waze App. Learn more at waze.com. Basemap provided by 
Esri, HERE, Garmin, METI/NASA, USGS.
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As with other alternative sources of data derived from mobile devices and apps, Waze crash reports 
are influenced by the location of the users, which affects where and when the crashes are reported. 
While Waze data notes major and minor incidents, the dataset will not include additional crash de-
tails typically obtained from an official source, such as type, severity, class, and reason. Even though 
users can validate reports (e.g., thumbs up) to provide a confidence and reliability rating and flag false 
reports, there is potential for duplication in Waze data. Deduplication was not conducted for this 
analysis because this study was interested in relative crash patterns. 

Identifiable temporal patterns display when major crashes are aggregated by the day of the week and 
hour of the day (figure 3.4). In Bogotá, major crash reports increased between 6 and 7 p.m., having 
the most crashes during this window on Friday. Fewer incidents occurred on Sunday.

FIGURE 3.4: Major crashes reported on Waze in Bogotá, July–December 2020 

SOURCE: Original figure for this publication, based on data provided by the Waze App. Learn more at waze.com.
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Spatial and temporal analysis can be combined to identify areas for closer inspection that exhibit pat-
terns over time. This is valuable given human movement or behavioral changes, including the effects 
of a pandemic, road construction, or updated speed limits, during the examined period. Emerging 
hotspot analysis reviews clusters of crashes that are consistent over time and ones that are intensify-
ing or diminishing (figure 3.5).73 In this example, each week was analyzed. Intensifying hotspot areas 
were statistically significant hotspots for 90 percent of the weeks analyzed with increasing intensity 
of hotspots, including the final week.

FIGURE 3.5: Emerging hotspot analysis of Waze crashes in Bogotá, July–December 2020

 
SOURCE: Original figure for this publication, based on data provided by the Waze App. Learn more at waze.com. Basemap provided by Esri, HERE, Garmin, 

METI/NASA, USGS.

73 For a complete list of definitions, see “How Emerging Hot Spot Analysis Works”:
https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm

http://waze.com/
https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm
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If interventions or investments target a specific road, more geographically detailed information is 
required to make decisions. Hotspot analysis applied to road segments visualizes statistically signif-
icant crash frequencies along roads, as shown in figure 3.6.

FIGURE 3.6: Hotspot analysis using Waze crash frequencies in Bogotá, July–December 2020

SOURCE: Original figure for this publication, based on data provided by OSM and the Waze App. Learn more at waze.com
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Padang, Indonesia

Heatmaps visualize the density of crashes. While Waze data was sparse in Padang, some spatial 
patterns could be detected. A heatmap shows at least three distinct areas of high crash density that 
could be further examined during a site inspection (figure 3.7).

FIGURE 3.7: Heatmap of crashes reported using the Waze app in 
Padang, April 2019–July 2021

SOURCE: Original figure for this publication, based on data provided by the Waze App. Learn more at waze.com. Basemap provided by Esri, HERE, Garmin, 
METI/NASA, USGS.
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Road safety assessments may require operating speeds of road segments. Mapbox collects this 
data from mobile devices and provides typical speeds per road segment in 5-minute increments. 
In Padang, Mapbox speeds were visualized for a Thursday from 5:00 p.m. to 6:00 p.m. (figure 3.8). 
Using the OSM road type to group and designate minor and major roads as a proxy for a low or 
high-speed limit (speed limits were sparsely noted in OSM), minor roads are visualized with thinner 
lines than major roads. The average speed typically slowed near intersections in pink (<25 km/h) 
when compared to major roads in purple (25-50 km/h). High-speed road segments exceeding 50 
km/h are found heading north and south along Jalan By Pass. Identifying road segments with high 
speeds using Mapbox supports road safety assessments and the implementation of speed manage-
ment or traffic calming measures.

FIGURE 3.8: Mapbox typical speeds in Padang on Thursday, 5:00 p.m. to 6:00 p.m.

SOURCE: Original figure for this publication, based on data provided by Mapbox. Basemap provided by Esri, HERE, Garmin, METI/
NASA, USGS.
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All classes listed were detected using the 
Mapillary Vistas Dataset. Classes in bold 
were the input for the RRE Model.

animal--bird
animal--ground-animal
construction--barrier--ambiguous
construction--barrier--concrete-block
construction--barrier--curb
construction--barrier--fence
construction--barrier--guard-rail
construction--barrier--other-barrier
construction--barrier--road-median
construction--barrier--road-side
construction--barrier--separator
construction--barrier--temporary
construction--barrier--wall
construction--flat--bike-lane
construction--flat--crosswalk-plain
construction--flat--curb-cut
construction--flat--driveway
construction--flat--parking
construction--flat--parking-aisle
construction--flat--pedestrian-area
construction--flat--rail-track
construction--flat--road
construction--flat--road-shoulder
construction--flat--service-lane
construction--flat--sidewalk
construction--flat--traffic-island
construction--structure--bridge
construction--structure--building
construction--structure--garage
construction--structure--tunnel
human--person--individual
human--person--person-group
human--rider--bicyclist
human--rider--motorcyclist
human--rider--other-rider
marking--continuous--dashed
marking--continuous--solid
marking--continuous--zigzag
marking--discrete--ambiguous
marking--discrete--arrow--left

Annex 4: Classes Detected Using Mapillary Vistas Dataset in RIC Model and Input Classes 
for the RRE Model

marking--discrete--arrow--other
marking--discrete--arrow--right
marking--discrete--arrow--split-left-or-
straight
marking--discrete--arrow--split-right-or-
straight
marking--discrete--arrow--straight
marking--discrete--crosswalk-zebra
marking--discrete--give-way-row
marking--discrete--give-way-single
marking--discrete--hatched--chevron
marking--discrete--hatched--diagonal
marking--discrete--other-marking
marking--discrete--stop-line
marking--discrete--symbol--bicycle
marking--discrete--symbol--other
marking--discrete--text
marking-only--continuous--dashed
marking-only--discrete--crosswalk-zebra
marking-only--discrete--other-marking
marking-only--discrete--text
nature--mountain
nature--sand
nature--sky
nature--snow
nature--terrain
nature--vegetation
nature--water
object--banner
object--bench
object--bike-rack
object--catch-basin
object--cctv-camera
object--fire-hydrant
object--junction-box
object--mailbox
object--manhole
object--parking-meter
object--phone-booth
object--pothole
object--sign--advertisement
object--sign--ambiguous
object--sign--back
object--sign--information

object--sign--other
object--sign--store
object--street-light
object--support--pole
object--support--pole-group
object--support--traffic-sign-frame
object--support--utility-pole
object--traffic-cone
object--traffic-light--general-single
object--traffic-light--pedestrians
object--traffic-light--general-upright
object--traffic-light--general-horizontal
object--traffic-light--cyclists
object--traffic-light--other
object--traffic-sign--ambiguous
object--traffic-sign--back
object--traffic-sign--direction-back
object--traffic-sign--direction-front
object--traffic-sign--front
object--traffic-sign--information-parking
object--traffic-sign--temporary-back
object--traffic-sign--temporary-front
object--trash-can
object--vehicle--bicycle
object--vehicle--boat
object--vehicle--bus
object--vehicle--car
object--vehicle--caravan
object--vehicle--motorcycle
object--vehicle--on-rails
object--vehicle--other-vehicle
object--vehicle--trailer
object--vehicle--truck
object--vehicle--vehicle-group
object--vehicle--wheeled-slow
object--water-valve
void--car-mount
void--dynamic
void--ego-vehicle
void--ground
void--static
void--unlabeled
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Annex 5: Average Precision of the Bounding Box Detection and Classification
An Average Precision (AP) score closer to 100 indicates a better performance in correctly detecting and classifying an object. AP 
scores equal to zero mean that no data is available.
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Glossary of Terms 

Big Data Large data sets that require significant processing power and/or complex 
computational techniques to reveal patterns, trends, and correlations.

Development Data 
Partnership (DDP)

A partnership between international organizations and companies, created to 
facilitate the use of third-party data in research and international development.

Deep Learning (DL) A branch of artificial intelligence that involves creating algorithms for deep 
artificial neural networks, inspired by the human brain, to learn complex patterns 
from high dimensional and large quantities of data.

Fatalities and Serious 
Injuries (FSI)

A metric of those killed or seriously injured in a traffic crash which is used to 
monitor traffic safety performance. Fatalities are defined as those who die within 
30 days of the crash.

Intelligent Transport 
System (ITS)

The collection, analysis, and transmission of transportation, vehicle, and 
infrastructure data that informs users with real-time updates and improves future 
operations and predictions.

Internet of Things (IoT) Devices that are connected to the internet to send and/or receive data.
Machine Learning (ML) Method to systematically derive patterns, identify trends, and make conclusions 

from data with minimal human intervention.
Neural Network A set of connected algorithms typically organized in three layers: input layer, 

hidden layer(s), and an output layer.
Overall Project Traffic 
and Road Safety Risk 
(OPTRSR)

The entire traffic and road safety risk of a project that evaluates the road 
infrastructure, vehicle operating speeds, road user behavior, vehicle standards, 
and post-crash trauma care.

Road Crash The collision of a vehicle with another entity, such as a car, bicycle, stationary 
object, pedestrian, or animal, that causes injury or damage to one or more of the 
entities on a road or road-related area.

Road Safety System to reduce risks to road users, preventing death or injury.
Road Safety 
Assessments

Systematic review of the current road or traffic scheme to identify hazardous 
areas.

Road Safety Audit (RSA) Independent, systematic evaluation of the modification or addition to the road or 
traffic scheme to determine the crash potential and safety performance for all 
road users.

Road Safety Impact 
Assessment (RSIA)

The safety performance ranking of planned road construction or modification 
design schemes and their effect on the surrounding road network.

Road Safety Observatory 
(RSO)

A regional network of government representatives that facilitates the sharing and 
exchange of road safety data and expertise. The World Bank operates RSOs in 
Latin America (OISEVI), Africa (ARSO), and Asia-Pacific (APRSO).

Safe System An approach to road safety that integrates principles for safer vehicles, safer 
roads, and safer users to eliminate death and serious injuries.

Supervised Learning A machine learning task using labeled data to train the model with input-output 
pairs.

Unsupervised Learning A machine learning technique that extracts patterns from unlabeled data. For 
example, grouping or clustering data with similar attributes.

Vulnerable Road Users Individuals at a higher risk using the road because they do not have the 
protection of an enclosed vehicle, such as pedestrians, motorcyclists, bicyclists, 
and those on animals or animal drawn carts.
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This guidance note offers a practical introduc-
tion to integrating big data and machine learn-
ing in road safety evaluations. It outlines data 
requirements for several road safety assess-
ments, provides a convenient overview of rel-
evant big data sources, and explains machine 
learning fundamentals for the application of 
these advanced technologies, specifically for 
road safety. The note proposes an Integrated 
Framework for Road Safety, which takes the 
reader step-by-step through a machine learning 
workflow to evaluate road risk, using case stud-
ies in Bogotá, Colombia and Padang, Indonesia.

The Integrated Framework for Road Safety uses 
machine learning to identify road characteris-
tics from street view images and predict road 
segment risk based on those identifiable char-
acteristics. As a result, road segment risk was 
predicted with 72.5 percent accuracy in Bogotá. 

While the preliminary results in Padang were en-
couraging, additional data is required to verify 
the performance in a new context. However, the 
workflow illustrated through these case studies 
shows potential for replicability. All code for the 
Integrated Framework for Road Safety is free and 
publicly available for repurposing and refining to 
local context through a link provided in the note.

The framework exemplifies current capabilities 
to reduce the reliance on manual image anno-
tations and highlights the potential to conduct 
a road safety scan without years of historical 
crash data. The increasing availability of big 
data and the growing use of machine learning 
models for road safety point to rapidly evolving 
technological solutions that have immense ca-
pacity to improve the quality and efficiency of 
road safety assessments in developing coun-
tries.


